blob: 47c89e8d24ad00fb5acc2584da2a7a99b4ee7597 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Bendersky1de14102013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvaf722b002012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Bendersky1de14102013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvaf722b002012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
451instead of run-time. Global variables may optionally be initialized, may
452have an explicit section to be placed in, and may have an optional
453explicit alignment specified.
454
455A variable may be defined as ``thread_local``, which means that it will
456not be shared by threads (each thread will have a separated copy of the
457variable). Not all targets support thread-local variables. Optionally, a
458TLS model may be specified:
459
460``localdynamic``
461 For variables that are only used within the current shared library.
462``initialexec``
463 For variables in modules that will not be loaded dynamically.
464``localexec``
465 For variables defined in the executable and only used within it.
466
467The models correspond to the ELF TLS models; see `ELF Handling For
468Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
469more information on under which circumstances the different models may
470be used. The target may choose a different TLS model if the specified
471model is not supported, or if a better choice of model can be made.
472
Michael Gottesmanf5735882013-01-31 05:48:48 +0000473A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000474the contents of the variable will **never** be modified (enabling better
475optimization, allowing the global data to be placed in the read-only
476section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000477initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000478variable.
479
480LLVM explicitly allows *declarations* of global variables to be marked
481constant, even if the final definition of the global is not. This
482capability can be used to enable slightly better optimization of the
483program, but requires the language definition to guarantee that
484optimizations based on the 'constantness' are valid for the translation
485units that do not include the definition.
486
487As SSA values, global variables define pointer values that are in scope
488(i.e. they dominate) all basic blocks in the program. Global variables
489always define a pointer to their "content" type because they describe a
490region of memory, and all memory objects in LLVM are accessed through
491pointers.
492
493Global variables can be marked with ``unnamed_addr`` which indicates
494that the address is not significant, only the content. Constants marked
495like this can be merged with other constants if they have the same
496initializer. Note that a constant with significant address *can* be
497merged with a ``unnamed_addr`` constant, the result being a constant
498whose address is significant.
499
500A global variable may be declared to reside in a target-specific
501numbered address space. For targets that support them, address spaces
502may affect how optimizations are performed and/or what target
503instructions are used to access the variable. The default address space
504is zero. The address space qualifier must precede any other attributes.
505
506LLVM allows an explicit section to be specified for globals. If the
507target supports it, it will emit globals to the section specified.
508
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000509By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000510variables defined within the module are not modified from their
511initial values before the start of the global initializer. This is
512true even for variables potentially accessible from outside the
513module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000514``@llvm.used``. This assumption may be suppressed by marking the
515variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000516
Sean Silvaf722b002012-12-07 10:36:55 +0000517An explicit alignment may be specified for a global, which must be a
518power of 2. If not present, or if the alignment is set to zero, the
519alignment of the global is set by the target to whatever it feels
520convenient. If an explicit alignment is specified, the global is forced
521to have exactly that alignment. Targets and optimizers are not allowed
522to over-align the global if the global has an assigned section. In this
523case, the extra alignment could be observable: for example, code could
524assume that the globals are densely packed in their section and try to
525iterate over them as an array, alignment padding would break this
526iteration.
527
528For example, the following defines a global in a numbered address space
529with an initializer, section, and alignment:
530
531.. code-block:: llvm
532
533 @G = addrspace(5) constant float 1.0, section "foo", align 4
534
535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
555collector name <gc>`, an opening curly brace, a list of basic blocks,
556and a closing curly brace.
557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
563name, a possibly empty list of arguments, an optional alignment, and an
564optional :ref:`garbage collector name <gc>`.
565
566A function definition contains a list of basic blocks, forming the CFG
567(Control Flow Graph) for the function. Each basic block may optionally
568start with a label (giving the basic block a symbol table entry),
569contains a list of instructions, and ends with a
570:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000571return). If explicit label is not provided, a block is assigned an
572implicit numbered label, using a next value from the same counter as used
573for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
574function entry block does not have explicit label, it will be assigned
575label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000576
577The first basic block in a function is special in two ways: it is
578immediately executed on entrance to the function, and it is not allowed
579to have predecessor basic blocks (i.e. there can not be any branches to
580the entry block of a function). Because the block can have no
581predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
582
583LLVM allows an explicit section to be specified for functions. If the
584target supports it, it will emit functions to the section specified.
585
586An explicit alignment may be specified for a function. If not present,
587or if the alignment is set to zero, the alignment of the function is set
588by the target to whatever it feels convenient. If an explicit alignment
589is specified, the function is forced to have at least that much
590alignment. All alignments must be a power of 2.
591
592If the ``unnamed_addr`` attribute is given, the address is know to not
593be significant and two identical functions can be merged.
594
595Syntax::
596
597 define [linkage] [visibility]
598 [cconv] [ret attrs]
599 <ResultType> @<FunctionName> ([argument list])
600 [fn Attrs] [section "name"] [align N]
601 [gc] { ... }
602
Eli Bendersky1de14102013-06-07 19:40:08 +0000603.. _langref_aliases:
604
Sean Silvaf722b002012-12-07 10:36:55 +0000605Aliases
606-------
607
608Aliases act as "second name" for the aliasee value (which can be either
609function, global variable, another alias or bitcast of global value).
610Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
611:ref:`visibility style <visibility>`.
612
613Syntax::
614
615 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
616
617.. _namedmetadatastructure:
618
619Named Metadata
620--------------
621
622Named metadata is a collection of metadata. :ref:`Metadata
623nodes <metadata>` (but not metadata strings) are the only valid
624operands for a named metadata.
625
626Syntax::
627
628 ; Some unnamed metadata nodes, which are referenced by the named metadata.
629 !0 = metadata !{metadata !"zero"}
630 !1 = metadata !{metadata !"one"}
631 !2 = metadata !{metadata !"two"}
632 ; A named metadata.
633 !name = !{!0, !1, !2}
634
635.. _paramattrs:
636
637Parameter Attributes
638--------------------
639
640The return type and each parameter of a function type may have a set of
641*parameter attributes* associated with them. Parameter attributes are
642used to communicate additional information about the result or
643parameters of a function. Parameter attributes are considered to be part
644of the function, not of the function type, so functions with different
645parameter attributes can have the same function type.
646
647Parameter attributes are simple keywords that follow the type specified.
648If multiple parameter attributes are needed, they are space separated.
649For example:
650
651.. code-block:: llvm
652
653 declare i32 @printf(i8* noalias nocapture, ...)
654 declare i32 @atoi(i8 zeroext)
655 declare signext i8 @returns_signed_char()
656
657Note that any attributes for the function result (``nounwind``,
658``readonly``) come immediately after the argument list.
659
660Currently, only the following parameter attributes are defined:
661
662``zeroext``
663 This indicates to the code generator that the parameter or return
664 value should be zero-extended to the extent required by the target's
665 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
666 the caller (for a parameter) or the callee (for a return value).
667``signext``
668 This indicates to the code generator that the parameter or return
669 value should be sign-extended to the extent required by the target's
670 ABI (which is usually 32-bits) by the caller (for a parameter) or
671 the callee (for a return value).
672``inreg``
673 This indicates that this parameter or return value should be treated
674 in a special target-dependent fashion during while emitting code for
675 a function call or return (usually, by putting it in a register as
676 opposed to memory, though some targets use it to distinguish between
677 two different kinds of registers). Use of this attribute is
678 target-specific.
679``byval``
680 This indicates that the pointer parameter should really be passed by
681 value to the function. The attribute implies that a hidden copy of
682 the pointee is made between the caller and the callee, so the callee
683 is unable to modify the value in the caller. This attribute is only
684 valid on LLVM pointer arguments. It is generally used to pass
685 structs and arrays by value, but is also valid on pointers to
686 scalars. The copy is considered to belong to the caller not the
687 callee (for example, ``readonly`` functions should not write to
688 ``byval`` parameters). This is not a valid attribute for return
689 values.
690
691 The byval attribute also supports specifying an alignment with the
692 align attribute. It indicates the alignment of the stack slot to
693 form and the known alignment of the pointer specified to the call
694 site. If the alignment is not specified, then the code generator
695 makes a target-specific assumption.
696
697``sret``
698 This indicates that the pointer parameter specifies the address of a
699 structure that is the return value of the function in the source
700 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000701 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000702 not to trap and to be properly aligned. This may only be applied to
703 the first parameter. This is not a valid attribute for return
704 values.
705``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000706 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000707 the argument or return value do not alias pointer values which are
708 not *based* on it, ignoring certain "irrelevant" dependencies. For a
709 call to the parent function, dependencies between memory references
710 from before or after the call and from those during the call are
711 "irrelevant" to the ``noalias`` keyword for the arguments and return
712 value used in that call. The caller shares the responsibility with
713 the callee for ensuring that these requirements are met. For further
714 details, please see the discussion of the NoAlias response in `alias
715 analysis <AliasAnalysis.html#MustMayNo>`_.
716
717 Note that this definition of ``noalias`` is intentionally similar
718 to the definition of ``restrict`` in C99 for function arguments,
719 though it is slightly weaker.
720
721 For function return values, C99's ``restrict`` is not meaningful,
722 while LLVM's ``noalias`` is.
723``nocapture``
724 This indicates that the callee does not make any copies of the
725 pointer that outlive the callee itself. This is not a valid
726 attribute for return values.
727
728.. _nest:
729
730``nest``
731 This indicates that the pointer parameter can be excised using the
732 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000733 attribute for return values and can only be applied to one parameter.
734
735``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000736 This indicates that the function always returns the argument as its return
737 value. This is an optimization hint to the code generator when generating
738 the caller, allowing tail call optimization and omission of register saves
739 and restores in some cases; it is not checked or enforced when generating
740 the callee. The parameter and the function return type must be valid
741 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
742 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000743
744.. _gc:
745
746Garbage Collector Names
747-----------------------
748
749Each function may specify a garbage collector name, which is simply a
750string:
751
752.. code-block:: llvm
753
754 define void @f() gc "name" { ... }
755
756The compiler declares the supported values of *name*. Specifying a
757collector which will cause the compiler to alter its output in order to
758support the named garbage collection algorithm.
759
Bill Wendling95ce4c22013-02-06 06:52:58 +0000760.. _attrgrp:
761
762Attribute Groups
763----------------
764
765Attribute groups are groups of attributes that are referenced by objects within
766the IR. They are important for keeping ``.ll`` files readable, because a lot of
767functions will use the same set of attributes. In the degenerative case of a
768``.ll`` file that corresponds to a single ``.c`` file, the single attribute
769group will capture the important command line flags used to build that file.
770
771An attribute group is a module-level object. To use an attribute group, an
772object references the attribute group's ID (e.g. ``#37``). An object may refer
773to more than one attribute group. In that situation, the attributes from the
774different groups are merged.
775
776Here is an example of attribute groups for a function that should always be
777inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
778
779.. code-block:: llvm
780
781 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000782 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000783
784 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000785 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000786
787 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
788 define void @f() #0 #1 { ... }
789
Sean Silvaf722b002012-12-07 10:36:55 +0000790.. _fnattrs:
791
792Function Attributes
793-------------------
794
795Function attributes are set to communicate additional information about
796a function. Function attributes are considered to be part of the
797function, not of the function type, so functions with different function
798attributes can have the same function type.
799
800Function attributes are simple keywords that follow the type specified.
801If multiple attributes are needed, they are space separated. For
802example:
803
804.. code-block:: llvm
805
806 define void @f() noinline { ... }
807 define void @f() alwaysinline { ... }
808 define void @f() alwaysinline optsize { ... }
809 define void @f() optsize { ... }
810
Sean Silvaf722b002012-12-07 10:36:55 +0000811``alignstack(<n>)``
812 This attribute indicates that, when emitting the prologue and
813 epilogue, the backend should forcibly align the stack pointer.
814 Specify the desired alignment, which must be a power of two, in
815 parentheses.
816``alwaysinline``
817 This attribute indicates that the inliner should attempt to inline
818 this function into callers whenever possible, ignoring any active
819 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000820``builtin``
821 This indicates that the callee function at a call site should be
822 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000823 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000824 direct calls to functions which are declared with the ``nobuiltin``
825 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000826``cold``
827 This attribute indicates that this function is rarely called. When
828 computing edge weights, basic blocks post-dominated by a cold
829 function call are also considered to be cold; and, thus, given low
830 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000831``inlinehint``
832 This attribute indicates that the source code contained a hint that
833 inlining this function is desirable (such as the "inline" keyword in
834 C/C++). It is just a hint; it imposes no requirements on the
835 inliner.
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000836``minsize``
837 This attribute suggests that optimization passes and code generator
838 passes make choices that keep the code size of this function as small
839 as possible and perform optimizations that may sacrifice runtime
840 performance in order to minimize the size of the generated code.
Sean Silvaf722b002012-12-07 10:36:55 +0000841``naked``
842 This attribute disables prologue / epilogue emission for the
843 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000844``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000845 This indicates that the callee function at a call site is not recognized as
846 a built-in function. LLVM will retain the original call and not replace it
847 with equivalent code based on the semantics of the built-in function, unless
848 the call site uses the ``builtin`` attribute. This is valid at call sites
849 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000850``noduplicate``
851 This attribute indicates that calls to the function cannot be
852 duplicated. A call to a ``noduplicate`` function may be moved
853 within its parent function, but may not be duplicated within
854 its parent function.
855
856 A function containing a ``noduplicate`` call may still
857 be an inlining candidate, provided that the call is not
858 duplicated by inlining. That implies that the function has
859 internal linkage and only has one call site, so the original
860 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000861``noimplicitfloat``
862 This attributes disables implicit floating point instructions.
863``noinline``
864 This attribute indicates that the inliner should never inline this
865 function in any situation. This attribute may not be used together
866 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +0000867``nonlazybind``
868 This attribute suppresses lazy symbol binding for the function. This
869 may make calls to the function faster, at the cost of extra program
870 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +0000871``noredzone``
872 This attribute indicates that the code generator should not use a
873 red zone, even if the target-specific ABI normally permits it.
874``noreturn``
875 This function attribute indicates that the function never returns
876 normally. This produces undefined behavior at runtime if the
877 function ever does dynamically return.
878``nounwind``
879 This function attribute indicates that the function never returns
880 with an unwind or exceptional control flow. If the function does
881 unwind, its runtime behavior is undefined.
882``optsize``
883 This attribute suggests that optimization passes and code generator
884 passes make choices that keep the code size of this function low,
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000885 and otherwise do optimizations specifically to reduce code size as
886 long as they do not significantly impact runtime performance.
Sean Silvaf722b002012-12-07 10:36:55 +0000887``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000888 On a function, this attribute indicates that the function computes its
889 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000890 without dereferencing any pointer arguments or otherwise accessing
891 any mutable state (e.g. memory, control registers, etc) visible to
892 caller functions. It does not write through any pointer arguments
893 (including ``byval`` arguments) and never changes any state visible
894 to callers. This means that it cannot unwind exceptions by calling
895 the ``C++`` exception throwing methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000896
897 On an argument, this attribute indicates that the function does not
898 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +0000899 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000900``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000901 On a function, this attribute indicates that the function does not write
902 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000903 modify any state (e.g. memory, control registers, etc) visible to
904 caller functions. It may dereference pointer arguments and read
905 state that may be set in the caller. A readonly function always
906 returns the same value (or unwinds an exception identically) when
907 called with the same set of arguments and global state. It cannot
908 unwind an exception by calling the ``C++`` exception throwing
909 methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000910
911 On an argument, this attribute indicates that the function does not write
912 through this pointer argument, even though it may write to the memory that
913 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000914``returns_twice``
915 This attribute indicates that this function can return twice. The C
916 ``setjmp`` is an example of such a function. The compiler disables
917 some optimizations (like tail calls) in the caller of these
918 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000919``sanitize_address``
920 This attribute indicates that AddressSanitizer checks
921 (dynamic address safety analysis) are enabled for this function.
922``sanitize_memory``
923 This attribute indicates that MemorySanitizer checks (dynamic detection
924 of accesses to uninitialized memory) are enabled for this function.
925``sanitize_thread``
926 This attribute indicates that ThreadSanitizer checks
927 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000928``ssp``
929 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000930 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000931 placed on the stack before the local variables that's checked upon
932 return from the function to see if it has been overwritten. A
933 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000934 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000935
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000936 - Character arrays larger than ``ssp-buffer-size`` (default 8).
937 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
938 - Calls to alloca() with variable sizes or constant sizes greater than
939 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000940
941 If a function that has an ``ssp`` attribute is inlined into a
942 function that doesn't have an ``ssp`` attribute, then the resulting
943 function will have an ``ssp`` attribute.
944``sspreq``
945 This attribute indicates that the function should *always* emit a
946 stack smashing protector. This overrides the ``ssp`` function
947 attribute.
948
949 If a function that has an ``sspreq`` attribute is inlined into a
950 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000951 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
952 an ``sspreq`` attribute.
953``sspstrong``
954 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000955 protector. This attribute causes a strong heuristic to be used when
956 determining if a function needs stack protectors. The strong heuristic
957 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000958
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000959 - Arrays of any size and type
960 - Aggregates containing an array of any size and type.
961 - Calls to alloca().
962 - Local variables that have had their address taken.
963
964 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000965
966 If a function that has an ``sspstrong`` attribute is inlined into a
967 function that doesn't have an ``sspstrong`` attribute, then the
968 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000969``uwtable``
970 This attribute indicates that the ABI being targeted requires that
971 an unwind table entry be produce for this function even if we can
972 show that no exceptions passes by it. This is normally the case for
973 the ELF x86-64 abi, but it can be disabled for some compilation
974 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000975
976.. _moduleasm:
977
978Module-Level Inline Assembly
979----------------------------
980
981Modules may contain "module-level inline asm" blocks, which corresponds
982to the GCC "file scope inline asm" blocks. These blocks are internally
983concatenated by LLVM and treated as a single unit, but may be separated
984in the ``.ll`` file if desired. The syntax is very simple:
985
986.. code-block:: llvm
987
988 module asm "inline asm code goes here"
989 module asm "more can go here"
990
991The strings can contain any character by escaping non-printable
992characters. The escape sequence used is simply "\\xx" where "xx" is the
993two digit hex code for the number.
994
995The inline asm code is simply printed to the machine code .s file when
996assembly code is generated.
997
Eli Bendersky1de14102013-06-07 19:40:08 +0000998.. _langref_datalayout:
999
Sean Silvaf722b002012-12-07 10:36:55 +00001000Data Layout
1001-----------
1002
1003A module may specify a target specific data layout string that specifies
1004how data is to be laid out in memory. The syntax for the data layout is
1005simply:
1006
1007.. code-block:: llvm
1008
1009 target datalayout = "layout specification"
1010
1011The *layout specification* consists of a list of specifications
1012separated by the minus sign character ('-'). Each specification starts
1013with a letter and may include other information after the letter to
1014define some aspect of the data layout. The specifications accepted are
1015as follows:
1016
1017``E``
1018 Specifies that the target lays out data in big-endian form. That is,
1019 the bits with the most significance have the lowest address
1020 location.
1021``e``
1022 Specifies that the target lays out data in little-endian form. That
1023 is, the bits with the least significance have the lowest address
1024 location.
1025``S<size>``
1026 Specifies the natural alignment of the stack in bits. Alignment
1027 promotion of stack variables is limited to the natural stack
1028 alignment to avoid dynamic stack realignment. The stack alignment
1029 must be a multiple of 8-bits. If omitted, the natural stack
1030 alignment defaults to "unspecified", which does not prevent any
1031 alignment promotions.
1032``p[n]:<size>:<abi>:<pref>``
1033 This specifies the *size* of a pointer and its ``<abi>`` and
1034 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1035 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1036 preceding ``:`` should be omitted too. The address space, ``n`` is
1037 optional, and if not specified, denotes the default address space 0.
1038 The value of ``n`` must be in the range [1,2^23).
1039``i<size>:<abi>:<pref>``
1040 This specifies the alignment for an integer type of a given bit
1041 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1042``v<size>:<abi>:<pref>``
1043 This specifies the alignment for a vector type of a given bit
1044 ``<size>``.
1045``f<size>:<abi>:<pref>``
1046 This specifies the alignment for a floating point type of a given bit
1047 ``<size>``. Only values of ``<size>`` that are supported by the target
1048 will work. 32 (float) and 64 (double) are supported on all targets; 80
1049 or 128 (different flavors of long double) are also supported on some
1050 targets.
1051``a<size>:<abi>:<pref>``
1052 This specifies the alignment for an aggregate type of a given bit
1053 ``<size>``.
1054``s<size>:<abi>:<pref>``
1055 This specifies the alignment for a stack object of a given bit
1056 ``<size>``.
1057``n<size1>:<size2>:<size3>...``
1058 This specifies a set of native integer widths for the target CPU in
1059 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1060 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1061 this set are considered to support most general arithmetic operations
1062 efficiently.
1063
1064When constructing the data layout for a given target, LLVM starts with a
1065default set of specifications which are then (possibly) overridden by
1066the specifications in the ``datalayout`` keyword. The default
1067specifications are given in this list:
1068
1069- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00001070- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1071- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1072 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001073- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001074- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1075- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1076- ``i16:16:16`` - i16 is 16-bit aligned
1077- ``i32:32:32`` - i32 is 32-bit aligned
1078- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1079 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001080- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001081- ``f32:32:32`` - float is 32-bit aligned
1082- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001083- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001084- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1085- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001086- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001087
1088When LLVM is determining the alignment for a given type, it uses the
1089following rules:
1090
1091#. If the type sought is an exact match for one of the specifications,
1092 that specification is used.
1093#. If no match is found, and the type sought is an integer type, then
1094 the smallest integer type that is larger than the bitwidth of the
1095 sought type is used. If none of the specifications are larger than
1096 the bitwidth then the largest integer type is used. For example,
1097 given the default specifications above, the i7 type will use the
1098 alignment of i8 (next largest) while both i65 and i256 will use the
1099 alignment of i64 (largest specified).
1100#. If no match is found, and the type sought is a vector type, then the
1101 largest vector type that is smaller than the sought vector type will
1102 be used as a fall back. This happens because <128 x double> can be
1103 implemented in terms of 64 <2 x double>, for example.
1104
1105The function of the data layout string may not be what you expect.
1106Notably, this is not a specification from the frontend of what alignment
1107the code generator should use.
1108
1109Instead, if specified, the target data layout is required to match what
1110the ultimate *code generator* expects. This string is used by the
1111mid-level optimizers to improve code, and this only works if it matches
1112what the ultimate code generator uses. If you would like to generate IR
1113that does not embed this target-specific detail into the IR, then you
1114don't have to specify the string. This will disable some optimizations
1115that require precise layout information, but this also prevents those
1116optimizations from introducing target specificity into the IR.
1117
1118.. _pointeraliasing:
1119
1120Pointer Aliasing Rules
1121----------------------
1122
1123Any memory access must be done through a pointer value associated with
1124an address range of the memory access, otherwise the behavior is
1125undefined. Pointer values are associated with address ranges according
1126to the following rules:
1127
1128- A pointer value is associated with the addresses associated with any
1129 value it is *based* on.
1130- An address of a global variable is associated with the address range
1131 of the variable's storage.
1132- The result value of an allocation instruction is associated with the
1133 address range of the allocated storage.
1134- A null pointer in the default address-space is associated with no
1135 address.
1136- An integer constant other than zero or a pointer value returned from
1137 a function not defined within LLVM may be associated with address
1138 ranges allocated through mechanisms other than those provided by
1139 LLVM. Such ranges shall not overlap with any ranges of addresses
1140 allocated by mechanisms provided by LLVM.
1141
1142A pointer value is *based* on another pointer value according to the
1143following rules:
1144
1145- A pointer value formed from a ``getelementptr`` operation is *based*
1146 on the first operand of the ``getelementptr``.
1147- The result value of a ``bitcast`` is *based* on the operand of the
1148 ``bitcast``.
1149- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1150 values that contribute (directly or indirectly) to the computation of
1151 the pointer's value.
1152- The "*based* on" relationship is transitive.
1153
1154Note that this definition of *"based"* is intentionally similar to the
1155definition of *"based"* in C99, though it is slightly weaker.
1156
1157LLVM IR does not associate types with memory. The result type of a
1158``load`` merely indicates the size and alignment of the memory from
1159which to load, as well as the interpretation of the value. The first
1160operand type of a ``store`` similarly only indicates the size and
1161alignment of the store.
1162
1163Consequently, type-based alias analysis, aka TBAA, aka
1164``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1165:ref:`Metadata <metadata>` may be used to encode additional information
1166which specialized optimization passes may use to implement type-based
1167alias analysis.
1168
1169.. _volatile:
1170
1171Volatile Memory Accesses
1172------------------------
1173
1174Certain memory accesses, such as :ref:`load <i_load>`'s,
1175:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1176marked ``volatile``. The optimizers must not change the number of
1177volatile operations or change their order of execution relative to other
1178volatile operations. The optimizers *may* change the order of volatile
1179operations relative to non-volatile operations. This is not Java's
1180"volatile" and has no cross-thread synchronization behavior.
1181
Andrew Trick9a6dd022013-01-30 21:19:35 +00001182IR-level volatile loads and stores cannot safely be optimized into
1183llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1184flagged volatile. Likewise, the backend should never split or merge
1185target-legal volatile load/store instructions.
1186
Andrew Trick946317d2013-01-31 00:49:39 +00001187.. admonition:: Rationale
1188
1189 Platforms may rely on volatile loads and stores of natively supported
1190 data width to be executed as single instruction. For example, in C
1191 this holds for an l-value of volatile primitive type with native
1192 hardware support, but not necessarily for aggregate types. The
1193 frontend upholds these expectations, which are intentionally
1194 unspecified in the IR. The rules above ensure that IR transformation
1195 do not violate the frontend's contract with the language.
1196
Sean Silvaf722b002012-12-07 10:36:55 +00001197.. _memmodel:
1198
1199Memory Model for Concurrent Operations
1200--------------------------------------
1201
1202The LLVM IR does not define any way to start parallel threads of
1203execution or to register signal handlers. Nonetheless, there are
1204platform-specific ways to create them, and we define LLVM IR's behavior
1205in their presence. This model is inspired by the C++0x memory model.
1206
1207For a more informal introduction to this model, see the :doc:`Atomics`.
1208
1209We define a *happens-before* partial order as the least partial order
1210that
1211
1212- Is a superset of single-thread program order, and
1213- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1214 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1215 techniques, like pthread locks, thread creation, thread joining,
1216 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1217 Constraints <ordering>`).
1218
1219Note that program order does not introduce *happens-before* edges
1220between a thread and signals executing inside that thread.
1221
1222Every (defined) read operation (load instructions, memcpy, atomic
1223loads/read-modify-writes, etc.) R reads a series of bytes written by
1224(defined) write operations (store instructions, atomic
1225stores/read-modify-writes, memcpy, etc.). For the purposes of this
1226section, initialized globals are considered to have a write of the
1227initializer which is atomic and happens before any other read or write
1228of the memory in question. For each byte of a read R, R\ :sub:`byte`
1229may see any write to the same byte, except:
1230
1231- If write\ :sub:`1` happens before write\ :sub:`2`, and
1232 write\ :sub:`2` happens before R\ :sub:`byte`, then
1233 R\ :sub:`byte` does not see write\ :sub:`1`.
1234- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1235 R\ :sub:`byte` does not see write\ :sub:`3`.
1236
1237Given that definition, R\ :sub:`byte` is defined as follows:
1238
1239- If R is volatile, the result is target-dependent. (Volatile is
1240 supposed to give guarantees which can support ``sig_atomic_t`` in
1241 C/C++, and may be used for accesses to addresses which do not behave
1242 like normal memory. It does not generally provide cross-thread
1243 synchronization.)
1244- Otherwise, if there is no write to the same byte that happens before
1245 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1246- Otherwise, if R\ :sub:`byte` may see exactly one write,
1247 R\ :sub:`byte` returns the value written by that write.
1248- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1249 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1250 Memory Ordering Constraints <ordering>` section for additional
1251 constraints on how the choice is made.
1252- Otherwise R\ :sub:`byte` returns ``undef``.
1253
1254R returns the value composed of the series of bytes it read. This
1255implies that some bytes within the value may be ``undef`` **without**
1256the entire value being ``undef``. Note that this only defines the
1257semantics of the operation; it doesn't mean that targets will emit more
1258than one instruction to read the series of bytes.
1259
1260Note that in cases where none of the atomic intrinsics are used, this
1261model places only one restriction on IR transformations on top of what
1262is required for single-threaded execution: introducing a store to a byte
1263which might not otherwise be stored is not allowed in general.
1264(Specifically, in the case where another thread might write to and read
1265from an address, introducing a store can change a load that may see
1266exactly one write into a load that may see multiple writes.)
1267
1268.. _ordering:
1269
1270Atomic Memory Ordering Constraints
1271----------------------------------
1272
1273Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1274:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1275:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1276an ordering parameter that determines which other atomic instructions on
1277the same address they *synchronize with*. These semantics are borrowed
1278from Java and C++0x, but are somewhat more colloquial. If these
1279descriptions aren't precise enough, check those specs (see spec
1280references in the :doc:`atomics guide <Atomics>`).
1281:ref:`fence <i_fence>` instructions treat these orderings somewhat
1282differently since they don't take an address. See that instruction's
1283documentation for details.
1284
1285For a simpler introduction to the ordering constraints, see the
1286:doc:`Atomics`.
1287
1288``unordered``
1289 The set of values that can be read is governed by the happens-before
1290 partial order. A value cannot be read unless some operation wrote
1291 it. This is intended to provide a guarantee strong enough to model
1292 Java's non-volatile shared variables. This ordering cannot be
1293 specified for read-modify-write operations; it is not strong enough
1294 to make them atomic in any interesting way.
1295``monotonic``
1296 In addition to the guarantees of ``unordered``, there is a single
1297 total order for modifications by ``monotonic`` operations on each
1298 address. All modification orders must be compatible with the
1299 happens-before order. There is no guarantee that the modification
1300 orders can be combined to a global total order for the whole program
1301 (and this often will not be possible). The read in an atomic
1302 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1303 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1304 order immediately before the value it writes. If one atomic read
1305 happens before another atomic read of the same address, the later
1306 read must see the same value or a later value in the address's
1307 modification order. This disallows reordering of ``monotonic`` (or
1308 stronger) operations on the same address. If an address is written
1309 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1310 read that address repeatedly, the other threads must eventually see
1311 the write. This corresponds to the C++0x/C1x
1312 ``memory_order_relaxed``.
1313``acquire``
1314 In addition to the guarantees of ``monotonic``, a
1315 *synchronizes-with* edge may be formed with a ``release`` operation.
1316 This is intended to model C++'s ``memory_order_acquire``.
1317``release``
1318 In addition to the guarantees of ``monotonic``, if this operation
1319 writes a value which is subsequently read by an ``acquire``
1320 operation, it *synchronizes-with* that operation. (This isn't a
1321 complete description; see the C++0x definition of a release
1322 sequence.) This corresponds to the C++0x/C1x
1323 ``memory_order_release``.
1324``acq_rel`` (acquire+release)
1325 Acts as both an ``acquire`` and ``release`` operation on its
1326 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1327``seq_cst`` (sequentially consistent)
1328 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1329 operation which only reads, ``release`` for an operation which only
1330 writes), there is a global total order on all
1331 sequentially-consistent operations on all addresses, which is
1332 consistent with the *happens-before* partial order and with the
1333 modification orders of all the affected addresses. Each
1334 sequentially-consistent read sees the last preceding write to the
1335 same address in this global order. This corresponds to the C++0x/C1x
1336 ``memory_order_seq_cst`` and Java volatile.
1337
1338.. _singlethread:
1339
1340If an atomic operation is marked ``singlethread``, it only *synchronizes
1341with* or participates in modification and seq\_cst total orderings with
1342other operations running in the same thread (for example, in signal
1343handlers).
1344
1345.. _fastmath:
1346
1347Fast-Math Flags
1348---------------
1349
1350LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1351:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1352:ref:`frem <i_frem>`) have the following flags that can set to enable
1353otherwise unsafe floating point operations
1354
1355``nnan``
1356 No NaNs - Allow optimizations to assume the arguments and result are not
1357 NaN. Such optimizations are required to retain defined behavior over
1358 NaNs, but the value of the result is undefined.
1359
1360``ninf``
1361 No Infs - Allow optimizations to assume the arguments and result are not
1362 +/-Inf. Such optimizations are required to retain defined behavior over
1363 +/-Inf, but the value of the result is undefined.
1364
1365``nsz``
1366 No Signed Zeros - Allow optimizations to treat the sign of a zero
1367 argument or result as insignificant.
1368
1369``arcp``
1370 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1371 argument rather than perform division.
1372
1373``fast``
1374 Fast - Allow algebraically equivalent transformations that may
1375 dramatically change results in floating point (e.g. reassociate). This
1376 flag implies all the others.
1377
1378.. _typesystem:
1379
1380Type System
1381===========
1382
1383The LLVM type system is one of the most important features of the
1384intermediate representation. Being typed enables a number of
1385optimizations to be performed on the intermediate representation
1386directly, without having to do extra analyses on the side before the
1387transformation. A strong type system makes it easier to read the
1388generated code and enables novel analyses and transformations that are
1389not feasible to perform on normal three address code representations.
1390
Eli Bendersky88fe6822013-06-07 20:24:43 +00001391.. _typeclassifications:
1392
Sean Silvaf722b002012-12-07 10:36:55 +00001393Type Classifications
1394--------------------
1395
1396The types fall into a few useful classifications:
1397
1398
1399.. list-table::
1400 :header-rows: 1
1401
1402 * - Classification
1403 - Types
1404
1405 * - :ref:`integer <t_integer>`
1406 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1407 ``i64``, ...
1408
1409 * - :ref:`floating point <t_floating>`
1410 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1411 ``ppc_fp128``
1412
1413
1414 * - first class
1415
1416 .. _t_firstclass:
1417
1418 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1419 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1420 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1421 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1422
1423 * - :ref:`primitive <t_primitive>`
1424 - :ref:`label <t_label>`,
1425 :ref:`void <t_void>`,
1426 :ref:`integer <t_integer>`,
1427 :ref:`floating point <t_floating>`,
1428 :ref:`x86mmx <t_x86mmx>`,
1429 :ref:`metadata <t_metadata>`.
1430
1431 * - :ref:`derived <t_derived>`
1432 - :ref:`array <t_array>`,
1433 :ref:`function <t_function>`,
1434 :ref:`pointer <t_pointer>`,
1435 :ref:`structure <t_struct>`,
1436 :ref:`vector <t_vector>`,
1437 :ref:`opaque <t_opaque>`.
1438
1439The :ref:`first class <t_firstclass>` types are perhaps the most important.
1440Values of these types are the only ones which can be produced by
1441instructions.
1442
1443.. _t_primitive:
1444
1445Primitive Types
1446---------------
1447
1448The primitive types are the fundamental building blocks of the LLVM
1449system.
1450
1451.. _t_integer:
1452
1453Integer Type
1454^^^^^^^^^^^^
1455
1456Overview:
1457"""""""""
1458
1459The integer type is a very simple type that simply specifies an
1460arbitrary bit width for the integer type desired. Any bit width from 1
1461bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1462
1463Syntax:
1464"""""""
1465
1466::
1467
1468 iN
1469
1470The number of bits the integer will occupy is specified by the ``N``
1471value.
1472
1473Examples:
1474"""""""""
1475
1476+----------------+------------------------------------------------+
1477| ``i1`` | a single-bit integer. |
1478+----------------+------------------------------------------------+
1479| ``i32`` | a 32-bit integer. |
1480+----------------+------------------------------------------------+
1481| ``i1942652`` | a really big integer of over 1 million bits. |
1482+----------------+------------------------------------------------+
1483
1484.. _t_floating:
1485
1486Floating Point Types
1487^^^^^^^^^^^^^^^^^^^^
1488
1489.. list-table::
1490 :header-rows: 1
1491
1492 * - Type
1493 - Description
1494
1495 * - ``half``
1496 - 16-bit floating point value
1497
1498 * - ``float``
1499 - 32-bit floating point value
1500
1501 * - ``double``
1502 - 64-bit floating point value
1503
1504 * - ``fp128``
1505 - 128-bit floating point value (112-bit mantissa)
1506
1507 * - ``x86_fp80``
1508 - 80-bit floating point value (X87)
1509
1510 * - ``ppc_fp128``
1511 - 128-bit floating point value (two 64-bits)
1512
1513.. _t_x86mmx:
1514
1515X86mmx Type
1516^^^^^^^^^^^
1517
1518Overview:
1519"""""""""
1520
1521The x86mmx type represents a value held in an MMX register on an x86
1522machine. The operations allowed on it are quite limited: parameters and
1523return values, load and store, and bitcast. User-specified MMX
1524instructions are represented as intrinsic or asm calls with arguments
1525and/or results of this type. There are no arrays, vectors or constants
1526of this type.
1527
1528Syntax:
1529"""""""
1530
1531::
1532
1533 x86mmx
1534
1535.. _t_void:
1536
1537Void Type
1538^^^^^^^^^
1539
1540Overview:
1541"""""""""
1542
1543The void type does not represent any value and has no size.
1544
1545Syntax:
1546"""""""
1547
1548::
1549
1550 void
1551
1552.. _t_label:
1553
1554Label Type
1555^^^^^^^^^^
1556
1557Overview:
1558"""""""""
1559
1560The label type represents code labels.
1561
1562Syntax:
1563"""""""
1564
1565::
1566
1567 label
1568
1569.. _t_metadata:
1570
1571Metadata Type
1572^^^^^^^^^^^^^
1573
1574Overview:
1575"""""""""
1576
1577The metadata type represents embedded metadata. No derived types may be
1578created from metadata except for :ref:`function <t_function>` arguments.
1579
1580Syntax:
1581"""""""
1582
1583::
1584
1585 metadata
1586
1587.. _t_derived:
1588
1589Derived Types
1590-------------
1591
1592The real power in LLVM comes from the derived types in the system. This
1593is what allows a programmer to represent arrays, functions, pointers,
1594and other useful types. Each of these types contain one or more element
1595types which may be a primitive type, or another derived type. For
1596example, it is possible to have a two dimensional array, using an array
1597as the element type of another array.
1598
1599.. _t_aggregate:
1600
1601Aggregate Types
1602^^^^^^^^^^^^^^^
1603
1604Aggregate Types are a subset of derived types that can contain multiple
1605member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1606aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1607aggregate types.
1608
1609.. _t_array:
1610
1611Array Type
1612^^^^^^^^^^
1613
1614Overview:
1615"""""""""
1616
1617The array type is a very simple derived type that arranges elements
1618sequentially in memory. The array type requires a size (number of
1619elements) and an underlying data type.
1620
1621Syntax:
1622"""""""
1623
1624::
1625
1626 [<# elements> x <elementtype>]
1627
1628The number of elements is a constant integer value; ``elementtype`` may
1629be any type with a size.
1630
1631Examples:
1632"""""""""
1633
1634+------------------+--------------------------------------+
1635| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1636+------------------+--------------------------------------+
1637| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1638+------------------+--------------------------------------+
1639| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1640+------------------+--------------------------------------+
1641
1642Here are some examples of multidimensional arrays:
1643
1644+-----------------------------+----------------------------------------------------------+
1645| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1646+-----------------------------+----------------------------------------------------------+
1647| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1648+-----------------------------+----------------------------------------------------------+
1649| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1650+-----------------------------+----------------------------------------------------------+
1651
1652There is no restriction on indexing beyond the end of the array implied
1653by a static type (though there are restrictions on indexing beyond the
1654bounds of an allocated object in some cases). This means that
1655single-dimension 'variable sized array' addressing can be implemented in
1656LLVM with a zero length array type. An implementation of 'pascal style
1657arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1658example.
1659
1660.. _t_function:
1661
1662Function Type
1663^^^^^^^^^^^^^
1664
1665Overview:
1666"""""""""
1667
1668The function type can be thought of as a function signature. It consists
1669of a return type and a list of formal parameter types. The return type
1670of a function type is a first class type or a void type.
1671
1672Syntax:
1673"""""""
1674
1675::
1676
1677 <returntype> (<parameter list>)
1678
1679...where '``<parameter list>``' is a comma-separated list of type
1680specifiers. Optionally, the parameter list may include a type ``...``,
1681which indicates that the function takes a variable number of arguments.
1682Variable argument functions can access their arguments with the
1683:ref:`variable argument handling intrinsic <int_varargs>` functions.
1684'``<returntype>``' is any type except :ref:`label <t_label>`.
1685
1686Examples:
1687"""""""""
1688
1689+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1690| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1691+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001692| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001693+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1694| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1695+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1696| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1697+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1698
1699.. _t_struct:
1700
1701Structure Type
1702^^^^^^^^^^^^^^
1703
1704Overview:
1705"""""""""
1706
1707The structure type is used to represent a collection of data members
1708together in memory. The elements of a structure may be any type that has
1709a size.
1710
1711Structures in memory are accessed using '``load``' and '``store``' by
1712getting a pointer to a field with the '``getelementptr``' instruction.
1713Structures in registers are accessed using the '``extractvalue``' and
1714'``insertvalue``' instructions.
1715
1716Structures may optionally be "packed" structures, which indicate that
1717the alignment of the struct is one byte, and that there is no padding
1718between the elements. In non-packed structs, padding between field types
1719is inserted as defined by the DataLayout string in the module, which is
1720required to match what the underlying code generator expects.
1721
1722Structures can either be "literal" or "identified". A literal structure
1723is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1724identified types are always defined at the top level with a name.
1725Literal types are uniqued by their contents and can never be recursive
1726or opaque since there is no way to write one. Identified types can be
1727recursive, can be opaqued, and are never uniqued.
1728
1729Syntax:
1730"""""""
1731
1732::
1733
1734 %T1 = type { <type list> } ; Identified normal struct type
1735 %T2 = type <{ <type list> }> ; Identified packed struct type
1736
1737Examples:
1738"""""""""
1739
1740+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1741| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1742+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001743| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001744+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1745| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1746+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1747
1748.. _t_opaque:
1749
1750Opaque Structure Types
1751^^^^^^^^^^^^^^^^^^^^^^
1752
1753Overview:
1754"""""""""
1755
1756Opaque structure types are used to represent named structure types that
1757do not have a body specified. This corresponds (for example) to the C
1758notion of a forward declared structure.
1759
1760Syntax:
1761"""""""
1762
1763::
1764
1765 %X = type opaque
1766 %52 = type opaque
1767
1768Examples:
1769"""""""""
1770
1771+--------------+-------------------+
1772| ``opaque`` | An opaque type. |
1773+--------------+-------------------+
1774
1775.. _t_pointer:
1776
1777Pointer Type
1778^^^^^^^^^^^^
1779
1780Overview:
1781"""""""""
1782
1783The pointer type is used to specify memory locations. Pointers are
1784commonly used to reference objects in memory.
1785
1786Pointer types may have an optional address space attribute defining the
1787numbered address space where the pointed-to object resides. The default
1788address space is number zero. The semantics of non-zero address spaces
1789are target-specific.
1790
1791Note that LLVM does not permit pointers to void (``void*``) nor does it
1792permit pointers to labels (``label*``). Use ``i8*`` instead.
1793
1794Syntax:
1795"""""""
1796
1797::
1798
1799 <type> *
1800
1801Examples:
1802"""""""""
1803
1804+-------------------------+--------------------------------------------------------------------------------------------------------------+
1805| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1806+-------------------------+--------------------------------------------------------------------------------------------------------------+
1807| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1808+-------------------------+--------------------------------------------------------------------------------------------------------------+
1809| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1810+-------------------------+--------------------------------------------------------------------------------------------------------------+
1811
1812.. _t_vector:
1813
1814Vector Type
1815^^^^^^^^^^^
1816
1817Overview:
1818"""""""""
1819
1820A vector type is a simple derived type that represents a vector of
1821elements. Vector types are used when multiple primitive data are
1822operated in parallel using a single instruction (SIMD). A vector type
1823requires a size (number of elements) and an underlying primitive data
1824type. Vector types are considered :ref:`first class <t_firstclass>`.
1825
1826Syntax:
1827"""""""
1828
1829::
1830
1831 < <# elements> x <elementtype> >
1832
1833The number of elements is a constant integer value larger than 0;
1834elementtype may be any integer or floating point type, or a pointer to
1835these types. Vectors of size zero are not allowed.
1836
1837Examples:
1838"""""""""
1839
1840+-------------------+--------------------------------------------------+
1841| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1842+-------------------+--------------------------------------------------+
1843| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1844+-------------------+--------------------------------------------------+
1845| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1846+-------------------+--------------------------------------------------+
1847| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1848+-------------------+--------------------------------------------------+
1849
1850Constants
1851=========
1852
1853LLVM has several different basic types of constants. This section
1854describes them all and their syntax.
1855
1856Simple Constants
1857----------------
1858
1859**Boolean constants**
1860 The two strings '``true``' and '``false``' are both valid constants
1861 of the ``i1`` type.
1862**Integer constants**
1863 Standard integers (such as '4') are constants of the
1864 :ref:`integer <t_integer>` type. Negative numbers may be used with
1865 integer types.
1866**Floating point constants**
1867 Floating point constants use standard decimal notation (e.g.
1868 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1869 hexadecimal notation (see below). The assembler requires the exact
1870 decimal value of a floating-point constant. For example, the
1871 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1872 decimal in binary. Floating point constants must have a :ref:`floating
1873 point <t_floating>` type.
1874**Null pointer constants**
1875 The identifier '``null``' is recognized as a null pointer constant
1876 and must be of :ref:`pointer type <t_pointer>`.
1877
1878The one non-intuitive notation for constants is the hexadecimal form of
1879floating point constants. For example, the form
1880'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1881than) '``double 4.5e+15``'. The only time hexadecimal floating point
1882constants are required (and the only time that they are generated by the
1883disassembler) is when a floating point constant must be emitted but it
1884cannot be represented as a decimal floating point number in a reasonable
1885number of digits. For example, NaN's, infinities, and other special
1886values are represented in their IEEE hexadecimal format so that assembly
1887and disassembly do not cause any bits to change in the constants.
1888
1889When using the hexadecimal form, constants of types half, float, and
1890double are represented using the 16-digit form shown above (which
1891matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001892must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001893precision, respectively. Hexadecimal format is always used for long
1894double, and there are three forms of long double. The 80-bit format used
1895by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1896128-bit format used by PowerPC (two adjacent doubles) is represented by
1897``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001898represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1899will only work if they match the long double format on your target.
1900The IEEE 16-bit format (half precision) is represented by ``0xH``
1901followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1902(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001903
1904There are no constants of type x86mmx.
1905
Eli Bendersky88fe6822013-06-07 20:24:43 +00001906.. _complexconstants:
1907
Sean Silvaf722b002012-12-07 10:36:55 +00001908Complex Constants
1909-----------------
1910
1911Complex constants are a (potentially recursive) combination of simple
1912constants and smaller complex constants.
1913
1914**Structure constants**
1915 Structure constants are represented with notation similar to
1916 structure type definitions (a comma separated list of elements,
1917 surrounded by braces (``{}``)). For example:
1918 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1919 "``@G = external global i32``". Structure constants must have
1920 :ref:`structure type <t_struct>`, and the number and types of elements
1921 must match those specified by the type.
1922**Array constants**
1923 Array constants are represented with notation similar to array type
1924 definitions (a comma separated list of elements, surrounded by
1925 square brackets (``[]``)). For example:
1926 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1927 :ref:`array type <t_array>`, and the number and types of elements must
1928 match those specified by the type.
1929**Vector constants**
1930 Vector constants are represented with notation similar to vector
1931 type definitions (a comma separated list of elements, surrounded by
1932 less-than/greater-than's (``<>``)). For example:
1933 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1934 must have :ref:`vector type <t_vector>`, and the number and types of
1935 elements must match those specified by the type.
1936**Zero initialization**
1937 The string '``zeroinitializer``' can be used to zero initialize a
1938 value to zero of *any* type, including scalar and
1939 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1940 having to print large zero initializers (e.g. for large arrays) and
1941 is always exactly equivalent to using explicit zero initializers.
1942**Metadata node**
1943 A metadata node is a structure-like constant with :ref:`metadata
1944 type <t_metadata>`. For example:
1945 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1946 constants that are meant to be interpreted as part of the
1947 instruction stream, metadata is a place to attach additional
1948 information such as debug info.
1949
1950Global Variable and Function Addresses
1951--------------------------------------
1952
1953The addresses of :ref:`global variables <globalvars>` and
1954:ref:`functions <functionstructure>` are always implicitly valid
1955(link-time) constants. These constants are explicitly referenced when
1956the :ref:`identifier for the global <identifiers>` is used and always have
1957:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1958file:
1959
1960.. code-block:: llvm
1961
1962 @X = global i32 17
1963 @Y = global i32 42
1964 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1965
1966.. _undefvalues:
1967
1968Undefined Values
1969----------------
1970
1971The string '``undef``' can be used anywhere a constant is expected, and
1972indicates that the user of the value may receive an unspecified
1973bit-pattern. Undefined values may be of any type (other than '``label``'
1974or '``void``') and be used anywhere a constant is permitted.
1975
1976Undefined values are useful because they indicate to the compiler that
1977the program is well defined no matter what value is used. This gives the
1978compiler more freedom to optimize. Here are some examples of
1979(potentially surprising) transformations that are valid (in pseudo IR):
1980
1981.. code-block:: llvm
1982
1983 %A = add %X, undef
1984 %B = sub %X, undef
1985 %C = xor %X, undef
1986 Safe:
1987 %A = undef
1988 %B = undef
1989 %C = undef
1990
1991This is safe because all of the output bits are affected by the undef
1992bits. Any output bit can have a zero or one depending on the input bits.
1993
1994.. code-block:: llvm
1995
1996 %A = or %X, undef
1997 %B = and %X, undef
1998 Safe:
1999 %A = -1
2000 %B = 0
2001 Unsafe:
2002 %A = undef
2003 %B = undef
2004
2005These logical operations have bits that are not always affected by the
2006input. For example, if ``%X`` has a zero bit, then the output of the
2007'``and``' operation will always be a zero for that bit, no matter what
2008the corresponding bit from the '``undef``' is. As such, it is unsafe to
2009optimize or assume that the result of the '``and``' is '``undef``'.
2010However, it is safe to assume that all bits of the '``undef``' could be
20110, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2012all the bits of the '``undef``' operand to the '``or``' could be set,
2013allowing the '``or``' to be folded to -1.
2014
2015.. code-block:: llvm
2016
2017 %A = select undef, %X, %Y
2018 %B = select undef, 42, %Y
2019 %C = select %X, %Y, undef
2020 Safe:
2021 %A = %X (or %Y)
2022 %B = 42 (or %Y)
2023 %C = %Y
2024 Unsafe:
2025 %A = undef
2026 %B = undef
2027 %C = undef
2028
2029This set of examples shows that undefined '``select``' (and conditional
2030branch) conditions can go *either way*, but they have to come from one
2031of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2032both known to have a clear low bit, then ``%A`` would have to have a
2033cleared low bit. However, in the ``%C`` example, the optimizer is
2034allowed to assume that the '``undef``' operand could be the same as
2035``%Y``, allowing the whole '``select``' to be eliminated.
2036
2037.. code-block:: llvm
2038
2039 %A = xor undef, undef
2040
2041 %B = undef
2042 %C = xor %B, %B
2043
2044 %D = undef
2045 %E = icmp lt %D, 4
2046 %F = icmp gte %D, 4
2047
2048 Safe:
2049 %A = undef
2050 %B = undef
2051 %C = undef
2052 %D = undef
2053 %E = undef
2054 %F = undef
2055
2056This example points out that two '``undef``' operands are not
2057necessarily the same. This can be surprising to people (and also matches
2058C semantics) where they assume that "``X^X``" is always zero, even if
2059``X`` is undefined. This isn't true for a number of reasons, but the
2060short answer is that an '``undef``' "variable" can arbitrarily change
2061its value over its "live range". This is true because the variable
2062doesn't actually *have a live range*. Instead, the value is logically
2063read from arbitrary registers that happen to be around when needed, so
2064the value is not necessarily consistent over time. In fact, ``%A`` and
2065``%C`` need to have the same semantics or the core LLVM "replace all
2066uses with" concept would not hold.
2067
2068.. code-block:: llvm
2069
2070 %A = fdiv undef, %X
2071 %B = fdiv %X, undef
2072 Safe:
2073 %A = undef
2074 b: unreachable
2075
2076These examples show the crucial difference between an *undefined value*
2077and *undefined behavior*. An undefined value (like '``undef``') is
2078allowed to have an arbitrary bit-pattern. This means that the ``%A``
2079operation can be constant folded to '``undef``', because the '``undef``'
2080could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2081However, in the second example, we can make a more aggressive
2082assumption: because the ``undef`` is allowed to be an arbitrary value,
2083we are allowed to assume that it could be zero. Since a divide by zero
2084has *undefined behavior*, we are allowed to assume that the operation
2085does not execute at all. This allows us to delete the divide and all
2086code after it. Because the undefined operation "can't happen", the
2087optimizer can assume that it occurs in dead code.
2088
2089.. code-block:: llvm
2090
2091 a: store undef -> %X
2092 b: store %X -> undef
2093 Safe:
2094 a: <deleted>
2095 b: unreachable
2096
2097These examples reiterate the ``fdiv`` example: a store *of* an undefined
2098value can be assumed to not have any effect; we can assume that the
2099value is overwritten with bits that happen to match what was already
2100there. However, a store *to* an undefined location could clobber
2101arbitrary memory, therefore, it has undefined behavior.
2102
2103.. _poisonvalues:
2104
2105Poison Values
2106-------------
2107
2108Poison values are similar to :ref:`undef values <undefvalues>`, however
2109they also represent the fact that an instruction or constant expression
2110which cannot evoke side effects has nevertheless detected a condition
2111which results in undefined behavior.
2112
2113There is currently no way of representing a poison value in the IR; they
2114only exist when produced by operations such as :ref:`add <i_add>` with
2115the ``nsw`` flag.
2116
2117Poison value behavior is defined in terms of value *dependence*:
2118
2119- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2120- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2121 their dynamic predecessor basic block.
2122- Function arguments depend on the corresponding actual argument values
2123 in the dynamic callers of their functions.
2124- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2125 instructions that dynamically transfer control back to them.
2126- :ref:`Invoke <i_invoke>` instructions depend on the
2127 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2128 call instructions that dynamically transfer control back to them.
2129- Non-volatile loads and stores depend on the most recent stores to all
2130 of the referenced memory addresses, following the order in the IR
2131 (including loads and stores implied by intrinsics such as
2132 :ref:`@llvm.memcpy <int_memcpy>`.)
2133- An instruction with externally visible side effects depends on the
2134 most recent preceding instruction with externally visible side
2135 effects, following the order in the IR. (This includes :ref:`volatile
2136 operations <volatile>`.)
2137- An instruction *control-depends* on a :ref:`terminator
2138 instruction <terminators>` if the terminator instruction has
2139 multiple successors and the instruction is always executed when
2140 control transfers to one of the successors, and may not be executed
2141 when control is transferred to another.
2142- Additionally, an instruction also *control-depends* on a terminator
2143 instruction if the set of instructions it otherwise depends on would
2144 be different if the terminator had transferred control to a different
2145 successor.
2146- Dependence is transitive.
2147
2148Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2149with the additional affect that any instruction which has a *dependence*
2150on a poison value has undefined behavior.
2151
2152Here are some examples:
2153
2154.. code-block:: llvm
2155
2156 entry:
2157 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2158 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2159 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2160 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2161
2162 store i32 %poison, i32* @g ; Poison value stored to memory.
2163 %poison2 = load i32* @g ; Poison value loaded back from memory.
2164
2165 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2166
2167 %narrowaddr = bitcast i32* @g to i16*
2168 %wideaddr = bitcast i32* @g to i64*
2169 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2170 %poison4 = load i64* %wideaddr ; Returns a poison value.
2171
2172 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2173 br i1 %cmp, label %true, label %end ; Branch to either destination.
2174
2175 true:
2176 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2177 ; it has undefined behavior.
2178 br label %end
2179
2180 end:
2181 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2182 ; Both edges into this PHI are
2183 ; control-dependent on %cmp, so this
2184 ; always results in a poison value.
2185
2186 store volatile i32 0, i32* @g ; This would depend on the store in %true
2187 ; if %cmp is true, or the store in %entry
2188 ; otherwise, so this is undefined behavior.
2189
2190 br i1 %cmp, label %second_true, label %second_end
2191 ; The same branch again, but this time the
2192 ; true block doesn't have side effects.
2193
2194 second_true:
2195 ; No side effects!
2196 ret void
2197
2198 second_end:
2199 store volatile i32 0, i32* @g ; This time, the instruction always depends
2200 ; on the store in %end. Also, it is
2201 ; control-equivalent to %end, so this is
2202 ; well-defined (ignoring earlier undefined
2203 ; behavior in this example).
2204
2205.. _blockaddress:
2206
2207Addresses of Basic Blocks
2208-------------------------
2209
2210``blockaddress(@function, %block)``
2211
2212The '``blockaddress``' constant computes the address of the specified
2213basic block in the specified function, and always has an ``i8*`` type.
2214Taking the address of the entry block is illegal.
2215
2216This value only has defined behavior when used as an operand to the
2217':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2218against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002219undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002220no label is equal to the null pointer. This may be passed around as an
2221opaque pointer sized value as long as the bits are not inspected. This
2222allows ``ptrtoint`` and arithmetic to be performed on these values so
2223long as the original value is reconstituted before the ``indirectbr``
2224instruction.
2225
2226Finally, some targets may provide defined semantics when using the value
2227as the operand to an inline assembly, but that is target specific.
2228
Eli Bendersky88fe6822013-06-07 20:24:43 +00002229.. _constantexprs:
2230
Sean Silvaf722b002012-12-07 10:36:55 +00002231Constant Expressions
2232--------------------
2233
2234Constant expressions are used to allow expressions involving other
2235constants to be used as constants. Constant expressions may be of any
2236:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2237that does not have side effects (e.g. load and call are not supported).
2238The following is the syntax for constant expressions:
2239
2240``trunc (CST to TYPE)``
2241 Truncate a constant to another type. The bit size of CST must be
2242 larger than the bit size of TYPE. Both types must be integers.
2243``zext (CST to TYPE)``
2244 Zero extend a constant to another type. The bit size of CST must be
2245 smaller than the bit size of TYPE. Both types must be integers.
2246``sext (CST to TYPE)``
2247 Sign extend a constant to another type. The bit size of CST must be
2248 smaller than the bit size of TYPE. Both types must be integers.
2249``fptrunc (CST to TYPE)``
2250 Truncate a floating point constant to another floating point type.
2251 The size of CST must be larger than the size of TYPE. Both types
2252 must be floating point.
2253``fpext (CST to TYPE)``
2254 Floating point extend a constant to another type. The size of CST
2255 must be smaller or equal to the size of TYPE. Both types must be
2256 floating point.
2257``fptoui (CST to TYPE)``
2258 Convert a floating point constant to the corresponding unsigned
2259 integer constant. TYPE must be a scalar or vector integer type. CST
2260 must be of scalar or vector floating point type. Both CST and TYPE
2261 must be scalars, or vectors of the same number of elements. If the
2262 value won't fit in the integer type, the results are undefined.
2263``fptosi (CST to TYPE)``
2264 Convert a floating point constant to the corresponding signed
2265 integer constant. TYPE must be a scalar or vector integer type. CST
2266 must be of scalar or vector floating point type. Both CST and TYPE
2267 must be scalars, or vectors of the same number of elements. If the
2268 value won't fit in the integer type, the results are undefined.
2269``uitofp (CST to TYPE)``
2270 Convert an unsigned integer constant to the corresponding floating
2271 point constant. TYPE must be a scalar or vector floating point type.
2272 CST must be of scalar or vector integer type. Both CST and TYPE must
2273 be scalars, or vectors of the same number of elements. If the value
2274 won't fit in the floating point type, the results are undefined.
2275``sitofp (CST to TYPE)``
2276 Convert a signed integer constant to the corresponding floating
2277 point constant. TYPE must be a scalar or vector floating point type.
2278 CST must be of scalar or vector integer type. Both CST and TYPE must
2279 be scalars, or vectors of the same number of elements. If the value
2280 won't fit in the floating point type, the results are undefined.
2281``ptrtoint (CST to TYPE)``
2282 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002283 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002284 pointer type. The ``CST`` value is zero extended, truncated, or
2285 unchanged to make it fit in ``TYPE``.
2286``inttoptr (CST to TYPE)``
2287 Convert an integer constant to a pointer constant. TYPE must be a
2288 pointer type. CST must be of integer type. The CST value is zero
2289 extended, truncated, or unchanged to make it fit in a pointer size.
2290 This one is *really* dangerous!
2291``bitcast (CST to TYPE)``
2292 Convert a constant, CST, to another TYPE. The constraints of the
2293 operands are the same as those for the :ref:`bitcast
2294 instruction <i_bitcast>`.
2295``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2296 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2297 constants. As with the :ref:`getelementptr <i_getelementptr>`
2298 instruction, the index list may have zero or more indexes, which are
2299 required to make sense for the type of "CSTPTR".
2300``select (COND, VAL1, VAL2)``
2301 Perform the :ref:`select operation <i_select>` on constants.
2302``icmp COND (VAL1, VAL2)``
2303 Performs the :ref:`icmp operation <i_icmp>` on constants.
2304``fcmp COND (VAL1, VAL2)``
2305 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2306``extractelement (VAL, IDX)``
2307 Perform the :ref:`extractelement operation <i_extractelement>` on
2308 constants.
2309``insertelement (VAL, ELT, IDX)``
2310 Perform the :ref:`insertelement operation <i_insertelement>` on
2311 constants.
2312``shufflevector (VEC1, VEC2, IDXMASK)``
2313 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2314 constants.
2315``extractvalue (VAL, IDX0, IDX1, ...)``
2316 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2317 constants. The index list is interpreted in a similar manner as
2318 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2319 least one index value must be specified.
2320``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2321 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2322 The index list is interpreted in a similar manner as indices in a
2323 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2324 value must be specified.
2325``OPCODE (LHS, RHS)``
2326 Perform the specified operation of the LHS and RHS constants. OPCODE
2327 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2328 binary <bitwiseops>` operations. The constraints on operands are
2329 the same as those for the corresponding instruction (e.g. no bitwise
2330 operations on floating point values are allowed).
2331
2332Other Values
2333============
2334
Eli Bendersky88fe6822013-06-07 20:24:43 +00002335.. _inlineasmexprs:
2336
Sean Silvaf722b002012-12-07 10:36:55 +00002337Inline Assembler Expressions
2338----------------------------
2339
2340LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2341Inline Assembly <moduleasm>`) through the use of a special value. This
2342value represents the inline assembler as a string (containing the
2343instructions to emit), a list of operand constraints (stored as a
2344string), a flag that indicates whether or not the inline asm expression
2345has side effects, and a flag indicating whether the function containing
2346the asm needs to align its stack conservatively. An example inline
2347assembler expression is:
2348
2349.. code-block:: llvm
2350
2351 i32 (i32) asm "bswap $0", "=r,r"
2352
2353Inline assembler expressions may **only** be used as the callee operand
2354of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2355Thus, typically we have:
2356
2357.. code-block:: llvm
2358
2359 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2360
2361Inline asms with side effects not visible in the constraint list must be
2362marked as having side effects. This is done through the use of the
2363'``sideeffect``' keyword, like so:
2364
2365.. code-block:: llvm
2366
2367 call void asm sideeffect "eieio", ""()
2368
2369In some cases inline asms will contain code that will not work unless
2370the stack is aligned in some way, such as calls or SSE instructions on
2371x86, yet will not contain code that does that alignment within the asm.
2372The compiler should make conservative assumptions about what the asm
2373might contain and should generate its usual stack alignment code in the
2374prologue if the '``alignstack``' keyword is present:
2375
2376.. code-block:: llvm
2377
2378 call void asm alignstack "eieio", ""()
2379
2380Inline asms also support using non-standard assembly dialects. The
2381assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2382the inline asm is using the Intel dialect. Currently, ATT and Intel are
2383the only supported dialects. An example is:
2384
2385.. code-block:: llvm
2386
2387 call void asm inteldialect "eieio", ""()
2388
2389If multiple keywords appear the '``sideeffect``' keyword must come
2390first, the '``alignstack``' keyword second and the '``inteldialect``'
2391keyword last.
2392
2393Inline Asm Metadata
2394^^^^^^^^^^^^^^^^^^^
2395
2396The call instructions that wrap inline asm nodes may have a
2397"``!srcloc``" MDNode attached to it that contains a list of constant
2398integers. If present, the code generator will use the integer as the
2399location cookie value when report errors through the ``LLVMContext``
2400error reporting mechanisms. This allows a front-end to correlate backend
2401errors that occur with inline asm back to the source code that produced
2402it. For example:
2403
2404.. code-block:: llvm
2405
2406 call void asm sideeffect "something bad", ""(), !srcloc !42
2407 ...
2408 !42 = !{ i32 1234567 }
2409
2410It is up to the front-end to make sense of the magic numbers it places
2411in the IR. If the MDNode contains multiple constants, the code generator
2412will use the one that corresponds to the line of the asm that the error
2413occurs on.
2414
2415.. _metadata:
2416
2417Metadata Nodes and Metadata Strings
2418-----------------------------------
2419
2420LLVM IR allows metadata to be attached to instructions in the program
2421that can convey extra information about the code to the optimizers and
2422code generator. One example application of metadata is source-level
2423debug information. There are two metadata primitives: strings and nodes.
2424All metadata has the ``metadata`` type and is identified in syntax by a
2425preceding exclamation point ('``!``').
2426
2427A metadata string is a string surrounded by double quotes. It can
2428contain any character by escaping non-printable characters with
2429"``\xx``" where "``xx``" is the two digit hex code. For example:
2430"``!"test\00"``".
2431
2432Metadata nodes are represented with notation similar to structure
2433constants (a comma separated list of elements, surrounded by braces and
2434preceded by an exclamation point). Metadata nodes can have any values as
2435their operand. For example:
2436
2437.. code-block:: llvm
2438
2439 !{ metadata !"test\00", i32 10}
2440
2441A :ref:`named metadata <namedmetadatastructure>` is a collection of
2442metadata nodes, which can be looked up in the module symbol table. For
2443example:
2444
2445.. code-block:: llvm
2446
2447 !foo = metadata !{!4, !3}
2448
2449Metadata can be used as function arguments. Here ``llvm.dbg.value``
2450function is using two metadata arguments:
2451
2452.. code-block:: llvm
2453
2454 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2455
2456Metadata can be attached with an instruction. Here metadata ``!21`` is
2457attached to the ``add`` instruction using the ``!dbg`` identifier:
2458
2459.. code-block:: llvm
2460
2461 %indvar.next = add i64 %indvar, 1, !dbg !21
2462
2463More information about specific metadata nodes recognized by the
2464optimizers and code generator is found below.
2465
2466'``tbaa``' Metadata
2467^^^^^^^^^^^^^^^^^^^
2468
2469In LLVM IR, memory does not have types, so LLVM's own type system is not
2470suitable for doing TBAA. Instead, metadata is added to the IR to
2471describe a type system of a higher level language. This can be used to
2472implement typical C/C++ TBAA, but it can also be used to implement
2473custom alias analysis behavior for other languages.
2474
2475The current metadata format is very simple. TBAA metadata nodes have up
2476to three fields, e.g.:
2477
2478.. code-block:: llvm
2479
2480 !0 = metadata !{ metadata !"an example type tree" }
2481 !1 = metadata !{ metadata !"int", metadata !0 }
2482 !2 = metadata !{ metadata !"float", metadata !0 }
2483 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2484
2485The first field is an identity field. It can be any value, usually a
2486metadata string, which uniquely identifies the type. The most important
2487name in the tree is the name of the root node. Two trees with different
2488root node names are entirely disjoint, even if they have leaves with
2489common names.
2490
2491The second field identifies the type's parent node in the tree, or is
2492null or omitted for a root node. A type is considered to alias all of
2493its descendants and all of its ancestors in the tree. Also, a type is
2494considered to alias all types in other trees, so that bitcode produced
2495from multiple front-ends is handled conservatively.
2496
2497If the third field is present, it's an integer which if equal to 1
2498indicates that the type is "constant" (meaning
2499``pointsToConstantMemory`` should return true; see `other useful
2500AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2501
2502'``tbaa.struct``' Metadata
2503^^^^^^^^^^^^^^^^^^^^^^^^^^
2504
2505The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2506aggregate assignment operations in C and similar languages, however it
2507is defined to copy a contiguous region of memory, which is more than
2508strictly necessary for aggregate types which contain holes due to
2509padding. Also, it doesn't contain any TBAA information about the fields
2510of the aggregate.
2511
2512``!tbaa.struct`` metadata can describe which memory subregions in a
2513memcpy are padding and what the TBAA tags of the struct are.
2514
2515The current metadata format is very simple. ``!tbaa.struct`` metadata
2516nodes are a list of operands which are in conceptual groups of three.
2517For each group of three, the first operand gives the byte offset of a
2518field in bytes, the second gives its size in bytes, and the third gives
2519its tbaa tag. e.g.:
2520
2521.. code-block:: llvm
2522
2523 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2524
2525This describes a struct with two fields. The first is at offset 0 bytes
2526with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2527and has size 4 bytes and has tbaa tag !2.
2528
2529Note that the fields need not be contiguous. In this example, there is a
25304 byte gap between the two fields. This gap represents padding which
2531does not carry useful data and need not be preserved.
2532
2533'``fpmath``' Metadata
2534^^^^^^^^^^^^^^^^^^^^^
2535
2536``fpmath`` metadata may be attached to any instruction of floating point
2537type. It can be used to express the maximum acceptable error in the
2538result of that instruction, in ULPs, thus potentially allowing the
2539compiler to use a more efficient but less accurate method of computing
2540it. ULP is defined as follows:
2541
2542 If ``x`` is a real number that lies between two finite consecutive
2543 floating-point numbers ``a`` and ``b``, without being equal to one
2544 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2545 distance between the two non-equal finite floating-point numbers
2546 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2547
2548The metadata node shall consist of a single positive floating point
2549number representing the maximum relative error, for example:
2550
2551.. code-block:: llvm
2552
2553 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2554
2555'``range``' Metadata
2556^^^^^^^^^^^^^^^^^^^^
2557
2558``range`` metadata may be attached only to loads of integer types. It
2559expresses the possible ranges the loaded value is in. The ranges are
2560represented with a flattened list of integers. The loaded value is known
2561to be in the union of the ranges defined by each consecutive pair. Each
2562pair has the following properties:
2563
2564- The type must match the type loaded by the instruction.
2565- The pair ``a,b`` represents the range ``[a,b)``.
2566- Both ``a`` and ``b`` are constants.
2567- The range is allowed to wrap.
2568- The range should not represent the full or empty set. That is,
2569 ``a!=b``.
2570
2571In addition, the pairs must be in signed order of the lower bound and
2572they must be non-contiguous.
2573
2574Examples:
2575
2576.. code-block:: llvm
2577
2578 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2579 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2580 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2581 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2582 ...
2583 !0 = metadata !{ i8 0, i8 2 }
2584 !1 = metadata !{ i8 255, i8 2 }
2585 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2586 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2587
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002588'``llvm.loop``'
2589^^^^^^^^^^^^^^^
2590
2591It is sometimes useful to attach information to loop constructs. Currently,
2592loop metadata is implemented as metadata attached to the branch instruction
2593in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002594guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002595specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002596
2597The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002598itself to avoid merging it with any other identifier metadata, e.g.,
2599during module linkage or function inlining. That is, each loop should refer
2600to their own identification metadata even if they reside in separate functions.
2601The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002602constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002603
2604.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002605
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002606 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002607 !1 = metadata !{ metadata !1 }
2608
Paul Redmondee21b6f2013-05-28 20:00:34 +00002609The loop identifier metadata can be used to specify additional per-loop
2610metadata. Any operands after the first operand can be treated as user-defined
2611metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2612by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002613
Paul Redmondee21b6f2013-05-28 20:00:34 +00002614.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002615
Paul Redmondee21b6f2013-05-28 20:00:34 +00002616 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2617 ...
2618 !0 = metadata !{ metadata !0, metadata !1 }
2619 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002620
2621'``llvm.mem``'
2622^^^^^^^^^^^^^^^
2623
2624Metadata types used to annotate memory accesses with information helpful
2625for optimizations are prefixed with ``llvm.mem``.
2626
2627'``llvm.mem.parallel_loop_access``' Metadata
2628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2629
2630For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002631the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002632also all of the memory accessing instructions in the loop body need to be
2633marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2634is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002635the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002636converted to sequential loops due to optimization passes that are unaware of
2637the parallel semantics and that insert new memory instructions to the loop
2638body.
2639
2640Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002641both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002642metadata types that refer to the same loop identifier metadata.
2643
2644.. code-block:: llvm
2645
2646 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002647 ...
2648 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2649 ...
2650 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2651 ...
2652 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002653
2654 for.end:
2655 ...
2656 !0 = metadata !{ metadata !0 }
2657
2658It is also possible to have nested parallel loops. In that case the
2659memory accesses refer to a list of loop identifier metadata nodes instead of
2660the loop identifier metadata node directly:
2661
2662.. code-block:: llvm
2663
2664 outer.for.body:
2665 ...
2666
2667 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002668 ...
2669 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2670 ...
2671 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2672 ...
2673 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002674
2675 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002676 ...
2677 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2678 ...
2679 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2680 ...
2681 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002682
2683 outer.for.end: ; preds = %for.body
2684 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002685 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2686 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2687 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002688
Paul Redmondee21b6f2013-05-28 20:00:34 +00002689'``llvm.vectorizer``'
2690^^^^^^^^^^^^^^^^^^^^^
2691
2692Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2693vectorization parameters such as vectorization factor and unroll factor.
2694
2695``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2696loop identification metadata.
2697
2698'``llvm.vectorizer.unroll``' Metadata
2699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2700
2701This metadata instructs the loop vectorizer to unroll the specified
2702loop exactly ``N`` times.
2703
2704The first operand is the string ``llvm.vectorizer.unroll`` and the second
2705operand is an integer specifying the unroll factor. For example:
2706
2707.. code-block:: llvm
2708
2709 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2710
2711Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2712loop.
2713
2714If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2715determined automatically.
2716
2717'``llvm.vectorizer.width``' Metadata
2718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2719
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002720This metadata sets the target width of the vectorizer to ``N``. Without
2721this metadata, the vectorizer will choose a width automatically.
2722Regardless of this metadata, the vectorizer will only vectorize loops if
2723it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002724
2725The first operand is the string ``llvm.vectorizer.width`` and the second
2726operand is an integer specifying the width. For example:
2727
2728.. code-block:: llvm
2729
2730 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2731
2732Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2733loop.
2734
2735If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2736automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002737
Sean Silvaf722b002012-12-07 10:36:55 +00002738Module Flags Metadata
2739=====================
2740
2741Information about the module as a whole is difficult to convey to LLVM's
2742subsystems. The LLVM IR isn't sufficient to transmit this information.
2743The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002744this. These flags are in the form of key / value pairs --- much like a
2745dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002746look it up.
2747
2748The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2749Each triplet has the following form:
2750
2751- The first element is a *behavior* flag, which specifies the behavior
2752 when two (or more) modules are merged together, and it encounters two
2753 (or more) metadata with the same ID. The supported behaviors are
2754 described below.
2755- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002756 metadata. Each module may only have one flag entry for each unique ID (not
2757 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002758- The third element is the value of the flag.
2759
2760When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002761``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2762each unique metadata ID string, there will be exactly one entry in the merged
2763modules ``llvm.module.flags`` metadata table, and the value for that entry will
2764be determined by the merge behavior flag, as described below. The only exception
2765is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002766
2767The following behaviors are supported:
2768
2769.. list-table::
2770 :header-rows: 1
2771 :widths: 10 90
2772
2773 * - Value
2774 - Behavior
2775
2776 * - 1
2777 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002778 Emits an error if two values disagree, otherwise the resulting value
2779 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002780
2781 * - 2
2782 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002783 Emits a warning if two values disagree. The result value will be the
2784 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002785
2786 * - 3
2787 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002788 Adds a requirement that another module flag be present and have a
2789 specified value after linking is performed. The value must be a
2790 metadata pair, where the first element of the pair is the ID of the
2791 module flag to be restricted, and the second element of the pair is
2792 the value the module flag should be restricted to. This behavior can
2793 be used to restrict the allowable results (via triggering of an
2794 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002795
2796 * - 4
2797 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002798 Uses the specified value, regardless of the behavior or value of the
2799 other module. If both modules specify **Override**, but the values
2800 differ, an error will be emitted.
2801
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002802 * - 5
2803 - **Append**
2804 Appends the two values, which are required to be metadata nodes.
2805
2806 * - 6
2807 - **AppendUnique**
2808 Appends the two values, which are required to be metadata
2809 nodes. However, duplicate entries in the second list are dropped
2810 during the append operation.
2811
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002812It is an error for a particular unique flag ID to have multiple behaviors,
2813except in the case of **Require** (which adds restrictions on another metadata
2814value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002815
2816An example of module flags:
2817
2818.. code-block:: llvm
2819
2820 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2821 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2822 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2823 !3 = metadata !{ i32 3, metadata !"qux",
2824 metadata !{
2825 metadata !"foo", i32 1
2826 }
2827 }
2828 !llvm.module.flags = !{ !0, !1, !2, !3 }
2829
2830- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2831 if two or more ``!"foo"`` flags are seen is to emit an error if their
2832 values are not equal.
2833
2834- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2835 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002836 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002837
2838- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2839 behavior if two or more ``!"qux"`` flags are seen is to emit a
2840 warning if their values are not equal.
2841
2842- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2843
2844 ::
2845
2846 metadata !{ metadata !"foo", i32 1 }
2847
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002848 The behavior is to emit an error if the ``llvm.module.flags`` does not
2849 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2850 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002851
2852Objective-C Garbage Collection Module Flags Metadata
2853----------------------------------------------------
2854
2855On the Mach-O platform, Objective-C stores metadata about garbage
2856collection in a special section called "image info". The metadata
2857consists of a version number and a bitmask specifying what types of
2858garbage collection are supported (if any) by the file. If two or more
2859modules are linked together their garbage collection metadata needs to
2860be merged rather than appended together.
2861
2862The Objective-C garbage collection module flags metadata consists of the
2863following key-value pairs:
2864
2865.. list-table::
2866 :header-rows: 1
2867 :widths: 30 70
2868
2869 * - Key
2870 - Value
2871
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002872 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002873 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002874
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002875 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002876 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002877 always 0.
2878
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002879 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002880 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002881 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2882 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2883 Objective-C ABI version 2.
2884
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002885 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002886 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002887 not. Valid values are 0, for no garbage collection, and 2, for garbage
2888 collection supported.
2889
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002890 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002891 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002892 If present, its value must be 6. This flag requires that the
2893 ``Objective-C Garbage Collection`` flag have the value 2.
2894
2895Some important flag interactions:
2896
2897- If a module with ``Objective-C Garbage Collection`` set to 0 is
2898 merged with a module with ``Objective-C Garbage Collection`` set to
2899 2, then the resulting module has the
2900 ``Objective-C Garbage Collection`` flag set to 0.
2901- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2902 merged with a module with ``Objective-C GC Only`` set to 6.
2903
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002904Automatic Linker Flags Module Flags Metadata
2905--------------------------------------------
2906
2907Some targets support embedding flags to the linker inside individual object
2908files. Typically this is used in conjunction with language extensions which
2909allow source files to explicitly declare the libraries they depend on, and have
2910these automatically be transmitted to the linker via object files.
2911
2912These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002913using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002914to be ``AppendUnique``, and the value for the key is expected to be a metadata
2915node which should be a list of other metadata nodes, each of which should be a
2916list of metadata strings defining linker options.
2917
2918For example, the following metadata section specifies two separate sets of
2919linker options, presumably to link against ``libz`` and the ``Cocoa``
2920framework::
2921
Michael Liao2faa0f32013-03-06 18:24:34 +00002922 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002923 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002924 metadata !{ metadata !"-lz" },
2925 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002926 !llvm.module.flags = !{ !0 }
2927
2928The metadata encoding as lists of lists of options, as opposed to a collapsed
2929list of options, is chosen so that the IR encoding can use multiple option
2930strings to specify e.g., a single library, while still having that specifier be
2931preserved as an atomic element that can be recognized by a target specific
2932assembly writer or object file emitter.
2933
2934Each individual option is required to be either a valid option for the target's
2935linker, or an option that is reserved by the target specific assembly writer or
2936object file emitter. No other aspect of these options is defined by the IR.
2937
Eli Bendersky88fe6822013-06-07 20:24:43 +00002938.. _intrinsicglobalvariables:
2939
Sean Silvaf722b002012-12-07 10:36:55 +00002940Intrinsic Global Variables
2941==========================
2942
2943LLVM has a number of "magic" global variables that contain data that
2944affect code generation or other IR semantics. These are documented here.
2945All globals of this sort should have a section specified as
2946"``llvm.metadata``". This section and all globals that start with
2947"``llvm.``" are reserved for use by LLVM.
2948
Eli Bendersky88fe6822013-06-07 20:24:43 +00002949.. _gv_llvmused:
2950
Sean Silvaf722b002012-12-07 10:36:55 +00002951The '``llvm.used``' Global Variable
2952-----------------------------------
2953
Rafael Espindolacde25b42013-04-22 14:58:02 +00002954The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00002955:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002956pointers to named global variables, functions and aliases which may optionally
2957have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00002958use of it is:
2959
2960.. code-block:: llvm
2961
2962 @X = global i8 4
2963 @Y = global i32 123
2964
2965 @llvm.used = appending global [2 x i8*] [
2966 i8* @X,
2967 i8* bitcast (i32* @Y to i8*)
2968 ], section "llvm.metadata"
2969
Rafael Espindolacde25b42013-04-22 14:58:02 +00002970If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2971and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002972symbol that it cannot see (which is why they have to be named). For example, if
2973a variable has internal linkage and no references other than that from the
2974``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
2975references from inline asms and other things the compiler cannot "see", and
2976corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002977
2978On some targets, the code generator must emit a directive to the
2979assembler or object file to prevent the assembler and linker from
2980molesting the symbol.
2981
Eli Bendersky88fe6822013-06-07 20:24:43 +00002982.. _gv_llvmcompilerused:
2983
Sean Silvaf722b002012-12-07 10:36:55 +00002984The '``llvm.compiler.used``' Global Variable
2985--------------------------------------------
2986
2987The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2988directive, except that it only prevents the compiler from touching the
2989symbol. On targets that support it, this allows an intelligent linker to
2990optimize references to the symbol without being impeded as it would be
2991by ``@llvm.used``.
2992
2993This is a rare construct that should only be used in rare circumstances,
2994and should not be exposed to source languages.
2995
Eli Bendersky88fe6822013-06-07 20:24:43 +00002996.. _gv_llvmglobalctors:
2997
Sean Silvaf722b002012-12-07 10:36:55 +00002998The '``llvm.global_ctors``' Global Variable
2999-------------------------------------------
3000
3001.. code-block:: llvm
3002
3003 %0 = type { i32, void ()* }
3004 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3005
3006The ``@llvm.global_ctors`` array contains a list of constructor
3007functions and associated priorities. The functions referenced by this
3008array will be called in ascending order of priority (i.e. lowest first)
3009when the module is loaded. The order of functions with the same priority
3010is not defined.
3011
Eli Bendersky88fe6822013-06-07 20:24:43 +00003012.. _llvmglobaldtors:
3013
Sean Silvaf722b002012-12-07 10:36:55 +00003014The '``llvm.global_dtors``' Global Variable
3015-------------------------------------------
3016
3017.. code-block:: llvm
3018
3019 %0 = type { i32, void ()* }
3020 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3021
3022The ``@llvm.global_dtors`` array contains a list of destructor functions
3023and associated priorities. The functions referenced by this array will
3024be called in descending order of priority (i.e. highest first) when the
3025module is loaded. The order of functions with the same priority is not
3026defined.
3027
3028Instruction Reference
3029=====================
3030
3031The LLVM instruction set consists of several different classifications
3032of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3033instructions <binaryops>`, :ref:`bitwise binary
3034instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3035:ref:`other instructions <otherops>`.
3036
3037.. _terminators:
3038
3039Terminator Instructions
3040-----------------------
3041
3042As mentioned :ref:`previously <functionstructure>`, every basic block in a
3043program ends with a "Terminator" instruction, which indicates which
3044block should be executed after the current block is finished. These
3045terminator instructions typically yield a '``void``' value: they produce
3046control flow, not values (the one exception being the
3047':ref:`invoke <i_invoke>`' instruction).
3048
3049The terminator instructions are: ':ref:`ret <i_ret>`',
3050':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3051':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3052':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3053
3054.. _i_ret:
3055
3056'``ret``' Instruction
3057^^^^^^^^^^^^^^^^^^^^^
3058
3059Syntax:
3060"""""""
3061
3062::
3063
3064 ret <type> <value> ; Return a value from a non-void function
3065 ret void ; Return from void function
3066
3067Overview:
3068"""""""""
3069
3070The '``ret``' instruction is used to return control flow (and optionally
3071a value) from a function back to the caller.
3072
3073There are two forms of the '``ret``' instruction: one that returns a
3074value and then causes control flow, and one that just causes control
3075flow to occur.
3076
3077Arguments:
3078""""""""""
3079
3080The '``ret``' instruction optionally accepts a single argument, the
3081return value. The type of the return value must be a ':ref:`first
3082class <t_firstclass>`' type.
3083
3084A function is not :ref:`well formed <wellformed>` if it it has a non-void
3085return type and contains a '``ret``' instruction with no return value or
3086a return value with a type that does not match its type, or if it has a
3087void return type and contains a '``ret``' instruction with a return
3088value.
3089
3090Semantics:
3091""""""""""
3092
3093When the '``ret``' instruction is executed, control flow returns back to
3094the calling function's context. If the caller is a
3095":ref:`call <i_call>`" instruction, execution continues at the
3096instruction after the call. If the caller was an
3097":ref:`invoke <i_invoke>`" instruction, execution continues at the
3098beginning of the "normal" destination block. If the instruction returns
3099a value, that value shall set the call or invoke instruction's return
3100value.
3101
3102Example:
3103""""""""
3104
3105.. code-block:: llvm
3106
3107 ret i32 5 ; Return an integer value of 5
3108 ret void ; Return from a void function
3109 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3110
3111.. _i_br:
3112
3113'``br``' Instruction
3114^^^^^^^^^^^^^^^^^^^^
3115
3116Syntax:
3117"""""""
3118
3119::
3120
3121 br i1 <cond>, label <iftrue>, label <iffalse>
3122 br label <dest> ; Unconditional branch
3123
3124Overview:
3125"""""""""
3126
3127The '``br``' instruction is used to cause control flow to transfer to a
3128different basic block in the current function. There are two forms of
3129this instruction, corresponding to a conditional branch and an
3130unconditional branch.
3131
3132Arguments:
3133""""""""""
3134
3135The conditional branch form of the '``br``' instruction takes a single
3136'``i1``' value and two '``label``' values. The unconditional form of the
3137'``br``' instruction takes a single '``label``' value as a target.
3138
3139Semantics:
3140""""""""""
3141
3142Upon execution of a conditional '``br``' instruction, the '``i1``'
3143argument is evaluated. If the value is ``true``, control flows to the
3144'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3145to the '``iffalse``' ``label`` argument.
3146
3147Example:
3148""""""""
3149
3150.. code-block:: llvm
3151
3152 Test:
3153 %cond = icmp eq i32 %a, %b
3154 br i1 %cond, label %IfEqual, label %IfUnequal
3155 IfEqual:
3156 ret i32 1
3157 IfUnequal:
3158 ret i32 0
3159
3160.. _i_switch:
3161
3162'``switch``' Instruction
3163^^^^^^^^^^^^^^^^^^^^^^^^
3164
3165Syntax:
3166"""""""
3167
3168::
3169
3170 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3171
3172Overview:
3173"""""""""
3174
3175The '``switch``' instruction is used to transfer control flow to one of
3176several different places. It is a generalization of the '``br``'
3177instruction, allowing a branch to occur to one of many possible
3178destinations.
3179
3180Arguments:
3181""""""""""
3182
3183The '``switch``' instruction uses three parameters: an integer
3184comparison value '``value``', a default '``label``' destination, and an
3185array of pairs of comparison value constants and '``label``'s. The table
3186is not allowed to contain duplicate constant entries.
3187
3188Semantics:
3189""""""""""
3190
3191The ``switch`` instruction specifies a table of values and destinations.
3192When the '``switch``' instruction is executed, this table is searched
3193for the given value. If the value is found, control flow is transferred
3194to the corresponding destination; otherwise, control flow is transferred
3195to the default destination.
3196
3197Implementation:
3198"""""""""""""""
3199
3200Depending on properties of the target machine and the particular
3201``switch`` instruction, this instruction may be code generated in
3202different ways. For example, it could be generated as a series of
3203chained conditional branches or with a lookup table.
3204
3205Example:
3206""""""""
3207
3208.. code-block:: llvm
3209
3210 ; Emulate a conditional br instruction
3211 %Val = zext i1 %value to i32
3212 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3213
3214 ; Emulate an unconditional br instruction
3215 switch i32 0, label %dest [ ]
3216
3217 ; Implement a jump table:
3218 switch i32 %val, label %otherwise [ i32 0, label %onzero
3219 i32 1, label %onone
3220 i32 2, label %ontwo ]
3221
3222.. _i_indirectbr:
3223
3224'``indirectbr``' Instruction
3225^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3226
3227Syntax:
3228"""""""
3229
3230::
3231
3232 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3233
3234Overview:
3235"""""""""
3236
3237The '``indirectbr``' instruction implements an indirect branch to a
3238label within the current function, whose address is specified by
3239"``address``". Address must be derived from a
3240:ref:`blockaddress <blockaddress>` constant.
3241
3242Arguments:
3243""""""""""
3244
3245The '``address``' argument is the address of the label to jump to. The
3246rest of the arguments indicate the full set of possible destinations
3247that the address may point to. Blocks are allowed to occur multiple
3248times in the destination list, though this isn't particularly useful.
3249
3250This destination list is required so that dataflow analysis has an
3251accurate understanding of the CFG.
3252
3253Semantics:
3254""""""""""
3255
3256Control transfers to the block specified in the address argument. All
3257possible destination blocks must be listed in the label list, otherwise
3258this instruction has undefined behavior. This implies that jumps to
3259labels defined in other functions have undefined behavior as well.
3260
3261Implementation:
3262"""""""""""""""
3263
3264This is typically implemented with a jump through a register.
3265
3266Example:
3267""""""""
3268
3269.. code-block:: llvm
3270
3271 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3272
3273.. _i_invoke:
3274
3275'``invoke``' Instruction
3276^^^^^^^^^^^^^^^^^^^^^^^^
3277
3278Syntax:
3279"""""""
3280
3281::
3282
3283 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3284 to label <normal label> unwind label <exception label>
3285
3286Overview:
3287"""""""""
3288
3289The '``invoke``' instruction causes control to transfer to a specified
3290function, with the possibility of control flow transfer to either the
3291'``normal``' label or the '``exception``' label. If the callee function
3292returns with the "``ret``" instruction, control flow will return to the
3293"normal" label. If the callee (or any indirect callees) returns via the
3294":ref:`resume <i_resume>`" instruction or other exception handling
3295mechanism, control is interrupted and continued at the dynamically
3296nearest "exception" label.
3297
3298The '``exception``' label is a `landing
3299pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3300'``exception``' label is required to have the
3301":ref:`landingpad <i_landingpad>`" instruction, which contains the
3302information about the behavior of the program after unwinding happens,
3303as its first non-PHI instruction. The restrictions on the
3304"``landingpad``" instruction's tightly couples it to the "``invoke``"
3305instruction, so that the important information contained within the
3306"``landingpad``" instruction can't be lost through normal code motion.
3307
3308Arguments:
3309""""""""""
3310
3311This instruction requires several arguments:
3312
3313#. The optional "cconv" marker indicates which :ref:`calling
3314 convention <callingconv>` the call should use. If none is
3315 specified, the call defaults to using C calling conventions.
3316#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3317 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3318 are valid here.
3319#. '``ptr to function ty``': shall be the signature of the pointer to
3320 function value being invoked. In most cases, this is a direct
3321 function invocation, but indirect ``invoke``'s are just as possible,
3322 branching off an arbitrary pointer to function value.
3323#. '``function ptr val``': An LLVM value containing a pointer to a
3324 function to be invoked.
3325#. '``function args``': argument list whose types match the function
3326 signature argument types and parameter attributes. All arguments must
3327 be of :ref:`first class <t_firstclass>` type. If the function signature
3328 indicates the function accepts a variable number of arguments, the
3329 extra arguments can be specified.
3330#. '``normal label``': the label reached when the called function
3331 executes a '``ret``' instruction.
3332#. '``exception label``': the label reached when a callee returns via
3333 the :ref:`resume <i_resume>` instruction or other exception handling
3334 mechanism.
3335#. The optional :ref:`function attributes <fnattrs>` list. Only
3336 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3337 attributes are valid here.
3338
3339Semantics:
3340""""""""""
3341
3342This instruction is designed to operate as a standard '``call``'
3343instruction in most regards. The primary difference is that it
3344establishes an association with a label, which is used by the runtime
3345library to unwind the stack.
3346
3347This instruction is used in languages with destructors to ensure that
3348proper cleanup is performed in the case of either a ``longjmp`` or a
3349thrown exception. Additionally, this is important for implementation of
3350'``catch``' clauses in high-level languages that support them.
3351
3352For the purposes of the SSA form, the definition of the value returned
3353by the '``invoke``' instruction is deemed to occur on the edge from the
3354current block to the "normal" label. If the callee unwinds then no
3355return value is available.
3356
3357Example:
3358""""""""
3359
3360.. code-block:: llvm
3361
3362 %retval = invoke i32 @Test(i32 15) to label %Continue
3363 unwind label %TestCleanup ; {i32}:retval set
3364 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3365 unwind label %TestCleanup ; {i32}:retval set
3366
3367.. _i_resume:
3368
3369'``resume``' Instruction
3370^^^^^^^^^^^^^^^^^^^^^^^^
3371
3372Syntax:
3373"""""""
3374
3375::
3376
3377 resume <type> <value>
3378
3379Overview:
3380"""""""""
3381
3382The '``resume``' instruction is a terminator instruction that has no
3383successors.
3384
3385Arguments:
3386""""""""""
3387
3388The '``resume``' instruction requires one argument, which must have the
3389same type as the result of any '``landingpad``' instruction in the same
3390function.
3391
3392Semantics:
3393""""""""""
3394
3395The '``resume``' instruction resumes propagation of an existing
3396(in-flight) exception whose unwinding was interrupted with a
3397:ref:`landingpad <i_landingpad>` instruction.
3398
3399Example:
3400""""""""
3401
3402.. code-block:: llvm
3403
3404 resume { i8*, i32 } %exn
3405
3406.. _i_unreachable:
3407
3408'``unreachable``' Instruction
3409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3410
3411Syntax:
3412"""""""
3413
3414::
3415
3416 unreachable
3417
3418Overview:
3419"""""""""
3420
3421The '``unreachable``' instruction has no defined semantics. This
3422instruction is used to inform the optimizer that a particular portion of
3423the code is not reachable. This can be used to indicate that the code
3424after a no-return function cannot be reached, and other facts.
3425
3426Semantics:
3427""""""""""
3428
3429The '``unreachable``' instruction has no defined semantics.
3430
3431.. _binaryops:
3432
3433Binary Operations
3434-----------------
3435
3436Binary operators are used to do most of the computation in a program.
3437They require two operands of the same type, execute an operation on
3438them, and produce a single value. The operands might represent multiple
3439data, as is the case with the :ref:`vector <t_vector>` data type. The
3440result value has the same type as its operands.
3441
3442There are several different binary operators:
3443
3444.. _i_add:
3445
3446'``add``' Instruction
3447^^^^^^^^^^^^^^^^^^^^^
3448
3449Syntax:
3450"""""""
3451
3452::
3453
3454 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3455 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3456 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3457 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3458
3459Overview:
3460"""""""""
3461
3462The '``add``' instruction returns the sum of its two operands.
3463
3464Arguments:
3465""""""""""
3466
3467The two arguments to the '``add``' instruction must be
3468:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3469arguments must have identical types.
3470
3471Semantics:
3472""""""""""
3473
3474The value produced is the integer sum of the two operands.
3475
3476If the sum has unsigned overflow, the result returned is the
3477mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3478the result.
3479
3480Because LLVM integers use a two's complement representation, this
3481instruction is appropriate for both signed and unsigned integers.
3482
3483``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3484respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3485result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3486unsigned and/or signed overflow, respectively, occurs.
3487
3488Example:
3489""""""""
3490
3491.. code-block:: llvm
3492
3493 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3494
3495.. _i_fadd:
3496
3497'``fadd``' Instruction
3498^^^^^^^^^^^^^^^^^^^^^^
3499
3500Syntax:
3501"""""""
3502
3503::
3504
3505 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3506
3507Overview:
3508"""""""""
3509
3510The '``fadd``' instruction returns the sum of its two operands.
3511
3512Arguments:
3513""""""""""
3514
3515The two arguments to the '``fadd``' instruction must be :ref:`floating
3516point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3517Both arguments must have identical types.
3518
3519Semantics:
3520""""""""""
3521
3522The value produced is the floating point sum of the two operands. This
3523instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3524which are optimization hints to enable otherwise unsafe floating point
3525optimizations:
3526
3527Example:
3528""""""""
3529
3530.. code-block:: llvm
3531
3532 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3533
3534'``sub``' Instruction
3535^^^^^^^^^^^^^^^^^^^^^
3536
3537Syntax:
3538"""""""
3539
3540::
3541
3542 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3543 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3544 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3545 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3546
3547Overview:
3548"""""""""
3549
3550The '``sub``' instruction returns the difference of its two operands.
3551
3552Note that the '``sub``' instruction is used to represent the '``neg``'
3553instruction present in most other intermediate representations.
3554
3555Arguments:
3556""""""""""
3557
3558The two arguments to the '``sub``' instruction must be
3559:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3560arguments must have identical types.
3561
3562Semantics:
3563""""""""""
3564
3565The value produced is the integer difference of the two operands.
3566
3567If the difference has unsigned overflow, the result returned is the
3568mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3569the result.
3570
3571Because LLVM integers use a two's complement representation, this
3572instruction is appropriate for both signed and unsigned integers.
3573
3574``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3575respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3576result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3577unsigned and/or signed overflow, respectively, occurs.
3578
3579Example:
3580""""""""
3581
3582.. code-block:: llvm
3583
3584 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3585 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3586
3587.. _i_fsub:
3588
3589'``fsub``' Instruction
3590^^^^^^^^^^^^^^^^^^^^^^
3591
3592Syntax:
3593"""""""
3594
3595::
3596
3597 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3598
3599Overview:
3600"""""""""
3601
3602The '``fsub``' instruction returns the difference of its two operands.
3603
3604Note that the '``fsub``' instruction is used to represent the '``fneg``'
3605instruction present in most other intermediate representations.
3606
3607Arguments:
3608""""""""""
3609
3610The two arguments to the '``fsub``' instruction must be :ref:`floating
3611point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3612Both arguments must have identical types.
3613
3614Semantics:
3615""""""""""
3616
3617The value produced is the floating point difference of the two operands.
3618This instruction can also take any number of :ref:`fast-math
3619flags <fastmath>`, which are optimization hints to enable otherwise
3620unsafe floating point optimizations:
3621
3622Example:
3623""""""""
3624
3625.. code-block:: llvm
3626
3627 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3628 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3629
3630'``mul``' Instruction
3631^^^^^^^^^^^^^^^^^^^^^
3632
3633Syntax:
3634"""""""
3635
3636::
3637
3638 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3639 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3640 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3641 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3642
3643Overview:
3644"""""""""
3645
3646The '``mul``' instruction returns the product of its two operands.
3647
3648Arguments:
3649""""""""""
3650
3651The two arguments to the '``mul``' instruction must be
3652:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3653arguments must have identical types.
3654
3655Semantics:
3656""""""""""
3657
3658The value produced is the integer product of the two operands.
3659
3660If the result of the multiplication has unsigned overflow, the result
3661returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3662bit width of the result.
3663
3664Because LLVM integers use a two's complement representation, and the
3665result is the same width as the operands, this instruction returns the
3666correct result for both signed and unsigned integers. If a full product
3667(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3668sign-extended or zero-extended as appropriate to the width of the full
3669product.
3670
3671``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3672respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3673result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3674unsigned and/or signed overflow, respectively, occurs.
3675
3676Example:
3677""""""""
3678
3679.. code-block:: llvm
3680
3681 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3682
3683.. _i_fmul:
3684
3685'``fmul``' Instruction
3686^^^^^^^^^^^^^^^^^^^^^^
3687
3688Syntax:
3689"""""""
3690
3691::
3692
3693 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3694
3695Overview:
3696"""""""""
3697
3698The '``fmul``' instruction returns the product of its two operands.
3699
3700Arguments:
3701""""""""""
3702
3703The two arguments to the '``fmul``' instruction must be :ref:`floating
3704point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3705Both arguments must have identical types.
3706
3707Semantics:
3708""""""""""
3709
3710The value produced is the floating point product of the two operands.
3711This instruction can also take any number of :ref:`fast-math
3712flags <fastmath>`, which are optimization hints to enable otherwise
3713unsafe floating point optimizations:
3714
3715Example:
3716""""""""
3717
3718.. code-block:: llvm
3719
3720 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3721
3722'``udiv``' Instruction
3723^^^^^^^^^^^^^^^^^^^^^^
3724
3725Syntax:
3726"""""""
3727
3728::
3729
3730 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3731 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3732
3733Overview:
3734"""""""""
3735
3736The '``udiv``' instruction returns the quotient of its two operands.
3737
3738Arguments:
3739""""""""""
3740
3741The two arguments to the '``udiv``' instruction must be
3742:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3743arguments must have identical types.
3744
3745Semantics:
3746""""""""""
3747
3748The value produced is the unsigned integer quotient of the two operands.
3749
3750Note that unsigned integer division and signed integer division are
3751distinct operations; for signed integer division, use '``sdiv``'.
3752
3753Division by zero leads to undefined behavior.
3754
3755If the ``exact`` keyword is present, the result value of the ``udiv`` is
3756a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3757such, "((a udiv exact b) mul b) == a").
3758
3759Example:
3760""""""""
3761
3762.. code-block:: llvm
3763
3764 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3765
3766'``sdiv``' Instruction
3767^^^^^^^^^^^^^^^^^^^^^^
3768
3769Syntax:
3770"""""""
3771
3772::
3773
3774 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3775 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3776
3777Overview:
3778"""""""""
3779
3780The '``sdiv``' instruction returns the quotient of its two operands.
3781
3782Arguments:
3783""""""""""
3784
3785The two arguments to the '``sdiv``' instruction must be
3786:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3787arguments must have identical types.
3788
3789Semantics:
3790""""""""""
3791
3792The value produced is the signed integer quotient of the two operands
3793rounded towards zero.
3794
3795Note that signed integer division and unsigned integer division are
3796distinct operations; for unsigned integer division, use '``udiv``'.
3797
3798Division by zero leads to undefined behavior. Overflow also leads to
3799undefined behavior; this is a rare case, but can occur, for example, by
3800doing a 32-bit division of -2147483648 by -1.
3801
3802If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3803a :ref:`poison value <poisonvalues>` if the result would be rounded.
3804
3805Example:
3806""""""""
3807
3808.. code-block:: llvm
3809
3810 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3811
3812.. _i_fdiv:
3813
3814'``fdiv``' Instruction
3815^^^^^^^^^^^^^^^^^^^^^^
3816
3817Syntax:
3818"""""""
3819
3820::
3821
3822 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3823
3824Overview:
3825"""""""""
3826
3827The '``fdiv``' instruction returns the quotient of its two operands.
3828
3829Arguments:
3830""""""""""
3831
3832The two arguments to the '``fdiv``' instruction must be :ref:`floating
3833point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3834Both arguments must have identical types.
3835
3836Semantics:
3837""""""""""
3838
3839The value produced is the floating point quotient of the two operands.
3840This instruction can also take any number of :ref:`fast-math
3841flags <fastmath>`, which are optimization hints to enable otherwise
3842unsafe floating point optimizations:
3843
3844Example:
3845""""""""
3846
3847.. code-block:: llvm
3848
3849 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3850
3851'``urem``' Instruction
3852^^^^^^^^^^^^^^^^^^^^^^
3853
3854Syntax:
3855"""""""
3856
3857::
3858
3859 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3860
3861Overview:
3862"""""""""
3863
3864The '``urem``' instruction returns the remainder from the unsigned
3865division of its two arguments.
3866
3867Arguments:
3868""""""""""
3869
3870The two arguments to the '``urem``' instruction must be
3871:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3872arguments must have identical types.
3873
3874Semantics:
3875""""""""""
3876
3877This instruction returns the unsigned integer *remainder* of a division.
3878This instruction always performs an unsigned division to get the
3879remainder.
3880
3881Note that unsigned integer remainder and signed integer remainder are
3882distinct operations; for signed integer remainder, use '``srem``'.
3883
3884Taking the remainder of a division by zero leads to undefined behavior.
3885
3886Example:
3887""""""""
3888
3889.. code-block:: llvm
3890
3891 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3892
3893'``srem``' Instruction
3894^^^^^^^^^^^^^^^^^^^^^^
3895
3896Syntax:
3897"""""""
3898
3899::
3900
3901 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3902
3903Overview:
3904"""""""""
3905
3906The '``srem``' instruction returns the remainder from the signed
3907division of its two operands. This instruction can also take
3908:ref:`vector <t_vector>` versions of the values in which case the elements
3909must be integers.
3910
3911Arguments:
3912""""""""""
3913
3914The two arguments to the '``srem``' instruction must be
3915:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3916arguments must have identical types.
3917
3918Semantics:
3919""""""""""
3920
3921This instruction returns the *remainder* of a division (where the result
3922is either zero or has the same sign as the dividend, ``op1``), not the
3923*modulo* operator (where the result is either zero or has the same sign
3924as the divisor, ``op2``) of a value. For more information about the
3925difference, see `The Math
3926Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3927table of how this is implemented in various languages, please see
3928`Wikipedia: modulo
3929operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3930
3931Note that signed integer remainder and unsigned integer remainder are
3932distinct operations; for unsigned integer remainder, use '``urem``'.
3933
3934Taking the remainder of a division by zero leads to undefined behavior.
3935Overflow also leads to undefined behavior; this is a rare case, but can
3936occur, for example, by taking the remainder of a 32-bit division of
3937-2147483648 by -1. (The remainder doesn't actually overflow, but this
3938rule lets srem be implemented using instructions that return both the
3939result of the division and the remainder.)
3940
3941Example:
3942""""""""
3943
3944.. code-block:: llvm
3945
3946 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3947
3948.. _i_frem:
3949
3950'``frem``' Instruction
3951^^^^^^^^^^^^^^^^^^^^^^
3952
3953Syntax:
3954"""""""
3955
3956::
3957
3958 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3959
3960Overview:
3961"""""""""
3962
3963The '``frem``' instruction returns the remainder from the division of
3964its two operands.
3965
3966Arguments:
3967""""""""""
3968
3969The two arguments to the '``frem``' instruction must be :ref:`floating
3970point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3971Both arguments must have identical types.
3972
3973Semantics:
3974""""""""""
3975
3976This instruction returns the *remainder* of a division. The remainder
3977has the same sign as the dividend. This instruction can also take any
3978number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3979to enable otherwise unsafe floating point optimizations:
3980
3981Example:
3982""""""""
3983
3984.. code-block:: llvm
3985
3986 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3987
3988.. _bitwiseops:
3989
3990Bitwise Binary Operations
3991-------------------------
3992
3993Bitwise binary operators are used to do various forms of bit-twiddling
3994in a program. They are generally very efficient instructions and can
3995commonly be strength reduced from other instructions. They require two
3996operands of the same type, execute an operation on them, and produce a
3997single value. The resulting value is the same type as its operands.
3998
3999'``shl``' Instruction
4000^^^^^^^^^^^^^^^^^^^^^
4001
4002Syntax:
4003"""""""
4004
4005::
4006
4007 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4008 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4009 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4010 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4011
4012Overview:
4013"""""""""
4014
4015The '``shl``' instruction returns the first operand shifted to the left
4016a specified number of bits.
4017
4018Arguments:
4019""""""""""
4020
4021Both arguments to the '``shl``' instruction must be the same
4022:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4023'``op2``' is treated as an unsigned value.
4024
4025Semantics:
4026""""""""""
4027
4028The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4029where ``n`` is the width of the result. If ``op2`` is (statically or
4030dynamically) negative or equal to or larger than the number of bits in
4031``op1``, the result is undefined. If the arguments are vectors, each
4032vector element of ``op1`` is shifted by the corresponding shift amount
4033in ``op2``.
4034
4035If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4036value <poisonvalues>` if it shifts out any non-zero bits. If the
4037``nsw`` keyword is present, then the shift produces a :ref:`poison
4038value <poisonvalues>` if it shifts out any bits that disagree with the
4039resultant sign bit. As such, NUW/NSW have the same semantics as they
4040would if the shift were expressed as a mul instruction with the same
4041nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4042
4043Example:
4044""""""""
4045
4046.. code-block:: llvm
4047
4048 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4049 <result> = shl i32 4, 2 ; yields {i32}: 16
4050 <result> = shl i32 1, 10 ; yields {i32}: 1024
4051 <result> = shl i32 1, 32 ; undefined
4052 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4053
4054'``lshr``' Instruction
4055^^^^^^^^^^^^^^^^^^^^^^
4056
4057Syntax:
4058"""""""
4059
4060::
4061
4062 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4063 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4064
4065Overview:
4066"""""""""
4067
4068The '``lshr``' instruction (logical shift right) returns the first
4069operand shifted to the right a specified number of bits with zero fill.
4070
4071Arguments:
4072""""""""""
4073
4074Both arguments to the '``lshr``' instruction must be the same
4075:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4076'``op2``' is treated as an unsigned value.
4077
4078Semantics:
4079""""""""""
4080
4081This instruction always performs a logical shift right operation. The
4082most significant bits of the result will be filled with zero bits after
4083the shift. If ``op2`` is (statically or dynamically) equal to or larger
4084than the number of bits in ``op1``, the result is undefined. If the
4085arguments are vectors, each vector element of ``op1`` is shifted by the
4086corresponding shift amount in ``op2``.
4087
4088If the ``exact`` keyword is present, the result value of the ``lshr`` is
4089a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4090non-zero.
4091
4092Example:
4093""""""""
4094
4095.. code-block:: llvm
4096
4097 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4098 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4099 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004100 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004101 <result> = lshr i32 1, 32 ; undefined
4102 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4103
4104'``ashr``' Instruction
4105^^^^^^^^^^^^^^^^^^^^^^
4106
4107Syntax:
4108"""""""
4109
4110::
4111
4112 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4113 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4114
4115Overview:
4116"""""""""
4117
4118The '``ashr``' instruction (arithmetic shift right) returns the first
4119operand shifted to the right a specified number of bits with sign
4120extension.
4121
4122Arguments:
4123""""""""""
4124
4125Both arguments to the '``ashr``' instruction must be the same
4126:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4127'``op2``' is treated as an unsigned value.
4128
4129Semantics:
4130""""""""""
4131
4132This instruction always performs an arithmetic shift right operation,
4133The most significant bits of the result will be filled with the sign bit
4134of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4135than the number of bits in ``op1``, the result is undefined. If the
4136arguments are vectors, each vector element of ``op1`` is shifted by the
4137corresponding shift amount in ``op2``.
4138
4139If the ``exact`` keyword is present, the result value of the ``ashr`` is
4140a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4141non-zero.
4142
4143Example:
4144""""""""
4145
4146.. code-block:: llvm
4147
4148 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4149 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4150 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4151 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4152 <result> = ashr i32 1, 32 ; undefined
4153 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4154
4155'``and``' Instruction
4156^^^^^^^^^^^^^^^^^^^^^
4157
4158Syntax:
4159"""""""
4160
4161::
4162
4163 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4164
4165Overview:
4166"""""""""
4167
4168The '``and``' instruction returns the bitwise logical and of its two
4169operands.
4170
4171Arguments:
4172""""""""""
4173
4174The two arguments to the '``and``' instruction must be
4175:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4176arguments must have identical types.
4177
4178Semantics:
4179""""""""""
4180
4181The truth table used for the '``and``' instruction is:
4182
4183+-----+-----+-----+
4184| In0 | In1 | Out |
4185+-----+-----+-----+
4186| 0 | 0 | 0 |
4187+-----+-----+-----+
4188| 0 | 1 | 0 |
4189+-----+-----+-----+
4190| 1 | 0 | 0 |
4191+-----+-----+-----+
4192| 1 | 1 | 1 |
4193+-----+-----+-----+
4194
4195Example:
4196""""""""
4197
4198.. code-block:: llvm
4199
4200 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4201 <result> = and i32 15, 40 ; yields {i32}:result = 8
4202 <result> = and i32 4, 8 ; yields {i32}:result = 0
4203
4204'``or``' Instruction
4205^^^^^^^^^^^^^^^^^^^^
4206
4207Syntax:
4208"""""""
4209
4210::
4211
4212 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4213
4214Overview:
4215"""""""""
4216
4217The '``or``' instruction returns the bitwise logical inclusive or of its
4218two operands.
4219
4220Arguments:
4221""""""""""
4222
4223The two arguments to the '``or``' instruction must be
4224:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4225arguments must have identical types.
4226
4227Semantics:
4228""""""""""
4229
4230The truth table used for the '``or``' instruction is:
4231
4232+-----+-----+-----+
4233| In0 | In1 | Out |
4234+-----+-----+-----+
4235| 0 | 0 | 0 |
4236+-----+-----+-----+
4237| 0 | 1 | 1 |
4238+-----+-----+-----+
4239| 1 | 0 | 1 |
4240+-----+-----+-----+
4241| 1 | 1 | 1 |
4242+-----+-----+-----+
4243
4244Example:
4245""""""""
4246
4247::
4248
4249 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4250 <result> = or i32 15, 40 ; yields {i32}:result = 47
4251 <result> = or i32 4, 8 ; yields {i32}:result = 12
4252
4253'``xor``' Instruction
4254^^^^^^^^^^^^^^^^^^^^^
4255
4256Syntax:
4257"""""""
4258
4259::
4260
4261 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4262
4263Overview:
4264"""""""""
4265
4266The '``xor``' instruction returns the bitwise logical exclusive or of
4267its two operands. The ``xor`` is used to implement the "one's
4268complement" operation, which is the "~" operator in C.
4269
4270Arguments:
4271""""""""""
4272
4273The two arguments to the '``xor``' instruction must be
4274:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4275arguments must have identical types.
4276
4277Semantics:
4278""""""""""
4279
4280The truth table used for the '``xor``' instruction is:
4281
4282+-----+-----+-----+
4283| In0 | In1 | Out |
4284+-----+-----+-----+
4285| 0 | 0 | 0 |
4286+-----+-----+-----+
4287| 0 | 1 | 1 |
4288+-----+-----+-----+
4289| 1 | 0 | 1 |
4290+-----+-----+-----+
4291| 1 | 1 | 0 |
4292+-----+-----+-----+
4293
4294Example:
4295""""""""
4296
4297.. code-block:: llvm
4298
4299 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4300 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4301 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4302 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4303
4304Vector Operations
4305-----------------
4306
4307LLVM supports several instructions to represent vector operations in a
4308target-independent manner. These instructions cover the element-access
4309and vector-specific operations needed to process vectors effectively.
4310While LLVM does directly support these vector operations, many
4311sophisticated algorithms will want to use target-specific intrinsics to
4312take full advantage of a specific target.
4313
4314.. _i_extractelement:
4315
4316'``extractelement``' Instruction
4317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4318
4319Syntax:
4320"""""""
4321
4322::
4323
4324 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4325
4326Overview:
4327"""""""""
4328
4329The '``extractelement``' instruction extracts a single scalar element
4330from a vector at a specified index.
4331
4332Arguments:
4333""""""""""
4334
4335The first operand of an '``extractelement``' instruction is a value of
4336:ref:`vector <t_vector>` type. The second operand is an index indicating
4337the position from which to extract the element. The index may be a
4338variable.
4339
4340Semantics:
4341""""""""""
4342
4343The result is a scalar of the same type as the element type of ``val``.
4344Its value is the value at position ``idx`` of ``val``. If ``idx``
4345exceeds the length of ``val``, the results are undefined.
4346
4347Example:
4348""""""""
4349
4350.. code-block:: llvm
4351
4352 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4353
4354.. _i_insertelement:
4355
4356'``insertelement``' Instruction
4357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4358
4359Syntax:
4360"""""""
4361
4362::
4363
4364 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4365
4366Overview:
4367"""""""""
4368
4369The '``insertelement``' instruction inserts a scalar element into a
4370vector at a specified index.
4371
4372Arguments:
4373""""""""""
4374
4375The first operand of an '``insertelement``' instruction is a value of
4376:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4377type must equal the element type of the first operand. The third operand
4378is an index indicating the position at which to insert the value. The
4379index may be a variable.
4380
4381Semantics:
4382""""""""""
4383
4384The result is a vector of the same type as ``val``. Its element values
4385are those of ``val`` except at position ``idx``, where it gets the value
4386``elt``. If ``idx`` exceeds the length of ``val``, the results are
4387undefined.
4388
4389Example:
4390""""""""
4391
4392.. code-block:: llvm
4393
4394 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4395
4396.. _i_shufflevector:
4397
4398'``shufflevector``' Instruction
4399^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4400
4401Syntax:
4402"""""""
4403
4404::
4405
4406 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4407
4408Overview:
4409"""""""""
4410
4411The '``shufflevector``' instruction constructs a permutation of elements
4412from two input vectors, returning a vector with the same element type as
4413the input and length that is the same as the shuffle mask.
4414
4415Arguments:
4416""""""""""
4417
4418The first two operands of a '``shufflevector``' instruction are vectors
4419with the same type. The third argument is a shuffle mask whose element
4420type is always 'i32'. The result of the instruction is a vector whose
4421length is the same as the shuffle mask and whose element type is the
4422same as the element type of the first two operands.
4423
4424The shuffle mask operand is required to be a constant vector with either
4425constant integer or undef values.
4426
4427Semantics:
4428""""""""""
4429
4430The elements of the two input vectors are numbered from left to right
4431across both of the vectors. The shuffle mask operand specifies, for each
4432element of the result vector, which element of the two input vectors the
4433result element gets. The element selector may be undef (meaning "don't
4434care") and the second operand may be undef if performing a shuffle from
4435only one vector.
4436
4437Example:
4438""""""""
4439
4440.. code-block:: llvm
4441
4442 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4443 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4444 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4445 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4446 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4447 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4448 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4449 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4450
4451Aggregate Operations
4452--------------------
4453
4454LLVM supports several instructions for working with
4455:ref:`aggregate <t_aggregate>` values.
4456
4457.. _i_extractvalue:
4458
4459'``extractvalue``' Instruction
4460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4461
4462Syntax:
4463"""""""
4464
4465::
4466
4467 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4468
4469Overview:
4470"""""""""
4471
4472The '``extractvalue``' instruction extracts the value of a member field
4473from an :ref:`aggregate <t_aggregate>` value.
4474
4475Arguments:
4476""""""""""
4477
4478The first operand of an '``extractvalue``' instruction is a value of
4479:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4480constant indices to specify which value to extract in a similar manner
4481as indices in a '``getelementptr``' instruction.
4482
4483The major differences to ``getelementptr`` indexing are:
4484
4485- Since the value being indexed is not a pointer, the first index is
4486 omitted and assumed to be zero.
4487- At least one index must be specified.
4488- Not only struct indices but also array indices must be in bounds.
4489
4490Semantics:
4491""""""""""
4492
4493The result is the value at the position in the aggregate specified by
4494the index operands.
4495
4496Example:
4497""""""""
4498
4499.. code-block:: llvm
4500
4501 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4502
4503.. _i_insertvalue:
4504
4505'``insertvalue``' Instruction
4506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4507
4508Syntax:
4509"""""""
4510
4511::
4512
4513 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4514
4515Overview:
4516"""""""""
4517
4518The '``insertvalue``' instruction inserts a value into a member field in
4519an :ref:`aggregate <t_aggregate>` value.
4520
4521Arguments:
4522""""""""""
4523
4524The first operand of an '``insertvalue``' instruction is a value of
4525:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4526a first-class value to insert. The following operands are constant
4527indices indicating the position at which to insert the value in a
4528similar manner as indices in a '``extractvalue``' instruction. The value
4529to insert must have the same type as the value identified by the
4530indices.
4531
4532Semantics:
4533""""""""""
4534
4535The result is an aggregate of the same type as ``val``. Its value is
4536that of ``val`` except that the value at the position specified by the
4537indices is that of ``elt``.
4538
4539Example:
4540""""""""
4541
4542.. code-block:: llvm
4543
4544 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4545 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4546 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4547
4548.. _memoryops:
4549
4550Memory Access and Addressing Operations
4551---------------------------------------
4552
4553A key design point of an SSA-based representation is how it represents
4554memory. In LLVM, no memory locations are in SSA form, which makes things
4555very simple. This section describes how to read, write, and allocate
4556memory in LLVM.
4557
4558.. _i_alloca:
4559
4560'``alloca``' Instruction
4561^^^^^^^^^^^^^^^^^^^^^^^^
4562
4563Syntax:
4564"""""""
4565
4566::
4567
4568 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4569
4570Overview:
4571"""""""""
4572
4573The '``alloca``' instruction allocates memory on the stack frame of the
4574currently executing function, to be automatically released when this
4575function returns to its caller. The object is always allocated in the
4576generic address space (address space zero).
4577
4578Arguments:
4579""""""""""
4580
4581The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4582bytes of memory on the runtime stack, returning a pointer of the
4583appropriate type to the program. If "NumElements" is specified, it is
4584the number of elements allocated, otherwise "NumElements" is defaulted
4585to be one. If a constant alignment is specified, the value result of the
4586allocation is guaranteed to be aligned to at least that boundary. If not
4587specified, or if zero, the target can choose to align the allocation on
4588any convenient boundary compatible with the type.
4589
4590'``type``' may be any sized type.
4591
4592Semantics:
4593""""""""""
4594
4595Memory is allocated; a pointer is returned. The operation is undefined
4596if there is insufficient stack space for the allocation. '``alloca``'d
4597memory is automatically released when the function returns. The
4598'``alloca``' instruction is commonly used to represent automatic
4599variables that must have an address available. When the function returns
4600(either with the ``ret`` or ``resume`` instructions), the memory is
4601reclaimed. Allocating zero bytes is legal, but the result is undefined.
4602The order in which memory is allocated (ie., which way the stack grows)
4603is not specified.
4604
4605Example:
4606""""""""
4607
4608.. code-block:: llvm
4609
4610 %ptr = alloca i32 ; yields {i32*}:ptr
4611 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4612 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4613 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4614
4615.. _i_load:
4616
4617'``load``' Instruction
4618^^^^^^^^^^^^^^^^^^^^^^
4619
4620Syntax:
4621"""""""
4622
4623::
4624
4625 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4626 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4627 !<index> = !{ i32 1 }
4628
4629Overview:
4630"""""""""
4631
4632The '``load``' instruction is used to read from memory.
4633
4634Arguments:
4635""""""""""
4636
Eli Bendersky8c493382013-04-17 20:17:08 +00004637The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004638from which to load. The pointer must point to a :ref:`first
4639class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4640then the optimizer is not allowed to modify the number or order of
4641execution of this ``load`` with other :ref:`volatile
4642operations <volatile>`.
4643
4644If the ``load`` is marked as ``atomic``, it takes an extra
4645:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4646``release`` and ``acq_rel`` orderings are not valid on ``load``
4647instructions. Atomic loads produce :ref:`defined <memmodel>` results
4648when they may see multiple atomic stores. The type of the pointee must
4649be an integer type whose bit width is a power of two greater than or
4650equal to eight and less than or equal to a target-specific size limit.
4651``align`` must be explicitly specified on atomic loads, and the load has
4652undefined behavior if the alignment is not set to a value which is at
4653least the size in bytes of the pointee. ``!nontemporal`` does not have
4654any defined semantics for atomic loads.
4655
4656The optional constant ``align`` argument specifies the alignment of the
4657operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004658or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004659alignment for the target. It is the responsibility of the code emitter
4660to ensure that the alignment information is correct. Overestimating the
4661alignment results in undefined behavior. Underestimating the alignment
4662may produce less efficient code. An alignment of 1 is always safe.
4663
4664The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004665metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004666``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004667metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004668that this load is not expected to be reused in the cache. The code
4669generator may select special instructions to save cache bandwidth, such
4670as the ``MOVNT`` instruction on x86.
4671
4672The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004673metadata name ``<index>`` corresponding to a metadata node with no
4674entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004675instruction tells the optimizer and code generator that this load
4676address points to memory which does not change value during program
4677execution. The optimizer may then move this load around, for example, by
4678hoisting it out of loops using loop invariant code motion.
4679
4680Semantics:
4681""""""""""
4682
4683The location of memory pointed to is loaded. If the value being loaded
4684is of scalar type then the number of bytes read does not exceed the
4685minimum number of bytes needed to hold all bits of the type. For
4686example, loading an ``i24`` reads at most three bytes. When loading a
4687value of a type like ``i20`` with a size that is not an integral number
4688of bytes, the result is undefined if the value was not originally
4689written using a store of the same type.
4690
4691Examples:
4692"""""""""
4693
4694.. code-block:: llvm
4695
4696 %ptr = alloca i32 ; yields {i32*}:ptr
4697 store i32 3, i32* %ptr ; yields {void}
4698 %val = load i32* %ptr ; yields {i32}:val = i32 3
4699
4700.. _i_store:
4701
4702'``store``' Instruction
4703^^^^^^^^^^^^^^^^^^^^^^^
4704
4705Syntax:
4706"""""""
4707
4708::
4709
4710 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4711 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4712
4713Overview:
4714"""""""""
4715
4716The '``store``' instruction is used to write to memory.
4717
4718Arguments:
4719""""""""""
4720
Eli Bendersky8952d902013-04-17 17:17:20 +00004721There are two arguments to the ``store`` instruction: a value to store
4722and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004723operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004724the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004725then the optimizer is not allowed to modify the number or order of
4726execution of this ``store`` with other :ref:`volatile
4727operations <volatile>`.
4728
4729If the ``store`` is marked as ``atomic``, it takes an extra
4730:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4731``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4732instructions. Atomic loads produce :ref:`defined <memmodel>` results
4733when they may see multiple atomic stores. The type of the pointee must
4734be an integer type whose bit width is a power of two greater than or
4735equal to eight and less than or equal to a target-specific size limit.
4736``align`` must be explicitly specified on atomic stores, and the store
4737has undefined behavior if the alignment is not set to a value which is
4738at least the size in bytes of the pointee. ``!nontemporal`` does not
4739have any defined semantics for atomic stores.
4740
Eli Bendersky8952d902013-04-17 17:17:20 +00004741The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004742operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004743or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004744alignment for the target. It is the responsibility of the code emitter
4745to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004746alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004747alignment may produce less efficient code. An alignment of 1 is always
4748safe.
4749
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004750The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004751name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004752value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004753tells the optimizer and code generator that this load is not expected to
4754be reused in the cache. The code generator may select special
4755instructions to save cache bandwidth, such as the MOVNT instruction on
4756x86.
4757
4758Semantics:
4759""""""""""
4760
Eli Bendersky8952d902013-04-17 17:17:20 +00004761The contents of memory are updated to contain ``<value>`` at the
4762location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004763of scalar type then the number of bytes written does not exceed the
4764minimum number of bytes needed to hold all bits of the type. For
4765example, storing an ``i24`` writes at most three bytes. When writing a
4766value of a type like ``i20`` with a size that is not an integral number
4767of bytes, it is unspecified what happens to the extra bits that do not
4768belong to the type, but they will typically be overwritten.
4769
4770Example:
4771""""""""
4772
4773.. code-block:: llvm
4774
4775 %ptr = alloca i32 ; yields {i32*}:ptr
4776 store i32 3, i32* %ptr ; yields {void}
4777 %val = load i32* %ptr ; yields {i32}:val = i32 3
4778
4779.. _i_fence:
4780
4781'``fence``' Instruction
4782^^^^^^^^^^^^^^^^^^^^^^^
4783
4784Syntax:
4785"""""""
4786
4787::
4788
4789 fence [singlethread] <ordering> ; yields {void}
4790
4791Overview:
4792"""""""""
4793
4794The '``fence``' instruction is used to introduce happens-before edges
4795between operations.
4796
4797Arguments:
4798""""""""""
4799
4800'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4801defines what *synchronizes-with* edges they add. They can only be given
4802``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4803
4804Semantics:
4805""""""""""
4806
4807A fence A which has (at least) ``release`` ordering semantics
4808*synchronizes with* a fence B with (at least) ``acquire`` ordering
4809semantics if and only if there exist atomic operations X and Y, both
4810operating on some atomic object M, such that A is sequenced before X, X
4811modifies M (either directly or through some side effect of a sequence
4812headed by X), Y is sequenced before B, and Y observes M. This provides a
4813*happens-before* dependency between A and B. Rather than an explicit
4814``fence``, one (but not both) of the atomic operations X or Y might
4815provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4816still *synchronize-with* the explicit ``fence`` and establish the
4817*happens-before* edge.
4818
4819A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4820``acquire`` and ``release`` semantics specified above, participates in
4821the global program order of other ``seq_cst`` operations and/or fences.
4822
4823The optional ":ref:`singlethread <singlethread>`" argument specifies
4824that the fence only synchronizes with other fences in the same thread.
4825(This is useful for interacting with signal handlers.)
4826
4827Example:
4828""""""""
4829
4830.. code-block:: llvm
4831
4832 fence acquire ; yields {void}
4833 fence singlethread seq_cst ; yields {void}
4834
4835.. _i_cmpxchg:
4836
4837'``cmpxchg``' Instruction
4838^^^^^^^^^^^^^^^^^^^^^^^^^
4839
4840Syntax:
4841"""""""
4842
4843::
4844
4845 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4846
4847Overview:
4848"""""""""
4849
4850The '``cmpxchg``' instruction is used to atomically modify memory. It
4851loads a value in memory and compares it to a given value. If they are
4852equal, it stores a new value into the memory.
4853
4854Arguments:
4855""""""""""
4856
4857There are three arguments to the '``cmpxchg``' instruction: an address
4858to operate on, a value to compare to the value currently be at that
4859address, and a new value to place at that address if the compared values
4860are equal. The type of '<cmp>' must be an integer type whose bit width
4861is a power of two greater than or equal to eight and less than or equal
4862to a target-specific size limit. '<cmp>' and '<new>' must have the same
4863type, and the type of '<pointer>' must be a pointer to that type. If the
4864``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4865to modify the number or order of execution of this ``cmpxchg`` with
4866other :ref:`volatile operations <volatile>`.
4867
4868The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4869synchronizes with other atomic operations.
4870
4871The optional "``singlethread``" argument declares that the ``cmpxchg``
4872is only atomic with respect to code (usually signal handlers) running in
4873the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4874respect to all other code in the system.
4875
4876The pointer passed into cmpxchg must have alignment greater than or
4877equal to the size in memory of the operand.
4878
4879Semantics:
4880""""""""""
4881
4882The contents of memory at the location specified by the '``<pointer>``'
4883operand is read and compared to '``<cmp>``'; if the read value is the
4884equal, '``<new>``' is written. The original value at the location is
4885returned.
4886
4887A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4888of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4889atomic load with an ordering parameter determined by dropping any
4890``release`` part of the ``cmpxchg``'s ordering.
4891
4892Example:
4893""""""""
4894
4895.. code-block:: llvm
4896
4897 entry:
4898 %orig = atomic load i32* %ptr unordered ; yields {i32}
4899 br label %loop
4900
4901 loop:
4902 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4903 %squared = mul i32 %cmp, %cmp
4904 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4905 %success = icmp eq i32 %cmp, %old
4906 br i1 %success, label %done, label %loop
4907
4908 done:
4909 ...
4910
4911.. _i_atomicrmw:
4912
4913'``atomicrmw``' Instruction
4914^^^^^^^^^^^^^^^^^^^^^^^^^^^
4915
4916Syntax:
4917"""""""
4918
4919::
4920
4921 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4922
4923Overview:
4924"""""""""
4925
4926The '``atomicrmw``' instruction is used to atomically modify memory.
4927
4928Arguments:
4929""""""""""
4930
4931There are three arguments to the '``atomicrmw``' instruction: an
4932operation to apply, an address whose value to modify, an argument to the
4933operation. The operation must be one of the following keywords:
4934
4935- xchg
4936- add
4937- sub
4938- and
4939- nand
4940- or
4941- xor
4942- max
4943- min
4944- umax
4945- umin
4946
4947The type of '<value>' must be an integer type whose bit width is a power
4948of two greater than or equal to eight and less than or equal to a
4949target-specific size limit. The type of the '``<pointer>``' operand must
4950be a pointer to that type. If the ``atomicrmw`` is marked as
4951``volatile``, then the optimizer is not allowed to modify the number or
4952order of execution of this ``atomicrmw`` with other :ref:`volatile
4953operations <volatile>`.
4954
4955Semantics:
4956""""""""""
4957
4958The contents of memory at the location specified by the '``<pointer>``'
4959operand are atomically read, modified, and written back. The original
4960value at the location is returned. The modification is specified by the
4961operation argument:
4962
4963- xchg: ``*ptr = val``
4964- add: ``*ptr = *ptr + val``
4965- sub: ``*ptr = *ptr - val``
4966- and: ``*ptr = *ptr & val``
4967- nand: ``*ptr = ~(*ptr & val)``
4968- or: ``*ptr = *ptr | val``
4969- xor: ``*ptr = *ptr ^ val``
4970- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4971- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4972- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4973 comparison)
4974- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4975 comparison)
4976
4977Example:
4978""""""""
4979
4980.. code-block:: llvm
4981
4982 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4983
4984.. _i_getelementptr:
4985
4986'``getelementptr``' Instruction
4987^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4988
4989Syntax:
4990"""""""
4991
4992::
4993
4994 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4995 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4996 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4997
4998Overview:
4999"""""""""
5000
5001The '``getelementptr``' instruction is used to get the address of a
5002subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5003address calculation only and does not access memory.
5004
5005Arguments:
5006""""""""""
5007
5008The first argument is always a pointer or a vector of pointers, and
5009forms the basis of the calculation. The remaining arguments are indices
5010that indicate which of the elements of the aggregate object are indexed.
5011The interpretation of each index is dependent on the type being indexed
5012into. The first index always indexes the pointer value given as the
5013first argument, the second index indexes a value of the type pointed to
5014(not necessarily the value directly pointed to, since the first index
5015can be non-zero), etc. The first type indexed into must be a pointer
5016value, subsequent types can be arrays, vectors, and structs. Note that
5017subsequent types being indexed into can never be pointers, since that
5018would require loading the pointer before continuing calculation.
5019
5020The type of each index argument depends on the type it is indexing into.
5021When indexing into a (optionally packed) structure, only ``i32`` integer
5022**constants** are allowed (when using a vector of indices they must all
5023be the **same** ``i32`` integer constant). When indexing into an array,
5024pointer or vector, integers of any width are allowed, and they are not
5025required to be constant. These integers are treated as signed values
5026where relevant.
5027
5028For example, let's consider a C code fragment and how it gets compiled
5029to LLVM:
5030
5031.. code-block:: c
5032
5033 struct RT {
5034 char A;
5035 int B[10][20];
5036 char C;
5037 };
5038 struct ST {
5039 int X;
5040 double Y;
5041 struct RT Z;
5042 };
5043
5044 int *foo(struct ST *s) {
5045 return &s[1].Z.B[5][13];
5046 }
5047
5048The LLVM code generated by Clang is:
5049
5050.. code-block:: llvm
5051
5052 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5053 %struct.ST = type { i32, double, %struct.RT }
5054
5055 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5056 entry:
5057 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5058 ret i32* %arrayidx
5059 }
5060
5061Semantics:
5062""""""""""
5063
5064In the example above, the first index is indexing into the
5065'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5066= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5067indexes into the third element of the structure, yielding a
5068'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5069structure. The third index indexes into the second element of the
5070structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5071dimensions of the array are subscripted into, yielding an '``i32``'
5072type. The '``getelementptr``' instruction returns a pointer to this
5073element, thus computing a value of '``i32*``' type.
5074
5075Note that it is perfectly legal to index partially through a structure,
5076returning a pointer to an inner element. Because of this, the LLVM code
5077for the given testcase is equivalent to:
5078
5079.. code-block:: llvm
5080
5081 define i32* @foo(%struct.ST* %s) {
5082 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5083 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5084 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5085 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5086 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5087 ret i32* %t5
5088 }
5089
5090If the ``inbounds`` keyword is present, the result value of the
5091``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5092pointer is not an *in bounds* address of an allocated object, or if any
5093of the addresses that would be formed by successive addition of the
5094offsets implied by the indices to the base address with infinitely
5095precise signed arithmetic are not an *in bounds* address of that
5096allocated object. The *in bounds* addresses for an allocated object are
5097all the addresses that point into the object, plus the address one byte
5098past the end. In cases where the base is a vector of pointers the
5099``inbounds`` keyword applies to each of the computations element-wise.
5100
5101If the ``inbounds`` keyword is not present, the offsets are added to the
5102base address with silently-wrapping two's complement arithmetic. If the
5103offsets have a different width from the pointer, they are sign-extended
5104or truncated to the width of the pointer. The result value of the
5105``getelementptr`` may be outside the object pointed to by the base
5106pointer. The result value may not necessarily be used to access memory
5107though, even if it happens to point into allocated storage. See the
5108:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5109information.
5110
5111The getelementptr instruction is often confusing. For some more insight
5112into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5113
5114Example:
5115""""""""
5116
5117.. code-block:: llvm
5118
5119 ; yields [12 x i8]*:aptr
5120 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5121 ; yields i8*:vptr
5122 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5123 ; yields i8*:eptr
5124 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5125 ; yields i32*:iptr
5126 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5127
5128In cases where the pointer argument is a vector of pointers, each index
5129must be a vector with the same number of elements. For example:
5130
5131.. code-block:: llvm
5132
5133 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5134
5135Conversion Operations
5136---------------------
5137
5138The instructions in this category are the conversion instructions
5139(casting) which all take a single operand and a type. They perform
5140various bit conversions on the operand.
5141
5142'``trunc .. to``' Instruction
5143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5144
5145Syntax:
5146"""""""
5147
5148::
5149
5150 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5151
5152Overview:
5153"""""""""
5154
5155The '``trunc``' instruction truncates its operand to the type ``ty2``.
5156
5157Arguments:
5158""""""""""
5159
5160The '``trunc``' instruction takes a value to trunc, and a type to trunc
5161it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5162of the same number of integers. The bit size of the ``value`` must be
5163larger than the bit size of the destination type, ``ty2``. Equal sized
5164types are not allowed.
5165
5166Semantics:
5167""""""""""
5168
5169The '``trunc``' instruction truncates the high order bits in ``value``
5170and converts the remaining bits to ``ty2``. Since the source size must
5171be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5172It will always truncate bits.
5173
5174Example:
5175""""""""
5176
5177.. code-block:: llvm
5178
5179 %X = trunc i32 257 to i8 ; yields i8:1
5180 %Y = trunc i32 123 to i1 ; yields i1:true
5181 %Z = trunc i32 122 to i1 ; yields i1:false
5182 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5183
5184'``zext .. to``' Instruction
5185^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5186
5187Syntax:
5188"""""""
5189
5190::
5191
5192 <result> = zext <ty> <value> to <ty2> ; yields ty2
5193
5194Overview:
5195"""""""""
5196
5197The '``zext``' instruction zero extends its operand to type ``ty2``.
5198
5199Arguments:
5200""""""""""
5201
5202The '``zext``' instruction takes a value to cast, and a type to cast it
5203to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5204the same number of integers. The bit size of the ``value`` must be
5205smaller than the bit size of the destination type, ``ty2``.
5206
5207Semantics:
5208""""""""""
5209
5210The ``zext`` fills the high order bits of the ``value`` with zero bits
5211until it reaches the size of the destination type, ``ty2``.
5212
5213When zero extending from i1, the result will always be either 0 or 1.
5214
5215Example:
5216""""""""
5217
5218.. code-block:: llvm
5219
5220 %X = zext i32 257 to i64 ; yields i64:257
5221 %Y = zext i1 true to i32 ; yields i32:1
5222 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5223
5224'``sext .. to``' Instruction
5225^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5226
5227Syntax:
5228"""""""
5229
5230::
5231
5232 <result> = sext <ty> <value> to <ty2> ; yields ty2
5233
5234Overview:
5235"""""""""
5236
5237The '``sext``' sign extends ``value`` to the type ``ty2``.
5238
5239Arguments:
5240""""""""""
5241
5242The '``sext``' instruction takes a value to cast, and a type to cast it
5243to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5244the same number of integers. The bit size of the ``value`` must be
5245smaller than the bit size of the destination type, ``ty2``.
5246
5247Semantics:
5248""""""""""
5249
5250The '``sext``' instruction performs a sign extension by copying the sign
5251bit (highest order bit) of the ``value`` until it reaches the bit size
5252of the type ``ty2``.
5253
5254When sign extending from i1, the extension always results in -1 or 0.
5255
5256Example:
5257""""""""
5258
5259.. code-block:: llvm
5260
5261 %X = sext i8 -1 to i16 ; yields i16 :65535
5262 %Y = sext i1 true to i32 ; yields i32:-1
5263 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5264
5265'``fptrunc .. to``' Instruction
5266^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5267
5268Syntax:
5269"""""""
5270
5271::
5272
5273 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5274
5275Overview:
5276"""""""""
5277
5278The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5279
5280Arguments:
5281""""""""""
5282
5283The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5284value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5285The size of ``value`` must be larger than the size of ``ty2``. This
5286implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5287
5288Semantics:
5289""""""""""
5290
5291The '``fptrunc``' instruction truncates a ``value`` from a larger
5292:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5293point <t_floating>` type. If the value cannot fit within the
5294destination type, ``ty2``, then the results are undefined.
5295
5296Example:
5297""""""""
5298
5299.. code-block:: llvm
5300
5301 %X = fptrunc double 123.0 to float ; yields float:123.0
5302 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5303
5304'``fpext .. to``' Instruction
5305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5306
5307Syntax:
5308"""""""
5309
5310::
5311
5312 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5313
5314Overview:
5315"""""""""
5316
5317The '``fpext``' extends a floating point ``value`` to a larger floating
5318point value.
5319
5320Arguments:
5321""""""""""
5322
5323The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5324``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5325to. The source type must be smaller than the destination type.
5326
5327Semantics:
5328""""""""""
5329
5330The '``fpext``' instruction extends the ``value`` from a smaller
5331:ref:`floating point <t_floating>` type to a larger :ref:`floating
5332point <t_floating>` type. The ``fpext`` cannot be used to make a
5333*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5334*no-op cast* for a floating point cast.
5335
5336Example:
5337""""""""
5338
5339.. code-block:: llvm
5340
5341 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5342 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5343
5344'``fptoui .. to``' Instruction
5345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5346
5347Syntax:
5348"""""""
5349
5350::
5351
5352 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5353
5354Overview:
5355"""""""""
5356
5357The '``fptoui``' converts a floating point ``value`` to its unsigned
5358integer equivalent of type ``ty2``.
5359
5360Arguments:
5361""""""""""
5362
5363The '``fptoui``' instruction takes a value to cast, which must be a
5364scalar or vector :ref:`floating point <t_floating>` value, and a type to
5365cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5366``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5367type with the same number of elements as ``ty``
5368
5369Semantics:
5370""""""""""
5371
5372The '``fptoui``' instruction converts its :ref:`floating
5373point <t_floating>` operand into the nearest (rounding towards zero)
5374unsigned integer value. If the value cannot fit in ``ty2``, the results
5375are undefined.
5376
5377Example:
5378""""""""
5379
5380.. code-block:: llvm
5381
5382 %X = fptoui double 123.0 to i32 ; yields i32:123
5383 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5384 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5385
5386'``fptosi .. to``' Instruction
5387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5388
5389Syntax:
5390"""""""
5391
5392::
5393
5394 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5395
5396Overview:
5397"""""""""
5398
5399The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5400``value`` to type ``ty2``.
5401
5402Arguments:
5403""""""""""
5404
5405The '``fptosi``' instruction takes a value to cast, which must be a
5406scalar or vector :ref:`floating point <t_floating>` value, and a type to
5407cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5408``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5409type with the same number of elements as ``ty``
5410
5411Semantics:
5412""""""""""
5413
5414The '``fptosi``' instruction converts its :ref:`floating
5415point <t_floating>` operand into the nearest (rounding towards zero)
5416signed integer value. If the value cannot fit in ``ty2``, the results
5417are undefined.
5418
5419Example:
5420""""""""
5421
5422.. code-block:: llvm
5423
5424 %X = fptosi double -123.0 to i32 ; yields i32:-123
5425 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5426 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5427
5428'``uitofp .. to``' Instruction
5429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5430
5431Syntax:
5432"""""""
5433
5434::
5435
5436 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5437
5438Overview:
5439"""""""""
5440
5441The '``uitofp``' instruction regards ``value`` as an unsigned integer
5442and converts that value to the ``ty2`` type.
5443
5444Arguments:
5445""""""""""
5446
5447The '``uitofp``' instruction takes a value to cast, which must be a
5448scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5449``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5450``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5451type with the same number of elements as ``ty``
5452
5453Semantics:
5454""""""""""
5455
5456The '``uitofp``' instruction interprets its operand as an unsigned
5457integer quantity and converts it to the corresponding floating point
5458value. If the value cannot fit in the floating point value, the results
5459are undefined.
5460
5461Example:
5462""""""""
5463
5464.. code-block:: llvm
5465
5466 %X = uitofp i32 257 to float ; yields float:257.0
5467 %Y = uitofp i8 -1 to double ; yields double:255.0
5468
5469'``sitofp .. to``' Instruction
5470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5471
5472Syntax:
5473"""""""
5474
5475::
5476
5477 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5478
5479Overview:
5480"""""""""
5481
5482The '``sitofp``' instruction regards ``value`` as a signed integer and
5483converts that value to the ``ty2`` type.
5484
5485Arguments:
5486""""""""""
5487
5488The '``sitofp``' instruction takes a value to cast, which must be a
5489scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5490``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5491``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5492type with the same number of elements as ``ty``
5493
5494Semantics:
5495""""""""""
5496
5497The '``sitofp``' instruction interprets its operand as a signed integer
5498quantity and converts it to the corresponding floating point value. If
5499the value cannot fit in the floating point value, the results are
5500undefined.
5501
5502Example:
5503""""""""
5504
5505.. code-block:: llvm
5506
5507 %X = sitofp i32 257 to float ; yields float:257.0
5508 %Y = sitofp i8 -1 to double ; yields double:-1.0
5509
5510.. _i_ptrtoint:
5511
5512'``ptrtoint .. to``' Instruction
5513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5514
5515Syntax:
5516"""""""
5517
5518::
5519
5520 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5521
5522Overview:
5523"""""""""
5524
5525The '``ptrtoint``' instruction converts the pointer or a vector of
5526pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5527
5528Arguments:
5529""""""""""
5530
5531The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5532a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5533type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5534a vector of integers type.
5535
5536Semantics:
5537""""""""""
5538
5539The '``ptrtoint``' instruction converts ``value`` to integer type
5540``ty2`` by interpreting the pointer value as an integer and either
5541truncating or zero extending that value to the size of the integer type.
5542If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5543``value`` is larger than ``ty2`` then a truncation is done. If they are
5544the same size, then nothing is done (*no-op cast*) other than a type
5545change.
5546
5547Example:
5548""""""""
5549
5550.. code-block:: llvm
5551
5552 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5553 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5554 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5555
5556.. _i_inttoptr:
5557
5558'``inttoptr .. to``' Instruction
5559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5560
5561Syntax:
5562"""""""
5563
5564::
5565
5566 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5567
5568Overview:
5569"""""""""
5570
5571The '``inttoptr``' instruction converts an integer ``value`` to a
5572pointer type, ``ty2``.
5573
5574Arguments:
5575""""""""""
5576
5577The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5578cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5579type.
5580
5581Semantics:
5582""""""""""
5583
5584The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5585applying either a zero extension or a truncation depending on the size
5586of the integer ``value``. If ``value`` is larger than the size of a
5587pointer then a truncation is done. If ``value`` is smaller than the size
5588of a pointer then a zero extension is done. If they are the same size,
5589nothing is done (*no-op cast*).
5590
5591Example:
5592""""""""
5593
5594.. code-block:: llvm
5595
5596 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5597 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5598 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5599 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5600
5601.. _i_bitcast:
5602
5603'``bitcast .. to``' Instruction
5604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5605
5606Syntax:
5607"""""""
5608
5609::
5610
5611 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5612
5613Overview:
5614"""""""""
5615
5616The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5617changing any bits.
5618
5619Arguments:
5620""""""""""
5621
5622The '``bitcast``' instruction takes a value to cast, which must be a
5623non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005624also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5625bit sizes of ``value`` and the destination type, ``ty2``, must be
5626identical. If the source type is a pointer, the destination type must
5627also be a pointer of the same size. This instruction supports bitwise
5628conversion of vectors to integers and to vectors of other types (as
5629long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00005630
5631Semantics:
5632""""""""""
5633
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005634The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5635is always a *no-op cast* because no bits change with this
5636conversion. The conversion is done as if the ``value`` had been stored
5637to memory and read back as type ``ty2``. Pointer (or vector of
5638pointers) types may only be converted to other pointer (or vector of
5639pointers) types with this instruction if the pointer sizes are
5640equal. To convert pointers to other types, use the :ref:`inttoptr
5641<i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00005642
5643Example:
5644""""""""
5645
5646.. code-block:: llvm
5647
5648 %X = bitcast i8 255 to i8 ; yields i8 :-1
5649 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5650 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5651 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5652
5653.. _otherops:
5654
5655Other Operations
5656----------------
5657
5658The instructions in this category are the "miscellaneous" instructions,
5659which defy better classification.
5660
5661.. _i_icmp:
5662
5663'``icmp``' Instruction
5664^^^^^^^^^^^^^^^^^^^^^^
5665
5666Syntax:
5667"""""""
5668
5669::
5670
5671 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5672
5673Overview:
5674"""""""""
5675
5676The '``icmp``' instruction returns a boolean value or a vector of
5677boolean values based on comparison of its two integer, integer vector,
5678pointer, or pointer vector operands.
5679
5680Arguments:
5681""""""""""
5682
5683The '``icmp``' instruction takes three operands. The first operand is
5684the condition code indicating the kind of comparison to perform. It is
5685not a value, just a keyword. The possible condition code are:
5686
5687#. ``eq``: equal
5688#. ``ne``: not equal
5689#. ``ugt``: unsigned greater than
5690#. ``uge``: unsigned greater or equal
5691#. ``ult``: unsigned less than
5692#. ``ule``: unsigned less or equal
5693#. ``sgt``: signed greater than
5694#. ``sge``: signed greater or equal
5695#. ``slt``: signed less than
5696#. ``sle``: signed less or equal
5697
5698The remaining two arguments must be :ref:`integer <t_integer>` or
5699:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5700must also be identical types.
5701
5702Semantics:
5703""""""""""
5704
5705The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5706code given as ``cond``. The comparison performed always yields either an
5707:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5708
5709#. ``eq``: yields ``true`` if the operands are equal, ``false``
5710 otherwise. No sign interpretation is necessary or performed.
5711#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5712 otherwise. No sign interpretation is necessary or performed.
5713#. ``ugt``: interprets the operands as unsigned values and yields
5714 ``true`` if ``op1`` is greater than ``op2``.
5715#. ``uge``: interprets the operands as unsigned values and yields
5716 ``true`` if ``op1`` is greater than or equal to ``op2``.
5717#. ``ult``: interprets the operands as unsigned values and yields
5718 ``true`` if ``op1`` is less than ``op2``.
5719#. ``ule``: interprets the operands as unsigned values and yields
5720 ``true`` if ``op1`` is less than or equal to ``op2``.
5721#. ``sgt``: interprets the operands as signed values and yields ``true``
5722 if ``op1`` is greater than ``op2``.
5723#. ``sge``: interprets the operands as signed values and yields ``true``
5724 if ``op1`` is greater than or equal to ``op2``.
5725#. ``slt``: interprets the operands as signed values and yields ``true``
5726 if ``op1`` is less than ``op2``.
5727#. ``sle``: interprets the operands as signed values and yields ``true``
5728 if ``op1`` is less than or equal to ``op2``.
5729
5730If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5731are compared as if they were integers.
5732
5733If the operands are integer vectors, then they are compared element by
5734element. The result is an ``i1`` vector with the same number of elements
5735as the values being compared. Otherwise, the result is an ``i1``.
5736
5737Example:
5738""""""""
5739
5740.. code-block:: llvm
5741
5742 <result> = icmp eq i32 4, 5 ; yields: result=false
5743 <result> = icmp ne float* %X, %X ; yields: result=false
5744 <result> = icmp ult i16 4, 5 ; yields: result=true
5745 <result> = icmp sgt i16 4, 5 ; yields: result=false
5746 <result> = icmp ule i16 -4, 5 ; yields: result=false
5747 <result> = icmp sge i16 4, 5 ; yields: result=false
5748
5749Note that the code generator does not yet support vector types with the
5750``icmp`` instruction.
5751
5752.. _i_fcmp:
5753
5754'``fcmp``' Instruction
5755^^^^^^^^^^^^^^^^^^^^^^
5756
5757Syntax:
5758"""""""
5759
5760::
5761
5762 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5763
5764Overview:
5765"""""""""
5766
5767The '``fcmp``' instruction returns a boolean value or vector of boolean
5768values based on comparison of its operands.
5769
5770If the operands are floating point scalars, then the result type is a
5771boolean (:ref:`i1 <t_integer>`).
5772
5773If the operands are floating point vectors, then the result type is a
5774vector of boolean with the same number of elements as the operands being
5775compared.
5776
5777Arguments:
5778""""""""""
5779
5780The '``fcmp``' instruction takes three operands. The first operand is
5781the condition code indicating the kind of comparison to perform. It is
5782not a value, just a keyword. The possible condition code are:
5783
5784#. ``false``: no comparison, always returns false
5785#. ``oeq``: ordered and equal
5786#. ``ogt``: ordered and greater than
5787#. ``oge``: ordered and greater than or equal
5788#. ``olt``: ordered and less than
5789#. ``ole``: ordered and less than or equal
5790#. ``one``: ordered and not equal
5791#. ``ord``: ordered (no nans)
5792#. ``ueq``: unordered or equal
5793#. ``ugt``: unordered or greater than
5794#. ``uge``: unordered or greater than or equal
5795#. ``ult``: unordered or less than
5796#. ``ule``: unordered or less than or equal
5797#. ``une``: unordered or not equal
5798#. ``uno``: unordered (either nans)
5799#. ``true``: no comparison, always returns true
5800
5801*Ordered* means that neither operand is a QNAN while *unordered* means
5802that either operand may be a QNAN.
5803
5804Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5805point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5806type. They must have identical types.
5807
5808Semantics:
5809""""""""""
5810
5811The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5812condition code given as ``cond``. If the operands are vectors, then the
5813vectors are compared element by element. Each comparison performed
5814always yields an :ref:`i1 <t_integer>` result, as follows:
5815
5816#. ``false``: always yields ``false``, regardless of operands.
5817#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5818 is equal to ``op2``.
5819#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5820 is greater than ``op2``.
5821#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5822 is greater than or equal to ``op2``.
5823#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5824 is less than ``op2``.
5825#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5826 is less than or equal to ``op2``.
5827#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5828 is not equal to ``op2``.
5829#. ``ord``: yields ``true`` if both operands are not a QNAN.
5830#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5831 equal to ``op2``.
5832#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5833 greater than ``op2``.
5834#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5835 greater than or equal to ``op2``.
5836#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5837 less than ``op2``.
5838#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5839 less than or equal to ``op2``.
5840#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5841 not equal to ``op2``.
5842#. ``uno``: yields ``true`` if either operand is a QNAN.
5843#. ``true``: always yields ``true``, regardless of operands.
5844
5845Example:
5846""""""""
5847
5848.. code-block:: llvm
5849
5850 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5851 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5852 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5853 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5854
5855Note that the code generator does not yet support vector types with the
5856``fcmp`` instruction.
5857
5858.. _i_phi:
5859
5860'``phi``' Instruction
5861^^^^^^^^^^^^^^^^^^^^^
5862
5863Syntax:
5864"""""""
5865
5866::
5867
5868 <result> = phi <ty> [ <val0>, <label0>], ...
5869
5870Overview:
5871"""""""""
5872
5873The '``phi``' instruction is used to implement the φ node in the SSA
5874graph representing the function.
5875
5876Arguments:
5877""""""""""
5878
5879The type of the incoming values is specified with the first type field.
5880After this, the '``phi``' instruction takes a list of pairs as
5881arguments, with one pair for each predecessor basic block of the current
5882block. Only values of :ref:`first class <t_firstclass>` type may be used as
5883the value arguments to the PHI node. Only labels may be used as the
5884label arguments.
5885
5886There must be no non-phi instructions between the start of a basic block
5887and the PHI instructions: i.e. PHI instructions must be first in a basic
5888block.
5889
5890For the purposes of the SSA form, the use of each incoming value is
5891deemed to occur on the edge from the corresponding predecessor block to
5892the current block (but after any definition of an '``invoke``'
5893instruction's return value on the same edge).
5894
5895Semantics:
5896""""""""""
5897
5898At runtime, the '``phi``' instruction logically takes on the value
5899specified by the pair corresponding to the predecessor basic block that
5900executed just prior to the current block.
5901
5902Example:
5903""""""""
5904
5905.. code-block:: llvm
5906
5907 Loop: ; Infinite loop that counts from 0 on up...
5908 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5909 %nextindvar = add i32 %indvar, 1
5910 br label %Loop
5911
5912.. _i_select:
5913
5914'``select``' Instruction
5915^^^^^^^^^^^^^^^^^^^^^^^^
5916
5917Syntax:
5918"""""""
5919
5920::
5921
5922 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5923
5924 selty is either i1 or {<N x i1>}
5925
5926Overview:
5927"""""""""
5928
5929The '``select``' instruction is used to choose one value based on a
5930condition, without branching.
5931
5932Arguments:
5933""""""""""
5934
5935The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5936values indicating the condition, and two values of the same :ref:`first
5937class <t_firstclass>` type. If the val1/val2 are vectors and the
5938condition is a scalar, then entire vectors are selected, not individual
5939elements.
5940
5941Semantics:
5942""""""""""
5943
5944If the condition is an i1 and it evaluates to 1, the instruction returns
5945the first value argument; otherwise, it returns the second value
5946argument.
5947
5948If the condition is a vector of i1, then the value arguments must be
5949vectors of the same size, and the selection is done element by element.
5950
5951Example:
5952""""""""
5953
5954.. code-block:: llvm
5955
5956 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5957
5958.. _i_call:
5959
5960'``call``' Instruction
5961^^^^^^^^^^^^^^^^^^^^^^
5962
5963Syntax:
5964"""""""
5965
5966::
5967
5968 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5969
5970Overview:
5971"""""""""
5972
5973The '``call``' instruction represents a simple function call.
5974
5975Arguments:
5976""""""""""
5977
5978This instruction requires several arguments:
5979
5980#. The optional "tail" marker indicates that the callee function does
5981 not access any allocas or varargs in the caller. Note that calls may
5982 be marked "tail" even if they do not occur before a
5983 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5984 function call is eligible for tail call optimization, but `might not
5985 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5986 The code generator may optimize calls marked "tail" with either 1)
5987 automatic `sibling call
5988 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5989 callee have matching signatures, or 2) forced tail call optimization
5990 when the following extra requirements are met:
5991
5992 - Caller and callee both have the calling convention ``fastcc``.
5993 - The call is in tail position (ret immediately follows call and ret
5994 uses value of call or is void).
5995 - Option ``-tailcallopt`` is enabled, or
5996 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5997 - `Platform specific constraints are
5998 met. <CodeGenerator.html#tailcallopt>`_
5999
6000#. The optional "cconv" marker indicates which :ref:`calling
6001 convention <callingconv>` the call should use. If none is
6002 specified, the call defaults to using C calling conventions. The
6003 calling convention of the call must match the calling convention of
6004 the target function, or else the behavior is undefined.
6005#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6006 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6007 are valid here.
6008#. '``ty``': the type of the call instruction itself which is also the
6009 type of the return value. Functions that return no value are marked
6010 ``void``.
6011#. '``fnty``': shall be the signature of the pointer to function value
6012 being invoked. The argument types must match the types implied by
6013 this signature. This type can be omitted if the function is not
6014 varargs and if the function type does not return a pointer to a
6015 function.
6016#. '``fnptrval``': An LLVM value containing a pointer to a function to
6017 be invoked. In most cases, this is a direct function invocation, but
6018 indirect ``call``'s are just as possible, calling an arbitrary pointer
6019 to function value.
6020#. '``function args``': argument list whose types match the function
6021 signature argument types and parameter attributes. All arguments must
6022 be of :ref:`first class <t_firstclass>` type. If the function signature
6023 indicates the function accepts a variable number of arguments, the
6024 extra arguments can be specified.
6025#. The optional :ref:`function attributes <fnattrs>` list. Only
6026 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6027 attributes are valid here.
6028
6029Semantics:
6030""""""""""
6031
6032The '``call``' instruction is used to cause control flow to transfer to
6033a specified function, with its incoming arguments bound to the specified
6034values. Upon a '``ret``' instruction in the called function, control
6035flow continues with the instruction after the function call, and the
6036return value of the function is bound to the result argument.
6037
6038Example:
6039""""""""
6040
6041.. code-block:: llvm
6042
6043 %retval = call i32 @test(i32 %argc)
6044 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6045 %X = tail call i32 @foo() ; yields i32
6046 %Y = tail call fastcc i32 @foo() ; yields i32
6047 call void %foo(i8 97 signext)
6048
6049 %struct.A = type { i32, i8 }
6050 %r = call %struct.A @foo() ; yields { 32, i8 }
6051 %gr = extractvalue %struct.A %r, 0 ; yields i32
6052 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6053 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6054 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6055
6056llvm treats calls to some functions with names and arguments that match
6057the standard C99 library as being the C99 library functions, and may
6058perform optimizations or generate code for them under that assumption.
6059This is something we'd like to change in the future to provide better
6060support for freestanding environments and non-C-based languages.
6061
6062.. _i_va_arg:
6063
6064'``va_arg``' Instruction
6065^^^^^^^^^^^^^^^^^^^^^^^^
6066
6067Syntax:
6068"""""""
6069
6070::
6071
6072 <resultval> = va_arg <va_list*> <arglist>, <argty>
6073
6074Overview:
6075"""""""""
6076
6077The '``va_arg``' instruction is used to access arguments passed through
6078the "variable argument" area of a function call. It is used to implement
6079the ``va_arg`` macro in C.
6080
6081Arguments:
6082""""""""""
6083
6084This instruction takes a ``va_list*`` value and the type of the
6085argument. It returns a value of the specified argument type and
6086increments the ``va_list`` to point to the next argument. The actual
6087type of ``va_list`` is target specific.
6088
6089Semantics:
6090""""""""""
6091
6092The '``va_arg``' instruction loads an argument of the specified type
6093from the specified ``va_list`` and causes the ``va_list`` to point to
6094the next argument. For more information, see the variable argument
6095handling :ref:`Intrinsic Functions <int_varargs>`.
6096
6097It is legal for this instruction to be called in a function which does
6098not take a variable number of arguments, for example, the ``vfprintf``
6099function.
6100
6101``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6102function <intrinsics>` because it takes a type as an argument.
6103
6104Example:
6105""""""""
6106
6107See the :ref:`variable argument processing <int_varargs>` section.
6108
6109Note that the code generator does not yet fully support va\_arg on many
6110targets. Also, it does not currently support va\_arg with aggregate
6111types on any target.
6112
6113.. _i_landingpad:
6114
6115'``landingpad``' Instruction
6116^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6117
6118Syntax:
6119"""""""
6120
6121::
6122
6123 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6124 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6125
6126 <clause> := catch <type> <value>
6127 <clause> := filter <array constant type> <array constant>
6128
6129Overview:
6130"""""""""
6131
6132The '``landingpad``' instruction is used by `LLVM's exception handling
6133system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006134is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006135code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6136defines values supplied by the personality function (``pers_fn``) upon
6137re-entry to the function. The ``resultval`` has the type ``resultty``.
6138
6139Arguments:
6140""""""""""
6141
6142This instruction takes a ``pers_fn`` value. This is the personality
6143function associated with the unwinding mechanism. The optional
6144``cleanup`` flag indicates that the landing pad block is a cleanup.
6145
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006146A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006147contains the global variable representing the "type" that may be caught
6148or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6149clause takes an array constant as its argument. Use
6150"``[0 x i8**] undef``" for a filter which cannot throw. The
6151'``landingpad``' instruction must contain *at least* one ``clause`` or
6152the ``cleanup`` flag.
6153
6154Semantics:
6155""""""""""
6156
6157The '``landingpad``' instruction defines the values which are set by the
6158personality function (``pers_fn``) upon re-entry to the function, and
6159therefore the "result type" of the ``landingpad`` instruction. As with
6160calling conventions, how the personality function results are
6161represented in LLVM IR is target specific.
6162
6163The clauses are applied in order from top to bottom. If two
6164``landingpad`` instructions are merged together through inlining, the
6165clauses from the calling function are appended to the list of clauses.
6166When the call stack is being unwound due to an exception being thrown,
6167the exception is compared against each ``clause`` in turn. If it doesn't
6168match any of the clauses, and the ``cleanup`` flag is not set, then
6169unwinding continues further up the call stack.
6170
6171The ``landingpad`` instruction has several restrictions:
6172
6173- A landing pad block is a basic block which is the unwind destination
6174 of an '``invoke``' instruction.
6175- A landing pad block must have a '``landingpad``' instruction as its
6176 first non-PHI instruction.
6177- There can be only one '``landingpad``' instruction within the landing
6178 pad block.
6179- A basic block that is not a landing pad block may not include a
6180 '``landingpad``' instruction.
6181- All '``landingpad``' instructions in a function must have the same
6182 personality function.
6183
6184Example:
6185""""""""
6186
6187.. code-block:: llvm
6188
6189 ;; A landing pad which can catch an integer.
6190 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6191 catch i8** @_ZTIi
6192 ;; A landing pad that is a cleanup.
6193 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6194 cleanup
6195 ;; A landing pad which can catch an integer and can only throw a double.
6196 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6197 catch i8** @_ZTIi
6198 filter [1 x i8**] [@_ZTId]
6199
6200.. _intrinsics:
6201
6202Intrinsic Functions
6203===================
6204
6205LLVM supports the notion of an "intrinsic function". These functions
6206have well known names and semantics and are required to follow certain
6207restrictions. Overall, these intrinsics represent an extension mechanism
6208for the LLVM language that does not require changing all of the
6209transformations in LLVM when adding to the language (or the bitcode
6210reader/writer, the parser, etc...).
6211
6212Intrinsic function names must all start with an "``llvm.``" prefix. This
6213prefix is reserved in LLVM for intrinsic names; thus, function names may
6214not begin with this prefix. Intrinsic functions must always be external
6215functions: you cannot define the body of intrinsic functions. Intrinsic
6216functions may only be used in call or invoke instructions: it is illegal
6217to take the address of an intrinsic function. Additionally, because
6218intrinsic functions are part of the LLVM language, it is required if any
6219are added that they be documented here.
6220
6221Some intrinsic functions can be overloaded, i.e., the intrinsic
6222represents a family of functions that perform the same operation but on
6223different data types. Because LLVM can represent over 8 million
6224different integer types, overloading is used commonly to allow an
6225intrinsic function to operate on any integer type. One or more of the
6226argument types or the result type can be overloaded to accept any
6227integer type. Argument types may also be defined as exactly matching a
6228previous argument's type or the result type. This allows an intrinsic
6229function which accepts multiple arguments, but needs all of them to be
6230of the same type, to only be overloaded with respect to a single
6231argument or the result.
6232
6233Overloaded intrinsics will have the names of its overloaded argument
6234types encoded into its function name, each preceded by a period. Only
6235those types which are overloaded result in a name suffix. Arguments
6236whose type is matched against another type do not. For example, the
6237``llvm.ctpop`` function can take an integer of any width and returns an
6238integer of exactly the same integer width. This leads to a family of
6239functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6240``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6241overloaded, and only one type suffix is required. Because the argument's
6242type is matched against the return type, it does not require its own
6243name suffix.
6244
6245To learn how to add an intrinsic function, please see the `Extending
6246LLVM Guide <ExtendingLLVM.html>`_.
6247
6248.. _int_varargs:
6249
6250Variable Argument Handling Intrinsics
6251-------------------------------------
6252
6253Variable argument support is defined in LLVM with the
6254:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6255functions. These functions are related to the similarly named macros
6256defined in the ``<stdarg.h>`` header file.
6257
6258All of these functions operate on arguments that use a target-specific
6259value type "``va_list``". The LLVM assembly language reference manual
6260does not define what this type is, so all transformations should be
6261prepared to handle these functions regardless of the type used.
6262
6263This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6264variable argument handling intrinsic functions are used.
6265
6266.. code-block:: llvm
6267
6268 define i32 @test(i32 %X, ...) {
6269 ; Initialize variable argument processing
6270 %ap = alloca i8*
6271 %ap2 = bitcast i8** %ap to i8*
6272 call void @llvm.va_start(i8* %ap2)
6273
6274 ; Read a single integer argument
6275 %tmp = va_arg i8** %ap, i32
6276
6277 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6278 %aq = alloca i8*
6279 %aq2 = bitcast i8** %aq to i8*
6280 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6281 call void @llvm.va_end(i8* %aq2)
6282
6283 ; Stop processing of arguments.
6284 call void @llvm.va_end(i8* %ap2)
6285 ret i32 %tmp
6286 }
6287
6288 declare void @llvm.va_start(i8*)
6289 declare void @llvm.va_copy(i8*, i8*)
6290 declare void @llvm.va_end(i8*)
6291
6292.. _int_va_start:
6293
6294'``llvm.va_start``' Intrinsic
6295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6296
6297Syntax:
6298"""""""
6299
6300::
6301
6302 declare void %llvm.va_start(i8* <arglist>)
6303
6304Overview:
6305"""""""""
6306
6307The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6308subsequent use by ``va_arg``.
6309
6310Arguments:
6311""""""""""
6312
6313The argument is a pointer to a ``va_list`` element to initialize.
6314
6315Semantics:
6316""""""""""
6317
6318The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6319available in C. In a target-dependent way, it initializes the
6320``va_list`` element to which the argument points, so that the next call
6321to ``va_arg`` will produce the first variable argument passed to the
6322function. Unlike the C ``va_start`` macro, this intrinsic does not need
6323to know the last argument of the function as the compiler can figure
6324that out.
6325
6326'``llvm.va_end``' Intrinsic
6327^^^^^^^^^^^^^^^^^^^^^^^^^^^
6328
6329Syntax:
6330"""""""
6331
6332::
6333
6334 declare void @llvm.va_end(i8* <arglist>)
6335
6336Overview:
6337"""""""""
6338
6339The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6340initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6341
6342Arguments:
6343""""""""""
6344
6345The argument is a pointer to a ``va_list`` to destroy.
6346
6347Semantics:
6348""""""""""
6349
6350The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6351available in C. In a target-dependent way, it destroys the ``va_list``
6352element to which the argument points. Calls to
6353:ref:`llvm.va_start <int_va_start>` and
6354:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6355``llvm.va_end``.
6356
6357.. _int_va_copy:
6358
6359'``llvm.va_copy``' Intrinsic
6360^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6361
6362Syntax:
6363"""""""
6364
6365::
6366
6367 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6368
6369Overview:
6370"""""""""
6371
6372The '``llvm.va_copy``' intrinsic copies the current argument position
6373from the source argument list to the destination argument list.
6374
6375Arguments:
6376""""""""""
6377
6378The first argument is a pointer to a ``va_list`` element to initialize.
6379The second argument is a pointer to a ``va_list`` element to copy from.
6380
6381Semantics:
6382""""""""""
6383
6384The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6385available in C. In a target-dependent way, it copies the source
6386``va_list`` element into the destination ``va_list`` element. This
6387intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6388arbitrarily complex and require, for example, memory allocation.
6389
6390Accurate Garbage Collection Intrinsics
6391--------------------------------------
6392
6393LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6394(GC) requires the implementation and generation of these intrinsics.
6395These intrinsics allow identification of :ref:`GC roots on the
6396stack <int_gcroot>`, as well as garbage collector implementations that
6397require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6398Front-ends for type-safe garbage collected languages should generate
6399these intrinsics to make use of the LLVM garbage collectors. For more
6400details, see `Accurate Garbage Collection with
6401LLVM <GarbageCollection.html>`_.
6402
6403The garbage collection intrinsics only operate on objects in the generic
6404address space (address space zero).
6405
6406.. _int_gcroot:
6407
6408'``llvm.gcroot``' Intrinsic
6409^^^^^^^^^^^^^^^^^^^^^^^^^^^
6410
6411Syntax:
6412"""""""
6413
6414::
6415
6416 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6417
6418Overview:
6419"""""""""
6420
6421The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6422the code generator, and allows some metadata to be associated with it.
6423
6424Arguments:
6425""""""""""
6426
6427The first argument specifies the address of a stack object that contains
6428the root pointer. The second pointer (which must be either a constant or
6429a global value address) contains the meta-data to be associated with the
6430root.
6431
6432Semantics:
6433""""""""""
6434
6435At runtime, a call to this intrinsic stores a null pointer into the
6436"ptrloc" location. At compile-time, the code generator generates
6437information to allow the runtime to find the pointer at GC safe points.
6438The '``llvm.gcroot``' intrinsic may only be used in a function which
6439:ref:`specifies a GC algorithm <gc>`.
6440
6441.. _int_gcread:
6442
6443'``llvm.gcread``' Intrinsic
6444^^^^^^^^^^^^^^^^^^^^^^^^^^^
6445
6446Syntax:
6447"""""""
6448
6449::
6450
6451 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6452
6453Overview:
6454"""""""""
6455
6456The '``llvm.gcread``' intrinsic identifies reads of references from heap
6457locations, allowing garbage collector implementations that require read
6458barriers.
6459
6460Arguments:
6461""""""""""
6462
6463The second argument is the address to read from, which should be an
6464address allocated from the garbage collector. The first object is a
6465pointer to the start of the referenced object, if needed by the language
6466runtime (otherwise null).
6467
6468Semantics:
6469""""""""""
6470
6471The '``llvm.gcread``' intrinsic has the same semantics as a load
6472instruction, but may be replaced with substantially more complex code by
6473the garbage collector runtime, as needed. The '``llvm.gcread``'
6474intrinsic may only be used in a function which :ref:`specifies a GC
6475algorithm <gc>`.
6476
6477.. _int_gcwrite:
6478
6479'``llvm.gcwrite``' Intrinsic
6480^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6481
6482Syntax:
6483"""""""
6484
6485::
6486
6487 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6488
6489Overview:
6490"""""""""
6491
6492The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6493locations, allowing garbage collector implementations that require write
6494barriers (such as generational or reference counting collectors).
6495
6496Arguments:
6497""""""""""
6498
6499The first argument is the reference to store, the second is the start of
6500the object to store it to, and the third is the address of the field of
6501Obj to store to. If the runtime does not require a pointer to the
6502object, Obj may be null.
6503
6504Semantics:
6505""""""""""
6506
6507The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6508instruction, but may be replaced with substantially more complex code by
6509the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6510intrinsic may only be used in a function which :ref:`specifies a GC
6511algorithm <gc>`.
6512
6513Code Generator Intrinsics
6514-------------------------
6515
6516These intrinsics are provided by LLVM to expose special features that
6517may only be implemented with code generator support.
6518
6519'``llvm.returnaddress``' Intrinsic
6520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6521
6522Syntax:
6523"""""""
6524
6525::
6526
6527 declare i8 *@llvm.returnaddress(i32 <level>)
6528
6529Overview:
6530"""""""""
6531
6532The '``llvm.returnaddress``' intrinsic attempts to compute a
6533target-specific value indicating the return address of the current
6534function or one of its callers.
6535
6536Arguments:
6537""""""""""
6538
6539The argument to this intrinsic indicates which function to return the
6540address for. Zero indicates the calling function, one indicates its
6541caller, etc. The argument is **required** to be a constant integer
6542value.
6543
6544Semantics:
6545""""""""""
6546
6547The '``llvm.returnaddress``' intrinsic either returns a pointer
6548indicating the return address of the specified call frame, or zero if it
6549cannot be identified. The value returned by this intrinsic is likely to
6550be incorrect or 0 for arguments other than zero, so it should only be
6551used for debugging purposes.
6552
6553Note that calling this intrinsic does not prevent function inlining or
6554other aggressive transformations, so the value returned may not be that
6555of the obvious source-language caller.
6556
6557'``llvm.frameaddress``' Intrinsic
6558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6559
6560Syntax:
6561"""""""
6562
6563::
6564
6565 declare i8* @llvm.frameaddress(i32 <level>)
6566
6567Overview:
6568"""""""""
6569
6570The '``llvm.frameaddress``' intrinsic attempts to return the
6571target-specific frame pointer value for the specified stack frame.
6572
6573Arguments:
6574""""""""""
6575
6576The argument to this intrinsic indicates which function to return the
6577frame pointer for. Zero indicates the calling function, one indicates
6578its caller, etc. The argument is **required** to be a constant integer
6579value.
6580
6581Semantics:
6582""""""""""
6583
6584The '``llvm.frameaddress``' intrinsic either returns a pointer
6585indicating the frame address of the specified call frame, or zero if it
6586cannot be identified. The value returned by this intrinsic is likely to
6587be incorrect or 0 for arguments other than zero, so it should only be
6588used for debugging purposes.
6589
6590Note that calling this intrinsic does not prevent function inlining or
6591other aggressive transformations, so the value returned may not be that
6592of the obvious source-language caller.
6593
6594.. _int_stacksave:
6595
6596'``llvm.stacksave``' Intrinsic
6597^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6598
6599Syntax:
6600"""""""
6601
6602::
6603
6604 declare i8* @llvm.stacksave()
6605
6606Overview:
6607"""""""""
6608
6609The '``llvm.stacksave``' intrinsic is used to remember the current state
6610of the function stack, for use with
6611:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6612implementing language features like scoped automatic variable sized
6613arrays in C99.
6614
6615Semantics:
6616""""""""""
6617
6618This intrinsic returns a opaque pointer value that can be passed to
6619:ref:`llvm.stackrestore <int_stackrestore>`. When an
6620``llvm.stackrestore`` intrinsic is executed with a value saved from
6621``llvm.stacksave``, it effectively restores the state of the stack to
6622the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6623practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6624were allocated after the ``llvm.stacksave`` was executed.
6625
6626.. _int_stackrestore:
6627
6628'``llvm.stackrestore``' Intrinsic
6629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6630
6631Syntax:
6632"""""""
6633
6634::
6635
6636 declare void @llvm.stackrestore(i8* %ptr)
6637
6638Overview:
6639"""""""""
6640
6641The '``llvm.stackrestore``' intrinsic is used to restore the state of
6642the function stack to the state it was in when the corresponding
6643:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6644useful for implementing language features like scoped automatic variable
6645sized arrays in C99.
6646
6647Semantics:
6648""""""""""
6649
6650See the description for :ref:`llvm.stacksave <int_stacksave>`.
6651
6652'``llvm.prefetch``' Intrinsic
6653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6654
6655Syntax:
6656"""""""
6657
6658::
6659
6660 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6661
6662Overview:
6663"""""""""
6664
6665The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6666insert a prefetch instruction if supported; otherwise, it is a noop.
6667Prefetches have no effect on the behavior of the program but can change
6668its performance characteristics.
6669
6670Arguments:
6671""""""""""
6672
6673``address`` is the address to be prefetched, ``rw`` is the specifier
6674determining if the fetch should be for a read (0) or write (1), and
6675``locality`` is a temporal locality specifier ranging from (0) - no
6676locality, to (3) - extremely local keep in cache. The ``cache type``
6677specifies whether the prefetch is performed on the data (1) or
6678instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6679arguments must be constant integers.
6680
6681Semantics:
6682""""""""""
6683
6684This intrinsic does not modify the behavior of the program. In
6685particular, prefetches cannot trap and do not produce a value. On
6686targets that support this intrinsic, the prefetch can provide hints to
6687the processor cache for better performance.
6688
6689'``llvm.pcmarker``' Intrinsic
6690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6691
6692Syntax:
6693"""""""
6694
6695::
6696
6697 declare void @llvm.pcmarker(i32 <id>)
6698
6699Overview:
6700"""""""""
6701
6702The '``llvm.pcmarker``' intrinsic is a method to export a Program
6703Counter (PC) in a region of code to simulators and other tools. The
6704method is target specific, but it is expected that the marker will use
6705exported symbols to transmit the PC of the marker. The marker makes no
6706guarantees that it will remain with any specific instruction after
6707optimizations. It is possible that the presence of a marker will inhibit
6708optimizations. The intended use is to be inserted after optimizations to
6709allow correlations of simulation runs.
6710
6711Arguments:
6712""""""""""
6713
6714``id`` is a numerical id identifying the marker.
6715
6716Semantics:
6717""""""""""
6718
6719This intrinsic does not modify the behavior of the program. Backends
6720that do not support this intrinsic may ignore it.
6721
6722'``llvm.readcyclecounter``' Intrinsic
6723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6724
6725Syntax:
6726"""""""
6727
6728::
6729
6730 declare i64 @llvm.readcyclecounter()
6731
6732Overview:
6733"""""""""
6734
6735The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6736counter register (or similar low latency, high accuracy clocks) on those
6737targets that support it. On X86, it should map to RDTSC. On Alpha, it
6738should map to RPCC. As the backing counters overflow quickly (on the
6739order of 9 seconds on alpha), this should only be used for small
6740timings.
6741
6742Semantics:
6743""""""""""
6744
6745When directly supported, reading the cycle counter should not modify any
6746memory. Implementations are allowed to either return a application
6747specific value or a system wide value. On backends without support, this
6748is lowered to a constant 0.
6749
Tim Northover5a02fc42013-05-23 19:11:20 +00006750Note that runtime support may be conditional on the privilege-level code is
6751running at and the host platform.
6752
Sean Silvaf722b002012-12-07 10:36:55 +00006753Standard C Library Intrinsics
6754-----------------------------
6755
6756LLVM provides intrinsics for a few important standard C library
6757functions. These intrinsics allow source-language front-ends to pass
6758information about the alignment of the pointer arguments to the code
6759generator, providing opportunity for more efficient code generation.
6760
6761.. _int_memcpy:
6762
6763'``llvm.memcpy``' Intrinsic
6764^^^^^^^^^^^^^^^^^^^^^^^^^^^
6765
6766Syntax:
6767"""""""
6768
6769This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6770integer bit width and for different address spaces. Not all targets
6771support all bit widths however.
6772
6773::
6774
6775 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6776 i32 <len>, i32 <align>, i1 <isvolatile>)
6777 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6778 i64 <len>, i32 <align>, i1 <isvolatile>)
6779
6780Overview:
6781"""""""""
6782
6783The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6784source location to the destination location.
6785
6786Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6787intrinsics do not return a value, takes extra alignment/isvolatile
6788arguments and the pointers can be in specified address spaces.
6789
6790Arguments:
6791""""""""""
6792
6793The first argument is a pointer to the destination, the second is a
6794pointer to the source. The third argument is an integer argument
6795specifying the number of bytes to copy, the fourth argument is the
6796alignment of the source and destination locations, and the fifth is a
6797boolean indicating a volatile access.
6798
6799If the call to this intrinsic has an alignment value that is not 0 or 1,
6800then the caller guarantees that both the source and destination pointers
6801are aligned to that boundary.
6802
6803If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6804a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6805very cleanly specified and it is unwise to depend on it.
6806
6807Semantics:
6808""""""""""
6809
6810The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6811source location to the destination location, which are not allowed to
6812overlap. It copies "len" bytes of memory over. If the argument is known
6813to be aligned to some boundary, this can be specified as the fourth
6814argument, otherwise it should be set to 0 or 1.
6815
6816'``llvm.memmove``' Intrinsic
6817^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6818
6819Syntax:
6820"""""""
6821
6822This is an overloaded intrinsic. You can use llvm.memmove on any integer
6823bit width and for different address space. Not all targets support all
6824bit widths however.
6825
6826::
6827
6828 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6829 i32 <len>, i32 <align>, i1 <isvolatile>)
6830 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6831 i64 <len>, i32 <align>, i1 <isvolatile>)
6832
6833Overview:
6834"""""""""
6835
6836The '``llvm.memmove.*``' intrinsics move a block of memory from the
6837source location to the destination location. It is similar to the
6838'``llvm.memcpy``' intrinsic but allows the two memory locations to
6839overlap.
6840
6841Note that, unlike the standard libc function, the ``llvm.memmove.*``
6842intrinsics do not return a value, takes extra alignment/isvolatile
6843arguments and the pointers can be in specified address spaces.
6844
6845Arguments:
6846""""""""""
6847
6848The first argument is a pointer to the destination, the second is a
6849pointer to the source. The third argument is an integer argument
6850specifying the number of bytes to copy, the fourth argument is the
6851alignment of the source and destination locations, and the fifth is a
6852boolean indicating a volatile access.
6853
6854If the call to this intrinsic has an alignment value that is not 0 or 1,
6855then the caller guarantees that the source and destination pointers are
6856aligned to that boundary.
6857
6858If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6859is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6860not very cleanly specified and it is unwise to depend on it.
6861
6862Semantics:
6863""""""""""
6864
6865The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6866source location to the destination location, which may overlap. It
6867copies "len" bytes of memory over. If the argument is known to be
6868aligned to some boundary, this can be specified as the fourth argument,
6869otherwise it should be set to 0 or 1.
6870
6871'``llvm.memset.*``' Intrinsics
6872^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6873
6874Syntax:
6875"""""""
6876
6877This is an overloaded intrinsic. You can use llvm.memset on any integer
6878bit width and for different address spaces. However, not all targets
6879support all bit widths.
6880
6881::
6882
6883 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6884 i32 <len>, i32 <align>, i1 <isvolatile>)
6885 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6886 i64 <len>, i32 <align>, i1 <isvolatile>)
6887
6888Overview:
6889"""""""""
6890
6891The '``llvm.memset.*``' intrinsics fill a block of memory with a
6892particular byte value.
6893
6894Note that, unlike the standard libc function, the ``llvm.memset``
6895intrinsic does not return a value and takes extra alignment/volatile
6896arguments. Also, the destination can be in an arbitrary address space.
6897
6898Arguments:
6899""""""""""
6900
6901The first argument is a pointer to the destination to fill, the second
6902is the byte value with which to fill it, the third argument is an
6903integer argument specifying the number of bytes to fill, and the fourth
6904argument is the known alignment of the destination location.
6905
6906If the call to this intrinsic has an alignment value that is not 0 or 1,
6907then the caller guarantees that the destination pointer is aligned to
6908that boundary.
6909
6910If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6911a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6912very cleanly specified and it is unwise to depend on it.
6913
6914Semantics:
6915""""""""""
6916
6917The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6918at the destination location. If the argument is known to be aligned to
6919some boundary, this can be specified as the fourth argument, otherwise
6920it should be set to 0 or 1.
6921
6922'``llvm.sqrt.*``' Intrinsic
6923^^^^^^^^^^^^^^^^^^^^^^^^^^^
6924
6925Syntax:
6926"""""""
6927
6928This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6929floating point or vector of floating point type. Not all targets support
6930all types however.
6931
6932::
6933
6934 declare float @llvm.sqrt.f32(float %Val)
6935 declare double @llvm.sqrt.f64(double %Val)
6936 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6937 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6938 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6939
6940Overview:
6941"""""""""
6942
6943The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6944returning the same value as the libm '``sqrt``' functions would. Unlike
6945``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6946negative numbers other than -0.0 (which allows for better optimization,
6947because there is no need to worry about errno being set).
6948``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6949
6950Arguments:
6951""""""""""
6952
6953The argument and return value are floating point numbers of the same
6954type.
6955
6956Semantics:
6957""""""""""
6958
6959This function returns the sqrt of the specified operand if it is a
6960nonnegative floating point number.
6961
6962'``llvm.powi.*``' Intrinsic
6963^^^^^^^^^^^^^^^^^^^^^^^^^^^
6964
6965Syntax:
6966"""""""
6967
6968This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6969floating point or vector of floating point type. Not all targets support
6970all types however.
6971
6972::
6973
6974 declare float @llvm.powi.f32(float %Val, i32 %power)
6975 declare double @llvm.powi.f64(double %Val, i32 %power)
6976 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6977 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6978 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6979
6980Overview:
6981"""""""""
6982
6983The '``llvm.powi.*``' intrinsics return the first operand raised to the
6984specified (positive or negative) power. The order of evaluation of
6985multiplications is not defined. When a vector of floating point type is
6986used, the second argument remains a scalar integer value.
6987
6988Arguments:
6989""""""""""
6990
6991The second argument is an integer power, and the first is a value to
6992raise to that power.
6993
6994Semantics:
6995""""""""""
6996
6997This function returns the first value raised to the second power with an
6998unspecified sequence of rounding operations.
6999
7000'``llvm.sin.*``' Intrinsic
7001^^^^^^^^^^^^^^^^^^^^^^^^^^
7002
7003Syntax:
7004"""""""
7005
7006This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7007floating point or vector of floating point type. Not all targets support
7008all types however.
7009
7010::
7011
7012 declare float @llvm.sin.f32(float %Val)
7013 declare double @llvm.sin.f64(double %Val)
7014 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7015 declare fp128 @llvm.sin.f128(fp128 %Val)
7016 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7017
7018Overview:
7019"""""""""
7020
7021The '``llvm.sin.*``' intrinsics return the sine of the operand.
7022
7023Arguments:
7024""""""""""
7025
7026The argument and return value are floating point numbers of the same
7027type.
7028
7029Semantics:
7030""""""""""
7031
7032This function returns the sine of the specified operand, returning the
7033same values as the libm ``sin`` functions would, and handles error
7034conditions in the same way.
7035
7036'``llvm.cos.*``' Intrinsic
7037^^^^^^^^^^^^^^^^^^^^^^^^^^
7038
7039Syntax:
7040"""""""
7041
7042This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7043floating point or vector of floating point type. Not all targets support
7044all types however.
7045
7046::
7047
7048 declare float @llvm.cos.f32(float %Val)
7049 declare double @llvm.cos.f64(double %Val)
7050 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7051 declare fp128 @llvm.cos.f128(fp128 %Val)
7052 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7053
7054Overview:
7055"""""""""
7056
7057The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7058
7059Arguments:
7060""""""""""
7061
7062The argument and return value are floating point numbers of the same
7063type.
7064
7065Semantics:
7066""""""""""
7067
7068This function returns the cosine of the specified operand, returning the
7069same values as the libm ``cos`` functions would, and handles error
7070conditions in the same way.
7071
7072'``llvm.pow.*``' Intrinsic
7073^^^^^^^^^^^^^^^^^^^^^^^^^^
7074
7075Syntax:
7076"""""""
7077
7078This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7079floating point or vector of floating point type. Not all targets support
7080all types however.
7081
7082::
7083
7084 declare float @llvm.pow.f32(float %Val, float %Power)
7085 declare double @llvm.pow.f64(double %Val, double %Power)
7086 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7087 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7088 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7089
7090Overview:
7091"""""""""
7092
7093The '``llvm.pow.*``' intrinsics return the first operand raised to the
7094specified (positive or negative) power.
7095
7096Arguments:
7097""""""""""
7098
7099The second argument is a floating point power, and the first is a value
7100to raise to that power.
7101
7102Semantics:
7103""""""""""
7104
7105This function returns the first value raised to the second power,
7106returning the same values as the libm ``pow`` functions would, and
7107handles error conditions in the same way.
7108
7109'``llvm.exp.*``' Intrinsic
7110^^^^^^^^^^^^^^^^^^^^^^^^^^
7111
7112Syntax:
7113"""""""
7114
7115This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7116floating point or vector of floating point type. Not all targets support
7117all types however.
7118
7119::
7120
7121 declare float @llvm.exp.f32(float %Val)
7122 declare double @llvm.exp.f64(double %Val)
7123 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7124 declare fp128 @llvm.exp.f128(fp128 %Val)
7125 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7126
7127Overview:
7128"""""""""
7129
7130The '``llvm.exp.*``' intrinsics perform the exp function.
7131
7132Arguments:
7133""""""""""
7134
7135The argument and return value are floating point numbers of the same
7136type.
7137
7138Semantics:
7139""""""""""
7140
7141This function returns the same values as the libm ``exp`` functions
7142would, and handles error conditions in the same way.
7143
7144'``llvm.exp2.*``' Intrinsic
7145^^^^^^^^^^^^^^^^^^^^^^^^^^^
7146
7147Syntax:
7148"""""""
7149
7150This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7151floating point or vector of floating point type. Not all targets support
7152all types however.
7153
7154::
7155
7156 declare float @llvm.exp2.f32(float %Val)
7157 declare double @llvm.exp2.f64(double %Val)
7158 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7159 declare fp128 @llvm.exp2.f128(fp128 %Val)
7160 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7161
7162Overview:
7163"""""""""
7164
7165The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7166
7167Arguments:
7168""""""""""
7169
7170The argument and return value are floating point numbers of the same
7171type.
7172
7173Semantics:
7174""""""""""
7175
7176This function returns the same values as the libm ``exp2`` functions
7177would, and handles error conditions in the same way.
7178
7179'``llvm.log.*``' Intrinsic
7180^^^^^^^^^^^^^^^^^^^^^^^^^^
7181
7182Syntax:
7183"""""""
7184
7185This is an overloaded intrinsic. You can use ``llvm.log`` on any
7186floating point or vector of floating point type. Not all targets support
7187all types however.
7188
7189::
7190
7191 declare float @llvm.log.f32(float %Val)
7192 declare double @llvm.log.f64(double %Val)
7193 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7194 declare fp128 @llvm.log.f128(fp128 %Val)
7195 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7196
7197Overview:
7198"""""""""
7199
7200The '``llvm.log.*``' intrinsics perform the log function.
7201
7202Arguments:
7203""""""""""
7204
7205The argument and return value are floating point numbers of the same
7206type.
7207
7208Semantics:
7209""""""""""
7210
7211This function returns the same values as the libm ``log`` functions
7212would, and handles error conditions in the same way.
7213
7214'``llvm.log10.*``' Intrinsic
7215^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7216
7217Syntax:
7218"""""""
7219
7220This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7221floating point or vector of floating point type. Not all targets support
7222all types however.
7223
7224::
7225
7226 declare float @llvm.log10.f32(float %Val)
7227 declare double @llvm.log10.f64(double %Val)
7228 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7229 declare fp128 @llvm.log10.f128(fp128 %Val)
7230 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7231
7232Overview:
7233"""""""""
7234
7235The '``llvm.log10.*``' intrinsics perform the log10 function.
7236
7237Arguments:
7238""""""""""
7239
7240The argument and return value are floating point numbers of the same
7241type.
7242
7243Semantics:
7244""""""""""
7245
7246This function returns the same values as the libm ``log10`` functions
7247would, and handles error conditions in the same way.
7248
7249'``llvm.log2.*``' Intrinsic
7250^^^^^^^^^^^^^^^^^^^^^^^^^^^
7251
7252Syntax:
7253"""""""
7254
7255This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7256floating point or vector of floating point type. Not all targets support
7257all types however.
7258
7259::
7260
7261 declare float @llvm.log2.f32(float %Val)
7262 declare double @llvm.log2.f64(double %Val)
7263 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7264 declare fp128 @llvm.log2.f128(fp128 %Val)
7265 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7266
7267Overview:
7268"""""""""
7269
7270The '``llvm.log2.*``' intrinsics perform the log2 function.
7271
7272Arguments:
7273""""""""""
7274
7275The argument and return value are floating point numbers of the same
7276type.
7277
7278Semantics:
7279""""""""""
7280
7281This function returns the same values as the libm ``log2`` functions
7282would, and handles error conditions in the same way.
7283
7284'``llvm.fma.*``' Intrinsic
7285^^^^^^^^^^^^^^^^^^^^^^^^^^
7286
7287Syntax:
7288"""""""
7289
7290This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7291floating point or vector of floating point type. Not all targets support
7292all types however.
7293
7294::
7295
7296 declare float @llvm.fma.f32(float %a, float %b, float %c)
7297 declare double @llvm.fma.f64(double %a, double %b, double %c)
7298 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7299 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7300 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7301
7302Overview:
7303"""""""""
7304
7305The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7306operation.
7307
7308Arguments:
7309""""""""""
7310
7311The argument and return value are floating point numbers of the same
7312type.
7313
7314Semantics:
7315""""""""""
7316
7317This function returns the same values as the libm ``fma`` functions
7318would.
7319
7320'``llvm.fabs.*``' Intrinsic
7321^^^^^^^^^^^^^^^^^^^^^^^^^^^
7322
7323Syntax:
7324"""""""
7325
7326This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7327floating point or vector of floating point type. Not all targets support
7328all types however.
7329
7330::
7331
7332 declare float @llvm.fabs.f32(float %Val)
7333 declare double @llvm.fabs.f64(double %Val)
7334 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7335 declare fp128 @llvm.fabs.f128(fp128 %Val)
7336 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7337
7338Overview:
7339"""""""""
7340
7341The '``llvm.fabs.*``' intrinsics return the absolute value of the
7342operand.
7343
7344Arguments:
7345""""""""""
7346
7347The argument and return value are floating point numbers of the same
7348type.
7349
7350Semantics:
7351""""""""""
7352
7353This function returns the same values as the libm ``fabs`` functions
7354would, and handles error conditions in the same way.
7355
7356'``llvm.floor.*``' Intrinsic
7357^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7358
7359Syntax:
7360"""""""
7361
7362This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7363floating point or vector of floating point type. Not all targets support
7364all types however.
7365
7366::
7367
7368 declare float @llvm.floor.f32(float %Val)
7369 declare double @llvm.floor.f64(double %Val)
7370 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7371 declare fp128 @llvm.floor.f128(fp128 %Val)
7372 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7373
7374Overview:
7375"""""""""
7376
7377The '``llvm.floor.*``' intrinsics return the floor of the operand.
7378
7379Arguments:
7380""""""""""
7381
7382The argument and return value are floating point numbers of the same
7383type.
7384
7385Semantics:
7386""""""""""
7387
7388This function returns the same values as the libm ``floor`` functions
7389would, and handles error conditions in the same way.
7390
7391'``llvm.ceil.*``' Intrinsic
7392^^^^^^^^^^^^^^^^^^^^^^^^^^^
7393
7394Syntax:
7395"""""""
7396
7397This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7398floating point or vector of floating point type. Not all targets support
7399all types however.
7400
7401::
7402
7403 declare float @llvm.ceil.f32(float %Val)
7404 declare double @llvm.ceil.f64(double %Val)
7405 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7406 declare fp128 @llvm.ceil.f128(fp128 %Val)
7407 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7408
7409Overview:
7410"""""""""
7411
7412The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7413
7414Arguments:
7415""""""""""
7416
7417The argument and return value are floating point numbers of the same
7418type.
7419
7420Semantics:
7421""""""""""
7422
7423This function returns the same values as the libm ``ceil`` functions
7424would, and handles error conditions in the same way.
7425
7426'``llvm.trunc.*``' Intrinsic
7427^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7428
7429Syntax:
7430"""""""
7431
7432This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7433floating point or vector of floating point type. Not all targets support
7434all types however.
7435
7436::
7437
7438 declare float @llvm.trunc.f32(float %Val)
7439 declare double @llvm.trunc.f64(double %Val)
7440 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7441 declare fp128 @llvm.trunc.f128(fp128 %Val)
7442 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7443
7444Overview:
7445"""""""""
7446
7447The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7448nearest integer not larger in magnitude than the operand.
7449
7450Arguments:
7451""""""""""
7452
7453The argument and return value are floating point numbers of the same
7454type.
7455
7456Semantics:
7457""""""""""
7458
7459This function returns the same values as the libm ``trunc`` functions
7460would, and handles error conditions in the same way.
7461
7462'``llvm.rint.*``' Intrinsic
7463^^^^^^^^^^^^^^^^^^^^^^^^^^^
7464
7465Syntax:
7466"""""""
7467
7468This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7469floating point or vector of floating point type. Not all targets support
7470all types however.
7471
7472::
7473
7474 declare float @llvm.rint.f32(float %Val)
7475 declare double @llvm.rint.f64(double %Val)
7476 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7477 declare fp128 @llvm.rint.f128(fp128 %Val)
7478 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7479
7480Overview:
7481"""""""""
7482
7483The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7484nearest integer. It may raise an inexact floating-point exception if the
7485operand isn't an integer.
7486
7487Arguments:
7488""""""""""
7489
7490The argument and return value are floating point numbers of the same
7491type.
7492
7493Semantics:
7494""""""""""
7495
7496This function returns the same values as the libm ``rint`` functions
7497would, and handles error conditions in the same way.
7498
7499'``llvm.nearbyint.*``' Intrinsic
7500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7501
7502Syntax:
7503"""""""
7504
7505This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7506floating point or vector of floating point type. Not all targets support
7507all types however.
7508
7509::
7510
7511 declare float @llvm.nearbyint.f32(float %Val)
7512 declare double @llvm.nearbyint.f64(double %Val)
7513 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7514 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7515 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7516
7517Overview:
7518"""""""""
7519
7520The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7521nearest integer.
7522
7523Arguments:
7524""""""""""
7525
7526The argument and return value are floating point numbers of the same
7527type.
7528
7529Semantics:
7530""""""""""
7531
7532This function returns the same values as the libm ``nearbyint``
7533functions would, and handles error conditions in the same way.
7534
Hal Finkel41418d12013-08-07 22:49:12 +00007535'``llvm.round.*``' Intrinsic
7536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7537
7538Syntax:
7539"""""""
7540
7541This is an overloaded intrinsic. You can use ``llvm.round`` on any
7542floating point or vector of floating point type. Not all targets support
7543all types however.
7544
7545::
7546
7547 declare float @llvm.round.f32(float %Val)
7548 declare double @llvm.round.f64(double %Val)
7549 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7550 declare fp128 @llvm.round.f128(fp128 %Val)
7551 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7552
7553Overview:
7554"""""""""
7555
7556The '``llvm.round.*``' intrinsics returns the operand rounded to the
7557nearest integer.
7558
7559Arguments:
7560""""""""""
7561
7562The argument and return value are floating point numbers of the same
7563type.
7564
7565Semantics:
7566""""""""""
7567
7568This function returns the same values as the libm ``round``
7569functions would, and handles error conditions in the same way.
7570
Sean Silvaf722b002012-12-07 10:36:55 +00007571Bit Manipulation Intrinsics
7572---------------------------
7573
7574LLVM provides intrinsics for a few important bit manipulation
7575operations. These allow efficient code generation for some algorithms.
7576
7577'``llvm.bswap.*``' Intrinsics
7578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7579
7580Syntax:
7581"""""""
7582
7583This is an overloaded intrinsic function. You can use bswap on any
7584integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7585
7586::
7587
7588 declare i16 @llvm.bswap.i16(i16 <id>)
7589 declare i32 @llvm.bswap.i32(i32 <id>)
7590 declare i64 @llvm.bswap.i64(i64 <id>)
7591
7592Overview:
7593"""""""""
7594
7595The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7596values with an even number of bytes (positive multiple of 16 bits).
7597These are useful for performing operations on data that is not in the
7598target's native byte order.
7599
7600Semantics:
7601""""""""""
7602
7603The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7604and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7605intrinsic returns an i32 value that has the four bytes of the input i32
7606swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7607returned i32 will have its bytes in 3, 2, 1, 0 order. The
7608``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7609concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7610respectively).
7611
7612'``llvm.ctpop.*``' Intrinsic
7613^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7614
7615Syntax:
7616"""""""
7617
7618This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7619bit width, or on any vector with integer elements. Not all targets
7620support all bit widths or vector types, however.
7621
7622::
7623
7624 declare i8 @llvm.ctpop.i8(i8 <src>)
7625 declare i16 @llvm.ctpop.i16(i16 <src>)
7626 declare i32 @llvm.ctpop.i32(i32 <src>)
7627 declare i64 @llvm.ctpop.i64(i64 <src>)
7628 declare i256 @llvm.ctpop.i256(i256 <src>)
7629 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7630
7631Overview:
7632"""""""""
7633
7634The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7635in a value.
7636
7637Arguments:
7638""""""""""
7639
7640The only argument is the value to be counted. The argument may be of any
7641integer type, or a vector with integer elements. The return type must
7642match the argument type.
7643
7644Semantics:
7645""""""""""
7646
7647The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7648each element of a vector.
7649
7650'``llvm.ctlz.*``' Intrinsic
7651^^^^^^^^^^^^^^^^^^^^^^^^^^^
7652
7653Syntax:
7654"""""""
7655
7656This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7657integer bit width, or any vector whose elements are integers. Not all
7658targets support all bit widths or vector types, however.
7659
7660::
7661
7662 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7663 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7664 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7665 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7666 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7667 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7668
7669Overview:
7670"""""""""
7671
7672The '``llvm.ctlz``' family of intrinsic functions counts the number of
7673leading zeros in a variable.
7674
7675Arguments:
7676""""""""""
7677
7678The first argument is the value to be counted. This argument may be of
7679any integer type, or a vectory with integer element type. The return
7680type must match the first argument type.
7681
7682The second argument must be a constant and is a flag to indicate whether
7683the intrinsic should ensure that a zero as the first argument produces a
7684defined result. Historically some architectures did not provide a
7685defined result for zero values as efficiently, and many algorithms are
7686now predicated on avoiding zero-value inputs.
7687
7688Semantics:
7689""""""""""
7690
7691The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7692zeros in a variable, or within each element of the vector. If
7693``src == 0`` then the result is the size in bits of the type of ``src``
7694if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7695``llvm.ctlz(i32 2) = 30``.
7696
7697'``llvm.cttz.*``' Intrinsic
7698^^^^^^^^^^^^^^^^^^^^^^^^^^^
7699
7700Syntax:
7701"""""""
7702
7703This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7704integer bit width, or any vector of integer elements. Not all targets
7705support all bit widths or vector types, however.
7706
7707::
7708
7709 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7710 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7711 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7712 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7713 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7714 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7715
7716Overview:
7717"""""""""
7718
7719The '``llvm.cttz``' family of intrinsic functions counts the number of
7720trailing zeros.
7721
7722Arguments:
7723""""""""""
7724
7725The first argument is the value to be counted. This argument may be of
7726any integer type, or a vectory with integer element type. The return
7727type must match the first argument type.
7728
7729The second argument must be a constant and is a flag to indicate whether
7730the intrinsic should ensure that a zero as the first argument produces a
7731defined result. Historically some architectures did not provide a
7732defined result for zero values as efficiently, and many algorithms are
7733now predicated on avoiding zero-value inputs.
7734
7735Semantics:
7736""""""""""
7737
7738The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7739zeros in a variable, or within each element of a vector. If ``src == 0``
7740then the result is the size in bits of the type of ``src`` if
7741``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7742``llvm.cttz(2) = 1``.
7743
7744Arithmetic with Overflow Intrinsics
7745-----------------------------------
7746
7747LLVM provides intrinsics for some arithmetic with overflow operations.
7748
7749'``llvm.sadd.with.overflow.*``' Intrinsics
7750^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7751
7752Syntax:
7753"""""""
7754
7755This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7756on any integer bit width.
7757
7758::
7759
7760 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7761 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7762 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7763
7764Overview:
7765"""""""""
7766
7767The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7768a signed addition of the two arguments, and indicate whether an overflow
7769occurred during the signed summation.
7770
7771Arguments:
7772""""""""""
7773
7774The arguments (%a and %b) and the first element of the result structure
7775may be of integer types of any bit width, but they must have the same
7776bit width. The second element of the result structure must be of type
7777``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7778addition.
7779
7780Semantics:
7781""""""""""
7782
7783The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007784a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007785first element of which is the signed summation, and the second element
7786of which is a bit specifying if the signed summation resulted in an
7787overflow.
7788
7789Examples:
7790"""""""""
7791
7792.. code-block:: llvm
7793
7794 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7795 %sum = extractvalue {i32, i1} %res, 0
7796 %obit = extractvalue {i32, i1} %res, 1
7797 br i1 %obit, label %overflow, label %normal
7798
7799'``llvm.uadd.with.overflow.*``' Intrinsics
7800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7801
7802Syntax:
7803"""""""
7804
7805This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7806on any integer bit width.
7807
7808::
7809
7810 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7811 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7812 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7813
7814Overview:
7815"""""""""
7816
7817The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7818an unsigned addition of the two arguments, and indicate whether a carry
7819occurred during the unsigned summation.
7820
7821Arguments:
7822""""""""""
7823
7824The arguments (%a and %b) and the first element of the result structure
7825may be of integer types of any bit width, but they must have the same
7826bit width. The second element of the result structure must be of type
7827``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7828addition.
7829
7830Semantics:
7831""""""""""
7832
7833The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007834an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007835first element of which is the sum, and the second element of which is a
7836bit specifying if the unsigned summation resulted in a carry.
7837
7838Examples:
7839"""""""""
7840
7841.. code-block:: llvm
7842
7843 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7844 %sum = extractvalue {i32, i1} %res, 0
7845 %obit = extractvalue {i32, i1} %res, 1
7846 br i1 %obit, label %carry, label %normal
7847
7848'``llvm.ssub.with.overflow.*``' Intrinsics
7849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7850
7851Syntax:
7852"""""""
7853
7854This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7855on any integer bit width.
7856
7857::
7858
7859 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7860 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7861 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7862
7863Overview:
7864"""""""""
7865
7866The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7867a signed subtraction of the two arguments, and indicate whether an
7868overflow occurred during the signed subtraction.
7869
7870Arguments:
7871""""""""""
7872
7873The arguments (%a and %b) and the first element of the result structure
7874may be of integer types of any bit width, but they must have the same
7875bit width. The second element of the result structure must be of type
7876``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7877subtraction.
7878
7879Semantics:
7880""""""""""
7881
7882The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007883a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007884first element of which is the subtraction, and the second element of
7885which is a bit specifying if the signed subtraction resulted in an
7886overflow.
7887
7888Examples:
7889"""""""""
7890
7891.. code-block:: llvm
7892
7893 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7894 %sum = extractvalue {i32, i1} %res, 0
7895 %obit = extractvalue {i32, i1} %res, 1
7896 br i1 %obit, label %overflow, label %normal
7897
7898'``llvm.usub.with.overflow.*``' Intrinsics
7899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7900
7901Syntax:
7902"""""""
7903
7904This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7905on any integer bit width.
7906
7907::
7908
7909 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7910 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7911 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7912
7913Overview:
7914"""""""""
7915
7916The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7917an unsigned subtraction of the two arguments, and indicate whether an
7918overflow occurred during the unsigned subtraction.
7919
7920Arguments:
7921""""""""""
7922
7923The arguments (%a and %b) and the first element of the result structure
7924may be of integer types of any bit width, but they must have the same
7925bit width. The second element of the result structure must be of type
7926``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7927subtraction.
7928
7929Semantics:
7930""""""""""
7931
7932The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007933an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007934the first element of which is the subtraction, and the second element of
7935which is a bit specifying if the unsigned subtraction resulted in an
7936overflow.
7937
7938Examples:
7939"""""""""
7940
7941.. code-block:: llvm
7942
7943 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7944 %sum = extractvalue {i32, i1} %res, 0
7945 %obit = extractvalue {i32, i1} %res, 1
7946 br i1 %obit, label %overflow, label %normal
7947
7948'``llvm.smul.with.overflow.*``' Intrinsics
7949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7950
7951Syntax:
7952"""""""
7953
7954This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7955on any integer bit width.
7956
7957::
7958
7959 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7960 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7961 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7962
7963Overview:
7964"""""""""
7965
7966The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7967a signed multiplication of the two arguments, and indicate whether an
7968overflow occurred during the signed multiplication.
7969
7970Arguments:
7971""""""""""
7972
7973The arguments (%a and %b) and the first element of the result structure
7974may be of integer types of any bit width, but they must have the same
7975bit width. The second element of the result structure must be of type
7976``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7977multiplication.
7978
7979Semantics:
7980""""""""""
7981
7982The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007983a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007984the first element of which is the multiplication, and the second element
7985of which is a bit specifying if the signed multiplication resulted in an
7986overflow.
7987
7988Examples:
7989"""""""""
7990
7991.. code-block:: llvm
7992
7993 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7994 %sum = extractvalue {i32, i1} %res, 0
7995 %obit = extractvalue {i32, i1} %res, 1
7996 br i1 %obit, label %overflow, label %normal
7997
7998'``llvm.umul.with.overflow.*``' Intrinsics
7999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8000
8001Syntax:
8002"""""""
8003
8004This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8005on any integer bit width.
8006
8007::
8008
8009 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8010 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8011 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8012
8013Overview:
8014"""""""""
8015
8016The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8017a unsigned multiplication of the two arguments, and indicate whether an
8018overflow occurred during the unsigned multiplication.
8019
8020Arguments:
8021""""""""""
8022
8023The arguments (%a and %b) and the first element of the result structure
8024may be of integer types of any bit width, but they must have the same
8025bit width. The second element of the result structure must be of type
8026``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8027multiplication.
8028
8029Semantics:
8030""""""""""
8031
8032The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008033an unsigned multiplication of the two arguments. They return a structure ---
8034the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00008035element of which is a bit specifying if the unsigned multiplication
8036resulted in an overflow.
8037
8038Examples:
8039"""""""""
8040
8041.. code-block:: llvm
8042
8043 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8044 %sum = extractvalue {i32, i1} %res, 0
8045 %obit = extractvalue {i32, i1} %res, 1
8046 br i1 %obit, label %overflow, label %normal
8047
8048Specialised Arithmetic Intrinsics
8049---------------------------------
8050
8051'``llvm.fmuladd.*``' Intrinsic
8052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8053
8054Syntax:
8055"""""""
8056
8057::
8058
8059 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8060 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8061
8062Overview:
8063"""""""""
8064
8065The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008066expressions that can be fused if the code generator determines that (a) the
8067target instruction set has support for a fused operation, and (b) that the
8068fused operation is more efficient than the equivalent, separate pair of mul
8069and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008070
8071Arguments:
8072""""""""""
8073
8074The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8075multiplicands, a and b, and an addend c.
8076
8077Semantics:
8078""""""""""
8079
8080The expression:
8081
8082::
8083
8084 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8085
8086is equivalent to the expression a \* b + c, except that rounding will
8087not be performed between the multiplication and addition steps if the
8088code generator fuses the operations. Fusion is not guaranteed, even if
8089the target platform supports it. If a fused multiply-add is required the
8090corresponding llvm.fma.\* intrinsic function should be used instead.
8091
8092Examples:
8093"""""""""
8094
8095.. code-block:: llvm
8096
8097 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8098
8099Half Precision Floating Point Intrinsics
8100----------------------------------------
8101
8102For most target platforms, half precision floating point is a
8103storage-only format. This means that it is a dense encoding (in memory)
8104but does not support computation in the format.
8105
8106This means that code must first load the half-precision floating point
8107value as an i16, then convert it to float with
8108:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8109then be performed on the float value (including extending to double
8110etc). To store the value back to memory, it is first converted to float
8111if needed, then converted to i16 with
8112:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8113i16 value.
8114
8115.. _int_convert_to_fp16:
8116
8117'``llvm.convert.to.fp16``' Intrinsic
8118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8119
8120Syntax:
8121"""""""
8122
8123::
8124
8125 declare i16 @llvm.convert.to.fp16(f32 %a)
8126
8127Overview:
8128"""""""""
8129
8130The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8131from single precision floating point format to half precision floating
8132point format.
8133
8134Arguments:
8135""""""""""
8136
8137The intrinsic function contains single argument - the value to be
8138converted.
8139
8140Semantics:
8141""""""""""
8142
8143The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8144from single precision floating point format to half precision floating
8145point format. The return value is an ``i16`` which contains the
8146converted number.
8147
8148Examples:
8149"""""""""
8150
8151.. code-block:: llvm
8152
8153 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8154 store i16 %res, i16* @x, align 2
8155
8156.. _int_convert_from_fp16:
8157
8158'``llvm.convert.from.fp16``' Intrinsic
8159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8160
8161Syntax:
8162"""""""
8163
8164::
8165
8166 declare f32 @llvm.convert.from.fp16(i16 %a)
8167
8168Overview:
8169"""""""""
8170
8171The '``llvm.convert.from.fp16``' intrinsic function performs a
8172conversion from half precision floating point format to single precision
8173floating point format.
8174
8175Arguments:
8176""""""""""
8177
8178The intrinsic function contains single argument - the value to be
8179converted.
8180
8181Semantics:
8182""""""""""
8183
8184The '``llvm.convert.from.fp16``' intrinsic function performs a
8185conversion from half single precision floating point format to single
8186precision floating point format. The input half-float value is
8187represented by an ``i16`` value.
8188
8189Examples:
8190"""""""""
8191
8192.. code-block:: llvm
8193
8194 %a = load i16* @x, align 2
8195 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8196
8197Debugger Intrinsics
8198-------------------
8199
8200The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8201prefix), are described in the `LLVM Source Level
8202Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8203document.
8204
8205Exception Handling Intrinsics
8206-----------------------------
8207
8208The LLVM exception handling intrinsics (which all start with
8209``llvm.eh.`` prefix), are described in the `LLVM Exception
8210Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8211
8212.. _int_trampoline:
8213
8214Trampoline Intrinsics
8215---------------------
8216
8217These intrinsics make it possible to excise one parameter, marked with
8218the :ref:`nest <nest>` attribute, from a function. The result is a
8219callable function pointer lacking the nest parameter - the caller does
8220not need to provide a value for it. Instead, the value to use is stored
8221in advance in a "trampoline", a block of memory usually allocated on the
8222stack, which also contains code to splice the nest value into the
8223argument list. This is used to implement the GCC nested function address
8224extension.
8225
8226For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8227then the resulting function pointer has signature ``i32 (i32, i32)*``.
8228It can be created as follows:
8229
8230.. code-block:: llvm
8231
8232 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8233 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8234 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8235 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8236 %fp = bitcast i8* %p to i32 (i32, i32)*
8237
8238The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8239``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8240
8241.. _int_it:
8242
8243'``llvm.init.trampoline``' Intrinsic
8244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8245
8246Syntax:
8247"""""""
8248
8249::
8250
8251 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8252
8253Overview:
8254"""""""""
8255
8256This fills the memory pointed to by ``tramp`` with executable code,
8257turning it into a trampoline.
8258
8259Arguments:
8260""""""""""
8261
8262The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8263pointers. The ``tramp`` argument must point to a sufficiently large and
8264sufficiently aligned block of memory; this memory is written to by the
8265intrinsic. Note that the size and the alignment are target-specific -
8266LLVM currently provides no portable way of determining them, so a
8267front-end that generates this intrinsic needs to have some
8268target-specific knowledge. The ``func`` argument must hold a function
8269bitcast to an ``i8*``.
8270
8271Semantics:
8272""""""""""
8273
8274The block of memory pointed to by ``tramp`` is filled with target
8275dependent code, turning it into a function. Then ``tramp`` needs to be
8276passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8277be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8278function's signature is the same as that of ``func`` with any arguments
8279marked with the ``nest`` attribute removed. At most one such ``nest``
8280argument is allowed, and it must be of pointer type. Calling the new
8281function is equivalent to calling ``func`` with the same argument list,
8282but with ``nval`` used for the missing ``nest`` argument. If, after
8283calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8284modified, then the effect of any later call to the returned function
8285pointer is undefined.
8286
8287.. _int_at:
8288
8289'``llvm.adjust.trampoline``' Intrinsic
8290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8291
8292Syntax:
8293"""""""
8294
8295::
8296
8297 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8298
8299Overview:
8300"""""""""
8301
8302This performs any required machine-specific adjustment to the address of
8303a trampoline (passed as ``tramp``).
8304
8305Arguments:
8306""""""""""
8307
8308``tramp`` must point to a block of memory which already has trampoline
8309code filled in by a previous call to
8310:ref:`llvm.init.trampoline <int_it>`.
8311
8312Semantics:
8313""""""""""
8314
8315On some architectures the address of the code to be executed needs to be
8316different to the address where the trampoline is actually stored. This
8317intrinsic returns the executable address corresponding to ``tramp``
8318after performing the required machine specific adjustments. The pointer
8319returned can then be :ref:`bitcast and executed <int_trampoline>`.
8320
8321Memory Use Markers
8322------------------
8323
8324This class of intrinsics exists to information about the lifetime of
8325memory objects and ranges where variables are immutable.
8326
8327'``llvm.lifetime.start``' Intrinsic
8328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8329
8330Syntax:
8331"""""""
8332
8333::
8334
8335 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8336
8337Overview:
8338"""""""""
8339
8340The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8341object's lifetime.
8342
8343Arguments:
8344""""""""""
8345
8346The first argument is a constant integer representing the size of the
8347object, or -1 if it is variable sized. The second argument is a pointer
8348to the object.
8349
8350Semantics:
8351""""""""""
8352
8353This intrinsic indicates that before this point in the code, the value
8354of the memory pointed to by ``ptr`` is dead. This means that it is known
8355to never be used and has an undefined value. A load from the pointer
8356that precedes this intrinsic can be replaced with ``'undef'``.
8357
8358'``llvm.lifetime.end``' Intrinsic
8359^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8360
8361Syntax:
8362"""""""
8363
8364::
8365
8366 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8367
8368Overview:
8369"""""""""
8370
8371The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8372object's lifetime.
8373
8374Arguments:
8375""""""""""
8376
8377The first argument is a constant integer representing the size of the
8378object, or -1 if it is variable sized. The second argument is a pointer
8379to the object.
8380
8381Semantics:
8382""""""""""
8383
8384This intrinsic indicates that after this point in the code, the value of
8385the memory pointed to by ``ptr`` is dead. This means that it is known to
8386never be used and has an undefined value. Any stores into the memory
8387object following this intrinsic may be removed as dead.
8388
8389'``llvm.invariant.start``' Intrinsic
8390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8391
8392Syntax:
8393"""""""
8394
8395::
8396
8397 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8398
8399Overview:
8400"""""""""
8401
8402The '``llvm.invariant.start``' intrinsic specifies that the contents of
8403a memory object will not change.
8404
8405Arguments:
8406""""""""""
8407
8408The first argument is a constant integer representing the size of the
8409object, or -1 if it is variable sized. The second argument is a pointer
8410to the object.
8411
8412Semantics:
8413""""""""""
8414
8415This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8416the return value, the referenced memory location is constant and
8417unchanging.
8418
8419'``llvm.invariant.end``' Intrinsic
8420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8421
8422Syntax:
8423"""""""
8424
8425::
8426
8427 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8428
8429Overview:
8430"""""""""
8431
8432The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8433memory object are mutable.
8434
8435Arguments:
8436""""""""""
8437
8438The first argument is the matching ``llvm.invariant.start`` intrinsic.
8439The second argument is a constant integer representing the size of the
8440object, or -1 if it is variable sized and the third argument is a
8441pointer to the object.
8442
8443Semantics:
8444""""""""""
8445
8446This intrinsic indicates that the memory is mutable again.
8447
8448General Intrinsics
8449------------------
8450
8451This class of intrinsics is designed to be generic and has no specific
8452purpose.
8453
8454'``llvm.var.annotation``' Intrinsic
8455^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8456
8457Syntax:
8458"""""""
8459
8460::
8461
8462 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8463
8464Overview:
8465"""""""""
8466
8467The '``llvm.var.annotation``' intrinsic.
8468
8469Arguments:
8470""""""""""
8471
8472The first argument is a pointer to a value, the second is a pointer to a
8473global string, the third is a pointer to a global string which is the
8474source file name, and the last argument is the line number.
8475
8476Semantics:
8477""""""""""
8478
8479This intrinsic allows annotation of local variables with arbitrary
8480strings. This can be useful for special purpose optimizations that want
8481to look for these annotations. These have no other defined use; they are
8482ignored by code generation and optimization.
8483
Michael Gottesman872b4e52013-03-26 00:34:27 +00008484'``llvm.ptr.annotation.*``' Intrinsic
8485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8486
8487Syntax:
8488"""""""
8489
8490This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8491pointer to an integer of any width. *NOTE* you must specify an address space for
8492the pointer. The identifier for the default address space is the integer
8493'``0``'.
8494
8495::
8496
8497 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8498 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8499 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8500 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8501 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8502
8503Overview:
8504"""""""""
8505
8506The '``llvm.ptr.annotation``' intrinsic.
8507
8508Arguments:
8509""""""""""
8510
8511The first argument is a pointer to an integer value of arbitrary bitwidth
8512(result of some expression), the second is a pointer to a global string, the
8513third is a pointer to a global string which is the source file name, and the
8514last argument is the line number. It returns the value of the first argument.
8515
8516Semantics:
8517""""""""""
8518
8519This intrinsic allows annotation of a pointer to an integer with arbitrary
8520strings. This can be useful for special purpose optimizations that want to look
8521for these annotations. These have no other defined use; they are ignored by code
8522generation and optimization.
8523
Sean Silvaf722b002012-12-07 10:36:55 +00008524'``llvm.annotation.*``' Intrinsic
8525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8526
8527Syntax:
8528"""""""
8529
8530This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8531any integer bit width.
8532
8533::
8534
8535 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8536 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8537 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8538 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8539 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8540
8541Overview:
8542"""""""""
8543
8544The '``llvm.annotation``' intrinsic.
8545
8546Arguments:
8547""""""""""
8548
8549The first argument is an integer value (result of some expression), the
8550second is a pointer to a global string, the third is a pointer to a
8551global string which is the source file name, and the last argument is
8552the line number. It returns the value of the first argument.
8553
8554Semantics:
8555""""""""""
8556
8557This intrinsic allows annotations to be put on arbitrary expressions
8558with arbitrary strings. This can be useful for special purpose
8559optimizations that want to look for these annotations. These have no
8560other defined use; they are ignored by code generation and optimization.
8561
8562'``llvm.trap``' Intrinsic
8563^^^^^^^^^^^^^^^^^^^^^^^^^
8564
8565Syntax:
8566"""""""
8567
8568::
8569
8570 declare void @llvm.trap() noreturn nounwind
8571
8572Overview:
8573"""""""""
8574
8575The '``llvm.trap``' intrinsic.
8576
8577Arguments:
8578""""""""""
8579
8580None.
8581
8582Semantics:
8583""""""""""
8584
8585This intrinsic is lowered to the target dependent trap instruction. If
8586the target does not have a trap instruction, this intrinsic will be
8587lowered to a call of the ``abort()`` function.
8588
8589'``llvm.debugtrap``' Intrinsic
8590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8591
8592Syntax:
8593"""""""
8594
8595::
8596
8597 declare void @llvm.debugtrap() nounwind
8598
8599Overview:
8600"""""""""
8601
8602The '``llvm.debugtrap``' intrinsic.
8603
8604Arguments:
8605""""""""""
8606
8607None.
8608
8609Semantics:
8610""""""""""
8611
8612This intrinsic is lowered to code which is intended to cause an
8613execution trap with the intention of requesting the attention of a
8614debugger.
8615
8616'``llvm.stackprotector``' Intrinsic
8617^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8618
8619Syntax:
8620"""""""
8621
8622::
8623
8624 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8625
8626Overview:
8627"""""""""
8628
8629The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8630onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8631is placed on the stack before local variables.
8632
8633Arguments:
8634""""""""""
8635
8636The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8637The first argument is the value loaded from the stack guard
8638``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8639enough space to hold the value of the guard.
8640
8641Semantics:
8642""""""""""
8643
Michael Gottesman2a64a632013-08-12 18:35:32 +00008644This intrinsic causes the prologue/epilogue inserter to force the position of
8645the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8646to ensure that if a local variable on the stack is overwritten, it will destroy
8647the value of the guard. When the function exits, the guard on the stack is
8648checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8649different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8650calling the ``__stack_chk_fail()`` function.
8651
8652'``llvm.stackprotectorcheck``' Intrinsic
8653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8654
8655Syntax:
8656"""""""
8657
8658::
8659
8660 declare void @llvm.stackprotectorcheck(i8** <guard>)
8661
8662Overview:
8663"""""""""
8664
8665The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman2bf823e2013-08-12 19:44:09 +00008666created stack protector and if they are not equal calls the
Sean Silvaf722b002012-12-07 10:36:55 +00008667``__stack_chk_fail()`` function.
8668
Michael Gottesman2a64a632013-08-12 18:35:32 +00008669Arguments:
8670""""""""""
8671
8672The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8673the variable ``@__stack_chk_guard``.
8674
8675Semantics:
8676""""""""""
8677
8678This intrinsic is provided to perform the stack protector check by comparing
8679``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8680values do not match call the ``__stack_chk_fail()`` function.
8681
8682The reason to provide this as an IR level intrinsic instead of implementing it
8683via other IR operations is that in order to perform this operation at the IR
8684level without an intrinsic, one would need to create additional basic blocks to
8685handle the success/failure cases. This makes it difficult to stop the stack
8686protector check from disrupting sibling tail calls in Codegen. With this
8687intrinsic, we are able to generate the stack protector basic blocks late in
8688codegen after the tail call decision has occured.
8689
Sean Silvaf722b002012-12-07 10:36:55 +00008690'``llvm.objectsize``' Intrinsic
8691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8692
8693Syntax:
8694"""""""
8695
8696::
8697
8698 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8699 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8700
8701Overview:
8702"""""""""
8703
8704The ``llvm.objectsize`` intrinsic is designed to provide information to
8705the optimizers to determine at compile time whether a) an operation
8706(like memcpy) will overflow a buffer that corresponds to an object, or
8707b) that a runtime check for overflow isn't necessary. An object in this
8708context means an allocation of a specific class, structure, array, or
8709other object.
8710
8711Arguments:
8712""""""""""
8713
8714The ``llvm.objectsize`` intrinsic takes two arguments. The first
8715argument is a pointer to or into the ``object``. The second argument is
8716a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8717or -1 (if false) when the object size is unknown. The second argument
8718only accepts constants.
8719
8720Semantics:
8721""""""""""
8722
8723The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8724the size of the object concerned. If the size cannot be determined at
8725compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8726on the ``min`` argument).
8727
8728'``llvm.expect``' Intrinsic
8729^^^^^^^^^^^^^^^^^^^^^^^^^^^
8730
8731Syntax:
8732"""""""
8733
8734::
8735
8736 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8737 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8738
8739Overview:
8740"""""""""
8741
8742The ``llvm.expect`` intrinsic provides information about expected (the
8743most probable) value of ``val``, which can be used by optimizers.
8744
8745Arguments:
8746""""""""""
8747
8748The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8749a value. The second argument is an expected value, this needs to be a
8750constant value, variables are not allowed.
8751
8752Semantics:
8753""""""""""
8754
8755This intrinsic is lowered to the ``val``.
8756
8757'``llvm.donothing``' Intrinsic
8758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8759
8760Syntax:
8761"""""""
8762
8763::
8764
8765 declare void @llvm.donothing() nounwind readnone
8766
8767Overview:
8768"""""""""
8769
8770The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8771only intrinsic that can be called with an invoke instruction.
8772
8773Arguments:
8774""""""""""
8775
8776None.
8777
8778Semantics:
8779""""""""""
8780
8781This intrinsic does nothing, and it's removed by optimizers and ignored
8782by codegen.