blob: edcfccbb3b76ba9685b9e0c3cb67848dfe3efcb7 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000030using namespace llvm;
31
32namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000033 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
34 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000035 ///
36 enum TypeClass {
37 cByte, cShort, cInt, cFP, cLong
38 };
39}
40
41/// getClass - Turn a primitive type into a "class" number which is based on the
42/// size of the type, and whether or not it is floating point.
43///
44static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000045 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000046 case Type::SByteTyID:
47 case Type::UByteTyID: return cByte; // Byte operands are class #0
48 case Type::ShortTyID:
49 case Type::UShortTyID: return cShort; // Short operands are class #1
50 case Type::IntTyID:
51 case Type::UIntTyID:
52 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
53
54 case Type::FloatTyID:
55 case Type::DoubleTyID: return cFP; // Floating Point is #3
56
57 case Type::LongTyID:
58 case Type::ULongTyID: return cLong; // Longs are class #4
59 default:
60 assert(0 && "Invalid type to getClass!");
61 return cByte; // not reached
62 }
63}
64
65// getClassB - Just like getClass, but treat boolean values as ints.
66static inline TypeClass getClassB(const Type *Ty) {
67 if (Ty == Type::BoolTy) return cInt;
68 return getClass(Ty);
69}
70
71namespace {
72 struct ISel : public FunctionPass, InstVisitor<ISel> {
73 TargetMachine &TM;
74 MachineFunction *F; // The function we are compiling into
Misha Brukmanb0932592004-07-07 15:36:18 +000075 Module *M; // Current module
Misha Brukman5dfe3a92004-06-21 16:55:25 +000076 MachineBasicBlock *BB; // The current MBB we are compiling
77 int VarArgsFrameIndex; // FrameIndex for start of varargs area
78 int ReturnAddressIndex; // FrameIndex for the return address
79
80 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
81
82 // MBBMap - Mapping between LLVM BB -> Machine BB
83 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
84
85 // AllocaMap - Mapping from fixed sized alloca instructions to the
86 // FrameIndex for the alloca.
87 std::map<AllocaInst*, unsigned> AllocaMap;
88
89 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
90
Misha Brukmanb0932592004-07-07 15:36:18 +000091 bool doInitialization(Module &Mod) {
92 M = &Mod;
93 // Add external functions that we may call
Misha Brukmand18a31d2004-07-06 22:51:53 +000094 Type *d = Type::DoubleTy;
95 // double fmod(double, double);
Misha Brukmanb0932592004-07-07 15:36:18 +000096 Mod.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukmand18a31d2004-07-06 22:51:53 +000097 // { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
98 return false;
99 }
100
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000101 /// runOnFunction - Top level implementation of instruction selection for
102 /// the entire function.
103 ///
104 bool runOnFunction(Function &Fn) {
105 // First pass over the function, lower any unknown intrinsic functions
106 // with the IntrinsicLowering class.
107 LowerUnknownIntrinsicFunctionCalls(Fn);
108
109 F = &MachineFunction::construct(&Fn, TM);
110
111 // Create all of the machine basic blocks for the function...
112 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
113 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
114
115 BB = &F->front();
116
117 // Set up a frame object for the return address. This is used by the
118 // llvm.returnaddress & llvm.frameaddress intrinisics.
119 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
120
121 // Copy incoming arguments off of the stack...
122 LoadArgumentsToVirtualRegs(Fn);
123
124 // Instruction select everything except PHI nodes
125 visit(Fn);
126
127 // Select the PHI nodes
128 SelectPHINodes();
129
130 RegMap.clear();
131 MBBMap.clear();
132 AllocaMap.clear();
133 F = 0;
134 // We always build a machine code representation for the function
135 return true;
136 }
137
138 virtual const char *getPassName() const {
139 return "PowerPC Simple Instruction Selection";
140 }
141
142 /// visitBasicBlock - This method is called when we are visiting a new basic
143 /// block. This simply creates a new MachineBasicBlock to emit code into
144 /// and adds it to the current MachineFunction. Subsequent visit* for
145 /// instructions will be invoked for all instructions in the basic block.
146 ///
147 void visitBasicBlock(BasicBlock &LLVM_BB) {
148 BB = MBBMap[&LLVM_BB];
149 }
150
151 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
152 /// function, lowering any calls to unknown intrinsic functions into the
153 /// equivalent LLVM code.
154 ///
155 void LowerUnknownIntrinsicFunctionCalls(Function &F);
156
157 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
158 /// from the stack into virtual registers.
159 ///
160 void LoadArgumentsToVirtualRegs(Function &F);
161
162 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
163 /// because we have to generate our sources into the source basic blocks,
164 /// not the current one.
165 ///
166 void SelectPHINodes();
167
168 // Visitation methods for various instructions. These methods simply emit
169 // fixed PowerPC code for each instruction.
170
171 // Control flow operators
172 void visitReturnInst(ReturnInst &RI);
173 void visitBranchInst(BranchInst &BI);
174
175 struct ValueRecord {
176 Value *Val;
177 unsigned Reg;
178 const Type *Ty;
179 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
180 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
181 };
182 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000183 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000184 void visitCallInst(CallInst &I);
185 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
186
187 // Arithmetic operators
188 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
189 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
190 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
191 void visitMul(BinaryOperator &B);
192
193 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
194 void visitRem(BinaryOperator &B) { visitDivRem(B); }
195 void visitDivRem(BinaryOperator &B);
196
197 // Bitwise operators
198 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
199 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
200 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
201
202 // Comparison operators...
203 void visitSetCondInst(SetCondInst &I);
204 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
205 MachineBasicBlock *MBB,
206 MachineBasicBlock::iterator MBBI);
207 void visitSelectInst(SelectInst &SI);
208
209
210 // Memory Instructions
211 void visitLoadInst(LoadInst &I);
212 void visitStoreInst(StoreInst &I);
213 void visitGetElementPtrInst(GetElementPtrInst &I);
214 void visitAllocaInst(AllocaInst &I);
215 void visitMallocInst(MallocInst &I);
216 void visitFreeInst(FreeInst &I);
217
218 // Other operators
219 void visitShiftInst(ShiftInst &I);
220 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
221 void visitCastInst(CastInst &I);
222 void visitVANextInst(VANextInst &I);
223 void visitVAArgInst(VAArgInst &I);
224
225 void visitInstruction(Instruction &I) {
226 std::cerr << "Cannot instruction select: " << I;
227 abort();
228 }
229
230 /// promote32 - Make a value 32-bits wide, and put it somewhere.
231 ///
232 void promote32(unsigned targetReg, const ValueRecord &VR);
233
234 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
235 /// constant expression GEP support.
236 ///
237 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
238 Value *Src, User::op_iterator IdxBegin,
239 User::op_iterator IdxEnd, unsigned TargetReg);
240
241 /// emitCastOperation - Common code shared between visitCastInst and
242 /// constant expression cast support.
243 ///
244 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
245 Value *Src, const Type *DestTy, unsigned TargetReg);
246
247 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
248 /// and constant expression support.
249 ///
250 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
251 MachineBasicBlock::iterator IP,
252 Value *Op0, Value *Op1,
253 unsigned OperatorClass, unsigned TargetReg);
254
255 /// emitBinaryFPOperation - This method handles emission of floating point
256 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
257 void emitBinaryFPOperation(MachineBasicBlock *BB,
258 MachineBasicBlock::iterator IP,
259 Value *Op0, Value *Op1,
260 unsigned OperatorClass, unsigned TargetReg);
261
262 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
263 Value *Op0, Value *Op1, unsigned TargetReg);
264
265 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
266 unsigned DestReg, const Type *DestTy,
267 unsigned Op0Reg, unsigned Op1Reg);
268 void doMultiplyConst(MachineBasicBlock *MBB,
269 MachineBasicBlock::iterator MBBI,
270 unsigned DestReg, const Type *DestTy,
271 unsigned Op0Reg, unsigned Op1Val);
272
273 void emitDivRemOperation(MachineBasicBlock *BB,
274 MachineBasicBlock::iterator IP,
275 Value *Op0, Value *Op1, bool isDiv,
276 unsigned TargetReg);
277
278 /// emitSetCCOperation - Common code shared between visitSetCondInst and
279 /// constant expression support.
280 ///
281 void emitSetCCOperation(MachineBasicBlock *BB,
282 MachineBasicBlock::iterator IP,
283 Value *Op0, Value *Op1, unsigned Opcode,
284 unsigned TargetReg);
285
286 /// emitShiftOperation - Common code shared between visitShiftInst and
287 /// constant expression support.
288 ///
289 void emitShiftOperation(MachineBasicBlock *MBB,
290 MachineBasicBlock::iterator IP,
291 Value *Op, Value *ShiftAmount, bool isLeftShift,
292 const Type *ResultTy, unsigned DestReg);
293
294 /// emitSelectOperation - Common code shared between visitSelectInst and the
295 /// constant expression support.
296 void emitSelectOperation(MachineBasicBlock *MBB,
297 MachineBasicBlock::iterator IP,
298 Value *Cond, Value *TrueVal, Value *FalseVal,
299 unsigned DestReg);
300
301 /// copyConstantToRegister - Output the instructions required to put the
302 /// specified constant into the specified register.
303 ///
304 void copyConstantToRegister(MachineBasicBlock *MBB,
305 MachineBasicBlock::iterator MBBI,
306 Constant *C, unsigned Reg);
307
308 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
309 unsigned LHS, unsigned RHS);
310
311 /// makeAnotherReg - This method returns the next register number we haven't
312 /// yet used.
313 ///
314 /// Long values are handled somewhat specially. They are always allocated
315 /// as pairs of 32 bit integer values. The register number returned is the
316 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
317 /// of the long value.
318 ///
319 unsigned makeAnotherReg(const Type *Ty) {
320 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
321 "Current target doesn't have PPC reg info??");
322 const PowerPCRegisterInfo *MRI =
323 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
324 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
325 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
326 // Create the lower part
327 F->getSSARegMap()->createVirtualRegister(RC);
328 // Create the upper part.
329 return F->getSSARegMap()->createVirtualRegister(RC)-1;
330 }
331
332 // Add the mapping of regnumber => reg class to MachineFunction
333 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
334 return F->getSSARegMap()->createVirtualRegister(RC);
335 }
336
337 /// getReg - This method turns an LLVM value into a register number.
338 ///
339 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
340 unsigned getReg(Value *V) {
341 // Just append to the end of the current bb.
342 MachineBasicBlock::iterator It = BB->end();
343 return getReg(V, BB, It);
344 }
345 unsigned getReg(Value *V, MachineBasicBlock *MBB,
346 MachineBasicBlock::iterator IPt);
347
348 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
349 /// that is to be statically allocated with the initial stack frame
350 /// adjustment.
351 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
352 };
353}
354
355/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
356/// instruction in the entry block, return it. Otherwise, return a null
357/// pointer.
358static AllocaInst *dyn_castFixedAlloca(Value *V) {
359 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
360 BasicBlock *BB = AI->getParent();
361 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
362 return AI;
363 }
364 return 0;
365}
366
367/// getReg - This method turns an LLVM value into a register number.
368///
369unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
370 MachineBasicBlock::iterator IPt) {
371 // If this operand is a constant, emit the code to copy the constant into
372 // the register here...
373 //
374 if (Constant *C = dyn_cast<Constant>(V)) {
375 unsigned Reg = makeAnotherReg(V->getType());
376 copyConstantToRegister(MBB, IPt, C, Reg);
377 return Reg;
378 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Misha Brukman7e5812c2004-06-28 18:20:59 +0000379 // GV is located at PC + distance
Misha Brukman7e5812c2004-06-28 18:20:59 +0000380 unsigned CurPC = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000381 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000382 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman7e5812c2004-06-28 18:20:59 +0000383 // Move PC to destination reg
384 BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
Misha Brukman7e5812c2004-06-28 18:20:59 +0000385 // Move value at PC + distance into return reg
386 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
Misha Brukman911afde2004-06-25 14:50:41 +0000387 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000388 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000389 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000390 return Reg2;
391 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
392 // Do not emit noop casts at all.
393 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
394 return getReg(CI->getOperand(0), MBB, IPt);
395 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
396 unsigned Reg = makeAnotherReg(V->getType());
397 unsigned FI = getFixedSizedAllocaFI(AI);
398 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
399 return Reg;
400 }
401
402 unsigned &Reg = RegMap[V];
403 if (Reg == 0) {
404 Reg = makeAnotherReg(V->getType());
405 RegMap[V] = Reg;
406 }
407
408 return Reg;
409}
410
411/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
412/// that is to be statically allocated with the initial stack frame
413/// adjustment.
414unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
415 // Already computed this?
416 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
417 if (I != AllocaMap.end() && I->first == AI) return I->second;
418
419 const Type *Ty = AI->getAllocatedType();
420 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
421 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
422 TySize *= CUI->getValue(); // Get total allocated size...
423 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
424
425 // Create a new stack object using the frame manager...
426 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
427 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
428 return FrameIdx;
429}
430
431
432/// copyConstantToRegister - Output the instructions required to put the
433/// specified constant into the specified register.
434///
435void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
436 MachineBasicBlock::iterator IP,
437 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000438 if (C->getType()->isIntegral()) {
439 unsigned Class = getClassB(C->getType());
440
441 if (Class == cLong) {
442 // Copy the value into the register pair.
443 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000444 unsigned hiTmp = makeAnotherReg(Type::IntTy);
445 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000446 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0)
447 .addImm(Val >> 48);
448 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
449 .addImm((Val >> 32) & 0xFFFF);
450 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0)
451 .addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000452 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
453 return;
454 }
455
456 assert(Class <= cInt && "Type not handled yet!");
457
458 if (C->getType() == Type::BoolTy) {
Misha Brukman911afde2004-06-25 14:50:41 +0000459 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
460 .addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000461 } else if (Class == cByte || Class == cShort) {
462 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman911afde2004-06-25 14:50:41 +0000463 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
464 .addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000465 } else {
466 ConstantInt *CI = cast<ConstantInt>(C);
467 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
468 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman911afde2004-06-25 14:50:41 +0000469 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
470 .addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000471 } else {
472 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000473 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
474 .addImm(CI->getRawValue() >> 16);
475 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
476 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000477 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000478 }
479 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000480 // We need to spill the constant to memory...
481 MachineConstantPool *CP = F->getConstantPool();
482 unsigned CPI = CP->getConstantPoolIndex(CFP);
483 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000484
Misha Brukmand18a31d2004-07-06 22:51:53 +0000485 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
486 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
487 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000488 } else if (isa<ConstantPointerNull>(C)) {
489 // Copy zero (null pointer) to the register.
490 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
491 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000492 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
493 .addGlobalAddress(CPR->getValue());
494 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
495 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000496 } else {
497 std::cerr << "Offending constant: " << C << "\n";
498 assert(0 && "Type not handled yet!");
499 }
500}
501
502/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
503/// the stack into virtual registers.
504///
505/// FIXME: When we can calculate which args are coming in via registers
506/// source them from there instead.
507void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
508 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
509 unsigned GPR_remaining = 8;
510 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000511 unsigned GPR_idx = 0, FPR_idx = 0;
512 static const unsigned GPR[] = {
513 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
514 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
515 };
516 static const unsigned FPR[] = {
517 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
518 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
519 };
Misha Brukman422791f2004-06-21 17:41:12 +0000520
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000521 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000522
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000523 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
524 bool ArgLive = !I->use_empty();
525 unsigned Reg = ArgLive ? getReg(*I) : 0;
526 int FI; // Frame object index
527
528 switch (getClassB(I->getType())) {
529 case cByte:
530 if (ArgLive) {
531 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000532 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000533 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
534 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000535 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000536 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000537 }
538 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000539 break;
540 case cShort:
541 if (ArgLive) {
542 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000543 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000544 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
545 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000546 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000547 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000548 }
549 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000550 break;
551 case cInt:
552 if (ArgLive) {
553 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000554 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000555 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
556 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000557 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000558 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000559 }
560 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000561 break;
562 case cLong:
563 if (ArgLive) {
564 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000565 if (GPR_remaining > 1) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000566 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
567 .addReg(GPR[GPR_idx]);
568 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
569 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000570 } else {
571 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
572 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
573 }
574 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000575 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000576 if (GPR_remaining > 1) {
577 GPR_remaining--; // uses up 2 GPRs
578 GPR_idx++;
579 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000580 break;
581 case cFP:
582 if (ArgLive) {
583 unsigned Opcode;
584 if (I->getType() == Type::FloatTy) {
585 Opcode = PPC32::LFS;
586 FI = MFI->CreateFixedObject(4, ArgOffset);
587 } else {
588 Opcode = PPC32::LFD;
589 FI = MFI->CreateFixedObject(8, ArgOffset);
590 }
Misha Brukman422791f2004-06-21 17:41:12 +0000591 if (FPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000592 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
593 FPR_remaining--;
594 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000595 } else {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000596 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000597 }
598 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000599 if (I->getType() == Type::DoubleTy) {
600 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000601 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000602 GPR_remaining--; // uses up 2 GPRs
603 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000604 }
605 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000606 break;
607 default:
608 assert(0 && "Unhandled argument type!");
609 }
610 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000611 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000612 GPR_remaining--; // uses up 2 GPRs
613 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000614 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000615 }
616
617 // If the function takes variable number of arguments, add a frame offset for
618 // the start of the first vararg value... this is used to expand
619 // llvm.va_start.
620 if (Fn.getFunctionType()->isVarArg())
621 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
622}
623
624
625/// SelectPHINodes - Insert machine code to generate phis. This is tricky
626/// because we have to generate our sources into the source basic blocks, not
627/// the current one.
628///
629void ISel::SelectPHINodes() {
630 const TargetInstrInfo &TII = *TM.getInstrInfo();
631 const Function &LF = *F->getFunction(); // The LLVM function...
632 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
633 const BasicBlock *BB = I;
634 MachineBasicBlock &MBB = *MBBMap[I];
635
636 // Loop over all of the PHI nodes in the LLVM basic block...
637 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
638 for (BasicBlock::const_iterator I = BB->begin();
639 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
640
641 // Create a new machine instr PHI node, and insert it.
642 unsigned PHIReg = getReg(*PN);
643 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
644 PPC32::PHI, PN->getNumOperands(), PHIReg);
645
646 MachineInstr *LongPhiMI = 0;
647 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
648 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
649 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
650
651 // PHIValues - Map of blocks to incoming virtual registers. We use this
652 // so that we only initialize one incoming value for a particular block,
653 // even if the block has multiple entries in the PHI node.
654 //
655 std::map<MachineBasicBlock*, unsigned> PHIValues;
656
657 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
658 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
659 unsigned ValReg;
660 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
661 PHIValues.lower_bound(PredMBB);
662
663 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
664 // We already inserted an initialization of the register for this
665 // predecessor. Recycle it.
666 ValReg = EntryIt->second;
667
668 } else {
669 // Get the incoming value into a virtual register.
670 //
671 Value *Val = PN->getIncomingValue(i);
672
673 // If this is a constant or GlobalValue, we may have to insert code
674 // into the basic block to compute it into a virtual register.
675 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
676 isa<GlobalValue>(Val)) {
677 // Simple constants get emitted at the end of the basic block,
678 // before any terminator instructions. We "know" that the code to
679 // move a constant into a register will never clobber any flags.
680 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
681 } else {
682 // Because we don't want to clobber any values which might be in
683 // physical registers with the computation of this constant (which
684 // might be arbitrarily complex if it is a constant expression),
685 // just insert the computation at the top of the basic block.
686 MachineBasicBlock::iterator PI = PredMBB->begin();
687
688 // Skip over any PHI nodes though!
689 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
690 ++PI;
691
692 ValReg = getReg(Val, PredMBB, PI);
693 }
694
695 // Remember that we inserted a value for this PHI for this predecessor
696 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
697 }
698
699 PhiMI->addRegOperand(ValReg);
700 PhiMI->addMachineBasicBlockOperand(PredMBB);
701 if (LongPhiMI) {
702 LongPhiMI->addRegOperand(ValReg+1);
703 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
704 }
705 }
706
707 // Now that we emitted all of the incoming values for the PHI node, make
708 // sure to reposition the InsertPoint after the PHI that we just added.
709 // This is needed because we might have inserted a constant into this
710 // block, right after the PHI's which is before the old insert point!
711 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
712 ++PHIInsertPoint;
713 }
714 }
715}
716
717
718// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
719// it into the conditional branch or select instruction which is the only user
720// of the cc instruction. This is the case if the conditional branch is the
721// only user of the setcc, and if the setcc is in the same basic block as the
722// conditional branch. We also don't handle long arguments below, so we reject
723// them here as well.
724//
725static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
726 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
727 if (SCI->hasOneUse()) {
728 Instruction *User = cast<Instruction>(SCI->use_back());
729 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
730 SCI->getParent() == User->getParent() &&
731 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
732 SCI->getOpcode() == Instruction::SetEQ ||
733 SCI->getOpcode() == Instruction::SetNE))
734 return SCI;
735 }
736 return 0;
737}
738
739// Return a fixed numbering for setcc instructions which does not depend on the
740// order of the opcodes.
741//
742static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000743 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000744 default: assert(0 && "Unknown setcc instruction!");
745 case Instruction::SetEQ: return 0;
746 case Instruction::SetNE: return 1;
747 case Instruction::SetLT: return 2;
748 case Instruction::SetGE: return 3;
749 case Instruction::SetGT: return 4;
750 case Instruction::SetLE: return 5;
751 }
752}
753
Misha Brukmane9c65512004-07-06 15:32:44 +0000754static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
755 switch (Opcode) {
756 default: assert(0 && "Unknown setcc instruction!");
757 case Instruction::SetEQ: return PPC32::BEQ;
758 case Instruction::SetNE: return PPC32::BNE;
759 case Instruction::SetLT: return PPC32::BLT;
760 case Instruction::SetGE: return PPC32::BGE;
761 case Instruction::SetGT: return PPC32::BGT;
762 case Instruction::SetLE: return PPC32::BLE;
763 }
764}
765
766static unsigned invertPPCBranchOpcode(unsigned Opcode) {
767 switch (Opcode) {
768 default: assert(0 && "Unknown PPC32 branch opcode!");
769 case PPC32::BEQ: return PPC32::BNE;
770 case PPC32::BNE: return PPC32::BEQ;
771 case PPC32::BLT: return PPC32::BGE;
772 case PPC32::BGE: return PPC32::BLT;
773 case PPC32::BGT: return PPC32::BLE;
774 case PPC32::BLE: return PPC32::BGT;
775 }
776}
777
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000778/// emitUCOM - emits an unordered FP compare.
779void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
780 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000781 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000782}
783
784// EmitComparison - This function emits a comparison of the two operands,
785// returning the extended setcc code to use.
786unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
787 MachineBasicBlock *MBB,
788 MachineBasicBlock::iterator IP) {
789 // The arguments are already supposed to be of the same type.
790 const Type *CompTy = Op0->getType();
791 unsigned Class = getClassB(CompTy);
792 unsigned Op0r = getReg(Op0, MBB, IP);
793
794 // Special case handling of: cmp R, i
795 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000796 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000797 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
798 if (Class == cByte || Class == cShort || Class == cInt) {
799 unsigned Op1v = CI->getRawValue();
800
801 // Mask off any upper bits of the constant, if there are any...
802 Op1v &= (1ULL << (8 << Class)) - 1;
803
Misha Brukman422791f2004-06-21 17:41:12 +0000804 // Compare immediate or promote to reg?
805 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000806 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
807 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000808 } else {
809 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000810 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
811 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000812 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000813 return OpNum;
814 } else {
815 assert(Class == cLong && "Unknown integer class!");
816 unsigned LowCst = CI->getRawValue();
817 unsigned HiCst = CI->getRawValue() >> 32;
818 if (OpNum < 2) { // seteq, setne
819 unsigned LoTmp = Op0r;
820 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000821 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000822 unsigned LoTmp = makeAnotherReg(Type::IntTy);
823 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000824 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
825 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000826 }
827 unsigned HiTmp = Op0r+1;
828 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000829 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000830 unsigned HiTmp = makeAnotherReg(Type::IntTy);
831 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000832 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
833 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000834 }
835 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
836 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
837 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
838 return OpNum;
839 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000840 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000841 std::cerr << "EmitComparison unimplemented: Opnum >= 2\n";
842 abort();
Misha Brukman422791f2004-06-21 17:41:12 +0000843 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000844 }
845 }
846 }
847
848 unsigned Op1r = getReg(Op1, MBB, IP);
849 switch (Class) {
850 default: assert(0 && "Unknown type class!");
851 case cByte:
852 case cShort:
853 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000854 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
855 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000856 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000857
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000858 case cFP:
859 emitUCOM(MBB, IP, Op0r, Op1r);
860 break;
861
862 case cLong:
863 if (OpNum < 2) { // seteq, setne
864 unsigned LoTmp = makeAnotherReg(Type::IntTy);
865 unsigned HiTmp = makeAnotherReg(Type::IntTy);
866 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
867 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
868 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
869 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
870 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
871 break; // Allow the sete or setne to be generated from flags set by OR
872 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000873 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000874 std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n";
875 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000876 return OpNum;
877 }
878 }
879 return OpNum;
880}
881
Misha Brukmand18a31d2004-07-06 22:51:53 +0000882/// visitSetCondInst - emit code to calculate the condition via
883/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000884///
885void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000886 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +0000887 return;
888
Misha Brukman425ff242004-07-01 21:34:10 +0000889 unsigned Op0Reg = getReg(I.getOperand(0));
890 unsigned Op1Reg = getReg(I.getOperand(1));
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000891 unsigned DestReg = getReg(I);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000892 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +0000893 const Type *Ty = I.getOperand (0)->getType();
894
Misha Brukmand18a31d2004-07-06 22:51:53 +0000895 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
896
897 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +0000898 MachineBasicBlock *thisMBB = BB;
899 const BasicBlock *LLVM_BB = BB->getBasicBlock();
900 // thisMBB:
901 // ...
902 // cmpTY cr0, r1, r2
903 // bCC copy1MBB
904 // b copy0MBB
905
906 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
907 // if we could insert other, non-terminator instructions after the
908 // bCC. But MBB->getFirstTerminator() can't understand this.
909 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
910 F->getBasicBlockList().push_back(copy1MBB);
911 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
912 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
913 F->getBasicBlockList().push_back(copy0MBB);
914 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
915 // Update machine-CFG edges
916 BB->addSuccessor(copy1MBB);
917 BB->addSuccessor(copy0MBB);
918
919 // copy0MBB:
920 // %FalseValue = li 0
Misha Brukmane9c65512004-07-06 15:32:44 +0000921 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000922 BB = copy0MBB;
923 unsigned FalseValue = makeAnotherReg(I.getType());
924 BuildMI(BB, PPC32::LI, 1, FalseValue).addZImm(0);
925 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
926 F->getBasicBlockList().push_back(sinkMBB);
927 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
928 // Update machine-CFG edges
929 BB->addSuccessor(sinkMBB);
930
931 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
932 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
933 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
934 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
935
936 // copy1MBB:
937 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +0000938 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000939 BB = copy1MBB;
940 unsigned TrueValue = makeAnotherReg (I.getType ());
941 BuildMI(BB, PPC32::LI, 1, TrueValue).addZImm(1);
942 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
943 // Update machine-CFG edges
944 BB->addSuccessor(sinkMBB);
945
946 // sinkMBB:
947 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
948 // ...
949 BB = sinkMBB;
950 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
951 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000952}
953
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000954void ISel::visitSelectInst(SelectInst &SI) {
955 unsigned DestReg = getReg(SI);
956 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000957 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
958 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000959}
960
961/// emitSelect - Common code shared between visitSelectInst and the constant
962/// expression support.
963/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
964/// no select instruction. FSEL only works for comparisons against zero.
965void ISel::emitSelectOperation(MachineBasicBlock *MBB,
966 MachineBasicBlock::iterator IP,
967 Value *Cond, Value *TrueVal, Value *FalseVal,
968 unsigned DestReg) {
969 unsigned SelectClass = getClassB(TrueVal->getType());
970
971 unsigned TrueReg = getReg(TrueVal, MBB, IP);
972 unsigned FalseReg = getReg(FalseVal, MBB, IP);
973
974 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +0000975 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000976 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000977 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000978 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000979 }
980
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000981 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +0000982 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
983 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000984 return;
985 }
986
987 unsigned CondReg = getReg(Cond, MBB, IP);
988 unsigned numZeros = makeAnotherReg(Type::IntTy);
989 unsigned falseHi = makeAnotherReg(Type::IntTy);
990 unsigned falseAll = makeAnotherReg(Type::IntTy);
991 unsigned trueAll = makeAnotherReg(Type::IntTy);
992 unsigned Temp1 = makeAnotherReg(Type::IntTy);
993 unsigned Temp2 = makeAnotherReg(Type::IntTy);
994
995 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +0000996 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
997 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000998 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
999 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
1000 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
1001 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
1002 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
1003
1004 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001005 unsigned Temp3 = makeAnotherReg(Type::IntTy);
1006 unsigned Temp4 = makeAnotherReg(Type::IntTy);
1007 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
1008 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
1009 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001010 }
1011
1012 return;
1013}
1014
1015
1016
1017/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1018/// operand, in the specified target register.
1019///
1020void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1021 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1022
1023 Value *Val = VR.Val;
1024 const Type *Ty = VR.Ty;
1025 if (Val) {
1026 if (Constant *C = dyn_cast<Constant>(Val)) {
1027 Val = ConstantExpr::getCast(C, Type::IntTy);
1028 Ty = Type::IntTy;
1029 }
1030
Misha Brukman2fec9902004-06-21 20:22:03 +00001031 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001032 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1033 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1034
1035 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001036 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1037 } else {
1038 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001039 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1040 .addImm(TheVal >> 16);
1041 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1042 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001043 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001044 return;
1045 }
1046 }
1047
1048 // Make sure we have the register number for this value...
1049 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1050
1051 switch (getClassB(Ty)) {
1052 case cByte:
1053 // Extend value into target register (8->32)
1054 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001055 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1056 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001057 else
1058 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1059 break;
1060 case cShort:
1061 // Extend value into target register (16->32)
1062 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001063 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1064 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001065 else
1066 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1067 break;
1068 case cInt:
1069 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001070 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001071 break;
1072 default:
1073 assert(0 && "Unpromotable operand class in promote32");
1074 }
1075}
1076
Misha Brukman2fec9902004-06-21 20:22:03 +00001077/// visitReturnInst - implemented with BLR
1078///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001079void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001080 // Only do the processing if this is a non-void return
1081 if (I.getNumOperands() > 0) {
1082 Value *RetVal = I.getOperand(0);
1083 switch (getClassB(RetVal->getType())) {
1084 case cByte: // integral return values: extend or move into r3 and return
1085 case cShort:
1086 case cInt:
1087 promote32(PPC32::R3, ValueRecord(RetVal));
1088 break;
1089 case cFP: { // Floats & Doubles: Return in f1
1090 unsigned RetReg = getReg(RetVal);
1091 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1092 break;
1093 }
1094 case cLong: {
1095 unsigned RetReg = getReg(RetVal);
1096 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1097 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1098 break;
1099 }
1100 default:
1101 visitInstruction(I);
1102 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001103 }
1104 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1105}
1106
1107// getBlockAfter - Return the basic block which occurs lexically after the
1108// specified one.
1109static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1110 Function::iterator I = BB; ++I; // Get iterator to next block
1111 return I != BB->getParent()->end() ? &*I : 0;
1112}
1113
1114/// visitBranchInst - Handle conditional and unconditional branches here. Note
1115/// that since code layout is frozen at this point, that if we are trying to
1116/// jump to a block that is the immediate successor of the current block, we can
1117/// just make a fall-through (but we don't currently).
1118///
1119void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001120 // Update machine-CFG edges
1121 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1122 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001123 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001124
1125 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001126
Misha Brukman2fec9902004-06-21 20:22:03 +00001127 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001128 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001129 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1130 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001131 }
1132
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001133 // See if we can fold the setcc into the branch itself...
1134 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1135 if (SCI == 0) {
1136 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1137 // computed some other way...
1138 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001139 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001140 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001141 if (BI.getSuccessor(1) == NextBB) {
1142 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001143 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001144 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001145 } else {
Misha Brukmane9c65512004-07-06 15:32:44 +00001146 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001147 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001148
1149 if (BI.getSuccessor(0) != NextBB)
1150 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1151 }
1152 return;
1153 }
1154
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001155 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001156 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001157 MachineBasicBlock::iterator MII = BB->end();
1158 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001159
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001160 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001161 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001162 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001163 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001164 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001165 } else {
1166 // Change to the inverse condition...
1167 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001168 Opcode = invertPPCBranchOpcode(Opcode);
1169 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001170 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001171 }
1172 }
1173}
1174
1175
1176/// doCall - This emits an abstract call instruction, setting up the arguments
1177/// and the return value as appropriate. For the actual function call itself,
1178/// it inserts the specified CallMI instruction into the stream.
1179///
1180/// FIXME: See Documentation at the following URL for "correct" behavior
1181/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1182void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001183 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001184 // Count how many bytes are to be pushed on the stack...
1185 unsigned NumBytes = 0;
1186
1187 if (!Args.empty()) {
1188 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1189 switch (getClassB(Args[i].Ty)) {
1190 case cByte: case cShort: case cInt:
1191 NumBytes += 4; break;
1192 case cLong:
1193 NumBytes += 8; break;
1194 case cFP:
1195 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1196 break;
1197 default: assert(0 && "Unknown class!");
1198 }
1199
1200 // Adjust the stack pointer for the new arguments...
1201 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1202
1203 // Arguments go on the stack in reverse order, as specified by the ABI.
1204 unsigned ArgOffset = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001205 int GPR_remaining = 8, FPR_remaining = 13;
1206 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001207 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1208 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1209 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001210 static const unsigned FPR[] = {
1211 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1212 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1213 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001214 };
1215 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukman422791f2004-06-21 17:41:12 +00001216
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001217 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1218 unsigned ArgReg;
1219 switch (getClassB(Args[i].Ty)) {
1220 case cByte:
1221 case cShort:
1222 // Promote arg to 32 bits wide into a temporary register...
1223 ArgReg = makeAnotherReg(Type::UIntTy);
1224 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001225
1226 // Reg or stack?
1227 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001228 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001229 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001230 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001231 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1232 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001233 }
1234 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001235 case cInt:
1236 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1237
Misha Brukman422791f2004-06-21 17:41:12 +00001238 // Reg or stack?
1239 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001240 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001241 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001242 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001243 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1244 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001245 }
1246 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001247 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001248 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001249
Misha Brukman422791f2004-06-21 17:41:12 +00001250 // Reg or stack?
1251 if (GPR_remaining > 1) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001252 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001253 .addReg(ArgReg);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001254 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001255 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001256 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001257 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1258 .addReg(PPC32::R1);
1259 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1260 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001261 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001262
1263 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001264 GPR_remaining -= 1; // uses up 2 GPRs
1265 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001266 break;
1267 case cFP:
1268 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1269 if (Args[i].Ty == Type::FloatTy) {
Misha Brukman1916bf92004-06-24 21:56:15 +00001270 // Reg or stack?
1271 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001272 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001273 FPR_remaining--;
1274 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001275 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001276 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1277 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001278 }
Misha Brukmand18a31d2004-07-06 22:51:53 +00001279 assert(!isVarArg && "Cannot pass floats to vararg functions!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001280 } else {
1281 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001282 // Reg or stack?
1283 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001284 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001285 FPR_remaining--;
1286 FPR_idx++;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001287 // For vararg functions, must pass doubles via int regs as well
1288 if (isVarArg) {
1289 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1290 .addReg(PPC32::R1);
1291 if (GPR_remaining > 1) {
1292 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset)
1293 .addReg(PPC32::R1);
1294 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx + 1])
1295 .addImm(ArgOffset+4).addReg(PPC32::R1);
1296 }
1297 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001298 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001299 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1300 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001301 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001302
Misha Brukman1916bf92004-06-24 21:56:15 +00001303 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001304 GPR_remaining--; // uses up 2 GPRs
1305 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001306 }
1307 break;
1308
1309 default: assert(0 && "Unknown class!");
1310 }
1311 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001312 GPR_remaining--;
1313 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001314 }
1315 } else {
1316 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1317 }
1318
1319 BB->push_back(CallMI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001320 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1321
1322 // If there is a return value, scavenge the result from the location the call
1323 // leaves it in...
1324 //
1325 if (Ret.Ty != Type::VoidTy) {
1326 unsigned DestClass = getClassB(Ret.Ty);
1327 switch (DestClass) {
1328 case cByte:
1329 case cShort:
1330 case cInt:
1331 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001332 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001333 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001334 case cFP: // Floating-point return values live in f1
1335 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1336 break;
1337 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001338 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1339 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001340 break;
1341 default: assert(0 && "Unknown class!");
1342 }
1343 }
1344}
1345
1346
1347/// visitCallInst - Push args on stack and do a procedure call instruction.
1348void ISel::visitCallInst(CallInst &CI) {
1349 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001350 Function *F = CI.getCalledFunction();
1351 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001352 // Is it an intrinsic function call?
1353 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1354 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1355 return;
1356 }
1357
1358 // Emit a CALL instruction with PC-relative displacement.
1359 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1360 } else { // Emit an indirect call through the CTR
1361 unsigned Reg = getReg(CI.getCalledValue());
1362 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1363 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1364 }
1365
1366 std::vector<ValueRecord> Args;
1367 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1368 Args.push_back(ValueRecord(CI.getOperand(i)));
1369
1370 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001371 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1372 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001373}
1374
1375
1376/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1377///
1378static Value *dyncastIsNan(Value *V) {
1379 if (CallInst *CI = dyn_cast<CallInst>(V))
1380 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001381 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001382 return CI->getOperand(1);
1383 return 0;
1384}
1385
1386/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1387/// or's whos operands are all calls to the isnan predicate.
1388static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1389 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1390
1391 // Check all uses, which will be or's of isnans if this predicate is true.
1392 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1393 Instruction *I = cast<Instruction>(*UI);
1394 if (I->getOpcode() != Instruction::Or) return false;
1395 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1396 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1397 }
1398
1399 return true;
1400}
1401
1402/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1403/// function, lowering any calls to unknown intrinsic functions into the
1404/// equivalent LLVM code.
1405///
1406void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1407 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1408 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1409 if (CallInst *CI = dyn_cast<CallInst>(I++))
1410 if (Function *F = CI->getCalledFunction())
1411 switch (F->getIntrinsicID()) {
1412 case Intrinsic::not_intrinsic:
1413 case Intrinsic::vastart:
1414 case Intrinsic::vacopy:
1415 case Intrinsic::vaend:
1416 case Intrinsic::returnaddress:
1417 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001418 // FIXME: should lower this ourselves
1419 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001420 // We directly implement these intrinsics
1421 break;
1422 case Intrinsic::readio: {
1423 // On PPC, memory operations are in-order. Lower this intrinsic
1424 // into a volatile load.
1425 Instruction *Before = CI->getPrev();
1426 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1427 CI->replaceAllUsesWith(LI);
1428 BB->getInstList().erase(CI);
1429 break;
1430 }
1431 case Intrinsic::writeio: {
1432 // On PPC, memory operations are in-order. Lower this intrinsic
1433 // into a volatile store.
1434 Instruction *Before = CI->getPrev();
1435 StoreInst *LI = new StoreInst(CI->getOperand(1),
1436 CI->getOperand(2), true, CI);
1437 CI->replaceAllUsesWith(LI);
1438 BB->getInstList().erase(CI);
1439 break;
1440 }
1441 default:
1442 // All other intrinsic calls we must lower.
1443 Instruction *Before = CI->getPrev();
1444 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1445 if (Before) { // Move iterator to instruction after call
1446 I = Before; ++I;
1447 } else {
1448 I = BB->begin();
1449 }
1450 }
1451}
1452
1453void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1454 unsigned TmpReg1, TmpReg2, TmpReg3;
1455 switch (ID) {
1456 case Intrinsic::vastart:
1457 // Get the address of the first vararg value...
1458 TmpReg1 = getReg(CI);
1459 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1460 return;
1461
1462 case Intrinsic::vacopy:
1463 TmpReg1 = getReg(CI);
1464 TmpReg2 = getReg(CI.getOperand(1));
1465 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1466 return;
1467 case Intrinsic::vaend: return;
1468
1469 case Intrinsic::returnaddress:
1470 case Intrinsic::frameaddress:
1471 TmpReg1 = getReg(CI);
1472 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1473 if (ID == Intrinsic::returnaddress) {
1474 // Just load the return address
1475 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1476 ReturnAddressIndex);
1477 } else {
1478 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1479 ReturnAddressIndex, -4, false);
1480 }
1481 } else {
1482 // Values other than zero are not implemented yet.
1483 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1484 }
1485 return;
1486
Misha Brukmana2916ce2004-06-21 17:58:36 +00001487#if 0
1488 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001489 case Intrinsic::isnan:
1490 // If this is only used by 'isunordered' style comparisons, don't emit it.
1491 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1492 TmpReg1 = getReg(CI.getOperand(1));
1493 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001494 TmpReg2 = makeAnotherReg(Type::IntTy);
1495 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001496 TmpReg3 = getReg(CI);
1497 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1498 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001499#endif
1500
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001501 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1502 }
1503}
1504
1505/// visitSimpleBinary - Implement simple binary operators for integral types...
1506/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1507/// Xor.
1508///
1509void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1510 unsigned DestReg = getReg(B);
1511 MachineBasicBlock::iterator MI = BB->end();
1512 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1513 unsigned Class = getClassB(B.getType());
1514
1515 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1516}
1517
1518/// emitBinaryFPOperation - This method handles emission of floating point
1519/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1520void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1521 MachineBasicBlock::iterator IP,
1522 Value *Op0, Value *Op1,
1523 unsigned OperatorClass, unsigned DestReg) {
1524
1525 // Special case: op Reg, <const fp>
1526 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001527 // Create a constant pool entry for this constant.
1528 MachineConstantPool *CP = F->getConstantPool();
1529 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1530 const Type *Ty = Op1->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001531
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001532 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001533 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1534 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001535 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001536
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001537 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1538 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001539 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001540 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001541
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001542 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1543 unsigned Op0r = getReg(Op0, BB, IP);
1544 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1545 return;
1546 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001547
1548 // Special case: R1 = op <const fp>, R2
1549 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1550 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1551 // -0.0 - X === -X
1552 unsigned op1Reg = getReg(Op1, BB, IP);
1553 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1554 return;
1555 } else {
1556 // R1 = op CST, R2 --> R1 = opr R2, CST
1557
1558 // Create a constant pool entry for this constant.
1559 MachineConstantPool *CP = F->getConstantPool();
1560 unsigned CPI = CP->getConstantPoolIndex(CFP);
1561 const Type *Ty = CFP->getType();
1562
1563 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001564 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1565 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001566 };
1567
1568 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001569 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001570 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001571 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1572
1573 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1574 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001575 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001576 return;
1577 }
1578
1579 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001580 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001581 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1582 };
1583
1584 unsigned Opcode = OpcodeTab[OperatorClass];
1585 unsigned Op0r = getReg(Op0, BB, IP);
1586 unsigned Op1r = getReg(Op1, BB, IP);
1587 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1588}
1589
1590/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1591/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1592/// Or, 4 for Xor.
1593///
1594/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1595/// and constant expression support.
1596///
1597void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1598 MachineBasicBlock::iterator IP,
1599 Value *Op0, Value *Op1,
1600 unsigned OperatorClass, unsigned DestReg) {
1601 unsigned Class = getClassB(Op0->getType());
1602
Misha Brukman422791f2004-06-21 17:41:12 +00001603 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001604 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001605 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1606 };
1607 // Otherwise, code generate the full operation with a constant.
1608 static const unsigned BottomTab[] = {
1609 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1610 };
1611 static const unsigned TopTab[] = {
1612 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1613 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001614
1615 if (Class == cFP) {
1616 assert(OperatorClass < 2 && "No logical ops for FP!");
1617 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1618 return;
1619 }
1620
1621 if (Op0->getType() == Type::BoolTy) {
1622 if (OperatorClass == 3)
1623 // If this is an or of two isnan's, emit an FP comparison directly instead
1624 // of or'ing two isnan's together.
1625 if (Value *LHS = dyncastIsNan(Op0))
1626 if (Value *RHS = dyncastIsNan(Op1)) {
1627 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001628 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001629 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001630 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001631 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1632 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001633 return;
1634 }
1635 }
1636
1637 // sub 0, X -> neg X
1638 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1639 if (OperatorClass == 1 && CI->isNullValue()) {
1640 unsigned op1Reg = getReg(Op1, MBB, IP);
1641 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1642
1643 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001644 unsigned zeroes = makeAnotherReg(Type::IntTy);
1645 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001646 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001647 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001648 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1649 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001650 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1651 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001652 }
1653 return;
1654 }
1655
1656 // Special case: op Reg, <const int>
1657 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1658 unsigned Op0r = getReg(Op0, MBB, IP);
1659
1660 // xor X, -1 -> not X
1661 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1662 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1663 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001664 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1665 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001666 return;
1667 }
1668
1669 unsigned Opcode = OpcodeTab[OperatorClass];
1670 unsigned Op1r = getReg(Op1, MBB, IP);
1671
1672 if (Class != cLong) {
1673 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1674 return;
1675 }
1676
1677 // If the constant is zero in the low 32-bits, just copy the low part
1678 // across and apply the normal 32-bit operation to the high parts. There
1679 // will be no carry or borrow into the top.
1680 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1681 if (OperatorClass != 2) // All but and...
1682 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1683 else
1684 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001685 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001686 return;
1687 }
1688
1689 // If this is a long value and the high or low bits have a special
1690 // property, emit some special cases.
1691 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1692
1693 // If this is a logical operation and the top 32-bits are zero, just
1694 // operate on the lower 32.
1695 if (Op1h == 0 && OperatorClass > 1) {
1696 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1697 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001698 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001699 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001700 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001701 return;
1702 }
1703
1704 // TODO: We could handle lots of other special cases here, such as AND'ing
1705 // with 0xFFFFFFFF00000000 -> noop, etc.
1706
Misha Brukman2fec9902004-06-21 20:22:03 +00001707 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1708 .addImm(Op1r);
1709 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1710 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001711 return;
1712 }
1713
1714 unsigned Op0r = getReg(Op0, MBB, IP);
1715 unsigned Op1r = getReg(Op1, MBB, IP);
1716
1717 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001718 unsigned Opcode = OpcodeTab[OperatorClass];
1719 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001720 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001721 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1722 .addImm(Op1r);
1723 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1724 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001725 }
1726 return;
1727}
1728
1729/// doMultiply - Emit appropriate instructions to multiply together the
1730/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1731/// result should be given as DestTy.
1732///
1733void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1734 unsigned DestReg, const Type *DestTy,
1735 unsigned op0Reg, unsigned op1Reg) {
1736 unsigned Class = getClass(DestTy);
1737 switch (Class) {
1738 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001739 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1740 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001741 case cInt:
1742 case cShort:
1743 case cByte:
1744 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1745 return;
1746 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001747 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001748 }
1749}
1750
1751// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1752// returns zero when the input is not exactly a power of two.
1753static unsigned ExactLog2(unsigned Val) {
1754 if (Val == 0 || (Val & (Val-1))) return 0;
1755 unsigned Count = 0;
1756 while (Val != 1) {
1757 Val >>= 1;
1758 ++Count;
1759 }
1760 return Count+1;
1761}
1762
1763
1764/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1765/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001766///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001767void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1768 MachineBasicBlock::iterator IP,
1769 unsigned DestReg, const Type *DestTy,
1770 unsigned op0Reg, unsigned ConstRHS) {
1771 unsigned Class = getClass(DestTy);
1772 // Handle special cases here.
1773 switch (ConstRHS) {
1774 case 0:
1775 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1776 return;
1777 case 1:
1778 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1779 return;
1780 case 2:
1781 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1782 return;
1783 }
1784
1785 // If the element size is exactly a power of 2, use a shift to get it.
1786 if (unsigned Shift = ExactLog2(ConstRHS)) {
1787 switch (Class) {
1788 default: assert(0 && "Unknown class for this function!");
1789 case cByte:
1790 case cShort:
1791 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001792 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1793 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001794 return;
1795 }
1796 }
1797
1798 // Most general case, emit a normal multiply...
1799 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1800 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001801 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1802 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001803 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1804
1805 // Emit a MUL to multiply the register holding the index by
1806 // elementSize, putting the result in OffsetReg.
1807 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1808}
1809
1810void ISel::visitMul(BinaryOperator &I) {
1811 unsigned ResultReg = getReg(I);
1812
1813 Value *Op0 = I.getOperand(0);
1814 Value *Op1 = I.getOperand(1);
1815
1816 MachineBasicBlock::iterator IP = BB->end();
1817 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1818}
1819
1820void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1821 Value *Op0, Value *Op1, unsigned DestReg) {
1822 MachineBasicBlock &BB = *MBB;
1823 TypeClass Class = getClass(Op0->getType());
1824
1825 // Simple scalar multiply?
1826 unsigned Op0Reg = getReg(Op0, &BB, IP);
1827 switch (Class) {
1828 case cByte:
1829 case cShort:
1830 case cInt:
1831 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1832 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1833 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1834 } else {
1835 unsigned Op1Reg = getReg(Op1, &BB, IP);
1836 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1837 }
1838 return;
1839 case cFP:
1840 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1841 return;
1842 case cLong:
1843 break;
1844 }
1845
1846 // Long value. We have to do things the hard way...
1847 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1848 unsigned CLow = CI->getRawValue();
1849 unsigned CHi = CI->getRawValue() >> 32;
1850
1851 if (CLow == 0) {
1852 // If the low part of the constant is all zeros, things are simple.
1853 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1854 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1855 return;
1856 }
1857
1858 // Multiply the two low parts
1859 unsigned OverflowReg = 0;
1860 if (CLow == 1) {
1861 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1862 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001863 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001864 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1865 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001866 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1867 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001868 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1869 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001870 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1871 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001872 }
1873
1874 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1875 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1876
1877 unsigned AHBLplusOverflowReg;
1878 if (OverflowReg) {
1879 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001880 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001881 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1882 } else {
1883 AHBLplusOverflowReg = AHBLReg;
1884 }
1885
1886 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001887 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1888 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001889 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001890 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001891 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1892
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001893 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001894 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1895 }
1896 return;
1897 }
1898
1899 // General 64x64 multiply
1900
1901 unsigned Op1Reg = getReg(Op1, &BB, IP);
1902
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001903 // Multiply the two low parts...
1904 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001905
1906 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001907 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001908
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001909 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001910 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1911
1912 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001913 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
1914 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001915
1916 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1917 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1918
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001919 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001920 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1921}
1922
1923
1924/// visitDivRem - Handle division and remainder instructions... these
1925/// instruction both require the same instructions to be generated, they just
1926/// select the result from a different register. Note that both of these
1927/// instructions work differently for signed and unsigned operands.
1928///
1929void ISel::visitDivRem(BinaryOperator &I) {
1930 unsigned ResultReg = getReg(I);
1931 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1932
1933 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001934 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1935 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001936}
1937
1938void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1939 MachineBasicBlock::iterator IP,
1940 Value *Op0, Value *Op1, bool isDiv,
1941 unsigned ResultReg) {
1942 const Type *Ty = Op0->getType();
1943 unsigned Class = getClass(Ty);
1944 switch (Class) {
1945 case cFP: // Floating point divide
1946 if (isDiv) {
1947 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1948 return;
1949 } else { // Floating point remainder...
1950 unsigned Op0Reg = getReg(Op0, BB, IP);
1951 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukmanb0932592004-07-07 15:36:18 +00001952 Function *FmodFn = M->getNamedFunction("fmod");
1953 assert(FmodFn && "fmod() does not exist in the module");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001954 MachineInstr *TheCall =
Misha Brukmanb0932592004-07-07 15:36:18 +00001955 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(FmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001956 std::vector<ValueRecord> Args;
1957 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1958 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00001959 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001960 }
1961 return;
1962 case cLong: {
Misha Brukman425ff242004-07-01 21:34:10 +00001963 // FIXME: Make sure the module has external function
1964 static const char *FnName[] =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001965 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1966 unsigned Op0Reg = getReg(Op0, BB, IP);
1967 unsigned Op1Reg = getReg(Op1, BB, IP);
1968 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
1969 MachineInstr *TheCall =
1970 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
1971
1972 std::vector<ValueRecord> Args;
1973 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1974 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00001975 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001976 return;
1977 }
1978 case cByte: case cShort: case cInt:
1979 break; // Small integrals, handled below...
1980 default: assert(0 && "Unknown class!");
1981 }
1982
1983 // Special case signed division by power of 2.
1984 if (isDiv)
1985 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1986 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1987 int V = CI->getValue();
1988
1989 if (V == 1) { // X /s 1 => X
1990 unsigned Op0Reg = getReg(Op0, BB, IP);
1991 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1992 return;
1993 }
1994
1995 if (V == -1) { // X /s -1 => -X
1996 unsigned Op0Reg = getReg(Op0, BB, IP);
1997 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
1998 return;
1999 }
2000
2001 bool isNeg = false;
2002 if (V < 0) { // Not a positive power of 2?
2003 V = -V;
2004 isNeg = true; // Maybe it's a negative power of 2.
2005 }
2006 if (unsigned Log = ExactLog2(V)) {
2007 --Log;
2008 unsigned Op0Reg = getReg(Op0, BB, IP);
2009 unsigned TmpReg = makeAnotherReg(Op0->getType());
2010 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002011 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002012 else
2013 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
2014
2015 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00002016 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
2017 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002018
2019 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2020 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
2021
2022 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2023 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
2024
2025 if (isNeg)
2026 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2027 return;
2028 }
2029 }
2030
2031 unsigned Op0Reg = getReg(Op0, BB, IP);
2032 unsigned Op1Reg = getReg(Op1, BB, IP);
2033
2034 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002035 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002036 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002037 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002038 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002039 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002040 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002041 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2042 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2043
2044 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002045 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002046 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002047 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002048 }
2049 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2050 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002051 }
2052}
2053
2054
2055/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2056/// for constant immediate shift values, and for constant immediate
2057/// shift values equal to 1. Even the general case is sort of special,
2058/// because the shift amount has to be in CL, not just any old register.
2059///
2060void ISel::visitShiftInst(ShiftInst &I) {
2061 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002062 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2063 I.getOpcode () == Instruction::Shl, I.getType (),
2064 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002065}
2066
2067/// emitShiftOperation - Common code shared between visitShiftInst and
2068/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002069///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002070void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2071 MachineBasicBlock::iterator IP,
2072 Value *Op, Value *ShiftAmount, bool isLeftShift,
2073 const Type *ResultTy, unsigned DestReg) {
2074 unsigned SrcReg = getReg (Op, MBB, IP);
2075 bool isSigned = ResultTy->isSigned ();
2076 unsigned Class = getClass (ResultTy);
2077
2078 // Longs, as usual, are handled specially...
2079 if (Class == cLong) {
2080 // If we have a constant shift, we can generate much more efficient code
2081 // than otherwise...
2082 //
2083 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2084 unsigned Amount = CUI->getValue();
2085 if (Amount < 32) {
2086 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002087 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002088 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2089 .addImm(Amount).addImm(0).addImm(31-Amount);
2090 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2091 .addImm(Amount).addImm(32-Amount).addImm(31);
2092 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2093 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002094 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002095 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002096 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2097 .addImm(32-Amount).addImm(Amount).addImm(31);
2098 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2099 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2100 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2101 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002102 }
2103 } else { // Shifting more than 32 bits
2104 Amount -= 32;
2105 if (isLeftShift) {
2106 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002107 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2108 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002109 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002110 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2111 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002112 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002113 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002114 } else {
2115 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002116 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002117 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2118 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002119 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002120 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2121 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002122 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002123 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2124 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002125 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002126 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002127 }
2128 }
2129 } else {
2130 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2131 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002132 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2133 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2134 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2135 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2136 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2137
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002138 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002139 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2140 .addImm(32);
2141 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2142 .addReg(ShiftAmountReg);
2143 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2144 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2145 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2146 .addImm(-32);
2147 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2148 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2149 .addReg(TmpReg6);
2150 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2151 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002152 } else {
2153 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002154 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002155 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002156 std::cerr << "Unimplemented: signed right shift\n";
2157 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002158 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002159 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2160 .addImm(32);
2161 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2162 .addReg(ShiftAmountReg);
2163 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2164 .addReg(TmpReg1);
2165 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2166 .addReg(TmpReg3);
2167 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2168 .addImm(-32);
2169 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2170 .addReg(TmpReg5);
2171 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2172 .addReg(TmpReg6);
2173 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2174 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002175 }
2176 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002177 }
2178 return;
2179 }
2180
2181 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2182 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2183 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2184 unsigned Amount = CUI->getValue();
2185
Misha Brukman422791f2004-06-21 17:41:12 +00002186 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002187 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2188 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002189 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002190 if (isSigned) {
2191 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2192 } else {
2193 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2194 .addImm(32-Amount).addImm(Amount).addImm(31);
2195 }
Misha Brukman422791f2004-06-21 17:41:12 +00002196 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002197 } else { // The shift amount is non-constant.
2198 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2199
Misha Brukman422791f2004-06-21 17:41:12 +00002200 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002201 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2202 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002203 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002204 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2205 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002206 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002207 }
2208}
2209
2210
2211/// visitLoadInst - Implement LLVM load instructions
2212///
2213void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002214 static const unsigned Opcodes[] = {
2215 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2216 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002217 unsigned Class = getClassB(I.getType());
2218 unsigned Opcode = Opcodes[Class];
2219 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2220
2221 unsigned DestReg = getReg(I);
2222
2223 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002224 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002225 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002226 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2227 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002228 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002229 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002230 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002231 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002232 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002233
2234 if (Class == cLong) {
2235 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2236 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2237 } else {
2238 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2239 }
2240 }
2241}
2242
2243/// visitStoreInst - Implement LLVM store instructions
2244///
2245void ISel::visitStoreInst(StoreInst &I) {
2246 unsigned ValReg = getReg(I.getOperand(0));
2247 unsigned AddressReg = getReg(I.getOperand(1));
2248
2249 const Type *ValTy = I.getOperand(0)->getType();
2250 unsigned Class = getClassB(ValTy);
2251
2252 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002253 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002254 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002255 return;
2256 }
2257
2258 static const unsigned Opcodes[] = {
2259 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2260 };
2261 unsigned Opcode = Opcodes[Class];
2262 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2263 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2264}
2265
2266
2267/// visitCastInst - Here we have various kinds of copying with or without sign
2268/// extension going on.
2269///
2270void ISel::visitCastInst(CastInst &CI) {
2271 Value *Op = CI.getOperand(0);
2272
2273 unsigned SrcClass = getClassB(Op->getType());
2274 unsigned DestClass = getClassB(CI.getType());
2275 // Noop casts are not emitted: getReg will return the source operand as the
2276 // register to use for any uses of the noop cast.
2277 if (DestClass == SrcClass)
2278 return;
2279
2280 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2281 // of the case are GEP instructions, then the cast does not need to be
2282 // generated explicitly, it will be folded into the GEP.
2283 if (DestClass == cLong && SrcClass == cInt) {
2284 bool AllUsesAreGEPs = true;
2285 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2286 if (!isa<GetElementPtrInst>(*I)) {
2287 AllUsesAreGEPs = false;
2288 break;
2289 }
2290
2291 // No need to codegen this cast if all users are getelementptr instrs...
2292 if (AllUsesAreGEPs) return;
2293 }
2294
2295 unsigned DestReg = getReg(CI);
2296 MachineBasicBlock::iterator MI = BB->end();
2297 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2298}
2299
2300/// emitCastOperation - Common code shared between visitCastInst and constant
2301/// expression cast support.
2302///
2303void ISel::emitCastOperation(MachineBasicBlock *BB,
2304 MachineBasicBlock::iterator IP,
2305 Value *Src, const Type *DestTy,
2306 unsigned DestReg) {
2307 const Type *SrcTy = Src->getType();
2308 unsigned SrcClass = getClassB(SrcTy);
2309 unsigned DestClass = getClassB(DestTy);
2310 unsigned SrcReg = getReg(Src, BB, IP);
2311
2312 // Implement casts to bool by using compare on the operand followed by set if
2313 // not zero on the result.
2314 if (DestTy == Type::BoolTy) {
2315 switch (SrcClass) {
2316 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002317 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002318 case cInt: {
2319 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002320 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2321 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002322 break;
2323 }
2324 case cLong: {
2325 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2326 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2327 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002328 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2329 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002330 break;
2331 }
2332 case cFP:
2333 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002334 // Load -0.0
2335 // Compare
2336 // move to CR1
2337 // Negate -0.0
2338 // Compare
2339 // CROR
2340 // MFCR
2341 // Left-align
2342 // SRA ?
Misha Brukmand18a31d2004-07-06 22:51:53 +00002343 std::cerr << "Cast fp-to-bool not implemented!";
2344 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002345 }
2346 return;
2347 }
2348
2349 // Implement casts between values of the same type class (as determined by
2350 // getClass) by using a register-to-register move.
2351 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002352 if (SrcClass <= cInt) {
2353 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2354 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002355 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2356 } else if (SrcClass == cFP) {
2357 if (SrcTy == Type::FloatTy) { // float -> double
2358 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2359 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2360 } else { // double -> float
2361 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2362 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002363 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002364 }
2365 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002366 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002367 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2368 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002369 } else {
2370 assert(0 && "Cannot handle this type of cast instruction!");
2371 abort();
2372 }
2373 return;
2374 }
2375
2376 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2377 // or zero extension, depending on whether the source type was signed.
2378 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2379 SrcClass < DestClass) {
2380 bool isLong = DestClass == cLong;
2381 if (isLong) DestClass = cInt;
2382
2383 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2384 if (SrcClass < cInt) {
2385 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002386 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002387 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2388 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002389 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002390 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2391 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002392 }
2393 } else {
2394 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2395 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002396
2397 if (isLong) { // Handle upper 32 bits as appropriate...
2398 if (isUnsigned) // Zero out top bits...
2399 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2400 else // Sign extend bottom half...
2401 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2402 }
2403 return;
2404 }
2405
2406 // Special case long -> int ...
2407 if (SrcClass == cLong && DestClass == cInt) {
2408 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2409 return;
2410 }
2411
2412 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2413 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2414 && SrcClass > DestClass) {
2415 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002416 if (isUnsigned) {
2417 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002418 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2419 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002420 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002421 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2422 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002423 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002424 return;
2425 }
2426
2427 // Handle casts from integer to floating point now...
2428 if (DestClass == cFP) {
2429
Misha Brukman422791f2004-06-21 17:41:12 +00002430 // Emit a library call for long to float conversion
2431 if (SrcClass == cLong) {
2432 std::vector<ValueRecord> Args;
2433 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002434 MachineInstr *TheCall =
2435 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002436 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002437 return;
2438 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002439
2440 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002441 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002442 case Type::BoolTyID:
2443 case Type::SByteTyID:
2444 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2445 break;
2446 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002447 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2448 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002449 break;
2450 case Type::ShortTyID:
2451 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2452 break;
2453 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002454 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2455 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002456 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002457 case Type::IntTyID:
2458 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2459 break;
2460 case Type::UIntTyID:
2461 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2462 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002463 default: // No promotion needed...
2464 break;
2465 }
2466
2467 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002468
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002469 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002470 // Also spill room for a special conversion constant
2471 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002472 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2473 int ValueFrameIdx =
2474 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2475
Misha Brukman422791f2004-06-21 17:41:12 +00002476 unsigned constantHi = makeAnotherReg(Type::IntTy);
2477 unsigned constantLo = makeAnotherReg(Type::IntTy);
2478 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2479 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2480
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002481 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002482 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2483 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002484 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002485 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2486 ConstantFrameIndex);
2487 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2488 ConstantFrameIndex, 4);
2489 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2490 ValueFrameIdx);
2491 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2492 ValueFrameIdx, 4);
2493 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2494 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002495 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2496 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2497 } else {
2498 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002499 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2500 .addImm(0x4330);
2501 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2502 .addImm(0x8000);
2503 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2504 ConstantFrameIndex);
2505 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2506 ConstantFrameIndex, 4);
2507 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2508 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002509 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002510 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2511 ValueFrameIdx, 4);
2512 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2513 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002514 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002515 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002516 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002517 return;
2518 }
2519
2520 // Handle casts from floating point to integer now...
2521 if (SrcClass == cFP) {
2522
Misha Brukman422791f2004-06-21 17:41:12 +00002523 // emit library call
2524 if (DestClass == cLong) {
2525 std::vector<ValueRecord> Args;
2526 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002527 MachineInstr *TheCall =
2528 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002529 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002530 return;
2531 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002532
2533 int ValueFrameIdx =
2534 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2535
Misha Brukman422791f2004-06-21 17:41:12 +00002536 // load into 32 bit value, and then truncate as necessary
2537 // FIXME: This is wrong for unsigned dest types
2538 //if (DestTy->isSigned()) {
2539 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2540 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002541 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2542 .addReg(TempReg), ValueFrameIdx);
2543 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2544 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002545 //} else {
2546 //}
2547
2548 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002549 return;
2550 }
2551
2552 // Anything we haven't handled already, we can't (yet) handle at all.
2553 assert(0 && "Unhandled cast instruction!");
2554 abort();
2555}
2556
2557/// visitVANextInst - Implement the va_next instruction...
2558///
2559void ISel::visitVANextInst(VANextInst &I) {
2560 unsigned VAList = getReg(I.getOperand(0));
2561 unsigned DestReg = getReg(I);
2562
2563 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002564 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002565 default:
2566 std::cerr << I;
2567 assert(0 && "Error: bad type for va_next instruction!");
2568 return;
2569 case Type::PointerTyID:
2570 case Type::UIntTyID:
2571 case Type::IntTyID:
2572 Size = 4;
2573 break;
2574 case Type::ULongTyID:
2575 case Type::LongTyID:
2576 case Type::DoubleTyID:
2577 Size = 8;
2578 break;
2579 }
2580
2581 // Increment the VAList pointer...
2582 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2583}
2584
2585void ISel::visitVAArgInst(VAArgInst &I) {
2586 unsigned VAList = getReg(I.getOperand(0));
2587 unsigned DestReg = getReg(I);
2588
Misha Brukman358829f2004-06-21 17:25:55 +00002589 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002590 default:
2591 std::cerr << I;
2592 assert(0 && "Error: bad type for va_next instruction!");
2593 return;
2594 case Type::PointerTyID:
2595 case Type::UIntTyID:
2596 case Type::IntTyID:
2597 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2598 break;
2599 case Type::ULongTyID:
2600 case Type::LongTyID:
2601 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2602 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2603 break;
2604 case Type::DoubleTyID:
2605 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2606 break;
2607 }
2608}
2609
2610/// visitGetElementPtrInst - instruction-select GEP instructions
2611///
2612void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2613 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002614 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2615 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002616}
2617
2618void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2619 MachineBasicBlock::iterator IP,
2620 Value *Src, User::op_iterator IdxBegin,
2621 User::op_iterator IdxEnd, unsigned TargetReg) {
2622 const TargetData &TD = TM.getTargetData();
2623 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2624 Src = CPR->getValue();
2625
2626 std::vector<Value*> GEPOps;
2627 GEPOps.resize(IdxEnd-IdxBegin+1);
2628 GEPOps[0] = Src;
2629 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2630
2631 std::vector<const Type*> GEPTypes;
2632 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2633 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2634
2635 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002636 while (!GEPOps.empty()) {
2637 if (GEPTypes.empty()) {
2638 // Load the base pointer into a register.
2639 unsigned Reg = getReg(Src, MBB, IP);
2640 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2641 break; // we are now done
2642 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002643 // It's an array or pointer access: [ArraySize x ElementType].
2644 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2645 Value *idx = GEPOps.back();
2646 GEPOps.pop_back(); // Consume a GEP operand
2647 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002648
Misha Brukman2fec9902004-06-21 20:22:03 +00002649 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002650 // operand. Handle this case directly now...
Misha Brukman2fec9902004-06-21 20:22:03 +00002651 if (CastInst *CI = dyn_cast<CastInst>(idx))
2652 if (CI->getOperand(0)->getType() == Type::IntTy ||
2653 CI->getOperand(0)->getType() == Type::UIntTy)
2654 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002655
Misha Brukman2fec9902004-06-21 20:22:03 +00002656 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2657 // must find the size of the pointed-to type (Not coincidentally, the next
2658 // type is the type of the elements in the array).
2659 const Type *ElTy = SqTy->getElementType();
2660 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002661
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002662 if (idx == Constant::getNullValue(idx->getType())) {
2663 // GEP with idx 0 is a no-op
2664 } else if (elementSize == 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002665 // If the element size is 1, we don't have to multiply, just add
2666 unsigned idxReg = getReg(idx, MBB, IP);
2667 unsigned Reg = makeAnotherReg(Type::UIntTy);
2668 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2669 --IP; // Insert the next instruction before this one.
2670 TargetReg = Reg; // Codegen the rest of the GEP into this
2671 } else {
2672 unsigned idxReg = getReg(idx, MBB, IP);
2673 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002674
Misha Brukman2fec9902004-06-21 20:22:03 +00002675 // Make sure we can back the iterator up to point to the first
2676 // instruction emitted.
2677 MachineBasicBlock::iterator BeforeIt = IP;
2678 if (IP == MBB->begin())
2679 BeforeIt = MBB->end();
2680 else
2681 --BeforeIt;
2682 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002683
Misha Brukman2fec9902004-06-21 20:22:03 +00002684 // Emit an ADD to add OffsetReg to the basePtr.
2685 unsigned Reg = makeAnotherReg(Type::UIntTy);
2686 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002687
Misha Brukman2fec9902004-06-21 20:22:03 +00002688 // Step to the first instruction of the multiply.
2689 if (BeforeIt == MBB->end())
2690 IP = MBB->begin();
2691 else
2692 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002693
Misha Brukman2fec9902004-06-21 20:22:03 +00002694 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002695 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002696 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002697}
2698
2699/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2700/// frame manager, otherwise do it the hard way.
2701///
2702void ISel::visitAllocaInst(AllocaInst &I) {
2703 // If this is a fixed size alloca in the entry block for the function, we
2704 // statically stack allocate the space, so we don't need to do anything here.
2705 //
2706 if (dyn_castFixedAlloca(&I)) return;
2707
2708 // Find the data size of the alloca inst's getAllocatedType.
2709 const Type *Ty = I.getAllocatedType();
2710 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2711
2712 // Create a register to hold the temporary result of multiplying the type size
2713 // constant by the variable amount.
2714 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2715 unsigned SrcReg1 = getReg(I.getArraySize());
2716
2717 // TotalSizeReg = mul <numelements>, <TypeSize>
2718 MachineBasicBlock::iterator MBBI = BB->end();
2719 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2720
2721 // AddedSize = add <TotalSizeReg>, 15
2722 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2723 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2724
2725 // AlignedSize = and <AddedSize>, ~15
2726 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002727 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2728 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002729
2730 // Subtract size from stack pointer, thereby allocating some space.
2731 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2732
2733 // Put a pointer to the space into the result register, by copying
2734 // the stack pointer.
2735 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2736
2737 // Inform the Frame Information that we have just allocated a variable-sized
2738 // object.
2739 F->getFrameInfo()->CreateVariableSizedObject();
2740}
2741
2742/// visitMallocInst - Malloc instructions are code generated into direct calls
2743/// to the library malloc.
2744///
2745void ISel::visitMallocInst(MallocInst &I) {
2746 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2747 unsigned Arg;
2748
2749 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2750 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2751 } else {
2752 Arg = makeAnotherReg(Type::UIntTy);
2753 unsigned Op0Reg = getReg(I.getOperand(0));
2754 MachineBasicBlock::iterator MBBI = BB->end();
2755 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2756 }
2757
2758 std::vector<ValueRecord> Args;
2759 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002760 MachineInstr *TheCall =
2761 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002762 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002763}
2764
2765
2766/// visitFreeInst - Free instructions are code gen'd to call the free libc
2767/// function.
2768///
2769void ISel::visitFreeInst(FreeInst &I) {
2770 std::vector<ValueRecord> Args;
2771 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002772 MachineInstr *TheCall =
2773 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002774 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002775}
2776
2777/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2778/// into a machine code representation is a very simple peep-hole fashion. The
2779/// generated code sucks but the implementation is nice and simple.
2780///
2781FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2782 return new ISel(TM);
2783}