blob: d1f6679a43760480b7558b966d6b6bf60e09e089 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Owen Andersonecd0cd72009-06-22 21:39:50 +000017// can handle. These classes are reference counted, managed by the const SCEV*
Dan Gohmanf17a25c2007-07-18 16:29:46 +000018// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070#include "llvm/Analysis/LoopInfo.h"
Dan Gohmana7726c32009-06-16 19:52:01 +000071#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000072#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000073#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074#include "llvm/Support/CommandLine.h"
75#include "llvm/Support/Compiler.h"
76#include "llvm/Support/ConstantRange.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000077#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078#include "llvm/Support/InstIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000079#include "llvm/Support/MathExtras.h"
Dan Gohman13058cc2009-04-21 00:47:46 +000080#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000082#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083#include <algorithm>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084using namespace llvm;
85
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086STATISTIC(NumArrayLenItCounts,
87 "Number of trip counts computed with array length");
88STATISTIC(NumTripCountsComputed,
89 "Number of loops with predictable loop counts");
90STATISTIC(NumTripCountsNotComputed,
91 "Number of loops without predictable loop counts");
92STATISTIC(NumBruteForceTripCountsComputed,
93 "Number of loops with trip counts computed by force");
94
Dan Gohman089efff2008-05-13 00:00:25 +000095static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000096MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
97 cl::desc("Maximum number of iterations SCEV will "
98 "symbolically execute a constant derived loop"),
99 cl::init(100));
100
Dan Gohman089efff2008-05-13 00:00:25 +0000101static RegisterPass<ScalarEvolution>
102R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103char ScalarEvolution::ID = 0;
104
105//===----------------------------------------------------------------------===//
106// SCEV class definitions
107//===----------------------------------------------------------------------===//
108
109//===----------------------------------------------------------------------===//
110// Implementation of the SCEV class.
111//
112SCEV::~SCEV() {}
113void SCEV::dump() const {
Dan Gohman13058cc2009-04-21 00:47:46 +0000114 print(errs());
115 errs() << '\n';
116}
117
118void SCEV::print(std::ostream &o) const {
119 raw_os_ostream OS(o);
120 print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121}
122
Dan Gohman7b560c42008-06-18 16:23:07 +0000123bool SCEV::isZero() const {
124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
125 return SC->getValue()->isZero();
126 return false;
127}
128
Dan Gohmanf8bc8e82009-05-18 15:22:39 +0000129bool SCEV::isOne() const {
130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131 return SC->getValue()->isOne();
132 return false;
133}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134
Dan Gohmanf05118e2009-06-24 00:30:26 +0000135bool SCEV::isAllOnesValue() const {
136 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
137 return SC->getValue()->isAllOnesValue();
138 return false;
139}
140
Owen Andersonb70139d2009-06-22 21:57:23 +0000141SCEVCouldNotCompute::SCEVCouldNotCompute() :
142 SCEV(scCouldNotCompute) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000143
144bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
145 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
146 return false;
147}
148
149const Type *SCEVCouldNotCompute::getType() const {
150 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
151 return 0;
152}
153
154bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
155 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
156 return false;
157}
158
Owen Andersonecd0cd72009-06-22 21:39:50 +0000159const SCEV* SCEVCouldNotCompute::
160replaceSymbolicValuesWithConcrete(const SCEV* Sym,
161 const SCEV* Conc,
Dan Gohman89f85052007-10-22 18:31:58 +0000162 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000163 return this;
164}
165
Dan Gohman13058cc2009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
174
175// SCEVConstants - Only allow the creation of one SCEVConstant for any
Owen Andersonecd0cd72009-06-22 21:39:50 +0000176// particular value. Don't use a const SCEV* here, or else the object will
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000177// never be deleted!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000178
Owen Andersonecd0cd72009-06-22 21:39:50 +0000179const SCEV* ScalarEvolution::getConstant(ConstantInt *V) {
Owen Andersonc48fbfe2009-06-22 18:25:46 +0000180 SCEVConstant *&R = SCEVConstants[V];
Owen Andersonb70139d2009-06-22 21:57:23 +0000181 if (R == 0) R = new SCEVConstant(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000182 return R;
183}
184
Owen Andersonecd0cd72009-06-22 21:39:50 +0000185const SCEV* ScalarEvolution::getConstant(const APInt& Val) {
Dan Gohman89f85052007-10-22 18:31:58 +0000186 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187}
188
Owen Andersonecd0cd72009-06-22 21:39:50 +0000189const SCEV*
Dan Gohman8fd520a2009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
191 return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
192}
193
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000194const Type *SCEVConstant::getType() const { return V->getType(); }
195
Dan Gohman13058cc2009-04-21 00:47:46 +0000196void SCEVConstant::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000197 WriteAsOperand(OS, V, false);
198}
199
Dan Gohman2a381532009-04-21 01:25:57 +0000200SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
Owen Andersonb70139d2009-06-22 21:57:23 +0000201 const SCEV* op, const Type *ty)
202 : SCEV(SCEVTy), Op(op), Ty(ty) {}
Dan Gohman2a381532009-04-21 01:25:57 +0000203
204bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
205 return Op->dominates(BB, DT);
206}
207
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
Owen Andersonecd0cd72009-06-22 21:39:50 +0000209// particular input. Don't use a const SCEV* here, or else the object will
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210// never be deleted!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000211
Owen Andersonb70139d2009-06-22 21:57:23 +0000212SCEVTruncateExpr::SCEVTruncateExpr(const SCEV* op, const Type *ty)
213 : SCEVCastExpr(scTruncate, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000214 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
215 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216 "Cannot truncate non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217}
218
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219
Dan Gohman13058cc2009-04-21 00:47:46 +0000220void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000221 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000222}
223
224// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
Owen Andersonecd0cd72009-06-22 21:39:50 +0000225// particular input. Don't use a const SCEV* here, or else the object will never
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000226// be deleted!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000227
Owen Andersonb70139d2009-06-22 21:57:23 +0000228SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV* op, const Type *ty)
229 : SCEVCastExpr(scZeroExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000230 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
231 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000232 "Cannot zero extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000233}
234
Dan Gohman13058cc2009-04-21 00:47:46 +0000235void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000236 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237}
238
239// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
Owen Andersonecd0cd72009-06-22 21:39:50 +0000240// particular input. Don't use a const SCEV* here, or else the object will never
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000241// be deleted!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242
Owen Andersonb70139d2009-06-22 21:57:23 +0000243SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV* op, const Type *ty)
244 : SCEVCastExpr(scSignExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000245 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
246 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000247 "Cannot sign extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000248}
249
Dan Gohman13058cc2009-04-21 00:47:46 +0000250void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000251 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252}
253
254// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
Owen Andersonecd0cd72009-06-22 21:39:50 +0000255// particular input. Don't use a const SCEV* here, or else the object will never
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000256// be deleted!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000257
Dan Gohman13058cc2009-04-21 00:47:46 +0000258void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000259 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
260 const char *OpStr = getOperationStr();
261 OS << "(" << *Operands[0];
262 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
263 OS << OpStr << *Operands[i];
264 OS << ")";
265}
266
Owen Andersonecd0cd72009-06-22 21:39:50 +0000267const SCEV* SCEVCommutativeExpr::
268replaceSymbolicValuesWithConcrete(const SCEV* Sym,
269 const SCEV* Conc,
Dan Gohman89f85052007-10-22 18:31:58 +0000270 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000271 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Owen Andersonecd0cd72009-06-22 21:39:50 +0000272 const SCEV* H =
Dan Gohman89f85052007-10-22 18:31:58 +0000273 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000274 if (H != getOperand(i)) {
Owen Andersonecd0cd72009-06-22 21:39:50 +0000275 SmallVector<const SCEV*, 8> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000276 NewOps.reserve(getNumOperands());
277 for (unsigned j = 0; j != i; ++j)
278 NewOps.push_back(getOperand(j));
279 NewOps.push_back(H);
280 for (++i; i != e; ++i)
281 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000282 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283
284 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000285 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000287 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000288 else if (isa<SCEVSMaxExpr>(this))
289 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000290 else if (isa<SCEVUMaxExpr>(this))
291 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292 else
293 assert(0 && "Unknown commutative expr!");
294 }
295 }
296 return this;
297}
298
Dan Gohman72a8a022009-05-07 14:00:19 +0000299bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng98c073b2009-02-17 00:13:06 +0000300 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
301 if (!getOperand(i)->dominates(BB, DT))
302 return false;
303 }
304 return true;
305}
306
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000308// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Owen Andersonecd0cd72009-06-22 21:39:50 +0000309// input. Don't use a const SCEV* here, or else the object will never be
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000310// deleted!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000311
Evan Cheng98c073b2009-02-17 00:13:06 +0000312bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
313 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
314}
315
Dan Gohman13058cc2009-04-21 00:47:46 +0000316void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000317 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000318}
319
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000320const Type *SCEVUDivExpr::getType() const {
Dan Gohman140f08f2009-05-26 17:44:05 +0000321 // In most cases the types of LHS and RHS will be the same, but in some
322 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
323 // depend on the type for correctness, but handling types carefully can
324 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
325 // a pointer type than the RHS, so use the RHS' type here.
326 return RHS->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000327}
328
329// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
Owen Andersonecd0cd72009-06-22 21:39:50 +0000330// particular input. Don't use a const SCEV* here, or else the object will never
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000331// be deleted!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000332
Owen Andersonecd0cd72009-06-22 21:39:50 +0000333const SCEV* SCEVAddRecExpr::
334replaceSymbolicValuesWithConcrete(const SCEV* Sym,
335 const SCEV* Conc,
Dan Gohman89f85052007-10-22 18:31:58 +0000336 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Owen Andersonecd0cd72009-06-22 21:39:50 +0000338 const SCEV* H =
Dan Gohman89f85052007-10-22 18:31:58 +0000339 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000340 if (H != getOperand(i)) {
Owen Andersonecd0cd72009-06-22 21:39:50 +0000341 SmallVector<const SCEV*, 8> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000342 NewOps.reserve(getNumOperands());
343 for (unsigned j = 0; j != i; ++j)
344 NewOps.push_back(getOperand(j));
345 NewOps.push_back(H);
346 for (++i; i != e; ++i)
347 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000348 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349
Dan Gohman89f85052007-10-22 18:31:58 +0000350 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000351 }
352 }
353 return this;
354}
355
356
357bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
358 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
359 // contain L and if the start is invariant.
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000360 // Add recurrences are never invariant in the function-body (null loop).
361 return QueryLoop &&
362 !QueryLoop->contains(L->getHeader()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000363 getOperand(0)->isLoopInvariant(QueryLoop);
364}
365
366
Dan Gohman13058cc2009-04-21 00:47:46 +0000367void SCEVAddRecExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368 OS << "{" << *Operands[0];
369 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
370 OS << ",+," << *Operands[i];
371 OS << "}<" << L->getHeader()->getName() + ">";
372}
373
374// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
Owen Andersonecd0cd72009-06-22 21:39:50 +0000375// value. Don't use a const SCEV* here, or else the object will never be
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376// deleted!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000377
378bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
379 // All non-instruction values are loop invariant. All instructions are loop
380 // invariant if they are not contained in the specified loop.
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000381 // Instructions are never considered invariant in the function body
382 // (null loop) because they are defined within the "loop".
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000383 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000384 return L && !L->contains(I->getParent());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385 return true;
386}
387
Evan Cheng98c073b2009-02-17 00:13:06 +0000388bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
389 if (Instruction *I = dyn_cast<Instruction>(getValue()))
390 return DT->dominates(I->getParent(), BB);
391 return true;
392}
393
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000394const Type *SCEVUnknown::getType() const {
395 return V->getType();
396}
397
Dan Gohman13058cc2009-04-21 00:47:46 +0000398void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 WriteAsOperand(OS, V, false);
400}
401
402//===----------------------------------------------------------------------===//
403// SCEV Utilities
404//===----------------------------------------------------------------------===//
405
406namespace {
407 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
408 /// than the complexity of the RHS. This comparator is used to canonicalize
409 /// expressions.
Dan Gohman5d486452009-05-07 14:39:04 +0000410 class VISIBILITY_HIDDEN SCEVComplexityCompare {
411 LoopInfo *LI;
412 public:
413 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
414
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000415 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman5d486452009-05-07 14:39:04 +0000416 // Primarily, sort the SCEVs by their getSCEVType().
417 if (LHS->getSCEVType() != RHS->getSCEVType())
418 return LHS->getSCEVType() < RHS->getSCEVType();
419
420 // Aside from the getSCEVType() ordering, the particular ordering
421 // isn't very important except that it's beneficial to be consistent,
422 // so that (a + b) and (b + a) don't end up as different expressions.
423
424 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
425 // not as complete as it could be.
426 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
427 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
428
Dan Gohmand0c01232009-05-19 02:15:55 +0000429 // Order pointer values after integer values. This helps SCEVExpander
430 // form GEPs.
431 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
432 return false;
433 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
434 return true;
435
Dan Gohman5d486452009-05-07 14:39:04 +0000436 // Compare getValueID values.
437 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
438 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
439
440 // Sort arguments by their position.
441 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
442 const Argument *RA = cast<Argument>(RU->getValue());
443 return LA->getArgNo() < RA->getArgNo();
444 }
445
446 // For instructions, compare their loop depth, and their opcode.
447 // This is pretty loose.
448 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
449 Instruction *RV = cast<Instruction>(RU->getValue());
450
451 // Compare loop depths.
452 if (LI->getLoopDepth(LV->getParent()) !=
453 LI->getLoopDepth(RV->getParent()))
454 return LI->getLoopDepth(LV->getParent()) <
455 LI->getLoopDepth(RV->getParent());
456
457 // Compare opcodes.
458 if (LV->getOpcode() != RV->getOpcode())
459 return LV->getOpcode() < RV->getOpcode();
460
461 // Compare the number of operands.
462 if (LV->getNumOperands() != RV->getNumOperands())
463 return LV->getNumOperands() < RV->getNumOperands();
464 }
465
466 return false;
467 }
468
Dan Gohman56fc8f12009-06-14 22:51:25 +0000469 // Compare constant values.
470 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
471 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
472 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
473 }
474
475 // Compare addrec loop depths.
476 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
477 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
478 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
479 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
480 }
Dan Gohman5d486452009-05-07 14:39:04 +0000481
482 // Lexicographically compare n-ary expressions.
483 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
484 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
485 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
486 if (i >= RC->getNumOperands())
487 return false;
488 if (operator()(LC->getOperand(i), RC->getOperand(i)))
489 return true;
490 if (operator()(RC->getOperand(i), LC->getOperand(i)))
491 return false;
492 }
493 return LC->getNumOperands() < RC->getNumOperands();
494 }
495
Dan Gohman6e10db12009-05-07 19:23:21 +0000496 // Lexicographically compare udiv expressions.
497 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
498 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
499 if (operator()(LC->getLHS(), RC->getLHS()))
500 return true;
501 if (operator()(RC->getLHS(), LC->getLHS()))
502 return false;
503 if (operator()(LC->getRHS(), RC->getRHS()))
504 return true;
505 if (operator()(RC->getRHS(), LC->getRHS()))
506 return false;
507 return false;
508 }
509
Dan Gohman5d486452009-05-07 14:39:04 +0000510 // Compare cast expressions by operand.
511 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
512 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
513 return operator()(LC->getOperand(), RC->getOperand());
514 }
515
516 assert(0 && "Unknown SCEV kind!");
517 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000518 }
519 };
520}
521
522/// GroupByComplexity - Given a list of SCEV objects, order them by their
523/// complexity, and group objects of the same complexity together by value.
524/// When this routine is finished, we know that any duplicates in the vector are
525/// consecutive and that complexity is monotonically increasing.
526///
527/// Note that we go take special precautions to ensure that we get determinstic
528/// results from this routine. In other words, we don't want the results of
529/// this to depend on where the addresses of various SCEV objects happened to
530/// land in memory.
531///
Owen Andersonecd0cd72009-06-22 21:39:50 +0000532static void GroupByComplexity(SmallVectorImpl<const SCEV*> &Ops,
Dan Gohman5d486452009-05-07 14:39:04 +0000533 LoopInfo *LI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000534 if (Ops.size() < 2) return; // Noop
535 if (Ops.size() == 2) {
536 // This is the common case, which also happens to be trivially simple.
537 // Special case it.
Dan Gohman5d486452009-05-07 14:39:04 +0000538 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000539 std::swap(Ops[0], Ops[1]);
540 return;
541 }
542
543 // Do the rough sort by complexity.
Dan Gohman5d486452009-05-07 14:39:04 +0000544 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000545
546 // Now that we are sorted by complexity, group elements of the same
547 // complexity. Note that this is, at worst, N^2, but the vector is likely to
548 // be extremely short in practice. Note that we take this approach because we
549 // do not want to depend on the addresses of the objects we are grouping.
550 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000551 const SCEV *S = Ops[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000552 unsigned Complexity = S->getSCEVType();
553
554 // If there are any objects of the same complexity and same value as this
555 // one, group them.
556 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
557 if (Ops[j] == S) { // Found a duplicate.
558 // Move it to immediately after i'th element.
559 std::swap(Ops[i+1], Ops[j]);
560 ++i; // no need to rescan it.
561 if (i == e-2) return; // Done!
562 }
563 }
564 }
565}
566
567
568
569//===----------------------------------------------------------------------===//
570// Simple SCEV method implementations
571//===----------------------------------------------------------------------===//
572
Eli Friedman7489ec92008-08-04 23:49:06 +0000573/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohmanc8a29272009-05-24 23:45:28 +0000574/// Assume, K > 0.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000575static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K,
Eli Friedman7489ec92008-08-04 23:49:06 +0000576 ScalarEvolution &SE,
Dan Gohman01c2ee72009-04-16 03:18:22 +0000577 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000578 // Handle the simplest case efficiently.
579 if (K == 1)
580 return SE.getTruncateOrZeroExtend(It, ResultTy);
581
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000582 // We are using the following formula for BC(It, K):
583 //
584 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
585 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000586 // Suppose, W is the bitwidth of the return value. We must be prepared for
587 // overflow. Hence, we must assure that the result of our computation is
588 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
589 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000590 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000591 // However, this code doesn't use exactly that formula; the formula it uses
592 // is something like the following, where T is the number of factors of 2 in
593 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
594 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000595 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000596 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000597 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000598 // This formula is trivially equivalent to the previous formula. However,
599 // this formula can be implemented much more efficiently. The trick is that
600 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
601 // arithmetic. To do exact division in modular arithmetic, all we have
602 // to do is multiply by the inverse. Therefore, this step can be done at
603 // width W.
604 //
605 // The next issue is how to safely do the division by 2^T. The way this
606 // is done is by doing the multiplication step at a width of at least W + T
607 // bits. This way, the bottom W+T bits of the product are accurate. Then,
608 // when we perform the division by 2^T (which is equivalent to a right shift
609 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
610 // truncated out after the division by 2^T.
611 //
612 // In comparison to just directly using the first formula, this technique
613 // is much more efficient; using the first formula requires W * K bits,
614 // but this formula less than W + K bits. Also, the first formula requires
615 // a division step, whereas this formula only requires multiplies and shifts.
616 //
617 // It doesn't matter whether the subtraction step is done in the calculation
618 // width or the input iteration count's width; if the subtraction overflows,
619 // the result must be zero anyway. We prefer here to do it in the width of
620 // the induction variable because it helps a lot for certain cases; CodeGen
621 // isn't smart enough to ignore the overflow, which leads to much less
622 // efficient code if the width of the subtraction is wider than the native
623 // register width.
624 //
625 // (It's possible to not widen at all by pulling out factors of 2 before
626 // the multiplication; for example, K=2 can be calculated as
627 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
628 // extra arithmetic, so it's not an obvious win, and it gets
629 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000630
Eli Friedman7489ec92008-08-04 23:49:06 +0000631 // Protection from insane SCEVs; this bound is conservative,
632 // but it probably doesn't matter.
633 if (K > 1000)
Dan Gohman0ad08b02009-04-18 17:58:19 +0000634 return SE.getCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000635
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000636 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000637
Eli Friedman7489ec92008-08-04 23:49:06 +0000638 // Calculate K! / 2^T and T; we divide out the factors of two before
639 // multiplying for calculating K! / 2^T to avoid overflow.
640 // Other overflow doesn't matter because we only care about the bottom
641 // W bits of the result.
642 APInt OddFactorial(W, 1);
643 unsigned T = 1;
644 for (unsigned i = 3; i <= K; ++i) {
645 APInt Mult(W, i);
646 unsigned TwoFactors = Mult.countTrailingZeros();
647 T += TwoFactors;
648 Mult = Mult.lshr(TwoFactors);
649 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000651
Eli Friedman7489ec92008-08-04 23:49:06 +0000652 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000653 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000654
655 // Calcuate 2^T, at width T+W.
656 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
657
658 // Calculate the multiplicative inverse of K! / 2^T;
659 // this multiplication factor will perform the exact division by
660 // K! / 2^T.
661 APInt Mod = APInt::getSignedMinValue(W+1);
662 APInt MultiplyFactor = OddFactorial.zext(W+1);
663 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
664 MultiplyFactor = MultiplyFactor.trunc(W);
665
666 // Calculate the product, at width T+W
667 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
Owen Andersonecd0cd72009-06-22 21:39:50 +0000668 const SCEV* Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman7489ec92008-08-04 23:49:06 +0000669 for (unsigned i = 1; i != K; ++i) {
Owen Andersonecd0cd72009-06-22 21:39:50 +0000670 const SCEV* S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Eli Friedman7489ec92008-08-04 23:49:06 +0000671 Dividend = SE.getMulExpr(Dividend,
672 SE.getTruncateOrZeroExtend(S, CalculationTy));
673 }
674
675 // Divide by 2^T
Owen Andersonecd0cd72009-06-22 21:39:50 +0000676 const SCEV* DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman7489ec92008-08-04 23:49:06 +0000677
678 // Truncate the result, and divide by K! / 2^T.
679
680 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
681 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000682}
683
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000684/// evaluateAtIteration - Return the value of this chain of recurrences at
685/// the specified iteration number. We can evaluate this recurrence by
686/// multiplying each element in the chain by the binomial coefficient
687/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
688///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000689/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000690///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000691/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000692///
Owen Andersonecd0cd72009-06-22 21:39:50 +0000693const SCEV* SCEVAddRecExpr::evaluateAtIteration(const SCEV* It,
Dan Gohman89f85052007-10-22 18:31:58 +0000694 ScalarEvolution &SE) const {
Owen Andersonecd0cd72009-06-22 21:39:50 +0000695 const SCEV* Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000696 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000697 // The computation is correct in the face of overflow provided that the
698 // multiplication is performed _after_ the evaluation of the binomial
699 // coefficient.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000700 const SCEV* Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000701 if (isa<SCEVCouldNotCompute>(Coeff))
702 return Coeff;
703
704 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705 }
706 return Result;
707}
708
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709//===----------------------------------------------------------------------===//
710// SCEV Expression folder implementations
711//===----------------------------------------------------------------------===//
712
Owen Andersonecd0cd72009-06-22 21:39:50 +0000713const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op,
Dan Gohman9c8abcc2009-05-01 16:44:56 +0000714 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000715 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000716 "This is not a truncating conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000717 assert(isSCEVable(Ty) &&
718 "This is not a conversion to a SCEVable type!");
719 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000720
Dan Gohmanc76b5452009-05-04 22:02:23 +0000721 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman55788cf2009-06-24 00:38:39 +0000722 return getConstant(
723 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724
Dan Gohman1a5c4992009-04-22 16:20:48 +0000725 // trunc(trunc(x)) --> trunc(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000726 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000727 return getTruncateExpr(ST->getOperand(), Ty);
728
Nick Lewycky37d04642009-04-23 05:15:08 +0000729 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000730 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000731 return getTruncateOrSignExtend(SS->getOperand(), Ty);
732
733 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000734 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000735 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
736
Dan Gohman1c0aa2c2009-06-18 16:24:47 +0000737 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000738 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Owen Andersonecd0cd72009-06-22 21:39:50 +0000739 SmallVector<const SCEV*, 4> Operands;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman45b3b542009-05-08 21:03:19 +0000741 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
742 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 }
744
Owen Andersonc48fbfe2009-06-22 18:25:46 +0000745 SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
Owen Andersonb70139d2009-06-22 21:57:23 +0000746 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000747 return Result;
748}
749
Owen Andersonecd0cd72009-06-22 21:39:50 +0000750const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
Dan Gohman36d40922009-04-16 19:25:55 +0000751 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000752 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman36d40922009-04-16 19:25:55 +0000753 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000754 assert(isSCEVable(Ty) &&
755 "This is not a conversion to a SCEVable type!");
756 Ty = getEffectiveSCEVType(Ty);
Dan Gohman36d40922009-04-16 19:25:55 +0000757
Dan Gohmanc76b5452009-05-04 22:02:23 +0000758 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000759 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000760 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
761 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohman55788cf2009-06-24 00:38:39 +0000762 return getConstant(cast<ConstantInt>(C));
Dan Gohman01c2ee72009-04-16 03:18:22 +0000763 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764
Dan Gohman1a5c4992009-04-22 16:20:48 +0000765 // zext(zext(x)) --> zext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000766 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000767 return getZeroExtendExpr(SZ->getOperand(), Ty);
768
Dan Gohmana9dba962009-04-27 20:16:15 +0000769 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000770 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000771 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000772 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000773 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000774 if (AR->isAffine()) {
775 // Check whether the backedge-taken count is SCEVCouldNotCompute.
776 // Note that this serves two purposes: It filters out loops that are
777 // simply not analyzable, and it covers the case where this code is
778 // being called from within backedge-taken count analysis, such that
779 // attempting to ask for the backedge-taken count would likely result
780 // in infinite recursion. In the later case, the analysis code will
781 // cope with a conservative value, and it will take care to purge
782 // that value once it has finished.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000783 const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000784 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000785 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000786 // overflow.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000787 const SCEV* Start = AR->getStart();
788 const SCEV* Step = AR->getStepRecurrence(*this);
Dan Gohmana9dba962009-04-27 20:16:15 +0000789
790 // Check whether the backedge-taken count can be losslessly casted to
791 // the addrec's type. The count is always unsigned.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000792 const SCEV* CastedMaxBECount =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000793 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Owen Andersonecd0cd72009-06-22 21:39:50 +0000794 const SCEV* RecastedMaxBECount =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000795 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
796 if (MaxBECount == RecastedMaxBECount) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000797 const Type *WideTy =
798 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000799 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000800 const SCEV* ZMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000801 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000802 getTruncateOrZeroExtend(Step, Start->getType()));
Owen Andersonecd0cd72009-06-22 21:39:50 +0000803 const SCEV* Add = getAddExpr(Start, ZMul);
804 const SCEV* OperandExtendedAdd =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000805 getAddExpr(getZeroExtendExpr(Start, WideTy),
806 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
807 getZeroExtendExpr(Step, WideTy)));
808 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000809 // Return the expression with the addrec on the outside.
810 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
811 getZeroExtendExpr(Step, Ty),
812 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000813
814 // Similar to above, only this time treat the step value as signed.
815 // This covers loops that count down.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000816 const SCEV* SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000817 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000818 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000819 Add = getAddExpr(Start, SMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000820 OperandExtendedAdd =
821 getAddExpr(getZeroExtendExpr(Start, WideTy),
822 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
823 getSignExtendExpr(Step, WideTy)));
824 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000825 // Return the expression with the addrec on the outside.
826 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
827 getSignExtendExpr(Step, Ty),
828 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000829 }
830 }
831 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000832
Owen Andersonc48fbfe2009-06-22 18:25:46 +0000833 SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
Owen Andersonb70139d2009-06-22 21:57:23 +0000834 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000835 return Result;
836}
837
Owen Andersonecd0cd72009-06-22 21:39:50 +0000838const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
Dan Gohmana9dba962009-04-27 20:16:15 +0000839 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000840 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000841 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000842 assert(isSCEVable(Ty) &&
843 "This is not a conversion to a SCEVable type!");
844 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000845
Dan Gohmanc76b5452009-05-04 22:02:23 +0000846 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000847 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000848 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
849 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohman55788cf2009-06-24 00:38:39 +0000850 return getConstant(cast<ConstantInt>(C));
Dan Gohman01c2ee72009-04-16 03:18:22 +0000851 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000852
Dan Gohman1a5c4992009-04-22 16:20:48 +0000853 // sext(sext(x)) --> sext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000854 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000855 return getSignExtendExpr(SS->getOperand(), Ty);
856
Dan Gohmana9dba962009-04-27 20:16:15 +0000857 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000858 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000859 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000861 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000862 if (AR->isAffine()) {
863 // Check whether the backedge-taken count is SCEVCouldNotCompute.
864 // Note that this serves two purposes: It filters out loops that are
865 // simply not analyzable, and it covers the case where this code is
866 // being called from within backedge-taken count analysis, such that
867 // attempting to ask for the backedge-taken count would likely result
868 // in infinite recursion. In the later case, the analysis code will
869 // cope with a conservative value, and it will take care to purge
870 // that value once it has finished.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000871 const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000872 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000873 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000874 // overflow.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000875 const SCEV* Start = AR->getStart();
876 const SCEV* Step = AR->getStepRecurrence(*this);
Dan Gohmana9dba962009-04-27 20:16:15 +0000877
878 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman3ded5b22009-04-29 22:28:28 +0000879 // the addrec's type. The count is always unsigned.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000880 const SCEV* CastedMaxBECount =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000881 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Owen Andersonecd0cd72009-06-22 21:39:50 +0000882 const SCEV* RecastedMaxBECount =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000883 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
884 if (MaxBECount == RecastedMaxBECount) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000885 const Type *WideTy =
886 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000887 // Check whether Start+Step*MaxBECount has no signed overflow.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000888 const SCEV* SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000889 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000890 getTruncateOrSignExtend(Step, Start->getType()));
Owen Andersonecd0cd72009-06-22 21:39:50 +0000891 const SCEV* Add = getAddExpr(Start, SMul);
892 const SCEV* OperandExtendedAdd =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000893 getAddExpr(getSignExtendExpr(Start, WideTy),
894 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
895 getSignExtendExpr(Step, WideTy)));
896 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000897 // Return the expression with the addrec on the outside.
898 return getAddRecExpr(getSignExtendExpr(Start, Ty),
899 getSignExtendExpr(Step, Ty),
900 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000901 }
902 }
903 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000904
Owen Andersonc48fbfe2009-06-22 18:25:46 +0000905 SCEVSignExtendExpr *&Result = SCEVSignExtends[std::make_pair(Op, Ty)];
Owen Andersonb70139d2009-06-22 21:57:23 +0000906 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000907 return Result;
908}
909
Dan Gohmane1ca7e82009-06-13 15:56:47 +0000910/// getAnyExtendExpr - Return a SCEV for the given operand extended with
911/// unspecified bits out to the given type.
912///
Owen Andersonecd0cd72009-06-22 21:39:50 +0000913const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op,
Dan Gohmane1ca7e82009-06-13 15:56:47 +0000914 const Type *Ty) {
915 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
916 "This is not an extending conversion!");
917 assert(isSCEVable(Ty) &&
918 "This is not a conversion to a SCEVable type!");
919 Ty = getEffectiveSCEVType(Ty);
920
921 // Sign-extend negative constants.
922 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
923 if (SC->getValue()->getValue().isNegative())
924 return getSignExtendExpr(Op, Ty);
925
926 // Peel off a truncate cast.
927 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Owen Andersonecd0cd72009-06-22 21:39:50 +0000928 const SCEV* NewOp = T->getOperand();
Dan Gohmane1ca7e82009-06-13 15:56:47 +0000929 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
930 return getAnyExtendExpr(NewOp, Ty);
931 return getTruncateOrNoop(NewOp, Ty);
932 }
933
934 // Next try a zext cast. If the cast is folded, use it.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000935 const SCEV* ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohmane1ca7e82009-06-13 15:56:47 +0000936 if (!isa<SCEVZeroExtendExpr>(ZExt))
937 return ZExt;
938
939 // Next try a sext cast. If the cast is folded, use it.
Owen Andersonecd0cd72009-06-22 21:39:50 +0000940 const SCEV* SExt = getSignExtendExpr(Op, Ty);
Dan Gohmane1ca7e82009-06-13 15:56:47 +0000941 if (!isa<SCEVSignExtendExpr>(SExt))
942 return SExt;
943
944 // If the expression is obviously signed, use the sext cast value.
945 if (isa<SCEVSMaxExpr>(Op))
946 return SExt;
947
948 // Absent any other information, use the zext cast value.
949 return ZExt;
950}
951
Dan Gohman27bd4cb2009-06-14 22:58:51 +0000952/// CollectAddOperandsWithScales - Process the given Ops list, which is
953/// a list of operands to be added under the given scale, update the given
954/// map. This is a helper function for getAddRecExpr. As an example of
955/// what it does, given a sequence of operands that would form an add
956/// expression like this:
957///
958/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
959///
960/// where A and B are constants, update the map with these values:
961///
962/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
963///
964/// and add 13 + A*B*29 to AccumulatedConstant.
965/// This will allow getAddRecExpr to produce this:
966///
967/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
968///
969/// This form often exposes folding opportunities that are hidden in
970/// the original operand list.
971///
972/// Return true iff it appears that any interesting folding opportunities
973/// may be exposed. This helps getAddRecExpr short-circuit extra work in
974/// the common case where no interesting opportunities are present, and
975/// is also used as a check to avoid infinite recursion.
976///
977static bool
Owen Andersonecd0cd72009-06-22 21:39:50 +0000978CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M,
979 SmallVector<const SCEV*, 8> &NewOps,
Dan Gohman27bd4cb2009-06-14 22:58:51 +0000980 APInt &AccumulatedConstant,
Owen Andersonecd0cd72009-06-22 21:39:50 +0000981 const SmallVectorImpl<const SCEV*> &Ops,
Dan Gohman27bd4cb2009-06-14 22:58:51 +0000982 const APInt &Scale,
983 ScalarEvolution &SE) {
984 bool Interesting = false;
985
986 // Iterate over the add operands.
987 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
988 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
989 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
990 APInt NewScale =
991 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
992 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
993 // A multiplication of a constant with another add; recurse.
994 Interesting |=
995 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
996 cast<SCEVAddExpr>(Mul->getOperand(1))
997 ->getOperands(),
998 NewScale, SE);
999 } else {
1000 // A multiplication of a constant with some other value. Update
1001 // the map.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001002 SmallVector<const SCEV*, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1003 const SCEV* Key = SE.getMulExpr(MulOps);
1004 std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001005 M.insert(std::make_pair(Key, APInt()));
1006 if (Pair.second) {
1007 Pair.first->second = NewScale;
1008 NewOps.push_back(Pair.first->first);
1009 } else {
1010 Pair.first->second += NewScale;
1011 // The map already had an entry for this value, which may indicate
1012 // a folding opportunity.
1013 Interesting = true;
1014 }
1015 }
1016 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1017 // Pull a buried constant out to the outside.
1018 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1019 Interesting = true;
1020 AccumulatedConstant += Scale * C->getValue()->getValue();
1021 } else {
1022 // An ordinary operand. Update the map.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001023 std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001024 M.insert(std::make_pair(Ops[i], APInt()));
1025 if (Pair.second) {
1026 Pair.first->second = Scale;
1027 NewOps.push_back(Pair.first->first);
1028 } else {
1029 Pair.first->second += Scale;
1030 // The map already had an entry for this value, which may indicate
1031 // a folding opportunity.
1032 Interesting = true;
1033 }
1034 }
1035 }
1036
1037 return Interesting;
1038}
1039
1040namespace {
1041 struct APIntCompare {
1042 bool operator()(const APInt &LHS, const APInt &RHS) const {
1043 return LHS.ult(RHS);
1044 }
1045 };
1046}
1047
Dan Gohmanc8a29272009-05-24 23:45:28 +00001048/// getAddExpr - Get a canonical add expression, or something simpler if
1049/// possible.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001050const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001051 assert(!Ops.empty() && "Cannot get empty add!");
1052 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001053#ifndef NDEBUG
1054 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1055 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1056 getEffectiveSCEVType(Ops[0]->getType()) &&
1057 "SCEVAddExpr operand types don't match!");
1058#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001059
1060 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001061 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001062
1063 // If there are any constants, fold them together.
1064 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001065 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001066 ++Idx;
1067 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001068 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001069 // We found two constants, fold them together!
Dan Gohman02ff9392009-06-14 22:47:23 +00001070 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1071 RHSC->getValue()->getValue());
Dan Gohman68f23e82009-06-14 22:53:57 +00001072 if (Ops.size() == 2) return Ops[0];
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001073 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001074 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001075 }
1076
1077 // If we are left with a constant zero being added, strip it off.
1078 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1079 Ops.erase(Ops.begin());
1080 --Idx;
1081 }
1082 }
1083
1084 if (Ops.size() == 1) return Ops[0];
1085
1086 // Okay, check to see if the same value occurs in the operand list twice. If
1087 // so, merge them together into an multiply expression. Since we sorted the
1088 // list, these values are required to be adjacent.
1089 const Type *Ty = Ops[0]->getType();
1090 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1091 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1092 // Found a match, merge the two values into a multiply, and add any
1093 // remaining values to the result.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001094 const SCEV* Two = getIntegerSCEV(2, Ty);
1095 const SCEV* Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001096 if (Ops.size() == 2)
1097 return Mul;
1098 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1099 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +00001100 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001101 }
1102
Dan Gohman45b3b542009-05-08 21:03:19 +00001103 // Check for truncates. If all the operands are truncated from the same
1104 // type, see if factoring out the truncate would permit the result to be
1105 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1106 // if the contents of the resulting outer trunc fold to something simple.
1107 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1108 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1109 const Type *DstType = Trunc->getType();
1110 const Type *SrcType = Trunc->getOperand()->getType();
Owen Andersonecd0cd72009-06-22 21:39:50 +00001111 SmallVector<const SCEV*, 8> LargeOps;
Dan Gohman45b3b542009-05-08 21:03:19 +00001112 bool Ok = true;
1113 // Check all the operands to see if they can be represented in the
1114 // source type of the truncate.
1115 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1116 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1117 if (T->getOperand()->getType() != SrcType) {
1118 Ok = false;
1119 break;
1120 }
1121 LargeOps.push_back(T->getOperand());
1122 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1123 // This could be either sign or zero extension, but sign extension
1124 // is much more likely to be foldable here.
1125 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1126 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00001127 SmallVector<const SCEV*, 8> LargeMulOps;
Dan Gohman45b3b542009-05-08 21:03:19 +00001128 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1129 if (const SCEVTruncateExpr *T =
1130 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1131 if (T->getOperand()->getType() != SrcType) {
1132 Ok = false;
1133 break;
1134 }
1135 LargeMulOps.push_back(T->getOperand());
1136 } else if (const SCEVConstant *C =
1137 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1138 // This could be either sign or zero extension, but sign extension
1139 // is much more likely to be foldable here.
1140 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1141 } else {
1142 Ok = false;
1143 break;
1144 }
1145 }
1146 if (Ok)
1147 LargeOps.push_back(getMulExpr(LargeMulOps));
1148 } else {
1149 Ok = false;
1150 break;
1151 }
1152 }
1153 if (Ok) {
1154 // Evaluate the expression in the larger type.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001155 const SCEV* Fold = getAddExpr(LargeOps);
Dan Gohman45b3b542009-05-08 21:03:19 +00001156 // If it folds to something simple, use it. Otherwise, don't.
1157 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1158 return getTruncateExpr(Fold, DstType);
1159 }
1160 }
1161
1162 // Skip past any other cast SCEVs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001163 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1164 ++Idx;
1165
1166 // If there are add operands they would be next.
1167 if (Idx < Ops.size()) {
1168 bool DeletedAdd = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001169 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001170 // If we have an add, expand the add operands onto the end of the operands
1171 // list.
1172 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1173 Ops.erase(Ops.begin()+Idx);
1174 DeletedAdd = true;
1175 }
1176
1177 // If we deleted at least one add, we added operands to the end of the list,
1178 // and they are not necessarily sorted. Recurse to resort and resimplify
1179 // any operands we just aquired.
1180 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +00001181 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001182 }
1183
1184 // Skip over the add expression until we get to a multiply.
1185 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1186 ++Idx;
1187
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001188 // Check to see if there are any folding opportunities present with
1189 // operands multiplied by constant values.
1190 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1191 uint64_t BitWidth = getTypeSizeInBits(Ty);
Owen Andersonecd0cd72009-06-22 21:39:50 +00001192 DenseMap<const SCEV*, APInt> M;
1193 SmallVector<const SCEV*, 8> NewOps;
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001194 APInt AccumulatedConstant(BitWidth, 0);
1195 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1196 Ops, APInt(BitWidth, 1), *this)) {
1197 // Some interesting folding opportunity is present, so its worthwhile to
1198 // re-generate the operands list. Group the operands by constant scale,
1199 // to avoid multiplying by the same constant scale multiple times.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001200 std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare> MulOpLists;
1201 for (SmallVector<const SCEV*, 8>::iterator I = NewOps.begin(),
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001202 E = NewOps.end(); I != E; ++I)
1203 MulOpLists[M.find(*I)->second].push_back(*I);
1204 // Re-generate the operands list.
1205 Ops.clear();
1206 if (AccumulatedConstant != 0)
1207 Ops.push_back(getConstant(AccumulatedConstant));
Owen Andersonecd0cd72009-06-22 21:39:50 +00001208 for (std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare>::iterator I =
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001209 MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1210 if (I->first != 0)
1211 Ops.push_back(getMulExpr(getConstant(I->first), getAddExpr(I->second)));
1212 if (Ops.empty())
1213 return getIntegerSCEV(0, Ty);
1214 if (Ops.size() == 1)
1215 return Ops[0];
1216 return getAddExpr(Ops);
1217 }
1218 }
1219
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001220 // If we are adding something to a multiply expression, make sure the
1221 // something is not already an operand of the multiply. If so, merge it into
1222 // the multiply.
1223 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001224 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001225 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001226 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001227 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman02ff9392009-06-14 22:47:23 +00001228 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001229 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Owen Andersonecd0cd72009-06-22 21:39:50 +00001230 const SCEV* InnerMul = Mul->getOperand(MulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001231 if (Mul->getNumOperands() != 2) {
1232 // If the multiply has more than two operands, we must get the
1233 // Y*Z term.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001234 SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001235 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001236 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001237 }
Owen Andersonecd0cd72009-06-22 21:39:50 +00001238 const SCEV* One = getIntegerSCEV(1, Ty);
1239 const SCEV* AddOne = getAddExpr(InnerMul, One);
1240 const SCEV* OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001241 if (Ops.size() == 2) return OuterMul;
1242 if (AddOp < Idx) {
1243 Ops.erase(Ops.begin()+AddOp);
1244 Ops.erase(Ops.begin()+Idx-1);
1245 } else {
1246 Ops.erase(Ops.begin()+Idx);
1247 Ops.erase(Ops.begin()+AddOp-1);
1248 }
1249 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001250 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001251 }
1252
1253 // Check this multiply against other multiplies being added together.
1254 for (unsigned OtherMulIdx = Idx+1;
1255 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1256 ++OtherMulIdx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001257 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001258 // If MulOp occurs in OtherMul, we can fold the two multiplies
1259 // together.
1260 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1261 OMulOp != e; ++OMulOp)
1262 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1263 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Owen Andersonecd0cd72009-06-22 21:39:50 +00001264 const SCEV* InnerMul1 = Mul->getOperand(MulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 if (Mul->getNumOperands() != 2) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00001266 SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001268 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001269 }
Owen Andersonecd0cd72009-06-22 21:39:50 +00001270 const SCEV* InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271 if (OtherMul->getNumOperands() != 2) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00001272 SmallVector<const SCEV*, 4> MulOps(OtherMul->op_begin(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001273 OtherMul->op_end());
1274 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001275 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001276 }
Owen Andersonecd0cd72009-06-22 21:39:50 +00001277 const SCEV* InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1278 const SCEV* OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 if (Ops.size() == 2) return OuterMul;
1280 Ops.erase(Ops.begin()+Idx);
1281 Ops.erase(Ops.begin()+OtherMulIdx-1);
1282 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001283 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001284 }
1285 }
1286 }
1287 }
1288
1289 // If there are any add recurrences in the operands list, see if any other
1290 // added values are loop invariant. If so, we can fold them into the
1291 // recurrence.
1292 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1293 ++Idx;
1294
1295 // Scan over all recurrences, trying to fold loop invariants into them.
1296 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1297 // Scan all of the other operands to this add and add them to the vector if
1298 // they are loop invariant w.r.t. the recurrence.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001299 SmallVector<const SCEV*, 8> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001300 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001301 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1302 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1303 LIOps.push_back(Ops[i]);
1304 Ops.erase(Ops.begin()+i);
1305 --i; --e;
1306 }
1307
1308 // If we found some loop invariants, fold them into the recurrence.
1309 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001310 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001311 LIOps.push_back(AddRec->getStart());
1312
Owen Andersonecd0cd72009-06-22 21:39:50 +00001313 SmallVector<const SCEV*, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001314 AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001315 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001316
Owen Andersonecd0cd72009-06-22 21:39:50 +00001317 const SCEV* NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001318 // If all of the other operands were loop invariant, we are done.
1319 if (Ops.size() == 1) return NewRec;
1320
1321 // Otherwise, add the folded AddRec by the non-liv parts.
1322 for (unsigned i = 0;; ++i)
1323 if (Ops[i] == AddRec) {
1324 Ops[i] = NewRec;
1325 break;
1326 }
Dan Gohman89f85052007-10-22 18:31:58 +00001327 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001328 }
1329
1330 // Okay, if there weren't any loop invariants to be folded, check to see if
1331 // there are multiple AddRec's with the same loop induction variable being
1332 // added together. If so, we can fold them.
1333 for (unsigned OtherIdx = Idx+1;
1334 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1335 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001336 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001337 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1338 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Owen Andersonecd0cd72009-06-22 21:39:50 +00001339 SmallVector<const SCEV*, 4> NewOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1341 if (i >= NewOps.size()) {
1342 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1343 OtherAddRec->op_end());
1344 break;
1345 }
Dan Gohman89f85052007-10-22 18:31:58 +00001346 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001347 }
Owen Andersonecd0cd72009-06-22 21:39:50 +00001348 const SCEV* NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001349
1350 if (Ops.size() == 2) return NewAddRec;
1351
1352 Ops.erase(Ops.begin()+Idx);
1353 Ops.erase(Ops.begin()+OtherIdx-1);
1354 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001355 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001356 }
1357 }
1358
1359 // Otherwise couldn't fold anything into this recurrence. Move onto the
1360 // next one.
1361 }
1362
1363 // Okay, it looks like we really DO need an add expr. Check to see if we
1364 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001365 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Owen Andersonc48fbfe2009-06-22 18:25:46 +00001366 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001367 SCEVOps)];
Owen Andersonb70139d2009-06-22 21:57:23 +00001368 if (Result == 0) Result = new SCEVAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001369 return Result;
1370}
1371
1372
Dan Gohmanc8a29272009-05-24 23:45:28 +00001373/// getMulExpr - Get a canonical multiply expression, or something simpler if
1374/// possible.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001375const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001376 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana77b3d42009-05-18 15:44:58 +00001377#ifndef NDEBUG
1378 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1379 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1380 getEffectiveSCEVType(Ops[0]->getType()) &&
1381 "SCEVMulExpr operand types don't match!");
1382#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001383
1384 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001385 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001386
1387 // If there are any constants, fold them together.
1388 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001389 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001390
1391 // C1*(C2+V) -> C1*C2 + C1*V
1392 if (Ops.size() == 2)
Dan Gohmanc76b5452009-05-04 22:02:23 +00001393 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001394 if (Add->getNumOperands() == 2 &&
1395 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +00001396 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1397 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001398
1399
1400 ++Idx;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001401 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001402 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001403 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1404 RHSC->getValue()->getValue());
1405 Ops[0] = getConstant(Fold);
1406 Ops.erase(Ops.begin()+1); // Erase the folded element
1407 if (Ops.size() == 1) return Ops[0];
1408 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001409 }
1410
1411 // If we are left with a constant one being multiplied, strip it off.
1412 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1413 Ops.erase(Ops.begin());
1414 --Idx;
1415 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1416 // If we have a multiply of zero, it will always be zero.
1417 return Ops[0];
1418 }
1419 }
1420
1421 // Skip over the add expression until we get to a multiply.
1422 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1423 ++Idx;
1424
1425 if (Ops.size() == 1)
1426 return Ops[0];
1427
1428 // If there are mul operands inline them all into this expression.
1429 if (Idx < Ops.size()) {
1430 bool DeletedMul = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001431 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001432 // If we have an mul, expand the mul operands onto the end of the operands
1433 // list.
1434 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1435 Ops.erase(Ops.begin()+Idx);
1436 DeletedMul = true;
1437 }
1438
1439 // If we deleted at least one mul, we added operands to the end of the list,
1440 // and they are not necessarily sorted. Recurse to resort and resimplify
1441 // any operands we just aquired.
1442 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001443 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001444 }
1445
1446 // If there are any add recurrences in the operands list, see if any other
1447 // added values are loop invariant. If so, we can fold them into the
1448 // recurrence.
1449 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1450 ++Idx;
1451
1452 // Scan over all recurrences, trying to fold loop invariants into them.
1453 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1454 // Scan all of the other operands to this mul and add them to the vector if
1455 // they are loop invariant w.r.t. the recurrence.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001456 SmallVector<const SCEV*, 8> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001457 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001458 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1459 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1460 LIOps.push_back(Ops[i]);
1461 Ops.erase(Ops.begin()+i);
1462 --i; --e;
1463 }
1464
1465 // If we found some loop invariants, fold them into the recurrence.
1466 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001467 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Owen Andersonecd0cd72009-06-22 21:39:50 +00001468 SmallVector<const SCEV*, 4> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001469 NewOps.reserve(AddRec->getNumOperands());
1470 if (LIOps.size() == 1) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001471 const SCEV *Scale = LIOps[0];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001472 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001473 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001474 } else {
1475 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00001476 SmallVector<const SCEV*, 4> MulOps(LIOps.begin(), LIOps.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001477 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001478 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001479 }
1480 }
1481
Owen Andersonecd0cd72009-06-22 21:39:50 +00001482 const SCEV* NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001483
1484 // If all of the other operands were loop invariant, we are done.
1485 if (Ops.size() == 1) return NewRec;
1486
1487 // Otherwise, multiply the folded AddRec by the non-liv parts.
1488 for (unsigned i = 0;; ++i)
1489 if (Ops[i] == AddRec) {
1490 Ops[i] = NewRec;
1491 break;
1492 }
Dan Gohman89f85052007-10-22 18:31:58 +00001493 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494 }
1495
1496 // Okay, if there weren't any loop invariants to be folded, check to see if
1497 // there are multiple AddRec's with the same loop induction variable being
1498 // multiplied together. If so, we can fold them.
1499 for (unsigned OtherIdx = Idx+1;
1500 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1501 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001502 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001503 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1504 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohmanbff6b582009-05-04 22:30:44 +00001505 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Owen Andersonecd0cd72009-06-22 21:39:50 +00001506 const SCEV* NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001507 G->getStart());
Owen Andersonecd0cd72009-06-22 21:39:50 +00001508 const SCEV* B = F->getStepRecurrence(*this);
1509 const SCEV* D = G->getStepRecurrence(*this);
1510 const SCEV* NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman89f85052007-10-22 18:31:58 +00001511 getMulExpr(G, B),
1512 getMulExpr(B, D));
Owen Andersonecd0cd72009-06-22 21:39:50 +00001513 const SCEV* NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman89f85052007-10-22 18:31:58 +00001514 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001515 if (Ops.size() == 2) return NewAddRec;
1516
1517 Ops.erase(Ops.begin()+Idx);
1518 Ops.erase(Ops.begin()+OtherIdx-1);
1519 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001520 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001521 }
1522 }
1523
1524 // Otherwise couldn't fold anything into this recurrence. Move onto the
1525 // next one.
1526 }
1527
1528 // Okay, it looks like we really DO need an mul expr. Check to see if we
1529 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001530 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Owen Andersonc48fbfe2009-06-22 18:25:46 +00001531 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001532 SCEVOps)];
1533 if (Result == 0)
Owen Andersonb70139d2009-06-22 21:57:23 +00001534 Result = new SCEVMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001535 return Result;
1536}
1537
Dan Gohmanc8a29272009-05-24 23:45:28 +00001538/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1539/// possible.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001540const SCEV* ScalarEvolution::getUDivExpr(const SCEV* LHS,
1541 const SCEV* RHS) {
Dan Gohmana77b3d42009-05-18 15:44:58 +00001542 assert(getEffectiveSCEVType(LHS->getType()) ==
1543 getEffectiveSCEVType(RHS->getType()) &&
1544 "SCEVUDivExpr operand types don't match!");
1545
Dan Gohmanc76b5452009-05-04 22:02:23 +00001546 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001547 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001548 return LHS; // X udiv 1 --> x
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001549 if (RHSC->isZero())
1550 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001551
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001552 // Determine if the division can be folded into the operands of
1553 // its operands.
1554 // TODO: Generalize this to non-constants by using known-bits information.
1555 const Type *Ty = LHS->getType();
1556 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1557 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1558 // For non-power-of-two values, effectively round the value up to the
1559 // nearest power of two.
1560 if (!RHSC->getValue()->getValue().isPowerOf2())
1561 ++MaxShiftAmt;
1562 const IntegerType *ExtTy =
1563 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1564 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1565 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1566 if (const SCEVConstant *Step =
1567 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1568 if (!Step->getValue()->getValue()
1569 .urem(RHSC->getValue()->getValue()) &&
Dan Gohman14374d32009-05-08 23:11:16 +00001570 getZeroExtendExpr(AR, ExtTy) ==
1571 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1572 getZeroExtendExpr(Step, ExtTy),
1573 AR->getLoop())) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00001574 SmallVector<const SCEV*, 4> Operands;
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001575 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1576 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1577 return getAddRecExpr(Operands, AR->getLoop());
1578 }
1579 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001580 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00001581 SmallVector<const SCEV*, 4> Operands;
Dan Gohman14374d32009-05-08 23:11:16 +00001582 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1583 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1584 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001585 // Find an operand that's safely divisible.
1586 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00001587 const SCEV* Op = M->getOperand(i);
1588 const SCEV* Div = getUDivExpr(Op, RHSC);
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001589 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00001590 const SmallVectorImpl<const SCEV*> &MOperands = M->getOperands();
1591 Operands = SmallVector<const SCEV*, 4>(MOperands.begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001592 MOperands.end());
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001593 Operands[i] = Div;
1594 return getMulExpr(Operands);
1595 }
1596 }
Dan Gohman14374d32009-05-08 23:11:16 +00001597 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001598 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001599 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00001600 SmallVector<const SCEV*, 4> Operands;
Dan Gohman14374d32009-05-08 23:11:16 +00001601 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1602 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1603 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1604 Operands.clear();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001605 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00001606 const SCEV* Op = getUDivExpr(A->getOperand(i), RHS);
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001607 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1608 break;
1609 Operands.push_back(Op);
1610 }
1611 if (Operands.size() == A->getNumOperands())
1612 return getAddExpr(Operands);
1613 }
Dan Gohman14374d32009-05-08 23:11:16 +00001614 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001615
1616 // Fold if both operands are constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001617 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001618 Constant *LHSCV = LHSC->getValue();
1619 Constant *RHSCV = RHSC->getValue();
Dan Gohman55788cf2009-06-24 00:38:39 +00001620 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1621 RHSCV)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001622 }
1623 }
1624
Owen Andersonc48fbfe2009-06-22 18:25:46 +00001625 SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
Owen Andersonb70139d2009-06-22 21:57:23 +00001626 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001627 return Result;
1628}
1629
1630
Dan Gohmanc8a29272009-05-24 23:45:28 +00001631/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1632/// Simplify the expression as much as possible.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001633const SCEV* ScalarEvolution::getAddRecExpr(const SCEV* Start,
1634 const SCEV* Step, const Loop *L) {
1635 SmallVector<const SCEV*, 4> Operands;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001636 Operands.push_back(Start);
Dan Gohmanc76b5452009-05-04 22:02:23 +00001637 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001638 if (StepChrec->getLoop() == L) {
1639 Operands.insert(Operands.end(), StepChrec->op_begin(),
1640 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001641 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001642 }
1643
1644 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001645 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001646}
1647
Dan Gohmanc8a29272009-05-24 23:45:28 +00001648/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1649/// Simplify the expression as much as possible.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001650const SCEV* ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
Nick Lewycky37d04642009-04-23 05:15:08 +00001651 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001652 if (Operands.size() == 1) return Operands[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001653#ifndef NDEBUG
1654 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1655 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1656 getEffectiveSCEVType(Operands[0]->getType()) &&
1657 "SCEVAddRecExpr operand types don't match!");
1658#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001659
Dan Gohman7b560c42008-06-18 16:23:07 +00001660 if (Operands.back()->isZero()) {
1661 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001662 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001663 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001664
Dan Gohman42936882008-08-08 18:33:12 +00001665 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001666 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman42936882008-08-08 18:33:12 +00001667 const Loop* NestedLoop = NestedAR->getLoop();
1668 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00001669 SmallVector<const SCEV*, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001670 NestedAR->op_end());
Dan Gohman42936882008-08-08 18:33:12 +00001671 Operands[0] = NestedAR->getStart();
1672 NestedOperands[0] = getAddRecExpr(Operands, L);
1673 return getAddRecExpr(NestedOperands, NestedLoop);
1674 }
1675 }
1676
Dan Gohmanbff6b582009-05-04 22:30:44 +00001677 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
Owen Andersonc48fbfe2009-06-22 18:25:46 +00001678 SCEVAddRecExpr *&Result = SCEVAddRecExprs[std::make_pair(L, SCEVOps)];
Owen Andersonb70139d2009-06-22 21:57:23 +00001679 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001680 return Result;
1681}
1682
Owen Andersonecd0cd72009-06-22 21:39:50 +00001683const SCEV* ScalarEvolution::getSMaxExpr(const SCEV* LHS,
1684 const SCEV* RHS) {
1685 SmallVector<const SCEV*, 2> Ops;
Nick Lewycky711640a2007-11-25 22:41:31 +00001686 Ops.push_back(LHS);
1687 Ops.push_back(RHS);
1688 return getSMaxExpr(Ops);
1689}
1690
Owen Andersonecd0cd72009-06-22 21:39:50 +00001691const SCEV*
1692ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001693 assert(!Ops.empty() && "Cannot get empty smax!");
1694 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001695#ifndef NDEBUG
1696 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1697 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1698 getEffectiveSCEVType(Ops[0]->getType()) &&
1699 "SCEVSMaxExpr operand types don't match!");
1700#endif
Nick Lewycky711640a2007-11-25 22:41:31 +00001701
1702 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001703 GroupByComplexity(Ops, LI);
Nick Lewycky711640a2007-11-25 22:41:31 +00001704
1705 // If there are any constants, fold them together.
1706 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001707 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001708 ++Idx;
1709 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001710 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001711 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001712 ConstantInt *Fold = ConstantInt::get(
Nick Lewycky711640a2007-11-25 22:41:31 +00001713 APIntOps::smax(LHSC->getValue()->getValue(),
1714 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001715 Ops[0] = getConstant(Fold);
1716 Ops.erase(Ops.begin()+1); // Erase the folded element
1717 if (Ops.size() == 1) return Ops[0];
1718 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001719 }
1720
1721 // If we are left with a constant -inf, strip it off.
1722 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1723 Ops.erase(Ops.begin());
1724 --Idx;
1725 }
1726 }
1727
1728 if (Ops.size() == 1) return Ops[0];
1729
1730 // Find the first SMax
1731 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1732 ++Idx;
1733
1734 // Check to see if one of the operands is an SMax. If so, expand its operands
1735 // onto our operand list, and recurse to simplify.
1736 if (Idx < Ops.size()) {
1737 bool DeletedSMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001738 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001739 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1740 Ops.erase(Ops.begin()+Idx);
1741 DeletedSMax = true;
1742 }
1743
1744 if (DeletedSMax)
1745 return getSMaxExpr(Ops);
1746 }
1747
1748 // Okay, check to see if the same value occurs in the operand list twice. If
1749 // so, delete one. Since we sorted the list, these values are required to
1750 // be adjacent.
1751 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1752 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1753 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1754 --i; --e;
1755 }
1756
1757 if (Ops.size() == 1) return Ops[0];
1758
1759 assert(!Ops.empty() && "Reduced smax down to nothing!");
1760
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001761 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001762 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001763 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Owen Andersonc48fbfe2009-06-22 18:25:46 +00001764 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scSMaxExpr,
Nick Lewycky711640a2007-11-25 22:41:31 +00001765 SCEVOps)];
Owen Andersonb70139d2009-06-22 21:57:23 +00001766 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
Nick Lewycky711640a2007-11-25 22:41:31 +00001767 return Result;
1768}
1769
Owen Andersonecd0cd72009-06-22 21:39:50 +00001770const SCEV* ScalarEvolution::getUMaxExpr(const SCEV* LHS,
1771 const SCEV* RHS) {
1772 SmallVector<const SCEV*, 2> Ops;
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001773 Ops.push_back(LHS);
1774 Ops.push_back(RHS);
1775 return getUMaxExpr(Ops);
1776}
1777
Owen Andersonecd0cd72009-06-22 21:39:50 +00001778const SCEV*
1779ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001780 assert(!Ops.empty() && "Cannot get empty umax!");
1781 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001782#ifndef NDEBUG
1783 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1784 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1785 getEffectiveSCEVType(Ops[0]->getType()) &&
1786 "SCEVUMaxExpr operand types don't match!");
1787#endif
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001788
1789 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001790 GroupByComplexity(Ops, LI);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001791
1792 // If there are any constants, fold them together.
1793 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001794 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001795 ++Idx;
1796 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001797 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001798 // We found two constants, fold them together!
1799 ConstantInt *Fold = ConstantInt::get(
1800 APIntOps::umax(LHSC->getValue()->getValue(),
1801 RHSC->getValue()->getValue()));
1802 Ops[0] = getConstant(Fold);
1803 Ops.erase(Ops.begin()+1); // Erase the folded element
1804 if (Ops.size() == 1) return Ops[0];
1805 LHSC = cast<SCEVConstant>(Ops[0]);
1806 }
1807
1808 // If we are left with a constant zero, strip it off.
1809 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1810 Ops.erase(Ops.begin());
1811 --Idx;
1812 }
1813 }
1814
1815 if (Ops.size() == 1) return Ops[0];
1816
1817 // Find the first UMax
1818 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1819 ++Idx;
1820
1821 // Check to see if one of the operands is a UMax. If so, expand its operands
1822 // onto our operand list, and recurse to simplify.
1823 if (Idx < Ops.size()) {
1824 bool DeletedUMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001825 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001826 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1827 Ops.erase(Ops.begin()+Idx);
1828 DeletedUMax = true;
1829 }
1830
1831 if (DeletedUMax)
1832 return getUMaxExpr(Ops);
1833 }
1834
1835 // Okay, check to see if the same value occurs in the operand list twice. If
1836 // so, delete one. Since we sorted the list, these values are required to
1837 // be adjacent.
1838 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1839 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1840 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1841 --i; --e;
1842 }
1843
1844 if (Ops.size() == 1) return Ops[0];
1845
1846 assert(!Ops.empty() && "Reduced umax down to nothing!");
1847
1848 // Okay, it looks like we really DO need a umax expr. Check to see if we
1849 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001850 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Owen Andersonc48fbfe2009-06-22 18:25:46 +00001851 SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scUMaxExpr,
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001852 SCEVOps)];
Owen Andersonb70139d2009-06-22 21:57:23 +00001853 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001854 return Result;
1855}
1856
Owen Andersonecd0cd72009-06-22 21:39:50 +00001857const SCEV* ScalarEvolution::getSMinExpr(const SCEV* LHS,
1858 const SCEV* RHS) {
Dan Gohmand01fff82009-06-22 03:18:45 +00001859 // ~smax(~x, ~y) == smin(x, y).
1860 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1861}
1862
Owen Andersonecd0cd72009-06-22 21:39:50 +00001863const SCEV* ScalarEvolution::getUMinExpr(const SCEV* LHS,
1864 const SCEV* RHS) {
Dan Gohmand01fff82009-06-22 03:18:45 +00001865 // ~umax(~x, ~y) == umin(x, y)
1866 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1867}
1868
Owen Andersonecd0cd72009-06-22 21:39:50 +00001869const SCEV* ScalarEvolution::getUnknown(Value *V) {
Dan Gohman984c78a2009-06-24 00:54:57 +00001870 // Don't attempt to do anything other than create a SCEVUnknown object
1871 // here. createSCEV only calls getUnknown after checking for all other
1872 // interesting possibilities, and any other code that calls getUnknown
1873 // is doing so in order to hide a value from SCEV canonicalization.
1874
Owen Andersonc48fbfe2009-06-22 18:25:46 +00001875 SCEVUnknown *&Result = SCEVUnknowns[V];
Owen Andersonb70139d2009-06-22 21:57:23 +00001876 if (Result == 0) Result = new SCEVUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001877 return Result;
1878}
1879
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001880//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881// Basic SCEV Analysis and PHI Idiom Recognition Code
1882//
1883
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001884/// isSCEVable - Test if values of the given type are analyzable within
1885/// the SCEV framework. This primarily includes integer types, and it
1886/// can optionally include pointer types if the ScalarEvolution class
1887/// has access to target-specific information.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001888bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001889 // Integers are always SCEVable.
1890 if (Ty->isInteger())
1891 return true;
1892
1893 // Pointers are SCEVable if TargetData information is available
1894 // to provide pointer size information.
1895 if (isa<PointerType>(Ty))
1896 return TD != NULL;
1897
1898 // Otherwise it's not SCEVable.
1899 return false;
1900}
1901
1902/// getTypeSizeInBits - Return the size in bits of the specified type,
1903/// for which isSCEVable must return true.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001904uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001905 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1906
1907 // If we have a TargetData, use it!
1908 if (TD)
1909 return TD->getTypeSizeInBits(Ty);
1910
1911 // Otherwise, we support only integer types.
1912 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1913 return Ty->getPrimitiveSizeInBits();
1914}
1915
1916/// getEffectiveSCEVType - Return a type with the same bitwidth as
1917/// the given type and which represents how SCEV will treat the given
1918/// type, for which isSCEVable must return true. For pointer types,
1919/// this is the pointer-sized integer type.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001920const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001921 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1922
1923 if (Ty->isInteger())
1924 return Ty;
1925
1926 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1927 return TD->getIntPtrType();
Dan Gohman01c2ee72009-04-16 03:18:22 +00001928}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001929
Owen Andersonecd0cd72009-06-22 21:39:50 +00001930const SCEV* ScalarEvolution::getCouldNotCompute() {
Dan Gohman0c850912009-06-06 14:37:11 +00001931 return CouldNotCompute;
Dan Gohman0ad08b02009-04-18 17:58:19 +00001932}
1933
Dan Gohmand83d4af2009-05-04 22:20:30 +00001934/// hasSCEV - Return true if the SCEV for this value has already been
Edwin Török0e828d62009-05-01 08:33:47 +00001935/// computed.
1936bool ScalarEvolution::hasSCEV(Value *V) const {
1937 return Scalars.count(V);
1938}
1939
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001940/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1941/// expression and create a new one.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001942const SCEV* ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001943 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001944
Owen Andersonecd0cd72009-06-22 21:39:50 +00001945 std::map<SCEVCallbackVH, const SCEV*>::iterator I = Scalars.find(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001946 if (I != Scalars.end()) return I->second;
Owen Andersonecd0cd72009-06-22 21:39:50 +00001947 const SCEV* S = createSCEV(V);
Dan Gohmanbff6b582009-05-04 22:30:44 +00001948 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001949 return S;
1950}
1951
Dan Gohman984c78a2009-06-24 00:54:57 +00001952/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman01c2ee72009-04-16 03:18:22 +00001953/// specified signed integer value and return a SCEV for the constant.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001954const SCEV* ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
Dan Gohman984c78a2009-06-24 00:54:57 +00001955 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
1956 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001957}
1958
1959/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1960///
Owen Andersonecd0cd72009-06-22 21:39:50 +00001961const SCEV* ScalarEvolution::getNegativeSCEV(const SCEV* V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001962 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohman55788cf2009-06-24 00:38:39 +00001963 return getConstant(cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001964
1965 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001966 Ty = getEffectiveSCEVType(Ty);
1967 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001968}
1969
1970/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Owen Andersonecd0cd72009-06-22 21:39:50 +00001971const SCEV* ScalarEvolution::getNotSCEV(const SCEV* V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001972 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohman55788cf2009-06-24 00:38:39 +00001973 return getConstant(cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001974
1975 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001976 Ty = getEffectiveSCEVType(Ty);
Owen Andersonecd0cd72009-06-22 21:39:50 +00001977 const SCEV* AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001978 return getMinusSCEV(AllOnes, V);
1979}
1980
1981/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1982///
Owen Andersonecd0cd72009-06-22 21:39:50 +00001983const SCEV* ScalarEvolution::getMinusSCEV(const SCEV* LHS,
1984 const SCEV* RHS) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001985 // X - Y --> X + -Y
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001986 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001987}
1988
1989/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1990/// input value to the specified type. If the type must be extended, it is zero
1991/// extended.
Owen Andersonecd0cd72009-06-22 21:39:50 +00001992const SCEV*
1993ScalarEvolution::getTruncateOrZeroExtend(const SCEV* V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001994 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001995 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001996 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1997 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001998 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001999 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00002000 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002001 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002002 return getTruncateExpr(V, Ty);
2003 return getZeroExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002004}
2005
2006/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2007/// input value to the specified type. If the type must be extended, it is sign
2008/// extended.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002009const SCEV*
2010ScalarEvolution::getTruncateOrSignExtend(const SCEV* V,
Nick Lewycky37d04642009-04-23 05:15:08 +00002011 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00002012 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002013 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2014 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00002015 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002016 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00002017 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002018 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002019 return getTruncateExpr(V, Ty);
2020 return getSignExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002021}
2022
Dan Gohmanac959332009-05-13 03:46:30 +00002023/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2024/// input value to the specified type. If the type must be extended, it is zero
2025/// extended. The conversion must not be narrowing.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002026const SCEV*
2027ScalarEvolution::getNoopOrZeroExtend(const SCEV* V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002028 const Type *SrcTy = V->getType();
2029 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2030 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2031 "Cannot noop or zero extend with non-integer arguments!");
2032 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2033 "getNoopOrZeroExtend cannot truncate!");
2034 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2035 return V; // No conversion
2036 return getZeroExtendExpr(V, Ty);
2037}
2038
2039/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2040/// input value to the specified type. If the type must be extended, it is sign
2041/// extended. The conversion must not be narrowing.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002042const SCEV*
2043ScalarEvolution::getNoopOrSignExtend(const SCEV* V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002044 const Type *SrcTy = V->getType();
2045 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2046 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2047 "Cannot noop or sign extend with non-integer arguments!");
2048 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2049 "getNoopOrSignExtend cannot truncate!");
2050 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2051 return V; // No conversion
2052 return getSignExtendExpr(V, Ty);
2053}
2054
Dan Gohmane1ca7e82009-06-13 15:56:47 +00002055/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2056/// the input value to the specified type. If the type must be extended,
2057/// it is extended with unspecified bits. The conversion must not be
2058/// narrowing.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002059const SCEV*
2060ScalarEvolution::getNoopOrAnyExtend(const SCEV* V, const Type *Ty) {
Dan Gohmane1ca7e82009-06-13 15:56:47 +00002061 const Type *SrcTy = V->getType();
2062 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2063 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2064 "Cannot noop or any extend with non-integer arguments!");
2065 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2066 "getNoopOrAnyExtend cannot truncate!");
2067 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2068 return V; // No conversion
2069 return getAnyExtendExpr(V, Ty);
2070}
2071
Dan Gohmanac959332009-05-13 03:46:30 +00002072/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2073/// input value to the specified type. The conversion must not be widening.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002074const SCEV*
2075ScalarEvolution::getTruncateOrNoop(const SCEV* V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002076 const Type *SrcTy = V->getType();
2077 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2078 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2079 "Cannot truncate or noop with non-integer arguments!");
2080 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2081 "getTruncateOrNoop cannot extend!");
2082 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2083 return V; // No conversion
2084 return getTruncateExpr(V, Ty);
2085}
2086
Dan Gohman8e8b5232009-06-22 00:31:57 +00002087/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2088/// the types using zero-extension, and then perform a umax operation
2089/// with them.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002090const SCEV* ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV* LHS,
2091 const SCEV* RHS) {
2092 const SCEV* PromotedLHS = LHS;
2093 const SCEV* PromotedRHS = RHS;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002094
2095 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2096 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2097 else
2098 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2099
2100 return getUMaxExpr(PromotedLHS, PromotedRHS);
2101}
2102
Dan Gohman9e62bb02009-06-22 15:03:27 +00002103/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2104/// the types using zero-extension, and then perform a umin operation
2105/// with them.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002106const SCEV* ScalarEvolution::getUMinFromMismatchedTypes(const SCEV* LHS,
2107 const SCEV* RHS) {
2108 const SCEV* PromotedLHS = LHS;
2109 const SCEV* PromotedRHS = RHS;
Dan Gohman9e62bb02009-06-22 15:03:27 +00002110
2111 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2112 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2113 else
2114 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2115
2116 return getUMinExpr(PromotedLHS, PromotedRHS);
2117}
2118
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002119/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2120/// the specified instruction and replaces any references to the symbolic value
2121/// SymName with the specified value. This is used during PHI resolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002122void ScalarEvolution::
Owen Andersonecd0cd72009-06-22 21:39:50 +00002123ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEV* SymName,
2124 const SCEV* NewVal) {
2125 std::map<SCEVCallbackVH, const SCEV*>::iterator SI =
Dan Gohmanbff6b582009-05-04 22:30:44 +00002126 Scalars.find(SCEVCallbackVH(I, this));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002127 if (SI == Scalars.end()) return;
2128
Owen Andersonecd0cd72009-06-22 21:39:50 +00002129 const SCEV* NV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002130 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002131 if (NV == SI->second) return; // No change.
2132
2133 SI->second = NV; // Update the scalars map!
2134
2135 // Any instruction values that use this instruction might also need to be
2136 // updated!
2137 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2138 UI != E; ++UI)
2139 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2140}
2141
2142/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2143/// a loop header, making it a potential recurrence, or it doesn't.
2144///
Owen Andersonecd0cd72009-06-22 21:39:50 +00002145const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002146 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002147 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002148 if (L->getHeader() == PN->getParent()) {
2149 // If it lives in the loop header, it has two incoming values, one
2150 // from outside the loop, and one from inside.
2151 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2152 unsigned BackEdge = IncomingEdge^1;
2153
2154 // While we are analyzing this PHI node, handle its value symbolically.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002155 const SCEV* SymbolicName = getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002156 assert(Scalars.find(PN) == Scalars.end() &&
2157 "PHI node already processed?");
Dan Gohmanbff6b582009-05-04 22:30:44 +00002158 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002159
2160 // Using this symbolic name for the PHI, analyze the value coming around
2161 // the back-edge.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002162 const SCEV* BEValue = getSCEV(PN->getIncomingValue(BackEdge));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002163
2164 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2165 // has a special value for the first iteration of the loop.
2166
2167 // If the value coming around the backedge is an add with the symbolic
2168 // value we just inserted, then we found a simple induction variable!
Dan Gohmanc76b5452009-05-04 22:02:23 +00002169 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002170 // If there is a single occurrence of the symbolic value, replace it
2171 // with a recurrence.
2172 unsigned FoundIndex = Add->getNumOperands();
2173 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2174 if (Add->getOperand(i) == SymbolicName)
2175 if (FoundIndex == e) {
2176 FoundIndex = i;
2177 break;
2178 }
2179
2180 if (FoundIndex != Add->getNumOperands()) {
2181 // Create an add with everything but the specified operand.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002182 SmallVector<const SCEV*, 8> Ops;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002183 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2184 if (i != FoundIndex)
2185 Ops.push_back(Add->getOperand(i));
Owen Andersonecd0cd72009-06-22 21:39:50 +00002186 const SCEV* Accum = getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002187
2188 // This is not a valid addrec if the step amount is varying each
2189 // loop iteration, but is not itself an addrec in this loop.
2190 if (Accum->isLoopInvariant(L) ||
2191 (isa<SCEVAddRecExpr>(Accum) &&
2192 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00002193 const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2194 const SCEV* PHISCEV = getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002195
2196 // Okay, for the entire analysis of this edge we assumed the PHI
2197 // to be symbolic. We now need to go back and update all of the
2198 // entries for the scalars that use the PHI (except for the PHI
2199 // itself) to use the new analyzed value instead of the "symbolic"
2200 // value.
2201 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2202 return PHISCEV;
2203 }
2204 }
Dan Gohmanc76b5452009-05-04 22:02:23 +00002205 } else if (const SCEVAddRecExpr *AddRec =
2206 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002207 // Otherwise, this could be a loop like this:
2208 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2209 // In this case, j = {1,+,1} and BEValue is j.
2210 // Because the other in-value of i (0) fits the evolution of BEValue
2211 // i really is an addrec evolution.
2212 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00002213 const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002214
2215 // If StartVal = j.start - j.stride, we can use StartVal as the
2216 // initial step of the addrec evolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002217 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman89f85052007-10-22 18:31:58 +00002218 AddRec->getOperand(1))) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00002219 const SCEV* PHISCEV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002220 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002221
2222 // Okay, for the entire analysis of this edge we assumed the PHI
2223 // to be symbolic. We now need to go back and update all of the
2224 // entries for the scalars that use the PHI (except for the PHI
2225 // itself) to use the new analyzed value instead of the "symbolic"
2226 // value.
2227 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2228 return PHISCEV;
2229 }
2230 }
2231 }
2232
2233 return SymbolicName;
2234 }
2235
2236 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002237 return getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002238}
2239
Dan Gohman509cf4d2009-05-08 20:26:55 +00002240/// createNodeForGEP - Expand GEP instructions into add and multiply
2241/// operations. This allows them to be analyzed by regular SCEV code.
2242///
Owen Andersonecd0cd72009-06-22 21:39:50 +00002243const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) {
Dan Gohman509cf4d2009-05-08 20:26:55 +00002244
2245 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002246 Value *Base = GEP->getOperand(0);
Dan Gohmand586a4f2009-05-09 00:14:52 +00002247 // Don't attempt to analyze GEPs over unsized objects.
2248 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2249 return getUnknown(GEP);
Owen Andersonecd0cd72009-06-22 21:39:50 +00002250 const SCEV* TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002251 gep_type_iterator GTI = gep_type_begin(GEP);
2252 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2253 E = GEP->op_end();
Dan Gohman509cf4d2009-05-08 20:26:55 +00002254 I != E; ++I) {
2255 Value *Index = *I;
2256 // Compute the (potentially symbolic) offset in bytes for this index.
2257 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2258 // For a struct, add the member offset.
2259 const StructLayout &SL = *TD->getStructLayout(STy);
2260 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2261 uint64_t Offset = SL.getElementOffset(FieldNo);
2262 TotalOffset = getAddExpr(TotalOffset,
2263 getIntegerSCEV(Offset, IntPtrTy));
2264 } else {
2265 // For an array, add the element offset, explicitly scaled.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002266 const SCEV* LocalOffset = getSCEV(Index);
Dan Gohman509cf4d2009-05-08 20:26:55 +00002267 if (!isa<PointerType>(LocalOffset->getType()))
2268 // Getelementptr indicies are signed.
2269 LocalOffset = getTruncateOrSignExtend(LocalOffset,
2270 IntPtrTy);
2271 LocalOffset =
2272 getMulExpr(LocalOffset,
Duncan Sandsec4f97d2009-05-09 07:06:46 +00002273 getIntegerSCEV(TD->getTypeAllocSize(*GTI),
Dan Gohman509cf4d2009-05-08 20:26:55 +00002274 IntPtrTy));
2275 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2276 }
2277 }
2278 return getAddExpr(getSCEV(Base), TotalOffset);
2279}
2280
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002281/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2282/// guaranteed to end in (at every loop iteration). It is, at the same time,
2283/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2284/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman6e923a72009-06-19 23:29:04 +00002285uint32_t
Owen Andersonecd0cd72009-06-22 21:39:50 +00002286ScalarEvolution::GetMinTrailingZeros(const SCEV* S) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002287 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00002288 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002289
Dan Gohmanc76b5452009-05-04 22:02:23 +00002290 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman6e923a72009-06-19 23:29:04 +00002291 return std::min(GetMinTrailingZeros(T->getOperand()),
2292 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002293
Dan Gohmanc76b5452009-05-04 22:02:23 +00002294 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002295 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2296 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2297 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002298 }
2299
Dan Gohmanc76b5452009-05-04 22:02:23 +00002300 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002301 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2302 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2303 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002304 }
2305
Dan Gohmanc76b5452009-05-04 22:02:23 +00002306 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002307 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002308 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002309 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002310 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002311 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002312 }
2313
Dan Gohmanc76b5452009-05-04 22:02:23 +00002314 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002315 // The result is the sum of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002316 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2317 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002318 for (unsigned i = 1, e = M->getNumOperands();
2319 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002320 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002321 BitWidth);
2322 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002323 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002324
Dan Gohmanc76b5452009-05-04 22:02:23 +00002325 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002326 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002327 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002328 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002329 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002330 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002331 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002332
Dan Gohmanc76b5452009-05-04 22:02:23 +00002333 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewycky711640a2007-11-25 22:41:31 +00002334 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002335 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky711640a2007-11-25 22:41:31 +00002336 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002337 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky711640a2007-11-25 22:41:31 +00002338 return MinOpRes;
2339 }
2340
Dan Gohmanc76b5452009-05-04 22:02:23 +00002341 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002342 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002343 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002344 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002345 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002346 return MinOpRes;
2347 }
2348
Dan Gohman6e923a72009-06-19 23:29:04 +00002349 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2350 // For a SCEVUnknown, ask ValueTracking.
2351 unsigned BitWidth = getTypeSizeInBits(U->getType());
2352 APInt Mask = APInt::getAllOnesValue(BitWidth);
2353 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2354 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2355 return Zeros.countTrailingOnes();
2356 }
2357
2358 // SCEVUDivExpr
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002359 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002360}
2361
Dan Gohman6e923a72009-06-19 23:29:04 +00002362uint32_t
Owen Andersonecd0cd72009-06-22 21:39:50 +00002363ScalarEvolution::GetMinLeadingZeros(const SCEV* S) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002364 // TODO: Handle other SCEV expression types here.
2365
2366 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2367 return C->getValue()->getValue().countLeadingZeros();
2368
2369 if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
2370 // A zero-extension cast adds zero bits.
2371 return GetMinLeadingZeros(C->getOperand()) +
2372 (getTypeSizeInBits(C->getType()) -
2373 getTypeSizeInBits(C->getOperand()->getType()));
2374 }
2375
2376 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2377 // For a SCEVUnknown, ask ValueTracking.
2378 unsigned BitWidth = getTypeSizeInBits(U->getType());
2379 APInt Mask = APInt::getAllOnesValue(BitWidth);
2380 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2381 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2382 return Zeros.countLeadingOnes();
2383 }
2384
2385 return 1;
2386}
2387
2388uint32_t
Owen Andersonecd0cd72009-06-22 21:39:50 +00002389ScalarEvolution::GetMinSignBits(const SCEV* S) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002390 // TODO: Handle other SCEV expression types here.
2391
2392 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
2393 const APInt &A = C->getValue()->getValue();
2394 return A.isNegative() ? A.countLeadingOnes() :
2395 A.countLeadingZeros();
2396 }
2397
2398 if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
2399 // A sign-extension cast adds sign bits.
2400 return GetMinSignBits(C->getOperand()) +
2401 (getTypeSizeInBits(C->getType()) -
2402 getTypeSizeInBits(C->getOperand()->getType()));
2403 }
2404
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002405 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2406 unsigned BitWidth = getTypeSizeInBits(A->getType());
2407
2408 // Special case decrementing a value (ADD X, -1):
2409 if (const SCEVConstant *CRHS = dyn_cast<SCEVConstant>(A->getOperand(0)))
2410 if (CRHS->isAllOnesValue()) {
2411 SmallVector<const SCEV *, 4> OtherOps(A->op_begin() + 1, A->op_end());
2412 const SCEV *OtherOpsAdd = getAddExpr(OtherOps);
2413 unsigned LZ = GetMinLeadingZeros(OtherOpsAdd);
2414
2415 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2416 // sign bits set.
2417 if (LZ == BitWidth - 1)
2418 return BitWidth;
2419
2420 // If we are subtracting one from a positive number, there is no carry
2421 // out of the result.
2422 if (LZ > 0)
2423 return GetMinSignBits(OtherOpsAdd);
2424 }
2425
2426 // Add can have at most one carry bit. Thus we know that the output
2427 // is, at worst, one more bit than the inputs.
2428 unsigned Min = BitWidth;
2429 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2430 unsigned N = GetMinSignBits(A->getOperand(i));
2431 Min = std::min(Min, N) - 1;
2432 if (Min == 0) return 1;
2433 }
2434 return 1;
2435 }
2436
Dan Gohman6e923a72009-06-19 23:29:04 +00002437 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2438 // For a SCEVUnknown, ask ValueTracking.
2439 return ComputeNumSignBits(U->getValue(), TD);
2440 }
2441
2442 return 1;
2443}
2444
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002445/// createSCEV - We know that there is no SCEV for the specified value.
2446/// Analyze the expression.
2447///
Owen Andersonecd0cd72009-06-22 21:39:50 +00002448const SCEV* ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002449 if (!isSCEVable(V->getType()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002450 return getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002451
Dan Gohman3996f472008-06-22 19:56:46 +00002452 unsigned Opcode = Instruction::UserOp1;
2453 if (Instruction *I = dyn_cast<Instruction>(V))
2454 Opcode = I->getOpcode();
2455 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2456 Opcode = CE->getOpcode();
Dan Gohman984c78a2009-06-24 00:54:57 +00002457 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2458 return getConstant(CI);
2459 else if (isa<ConstantPointerNull>(V))
2460 return getIntegerSCEV(0, V->getType());
2461 else if (isa<UndefValue>(V))
2462 return getIntegerSCEV(0, V->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002463 else
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002464 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002465
Dan Gohman3996f472008-06-22 19:56:46 +00002466 User *U = cast<User>(V);
2467 switch (Opcode) {
2468 case Instruction::Add:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002469 return getAddExpr(getSCEV(U->getOperand(0)),
2470 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002471 case Instruction::Mul:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002472 return getMulExpr(getSCEV(U->getOperand(0)),
2473 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002474 case Instruction::UDiv:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002475 return getUDivExpr(getSCEV(U->getOperand(0)),
2476 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002477 case Instruction::Sub:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002478 return getMinusSCEV(getSCEV(U->getOperand(0)),
2479 getSCEV(U->getOperand(1)));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002480 case Instruction::And:
2481 // For an expression like x&255 that merely masks off the high bits,
2482 // use zext(trunc(x)) as the SCEV expression.
2483 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002484 if (CI->isNullValue())
2485 return getSCEV(U->getOperand(1));
Dan Gohmanc7ebba12009-04-27 01:41:10 +00002486 if (CI->isAllOnesValue())
2487 return getSCEV(U->getOperand(0));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002488 const APInt &A = CI->getValue();
Dan Gohmana7726c32009-06-16 19:52:01 +00002489
2490 // Instcombine's ShrinkDemandedConstant may strip bits out of
2491 // constants, obscuring what would otherwise be a low-bits mask.
2492 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2493 // knew about to reconstruct a low-bits mask value.
2494 unsigned LZ = A.countLeadingZeros();
2495 unsigned BitWidth = A.getBitWidth();
2496 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2497 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2498 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2499
2500 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2501
Dan Gohmanae1d7dd2009-06-17 23:54:37 +00002502 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman53bf64a2009-04-21 02:26:00 +00002503 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002504 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Dan Gohmana7726c32009-06-16 19:52:01 +00002505 IntegerType::get(BitWidth - LZ)),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002506 U->getType());
Dan Gohman53bf64a2009-04-21 02:26:00 +00002507 }
2508 break;
Dan Gohmana7726c32009-06-16 19:52:01 +00002509
Dan Gohman3996f472008-06-22 19:56:46 +00002510 case Instruction::Or:
2511 // If the RHS of the Or is a constant, we may have something like:
2512 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2513 // optimizations will transparently handle this case.
2514 //
2515 // In order for this transformation to be safe, the LHS must be of the
2516 // form X*(2^n) and the Or constant must be less than 2^n.
2517 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00002518 const SCEV* LHS = getSCEV(U->getOperand(0));
Dan Gohman3996f472008-06-22 19:56:46 +00002519 const APInt &CIVal = CI->getValue();
Dan Gohman6e923a72009-06-19 23:29:04 +00002520 if (GetMinTrailingZeros(LHS) >=
Dan Gohman3996f472008-06-22 19:56:46 +00002521 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002522 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002523 }
Dan Gohman3996f472008-06-22 19:56:46 +00002524 break;
2525 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00002526 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00002527 // If the RHS of the xor is a signbit, then this is just an add.
2528 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00002529 if (CI->getValue().isSignBit())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002530 return getAddExpr(getSCEV(U->getOperand(0)),
2531 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002532
2533 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmanc897f752009-05-18 16:17:44 +00002534 if (CI->isAllOnesValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002535 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohmanfc78cff2009-05-18 16:29:04 +00002536
2537 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2538 // This is a variant of the check for xor with -1, and it handles
2539 // the case where instcombine has trimmed non-demanded bits out
2540 // of an xor with -1.
2541 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2542 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2543 if (BO->getOpcode() == Instruction::And &&
2544 LCI->getValue() == CI->getValue())
2545 if (const SCEVZeroExtendExpr *Z =
Dan Gohmane49ae432009-06-17 01:22:39 +00002546 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohmaned1d8bb2009-06-18 00:00:20 +00002547 const Type *UTy = U->getType();
Owen Andersonecd0cd72009-06-22 21:39:50 +00002548 const SCEV* Z0 = Z->getOperand();
Dan Gohmaned1d8bb2009-06-18 00:00:20 +00002549 const Type *Z0Ty = Z0->getType();
2550 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2551
2552 // If C is a low-bits mask, the zero extend is zerving to
2553 // mask off the high bits. Complement the operand and
2554 // re-apply the zext.
2555 if (APIntOps::isMask(Z0TySize, CI->getValue()))
2556 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2557
2558 // If C is a single bit, it may be in the sign-bit position
2559 // before the zero-extend. In this case, represent the xor
2560 // using an add, which is equivalent, and re-apply the zext.
2561 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2562 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2563 Trunc.isSignBit())
2564 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2565 UTy);
Dan Gohmane49ae432009-06-17 01:22:39 +00002566 }
Dan Gohman3996f472008-06-22 19:56:46 +00002567 }
2568 break;
2569
2570 case Instruction::Shl:
2571 // Turn shift left of a constant amount into a multiply.
2572 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2573 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2574 Constant *X = ConstantInt::get(
2575 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002576 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman3996f472008-06-22 19:56:46 +00002577 }
2578 break;
2579
Nick Lewycky7fd27892008-07-07 06:15:49 +00002580 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00002581 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00002582 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2583 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2584 Constant *X = ConstantInt::get(
2585 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002586 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002587 }
2588 break;
2589
Dan Gohman53bf64a2009-04-21 02:26:00 +00002590 case Instruction::AShr:
2591 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2592 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2593 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2594 if (L->getOpcode() == Instruction::Shl &&
2595 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002596 unsigned BitWidth = getTypeSizeInBits(U->getType());
2597 uint64_t Amt = BitWidth - CI->getZExtValue();
2598 if (Amt == BitWidth)
2599 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2600 if (Amt > BitWidth)
2601 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman53bf64a2009-04-21 02:26:00 +00002602 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002603 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman91ae1e72009-04-25 17:05:40 +00002604 IntegerType::get(Amt)),
Dan Gohman53bf64a2009-04-21 02:26:00 +00002605 U->getType());
2606 }
2607 break;
2608
Dan Gohman3996f472008-06-22 19:56:46 +00002609 case Instruction::Trunc:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002610 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002611
2612 case Instruction::ZExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002613 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002614
2615 case Instruction::SExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002616 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002617
2618 case Instruction::BitCast:
2619 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002620 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman3996f472008-06-22 19:56:46 +00002621 return getSCEV(U->getOperand(0));
2622 break;
2623
Dan Gohman01c2ee72009-04-16 03:18:22 +00002624 case Instruction::IntToPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002625 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002626 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002627 TD->getIntPtrType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00002628
2629 case Instruction::PtrToInt:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002630 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002631 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2632 U->getType());
2633
Dan Gohman509cf4d2009-05-08 20:26:55 +00002634 case Instruction::GetElementPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002635 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002636 return createNodeForGEP(U);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002637
Dan Gohman3996f472008-06-22 19:56:46 +00002638 case Instruction::PHI:
2639 return createNodeForPHI(cast<PHINode>(U));
2640
2641 case Instruction::Select:
2642 // This could be a smax or umax that was lowered earlier.
2643 // Try to recover it.
2644 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2645 Value *LHS = ICI->getOperand(0);
2646 Value *RHS = ICI->getOperand(1);
2647 switch (ICI->getPredicate()) {
2648 case ICmpInst::ICMP_SLT:
2649 case ICmpInst::ICMP_SLE:
2650 std::swap(LHS, RHS);
2651 // fall through
2652 case ICmpInst::ICMP_SGT:
2653 case ICmpInst::ICMP_SGE:
2654 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002655 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002656 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmand01fff82009-06-22 03:18:45 +00002657 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002658 break;
2659 case ICmpInst::ICMP_ULT:
2660 case ICmpInst::ICMP_ULE:
2661 std::swap(LHS, RHS);
2662 // fall through
2663 case ICmpInst::ICMP_UGT:
2664 case ICmpInst::ICMP_UGE:
2665 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002666 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002667 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmand01fff82009-06-22 03:18:45 +00002668 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002669 break;
Dan Gohmanf27dc692009-06-18 20:21:07 +00002670 case ICmpInst::ICMP_NE:
2671 // n != 0 ? n : 1 -> umax(n, 1)
2672 if (LHS == U->getOperand(1) &&
2673 isa<ConstantInt>(U->getOperand(2)) &&
2674 cast<ConstantInt>(U->getOperand(2))->isOne() &&
2675 isa<ConstantInt>(RHS) &&
2676 cast<ConstantInt>(RHS)->isZero())
2677 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2678 break;
2679 case ICmpInst::ICMP_EQ:
2680 // n == 0 ? 1 : n -> umax(n, 1)
2681 if (LHS == U->getOperand(2) &&
2682 isa<ConstantInt>(U->getOperand(1)) &&
2683 cast<ConstantInt>(U->getOperand(1))->isOne() &&
2684 isa<ConstantInt>(RHS) &&
2685 cast<ConstantInt>(RHS)->isZero())
2686 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
2687 break;
Dan Gohman3996f472008-06-22 19:56:46 +00002688 default:
2689 break;
2690 }
2691 }
2692
2693 default: // We cannot analyze this expression.
2694 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002695 }
2696
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002697 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002698}
2699
2700
2701
2702//===----------------------------------------------------------------------===//
2703// Iteration Count Computation Code
2704//
2705
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002706/// getBackedgeTakenCount - If the specified loop has a predictable
2707/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2708/// object. The backedge-taken count is the number of times the loop header
2709/// will be branched to from within the loop. This is one less than the
2710/// trip count of the loop, since it doesn't count the first iteration,
2711/// when the header is branched to from outside the loop.
2712///
2713/// Note that it is not valid to call this method on a loop without a
2714/// loop-invariant backedge-taken count (see
2715/// hasLoopInvariantBackedgeTakenCount).
2716///
Owen Andersonecd0cd72009-06-22 21:39:50 +00002717const SCEV* ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002718 return getBackedgeTakenInfo(L).Exact;
2719}
2720
2721/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2722/// return the least SCEV value that is known never to be less than the
2723/// actual backedge taken count.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002724const SCEV* ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002725 return getBackedgeTakenInfo(L).Max;
2726}
2727
2728const ScalarEvolution::BackedgeTakenInfo &
2729ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohmana9dba962009-04-27 20:16:15 +00002730 // Initially insert a CouldNotCompute for this loop. If the insertion
2731 // succeeds, procede to actually compute a backedge-taken count and
2732 // update the value. The temporary CouldNotCompute value tells SCEV
2733 // code elsewhere that it shouldn't attempt to request a new
2734 // backedge-taken count, which could result in infinite recursion.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002735 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohmana9dba962009-04-27 20:16:15 +00002736 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2737 if (Pair.second) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002738 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
Dan Gohman0c850912009-06-06 14:37:11 +00002739 if (ItCount.Exact != CouldNotCompute) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002740 assert(ItCount.Exact->isLoopInvariant(L) &&
2741 ItCount.Max->isLoopInvariant(L) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002742 "Computed trip count isn't loop invariant for loop!");
2743 ++NumTripCountsComputed;
Dan Gohmana9dba962009-04-27 20:16:15 +00002744
Dan Gohmana9dba962009-04-27 20:16:15 +00002745 // Update the value in the map.
2746 Pair.first->second = ItCount;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002747 } else {
2748 if (ItCount.Max != CouldNotCompute)
2749 // Update the value in the map.
2750 Pair.first->second = ItCount;
2751 if (isa<PHINode>(L->getHeader()->begin()))
2752 // Only count loops that have phi nodes as not being computable.
2753 ++NumTripCountsNotComputed;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002754 }
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002755
2756 // Now that we know more about the trip count for this loop, forget any
2757 // existing SCEV values for PHI nodes in this loop since they are only
2758 // conservative estimates made without the benefit
2759 // of trip count information.
2760 if (ItCount.hasAnyInfo())
Dan Gohman94623022009-05-02 17:43:35 +00002761 forgetLoopPHIs(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002762 }
Dan Gohmana9dba962009-04-27 20:16:15 +00002763 return Pair.first->second;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002764}
2765
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002766/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002767/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002768/// ScalarEvolution's ability to compute a trip count, or if the loop
2769/// is deleted.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002770void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002771 BackedgeTakenCounts.erase(L);
Dan Gohman94623022009-05-02 17:43:35 +00002772 forgetLoopPHIs(L);
2773}
2774
2775/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2776/// PHI nodes in the given loop. This is used when the trip count of
2777/// the loop may have changed.
2778void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00002779 BasicBlock *Header = L->getHeader();
2780
Dan Gohman9fd4a002009-05-12 01:27:58 +00002781 // Push all Loop-header PHIs onto the Worklist stack, except those
2782 // that are presently represented via a SCEVUnknown. SCEVUnknown for
2783 // a PHI either means that it has an unrecognized structure, or it's
2784 // a PHI that's in the progress of being computed by createNodeForPHI.
2785 // In the former case, additional loop trip count information isn't
2786 // going to change anything. In the later case, createNodeForPHI will
2787 // perform the necessary updates on its own when it gets to that point.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002788 SmallVector<Instruction *, 16> Worklist;
2789 for (BasicBlock::iterator I = Header->begin();
Dan Gohman9fd4a002009-05-12 01:27:58 +00002790 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00002791 std::map<SCEVCallbackVH, const SCEV*>::iterator It = Scalars.find((Value*)I);
Dan Gohman9fd4a002009-05-12 01:27:58 +00002792 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2793 Worklist.push_back(PN);
2794 }
Dan Gohmanbff6b582009-05-04 22:30:44 +00002795
2796 while (!Worklist.empty()) {
2797 Instruction *I = Worklist.pop_back_val();
2798 if (Scalars.erase(I))
2799 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2800 UI != UE; ++UI)
2801 Worklist.push_back(cast<Instruction>(UI));
2802 }
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002803}
2804
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002805/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2806/// of the specified loop will execute.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002807ScalarEvolution::BackedgeTakenInfo
2808ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman8e8b5232009-06-22 00:31:57 +00002809 SmallVector<BasicBlock*, 8> ExitingBlocks;
2810 L->getExitingBlocks(ExitingBlocks);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002811
Dan Gohman8e8b5232009-06-22 00:31:57 +00002812 // Examine all exits and pick the most conservative values.
Owen Andersonecd0cd72009-06-22 21:39:50 +00002813 const SCEV* BECount = CouldNotCompute;
2814 const SCEV* MaxBECount = CouldNotCompute;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002815 bool CouldNotComputeBECount = false;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002816 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2817 BackedgeTakenInfo NewBTI =
2818 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002819
Dan Gohman8e8b5232009-06-22 00:31:57 +00002820 if (NewBTI.Exact == CouldNotCompute) {
2821 // We couldn't compute an exact value for this exit, so
Dan Gohmanc6e8c832009-06-22 21:10:22 +00002822 // we won't be able to compute an exact value for the loop.
Dan Gohman8e8b5232009-06-22 00:31:57 +00002823 CouldNotComputeBECount = true;
2824 BECount = CouldNotCompute;
2825 } else if (!CouldNotComputeBECount) {
2826 if (BECount == CouldNotCompute)
2827 BECount = NewBTI.Exact;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002828 else
Dan Gohman423ed6c2009-06-24 01:18:18 +00002829 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohman8e8b5232009-06-22 00:31:57 +00002830 }
Dan Gohman423ed6c2009-06-24 01:18:18 +00002831 if (MaxBECount == CouldNotCompute)
2832 MaxBECount = NewBTI.Max;
2833 else if (NewBTI.Max != CouldNotCompute)
2834 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00002835 }
2836
2837 return BackedgeTakenInfo(BECount, MaxBECount);
2838}
2839
2840/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
2841/// of the specified loop will execute if it exits via the specified block.
2842ScalarEvolution::BackedgeTakenInfo
2843ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
2844 BasicBlock *ExitingBlock) {
2845
2846 // Okay, we've chosen an exiting block. See what condition causes us to
2847 // exit at this block.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002848 //
2849 // FIXME: we should be able to handle switch instructions (with a single exit)
2850 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman0c850912009-06-06 14:37:11 +00002851 if (ExitBr == 0) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002852 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2853
2854 // At this point, we know we have a conditional branch that determines whether
2855 // the loop is exited. However, we don't know if the branch is executed each
2856 // time through the loop. If not, then the execution count of the branch will
2857 // not be equal to the trip count of the loop.
2858 //
2859 // Currently we check for this by checking to see if the Exit branch goes to
2860 // the loop header. If so, we know it will always execute the same number of
2861 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman8e8b5232009-06-22 00:31:57 +00002862 // loop header. This is common for un-rotated loops.
2863 //
2864 // If both of those tests fail, walk up the unique predecessor chain to the
2865 // header, stopping if there is an edge that doesn't exit the loop. If the
2866 // header is reached, the execution count of the branch will be equal to the
2867 // trip count of the loop.
2868 //
2869 // More extensive analysis could be done to handle more cases here.
2870 //
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002871 if (ExitBr->getSuccessor(0) != L->getHeader() &&
2872 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohman8e8b5232009-06-22 00:31:57 +00002873 ExitBr->getParent() != L->getHeader()) {
2874 // The simple checks failed, try climbing the unique predecessor chain
2875 // up to the header.
2876 bool Ok = false;
2877 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
2878 BasicBlock *Pred = BB->getUniquePredecessor();
2879 if (!Pred)
2880 return CouldNotCompute;
2881 TerminatorInst *PredTerm = Pred->getTerminator();
2882 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
2883 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
2884 if (PredSucc == BB)
2885 continue;
2886 // If the predecessor has a successor that isn't BB and isn't
2887 // outside the loop, assume the worst.
2888 if (L->contains(PredSucc))
2889 return CouldNotCompute;
2890 }
2891 if (Pred == L->getHeader()) {
2892 Ok = true;
2893 break;
2894 }
2895 BB = Pred;
2896 }
2897 if (!Ok)
2898 return CouldNotCompute;
2899 }
2900
2901 // Procede to the next level to examine the exit condition expression.
2902 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
2903 ExitBr->getSuccessor(0),
2904 ExitBr->getSuccessor(1));
2905}
2906
2907/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
2908/// backedge of the specified loop will execute if its exit condition
2909/// were a conditional branch of ExitCond, TBB, and FBB.
2910ScalarEvolution::BackedgeTakenInfo
2911ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
2912 Value *ExitCond,
2913 BasicBlock *TBB,
2914 BasicBlock *FBB) {
Dan Gohman423ed6c2009-06-24 01:18:18 +00002915 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman8e8b5232009-06-22 00:31:57 +00002916 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
2917 if (BO->getOpcode() == Instruction::And) {
2918 // Recurse on the operands of the and.
2919 BackedgeTakenInfo BTI0 =
2920 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
2921 BackedgeTakenInfo BTI1 =
2922 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Owen Andersonecd0cd72009-06-22 21:39:50 +00002923 const SCEV* BECount = CouldNotCompute;
2924 const SCEV* MaxBECount = CouldNotCompute;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002925 if (L->contains(TBB)) {
2926 // Both conditions must be true for the loop to continue executing.
2927 // Choose the less conservative count.
Dan Gohman2cc450e2009-06-22 23:28:56 +00002928 if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute)
2929 BECount = CouldNotCompute;
Dan Gohmanac958b32009-06-22 15:09:28 +00002930 else
2931 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman8e8b5232009-06-22 00:31:57 +00002932 if (BTI0.Max == CouldNotCompute)
2933 MaxBECount = BTI1.Max;
2934 else if (BTI1.Max == CouldNotCompute)
2935 MaxBECount = BTI0.Max;
Dan Gohmanac958b32009-06-22 15:09:28 +00002936 else
2937 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00002938 } else {
2939 // Both conditions must be true for the loop to exit.
2940 assert(L->contains(FBB) && "Loop block has no successor in loop!");
2941 if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
2942 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2943 if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
2944 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
2945 }
2946
2947 return BackedgeTakenInfo(BECount, MaxBECount);
2948 }
2949 if (BO->getOpcode() == Instruction::Or) {
2950 // Recurse on the operands of the or.
2951 BackedgeTakenInfo BTI0 =
2952 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
2953 BackedgeTakenInfo BTI1 =
2954 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Owen Andersonecd0cd72009-06-22 21:39:50 +00002955 const SCEV* BECount = CouldNotCompute;
2956 const SCEV* MaxBECount = CouldNotCompute;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002957 if (L->contains(FBB)) {
2958 // Both conditions must be false for the loop to continue executing.
2959 // Choose the less conservative count.
Dan Gohman2cc450e2009-06-22 23:28:56 +00002960 if (BTI0.Exact == CouldNotCompute || BTI1.Exact == CouldNotCompute)
2961 BECount = CouldNotCompute;
Dan Gohmanac958b32009-06-22 15:09:28 +00002962 else
2963 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman8e8b5232009-06-22 00:31:57 +00002964 if (BTI0.Max == CouldNotCompute)
2965 MaxBECount = BTI1.Max;
2966 else if (BTI1.Max == CouldNotCompute)
2967 MaxBECount = BTI0.Max;
Dan Gohmanac958b32009-06-22 15:09:28 +00002968 else
2969 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00002970 } else {
2971 // Both conditions must be false for the loop to exit.
2972 assert(L->contains(TBB) && "Loop block has no successor in loop!");
2973 if (BTI0.Exact != CouldNotCompute && BTI1.Exact != CouldNotCompute)
2974 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
2975 if (BTI0.Max != CouldNotCompute && BTI1.Max != CouldNotCompute)
2976 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
2977 }
2978
2979 return BackedgeTakenInfo(BECount, MaxBECount);
2980 }
2981 }
2982
2983 // With an icmp, it may be feasible to compute an exact backedge-taken count.
2984 // Procede to the next level to examine the icmp.
2985 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
2986 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002987
Eli Friedman459d7292009-05-09 12:32:42 +00002988 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohman8e8b5232009-06-22 00:31:57 +00002989 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
2990}
2991
2992/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
2993/// backedge of the specified loop will execute if its exit condition
2994/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
2995ScalarEvolution::BackedgeTakenInfo
2996ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
2997 ICmpInst *ExitCond,
2998 BasicBlock *TBB,
2999 BasicBlock *FBB) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003000
3001 // If the condition was exit on true, convert the condition to exit on false
3002 ICmpInst::Predicate Cond;
Dan Gohman8e8b5232009-06-22 00:31:57 +00003003 if (!L->contains(FBB))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003004 Cond = ExitCond->getPredicate();
3005 else
3006 Cond = ExitCond->getInversePredicate();
3007
3008 // Handle common loops like: for (X = "string"; *X; ++X)
3009 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3010 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00003011 const SCEV* ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003012 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003013 if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3014 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3015 return BackedgeTakenInfo(ItCnt,
3016 isa<SCEVConstant>(ItCnt) ? ItCnt :
3017 getConstant(APInt::getMaxValue(BitWidth)-1));
3018 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003019 }
3020
Owen Andersonecd0cd72009-06-22 21:39:50 +00003021 const SCEV* LHS = getSCEV(ExitCond->getOperand(0));
3022 const SCEV* RHS = getSCEV(ExitCond->getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003023
3024 // Try to evaluate any dependencies out of the loop.
Dan Gohmanaff14d62009-05-24 23:25:42 +00003025 LHS = getSCEVAtScope(LHS, L);
3026 RHS = getSCEVAtScope(RHS, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003027
3028 // At this point, we would like to compute how many iterations of the
3029 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00003030 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3031 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003032 std::swap(LHS, RHS);
3033 Cond = ICmpInst::getSwappedPredicate(Cond);
3034 }
3035
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003036 // If we have a comparison of a chrec against a constant, try to use value
3037 // ranges to answer this query.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003038 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3039 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003040 if (AddRec->getLoop() == L) {
Eli Friedman459d7292009-05-09 12:32:42 +00003041 // Form the constant range.
3042 ConstantRange CompRange(
3043 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003044
Owen Andersonecd0cd72009-06-22 21:39:50 +00003045 const SCEV* Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman459d7292009-05-09 12:32:42 +00003046 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003047 }
3048
3049 switch (Cond) {
3050 case ICmpInst::ICMP_NE: { // while (X != Y)
3051 // Convert to: while (X-Y != 0)
Owen Andersonecd0cd72009-06-22 21:39:50 +00003052 const SCEV* TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003053 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3054 break;
3055 }
3056 case ICmpInst::ICMP_EQ: {
3057 // Convert to: while (X-Y == 0) // while (X == Y)
Owen Andersonecd0cd72009-06-22 21:39:50 +00003058 const SCEV* TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003059 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3060 break;
3061 }
3062 case ICmpInst::ICMP_SLT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003063 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3064 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003065 break;
3066 }
3067 case ICmpInst::ICMP_SGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003068 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3069 getNotSCEV(RHS), L, true);
3070 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00003071 break;
3072 }
3073 case ICmpInst::ICMP_ULT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003074 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3075 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00003076 break;
3077 }
3078 case ICmpInst::ICMP_UGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003079 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3080 getNotSCEV(RHS), L, false);
3081 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003082 break;
3083 }
3084 default:
3085#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003086 errs() << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003087 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohman13058cc2009-04-21 00:47:46 +00003088 errs() << "[unsigned] ";
3089 errs() << *LHS << " "
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003090 << Instruction::getOpcodeName(Instruction::ICmp)
3091 << " " << *RHS << "\n";
3092#endif
3093 break;
3094 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003095 return
Dan Gohman8e8b5232009-06-22 00:31:57 +00003096 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003097}
3098
3099static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00003100EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3101 ScalarEvolution &SE) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00003102 const SCEV* InVal = SE.getConstant(C);
3103 const SCEV* Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003104 assert(isa<SCEVConstant>(Val) &&
3105 "Evaluation of SCEV at constant didn't fold correctly?");
3106 return cast<SCEVConstant>(Val)->getValue();
3107}
3108
3109/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3110/// and a GEP expression (missing the pointer index) indexing into it, return
3111/// the addressed element of the initializer or null if the index expression is
3112/// invalid.
3113static Constant *
3114GetAddressedElementFromGlobal(GlobalVariable *GV,
3115 const std::vector<ConstantInt*> &Indices) {
3116 Constant *Init = GV->getInitializer();
3117 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3118 uint64_t Idx = Indices[i]->getZExtValue();
3119 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3120 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3121 Init = cast<Constant>(CS->getOperand(Idx));
3122 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3123 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3124 Init = cast<Constant>(CA->getOperand(Idx));
3125 } else if (isa<ConstantAggregateZero>(Init)) {
3126 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3127 assert(Idx < STy->getNumElements() && "Bad struct index!");
3128 Init = Constant::getNullValue(STy->getElementType(Idx));
3129 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3130 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
3131 Init = Constant::getNullValue(ATy->getElementType());
3132 } else {
3133 assert(0 && "Unknown constant aggregate type!");
3134 }
3135 return 0;
3136 } else {
3137 return 0; // Unknown initializer type
3138 }
3139 }
3140 return Init;
3141}
3142
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003143/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3144/// 'icmp op load X, cst', try to see if we can compute the backedge
3145/// execution count.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003146const SCEV* ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003147ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
3148 const Loop *L,
3149 ICmpInst::Predicate predicate) {
Dan Gohman0c850912009-06-06 14:37:11 +00003150 if (LI->isVolatile()) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003151
3152 // Check to see if the loaded pointer is a getelementptr of a global.
3153 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman0c850912009-06-06 14:37:11 +00003154 if (!GEP) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003155
3156 // Make sure that it is really a constant global we are gepping, with an
3157 // initializer, and make sure the first IDX is really 0.
3158 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3159 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3160 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3161 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman0c850912009-06-06 14:37:11 +00003162 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003163
3164 // Okay, we allow one non-constant index into the GEP instruction.
3165 Value *VarIdx = 0;
3166 std::vector<ConstantInt*> Indexes;
3167 unsigned VarIdxNum = 0;
3168 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3169 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3170 Indexes.push_back(CI);
3171 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman0c850912009-06-06 14:37:11 +00003172 if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003173 VarIdx = GEP->getOperand(i);
3174 VarIdxNum = i-2;
3175 Indexes.push_back(0);
3176 }
3177
3178 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3179 // Check to see if X is a loop variant variable value now.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003180 const SCEV* Idx = getSCEV(VarIdx);
Dan Gohmanaff14d62009-05-24 23:25:42 +00003181 Idx = getSCEVAtScope(Idx, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003182
3183 // We can only recognize very limited forms of loop index expressions, in
3184 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohmanbff6b582009-05-04 22:30:44 +00003185 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003186 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3187 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3188 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman0c850912009-06-06 14:37:11 +00003189 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003190
3191 unsigned MaxSteps = MaxBruteForceIterations;
3192 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3193 ConstantInt *ItCst =
Dan Gohman8fd520a2009-06-15 22:12:54 +00003194 ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003195 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003196
3197 // Form the GEP offset.
3198 Indexes[VarIdxNum] = Val;
3199
3200 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
3201 if (Result == 0) break; // Cannot compute!
3202
3203 // Evaluate the condition for this iteration.
3204 Result = ConstantExpr::getICmp(predicate, Result, RHS);
3205 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
3206 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3207#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003208 errs() << "\n***\n*** Computed loop count " << *ItCst
3209 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3210 << "***\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003211#endif
3212 ++NumArrayLenItCounts;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003213 return getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003214 }
3215 }
Dan Gohman0c850912009-06-06 14:37:11 +00003216 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003217}
3218
3219
3220/// CanConstantFold - Return true if we can constant fold an instruction of the
3221/// specified type, assuming that all operands were constants.
3222static bool CanConstantFold(const Instruction *I) {
3223 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3224 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3225 return true;
3226
3227 if (const CallInst *CI = dyn_cast<CallInst>(I))
3228 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00003229 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003230 return false;
3231}
3232
3233/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3234/// in the loop that V is derived from. We allow arbitrary operations along the
3235/// way, but the operands of an operation must either be constants or a value
3236/// derived from a constant PHI. If this expression does not fit with these
3237/// constraints, return null.
3238static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3239 // If this is not an instruction, or if this is an instruction outside of the
3240 // loop, it can't be derived from a loop PHI.
3241 Instruction *I = dyn_cast<Instruction>(V);
3242 if (I == 0 || !L->contains(I->getParent())) return 0;
3243
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00003244 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003245 if (L->getHeader() == I->getParent())
3246 return PN;
3247 else
3248 // We don't currently keep track of the control flow needed to evaluate
3249 // PHIs, so we cannot handle PHIs inside of loops.
3250 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00003251 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003252
3253 // If we won't be able to constant fold this expression even if the operands
3254 // are constants, return early.
3255 if (!CanConstantFold(I)) return 0;
3256
3257 // Otherwise, we can evaluate this instruction if all of its operands are
3258 // constant or derived from a PHI node themselves.
3259 PHINode *PHI = 0;
3260 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3261 if (!(isa<Constant>(I->getOperand(Op)) ||
3262 isa<GlobalValue>(I->getOperand(Op)))) {
3263 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3264 if (P == 0) return 0; // Not evolving from PHI
3265 if (PHI == 0)
3266 PHI = P;
3267 else if (PHI != P)
3268 return 0; // Evolving from multiple different PHIs.
3269 }
3270
3271 // This is a expression evolving from a constant PHI!
3272 return PHI;
3273}
3274
3275/// EvaluateExpression - Given an expression that passes the
3276/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3277/// in the loop has the value PHIVal. If we can't fold this expression for some
3278/// reason, return null.
3279static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3280 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003281 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00003282 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003283 Instruction *I = cast<Instruction>(V);
3284
3285 std::vector<Constant*> Operands;
3286 Operands.resize(I->getNumOperands());
3287
3288 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3289 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3290 if (Operands[i] == 0) return 0;
3291 }
3292
Chris Lattnerd6e56912007-12-10 22:53:04 +00003293 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3294 return ConstantFoldCompareInstOperands(CI->getPredicate(),
3295 &Operands[0], Operands.size());
3296 else
3297 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3298 &Operands[0], Operands.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003299}
3300
3301/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3302/// in the header of its containing loop, we know the loop executes a
3303/// constant number of times, and the PHI node is just a recurrence
3304/// involving constants, fold it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003305Constant *ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003306getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003307 std::map<PHINode*, Constant*>::iterator I =
3308 ConstantEvolutionLoopExitValue.find(PN);
3309 if (I != ConstantEvolutionLoopExitValue.end())
3310 return I->second;
3311
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003312 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003313 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
3314
3315 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3316
3317 // Since the loop is canonicalized, the PHI node must have two entries. One
3318 // entry must be a constant (coming in from outside of the loop), and the
3319 // second must be derived from the same PHI.
3320 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3321 Constant *StartCST =
3322 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3323 if (StartCST == 0)
3324 return RetVal = 0; // Must be a constant.
3325
3326 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3327 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3328 if (PN2 != PN)
3329 return RetVal = 0; // Not derived from same PHI.
3330
3331 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003332 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003333 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3334
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003335 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003336 unsigned IterationNum = 0;
3337 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3338 if (IterationNum == NumIterations)
3339 return RetVal = PHIVal; // Got exit value!
3340
3341 // Compute the value of the PHI node for the next iteration.
3342 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3343 if (NextPHI == PHIVal)
3344 return RetVal = NextPHI; // Stopped evolving!
3345 if (NextPHI == 0)
3346 return 0; // Couldn't evaluate!
3347 PHIVal = NextPHI;
3348 }
3349}
3350
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003351/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003352/// constant number of times (the condition evolves only from constants),
3353/// try to evaluate a few iterations of the loop until we get the exit
3354/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman0c850912009-06-06 14:37:11 +00003355/// evaluate the trip count of the loop, return CouldNotCompute.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003356const SCEV* ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003357ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003358 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman0c850912009-06-06 14:37:11 +00003359 if (PN == 0) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003360
3361 // Since the loop is canonicalized, the PHI node must have two entries. One
3362 // entry must be a constant (coming in from outside of the loop), and the
3363 // second must be derived from the same PHI.
3364 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3365 Constant *StartCST =
3366 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman0c850912009-06-06 14:37:11 +00003367 if (StartCST == 0) return CouldNotCompute; // Must be a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003368
3369 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3370 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman0c850912009-06-06 14:37:11 +00003371 if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003372
3373 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3374 // the loop symbolically to determine when the condition gets a value of
3375 // "ExitWhen".
3376 unsigned IterationNum = 0;
3377 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
3378 for (Constant *PHIVal = StartCST;
3379 IterationNum != MaxIterations; ++IterationNum) {
3380 ConstantInt *CondVal =
3381 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3382
3383 // Couldn't symbolically evaluate.
Dan Gohman0c850912009-06-06 14:37:11 +00003384 if (!CondVal) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003385
3386 if (CondVal->getValue() == uint64_t(ExitWhen)) {
3387 ConstantEvolutionLoopExitValue[PN] = PHIVal;
3388 ++NumBruteForceTripCountsComputed;
Dan Gohman8fd520a2009-06-15 22:12:54 +00003389 return getConstant(Type::Int32Ty, IterationNum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003390 }
3391
3392 // Compute the value of the PHI node for the next iteration.
3393 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3394 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman0c850912009-06-06 14:37:11 +00003395 return CouldNotCompute; // Couldn't evaluate or not making progress...
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003396 PHIVal = NextPHI;
3397 }
3398
3399 // Too many iterations were needed to evaluate.
Dan Gohman0c850912009-06-06 14:37:11 +00003400 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003401}
3402
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003403/// getSCEVAtScope - Return a SCEV expression handle for the specified value
3404/// at the specified scope in the program. The L value specifies a loop
3405/// nest to evaluate the expression at, where null is the top-level or a
3406/// specified loop is immediately inside of the loop.
3407///
3408/// This method can be used to compute the exit value for a variable defined
3409/// in a loop by querying what the value will hold in the parent loop.
3410///
Dan Gohmanaff14d62009-05-24 23:25:42 +00003411/// In the case that a relevant loop exit value cannot be computed, the
3412/// original value V is returned.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003413const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003414 // FIXME: this should be turned into a virtual method on SCEV!
3415
3416 if (isa<SCEVConstant>(V)) return V;
3417
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003418 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003419 // exit value from the loop without using SCEVs.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003420 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003421 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003422 const Loop *LI = (*this->LI)[I->getParent()];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003423 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
3424 if (PHINode *PN = dyn_cast<PHINode>(I))
3425 if (PN->getParent() == LI->getHeader()) {
3426 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003427 // to see if the loop that contains it has a known backedge-taken
3428 // count. If so, we may be able to force computation of the exit
3429 // value.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003430 const SCEV* BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003431 if (const SCEVConstant *BTCC =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003432 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003433 // Okay, we know how many times the containing loop executes. If
3434 // this is a constant evolving PHI node, get the final value at
3435 // the specified iteration number.
3436 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003437 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003438 LI);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003439 if (RV) return getUnknown(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003440 }
3441 }
3442
3443 // Okay, this is an expression that we cannot symbolically evaluate
3444 // into a SCEV. Check to see if it's possible to symbolically evaluate
3445 // the arguments into constants, and if so, try to constant propagate the
3446 // result. This is particularly useful for computing loop exit values.
3447 if (CanConstantFold(I)) {
Dan Gohmanda0071e2009-05-08 20:47:27 +00003448 // Check to see if we've folded this instruction at this loop before.
3449 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3450 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3451 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3452 if (!Pair.second)
3453 return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
3454
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003455 std::vector<Constant*> Operands;
3456 Operands.reserve(I->getNumOperands());
3457 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3458 Value *Op = I->getOperand(i);
3459 if (Constant *C = dyn_cast<Constant>(Op)) {
3460 Operands.push_back(C);
3461 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00003462 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00003463 // non-integer and non-pointer, don't even try to analyze them
3464 // with scev techniques.
Dan Gohman5e4eb762009-04-30 16:40:30 +00003465 if (!isSCEVable(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00003466 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00003467
Owen Andersonecd0cd72009-06-22 21:39:50 +00003468 const SCEV* OpV = getSCEVAtScope(getSCEV(Op), L);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003469 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00003470 Constant *C = SC->getValue();
3471 if (C->getType() != Op->getType())
3472 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3473 Op->getType(),
3474 false),
3475 C, Op->getType());
3476 Operands.push_back(C);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003477 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00003478 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3479 if (C->getType() != Op->getType())
3480 C =
3481 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3482 Op->getType(),
3483 false),
3484 C, Op->getType());
3485 Operands.push_back(C);
3486 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003487 return V;
3488 } else {
3489 return V;
3490 }
3491 }
3492 }
Chris Lattnerd6e56912007-12-10 22:53:04 +00003493
3494 Constant *C;
3495 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3496 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3497 &Operands[0], Operands.size());
3498 else
3499 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3500 &Operands[0], Operands.size());
Dan Gohmanda0071e2009-05-08 20:47:27 +00003501 Pair.first->second = C;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003502 return getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003503 }
3504 }
3505
3506 // This is some other type of SCEVUnknown, just return it.
3507 return V;
3508 }
3509
Dan Gohmanc76b5452009-05-04 22:02:23 +00003510 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003511 // Avoid performing the look-up in the common case where the specified
3512 // expression has no loop-variant portions.
3513 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00003514 const SCEV* OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003515 if (OpAtScope != Comm->getOperand(i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003516 // Okay, at least one of these operands is loop variant but might be
3517 // foldable. Build a new instance of the folded commutative expression.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003518 SmallVector<const SCEV*, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003519 NewOps.push_back(OpAtScope);
3520
3521 for (++i; i != e; ++i) {
3522 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003523 NewOps.push_back(OpAtScope);
3524 }
3525 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003526 return getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003527 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003528 return getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003529 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003530 return getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003531 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003532 return getUMaxExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003533 assert(0 && "Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003534 }
3535 }
3536 // If we got here, all operands are loop invariant.
3537 return Comm;
3538 }
3539
Dan Gohmanc76b5452009-05-04 22:02:23 +00003540 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00003541 const SCEV* LHS = getSCEVAtScope(Div->getLHS(), L);
3542 const SCEV* RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky35b56022009-01-13 09:18:58 +00003543 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3544 return Div; // must be loop invariant
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003545 return getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003546 }
3547
3548 // If this is a loop recurrence for a loop that does not contain L, then we
3549 // are dealing with the final value computed by the loop.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003550 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003551 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3552 // To evaluate this recurrence, we need to know how many times the AddRec
3553 // loop iterates. Compute this now.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003554 const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman0c850912009-06-06 14:37:11 +00003555 if (BackedgeTakenCount == CouldNotCompute) return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003556
Eli Friedman7489ec92008-08-04 23:49:06 +00003557 // Then, evaluate the AddRec.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003558 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003559 }
Dan Gohmanaff14d62009-05-24 23:25:42 +00003560 return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003561 }
3562
Dan Gohmanc76b5452009-05-04 22:02:23 +00003563 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00003564 const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003565 if (Op == Cast->getOperand())
3566 return Cast; // must be loop invariant
3567 return getZeroExtendExpr(Op, Cast->getType());
3568 }
3569
Dan Gohmanc76b5452009-05-04 22:02:23 +00003570 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00003571 const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003572 if (Op == Cast->getOperand())
3573 return Cast; // must be loop invariant
3574 return getSignExtendExpr(Op, Cast->getType());
3575 }
3576
Dan Gohmanc76b5452009-05-04 22:02:23 +00003577 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00003578 const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003579 if (Op == Cast->getOperand())
3580 return Cast; // must be loop invariant
3581 return getTruncateExpr(Op, Cast->getType());
3582 }
3583
3584 assert(0 && "Unknown SCEV type!");
Daniel Dunbara95d96c2009-05-18 16:43:04 +00003585 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003586}
3587
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003588/// getSCEVAtScope - This is a convenience function which does
3589/// getSCEVAtScope(getSCEV(V), L).
Owen Andersonecd0cd72009-06-22 21:39:50 +00003590const SCEV* ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003591 return getSCEVAtScope(getSCEV(V), L);
3592}
3593
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003594/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3595/// following equation:
3596///
3597/// A * X = B (mod N)
3598///
3599/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3600/// A and B isn't important.
3601///
3602/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003603static const SCEV* SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003604 ScalarEvolution &SE) {
3605 uint32_t BW = A.getBitWidth();
3606 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3607 assert(A != 0 && "A must be non-zero.");
3608
3609 // 1. D = gcd(A, N)
3610 //
3611 // The gcd of A and N may have only one prime factor: 2. The number of
3612 // trailing zeros in A is its multiplicity
3613 uint32_t Mult2 = A.countTrailingZeros();
3614 // D = 2^Mult2
3615
3616 // 2. Check if B is divisible by D.
3617 //
3618 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3619 // is not less than multiplicity of this prime factor for D.
3620 if (B.countTrailingZeros() < Mult2)
Dan Gohman0ad08b02009-04-18 17:58:19 +00003621 return SE.getCouldNotCompute();
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003622
3623 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3624 // modulo (N / D).
3625 //
3626 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
3627 // bit width during computations.
3628 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
3629 APInt Mod(BW + 1, 0);
3630 Mod.set(BW - Mult2); // Mod = N / D
3631 APInt I = AD.multiplicativeInverse(Mod);
3632
3633 // 4. Compute the minimum unsigned root of the equation:
3634 // I * (B / D) mod (N / D)
3635 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3636
3637 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3638 // bits.
3639 return SE.getConstant(Result.trunc(BW));
3640}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003641
3642/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3643/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
3644/// might be the same) or two SCEVCouldNotCompute objects.
3645///
Owen Andersonecd0cd72009-06-22 21:39:50 +00003646static std::pair<const SCEV*,const SCEV*>
Dan Gohman89f85052007-10-22 18:31:58 +00003647SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003648 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00003649 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3650 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3651 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003652
3653 // We currently can only solve this if the coefficients are constants.
3654 if (!LC || !MC || !NC) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003655 const SCEV *CNC = SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003656 return std::make_pair(CNC, CNC);
3657 }
3658
3659 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3660 const APInt &L = LC->getValue()->getValue();
3661 const APInt &M = MC->getValue()->getValue();
3662 const APInt &N = NC->getValue()->getValue();
3663 APInt Two(BitWidth, 2);
3664 APInt Four(BitWidth, 4);
3665
3666 {
3667 using namespace APIntOps;
3668 const APInt& C = L;
3669 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3670 // The B coefficient is M-N/2
3671 APInt B(M);
3672 B -= sdiv(N,Two);
3673
3674 // The A coefficient is N/2
3675 APInt A(N.sdiv(Two));
3676
3677 // Compute the B^2-4ac term.
3678 APInt SqrtTerm(B);
3679 SqrtTerm *= B;
3680 SqrtTerm -= Four * (A * C);
3681
3682 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3683 // integer value or else APInt::sqrt() will assert.
3684 APInt SqrtVal(SqrtTerm.sqrt());
3685
3686 // Compute the two solutions for the quadratic formula.
3687 // The divisions must be performed as signed divisions.
3688 APInt NegB(-B);
3689 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00003690 if (TwoA.isMinValue()) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003691 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky35776692008-11-03 02:43:49 +00003692 return std::make_pair(CNC, CNC);
3693 }
3694
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003695 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3696 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3697
Dan Gohman89f85052007-10-22 18:31:58 +00003698 return std::make_pair(SE.getConstant(Solution1),
3699 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003700 } // end APIntOps namespace
3701}
3702
3703/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman0c850912009-06-06 14:37:11 +00003704/// value to zero will execute. If not computable, return CouldNotCompute.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003705const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003706 // If the value is a constant
Dan Gohmanc76b5452009-05-04 22:02:23 +00003707 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003708 // If the value is already zero, the branch will execute zero times.
3709 if (C->getValue()->isZero()) return C;
Dan Gohman0c850912009-06-06 14:37:11 +00003710 return CouldNotCompute; // Otherwise it will loop infinitely.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003711 }
3712
Dan Gohmanbff6b582009-05-04 22:30:44 +00003713 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003714 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman0c850912009-06-06 14:37:11 +00003715 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003716
3717 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003718 // If this is an affine expression, the execution count of this branch is
3719 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003720 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003721 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003722 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003723 // equivalent to:
3724 //
3725 // Step*N = -Start (mod 2^BW)
3726 //
3727 // where BW is the common bit width of Start and Step.
3728
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003729 // Get the initial value for the loop.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003730 const SCEV* Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
3731 const SCEV* Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003732
Dan Gohmanc76b5452009-05-04 22:02:23 +00003733 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003734 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003735
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003736 // First, handle unitary steps.
3737 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003738 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003739 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
3740 return Start; // N = Start (as unsigned)
3741
3742 // Then, try to solve the above equation provided that Start is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003743 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003744 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003745 -StartC->getValue()->getValue(),
3746 *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003747 }
3748 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3749 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3750 // the quadratic equation to solve it.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003751 std::pair<const SCEV*,const SCEV*> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003752 *this);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003753 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3754 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003755 if (R1) {
3756#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003757 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3758 << " sol#2: " << *R2 << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003759#endif
3760 // Pick the smallest positive root value.
3761 if (ConstantInt *CB =
3762 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3763 R1->getValue(), R2->getValue()))) {
3764 if (CB->getZExtValue() == false)
3765 std::swap(R1, R2); // R1 is the minimum root now.
3766
3767 // We can only use this value if the chrec ends up with an exact zero
3768 // value at this index. When solving for "X*X != 5", for example, we
3769 // should not accept a root of 2.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003770 const SCEV* Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohman7b560c42008-06-18 16:23:07 +00003771 if (Val->isZero())
3772 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003773 }
3774 }
3775 }
3776
Dan Gohman0c850912009-06-06 14:37:11 +00003777 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003778}
3779
3780/// HowFarToNonZero - Return the number of times a backedge checking the
3781/// specified value for nonzero will execute. If not computable, return
Dan Gohman0c850912009-06-06 14:37:11 +00003782/// CouldNotCompute
Owen Andersonecd0cd72009-06-22 21:39:50 +00003783const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003784 // Loops that look like: while (X == 0) are very strange indeed. We don't
3785 // handle them yet except for the trivial case. This could be expanded in the
3786 // future as needed.
3787
3788 // If the value is a constant, check to see if it is known to be non-zero
3789 // already. If so, the backedge will execute zero times.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003790 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00003791 if (!C->getValue()->isNullValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003792 return getIntegerSCEV(0, C->getType());
Dan Gohman0c850912009-06-06 14:37:11 +00003793 return CouldNotCompute; // Otherwise it will loop infinitely.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003794 }
3795
3796 // We could implement others, but I really doubt anyone writes loops like
3797 // this, and if they did, they would already be constant folded.
Dan Gohman0c850912009-06-06 14:37:11 +00003798 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003799}
3800
Dan Gohmanab157b22009-05-18 15:36:09 +00003801/// getLoopPredecessor - If the given loop's header has exactly one unique
3802/// predecessor outside the loop, return it. Otherwise return null.
3803///
3804BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3805 BasicBlock *Header = L->getHeader();
3806 BasicBlock *Pred = 0;
3807 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3808 PI != E; ++PI)
3809 if (!L->contains(*PI)) {
3810 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3811 Pred = *PI;
3812 }
3813 return Pred;
3814}
3815
Dan Gohman1cddf972008-09-15 22:18:04 +00003816/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3817/// (which may not be an immediate predecessor) which has exactly one
3818/// successor from which BB is reachable, or null if no such block is
3819/// found.
3820///
3821BasicBlock *
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003822ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman1116ea72009-04-30 20:48:53 +00003823 // If the block has a unique predecessor, then there is no path from the
3824 // predecessor to the block that does not go through the direct edge
3825 // from the predecessor to the block.
Dan Gohman1cddf972008-09-15 22:18:04 +00003826 if (BasicBlock *Pred = BB->getSinglePredecessor())
3827 return Pred;
3828
3829 // A loop's header is defined to be a block that dominates the loop.
Dan Gohmanab157b22009-05-18 15:36:09 +00003830 // If the header has a unique predecessor outside the loop, it must be
3831 // a block that has exactly one successor that can reach the loop.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003832 if (Loop *L = LI->getLoopFor(BB))
Dan Gohmanab157b22009-05-18 15:36:09 +00003833 return getLoopPredecessor(L);
Dan Gohman1cddf972008-09-15 22:18:04 +00003834
3835 return 0;
3836}
3837
Dan Gohmanbc1e3472009-06-20 00:35:32 +00003838/// HasSameValue - SCEV structural equivalence is usually sufficient for
3839/// testing whether two expressions are equal, however for the purposes of
3840/// looking for a condition guarding a loop, it can be useful to be a little
3841/// more general, since a front-end may have replicated the controlling
3842/// expression.
3843///
Owen Andersonecd0cd72009-06-22 21:39:50 +00003844static bool HasSameValue(const SCEV* A, const SCEV* B) {
Dan Gohmanbc1e3472009-06-20 00:35:32 +00003845 // Quick check to see if they are the same SCEV.
3846 if (A == B) return true;
3847
3848 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
3849 // two different instructions with the same value. Check for this case.
3850 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
3851 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
3852 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
3853 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
3854 if (AI->isIdenticalTo(BI))
3855 return true;
3856
3857 // Otherwise assume they may have a different value.
3858 return false;
3859}
3860
Dan Gohmancacd2012009-02-12 22:19:27 +00003861/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Dan Gohman1116ea72009-04-30 20:48:53 +00003862/// a conditional between LHS and RHS. This is used to help avoid max
3863/// expressions in loop trip counts.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003864bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
Dan Gohman1116ea72009-04-30 20:48:53 +00003865 ICmpInst::Predicate Pred,
Dan Gohmanbff6b582009-05-04 22:30:44 +00003866 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8b938182009-05-18 16:03:58 +00003867 // Interpret a null as meaning no loop, where there is obviously no guard
3868 // (interprocedural conditions notwithstanding).
3869 if (!L) return false;
3870
Dan Gohmanab157b22009-05-18 15:36:09 +00003871 BasicBlock *Predecessor = getLoopPredecessor(L);
3872 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003873
Dan Gohmanab157b22009-05-18 15:36:09 +00003874 // Starting at the loop predecessor, climb up the predecessor chain, as long
3875 // as there are predecessors that can be found that have unique successors
Dan Gohman1cddf972008-09-15 22:18:04 +00003876 // leading to the original header.
Dan Gohmanab157b22009-05-18 15:36:09 +00003877 for (; Predecessor;
3878 PredecessorDest = Predecessor,
3879 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00003880
3881 BranchInst *LoopEntryPredicate =
Dan Gohmanab157b22009-05-18 15:36:09 +00003882 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00003883 if (!LoopEntryPredicate ||
3884 LoopEntryPredicate->isUnconditional())
3885 continue;
3886
Dan Gohman423ed6c2009-06-24 01:18:18 +00003887 if (isNecessaryCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
3888 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
Dan Gohmanab678fb2008-08-12 20:17:31 +00003889 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003890 }
3891
Dan Gohmanab678fb2008-08-12 20:17:31 +00003892 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003893}
3894
Dan Gohman423ed6c2009-06-24 01:18:18 +00003895/// isNecessaryCond - Test whether the given CondValue value is a condition
3896/// which is at least as strict as the one described by Pred, LHS, and RHS.
3897bool ScalarEvolution::isNecessaryCond(Value *CondValue,
3898 ICmpInst::Predicate Pred,
3899 const SCEV *LHS, const SCEV *RHS,
3900 bool Inverse) {
3901 // Recursivly handle And and Or conditions.
3902 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
3903 if (BO->getOpcode() == Instruction::And) {
3904 if (!Inverse)
3905 return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
3906 isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
3907 } else if (BO->getOpcode() == Instruction::Or) {
3908 if (Inverse)
3909 return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
3910 isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
3911 }
3912 }
3913
3914 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
3915 if (!ICI) return false;
3916
3917 // Now that we found a conditional branch that dominates the loop, check to
3918 // see if it is the comparison we are looking for.
3919 Value *PreCondLHS = ICI->getOperand(0);
3920 Value *PreCondRHS = ICI->getOperand(1);
3921 ICmpInst::Predicate Cond;
3922 if (Inverse)
3923 Cond = ICI->getInversePredicate();
3924 else
3925 Cond = ICI->getPredicate();
3926
3927 if (Cond == Pred)
3928 ; // An exact match.
3929 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3930 ; // The actual condition is beyond sufficient.
3931 else
3932 // Check a few special cases.
3933 switch (Cond) {
3934 case ICmpInst::ICMP_UGT:
3935 if (Pred == ICmpInst::ICMP_ULT) {
3936 std::swap(PreCondLHS, PreCondRHS);
3937 Cond = ICmpInst::ICMP_ULT;
3938 break;
3939 }
3940 return false;
3941 case ICmpInst::ICMP_SGT:
3942 if (Pred == ICmpInst::ICMP_SLT) {
3943 std::swap(PreCondLHS, PreCondRHS);
3944 Cond = ICmpInst::ICMP_SLT;
3945 break;
3946 }
3947 return false;
3948 case ICmpInst::ICMP_NE:
3949 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3950 // so check for this case by checking if the NE is comparing against
3951 // a minimum or maximum constant.
3952 if (!ICmpInst::isTrueWhenEqual(Pred))
3953 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3954 const APInt &A = CI->getValue();
3955 switch (Pred) {
3956 case ICmpInst::ICMP_SLT:
3957 if (A.isMaxSignedValue()) break;
3958 return false;
3959 case ICmpInst::ICMP_SGT:
3960 if (A.isMinSignedValue()) break;
3961 return false;
3962 case ICmpInst::ICMP_ULT:
3963 if (A.isMaxValue()) break;
3964 return false;
3965 case ICmpInst::ICMP_UGT:
3966 if (A.isMinValue()) break;
3967 return false;
3968 default:
3969 return false;
3970 }
3971 Cond = ICmpInst::ICMP_NE;
3972 // NE is symmetric but the original comparison may not be. Swap
3973 // the operands if necessary so that they match below.
3974 if (isa<SCEVConstant>(LHS))
3975 std::swap(PreCondLHS, PreCondRHS);
3976 break;
3977 }
3978 return false;
3979 default:
3980 // We weren't able to reconcile the condition.
3981 return false;
3982 }
3983
3984 if (!PreCondLHS->getType()->isInteger()) return false;
3985
3986 const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS);
3987 const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS);
3988 return (HasSameValue(LHS, PreCondLHSSCEV) &&
3989 HasSameValue(RHS, PreCondRHSSCEV)) ||
3990 (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
3991 HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)));
3992}
3993
Dan Gohmand2b62c42009-06-21 23:46:38 +00003994/// getBECount - Subtract the end and start values and divide by the step,
3995/// rounding up, to get the number of times the backedge is executed. Return
3996/// CouldNotCompute if an intermediate computation overflows.
Owen Andersonecd0cd72009-06-22 21:39:50 +00003997const SCEV* ScalarEvolution::getBECount(const SCEV* Start,
3998 const SCEV* End,
3999 const SCEV* Step) {
Dan Gohmand2b62c42009-06-21 23:46:38 +00004000 const Type *Ty = Start->getType();
Owen Andersonecd0cd72009-06-22 21:39:50 +00004001 const SCEV* NegOne = getIntegerSCEV(-1, Ty);
4002 const SCEV* Diff = getMinusSCEV(End, Start);
4003 const SCEV* RoundUp = getAddExpr(Step, NegOne);
Dan Gohmand2b62c42009-06-21 23:46:38 +00004004
4005 // Add an adjustment to the difference between End and Start so that
4006 // the division will effectively round up.
Owen Andersonecd0cd72009-06-22 21:39:50 +00004007 const SCEV* Add = getAddExpr(Diff, RoundUp);
Dan Gohmand2b62c42009-06-21 23:46:38 +00004008
4009 // Check Add for unsigned overflow.
4010 // TODO: More sophisticated things could be done here.
4011 const Type *WideTy = IntegerType::get(getTypeSizeInBits(Ty) + 1);
Owen Andersonecd0cd72009-06-22 21:39:50 +00004012 const SCEV* OperandExtendedAdd =
Dan Gohmand2b62c42009-06-21 23:46:38 +00004013 getAddExpr(getZeroExtendExpr(Diff, WideTy),
4014 getZeroExtendExpr(RoundUp, WideTy));
4015 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4016 return CouldNotCompute;
4017
4018 return getUDivExpr(Add, Step);
4019}
4020
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004021/// HowManyLessThans - Return the number of times a backedge containing the
4022/// specified less-than comparison will execute. If not computable, return
Dan Gohman0c850912009-06-06 14:37:11 +00004023/// CouldNotCompute.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004024ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
Dan Gohmanbff6b582009-05-04 22:30:44 +00004025HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4026 const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004027 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman0c850912009-06-06 14:37:11 +00004028 if (!RHS->isLoopInvariant(L)) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004029
Dan Gohmanbff6b582009-05-04 22:30:44 +00004030 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004031 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman0c850912009-06-06 14:37:11 +00004032 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004033
4034 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00004035 // FORNOW: We only support unit strides.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004036 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Owen Andersonecd0cd72009-06-22 21:39:50 +00004037 const SCEV* Step = AddRec->getStepRecurrence(*this);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004038
4039 // TODO: handle non-constant strides.
4040 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4041 if (!CStep || CStep->isZero())
Dan Gohman0c850912009-06-06 14:37:11 +00004042 return CouldNotCompute;
Dan Gohmanf8bc8e82009-05-18 15:22:39 +00004043 if (CStep->isOne()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004044 // With unit stride, the iteration never steps past the limit value.
4045 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4046 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4047 // Test whether a positive iteration iteration can step past the limit
4048 // value and past the maximum value for its type in a single step.
4049 if (isSigned) {
4050 APInt Max = APInt::getSignedMaxValue(BitWidth);
4051 if ((Max - CStep->getValue()->getValue())
4052 .slt(CLimit->getValue()->getValue()))
Dan Gohman0c850912009-06-06 14:37:11 +00004053 return CouldNotCompute;
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004054 } else {
4055 APInt Max = APInt::getMaxValue(BitWidth);
4056 if ((Max - CStep->getValue()->getValue())
4057 .ult(CLimit->getValue()->getValue()))
Dan Gohman0c850912009-06-06 14:37:11 +00004058 return CouldNotCompute;
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004059 }
4060 } else
4061 // TODO: handle non-constant limit values below.
Dan Gohman0c850912009-06-06 14:37:11 +00004062 return CouldNotCompute;
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004063 } else
4064 // TODO: handle negative strides below.
Dan Gohman0c850912009-06-06 14:37:11 +00004065 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004066
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004067 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4068 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4069 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00004070 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004071
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004072 // First, we get the value of the LHS in the first iteration: n
Owen Andersonecd0cd72009-06-22 21:39:50 +00004073 const SCEV* Start = AddRec->getOperand(0);
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004074
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004075 // Determine the minimum constant start value.
Owen Andersonecd0cd72009-06-22 21:39:50 +00004076 const SCEV* MinStart = isa<SCEVConstant>(Start) ? Start :
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004077 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
4078 APInt::getMinValue(BitWidth));
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004079
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004080 // If we know that the condition is true in order to enter the loop,
4081 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohmanc8a29272009-05-24 23:45:28 +00004082 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4083 // the division must round up.
Owen Andersonecd0cd72009-06-22 21:39:50 +00004084 const SCEV* End = RHS;
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004085 if (!isLoopGuardedByCond(L,
4086 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
4087 getMinusSCEV(Start, Step), RHS))
4088 End = isSigned ? getSMaxExpr(RHS, Start)
4089 : getUMaxExpr(RHS, Start);
4090
4091 // Determine the maximum constant end value.
Owen Andersonecd0cd72009-06-22 21:39:50 +00004092 const SCEV* MaxEnd =
Dan Gohman92369c32009-06-20 00:32:22 +00004093 isa<SCEVConstant>(End) ? End :
4094 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
4095 .ashr(GetMinSignBits(End) - 1) :
4096 APInt::getMaxValue(BitWidth)
4097 .lshr(GetMinLeadingZeros(End)));
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004098
4099 // Finally, we subtract these two values and divide, rounding up, to get
4100 // the number of times the backedge is executed.
Owen Andersonecd0cd72009-06-22 21:39:50 +00004101 const SCEV* BECount = getBECount(Start, End, Step);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004102
4103 // The maximum backedge count is similar, except using the minimum start
4104 // value and the maximum end value.
Owen Andersonecd0cd72009-06-22 21:39:50 +00004105 const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);;
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004106
4107 return BackedgeTakenInfo(BECount, MaxBECount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004108 }
4109
Dan Gohman0c850912009-06-06 14:37:11 +00004110 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004111}
4112
4113/// getNumIterationsInRange - Return the number of iterations of this loop that
4114/// produce values in the specified constant range. Another way of looking at
4115/// this is that it returns the first iteration number where the value is not in
4116/// the condition, thus computing the exit count. If the iteration count can't
4117/// be computed, an instance of SCEVCouldNotCompute is returned.
Owen Andersonecd0cd72009-06-22 21:39:50 +00004118const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman89f85052007-10-22 18:31:58 +00004119 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004120 if (Range.isFullSet()) // Infinite loop.
Dan Gohman0ad08b02009-04-18 17:58:19 +00004121 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004122
4123 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmanc76b5452009-05-04 22:02:23 +00004124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004125 if (!SC->getValue()->isZero()) {
Owen Andersonecd0cd72009-06-22 21:39:50 +00004126 SmallVector<const SCEV*, 4> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00004127 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
Owen Andersonecd0cd72009-06-22 21:39:50 +00004128 const SCEV* Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanc76b5452009-05-04 22:02:23 +00004129 if (const SCEVAddRecExpr *ShiftedAddRec =
4130 dyn_cast<SCEVAddRecExpr>(Shifted))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004131 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00004132 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004133 // This is strange and shouldn't happen.
Dan Gohman0ad08b02009-04-18 17:58:19 +00004134 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004135 }
4136
4137 // The only time we can solve this is when we have all constant indices.
4138 // Otherwise, we cannot determine the overflow conditions.
4139 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4140 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman0ad08b02009-04-18 17:58:19 +00004141 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004142
4143
4144 // Okay at this point we know that all elements of the chrec are constants and
4145 // that the start element is zero.
4146
4147 // First check to see if the range contains zero. If not, the first
4148 // iteration exits.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00004149 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00004150 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman8fd520a2009-06-15 22:12:54 +00004151 return SE.getIntegerSCEV(0, getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004152
4153 if (isAffine()) {
4154 // If this is an affine expression then we have this situation:
4155 // Solve {0,+,A} in Range === Ax in Range
4156
4157 // We know that zero is in the range. If A is positive then we know that
4158 // the upper value of the range must be the first possible exit value.
4159 // If A is negative then the lower of the range is the last possible loop
4160 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00004161 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004162 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4163 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4164
4165 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00004166 APInt ExitVal = (End + A).udiv(A);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004167 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
4168
4169 // Evaluate at the exit value. If we really did fall out of the valid
4170 // range, then we computed our trip count, otherwise wrap around or other
4171 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00004172 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004173 if (Range.contains(Val->getValue()))
Dan Gohman0ad08b02009-04-18 17:58:19 +00004174 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004175
4176 // Ensure that the previous value is in the range. This is a sanity check.
4177 assert(Range.contains(
4178 EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00004179 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004180 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00004181 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004182 } else if (isQuadratic()) {
4183 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4184 // quadratic equation to solve it. To do this, we must frame our problem in
4185 // terms of figuring out when zero is crossed, instead of when
4186 // Range.getUpper() is crossed.
Owen Andersonecd0cd72009-06-22 21:39:50 +00004187 SmallVector<const SCEV*, 4> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00004188 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Owen Andersonecd0cd72009-06-22 21:39:50 +00004189 const SCEV* NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004190
4191 // Next, solve the constructed addrec
Owen Andersonecd0cd72009-06-22 21:39:50 +00004192 std::pair<const SCEV*,const SCEV*> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00004193 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004194 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4195 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004196 if (R1) {
4197 // Pick the smallest positive root value.
4198 if (ConstantInt *CB =
4199 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
4200 R1->getValue(), R2->getValue()))) {
4201 if (CB->getZExtValue() == false)
4202 std::swap(R1, R2); // R1 is the minimum root now.
4203
4204 // Make sure the root is not off by one. The returned iteration should
4205 // not be in the range, but the previous one should be. When solving
4206 // for "X*X < 5", for example, we should not return a root of 2.
4207 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00004208 R1->getValue(),
4209 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004210 if (Range.contains(R1Val->getValue())) {
4211 // The next iteration must be out of the range...
4212 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
4213
Dan Gohman89f85052007-10-22 18:31:58 +00004214 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004215 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00004216 return SE.getConstant(NextVal);
Dan Gohman0ad08b02009-04-18 17:58:19 +00004217 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004218 }
4219
4220 // If R1 was not in the range, then it is a good return value. Make
4221 // sure that R1-1 WAS in the range though, just in case.
4222 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00004223 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004224 if (Range.contains(R1Val->getValue()))
4225 return R1;
Dan Gohman0ad08b02009-04-18 17:58:19 +00004226 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004227 }
4228 }
4229 }
4230
Dan Gohman0ad08b02009-04-18 17:58:19 +00004231 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004232}
4233
4234
4235
4236//===----------------------------------------------------------------------===//
Dan Gohmanbff6b582009-05-04 22:30:44 +00004237// SCEVCallbackVH Class Implementation
4238//===----------------------------------------------------------------------===//
4239
Dan Gohman999d14e2009-05-19 19:22:47 +00004240void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanbff6b582009-05-04 22:30:44 +00004241 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4242 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4243 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004244 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4245 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004246 SE->Scalars.erase(getValPtr());
4247 // this now dangles!
4248}
4249
Dan Gohman999d14e2009-05-19 19:22:47 +00004250void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00004251 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4252
4253 // Forget all the expressions associated with users of the old value,
4254 // so that future queries will recompute the expressions using the new
4255 // value.
4256 SmallVector<User *, 16> Worklist;
4257 Value *Old = getValPtr();
4258 bool DeleteOld = false;
4259 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4260 UI != UE; ++UI)
4261 Worklist.push_back(*UI);
4262 while (!Worklist.empty()) {
4263 User *U = Worklist.pop_back_val();
4264 // Deleting the Old value will cause this to dangle. Postpone
4265 // that until everything else is done.
4266 if (U == Old) {
4267 DeleteOld = true;
4268 continue;
4269 }
4270 if (PHINode *PN = dyn_cast<PHINode>(U))
4271 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004272 if (Instruction *I = dyn_cast<Instruction>(U))
4273 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004274 if (SE->Scalars.erase(U))
4275 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4276 UI != UE; ++UI)
4277 Worklist.push_back(*UI);
4278 }
4279 if (DeleteOld) {
4280 if (PHINode *PN = dyn_cast<PHINode>(Old))
4281 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004282 if (Instruction *I = dyn_cast<Instruction>(Old))
4283 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004284 SE->Scalars.erase(Old);
4285 // this now dangles!
4286 }
4287 // this may dangle!
4288}
4289
Dan Gohman999d14e2009-05-19 19:22:47 +00004290ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohmanbff6b582009-05-04 22:30:44 +00004291 : CallbackVH(V), SE(se) {}
4292
4293//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004294// ScalarEvolution Class Implementation
4295//===----------------------------------------------------------------------===//
4296
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004297ScalarEvolution::ScalarEvolution()
Owen Andersonb70139d2009-06-22 21:57:23 +00004298 : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute()) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004299}
4300
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004301bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004302 this->F = &F;
4303 LI = &getAnalysis<LoopInfo>();
4304 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004305 return false;
4306}
4307
4308void ScalarEvolution::releaseMemory() {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004309 Scalars.clear();
4310 BackedgeTakenCounts.clear();
4311 ConstantEvolutionLoopExitValue.clear();
Dan Gohmanda0071e2009-05-08 20:47:27 +00004312 ValuesAtScopes.clear();
Owen Andersonc48fbfe2009-06-22 18:25:46 +00004313
4314 for (std::map<ConstantInt*, SCEVConstant*>::iterator
4315 I = SCEVConstants.begin(), E = SCEVConstants.end(); I != E; ++I)
4316 delete I->second;
4317 for (std::map<std::pair<const SCEV*, const Type*>,
4318 SCEVTruncateExpr*>::iterator I = SCEVTruncates.begin(),
4319 E = SCEVTruncates.end(); I != E; ++I)
4320 delete I->second;
4321 for (std::map<std::pair<const SCEV*, const Type*>,
4322 SCEVZeroExtendExpr*>::iterator I = SCEVZeroExtends.begin(),
4323 E = SCEVZeroExtends.end(); I != E; ++I)
4324 delete I->second;
4325 for (std::map<std::pair<unsigned, std::vector<const SCEV*> >,
4326 SCEVCommutativeExpr*>::iterator I = SCEVCommExprs.begin(),
4327 E = SCEVCommExprs.end(); I != E; ++I)
4328 delete I->second;
4329 for (std::map<std::pair<const SCEV*, const SCEV*>, SCEVUDivExpr*>::iterator
4330 I = SCEVUDivs.begin(), E = SCEVUDivs.end(); I != E; ++I)
4331 delete I->second;
4332 for (std::map<std::pair<const SCEV*, const Type*>,
4333 SCEVSignExtendExpr*>::iterator I = SCEVSignExtends.begin(),
4334 E = SCEVSignExtends.end(); I != E; ++I)
4335 delete I->second;
4336 for (std::map<std::pair<const Loop *, std::vector<const SCEV*> >,
4337 SCEVAddRecExpr*>::iterator I = SCEVAddRecExprs.begin(),
4338 E = SCEVAddRecExprs.end(); I != E; ++I)
4339 delete I->second;
4340 for (std::map<Value*, SCEVUnknown*>::iterator I = SCEVUnknowns.begin(),
4341 E = SCEVUnknowns.end(); I != E; ++I)
4342 delete I->second;
4343
4344 SCEVConstants.clear();
4345 SCEVTruncates.clear();
4346 SCEVZeroExtends.clear();
4347 SCEVCommExprs.clear();
4348 SCEVUDivs.clear();
4349 SCEVSignExtends.clear();
4350 SCEVAddRecExprs.clear();
4351 SCEVUnknowns.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004352}
4353
4354void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4355 AU.setPreservesAll();
4356 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00004357}
4358
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004359bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00004360 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004361}
4362
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004363static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004364 const Loop *L) {
4365 // Print all inner loops first
4366 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4367 PrintLoopInfo(OS, SE, *I);
4368
Nick Lewyckye5da1912008-01-02 02:49:20 +00004369 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004370
Devang Patel02451fa2007-08-21 00:31:24 +00004371 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004372 L->getExitBlocks(ExitBlocks);
4373 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00004374 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004375
Dan Gohman76d5a0d2009-02-24 18:55:53 +00004376 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
4377 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004378 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00004379 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004380 }
4381
Nick Lewyckye5da1912008-01-02 02:49:20 +00004382 OS << "\n";
Dan Gohmanb6b9e9e2009-06-24 00:33:16 +00004383 OS << "Loop " << L->getHeader()->getName() << ": ";
4384
4385 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
4386 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
4387 } else {
4388 OS << "Unpredictable max backedge-taken count. ";
4389 }
4390
4391 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004392}
4393
Dan Gohman13058cc2009-04-21 00:47:46 +00004394void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004395 // ScalarEvolution's implementaiton of the print method is to print
4396 // out SCEV values of all instructions that are interesting. Doing
4397 // this potentially causes it to create new SCEV objects though,
4398 // which technically conflicts with the const qualifier. This isn't
4399 // observable from outside the class though (the hasSCEV function
4400 // notwithstanding), so casting away the const isn't dangerous.
4401 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004402
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004403 OS << "Classifying expressions for: " << F->getName() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004404 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohman43d37e92009-04-30 01:30:18 +00004405 if (isSCEVable(I->getType())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004406 OS << *I;
Dan Gohmanabe991f2008-09-14 17:21:12 +00004407 OS << " --> ";
Owen Andersonecd0cd72009-06-22 21:39:50 +00004408 const SCEV* SV = SE.getSCEV(&*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004409 SV->print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004410
Dan Gohman8db598a2009-06-19 17:49:54 +00004411 const Loop *L = LI->getLoopFor((*I).getParent());
4412
Owen Andersonecd0cd72009-06-22 21:39:50 +00004413 const SCEV* AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman8db598a2009-06-19 17:49:54 +00004414 if (AtUse != SV) {
4415 OS << " --> ";
4416 AtUse->print(OS);
4417 }
4418
4419 if (L) {
Dan Gohmane5b60842009-06-18 00:37:45 +00004420 OS << "\t\t" "Exits: ";
Owen Andersonecd0cd72009-06-22 21:39:50 +00004421 const SCEV* ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanaff14d62009-05-24 23:25:42 +00004422 if (!ExitValue->isLoopInvariant(L)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004423 OS << "<<Unknown>>";
4424 } else {
4425 OS << *ExitValue;
4426 }
4427 }
4428
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004429 OS << "\n";
4430 }
4431
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004432 OS << "Determining loop execution counts for: " << F->getName() << "\n";
4433 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
4434 PrintLoopInfo(OS, &SE, *I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004435}
Dan Gohman13058cc2009-04-21 00:47:46 +00004436
4437void ScalarEvolution::print(std::ostream &o, const Module *M) const {
4438 raw_os_ostream OS(o);
4439 print(OS, M);
4440}