blob: a3bc746197f3c9add65cab7a60367c4de484e1b0 [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner847df252004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner847df252004-01-30 22:25:18 +000020//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnera960d952003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
Chris Lattner95b2c7d2006-12-19 22:59:26 +000026#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000027#include "X86.h"
28#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000030#include "llvm/ADT/DenseMap.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000032#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000035#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000039#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000044#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000045using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000046
Chris Lattner95b2c7d2006-12-19 22:59:26 +000047STATISTIC(NumFXCH, "Number of fxch instructions inserted");
48STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000049
Chris Lattner95b2c7d2006-12-19 22:59:26 +000050namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000051 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000052 static char ID;
Owen Anderson90c579d2010-08-06 18:33:48 +000053 FPS() : MachineFunctionPass(ID) {
Jakob Stoklund Olesenb47bb132010-07-16 22:00:33 +000054 // This is really only to keep valgrind quiet.
55 // The logic in isLive() is too much for it.
56 memset(Stack, 0, sizeof(Stack));
57 memset(RegMap, 0, sizeof(RegMap));
58 }
Devang Patel794fd752007-05-01 21:15:47 +000059
Evan Chengbbeeb2a2008-09-22 20:58:04 +000060 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000061 AU.setPreservesCFG();
Evan Cheng8b56a902008-09-22 22:21:38 +000062 AU.addPreservedID(MachineLoopInfoID);
63 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000064 MachineFunctionPass::getAnalysisUsage(AU);
65 }
66
Chris Lattnera960d952003-01-13 01:01:59 +000067 virtual bool runOnMachineFunction(MachineFunction &MF);
68
69 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
70
Chris Lattnera960d952003-01-13 01:01:59 +000071 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000072 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000073
74 // Two CFG edges are related if they leave the same block, or enter the same
75 // block. The transitive closure of an edge under this relation is a
76 // LiveBundle. It represents a set of CFG edges where the live FP stack
77 // registers must be allocated identically in the x87 stack.
78 //
79 // A LiveBundle is usually all the edges leaving a block, or all the edges
80 // entering a block, but it can contain more edges if critical edges are
81 // present.
82 //
83 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
84 // but the exact mapping of FP registers to stack slots is fixed later.
85 struct LiveBundle {
86 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
87 unsigned Mask;
88
89 // Number of pre-assigned live registers in FixStack. This is 0 when the
90 // stack order has not yet been fixed.
91 unsigned FixCount;
92
93 // Assigned stack order for live-in registers.
94 // FixStack[i] == getStackEntry(i) for all i < FixCount.
95 unsigned char FixStack[8];
96
97 LiveBundle(unsigned m = 0) : Mask(m), FixCount(0) {}
98
99 // Have the live registers been assigned a stack order yet?
100 bool isFixed() const { return !Mask || FixCount; }
101 };
102
103 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
104 // with no live FP registers.
105 SmallVector<LiveBundle, 8> LiveBundles;
106
107 // Map each MBB in the current function to an (ingoing, outgoing) index into
108 // LiveBundles. Blocks with no FP registers live in or out map to (0, 0)
109 // and are not actually stored in the map.
110 DenseMap<MachineBasicBlock*, std::pair<unsigned, unsigned> > BlockBundle;
111
112 // Return a bitmask of FP registers in block's live-in list.
113 unsigned calcLiveInMask(MachineBasicBlock *MBB) {
114 unsigned Mask = 0;
115 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
116 E = MBB->livein_end(); I != E; ++I) {
117 unsigned Reg = *I - X86::FP0;
118 if (Reg < 8)
119 Mask |= 1 << Reg;
120 }
121 return Mask;
122 }
123
124 // Partition all the CFG edges into LiveBundles.
125 void bundleCFG(MachineFunction &MF);
126
Evan Cheng32644ac2006-12-01 10:11:51 +0000127 MachineBasicBlock *MBB; // Current basic block
128 unsigned Stack[8]; // FP<n> Registers in each stack slot...
129 unsigned RegMap[8]; // Track which stack slot contains each register
130 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000131
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000132 // Set up our stack model to match the incoming registers to MBB.
133 void setupBlockStack();
134
135 // Shuffle live registers to match the expectations of successor blocks.
136 void finishBlockStack();
137
Chris Lattnera960d952003-01-13 01:01:59 +0000138 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +0000139 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +0000140 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +0000141 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000142 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +0000143 }
David Greenef5c95a62010-01-05 01:29:34 +0000144 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +0000145 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000146
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000147 /// getSlot - Return the stack slot number a particular register number is
148 /// in.
Chris Lattnera960d952003-01-13 01:01:59 +0000149 unsigned getSlot(unsigned RegNo) const {
150 assert(RegNo < 8 && "Regno out of range!");
151 return RegMap[RegNo];
152 }
153
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000154 /// isLive - Is RegNo currently live in the stack?
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000155 bool isLive(unsigned RegNo) const {
156 unsigned Slot = getSlot(RegNo);
157 return Slot < StackTop && Stack[Slot] == RegNo;
158 }
159
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000160 /// getScratchReg - Return an FP register that is not currently in use.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000161 unsigned getScratchReg() {
162 for (int i = 7; i >= 0; --i)
163 if (!isLive(i))
164 return i;
165 llvm_unreachable("Ran out of scratch FP registers");
166 }
167
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000168 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +0000169 unsigned getStackEntry(unsigned STi) const {
Evan Cheng3f490f32010-10-12 23:19:28 +0000170 if (STi >= StackTop)
171 report_fatal_error("Access past stack top!");
Chris Lattnera960d952003-01-13 01:01:59 +0000172 return Stack[StackTop-1-STi];
173 }
174
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000175 /// getSTReg - Return the X86::ST(i) register which contains the specified
176 /// FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000177 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000178 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000179 }
180
Chris Lattner447ff682008-03-11 03:23:40 +0000181 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000182 void pushReg(unsigned Reg) {
183 assert(Reg < 8 && "Register number out of range!");
Evan Cheng3f490f32010-10-12 23:19:28 +0000184 if (StackTop >= 8)
185 report_fatal_error("Stack overflow!");
Chris Lattnera960d952003-01-13 01:01:59 +0000186 Stack[StackTop] = Reg;
187 RegMap[Reg] = StackTop++;
188 }
189
190 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000191 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000192 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000193 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000194
Chris Lattner447ff682008-03-11 03:23:40 +0000195 unsigned STReg = getSTReg(RegNo);
196 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000197
Chris Lattner447ff682008-03-11 03:23:40 +0000198 // Swap the slots the regs are in.
199 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000200
Chris Lattner447ff682008-03-11 03:23:40 +0000201 // Swap stack slot contents.
Evan Cheng3f490f32010-10-12 23:19:28 +0000202 if (RegMap[RegOnTop] >= StackTop)
203 report_fatal_error("Access past stack top!");
Chris Lattner447ff682008-03-11 03:23:40 +0000204 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000205
Chris Lattner447ff682008-03-11 03:23:40 +0000206 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000207 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmanfe601042010-06-22 15:08:57 +0000208 ++NumFXCH;
Chris Lattnera960d952003-01-13 01:01:59 +0000209 }
210
Chris Lattner0526f012004-04-01 04:06:09 +0000211 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000212 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000213 unsigned STReg = getSTReg(RegNo);
214 pushReg(AsReg); // New register on top of stack
215
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000216 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000217 }
218
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000219 /// popStackAfter - Pop the current value off of the top of the FP stack
220 /// after the specified instruction.
Chris Lattnera960d952003-01-13 01:01:59 +0000221 void popStackAfter(MachineBasicBlock::iterator &I);
222
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000223 /// freeStackSlotAfter - Free the specified register from the register
224 /// stack, so that it is no longer in a register. If the register is
225 /// currently at the top of the stack, we just pop the current instruction,
226 /// otherwise we store the current top-of-stack into the specified slot,
227 /// then pop the top of stack.
Chris Lattner0526f012004-04-01 04:06:09 +0000228 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
229
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000230 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
231 /// instruction.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000232 MachineBasicBlock::iterator
233 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
234
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000235 /// Adjust the live registers to be the set in Mask.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000236 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
237
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000238 /// Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
239 /// st(0), FP reg FixStack[1] is st(1) etc.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000240 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
241 MachineBasicBlock::iterator I);
242
Chris Lattnera960d952003-01-13 01:01:59 +0000243 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
244
245 void handleZeroArgFP(MachineBasicBlock::iterator &I);
246 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000247 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000248 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000249 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000250 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000251 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000252
253 bool translateCopy(MachineInstr*);
Chris Lattnera960d952003-01-13 01:01:59 +0000254 };
Devang Patel19974732007-05-03 01:11:54 +0000255 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000256}
257
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000258FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000259
Chris Lattner3cc83842008-01-14 06:41:29 +0000260/// getFPReg - Return the X86::FPx register number for the specified operand.
261/// For example, this returns 3 for X86::FP3.
262static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000263 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000264 unsigned Reg = MO.getReg();
265 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
266 return Reg - X86::FP0;
267}
268
Chris Lattnera960d952003-01-13 01:01:59 +0000269/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
270/// register references into FP stack references.
271///
272bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000273 // We only need to run this pass if there are any FP registers used in this
274 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000275 bool FPIsUsed = false;
276
277 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
278 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000279 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000280 FPIsUsed = true;
281 break;
282 }
283
284 // Early exit.
285 if (!FPIsUsed) return false;
286
Evan Cheng32644ac2006-12-01 10:11:51 +0000287 TII = MF.getTarget().getInstrInfo();
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000288
289 // Prepare cross-MBB liveness.
290 bundleCFG(MF);
291
Chris Lattnera960d952003-01-13 01:01:59 +0000292 StackTop = 0;
293
Chris Lattner847df252004-01-30 22:25:18 +0000294 // Process the function in depth first order so that we process at least one
295 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000296 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000297 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000298
299 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000300 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000301 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
302 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000303 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000304
Chris Lattnerba3598c2009-09-08 04:55:44 +0000305 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000306 if (MF.size() != Processed.size())
307 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
308 if (Processed.insert(BB))
309 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerba3598c2009-09-08 04:55:44 +0000310
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000311 BlockBundle.clear();
312 LiveBundles.clear();
313
Chris Lattnera960d952003-01-13 01:01:59 +0000314 return Changed;
315}
316
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000317/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
318/// live-out sets for the FP registers. Consistent means that the set of
319/// registers live-out from a block is identical to the live-in set of all
320/// successors. This is not enforced by the normal live-in lists since
321/// registers may be implicitly defined, or not used by all successors.
322void FPS::bundleCFG(MachineFunction &MF) {
323 assert(LiveBundles.empty() && "Stale data in LiveBundles");
324 assert(BlockBundle.empty() && "Stale data in BlockBundle");
325 SmallPtrSet<MachineBasicBlock*, 8> PropDown, PropUp;
326
327 // LiveBundle[0] is the empty live-in set.
328 LiveBundles.resize(1);
329
330 // First gather the actual live-in masks for all MBBs.
331 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
332 MachineBasicBlock *MBB = I;
333 const unsigned Mask = calcLiveInMask(MBB);
334 if (!Mask)
335 continue;
336 // Ingoing bundle index.
337 unsigned &Idx = BlockBundle[MBB].first;
338 // Already assigned an ingoing bundle?
339 if (Idx)
340 continue;
341 // Allocate a new LiveBundle struct for this block's live-ins.
342 const unsigned BundleIdx = Idx = LiveBundles.size();
343 DEBUG(dbgs() << "Creating LB#" << BundleIdx << ": in:BB#"
344 << MBB->getNumber());
345 LiveBundles.push_back(Mask);
346 LiveBundle &Bundle = LiveBundles.back();
347
348 // Make sure all predecessors have the same live-out set.
349 PropUp.insert(MBB);
350
351 // Keep pushing liveness up and down the CFG until convergence.
352 // Only critical edges cause iteration here, but when they do, multiple
353 // blocks can be assigned to the same LiveBundle index.
354 do {
355 // Assign BundleIdx as liveout from predecessors in PropUp.
356 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropUp.begin(),
357 E = PropUp.end(); I != E; ++I) {
358 MachineBasicBlock *MBB = *I;
359 for (MachineBasicBlock::const_pred_iterator LinkI = MBB->pred_begin(),
360 LinkE = MBB->pred_end(); LinkI != LinkE; ++LinkI) {
361 MachineBasicBlock *PredMBB = *LinkI;
362 // PredMBB's liveout bundle should be set to LIIdx.
363 unsigned &Idx = BlockBundle[PredMBB].second;
364 if (Idx) {
365 assert(Idx == BundleIdx && "Inconsistent CFG");
366 continue;
367 }
368 Idx = BundleIdx;
369 DEBUG(dbgs() << " out:BB#" << PredMBB->getNumber());
370 // Propagate to siblings.
371 if (PredMBB->succ_size() > 1)
372 PropDown.insert(PredMBB);
373 }
374 }
375 PropUp.clear();
376
377 // Assign BundleIdx as livein to successors in PropDown.
378 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropDown.begin(),
379 E = PropDown.end(); I != E; ++I) {
380 MachineBasicBlock *MBB = *I;
381 for (MachineBasicBlock::const_succ_iterator LinkI = MBB->succ_begin(),
382 LinkE = MBB->succ_end(); LinkI != LinkE; ++LinkI) {
383 MachineBasicBlock *SuccMBB = *LinkI;
384 // LinkMBB's livein bundle should be set to BundleIdx.
385 unsigned &Idx = BlockBundle[SuccMBB].first;
386 if (Idx) {
387 assert(Idx == BundleIdx && "Inconsistent CFG");
388 continue;
389 }
390 Idx = BundleIdx;
391 DEBUG(dbgs() << " in:BB#" << SuccMBB->getNumber());
392 // Propagate to siblings.
393 if (SuccMBB->pred_size() > 1)
394 PropUp.insert(SuccMBB);
395 // Also accumulate the bundle liveness mask from the liveins here.
396 Bundle.Mask |= calcLiveInMask(SuccMBB);
397 }
398 }
399 PropDown.clear();
400 } while (!PropUp.empty());
401 DEBUG({
402 dbgs() << " live:";
403 for (unsigned i = 0; i < 8; ++i)
404 if (Bundle.Mask & (1<<i))
405 dbgs() << " %FP" << i;
406 dbgs() << '\n';
407 });
408 }
409}
410
Chris Lattnera960d952003-01-13 01:01:59 +0000411/// processBasicBlock - Loop over all of the instructions in the basic block,
412/// transforming FP instructions into their stack form.
413///
414bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000415 bool Changed = false;
416 MBB = &BB;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000417
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000418 setupBlockStack();
419
Chris Lattnera960d952003-01-13 01:01:59 +0000420 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000421 MachineInstr *MI = I;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000422 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000423
Chris Lattnere12ecf22008-03-11 19:50:13 +0000424 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattner518bb532010-02-09 19:54:29 +0000425 if (MI->isInlineAsm())
Chris Lattnere12ecf22008-03-11 19:50:13 +0000426 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000427
428 if (MI->isCopy() && translateCopy(MI))
429 FPInstClass = X86II::SpecialFP;
430
Chris Lattnere12ecf22008-03-11 19:50:13 +0000431 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000432 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000433
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000434 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000435 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000436 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000437
438 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000439 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000440
441 // Get dead variables list now because the MI pointer may be deleted as part
442 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000443 SmallVector<unsigned, 8> DeadRegs;
444 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
445 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000446 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000447 DeadRegs.push_back(MO.getReg());
448 }
Chris Lattnera960d952003-01-13 01:01:59 +0000449
Chris Lattnere12ecf22008-03-11 19:50:13 +0000450 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000451 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000452 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000453 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000454 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000455 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000456 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000457 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000458 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000459 }
460
461 // Check to see if any of the values defined by this instruction are dead
462 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000463 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
464 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000465 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000466 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000467 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000468 }
469 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000470
Chris Lattnera960d952003-01-13 01:01:59 +0000471 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000472 DEBUG(
473 MachineBasicBlock::iterator PrevI(PrevMI);
474 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000475 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000476 } else {
477 MachineBasicBlock::iterator Start = I;
478 // Rewind to first instruction newly inserted.
479 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000480 dbgs() << "Inserted instructions:\n\t";
481 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000482 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000483 }
484 dumpStack();
485 );
Chris Lattnera960d952003-01-13 01:01:59 +0000486
487 Changed = true;
488 }
489
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000490 finishBlockStack();
491
Chris Lattnera960d952003-01-13 01:01:59 +0000492 return Changed;
493}
494
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000495/// setupBlockStack - Use the BlockBundle map to set up our model of the stack
496/// to match predecessors' live out stack.
497void FPS::setupBlockStack() {
498 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
499 << " derived from " << MBB->getName() << ".\n");
500 StackTop = 0;
501 const LiveBundle &Bundle = LiveBundles[BlockBundle.lookup(MBB).first];
502
503 if (!Bundle.Mask) {
504 DEBUG(dbgs() << "Block has no FP live-ins.\n");
505 return;
506 }
507
508 // Depth-first iteration should ensure that we always have an assigned stack.
509 assert(Bundle.isFixed() && "Reached block before any predecessors");
510
511 // Push the fixed live-in registers.
512 for (unsigned i = Bundle.FixCount; i > 0; --i) {
513 MBB->addLiveIn(X86::ST0+i-1);
514 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
515 << unsigned(Bundle.FixStack[i-1]) << '\n');
516 pushReg(Bundle.FixStack[i-1]);
517 }
518
519 // Kill off unwanted live-ins. This can happen with a critical edge.
520 // FIXME: We could keep these live registers around as zombies. They may need
521 // to be revived at the end of a short block. It might save a few instrs.
522 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
523 DEBUG(MBB->dump());
524}
525
526/// finishBlockStack - Revive live-outs that are implicitly defined out of
527/// MBB. Shuffle live registers to match the expected fixed stack of any
528/// predecessors, and ensure that all predecessors are expecting the same
529/// stack.
530void FPS::finishBlockStack() {
531 // The RET handling below takes care of return blocks for us.
532 if (MBB->succ_empty())
533 return;
534
535 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
536 << " derived from " << MBB->getName() << ".\n");
537
538 unsigned BundleIdx = BlockBundle.lookup(MBB).second;
539 LiveBundle &Bundle = LiveBundles[BundleIdx];
540
541 // We may need to kill and define some registers to match successors.
542 // FIXME: This can probably be combined with the shuffle below.
543 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
544 adjustLiveRegs(Bundle.Mask, Term);
545
546 if (!Bundle.Mask) {
547 DEBUG(dbgs() << "No live-outs.\n");
548 return;
549 }
550
551 // Has the stack order been fixed yet?
552 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
553 if (Bundle.isFixed()) {
554 DEBUG(dbgs() << "Shuffling stack to match.\n");
555 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
556 } else {
557 // Not fixed yet, we get to choose.
558 DEBUG(dbgs() << "Fixing stack order now.\n");
559 Bundle.FixCount = StackTop;
560 for (unsigned i = 0; i < StackTop; ++i)
561 Bundle.FixStack[i] = getStackEntry(i);
562 }
563}
564
565
Chris Lattnera960d952003-01-13 01:01:59 +0000566//===----------------------------------------------------------------------===//
567// Efficient Lookup Table Support
568//===----------------------------------------------------------------------===//
569
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000570namespace {
571 struct TableEntry {
572 unsigned from;
573 unsigned to;
574 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000575 friend bool operator<(const TableEntry &TE, unsigned V) {
576 return TE.from < V;
577 }
Bill Wendling86b98b52010-08-18 18:40:57 +0000578 friend bool ATTRIBUTE_USED operator<(unsigned V, const TableEntry &TE) {
Jakob Stoklund Olesende78f052010-08-16 18:24:54 +0000579 return V < TE.from;
580 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000581 };
582}
Chris Lattnera960d952003-01-13 01:01:59 +0000583
Evan Chenga022bdf2008-07-21 20:02:45 +0000584#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000585static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
586 for (unsigned i = 0; i != NumEntries-1; ++i)
587 if (!(Table[i] < Table[i+1])) return false;
588 return true;
589}
Evan Chenga022bdf2008-07-21 20:02:45 +0000590#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000591
592static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
593 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
594 if (I != Table+N && I->from == Opcode)
595 return I->to;
596 return -1;
597}
598
Chris Lattnera960d952003-01-13 01:01:59 +0000599#ifdef NDEBUG
600#define ASSERT_SORTED(TABLE)
601#else
602#define ASSERT_SORTED(TABLE) \
603 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000604 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000605 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000606 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000607 TABLE##Checked = true; \
608 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000609 }
610#endif
611
Chris Lattner58fe4592005-12-21 07:47:04 +0000612//===----------------------------------------------------------------------===//
613// Register File -> Register Stack Mapping Methods
614//===----------------------------------------------------------------------===//
615
616// OpcodeTable - Sorted map of register instructions to their stack version.
617// The first element is an register file pseudo instruction, the second is the
618// concrete X86 instruction which uses the register stack.
619//
620static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000621 { X86::ABS_Fp32 , X86::ABS_F },
622 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000623 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000624 { X86::ADD_Fp32m , X86::ADD_F32m },
625 { X86::ADD_Fp64m , X86::ADD_F64m },
626 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000627 { X86::ADD_Fp80m32 , X86::ADD_F32m },
628 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000629 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
630 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000631 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000632 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
633 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000634 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000635 { X86::CHS_Fp32 , X86::CHS_F },
636 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000637 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000638 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
639 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000640 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000641 { X86::CMOVB_Fp32 , X86::CMOVB_F },
642 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000643 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000644 { X86::CMOVE_Fp32 , X86::CMOVE_F },
645 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000646 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000647 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
648 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000649 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000650 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
651 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000652 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000653 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
654 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000655 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000656 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
657 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000658 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000659 { X86::CMOVP_Fp32 , X86::CMOVP_F },
660 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000661 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000662 { X86::COS_Fp32 , X86::COS_F },
663 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000664 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000665 { X86::DIVR_Fp32m , X86::DIVR_F32m },
666 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000667 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000668 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
669 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000670 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
671 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000672 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000673 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
674 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000675 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000676 { X86::DIV_Fp32m , X86::DIV_F32m },
677 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000678 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000679 { X86::DIV_Fp80m32 , X86::DIV_F32m },
680 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000681 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
682 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000683 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000684 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
685 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000686 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000687 { X86::ILD_Fp16m32 , X86::ILD_F16m },
688 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000689 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000690 { X86::ILD_Fp32m32 , X86::ILD_F32m },
691 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000692 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000693 { X86::ILD_Fp64m32 , X86::ILD_F64m },
694 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000695 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000696 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
697 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000698 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000699 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
700 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000701 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000702 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
703 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000704 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000705 { X86::IST_Fp16m32 , X86::IST_F16m },
706 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000707 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000708 { X86::IST_Fp32m32 , X86::IST_F32m },
709 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000710 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000711 { X86::IST_Fp64m32 , X86::IST_FP64m },
712 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000713 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000714 { X86::LD_Fp032 , X86::LD_F0 },
715 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000716 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000717 { X86::LD_Fp132 , X86::LD_F1 },
718 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000719 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000720 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000721 { X86::LD_Fp32m64 , X86::LD_F32m },
722 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000723 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000724 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000725 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000726 { X86::MUL_Fp32m , X86::MUL_F32m },
727 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000728 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000729 { X86::MUL_Fp80m32 , X86::MUL_F32m },
730 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000731 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
732 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000733 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000734 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
735 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000736 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000737 { X86::SIN_Fp32 , X86::SIN_F },
738 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000739 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000740 { X86::SQRT_Fp32 , X86::SQRT_F },
741 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000742 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000743 { X86::ST_Fp32m , X86::ST_F32m },
744 { X86::ST_Fp64m , X86::ST_F64m },
745 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000746 { X86::ST_Fp80m32 , X86::ST_F32m },
747 { X86::ST_Fp80m64 , X86::ST_F64m },
748 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000749 { X86::SUBR_Fp32m , X86::SUBR_F32m },
750 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000751 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000752 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
753 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000754 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
755 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000756 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000757 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
758 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000759 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000760 { X86::SUB_Fp32m , X86::SUB_F32m },
761 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000762 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000763 { X86::SUB_Fp80m32 , X86::SUB_F32m },
764 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000765 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
766 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000767 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000768 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
769 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000770 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000771 { X86::TST_Fp32 , X86::TST_F },
772 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000773 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000774 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
775 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000776 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000777 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
778 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000779 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000780};
781
782static unsigned getConcreteOpcode(unsigned Opcode) {
783 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000784 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000785 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
786 return Opc;
787}
Chris Lattnera960d952003-01-13 01:01:59 +0000788
789//===----------------------------------------------------------------------===//
790// Helper Methods
791//===----------------------------------------------------------------------===//
792
793// PopTable - Sorted map of instructions to their popping version. The first
794// element is an instruction, the second is the version which pops.
795//
796static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000797 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000798
Dale Johannesene377d4d2007-07-04 21:07:47 +0000799 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
800 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000801
Dale Johannesene377d4d2007-07-04 21:07:47 +0000802 { X86::IST_F16m , X86::IST_FP16m },
803 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000804
Dale Johannesene377d4d2007-07-04 21:07:47 +0000805 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000806
Dale Johannesene377d4d2007-07-04 21:07:47 +0000807 { X86::ST_F32m , X86::ST_FP32m },
808 { X86::ST_F64m , X86::ST_FP64m },
809 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000810
Dale Johannesene377d4d2007-07-04 21:07:47 +0000811 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
812 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000813
Dale Johannesene377d4d2007-07-04 21:07:47 +0000814 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000815
Dale Johannesene377d4d2007-07-04 21:07:47 +0000816 { X86::UCOM_FPr , X86::UCOM_FPPr },
817 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000818};
819
820/// popStackAfter - Pop the current value off of the top of the FP stack after
821/// the specified instruction. This attempts to be sneaky and combine the pop
822/// into the instruction itself if possible. The iterator is left pointing to
823/// the last instruction, be it a new pop instruction inserted, or the old
824/// instruction if it was modified in place.
825///
826void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000827 MachineInstr* MI = I;
828 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000829 ASSERT_SORTED(PopTable);
Evan Cheng3f490f32010-10-12 23:19:28 +0000830 if (StackTop == 0)
831 report_fatal_error("Cannot pop empty stack!");
Chris Lattnera960d952003-01-13 01:01:59 +0000832 RegMap[Stack[--StackTop]] = ~0; // Update state
833
834 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000835 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000836 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000837 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000838 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000839 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000840 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000841 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000842 }
843}
844
Chris Lattner0526f012004-04-01 04:06:09 +0000845/// freeStackSlotAfter - Free the specified register from the register stack, so
846/// that it is no longer in a register. If the register is currently at the top
847/// of the stack, we just pop the current instruction, otherwise we store the
848/// current top-of-stack into the specified slot, then pop the top of stack.
849void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
850 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
851 popStackAfter(I);
852 return;
853 }
854
855 // Otherwise, store the top of stack into the dead slot, killing the operand
856 // without having to add in an explicit xchg then pop.
857 //
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000858 I = freeStackSlotBefore(++I, FPRegNo);
859}
860
861/// freeStackSlotBefore - Free the specified register without trying any
862/// folding.
863MachineBasicBlock::iterator
864FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattner0526f012004-04-01 04:06:09 +0000865 unsigned STReg = getSTReg(FPRegNo);
866 unsigned OldSlot = getSlot(FPRegNo);
867 unsigned TopReg = Stack[StackTop-1];
868 Stack[OldSlot] = TopReg;
869 RegMap[TopReg] = OldSlot;
870 RegMap[FPRegNo] = ~0;
871 Stack[--StackTop] = ~0;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000872 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
873}
874
875/// adjustLiveRegs - Kill and revive registers such that exactly the FP
876/// registers with a bit in Mask are live.
877void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
878 unsigned Defs = Mask;
879 unsigned Kills = 0;
880 for (unsigned i = 0; i < StackTop; ++i) {
881 unsigned RegNo = Stack[i];
882 if (!(Defs & (1 << RegNo)))
883 // This register is live, but we don't want it.
884 Kills |= (1 << RegNo);
885 else
886 // We don't need to imp-def this live register.
887 Defs &= ~(1 << RegNo);
888 }
889 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
890
891 // Produce implicit-defs for free by using killed registers.
892 while (Kills && Defs) {
893 unsigned KReg = CountTrailingZeros_32(Kills);
894 unsigned DReg = CountTrailingZeros_32(Defs);
895 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
896 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
897 std::swap(RegMap[KReg], RegMap[DReg]);
898 Kills &= ~(1 << KReg);
899 Defs &= ~(1 << DReg);
900 }
901
902 // Kill registers by popping.
903 if (Kills && I != MBB->begin()) {
904 MachineBasicBlock::iterator I2 = llvm::prior(I);
905 for (;;) {
906 unsigned KReg = getStackEntry(0);
907 if (!(Kills & (1 << KReg)))
908 break;
909 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
910 popStackAfter(I2);
911 Kills &= ~(1 << KReg);
912 }
913 }
914
915 // Manually kill the rest.
916 while (Kills) {
917 unsigned KReg = CountTrailingZeros_32(Kills);
918 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
919 freeStackSlotBefore(I, KReg);
920 Kills &= ~(1 << KReg);
921 }
922
923 // Load zeros for all the imp-defs.
924 while(Defs) {
925 unsigned DReg = CountTrailingZeros_32(Defs);
926 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
927 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
928 pushReg(DReg);
929 Defs &= ~(1 << DReg);
930 }
931
932 // Now we should have the correct registers live.
933 DEBUG(dumpStack());
934 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
935}
936
937/// shuffleStackTop - emit fxch instructions before I to shuffle the top
938/// FixCount entries into the order given by FixStack.
939/// FIXME: Is there a better algorithm than insertion sort?
940void FPS::shuffleStackTop(const unsigned char *FixStack,
941 unsigned FixCount,
942 MachineBasicBlock::iterator I) {
943 // Move items into place, starting from the desired stack bottom.
944 while (FixCount--) {
945 // Old register at position FixCount.
946 unsigned OldReg = getStackEntry(FixCount);
947 // Desired register at position FixCount.
948 unsigned Reg = FixStack[FixCount];
949 if (Reg == OldReg)
950 continue;
951 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
952 moveToTop(Reg, I);
953 moveToTop(OldReg, I);
954 }
955 DEBUG(dumpStack());
Chris Lattner0526f012004-04-01 04:06:09 +0000956}
957
958
Chris Lattnera960d952003-01-13 01:01:59 +0000959//===----------------------------------------------------------------------===//
960// Instruction transformation implementation
961//===----------------------------------------------------------------------===//
962
963/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000964///
Chris Lattnera960d952003-01-13 01:01:59 +0000965void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000966 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000967 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000968
Chris Lattner58fe4592005-12-21 07:47:04 +0000969 // Change from the pseudo instruction to the concrete instruction.
970 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000971 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000972
973 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000974 pushReg(DestReg);
975}
976
Chris Lattner4a06f352004-02-02 19:23:15 +0000977/// handleOneArgFP - fst <mem>, ST(0)
978///
Chris Lattnera960d952003-01-13 01:01:59 +0000979void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000980 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000981 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000982 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000983 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000984
Chris Lattner4a06f352004-02-02 19:23:15 +0000985 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000986 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000987 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000988
Evan Cheng2b152712006-02-18 02:36:28 +0000989 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000990 // If we have one _and_ we don't want to pop the operand, duplicate the value
991 // on the stack instead of moving it. This ensure that popping the value is
992 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000993 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000994 //
Evan Cheng2b152712006-02-18 02:36:28 +0000995 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000996 (MI->getOpcode() == X86::IST_Fp64m32 ||
997 MI->getOpcode() == X86::ISTT_Fp16m32 ||
998 MI->getOpcode() == X86::ISTT_Fp32m32 ||
999 MI->getOpcode() == X86::ISTT_Fp64m32 ||
1000 MI->getOpcode() == X86::IST_Fp64m64 ||
1001 MI->getOpcode() == X86::ISTT_Fp16m64 ||
1002 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +00001003 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +00001004 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +00001005 MI->getOpcode() == X86::ISTT_Fp16m80 ||
1006 MI->getOpcode() == X86::ISTT_Fp32m80 ||
1007 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +00001008 MI->getOpcode() == X86::ST_FpP80m)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001009 duplicateToTop(Reg, getScratchReg(), I);
Chris Lattnera960d952003-01-13 01:01:59 +00001010 } else {
1011 moveToTop(Reg, I); // Move to the top of the stack...
1012 }
Chris Lattner58fe4592005-12-21 07:47:04 +00001013
1014 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +00001015 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +00001016 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001017
Dale Johannesene377d4d2007-07-04 21:07:47 +00001018 if (MI->getOpcode() == X86::IST_FP64m ||
1019 MI->getOpcode() == X86::ISTT_FP16m ||
1020 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +00001021 MI->getOpcode() == X86::ISTT_FP64m ||
1022 MI->getOpcode() == X86::ST_FP80m) {
Evan Cheng3f490f32010-10-12 23:19:28 +00001023 if (StackTop == 0)
1024 report_fatal_error("Stack empty??");
Chris Lattnera960d952003-01-13 01:01:59 +00001025 --StackTop;
1026 } else if (KillsSrc) { // Last use of operand?
1027 popStackAfter(I);
1028 }
1029}
1030
Chris Lattner4a06f352004-02-02 19:23:15 +00001031
Chris Lattner4cf15e72004-04-11 20:21:06 +00001032/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1033/// replace the value with a newly computed value. These instructions may have
1034/// non-fp operands after their FP operands.
1035///
1036/// Examples:
1037/// R1 = fchs R2
1038/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +00001039///
1040void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001041 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +00001042#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +00001043 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +00001044 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +00001045#endif
Chris Lattner4a06f352004-02-02 19:23:15 +00001046
1047 // Is this the last use of the source register?
1048 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +00001049 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +00001050
1051 if (KillsSrc) {
1052 // If this is the last use of the source register, just make sure it's on
1053 // the top of the stack.
1054 moveToTop(Reg, I);
Evan Cheng3f490f32010-10-12 23:19:28 +00001055 if (StackTop == 0)
1056 report_fatal_error("Stack cannot be empty!");
Chris Lattner4a06f352004-02-02 19:23:15 +00001057 --StackTop;
1058 pushReg(getFPReg(MI->getOperand(0)));
1059 } else {
1060 // If this is not the last use of the source register, _copy_ it to the top
1061 // of the stack.
1062 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1063 }
1064
Chris Lattner58fe4592005-12-21 07:47:04 +00001065 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +00001066 MI->RemoveOperand(1); // Drop the source operand.
1067 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001068 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +00001069}
1070
1071
Chris Lattnera960d952003-01-13 01:01:59 +00001072//===----------------------------------------------------------------------===//
1073// Define tables of various ways to map pseudo instructions
1074//
1075
1076// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1077static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001078 { X86::ADD_Fp32 , X86::ADD_FST0r },
1079 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001080 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001081 { X86::DIV_Fp32 , X86::DIV_FST0r },
1082 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001083 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001084 { X86::MUL_Fp32 , X86::MUL_FST0r },
1085 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001086 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001087 { X86::SUB_Fp32 , X86::SUB_FST0r },
1088 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001089 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001090};
1091
1092// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1093static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001094 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1095 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001096 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001097 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1098 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001099 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001100 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1101 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001102 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001103 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1104 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001105 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001106};
1107
1108// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1109static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001110 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1111 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001112 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001113 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1114 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001115 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001116 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1117 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001118 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001119 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1120 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001121 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001122};
1123
1124// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1125static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001126 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1127 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001128 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001129 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1130 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001131 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001132 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1133 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001134 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001135 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1136 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001137 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001138};
1139
1140
1141/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1142/// instructions which need to be simplified and possibly transformed.
1143///
1144/// Result: ST(0) = fsub ST(0), ST(i)
1145/// ST(i) = fsub ST(0), ST(i)
1146/// ST(0) = fsubr ST(0), ST(i)
1147/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001148///
Chris Lattnera960d952003-01-13 01:01:59 +00001149void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1150 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1151 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001152 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001153
Chris Lattner749c6f62008-01-07 07:27:27 +00001154 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001155 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +00001156 unsigned Dest = getFPReg(MI->getOperand(0));
1157 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1158 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001159 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1160 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001161 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001162
Chris Lattnera960d952003-01-13 01:01:59 +00001163 unsigned TOS = getStackEntry(0);
1164
1165 // One of our operands must be on the top of the stack. If neither is yet, we
1166 // need to move one.
1167 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1168 // We can choose to move either operand to the top of the stack. If one of
1169 // the operands is killed by this instruction, we want that one so that we
1170 // can update right on top of the old version.
1171 if (KillsOp0) {
1172 moveToTop(Op0, I); // Move dead operand to TOS.
1173 TOS = Op0;
1174 } else if (KillsOp1) {
1175 moveToTop(Op1, I);
1176 TOS = Op1;
1177 } else {
1178 // All of the operands are live after this instruction executes, so we
1179 // cannot update on top of any operand. Because of this, we must
1180 // duplicate one of the stack elements to the top. It doesn't matter
1181 // which one we pick.
1182 //
1183 duplicateToTop(Op0, Dest, I);
1184 Op0 = TOS = Dest;
1185 KillsOp0 = true;
1186 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001187 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +00001188 // If we DO have one of our operands at the top of the stack, but we don't
1189 // have a dead operand, we must duplicate one of the operands to a new slot
1190 // on the stack.
1191 duplicateToTop(Op0, Dest, I);
1192 Op0 = TOS = Dest;
1193 KillsOp0 = true;
1194 }
1195
1196 // Now we know that one of our operands is on the top of the stack, and at
1197 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001198 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1199 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +00001200
1201 // We decide which form to use based on what is on the top of the stack, and
1202 // which operand is killed by this instruction.
1203 const TableEntry *InstTable;
1204 bool isForward = TOS == Op0;
1205 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1206 if (updateST0) {
1207 if (isForward)
1208 InstTable = ForwardST0Table;
1209 else
1210 InstTable = ReverseST0Table;
1211 } else {
1212 if (isForward)
1213 InstTable = ForwardSTiTable;
1214 else
1215 InstTable = ReverseSTiTable;
1216 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001217
Owen Anderson718cb662007-09-07 04:06:50 +00001218 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1219 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +00001220 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1221
1222 // NotTOS - The register which is not on the top of stack...
1223 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1224
1225 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +00001226 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001227 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +00001228
1229 // If both operands are killed, pop one off of the stack in addition to
1230 // overwriting the other one.
1231 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1232 assert(!updateST0 && "Should have updated other operand!");
1233 popStackAfter(I); // Pop the top of stack
1234 }
1235
Chris Lattnera960d952003-01-13 01:01:59 +00001236 // Update stack information so that we know the destination register is now on
1237 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001238 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1239 assert(UpdatedSlot < StackTop && Dest < 7);
1240 Stack[UpdatedSlot] = Dest;
1241 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001242 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001243}
1244
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001245/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001246/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001247///
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001248void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1249 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1250 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1251 MachineInstr *MI = I;
1252
Chris Lattner749c6f62008-01-07 07:27:27 +00001253 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001254 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001255 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1256 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001257 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1258 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001259
1260 // Make sure the first operand is on the top of stack, the other one can be
1261 // anywhere.
1262 moveToTop(Op0, I);
1263
Chris Lattner58fe4592005-12-21 07:47:04 +00001264 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +00001265 MI->getOperand(0).setReg(getSTReg(Op1));
1266 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +00001267 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +00001268
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001269 // If any of the operands are killed by this instruction, free them.
1270 if (KillsOp0) freeStackSlotAfter(I, Op0);
1271 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +00001272}
1273
Chris Lattnerc1bab322004-03-31 22:02:36 +00001274/// handleCondMovFP - Handle two address conditional move instructions. These
1275/// instructions move a st(i) register to st(0) iff a condition is true. These
1276/// instructions require that the first operand is at the top of the stack, but
1277/// otherwise don't modify the stack at all.
1278void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1279 MachineInstr *MI = I;
1280
1281 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001282 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +00001283 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001284
1285 // The first operand *must* be on the top of the stack.
1286 moveToTop(Op0, I);
1287
1288 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +00001289 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +00001290 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001291 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001292 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +00001293 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +00001294
Chris Lattnerc1bab322004-03-31 22:02:36 +00001295 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +00001296 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +00001297 // Get this value off of the register stack.
1298 freeStackSlotAfter(I, Op1);
1299 }
Chris Lattnerc1bab322004-03-31 22:02:36 +00001300}
1301
Chris Lattnera960d952003-01-13 01:01:59 +00001302
1303/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001304/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +00001305/// instructions.
1306///
1307void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001308 MachineInstr *MI = I;
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001309 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001310 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001311 default: llvm_unreachable("Unknown SpecialFP instruction!");
Chris Lattner6fa2f9c2008-03-09 07:05:32 +00001312 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1313 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1314 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Chris Lattnera960d952003-01-13 01:01:59 +00001315 assert(StackTop == 0 && "Stack should be empty after a call!");
1316 pushReg(getFPReg(MI->getOperand(0)));
1317 break;
Chris Lattner24e0a542008-03-21 06:38:26 +00001318 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1319 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1320 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1321 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1322 // The pattern we expect is:
1323 // CALL
1324 // FP1 = FpGET_ST0
1325 // FP4 = FpGET_ST1
1326 //
1327 // At this point, we've pushed FP1 on the top of stack, so it should be
1328 // present if it isn't dead. If it was dead, we already emitted a pop to
1329 // remove it from the stack and StackTop = 0.
1330
1331 // Push FP4 as top of stack next.
1332 pushReg(getFPReg(MI->getOperand(0)));
1333
1334 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1335 // dead. In this case, the ST(1) value is the only thing that is live, so
1336 // it should be on the TOS (after the pop that was emitted) and is. Just
1337 // continue in this case.
1338 if (StackTop == 1)
1339 break;
1340
1341 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1342 // elements so that our accounting is correct.
1343 unsigned RegOnTop = getStackEntry(0);
1344 unsigned RegNo = getStackEntry(1);
1345
1346 // Swap the slots the regs are in.
1347 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1348
1349 // Swap stack slot contents.
Evan Cheng3f490f32010-10-12 23:19:28 +00001350 if (RegMap[RegOnTop] >= StackTop)
1351 report_fatal_error("Access past stack top!");
Chris Lattner24e0a542008-03-21 06:38:26 +00001352 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1353 break;
1354 }
Chris Lattnerafb23f42008-03-09 07:08:44 +00001355 case X86::FpSET_ST0_32:
1356 case X86::FpSET_ST0_64:
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001357 case X86::FpSET_ST0_80: {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001358 // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1359 // arguments that use an st constraint. We expect a sequence of
1360 // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001361 unsigned Op0 = getFPReg(MI->getOperand(0));
1362
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001363 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001364 // Duplicate Op0 into a temporary on the stack top.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001365 duplicateToTop(Op0, getScratchReg(), I);
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001366 } else {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001367 // Op0 is killed, so just swap it into position.
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001368 moveToTop(Op0, I);
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001369 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001370 --StackTop; // "Forget" we have something on the top of stack!
1371 break;
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001372 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001373 case X86::FpSET_ST1_32:
1374 case X86::FpSET_ST1_64:
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001375 case X86::FpSET_ST1_80: {
1376 // Set up st(1) for inline asm. We are assuming that st(0) has already been
1377 // set up by FpSET_ST0, and our StackTop is off by one because of it.
1378 unsigned Op0 = getFPReg(MI->getOperand(0));
1379 // Restore the actual StackTop from before Fp_SET_ST0.
1380 // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1381 // are not enforcing the constraint.
1382 ++StackTop;
1383 unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1384 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001385 duplicateToTop(Op0, getScratchReg(), I);
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001386 moveToTop(RegOnTop, I);
1387 } else if (getSTReg(Op0) != X86::ST1) {
1388 // We have the wrong value at st(1). Shuffle! Untested!
1389 moveToTop(getStackEntry(1), I);
1390 moveToTop(Op0, I);
1391 moveToTop(RegOnTop, I);
Evan Chenga0eedac2009-02-09 23:32:07 +00001392 }
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001393 assert(StackTop >= 2 && "Too few live registers");
1394 StackTop -= 2; // "Forget" both st(0) and st(1).
Chris Lattnera960d952003-01-13 01:01:59 +00001395 break;
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001396 }
Dale Johannesene377d4d2007-07-04 21:07:47 +00001397 case X86::MOV_Fp3232:
1398 case X86::MOV_Fp3264:
1399 case X86::MOV_Fp6432:
Dale Johannesen59a58732007-08-05 18:49:15 +00001400 case X86::MOV_Fp6464:
1401 case X86::MOV_Fp3280:
1402 case X86::MOV_Fp6480:
1403 case X86::MOV_Fp8032:
1404 case X86::MOV_Fp8064:
1405 case X86::MOV_Fp8080: {
Evan Chengfb112882009-03-23 08:01:15 +00001406 const MachineOperand &MO1 = MI->getOperand(1);
1407 unsigned SrcReg = getFPReg(MO1);
Chris Lattnera960d952003-01-13 01:01:59 +00001408
Evan Chengfb112882009-03-23 08:01:15 +00001409 const MachineOperand &MO0 = MI->getOperand(0);
Evan Chengfb112882009-03-23 08:01:15 +00001410 unsigned DestReg = getFPReg(MO0);
Evan Cheng6130f662008-03-05 00:59:57 +00001411 if (MI->killsRegister(X86::FP0+SrcReg)) {
Chris Lattnera960d952003-01-13 01:01:59 +00001412 // If the input operand is killed, we can just change the owner of the
1413 // incoming stack slot into the result.
1414 unsigned Slot = getSlot(SrcReg);
1415 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1416 Stack[Slot] = DestReg;
1417 RegMap[DestReg] = Slot;
1418
1419 } else {
1420 // For FMOV we just duplicate the specified value to a new stack slot.
1421 // This could be made better, but would require substantial changes.
1422 duplicateToTop(SrcReg, DestReg, I);
1423 }
Nick Lewycky3c786972008-03-11 05:56:09 +00001424 }
Chris Lattnera960d952003-01-13 01:01:59 +00001425 break;
Chris Lattner518bb532010-02-09 19:54:29 +00001426 case TargetOpcode::INLINEASM: {
Chris Lattnere12ecf22008-03-11 19:50:13 +00001427 // The inline asm MachineInstr currently only *uses* FP registers for the
1428 // 'f' constraint. These should be turned into the current ST(x) register
1429 // in the machine instr. Also, any kills should be explicitly popped after
1430 // the inline asm.
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001431 unsigned Kills = 0;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001432 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1433 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001434 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001435 continue;
1436 assert(Op.isUse() && "Only handle inline asm uses right now");
1437
1438 unsigned FPReg = getFPReg(Op);
1439 Op.setReg(getSTReg(FPReg));
1440
1441 // If we kill this operand, make sure to pop it from the stack after the
1442 // asm. We just remember it for now, and pop them all off at the end in
1443 // a batch.
1444 if (Op.isKill())
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001445 Kills |= 1U << FPReg;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001446 }
1447
1448 // If this asm kills any FP registers (is the last use of them) we must
1449 // explicitly emit pop instructions for them. Do this now after the asm has
1450 // executed so that the ST(x) numbers are not off (which would happen if we
1451 // did this inline with operand rewriting).
1452 //
1453 // Note: this might be a non-optimal pop sequence. We might be able to do
1454 // better by trying to pop in stack order or something.
1455 MachineBasicBlock::iterator InsertPt = MI;
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001456 while (Kills) {
1457 unsigned FPReg = CountTrailingZeros_32(Kills);
1458 freeStackSlotAfter(InsertPt, FPReg);
1459 Kills &= ~(1U << FPReg);
1460 }
Chris Lattnere12ecf22008-03-11 19:50:13 +00001461 // Don't delete the inline asm!
1462 return;
1463 }
1464
Chris Lattner447ff682008-03-11 03:23:40 +00001465 case X86::RET:
1466 case X86::RETI:
1467 // If RET has an FP register use operand, pass the first one in ST(0) and
1468 // the second one in ST(1).
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001469
Chris Lattner447ff682008-03-11 03:23:40 +00001470 // Find the register operands.
1471 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001472 unsigned LiveMask = 0;
1473
Chris Lattner447ff682008-03-11 03:23:40 +00001474 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1475 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001476 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001477 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001478 // FP Register uses must be kills unless there are two uses of the same
1479 // register, in which case only one will be a kill.
1480 assert(Op.isUse() &&
1481 (Op.isKill() || // Marked kill.
1482 getFPReg(Op) == FirstFPRegOp || // Second instance.
1483 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1484 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001485
1486 if (FirstFPRegOp == ~0U)
1487 FirstFPRegOp = getFPReg(Op);
1488 else {
1489 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1490 SecondFPRegOp = getFPReg(Op);
1491 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001492 LiveMask |= (1 << getFPReg(Op));
Chris Lattner447ff682008-03-11 03:23:40 +00001493
1494 // Remove the operand so that later passes don't see it.
1495 MI->RemoveOperand(i);
1496 --i, --e;
1497 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001498
1499 // We may have been carrying spurious live-ins, so make sure only the returned
1500 // registers are left live.
1501 adjustLiveRegs(LiveMask, MI);
1502 if (!LiveMask) return; // Quick check to see if any are possible.
1503
Chris Lattner447ff682008-03-11 03:23:40 +00001504 // There are only four possibilities here:
1505 // 1) we are returning a single FP value. In this case, it has to be in
1506 // ST(0) already, so just declare success by removing the value from the
1507 // FP Stack.
1508 if (SecondFPRegOp == ~0U) {
1509 // Assert that the top of stack contains the right FP register.
1510 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1511 "Top of stack not the right register for RET!");
1512
1513 // Ok, everything is good, mark the value as not being on the stack
1514 // anymore so that our assertion about the stack being empty at end of
1515 // block doesn't fire.
1516 StackTop = 0;
1517 return;
1518 }
1519
Chris Lattner447ff682008-03-11 03:23:40 +00001520 // Otherwise, we are returning two values:
1521 // 2) If returning the same value for both, we only have one thing in the FP
1522 // stack. Consider: RET FP1, FP1
1523 if (StackTop == 1) {
1524 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1525 "Stack misconfiguration for RET!");
1526
1527 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1528 // register to hold it.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001529 unsigned NewReg = getScratchReg();
Chris Lattner447ff682008-03-11 03:23:40 +00001530 duplicateToTop(FirstFPRegOp, NewReg, MI);
1531 FirstFPRegOp = NewReg;
1532 }
1533
1534 /// Okay we know we have two different FPx operands now:
1535 assert(StackTop == 2 && "Must have two values live!");
1536
1537 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1538 /// in ST(1). In this case, emit an fxch.
1539 if (getStackEntry(0) == SecondFPRegOp) {
1540 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1541 moveToTop(FirstFPRegOp, MI);
1542 }
1543
1544 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1545 /// ST(1). Just remove both from our understanding of the stack and return.
1546 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001547 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001548 StackTop = 0;
1549 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001550 }
Chris Lattnera960d952003-01-13 01:01:59 +00001551
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001552 I = MBB->erase(I); // Remove the pseudo instruction
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001553
1554 // We want to leave I pointing to the previous instruction, but what if we
1555 // just erased the first instruction?
1556 if (I == MBB->begin()) {
1557 DEBUG(dbgs() << "Inserting dummy KILL\n");
1558 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1559 } else
1560 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001561}
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +00001562
1563// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1564bool FPS::translateCopy(MachineInstr *MI) {
1565 unsigned DstReg = MI->getOperand(0).getReg();
1566 unsigned SrcReg = MI->getOperand(1).getReg();
1567
1568 if (DstReg == X86::ST0) {
1569 MI->setDesc(TII->get(X86::FpSET_ST0_80));
1570 MI->RemoveOperand(0);
1571 return true;
1572 }
1573 if (DstReg == X86::ST1) {
1574 MI->setDesc(TII->get(X86::FpSET_ST1_80));
1575 MI->RemoveOperand(0);
1576 return true;
1577 }
1578 if (SrcReg == X86::ST0) {
1579 MI->setDesc(TII->get(X86::FpGET_ST0_80));
1580 return true;
1581 }
1582 if (SrcReg == X86::ST1) {
1583 MI->setDesc(TII->get(X86::FpGET_ST1_80));
1584 return true;
1585 }
1586 if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1587 MI->setDesc(TII->get(X86::MOV_Fp8080));
1588 return true;
1589 }
1590 return false;
1591}