| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 1 | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// | 
| Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 2 | // | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 3 | //                     The LLVM Compiler Infrastructure | 
|  | 4 | // | 
|  | 5 | // This file was developed by the LLVM research group and is distributed under | 
|  | 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
| Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 7 | // | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 8 | //===----------------------------------------------------------------------===// | 
|  | 9 | // | 
|  | 10 | // This implements the TargetLowering class. | 
|  | 11 | // | 
|  | 12 | //===----------------------------------------------------------------------===// | 
|  | 13 |  | 
|  | 14 | #include "llvm/Target/TargetLowering.h" | 
| Owen Anderson | 07000c6 | 2006-05-12 06:33:49 +0000 | [diff] [blame] | 15 | #include "llvm/Target/TargetData.h" | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 16 | #include "llvm/Target/TargetMachine.h" | 
| Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 17 | #include "llvm/Target/MRegisterInfo.h" | 
| Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 18 | #include "llvm/DerivedTypes.h" | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 19 | #include "llvm/CodeGen/SelectionDAG.h" | 
| Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 20 | #include "llvm/ADT/StringExtras.h" | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 21 | #include "llvm/Support/MathExtras.h" | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 22 | using namespace llvm; | 
|  | 23 |  | 
| Evan Cheng | 5696622 | 2007-01-12 02:11:51 +0000 | [diff] [blame] | 24 | /// InitLibcallNames - Set default libcall names. | 
|  | 25 | /// | 
| Evan Cheng | 79cca50 | 2007-01-12 22:51:10 +0000 | [diff] [blame] | 26 | static void InitLibcallNames(const char **Names) { | 
| Evan Cheng | 5696622 | 2007-01-12 02:11:51 +0000 | [diff] [blame] | 27 | Names[RTLIB::SHL_I32] = "__ashlsi3"; | 
|  | 28 | Names[RTLIB::SHL_I64] = "__ashldi3"; | 
|  | 29 | Names[RTLIB::SRL_I32] = "__lshrsi3"; | 
|  | 30 | Names[RTLIB::SRL_I64] = "__lshrdi3"; | 
|  | 31 | Names[RTLIB::SRA_I32] = "__ashrsi3"; | 
|  | 32 | Names[RTLIB::SRA_I64] = "__ashrdi3"; | 
|  | 33 | Names[RTLIB::MUL_I32] = "__mulsi3"; | 
|  | 34 | Names[RTLIB::MUL_I64] = "__muldi3"; | 
|  | 35 | Names[RTLIB::SDIV_I32] = "__divsi3"; | 
|  | 36 | Names[RTLIB::SDIV_I64] = "__divdi3"; | 
|  | 37 | Names[RTLIB::UDIV_I32] = "__udivsi3"; | 
|  | 38 | Names[RTLIB::UDIV_I64] = "__udivdi3"; | 
|  | 39 | Names[RTLIB::SREM_I32] = "__modsi3"; | 
|  | 40 | Names[RTLIB::SREM_I64] = "__moddi3"; | 
|  | 41 | Names[RTLIB::UREM_I32] = "__umodsi3"; | 
|  | 42 | Names[RTLIB::UREM_I64] = "__umoddi3"; | 
|  | 43 | Names[RTLIB::NEG_I32] = "__negsi2"; | 
|  | 44 | Names[RTLIB::NEG_I64] = "__negdi2"; | 
|  | 45 | Names[RTLIB::ADD_F32] = "__addsf3"; | 
|  | 46 | Names[RTLIB::ADD_F64] = "__adddf3"; | 
|  | 47 | Names[RTLIB::SUB_F32] = "__subsf3"; | 
|  | 48 | Names[RTLIB::SUB_F64] = "__subdf3"; | 
|  | 49 | Names[RTLIB::MUL_F32] = "__mulsf3"; | 
|  | 50 | Names[RTLIB::MUL_F64] = "__muldf3"; | 
|  | 51 | Names[RTLIB::DIV_F32] = "__divsf3"; | 
|  | 52 | Names[RTLIB::DIV_F64] = "__divdf3"; | 
|  | 53 | Names[RTLIB::REM_F32] = "fmodf"; | 
|  | 54 | Names[RTLIB::REM_F64] = "fmod"; | 
|  | 55 | Names[RTLIB::NEG_F32] = "__negsf2"; | 
|  | 56 | Names[RTLIB::NEG_F64] = "__negdf2"; | 
|  | 57 | Names[RTLIB::POWI_F32] = "__powisf2"; | 
|  | 58 | Names[RTLIB::POWI_F64] = "__powidf2"; | 
|  | 59 | Names[RTLIB::SQRT_F32] = "sqrtf"; | 
|  | 60 | Names[RTLIB::SQRT_F64] = "sqrt"; | 
|  | 61 | Names[RTLIB::SIN_F32] = "sinf"; | 
|  | 62 | Names[RTLIB::SIN_F64] = "sin"; | 
|  | 63 | Names[RTLIB::COS_F32] = "cosf"; | 
|  | 64 | Names[RTLIB::COS_F64] = "cos"; | 
|  | 65 | Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; | 
|  | 66 | Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; | 
|  | 67 | Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; | 
|  | 68 | Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; | 
|  | 69 | Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; | 
|  | 70 | Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; | 
|  | 71 | Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; | 
|  | 72 | Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; | 
|  | 73 | Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; | 
|  | 74 | Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; | 
|  | 75 | Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; | 
|  | 76 | Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; | 
|  | 77 | Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; | 
|  | 78 | Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; | 
|  | 79 | Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; | 
|  | 80 | Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; | 
|  | 81 | Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; | 
|  | 82 | Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; | 
|  | 83 | Names[RTLIB::OEQ_F32] = "__eqsf2"; | 
|  | 84 | Names[RTLIB::OEQ_F64] = "__eqdf2"; | 
|  | 85 | Names[RTLIB::UNE_F32] = "__nesf2"; | 
|  | 86 | Names[RTLIB::UNE_F64] = "__nedf2"; | 
|  | 87 | Names[RTLIB::OGE_F32] = "__gesf2"; | 
|  | 88 | Names[RTLIB::OGE_F64] = "__gedf2"; | 
|  | 89 | Names[RTLIB::OLT_F32] = "__ltsf2"; | 
|  | 90 | Names[RTLIB::OLT_F64] = "__ltdf2"; | 
|  | 91 | Names[RTLIB::OLE_F32] = "__lesf2"; | 
|  | 92 | Names[RTLIB::OLE_F64] = "__ledf2"; | 
|  | 93 | Names[RTLIB::OGT_F32] = "__gtsf2"; | 
|  | 94 | Names[RTLIB::OGT_F64] = "__gtdf2"; | 
|  | 95 | Names[RTLIB::UO_F32] = "__unordsf2"; | 
|  | 96 | Names[RTLIB::UO_F64] = "__unorddf2"; | 
| Evan Cheng | d385fd6 | 2007-01-31 09:29:11 +0000 | [diff] [blame] | 97 | Names[RTLIB::O_F32] = "__unordsf2"; | 
|  | 98 | Names[RTLIB::O_F64] = "__unorddf2"; | 
|  | 99 | } | 
|  | 100 |  | 
|  | 101 | /// InitCmpLibcallCCs - Set default comparison libcall CC. | 
|  | 102 | /// | 
|  | 103 | static void InitCmpLibcallCCs(ISD::CondCode *CCs) { | 
|  | 104 | memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); | 
|  | 105 | CCs[RTLIB::OEQ_F32] = ISD::SETEQ; | 
|  | 106 | CCs[RTLIB::OEQ_F64] = ISD::SETEQ; | 
|  | 107 | CCs[RTLIB::UNE_F32] = ISD::SETNE; | 
|  | 108 | CCs[RTLIB::UNE_F64] = ISD::SETNE; | 
|  | 109 | CCs[RTLIB::OGE_F32] = ISD::SETGE; | 
|  | 110 | CCs[RTLIB::OGE_F64] = ISD::SETGE; | 
|  | 111 | CCs[RTLIB::OLT_F32] = ISD::SETLT; | 
|  | 112 | CCs[RTLIB::OLT_F64] = ISD::SETLT; | 
|  | 113 | CCs[RTLIB::OLE_F32] = ISD::SETLE; | 
|  | 114 | CCs[RTLIB::OLE_F64] = ISD::SETLE; | 
|  | 115 | CCs[RTLIB::OGT_F32] = ISD::SETGT; | 
|  | 116 | CCs[RTLIB::OGT_F64] = ISD::SETGT; | 
|  | 117 | CCs[RTLIB::UO_F32] = ISD::SETNE; | 
|  | 118 | CCs[RTLIB::UO_F64] = ISD::SETNE; | 
|  | 119 | CCs[RTLIB::O_F32] = ISD::SETEQ; | 
|  | 120 | CCs[RTLIB::O_F64] = ISD::SETEQ; | 
| Evan Cheng | 5696622 | 2007-01-12 02:11:51 +0000 | [diff] [blame] | 121 | } | 
|  | 122 |  | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 123 | TargetLowering::TargetLowering(TargetMachine &tm) | 
| Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 124 | : TM(tm), TD(TM.getTargetData()) { | 
| Evan Cheng | 33143dc | 2006-03-03 06:58:59 +0000 | [diff] [blame] | 125 | assert(ISD::BUILTIN_OP_END <= 156 && | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 126 | "Fixed size array in TargetLowering is not large enough!"); | 
| Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 127 | // All operations default to being supported. | 
|  | 128 | memset(OpActions, 0, sizeof(OpActions)); | 
| Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 129 | memset(LoadXActions, 0, sizeof(LoadXActions)); | 
| Evan Cheng | 8b2794a | 2006-10-13 21:14:26 +0000 | [diff] [blame] | 130 | memset(&StoreXActions, 0, sizeof(StoreXActions)); | 
| Evan Cheng | 5ff839f | 2006-11-09 18:56:43 +0000 | [diff] [blame] | 131 | // Initialize all indexed load / store to expand. | 
|  | 132 | for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { | 
|  | 133 | for (unsigned IM = (unsigned)ISD::PRE_INC; | 
|  | 134 | IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { | 
|  | 135 | setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand); | 
|  | 136 | setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand); | 
|  | 137 | } | 
|  | 138 | } | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 139 |  | 
| Owen Anderson | a69571c | 2006-05-03 01:29:57 +0000 | [diff] [blame] | 140 | IsLittleEndian = TD->isLittleEndian(); | 
| Chris Lattner | cf9668f | 2006-10-06 22:52:08 +0000 | [diff] [blame] | 141 | UsesGlobalOffsetTable = false; | 
| Owen Anderson | a69571c | 2006-05-03 01:29:57 +0000 | [diff] [blame] | 142 | ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType()); | 
| Chris Lattner | d6e4967 | 2005-01-19 03:36:14 +0000 | [diff] [blame] | 143 | ShiftAmtHandling = Undefined; | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 144 | memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); | 
| Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame] | 145 | memset(TargetDAGCombineArray, 0, | 
|  | 146 | sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0])); | 
| Evan Cheng | a03a5dc | 2006-02-14 08:38:30 +0000 | [diff] [blame] | 147 | maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; | 
| Reid Spencer | 0f9beca | 2005-08-27 19:09:02 +0000 | [diff] [blame] | 148 | allowUnalignedMemoryAccesses = false; | 
| Anton Korobeynikov | d27a258 | 2006-12-10 23:12:42 +0000 | [diff] [blame] | 149 | UseUnderscoreSetJmp = false; | 
|  | 150 | UseUnderscoreLongJmp = false; | 
| Nate Begeman | 405e3ec | 2005-10-21 00:02:42 +0000 | [diff] [blame] | 151 | IntDivIsCheap = false; | 
|  | 152 | Pow2DivIsCheap = false; | 
| Chris Lattner | ee4a765 | 2006-01-25 18:57:15 +0000 | [diff] [blame] | 153 | StackPointerRegisterToSaveRestore = 0; | 
| Jim Laskey | 9bb3c93 | 2007-02-22 18:04:49 +0000 | [diff] [blame^] | 154 | ExceptionPointerRegister = 0; | 
|  | 155 | ExceptionSelectorRegister = 0; | 
| Evan Cheng | 0577a22 | 2006-01-25 18:52:42 +0000 | [diff] [blame] | 156 | SchedPreferenceInfo = SchedulingForLatency; | 
| Chris Lattner | 7acf5f3 | 2006-09-05 17:39:15 +0000 | [diff] [blame] | 157 | JumpBufSize = 0; | 
| Duraid Madina | 0c9e0ff | 2006-09-04 07:44:11 +0000 | [diff] [blame] | 158 | JumpBufAlignment = 0; | 
| Evan Cheng | 5696622 | 2007-01-12 02:11:51 +0000 | [diff] [blame] | 159 |  | 
|  | 160 | InitLibcallNames(LibcallRoutineNames); | 
| Evan Cheng | d385fd6 | 2007-01-31 09:29:11 +0000 | [diff] [blame] | 161 | InitCmpLibcallCCs(CmpLibcallCCs); | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 162 | } | 
|  | 163 |  | 
| Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 164 | TargetLowering::~TargetLowering() {} | 
|  | 165 |  | 
| Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 166 | /// setValueTypeAction - Set the action for a particular value type.  This | 
|  | 167 | /// assumes an action has not already been set for this value type. | 
| Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 168 | static void SetValueTypeAction(MVT::ValueType VT, | 
|  | 169 | TargetLowering::LegalizeAction Action, | 
| Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 170 | TargetLowering &TLI, | 
|  | 171 | MVT::ValueType *TransformToType, | 
| Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 172 | TargetLowering::ValueTypeActionImpl &ValueTypeActions) { | 
|  | 173 | ValueTypeActions.setTypeAction(VT, Action); | 
| Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 174 | if (Action == TargetLowering::Promote) { | 
| Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 175 | MVT::ValueType PromoteTo; | 
|  | 176 | if (VT == MVT::f32) | 
|  | 177 | PromoteTo = MVT::f64; | 
|  | 178 | else { | 
|  | 179 | unsigned LargerReg = VT+1; | 
| Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 180 | while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) { | 
| Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 181 | ++LargerReg; | 
|  | 182 | assert(MVT::isInteger((MVT::ValueType)LargerReg) && | 
|  | 183 | "Nothing to promote to??"); | 
|  | 184 | } | 
|  | 185 | PromoteTo = (MVT::ValueType)LargerReg; | 
|  | 186 | } | 
|  | 187 |  | 
|  | 188 | assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) && | 
|  | 189 | MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) && | 
|  | 190 | "Can only promote from int->int or fp->fp!"); | 
|  | 191 | assert(VT < PromoteTo && "Must promote to a larger type!"); | 
|  | 192 | TransformToType[VT] = PromoteTo; | 
| Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 193 | } else if (Action == TargetLowering::Expand) { | 
| Evan Cheng | 1a8f1fe | 2006-12-09 02:42:38 +0000 | [diff] [blame] | 194 | // f32 and f64 is each expanded to corresponding integer type of same size. | 
|  | 195 | if (VT == MVT::f32) | 
|  | 196 | TransformToType[VT] = MVT::i32; | 
|  | 197 | else if (VT == MVT::f64) | 
|  | 198 | TransformToType[VT] = MVT::i64; | 
|  | 199 | else { | 
|  | 200 | assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 && | 
|  | 201 | "Cannot expand this type: target must support SOME integer reg!"); | 
|  | 202 | // Expand to the next smaller integer type! | 
|  | 203 | TransformToType[VT] = (MVT::ValueType)(VT-1); | 
|  | 204 | } | 
| Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 205 | } | 
|  | 206 | } | 
|  | 207 |  | 
|  | 208 |  | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 209 | /// computeRegisterProperties - Once all of the register classes are added, | 
|  | 210 | /// this allows us to compute derived properties we expose. | 
|  | 211 | void TargetLowering::computeRegisterProperties() { | 
| Nate Begeman | 6a64861 | 2005-11-29 05:45:29 +0000 | [diff] [blame] | 212 | assert(MVT::LAST_VALUETYPE <= 32 && | 
| Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 213 | "Too many value types for ValueTypeActions to hold!"); | 
|  | 214 |  | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 215 | // Everything defaults to one. | 
|  | 216 | for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) | 
|  | 217 | NumElementsForVT[i] = 1; | 
| Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 218 |  | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 219 | // Find the largest integer register class. | 
|  | 220 | unsigned LargestIntReg = MVT::i128; | 
|  | 221 | for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) | 
|  | 222 | assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); | 
|  | 223 |  | 
|  | 224 | // Every integer value type larger than this largest register takes twice as | 
|  | 225 | // many registers to represent as the previous ValueType. | 
|  | 226 | unsigned ExpandedReg = LargestIntReg; ++LargestIntReg; | 
|  | 227 | for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg) | 
|  | 228 | NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1]; | 
| Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 229 |  | 
| Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 230 | // Inspect all of the ValueType's possible, deciding how to process them. | 
|  | 231 | for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg) | 
|  | 232 | // If we are expanding this type, expand it! | 
|  | 233 | if (getNumElements((MVT::ValueType)IntReg) != 1) | 
| Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 234 | SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType, | 
| Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 235 | ValueTypeActions); | 
| Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 236 | else if (!isTypeLegal((MVT::ValueType)IntReg)) | 
| Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 237 | // Otherwise, if we don't have native support, we must promote to a | 
|  | 238 | // larger type. | 
| Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 239 | SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this, | 
|  | 240 | TransformToType, ValueTypeActions); | 
| Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 241 | else | 
|  | 242 | TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg; | 
| Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 243 |  | 
| Evan Cheng | 1a8f1fe | 2006-12-09 02:42:38 +0000 | [diff] [blame] | 244 | // If the target does not have native F64 support, expand it to I64. We will | 
|  | 245 | // be generating soft float library calls. If the target does not have native | 
|  | 246 | // support for F32, promote it to F64 if it is legal. Otherwise, expand it to | 
|  | 247 | // I32. | 
|  | 248 | if (isTypeLegal(MVT::f64)) | 
|  | 249 | TransformToType[MVT::f64] = MVT::f64; | 
|  | 250 | else { | 
|  | 251 | NumElementsForVT[MVT::f64] = NumElementsForVT[MVT::i64]; | 
|  | 252 | SetValueTypeAction(MVT::f64, Expand, *this, TransformToType, | 
|  | 253 | ValueTypeActions); | 
|  | 254 | } | 
|  | 255 | if (isTypeLegal(MVT::f32)) | 
| Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 256 | TransformToType[MVT::f32] = MVT::f32; | 
| Evan Cheng | 1a8f1fe | 2006-12-09 02:42:38 +0000 | [diff] [blame] | 257 | else if (isTypeLegal(MVT::f64)) | 
|  | 258 | SetValueTypeAction(MVT::f32, Promote, *this, TransformToType, | 
|  | 259 | ValueTypeActions); | 
|  | 260 | else { | 
|  | 261 | NumElementsForVT[MVT::f32] = NumElementsForVT[MVT::i32]; | 
|  | 262 | SetValueTypeAction(MVT::f32, Expand, *this, TransformToType, | 
|  | 263 | ValueTypeActions); | 
|  | 264 | } | 
| Nate Begeman | 4ef3b81 | 2005-11-22 01:29:36 +0000 | [diff] [blame] | 265 |  | 
|  | 266 | // Set MVT::Vector to always be Expanded | 
|  | 267 | SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, | 
|  | 268 | ValueTypeActions); | 
| Chris Lattner | 3a593584 | 2006-03-16 19:50:01 +0000 | [diff] [blame] | 269 |  | 
|  | 270 | // Loop over all of the legal vector value types, specifying an identity type | 
|  | 271 | // transformation. | 
|  | 272 | for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; | 
| Evan Cheng | 677274b | 2006-03-23 23:24:51 +0000 | [diff] [blame] | 273 | i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { | 
| Chris Lattner | 3a593584 | 2006-03-16 19:50:01 +0000 | [diff] [blame] | 274 | if (isTypeLegal((MVT::ValueType)i)) | 
|  | 275 | TransformToType[i] = (MVT::ValueType)i; | 
|  | 276 | } | 
| Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 277 | } | 
| Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 278 |  | 
| Evan Cheng | 7226158 | 2005-12-20 06:22:03 +0000 | [diff] [blame] | 279 | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | 280 | return NULL; | 
|  | 281 | } | 
| Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 282 |  | 
| Reid Spencer | 9d6565a | 2007-02-15 02:26:10 +0000 | [diff] [blame] | 283 | /// getVectorTypeBreakdown - Packed types are broken down into some number of | 
| Evan Cheng | 7e399c1 | 2006-05-17 18:22:14 +0000 | [diff] [blame] | 284 | /// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32 | 
| Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 285 | /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. | 
|  | 286 | /// | 
|  | 287 | /// This method returns the number and type of the resultant breakdown. | 
|  | 288 | /// | 
| Reid Spencer | 9d6565a | 2007-02-15 02:26:10 +0000 | [diff] [blame] | 289 | unsigned TargetLowering::getVectorTypeBreakdown(const VectorType *PTy, | 
| Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 290 | MVT::ValueType &PTyElementVT, | 
|  | 291 | MVT::ValueType &PTyLegalElementVT) const { | 
| Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 292 | // Figure out the right, legal destination reg to copy into. | 
|  | 293 | unsigned NumElts = PTy->getNumElements(); | 
|  | 294 | MVT::ValueType EltTy = getValueType(PTy->getElementType()); | 
|  | 295 |  | 
|  | 296 | unsigned NumVectorRegs = 1; | 
|  | 297 |  | 
|  | 298 | // Divide the input until we get to a supported size.  This will always | 
|  | 299 | // end with a scalar if the target doesn't support vectors. | 
|  | 300 | while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) { | 
|  | 301 | NumElts >>= 1; | 
|  | 302 | NumVectorRegs <<= 1; | 
|  | 303 | } | 
|  | 304 |  | 
|  | 305 | MVT::ValueType VT; | 
| Chris Lattner | a6c9de4 | 2006-03-31 01:50:09 +0000 | [diff] [blame] | 306 | if (NumElts == 1) { | 
| Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 307 | VT = EltTy; | 
| Chris Lattner | a6c9de4 | 2006-03-31 01:50:09 +0000 | [diff] [blame] | 308 | } else { | 
|  | 309 | VT = getVectorType(EltTy, NumElts); | 
|  | 310 | } | 
|  | 311 | PTyElementVT = VT; | 
| Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 312 |  | 
|  | 313 | MVT::ValueType DestVT = getTypeToTransformTo(VT); | 
| Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 314 | PTyLegalElementVT = DestVT; | 
| Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 315 | if (DestVT < VT) { | 
|  | 316 | // Value is expanded, e.g. i64 -> i16. | 
| Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 317 | return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT)); | 
| Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 318 | } else { | 
|  | 319 | // Otherwise, promotion or legal types use the same number of registers as | 
|  | 320 | // the vector decimated to the appropriate level. | 
| Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 321 | return NumVectorRegs; | 
| Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 322 | } | 
|  | 323 |  | 
| Evan Cheng | e9b3da1 | 2006-05-17 18:10:06 +0000 | [diff] [blame] | 324 | return 1; | 
| Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 325 | } | 
|  | 326 |  | 
| Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 327 | //===----------------------------------------------------------------------===// | 
|  | 328 | //  Optimization Methods | 
|  | 329 | //===----------------------------------------------------------------------===// | 
|  | 330 |  | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 331 | /// ShrinkDemandedConstant - Check to see if the specified operand of the | 
|  | 332 | /// specified instruction is a constant integer.  If so, check to see if there | 
|  | 333 | /// are any bits set in the constant that are not demanded.  If so, shrink the | 
|  | 334 | /// constant and return true. | 
|  | 335 | bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, | 
|  | 336 | uint64_t Demanded) { | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 337 | // FIXME: ISD::SELECT, ISD::SELECT_CC | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 338 | switch(Op.getOpcode()) { | 
|  | 339 | default: break; | 
| Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 340 | case ISD::AND: | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 341 | case ISD::OR: | 
|  | 342 | case ISD::XOR: | 
|  | 343 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) | 
|  | 344 | if ((~Demanded & C->getValue()) != 0) { | 
|  | 345 | MVT::ValueType VT = Op.getValueType(); | 
|  | 346 | SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), | 
|  | 347 | DAG.getConstant(Demanded & C->getValue(), | 
|  | 348 | VT)); | 
|  | 349 | return CombineTo(Op, New); | 
| Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 350 | } | 
| Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 351 | break; | 
|  | 352 | } | 
|  | 353 | return false; | 
|  | 354 | } | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 355 |  | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 356 | /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the | 
|  | 357 | /// DemandedMask bits of the result of Op are ever used downstream.  If we can | 
|  | 358 | /// use this information to simplify Op, create a new simplified DAG node and | 
|  | 359 | /// return true, returning the original and new nodes in Old and New. Otherwise, | 
|  | 360 | /// analyze the expression and return a mask of KnownOne and KnownZero bits for | 
|  | 361 | /// the expression (used to simplify the caller).  The KnownZero/One bits may | 
|  | 362 | /// only be accurate for those bits in the DemandedMask. | 
|  | 363 | bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, | 
|  | 364 | uint64_t &KnownZero, | 
|  | 365 | uint64_t &KnownOne, | 
|  | 366 | TargetLoweringOpt &TLO, | 
|  | 367 | unsigned Depth) const { | 
|  | 368 | KnownZero = KnownOne = 0;   // Don't know anything. | 
|  | 369 | // Other users may use these bits. | 
|  | 370 | if (!Op.Val->hasOneUse()) { | 
|  | 371 | if (Depth != 0) { | 
|  | 372 | // If not at the root, Just compute the KnownZero/KnownOne bits to | 
|  | 373 | // simplify things downstream. | 
|  | 374 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); | 
|  | 375 | return false; | 
|  | 376 | } | 
|  | 377 | // If this is the root being simplified, allow it to have multiple uses, | 
|  | 378 | // just set the DemandedMask to all bits. | 
|  | 379 | DemandedMask = MVT::getIntVTBitMask(Op.getValueType()); | 
|  | 380 | } else if (DemandedMask == 0) { | 
|  | 381 | // Not demanding any bits from Op. | 
|  | 382 | if (Op.getOpcode() != ISD::UNDEF) | 
|  | 383 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType())); | 
|  | 384 | return false; | 
|  | 385 | } else if (Depth == 6) {        // Limit search depth. | 
|  | 386 | return false; | 
|  | 387 | } | 
|  | 388 |  | 
|  | 389 | uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 390 | switch (Op.getOpcode()) { | 
|  | 391 | case ISD::Constant: | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 392 | // We know all of the bits for a constant! | 
|  | 393 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask; | 
|  | 394 | KnownZero = ~KnownOne & DemandedMask; | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 395 | return false;   // Don't fall through, will infinitely loop. | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 396 | case ISD::AND: | 
| Chris Lattner | 81cd355 | 2006-02-27 00:36:27 +0000 | [diff] [blame] | 397 | // If the RHS is a constant, check to see if the LHS would be zero without | 
|  | 398 | // using the bits from the RHS.  Below, we use knowledge about the RHS to | 
|  | 399 | // simplify the LHS, here we're using information from the LHS to simplify | 
|  | 400 | // the RHS. | 
|  | 401 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | 402 | uint64_t LHSZero, LHSOne; | 
|  | 403 | ComputeMaskedBits(Op.getOperand(0), DemandedMask, | 
|  | 404 | LHSZero, LHSOne, Depth+1); | 
|  | 405 | // If the LHS already has zeros where RHSC does, this and is dead. | 
|  | 406 | if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask)) | 
|  | 407 | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | 408 | // If any of the set bits in the RHS are known zero on the LHS, shrink | 
|  | 409 | // the constant. | 
|  | 410 | if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask)) | 
|  | 411 | return true; | 
|  | 412 | } | 
|  | 413 |  | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 414 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, | 
|  | 415 | KnownOne, TLO, Depth+1)) | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 416 | return true; | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 417 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 418 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero, | 
|  | 419 | KnownZero2, KnownOne2, TLO, Depth+1)) | 
|  | 420 | return true; | 
|  | 421 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | 422 |  | 
|  | 423 | // If all of the demanded bits are known one on one side, return the other. | 
|  | 424 | // These bits cannot contribute to the result of the 'and'. | 
|  | 425 | if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2)) | 
|  | 426 | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | 427 | if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero)) | 
|  | 428 | return TLO.CombineTo(Op, Op.getOperand(1)); | 
|  | 429 | // If all of the demanded bits in the inputs are known zeros, return zero. | 
|  | 430 | if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask) | 
|  | 431 | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); | 
|  | 432 | // If the RHS is a constant, see if we can simplify it. | 
|  | 433 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2)) | 
|  | 434 | return true; | 
| Chris Lattner | 5f0c658 | 2006-02-27 00:22:28 +0000 | [diff] [blame] | 435 |  | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 436 | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | 437 | KnownOne &= KnownOne2; | 
|  | 438 | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | 439 | KnownZero |= KnownZero2; | 
|  | 440 | break; | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 441 | case ISD::OR: | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 442 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, | 
|  | 443 | KnownOne, TLO, Depth+1)) | 
|  | 444 | return true; | 
|  | 445 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 446 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne, | 
|  | 447 | KnownZero2, KnownOne2, TLO, Depth+1)) | 
|  | 448 | return true; | 
|  | 449 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | 450 |  | 
|  | 451 | // If all of the demanded bits are known zero on one side, return the other. | 
|  | 452 | // These bits cannot contribute to the result of the 'or'. | 
| Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 453 | if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2)) | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 454 | return TLO.CombineTo(Op, Op.getOperand(0)); | 
| Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 455 | if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne)) | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 456 | return TLO.CombineTo(Op, Op.getOperand(1)); | 
|  | 457 | // If all of the potentially set bits on one side are known to be set on | 
|  | 458 | // the other side, just use the 'other' side. | 
|  | 459 | if ((DemandedMask & (~KnownZero) & KnownOne2) == | 
|  | 460 | (DemandedMask & (~KnownZero))) | 
|  | 461 | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | 462 | if ((DemandedMask & (~KnownZero2) & KnownOne) == | 
|  | 463 | (DemandedMask & (~KnownZero2))) | 
|  | 464 | return TLO.CombineTo(Op, Op.getOperand(1)); | 
|  | 465 | // If the RHS is a constant, see if we can simplify it. | 
|  | 466 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) | 
|  | 467 | return true; | 
|  | 468 |  | 
|  | 469 | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | 470 | KnownZero &= KnownZero2; | 
|  | 471 | // Output known-1 are known to be set if set in either the LHS | RHS. | 
|  | 472 | KnownOne |= KnownOne2; | 
|  | 473 | break; | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 474 | case ISD::XOR: | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 475 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, | 
|  | 476 | KnownOne, TLO, Depth+1)) | 
|  | 477 | return true; | 
|  | 478 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 479 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2, | 
|  | 480 | KnownOne2, TLO, Depth+1)) | 
|  | 481 | return true; | 
|  | 482 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | 483 |  | 
|  | 484 | // If all of the demanded bits are known zero on one side, return the other. | 
|  | 485 | // These bits cannot contribute to the result of the 'xor'. | 
|  | 486 | if ((DemandedMask & KnownZero) == DemandedMask) | 
|  | 487 | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | 488 | if ((DemandedMask & KnownZero2) == DemandedMask) | 
|  | 489 | return TLO.CombineTo(Op, Op.getOperand(1)); | 
| Chris Lattner | 3687c1a | 2006-11-27 21:50:02 +0000 | [diff] [blame] | 490 |  | 
|  | 491 | // If all of the unknown bits are known to be zero on one side or the other | 
|  | 492 | // (but not both) turn this into an *inclusive* or. | 
|  | 493 | //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 | 
|  | 494 | if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0) | 
|  | 495 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(), | 
|  | 496 | Op.getOperand(0), | 
|  | 497 | Op.getOperand(1))); | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 498 |  | 
|  | 499 | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | 500 | KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); | 
|  | 501 | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | 502 | KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); | 
|  | 503 |  | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 504 | // If all of the demanded bits on one side are known, and all of the set | 
|  | 505 | // bits on that side are also known to be set on the other side, turn this | 
|  | 506 | // into an AND, as we know the bits will be cleared. | 
|  | 507 | //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 | 
|  | 508 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known | 
|  | 509 | if ((KnownOne & KnownOne2) == KnownOne) { | 
|  | 510 | MVT::ValueType VT = Op.getValueType(); | 
|  | 511 | SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT); | 
|  | 512 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0), | 
|  | 513 | ANDC)); | 
|  | 514 | } | 
|  | 515 | } | 
|  | 516 |  | 
|  | 517 | // If the RHS is a constant, see if we can simplify it. | 
|  | 518 | // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. | 
|  | 519 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) | 
|  | 520 | return true; | 
|  | 521 |  | 
|  | 522 | KnownZero = KnownZeroOut; | 
|  | 523 | KnownOne  = KnownOneOut; | 
|  | 524 | break; | 
|  | 525 | case ISD::SETCC: | 
|  | 526 | // If we know the result of a setcc has the top bits zero, use this info. | 
|  | 527 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) | 
|  | 528 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); | 
|  | 529 | break; | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 530 | case ISD::SELECT: | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 531 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero, | 
|  | 532 | KnownOne, TLO, Depth+1)) | 
|  | 533 | return true; | 
|  | 534 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2, | 
|  | 535 | KnownOne2, TLO, Depth+1)) | 
|  | 536 | return true; | 
|  | 537 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 538 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | 539 |  | 
|  | 540 | // If the operands are constants, see if we can simplify them. | 
|  | 541 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) | 
|  | 542 | return true; | 
|  | 543 |  | 
|  | 544 | // Only known if known in both the LHS and RHS. | 
|  | 545 | KnownOne &= KnownOne2; | 
|  | 546 | KnownZero &= KnownZero2; | 
|  | 547 | break; | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 548 | case ISD::SELECT_CC: | 
|  | 549 | if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero, | 
|  | 550 | KnownOne, TLO, Depth+1)) | 
|  | 551 | return true; | 
|  | 552 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2, | 
|  | 553 | KnownOne2, TLO, Depth+1)) | 
|  | 554 | return true; | 
|  | 555 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 556 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | 557 |  | 
|  | 558 | // If the operands are constants, see if we can simplify them. | 
|  | 559 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) | 
|  | 560 | return true; | 
|  | 561 |  | 
|  | 562 | // Only known if known in both the LHS and RHS. | 
|  | 563 | KnownOne &= KnownOne2; | 
|  | 564 | KnownZero &= KnownZero2; | 
|  | 565 | break; | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 566 | case ISD::SHL: | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 567 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | 568 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(), | 
|  | 569 | KnownZero, KnownOne, TLO, Depth+1)) | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 570 | return true; | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 571 | KnownZero <<= SA->getValue(); | 
|  | 572 | KnownOne  <<= SA->getValue(); | 
|  | 573 | KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero. | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 574 | } | 
|  | 575 | break; | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 576 | case ISD::SRL: | 
|  | 577 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | 578 | MVT::ValueType VT = Op.getValueType(); | 
|  | 579 | unsigned ShAmt = SA->getValue(); | 
|  | 580 |  | 
|  | 581 | // Compute the new bits that are at the top now. | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 582 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 583 | if (SimplifyDemandedBits(Op.getOperand(0), | 
|  | 584 | (DemandedMask << ShAmt) & TypeMask, | 
|  | 585 | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | 586 | return true; | 
|  | 587 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 588 | KnownZero &= TypeMask; | 
|  | 589 | KnownOne  &= TypeMask; | 
|  | 590 | KnownZero >>= ShAmt; | 
|  | 591 | KnownOne  >>= ShAmt; | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 592 |  | 
|  | 593 | uint64_t HighBits = (1ULL << ShAmt)-1; | 
|  | 594 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; | 
|  | 595 | KnownZero |= HighBits;  // High bits known zero. | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 596 | } | 
|  | 597 | break; | 
|  | 598 | case ISD::SRA: | 
|  | 599 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | 600 | MVT::ValueType VT = Op.getValueType(); | 
|  | 601 | unsigned ShAmt = SA->getValue(); | 
|  | 602 |  | 
|  | 603 | // Compute the new bits that are at the top now. | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 604 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); | 
|  | 605 |  | 
| Chris Lattner | 1b73713 | 2006-05-08 17:22:53 +0000 | [diff] [blame] | 606 | uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask; | 
|  | 607 |  | 
|  | 608 | // If any of the demanded bits are produced by the sign extension, we also | 
|  | 609 | // demand the input sign bit. | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 610 | uint64_t HighBits = (1ULL << ShAmt)-1; | 
|  | 611 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; | 
| Chris Lattner | 1b73713 | 2006-05-08 17:22:53 +0000 | [diff] [blame] | 612 | if (HighBits & DemandedMask) | 
|  | 613 | InDemandedMask |= MVT::getIntVTSignBit(VT); | 
|  | 614 |  | 
|  | 615 | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 616 | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | 617 | return true; | 
|  | 618 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 619 | KnownZero &= TypeMask; | 
|  | 620 | KnownOne  &= TypeMask; | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 621 | KnownZero >>= ShAmt; | 
|  | 622 | KnownOne  >>= ShAmt; | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 623 |  | 
|  | 624 | // Handle the sign bits. | 
|  | 625 | uint64_t SignBit = MVT::getIntVTSignBit(VT); | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 626 | SignBit >>= ShAmt;  // Adjust to where it is now in the mask. | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 627 |  | 
|  | 628 | // If the input sign bit is known to be zero, or if none of the top bits | 
|  | 629 | // are demanded, turn this into an unsigned shift right. | 
|  | 630 | if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) { | 
|  | 631 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0), | 
|  | 632 | Op.getOperand(1))); | 
|  | 633 | } else if (KnownOne & SignBit) { // New bits are known one. | 
|  | 634 | KnownOne |= HighBits; | 
|  | 635 | } | 
|  | 636 | } | 
|  | 637 | break; | 
|  | 638 | case ISD::SIGN_EXTEND_INREG: { | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 639 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | 640 |  | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 641 | // Sign extension.  Compute the demanded bits in the result that are not | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 642 | // present in the input. | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 643 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask; | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 644 |  | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 645 | // If none of the extended bits are demanded, eliminate the sextinreg. | 
|  | 646 | if (NewBits == 0) | 
|  | 647 | return TLO.CombineTo(Op, Op.getOperand(0)); | 
|  | 648 |  | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 649 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); | 
|  | 650 | int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT); | 
|  | 651 |  | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 652 | // Since the sign extended bits are demanded, we know that the sign | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 653 | // bit is demanded. | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 654 | InputDemandedBits |= InSignBit; | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 655 |  | 
|  | 656 | if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, | 
|  | 657 | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | 658 | return true; | 
|  | 659 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 660 |  | 
|  | 661 | // If the sign bit of the input is known set or clear, then we know the | 
|  | 662 | // top bits of the result. | 
|  | 663 |  | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 664 | // If the input sign bit is known zero, convert this into a zero extension. | 
|  | 665 | if (KnownZero & InSignBit) | 
|  | 666 | return TLO.CombineTo(Op, | 
|  | 667 | TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT)); | 
|  | 668 |  | 
|  | 669 | if (KnownOne & InSignBit) {    // Input sign bit known set | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 670 | KnownOne |= NewBits; | 
|  | 671 | KnownZero &= ~NewBits; | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 672 | } else {                       // Input sign bit unknown | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 673 | KnownZero &= ~NewBits; | 
|  | 674 | KnownOne &= ~NewBits; | 
|  | 675 | } | 
|  | 676 | break; | 
|  | 677 | } | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 678 | case ISD::CTTZ: | 
|  | 679 | case ISD::CTLZ: | 
|  | 680 | case ISD::CTPOP: { | 
|  | 681 | MVT::ValueType VT = Op.getValueType(); | 
|  | 682 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; | 
|  | 683 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); | 
|  | 684 | KnownOne  = 0; | 
|  | 685 | break; | 
|  | 686 | } | 
| Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 687 | case ISD::LOAD: { | 
| Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 688 | if (ISD::isZEXTLoad(Op.Val)) { | 
| Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 689 | LoadSDNode *LD = cast<LoadSDNode>(Op); | 
| Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 690 | MVT::ValueType VT = LD->getLoadedVT(); | 
| Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 691 | KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask; | 
|  | 692 | } | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 693 | break; | 
|  | 694 | } | 
|  | 695 | case ISD::ZERO_EXTEND: { | 
|  | 696 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); | 
|  | 697 |  | 
|  | 698 | // If none of the top bits are demanded, convert this into an any_extend. | 
|  | 699 | uint64_t NewBits = (~InMask) & DemandedMask; | 
|  | 700 | if (NewBits == 0) | 
|  | 701 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, | 
|  | 702 | Op.getValueType(), | 
|  | 703 | Op.getOperand(0))); | 
|  | 704 |  | 
|  | 705 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, | 
|  | 706 | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | 707 | return true; | 
|  | 708 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 709 | KnownZero |= NewBits; | 
|  | 710 | break; | 
|  | 711 | } | 
|  | 712 | case ISD::SIGN_EXTEND: { | 
|  | 713 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); | 
|  | 714 | uint64_t InMask    = MVT::getIntVTBitMask(InVT); | 
|  | 715 | uint64_t InSignBit = MVT::getIntVTSignBit(InVT); | 
|  | 716 | uint64_t NewBits   = (~InMask) & DemandedMask; | 
|  | 717 |  | 
|  | 718 | // If none of the top bits are demanded, convert this into an any_extend. | 
|  | 719 | if (NewBits == 0) | 
| Chris Lattner | fea997a | 2007-02-01 04:55:59 +0000 | [diff] [blame] | 720 | return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(), | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 721 | Op.getOperand(0))); | 
|  | 722 |  | 
|  | 723 | // Since some of the sign extended bits are demanded, we know that the sign | 
|  | 724 | // bit is demanded. | 
|  | 725 | uint64_t InDemandedBits = DemandedMask & InMask; | 
|  | 726 | InDemandedBits |= InSignBit; | 
|  | 727 |  | 
|  | 728 | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, | 
|  | 729 | KnownOne, TLO, Depth+1)) | 
|  | 730 | return true; | 
|  | 731 |  | 
|  | 732 | // If the sign bit is known zero, convert this to a zero extend. | 
|  | 733 | if (KnownZero & InSignBit) | 
|  | 734 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, | 
|  | 735 | Op.getValueType(), | 
|  | 736 | Op.getOperand(0))); | 
|  | 737 |  | 
|  | 738 | // If the sign bit is known one, the top bits match. | 
|  | 739 | if (KnownOne & InSignBit) { | 
|  | 740 | KnownOne  |= NewBits; | 
|  | 741 | KnownZero &= ~NewBits; | 
|  | 742 | } else {   // Otherwise, top bits aren't known. | 
|  | 743 | KnownOne  &= ~NewBits; | 
|  | 744 | KnownZero &= ~NewBits; | 
|  | 745 | } | 
|  | 746 | break; | 
|  | 747 | } | 
|  | 748 | case ISD::ANY_EXTEND: { | 
|  | 749 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); | 
|  | 750 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, | 
|  | 751 | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | 752 | return true; | 
|  | 753 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 754 | break; | 
|  | 755 | } | 
| Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 756 | case ISD::TRUNCATE: { | 
| Chris Lattner | c93dfda | 2006-05-06 00:11:52 +0000 | [diff] [blame] | 757 | // Simplify the input, using demanded bit information, and compute the known | 
|  | 758 | // zero/one bits live out. | 
| Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 759 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, | 
|  | 760 | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | 761 | return true; | 
| Chris Lattner | c93dfda | 2006-05-06 00:11:52 +0000 | [diff] [blame] | 762 |  | 
|  | 763 | // If the input is only used by this truncate, see if we can shrink it based | 
|  | 764 | // on the known demanded bits. | 
|  | 765 | if (Op.getOperand(0).Val->hasOneUse()) { | 
|  | 766 | SDOperand In = Op.getOperand(0); | 
|  | 767 | switch (In.getOpcode()) { | 
|  | 768 | default: break; | 
|  | 769 | case ISD::SRL: | 
|  | 770 | // Shrink SRL by a constant if none of the high bits shifted in are | 
|  | 771 | // demanded. | 
|  | 772 | if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){ | 
|  | 773 | uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType()); | 
|  | 774 | HighBits &= ~MVT::getIntVTBitMask(Op.getValueType()); | 
|  | 775 | HighBits >>= ShAmt->getValue(); | 
|  | 776 |  | 
|  | 777 | if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) && | 
|  | 778 | (DemandedMask & HighBits) == 0) { | 
|  | 779 | // None of the shifted in bits are needed.  Add a truncate of the | 
|  | 780 | // shift input, then shift it. | 
|  | 781 | SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, | 
|  | 782 | Op.getValueType(), | 
|  | 783 | In.getOperand(0)); | 
|  | 784 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(), | 
|  | 785 | NewTrunc, In.getOperand(1))); | 
|  | 786 | } | 
|  | 787 | } | 
|  | 788 | break; | 
|  | 789 | } | 
|  | 790 | } | 
|  | 791 |  | 
| Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 792 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 793 | uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); | 
|  | 794 | KnownZero &= OutMask; | 
|  | 795 | KnownOne &= OutMask; | 
|  | 796 | break; | 
|  | 797 | } | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 798 | case ISD::AssertZext: { | 
|  | 799 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | 800 | uint64_t InMask = MVT::getIntVTBitMask(VT); | 
|  | 801 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, | 
|  | 802 | KnownZero, KnownOne, TLO, Depth+1)) | 
|  | 803 | return true; | 
|  | 804 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 805 | KnownZero |= ~InMask & DemandedMask; | 
|  | 806 | break; | 
|  | 807 | } | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 808 | case ISD::ADD: | 
| Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 809 | case ISD::SUB: | 
| Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 810 | case ISD::INTRINSIC_WO_CHAIN: | 
|  | 811 | case ISD::INTRINSIC_W_CHAIN: | 
|  | 812 | case ISD::INTRINSIC_VOID: | 
|  | 813 | // Just use ComputeMaskedBits to compute output bits. | 
| Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 814 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); | 
|  | 815 | break; | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 816 | } | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 817 |  | 
|  | 818 | // If we know the value of all of the demanded bits, return this as a | 
|  | 819 | // constant. | 
|  | 820 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) | 
|  | 821 | return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); | 
|  | 822 |  | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 823 | return false; | 
|  | 824 | } | 
|  | 825 |  | 
|  | 826 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use | 
|  | 827 | /// this predicate to simplify operations downstream.  Mask is known to be zero | 
|  | 828 | /// for bits that V cannot have. | 
|  | 829 | bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask, | 
|  | 830 | unsigned Depth) const { | 
|  | 831 | uint64_t KnownZero, KnownOne; | 
|  | 832 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); | 
|  | 833 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 834 | return (KnownZero & Mask) == Mask; | 
|  | 835 | } | 
|  | 836 |  | 
|  | 837 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are | 
|  | 838 | /// known to be either zero or one and return them in the KnownZero/KnownOne | 
|  | 839 | /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit | 
|  | 840 | /// processing. | 
|  | 841 | void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask, | 
|  | 842 | uint64_t &KnownZero, uint64_t &KnownOne, | 
|  | 843 | unsigned Depth) const { | 
|  | 844 | KnownZero = KnownOne = 0;   // Don't know anything. | 
|  | 845 | if (Depth == 6 || Mask == 0) | 
|  | 846 | return;  // Limit search depth. | 
|  | 847 |  | 
|  | 848 | uint64_t KnownZero2, KnownOne2; | 
|  | 849 |  | 
|  | 850 | switch (Op.getOpcode()) { | 
|  | 851 | case ISD::Constant: | 
|  | 852 | // We know all of the bits for a constant! | 
|  | 853 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask; | 
|  | 854 | KnownZero = ~KnownOne & Mask; | 
|  | 855 | return; | 
|  | 856 | case ISD::AND: | 
|  | 857 | // If either the LHS or the RHS are Zero, the result is zero. | 
|  | 858 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
|  | 859 | Mask &= ~KnownZero; | 
|  | 860 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); | 
|  | 861 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 862 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | 863 |  | 
|  | 864 | // Output known-1 bits are only known if set in both the LHS & RHS. | 
|  | 865 | KnownOne &= KnownOne2; | 
|  | 866 | // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
|  | 867 | KnownZero |= KnownZero2; | 
|  | 868 | return; | 
|  | 869 | case ISD::OR: | 
|  | 870 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
|  | 871 | Mask &= ~KnownOne; | 
|  | 872 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); | 
|  | 873 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 874 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | 875 |  | 
|  | 876 | // Output known-0 bits are only known if clear in both the LHS & RHS. | 
|  | 877 | KnownZero &= KnownZero2; | 
|  | 878 | // Output known-1 are known to be set if set in either the LHS | RHS. | 
|  | 879 | KnownOne |= KnownOne2; | 
|  | 880 | return; | 
|  | 881 | case ISD::XOR: { | 
|  | 882 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
|  | 883 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); | 
|  | 884 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 885 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | 886 |  | 
|  | 887 | // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
|  | 888 | uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); | 
|  | 889 | // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
|  | 890 | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); | 
|  | 891 | KnownZero = KnownZeroOut; | 
|  | 892 | return; | 
|  | 893 | } | 
|  | 894 | case ISD::SELECT: | 
|  | 895 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); | 
|  | 896 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); | 
|  | 897 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 898 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | 899 |  | 
|  | 900 | // Only known if known in both the LHS and RHS. | 
|  | 901 | KnownOne &= KnownOne2; | 
|  | 902 | KnownZero &= KnownZero2; | 
|  | 903 | return; | 
|  | 904 | case ISD::SELECT_CC: | 
|  | 905 | ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); | 
|  | 906 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); | 
|  | 907 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 908 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | 909 |  | 
|  | 910 | // Only known if known in both the LHS and RHS. | 
|  | 911 | KnownOne &= KnownOne2; | 
|  | 912 | KnownZero &= KnownZero2; | 
|  | 913 | return; | 
|  | 914 | case ISD::SETCC: | 
|  | 915 | // If we know the result of a setcc has the top bits zero, use this info. | 
|  | 916 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) | 
|  | 917 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); | 
|  | 918 | return; | 
|  | 919 | case ISD::SHL: | 
|  | 920 | // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0 | 
|  | 921 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 922 | ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(), | 
|  | 923 | KnownZero, KnownOne, Depth+1); | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 924 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 925 | KnownZero <<= SA->getValue(); | 
|  | 926 | KnownOne  <<= SA->getValue(); | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 927 | KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero. | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 928 | } | 
| Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 929 | return; | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 930 | case ISD::SRL: | 
|  | 931 | // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 | 
|  | 932 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 933 | MVT::ValueType VT = Op.getValueType(); | 
|  | 934 | unsigned ShAmt = SA->getValue(); | 
|  | 935 |  | 
|  | 936 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); | 
|  | 937 | ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask, | 
|  | 938 | KnownZero, KnownOne, Depth+1); | 
| Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 939 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 940 | KnownZero &= TypeMask; | 
|  | 941 | KnownOne  &= TypeMask; | 
|  | 942 | KnownZero >>= ShAmt; | 
|  | 943 | KnownOne  >>= ShAmt; | 
|  | 944 |  | 
|  | 945 | uint64_t HighBits = (1ULL << ShAmt)-1; | 
|  | 946 | HighBits <<= MVT::getSizeInBits(VT)-ShAmt; | 
|  | 947 | KnownZero |= HighBits;  // High bits known zero. | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 948 | } | 
| Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 949 | return; | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 950 | case ISD::SRA: | 
|  | 951 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 952 | MVT::ValueType VT = Op.getValueType(); | 
|  | 953 | unsigned ShAmt = SA->getValue(); | 
|  | 954 |  | 
|  | 955 | // Compute the new bits that are at the top now. | 
|  | 956 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); | 
|  | 957 |  | 
|  | 958 | uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask; | 
|  | 959 | // If any of the demanded bits are produced by the sign extension, we also | 
|  | 960 | // demand the input sign bit. | 
|  | 961 | uint64_t HighBits = (1ULL << ShAmt)-1; | 
|  | 962 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; | 
|  | 963 | if (HighBits & Mask) | 
|  | 964 | InDemandedMask |= MVT::getIntVTSignBit(VT); | 
|  | 965 |  | 
|  | 966 | ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, | 
|  | 967 | Depth+1); | 
|  | 968 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 969 | KnownZero &= TypeMask; | 
|  | 970 | KnownOne  &= TypeMask; | 
|  | 971 | KnownZero >>= ShAmt; | 
|  | 972 | KnownOne  >>= ShAmt; | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 973 |  | 
|  | 974 | // Handle the sign bits. | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 975 | uint64_t SignBit = MVT::getIntVTSignBit(VT); | 
|  | 976 | SignBit >>= ShAmt;  // Adjust to where it is now in the mask. | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 977 |  | 
| Jim Laskey | 9bfa2dc | 2006-06-13 13:08:58 +0000 | [diff] [blame] | 978 | if (KnownZero & SignBit) { | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 979 | KnownZero |= HighBits;  // New bits are known zero. | 
| Jim Laskey | 9bfa2dc | 2006-06-13 13:08:58 +0000 | [diff] [blame] | 980 | } else if (KnownOne & SignBit) { | 
| Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 981 | KnownOne  |= HighBits;  // New bits are known one. | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 982 | } | 
|  | 983 | } | 
| Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 984 | return; | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 985 | case ISD::SIGN_EXTEND_INREG: { | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 986 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | 987 |  | 
|  | 988 | // Sign extension.  Compute the demanded bits in the result that are not | 
|  | 989 | // present in the input. | 
|  | 990 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask; | 
|  | 991 |  | 
|  | 992 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); | 
|  | 993 | int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT); | 
|  | 994 |  | 
|  | 995 | // If the sign extended bits are demanded, we know that the sign | 
|  | 996 | // bit is demanded. | 
|  | 997 | if (NewBits) | 
|  | 998 | InputDemandedBits |= InSignBit; | 
|  | 999 |  | 
|  | 1000 | ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, | 
|  | 1001 | KnownZero, KnownOne, Depth+1); | 
|  | 1002 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 1003 |  | 
|  | 1004 | // If the sign bit of the input is known set or clear, then we know the | 
|  | 1005 | // top bits of the result. | 
|  | 1006 | if (KnownZero & InSignBit) {          // Input sign bit known clear | 
|  | 1007 | KnownZero |= NewBits; | 
|  | 1008 | KnownOne  &= ~NewBits; | 
|  | 1009 | } else if (KnownOne & InSignBit) {    // Input sign bit known set | 
|  | 1010 | KnownOne  |= NewBits; | 
|  | 1011 | KnownZero &= ~NewBits; | 
|  | 1012 | } else {                              // Input sign bit unknown | 
|  | 1013 | KnownZero &= ~NewBits; | 
|  | 1014 | KnownOne  &= ~NewBits; | 
|  | 1015 | } | 
|  | 1016 | return; | 
|  | 1017 | } | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1018 | case ISD::CTTZ: | 
|  | 1019 | case ISD::CTLZ: | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1020 | case ISD::CTPOP: { | 
|  | 1021 | MVT::ValueType VT = Op.getValueType(); | 
|  | 1022 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; | 
|  | 1023 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); | 
|  | 1024 | KnownOne  = 0; | 
|  | 1025 | return; | 
|  | 1026 | } | 
| Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 1027 | case ISD::LOAD: { | 
| Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1028 | if (ISD::isZEXTLoad(Op.Val)) { | 
| Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 1029 | LoadSDNode *LD = cast<LoadSDNode>(Op); | 
| Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 1030 | MVT::ValueType VT = LD->getLoadedVT(); | 
| Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1031 | KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask; | 
|  | 1032 | } | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1033 | return; | 
|  | 1034 | } | 
|  | 1035 | case ISD::ZERO_EXTEND: { | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 1036 | uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); | 
|  | 1037 | uint64_t NewBits = (~InMask) & Mask; | 
|  | 1038 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, | 
|  | 1039 | KnownOne, Depth+1); | 
|  | 1040 | KnownZero |= NewBits & Mask; | 
|  | 1041 | KnownOne  &= ~NewBits; | 
|  | 1042 | return; | 
|  | 1043 | } | 
|  | 1044 | case ISD::SIGN_EXTEND: { | 
|  | 1045 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); | 
|  | 1046 | unsigned InBits    = MVT::getSizeInBits(InVT); | 
|  | 1047 | uint64_t InMask    = MVT::getIntVTBitMask(InVT); | 
|  | 1048 | uint64_t InSignBit = 1ULL << (InBits-1); | 
|  | 1049 | uint64_t NewBits   = (~InMask) & Mask; | 
|  | 1050 | uint64_t InDemandedBits = Mask & InMask; | 
|  | 1051 |  | 
|  | 1052 | // If any of the sign extended bits are demanded, we know that the sign | 
|  | 1053 | // bit is demanded. | 
|  | 1054 | if (NewBits & Mask) | 
|  | 1055 | InDemandedBits |= InSignBit; | 
|  | 1056 |  | 
|  | 1057 | ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, | 
|  | 1058 | KnownOne, Depth+1); | 
|  | 1059 | // If the sign bit is known zero or one, the  top bits match. | 
|  | 1060 | if (KnownZero & InSignBit) { | 
|  | 1061 | KnownZero |= NewBits; | 
|  | 1062 | KnownOne  &= ~NewBits; | 
|  | 1063 | } else if (KnownOne & InSignBit) { | 
|  | 1064 | KnownOne  |= NewBits; | 
|  | 1065 | KnownZero &= ~NewBits; | 
|  | 1066 | } else {   // Otherwise, top bits aren't known. | 
|  | 1067 | KnownOne  &= ~NewBits; | 
|  | 1068 | KnownZero &= ~NewBits; | 
|  | 1069 | } | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1070 | return; | 
|  | 1071 | } | 
|  | 1072 | case ISD::ANY_EXTEND: { | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 1073 | MVT::ValueType VT = Op.getOperand(0).getValueType(); | 
|  | 1074 | ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT), | 
|  | 1075 | KnownZero, KnownOne, Depth+1); | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1076 | return; | 
|  | 1077 | } | 
| Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 1078 | case ISD::TRUNCATE: { | 
|  | 1079 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); | 
|  | 1080 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 1081 | uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); | 
|  | 1082 | KnownZero &= OutMask; | 
|  | 1083 | KnownOne &= OutMask; | 
|  | 1084 | break; | 
|  | 1085 | } | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1086 | case ISD::AssertZext: { | 
| Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 1087 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
|  | 1088 | uint64_t InMask = MVT::getIntVTBitMask(VT); | 
|  | 1089 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, | 
|  | 1090 | KnownOne, Depth+1); | 
|  | 1091 | KnownZero |= (~InMask) & Mask; | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1092 | return; | 
|  | 1093 | } | 
|  | 1094 | case ISD::ADD: { | 
|  | 1095 | // If either the LHS or the RHS are Zero, the result is zero. | 
|  | 1096 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
|  | 1097 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); | 
|  | 1098 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); | 
|  | 1099 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); | 
|  | 1100 |  | 
|  | 1101 | // Output known-0 bits are known if clear or set in both the low clear bits | 
| Chris Lattner | b6b17ff | 2006-03-13 06:42:16 +0000 | [diff] [blame] | 1102 | // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the | 
|  | 1103 | // low 3 bits clear. | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1104 | uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), | 
|  | 1105 | CountTrailingZeros_64(~KnownZero2)); | 
|  | 1106 |  | 
|  | 1107 | KnownZero = (1ULL << KnownZeroOut) - 1; | 
|  | 1108 | KnownOne = 0; | 
|  | 1109 | return; | 
|  | 1110 | } | 
| Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1111 | case ISD::SUB: { | 
|  | 1112 | ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)); | 
|  | 1113 | if (!CLHS) return; | 
|  | 1114 |  | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1115 | // We know that the top bits of C-X are clear if X contains less bits | 
|  | 1116 | // than C (i.e. no wrap-around can happen).  For example, 20-X is | 
| Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1117 | // positive if we can prove that X is >= 0 and < 16. | 
|  | 1118 | MVT::ValueType VT = CLHS->getValueType(0); | 
|  | 1119 | if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear | 
|  | 1120 | unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); | 
|  | 1121 | uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit | 
|  | 1122 | MaskV = ~MaskV & MVT::getIntVTBitMask(VT); | 
|  | 1123 | ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1); | 
|  | 1124 |  | 
|  | 1125 | // If all of the MaskV bits are known to be zero, then we know the output | 
|  | 1126 | // top bits are zero, because we now know that the output is from [0-C]. | 
|  | 1127 | if ((KnownZero & MaskV) == MaskV) { | 
|  | 1128 | unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); | 
|  | 1129 | KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero. | 
|  | 1130 | KnownOne = 0;   // No one bits known. | 
|  | 1131 | } else { | 
| Evan Cheng | 42f75a9 | 2006-07-07 21:37:21 +0000 | [diff] [blame] | 1132 | KnownZero = KnownOne = 0;  // Otherwise, nothing known. | 
| Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1133 | } | 
|  | 1134 | } | 
| Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 1135 | return; | 
| Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1136 | } | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1137 | default: | 
|  | 1138 | // Allow the target to implement this method for its nodes. | 
| Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 1139 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { | 
|  | 1140 | case ISD::INTRINSIC_WO_CHAIN: | 
|  | 1141 | case ISD::INTRINSIC_W_CHAIN: | 
|  | 1142 | case ISD::INTRINSIC_VOID: | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1143 | computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne); | 
| Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 1144 | } | 
| Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 1145 | return; | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1146 | } | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1147 | } | 
|  | 1148 |  | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1149 | /// computeMaskedBitsForTargetNode - Determine which of the bits specified | 
|  | 1150 | /// in Mask are known to be either zero or one and return them in the | 
|  | 1151 | /// KnownZero/KnownOne bitsets. | 
|  | 1152 | void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, | 
|  | 1153 | uint64_t Mask, | 
|  | 1154 | uint64_t &KnownZero, | 
|  | 1155 | uint64_t &KnownOne, | 
|  | 1156 | unsigned Depth) const { | 
| Chris Lattner | 1b5232a | 2006-04-02 06:19:46 +0000 | [diff] [blame] | 1157 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | 1158 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | 1159 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | 1160 | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
| Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1161 | "Should use MaskedValueIsZero if you don't know whether Op" | 
|  | 1162 | " is a target node!"); | 
| Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1163 | KnownZero = 0; | 
|  | 1164 | KnownOne = 0; | 
| Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 1165 | } | 
| Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1166 |  | 
| Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1167 | /// ComputeNumSignBits - Return the number of times the sign bit of the | 
|  | 1168 | /// register is replicated into the other bits.  We know that at least 1 bit | 
|  | 1169 | /// is always equal to the sign bit (itself), but other cases can give us | 
|  | 1170 | /// information.  For example, immediately after an "SRA X, 2", we know that | 
|  | 1171 | /// the top 3 bits are all equal to each other, so we return 3. | 
|  | 1172 | unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{ | 
|  | 1173 | MVT::ValueType VT = Op.getValueType(); | 
|  | 1174 | assert(MVT::isInteger(VT) && "Invalid VT!"); | 
|  | 1175 | unsigned VTBits = MVT::getSizeInBits(VT); | 
|  | 1176 | unsigned Tmp, Tmp2; | 
|  | 1177 |  | 
|  | 1178 | if (Depth == 6) | 
|  | 1179 | return 1;  // Limit search depth. | 
|  | 1180 |  | 
|  | 1181 | switch (Op.getOpcode()) { | 
| Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1182 | default: break; | 
| Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1183 | case ISD::AssertSext: | 
|  | 1184 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); | 
|  | 1185 | return VTBits-Tmp+1; | 
|  | 1186 | case ISD::AssertZext: | 
|  | 1187 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); | 
|  | 1188 | return VTBits-Tmp; | 
| Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1189 |  | 
|  | 1190 | case ISD::Constant: { | 
|  | 1191 | uint64_t Val = cast<ConstantSDNode>(Op)->getValue(); | 
|  | 1192 | // If negative, invert the bits, then look at it. | 
|  | 1193 | if (Val & MVT::getIntVTSignBit(VT)) | 
|  | 1194 | Val = ~Val; | 
|  | 1195 |  | 
|  | 1196 | // Shift the bits so they are the leading bits in the int64_t. | 
|  | 1197 | Val <<= 64-VTBits; | 
|  | 1198 |  | 
|  | 1199 | // Return # leading zeros.  We use 'min' here in case Val was zero before | 
|  | 1200 | // shifting.  We don't want to return '64' as for an i32 "0". | 
|  | 1201 | return std::min(VTBits, CountLeadingZeros_64(Val)); | 
|  | 1202 | } | 
|  | 1203 |  | 
|  | 1204 | case ISD::SIGN_EXTEND: | 
|  | 1205 | Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType()); | 
|  | 1206 | return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; | 
|  | 1207 |  | 
| Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1208 | case ISD::SIGN_EXTEND_INREG: | 
|  | 1209 | // Max of the input and what this extends. | 
|  | 1210 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); | 
|  | 1211 | Tmp = VTBits-Tmp+1; | 
|  | 1212 |  | 
|  | 1213 | Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
|  | 1214 | return std::max(Tmp, Tmp2); | 
|  | 1215 |  | 
|  | 1216 | case ISD::SRA: | 
|  | 1217 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
|  | 1218 | // SRA X, C   -> adds C sign bits. | 
|  | 1219 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | 1220 | Tmp += C->getValue(); | 
|  | 1221 | if (Tmp > VTBits) Tmp = VTBits; | 
|  | 1222 | } | 
|  | 1223 | return Tmp; | 
| Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1224 | case ISD::SHL: | 
|  | 1225 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | 1226 | // shl destroys sign bits. | 
|  | 1227 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
|  | 1228 | if (C->getValue() >= VTBits ||      // Bad shift. | 
|  | 1229 | C->getValue() >= Tmp) break;    // Shifted all sign bits out. | 
|  | 1230 | return Tmp - C->getValue(); | 
|  | 1231 | } | 
|  | 1232 | break; | 
| Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1233 | case ISD::AND: | 
|  | 1234 | case ISD::OR: | 
|  | 1235 | case ISD::XOR:    // NOT is handled here. | 
|  | 1236 | // Logical binary ops preserve the number of sign bits. | 
|  | 1237 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
|  | 1238 | if (Tmp == 1) return 1;  // Early out. | 
|  | 1239 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); | 
|  | 1240 | return std::min(Tmp, Tmp2); | 
|  | 1241 |  | 
|  | 1242 | case ISD::SELECT: | 
|  | 1243 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
|  | 1244 | if (Tmp == 1) return 1;  // Early out. | 
|  | 1245 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); | 
|  | 1246 | return std::min(Tmp, Tmp2); | 
|  | 1247 |  | 
|  | 1248 | case ISD::SETCC: | 
|  | 1249 | // If setcc returns 0/-1, all bits are sign bits. | 
|  | 1250 | if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult) | 
|  | 1251 | return VTBits; | 
|  | 1252 | break; | 
| Chris Lattner | e60351b | 2006-05-06 23:40:29 +0000 | [diff] [blame] | 1253 | case ISD::ROTL: | 
|  | 1254 | case ISD::ROTR: | 
|  | 1255 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
|  | 1256 | unsigned RotAmt = C->getValue() & (VTBits-1); | 
|  | 1257 |  | 
|  | 1258 | // Handle rotate right by N like a rotate left by 32-N. | 
|  | 1259 | if (Op.getOpcode() == ISD::ROTR) | 
|  | 1260 | RotAmt = (VTBits-RotAmt) & (VTBits-1); | 
|  | 1261 |  | 
|  | 1262 | // If we aren't rotating out all of the known-in sign bits, return the | 
|  | 1263 | // number that are left.  This handles rotl(sext(x), 1) for example. | 
|  | 1264 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
|  | 1265 | if (Tmp > RotAmt+1) return Tmp-RotAmt; | 
|  | 1266 | } | 
|  | 1267 | break; | 
|  | 1268 | case ISD::ADD: | 
|  | 1269 | // Add can have at most one carry bit.  Thus we know that the output | 
|  | 1270 | // is, at worst, one more bit than the inputs. | 
|  | 1271 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
|  | 1272 | if (Tmp == 1) return 1;  // Early out. | 
|  | 1273 |  | 
|  | 1274 | // Special case decrementing a value (ADD X, -1): | 
|  | 1275 | if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) | 
|  | 1276 | if (CRHS->isAllOnesValue()) { | 
|  | 1277 | uint64_t KnownZero, KnownOne; | 
|  | 1278 | uint64_t Mask = MVT::getIntVTBitMask(VT); | 
|  | 1279 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); | 
|  | 1280 |  | 
|  | 1281 | // If the input is known to be 0 or 1, the output is 0/-1, which is all | 
|  | 1282 | // sign bits set. | 
|  | 1283 | if ((KnownZero|1) == Mask) | 
|  | 1284 | return VTBits; | 
|  | 1285 |  | 
|  | 1286 | // If we are subtracting one from a positive number, there is no carry | 
|  | 1287 | // out of the result. | 
|  | 1288 | if (KnownZero & MVT::getIntVTSignBit(VT)) | 
|  | 1289 | return Tmp; | 
|  | 1290 | } | 
|  | 1291 |  | 
|  | 1292 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); | 
|  | 1293 | if (Tmp2 == 1) return 1; | 
|  | 1294 | return std::min(Tmp, Tmp2)-1; | 
|  | 1295 | break; | 
|  | 1296 |  | 
|  | 1297 | case ISD::SUB: | 
|  | 1298 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); | 
|  | 1299 | if (Tmp2 == 1) return 1; | 
|  | 1300 |  | 
|  | 1301 | // Handle NEG. | 
|  | 1302 | if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) | 
|  | 1303 | if (CLHS->getValue() == 0) { | 
|  | 1304 | uint64_t KnownZero, KnownOne; | 
|  | 1305 | uint64_t Mask = MVT::getIntVTBitMask(VT); | 
|  | 1306 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
|  | 1307 | // If the input is known to be 0 or 1, the output is 0/-1, which is all | 
|  | 1308 | // sign bits set. | 
|  | 1309 | if ((KnownZero|1) == Mask) | 
|  | 1310 | return VTBits; | 
|  | 1311 |  | 
|  | 1312 | // If the input is known to be positive (the sign bit is known clear), | 
|  | 1313 | // the output of the NEG has the same number of sign bits as the input. | 
|  | 1314 | if (KnownZero & MVT::getIntVTSignBit(VT)) | 
|  | 1315 | return Tmp2; | 
|  | 1316 |  | 
|  | 1317 | // Otherwise, we treat this like a SUB. | 
|  | 1318 | } | 
|  | 1319 |  | 
|  | 1320 | // Sub can have at most one carry bit.  Thus we know that the output | 
|  | 1321 | // is, at worst, one more bit than the inputs. | 
|  | 1322 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
|  | 1323 | if (Tmp == 1) return 1;  // Early out. | 
|  | 1324 | return std::min(Tmp, Tmp2)-1; | 
|  | 1325 | break; | 
|  | 1326 | case ISD::TRUNCATE: | 
|  | 1327 | // FIXME: it's tricky to do anything useful for this, but it is an important | 
|  | 1328 | // case for targets like X86. | 
|  | 1329 | break; | 
| Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1330 | } | 
|  | 1331 |  | 
| Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1332 | // Handle LOADX separately here. EXTLOAD case will fallthrough. | 
| Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 1333 | if (Op.getOpcode() == ISD::LOAD) { | 
|  | 1334 | LoadSDNode *LD = cast<LoadSDNode>(Op); | 
|  | 1335 | unsigned ExtType = LD->getExtensionType(); | 
|  | 1336 | switch (ExtType) { | 
| Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1337 | default: break; | 
|  | 1338 | case ISD::SEXTLOAD:    // '17' bits known | 
| Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 1339 | Tmp = MVT::getSizeInBits(LD->getLoadedVT()); | 
| Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1340 | return VTBits-Tmp+1; | 
|  | 1341 | case ISD::ZEXTLOAD:    // '16' bits known | 
| Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 1342 | Tmp = MVT::getSizeInBits(LD->getLoadedVT()); | 
| Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1343 | return VTBits-Tmp; | 
|  | 1344 | } | 
|  | 1345 | } | 
|  | 1346 |  | 
| Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1347 | // Allow the target to implement this method for its nodes. | 
|  | 1348 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | 1349 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | 1350 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | 1351 | Op.getOpcode() == ISD::INTRINSIC_VOID) { | 
|  | 1352 | unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth); | 
|  | 1353 | if (NumBits > 1) return NumBits; | 
|  | 1354 | } | 
|  | 1355 |  | 
| Chris Lattner | 822db93 | 2006-05-06 23:48:13 +0000 | [diff] [blame] | 1356 | // Finally, if we can prove that the top bits of the result are 0's or 1's, | 
|  | 1357 | // use this information. | 
|  | 1358 | uint64_t KnownZero, KnownOne; | 
|  | 1359 | uint64_t Mask = MVT::getIntVTBitMask(VT); | 
|  | 1360 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); | 
|  | 1361 |  | 
|  | 1362 | uint64_t SignBit = MVT::getIntVTSignBit(VT); | 
|  | 1363 | if (KnownZero & SignBit) {        // SignBit is 0 | 
|  | 1364 | Mask = KnownZero; | 
|  | 1365 | } else if (KnownOne & SignBit) {  // SignBit is 1; | 
|  | 1366 | Mask = KnownOne; | 
|  | 1367 | } else { | 
|  | 1368 | // Nothing known. | 
|  | 1369 | return 1; | 
|  | 1370 | } | 
|  | 1371 |  | 
|  | 1372 | // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine | 
|  | 1373 | // the number of identical bits in the top of the input value. | 
|  | 1374 | Mask ^= ~0ULL; | 
|  | 1375 | Mask <<= 64-VTBits; | 
|  | 1376 | // Return # leading zeros.  We use 'min' here in case Val was zero before | 
|  | 1377 | // shifting.  We don't want to return '64' as for an i32 "0". | 
|  | 1378 | return std::min(VTBits, CountLeadingZeros_64(Mask)); | 
| Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1379 | } | 
|  | 1380 |  | 
|  | 1381 |  | 
|  | 1382 |  | 
|  | 1383 | /// ComputeNumSignBitsForTargetNode - This method can be implemented by | 
|  | 1384 | /// targets that want to expose additional information about sign bits to the | 
|  | 1385 | /// DAG Combiner. | 
|  | 1386 | unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op, | 
|  | 1387 | unsigned Depth) const { | 
|  | 1388 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
|  | 1389 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
|  | 1390 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
|  | 1391 | Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
|  | 1392 | "Should use ComputeNumSignBits if you don't know whether Op" | 
|  | 1393 | " is a target node!"); | 
|  | 1394 | return 1; | 
|  | 1395 | } | 
|  | 1396 |  | 
|  | 1397 |  | 
| Evan Cheng | fa1eb27 | 2007-02-08 22:13:59 +0000 | [diff] [blame] | 1398 | /// SimplifySetCC - Try to simplify a setcc built with the specified operands | 
|  | 1399 | /// and cc. If it is unable to simplify it, return a null SDOperand. | 
|  | 1400 | SDOperand | 
|  | 1401 | TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, | 
|  | 1402 | ISD::CondCode Cond, bool foldBooleans, | 
|  | 1403 | DAGCombinerInfo &DCI) const { | 
|  | 1404 | SelectionDAG &DAG = DCI.DAG; | 
|  | 1405 |  | 
|  | 1406 | // These setcc operations always fold. | 
|  | 1407 | switch (Cond) { | 
|  | 1408 | default: break; | 
|  | 1409 | case ISD::SETFALSE: | 
|  | 1410 | case ISD::SETFALSE2: return DAG.getConstant(0, VT); | 
|  | 1411 | case ISD::SETTRUE: | 
|  | 1412 | case ISD::SETTRUE2:  return DAG.getConstant(1, VT); | 
|  | 1413 | } | 
|  | 1414 |  | 
|  | 1415 | if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) { | 
|  | 1416 | uint64_t C1 = N1C->getValue(); | 
|  | 1417 | if (isa<ConstantSDNode>(N0.Val)) { | 
|  | 1418 | return DAG.FoldSetCC(VT, N0, N1, Cond); | 
|  | 1419 | } else { | 
|  | 1420 | // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an | 
|  | 1421 | // equality comparison, then we're just comparing whether X itself is | 
|  | 1422 | // zero. | 
|  | 1423 | if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && | 
|  | 1424 | N0.getOperand(0).getOpcode() == ISD::CTLZ && | 
|  | 1425 | N0.getOperand(1).getOpcode() == ISD::Constant) { | 
|  | 1426 | unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); | 
|  | 1427 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | 1428 | ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) { | 
|  | 1429 | if ((C1 == 0) == (Cond == ISD::SETEQ)) { | 
|  | 1430 | // (srl (ctlz x), 5) == 0  -> X != 0 | 
|  | 1431 | // (srl (ctlz x), 5) != 1  -> X != 0 | 
|  | 1432 | Cond = ISD::SETNE; | 
|  | 1433 | } else { | 
|  | 1434 | // (srl (ctlz x), 5) != 0  -> X == 0 | 
|  | 1435 | // (srl (ctlz x), 5) == 1  -> X == 0 | 
|  | 1436 | Cond = ISD::SETEQ; | 
|  | 1437 | } | 
|  | 1438 | SDOperand Zero = DAG.getConstant(0, N0.getValueType()); | 
|  | 1439 | return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0), | 
|  | 1440 | Zero, Cond); | 
|  | 1441 | } | 
|  | 1442 | } | 
|  | 1443 |  | 
|  | 1444 | // If the LHS is a ZERO_EXTEND, perform the comparison on the input. | 
|  | 1445 | if (N0.getOpcode() == ISD::ZERO_EXTEND) { | 
|  | 1446 | unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType()); | 
|  | 1447 |  | 
|  | 1448 | // If the comparison constant has bits in the upper part, the | 
|  | 1449 | // zero-extended value could never match. | 
|  | 1450 | if (C1 & (~0ULL << InSize)) { | 
|  | 1451 | unsigned VSize = MVT::getSizeInBits(N0.getValueType()); | 
|  | 1452 | switch (Cond) { | 
|  | 1453 | case ISD::SETUGT: | 
|  | 1454 | case ISD::SETUGE: | 
|  | 1455 | case ISD::SETEQ: return DAG.getConstant(0, VT); | 
|  | 1456 | case ISD::SETULT: | 
|  | 1457 | case ISD::SETULE: | 
|  | 1458 | case ISD::SETNE: return DAG.getConstant(1, VT); | 
|  | 1459 | case ISD::SETGT: | 
|  | 1460 | case ISD::SETGE: | 
|  | 1461 | // True if the sign bit of C1 is set. | 
|  | 1462 | return DAG.getConstant((C1 & (1ULL << VSize)) != 0, VT); | 
|  | 1463 | case ISD::SETLT: | 
|  | 1464 | case ISD::SETLE: | 
|  | 1465 | // True if the sign bit of C1 isn't set. | 
|  | 1466 | return DAG.getConstant((C1 & (1ULL << VSize)) == 0, VT); | 
|  | 1467 | default: | 
|  | 1468 | break; | 
|  | 1469 | } | 
|  | 1470 | } | 
|  | 1471 |  | 
|  | 1472 | // Otherwise, we can perform the comparison with the low bits. | 
|  | 1473 | switch (Cond) { | 
|  | 1474 | case ISD::SETEQ: | 
|  | 1475 | case ISD::SETNE: | 
|  | 1476 | case ISD::SETUGT: | 
|  | 1477 | case ISD::SETUGE: | 
|  | 1478 | case ISD::SETULT: | 
|  | 1479 | case ISD::SETULE: | 
|  | 1480 | return DAG.getSetCC(VT, N0.getOperand(0), | 
|  | 1481 | DAG.getConstant(C1, N0.getOperand(0).getValueType()), | 
|  | 1482 | Cond); | 
|  | 1483 | default: | 
|  | 1484 | break;   // todo, be more careful with signed comparisons | 
|  | 1485 | } | 
|  | 1486 | } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
|  | 1487 | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | 1488 | MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); | 
|  | 1489 | unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy); | 
|  | 1490 | MVT::ValueType ExtDstTy = N0.getValueType(); | 
|  | 1491 | unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy); | 
|  | 1492 |  | 
|  | 1493 | // If the extended part has any inconsistent bits, it cannot ever | 
|  | 1494 | // compare equal.  In other words, they have to be all ones or all | 
|  | 1495 | // zeros. | 
|  | 1496 | uint64_t ExtBits = | 
|  | 1497 | (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1)); | 
|  | 1498 | if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits) | 
|  | 1499 | return DAG.getConstant(Cond == ISD::SETNE, VT); | 
|  | 1500 |  | 
|  | 1501 | SDOperand ZextOp; | 
|  | 1502 | MVT::ValueType Op0Ty = N0.getOperand(0).getValueType(); | 
|  | 1503 | if (Op0Ty == ExtSrcTy) { | 
|  | 1504 | ZextOp = N0.getOperand(0); | 
|  | 1505 | } else { | 
|  | 1506 | int64_t Imm = ~0ULL >> (64-ExtSrcTyBits); | 
|  | 1507 | ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0), | 
|  | 1508 | DAG.getConstant(Imm, Op0Ty)); | 
|  | 1509 | } | 
|  | 1510 | if (!DCI.isCalledByLegalizer()) | 
|  | 1511 | DCI.AddToWorklist(ZextOp.Val); | 
|  | 1512 | // Otherwise, make this a use of a zext. | 
|  | 1513 | return DAG.getSetCC(VT, ZextOp, | 
|  | 1514 | DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)), | 
|  | 1515 | ExtDstTy), | 
|  | 1516 | Cond); | 
|  | 1517 | } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) && | 
|  | 1518 | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
|  | 1519 |  | 
|  | 1520 | // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC | 
|  | 1521 | if (N0.getOpcode() == ISD::SETCC) { | 
|  | 1522 | bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1); | 
|  | 1523 | if (TrueWhenTrue) | 
|  | 1524 | return N0; | 
|  | 1525 |  | 
|  | 1526 | // Invert the condition. | 
|  | 1527 | ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
|  | 1528 | CC = ISD::getSetCCInverse(CC, | 
|  | 1529 | MVT::isInteger(N0.getOperand(0).getValueType())); | 
|  | 1530 | return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC); | 
|  | 1531 | } | 
|  | 1532 |  | 
|  | 1533 | if ((N0.getOpcode() == ISD::XOR || | 
|  | 1534 | (N0.getOpcode() == ISD::AND && | 
|  | 1535 | N0.getOperand(0).getOpcode() == ISD::XOR && | 
|  | 1536 | N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && | 
|  | 1537 | isa<ConstantSDNode>(N0.getOperand(1)) && | 
|  | 1538 | cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) { | 
|  | 1539 | // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We | 
|  | 1540 | // can only do this if the top bits are known zero. | 
|  | 1541 | if (MaskedValueIsZero(N0, MVT::getIntVTBitMask(N0.getValueType())-1)){ | 
|  | 1542 | // Okay, get the un-inverted input value. | 
|  | 1543 | SDOperand Val; | 
|  | 1544 | if (N0.getOpcode() == ISD::XOR) | 
|  | 1545 | Val = N0.getOperand(0); | 
|  | 1546 | else { | 
|  | 1547 | assert(N0.getOpcode() == ISD::AND && | 
|  | 1548 | N0.getOperand(0).getOpcode() == ISD::XOR); | 
|  | 1549 | // ((X^1)&1)^1 -> X & 1 | 
|  | 1550 | Val = DAG.getNode(ISD::AND, N0.getValueType(), | 
|  | 1551 | N0.getOperand(0).getOperand(0), | 
|  | 1552 | N0.getOperand(1)); | 
|  | 1553 | } | 
|  | 1554 | return DAG.getSetCC(VT, Val, N1, | 
|  | 1555 | Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
|  | 1556 | } | 
|  | 1557 | } | 
|  | 1558 | } | 
|  | 1559 |  | 
|  | 1560 | uint64_t MinVal, MaxVal; | 
|  | 1561 | unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0)); | 
|  | 1562 | if (ISD::isSignedIntSetCC(Cond)) { | 
|  | 1563 | MinVal = 1ULL << (OperandBitSize-1); | 
|  | 1564 | if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined. | 
|  | 1565 | MaxVal = ~0ULL >> (65-OperandBitSize); | 
|  | 1566 | else | 
|  | 1567 | MaxVal = 0; | 
|  | 1568 | } else { | 
|  | 1569 | MinVal = 0; | 
|  | 1570 | MaxVal = ~0ULL >> (64-OperandBitSize); | 
|  | 1571 | } | 
|  | 1572 |  | 
|  | 1573 | // Canonicalize GE/LE comparisons to use GT/LT comparisons. | 
|  | 1574 | if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { | 
|  | 1575 | if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true | 
|  | 1576 | --C1;                                          // X >= C0 --> X > (C0-1) | 
|  | 1577 | return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()), | 
|  | 1578 | (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); | 
|  | 1579 | } | 
|  | 1580 |  | 
|  | 1581 | if (Cond == ISD::SETLE || Cond == ISD::SETULE) { | 
|  | 1582 | if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true | 
|  | 1583 | ++C1;                                          // X <= C0 --> X < (C0+1) | 
|  | 1584 | return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()), | 
|  | 1585 | (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); | 
|  | 1586 | } | 
|  | 1587 |  | 
|  | 1588 | if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) | 
|  | 1589 | return DAG.getConstant(0, VT);      // X < MIN --> false | 
|  | 1590 | if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) | 
|  | 1591 | return DAG.getConstant(1, VT);      // X >= MIN --> true | 
|  | 1592 | if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) | 
|  | 1593 | return DAG.getConstant(0, VT);      // X > MAX --> false | 
|  | 1594 | if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) | 
|  | 1595 | return DAG.getConstant(1, VT);      // X <= MAX --> true | 
|  | 1596 |  | 
|  | 1597 | // Canonicalize setgt X, Min --> setne X, Min | 
|  | 1598 | if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) | 
|  | 1599 | return DAG.getSetCC(VT, N0, N1, ISD::SETNE); | 
|  | 1600 | // Canonicalize setlt X, Max --> setne X, Max | 
|  | 1601 | if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) | 
|  | 1602 | return DAG.getSetCC(VT, N0, N1, ISD::SETNE); | 
|  | 1603 |  | 
|  | 1604 | // If we have setult X, 1, turn it into seteq X, 0 | 
|  | 1605 | if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) | 
|  | 1606 | return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()), | 
|  | 1607 | ISD::SETEQ); | 
|  | 1608 | // If we have setugt X, Max-1, turn it into seteq X, Max | 
|  | 1609 | else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) | 
|  | 1610 | return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()), | 
|  | 1611 | ISD::SETEQ); | 
|  | 1612 |  | 
|  | 1613 | // If we have "setcc X, C0", check to see if we can shrink the immediate | 
|  | 1614 | // by changing cc. | 
|  | 1615 |  | 
|  | 1616 | // SETUGT X, SINTMAX  -> SETLT X, 0 | 
|  | 1617 | if (Cond == ISD::SETUGT && OperandBitSize != 1 && | 
|  | 1618 | C1 == (~0ULL >> (65-OperandBitSize))) | 
|  | 1619 | return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()), | 
|  | 1620 | ISD::SETLT); | 
|  | 1621 |  | 
|  | 1622 | // FIXME: Implement the rest of these. | 
|  | 1623 |  | 
|  | 1624 | // Fold bit comparisons when we can. | 
|  | 1625 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | 1626 | VT == N0.getValueType() && N0.getOpcode() == ISD::AND) | 
|  | 1627 | if (ConstantSDNode *AndRHS = | 
|  | 1628 | dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | 1629 | if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3 | 
|  | 1630 | // Perform the xform if the AND RHS is a single bit. | 
|  | 1631 | if (isPowerOf2_64(AndRHS->getValue())) { | 
|  | 1632 | return DAG.getNode(ISD::SRL, VT, N0, | 
|  | 1633 | DAG.getConstant(Log2_64(AndRHS->getValue()), | 
|  | 1634 | getShiftAmountTy())); | 
|  | 1635 | } | 
|  | 1636 | } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) { | 
|  | 1637 | // (X & 8) == 8  -->  (X & 8) >> 3 | 
|  | 1638 | // Perform the xform if C1 is a single bit. | 
|  | 1639 | if (isPowerOf2_64(C1)) { | 
|  | 1640 | return DAG.getNode(ISD::SRL, VT, N0, | 
|  | 1641 | DAG.getConstant(Log2_64(C1), getShiftAmountTy())); | 
|  | 1642 | } | 
|  | 1643 | } | 
|  | 1644 | } | 
|  | 1645 | } | 
|  | 1646 | } else if (isa<ConstantSDNode>(N0.Val)) { | 
|  | 1647 | // Ensure that the constant occurs on the RHS. | 
|  | 1648 | return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); | 
|  | 1649 | } | 
|  | 1650 |  | 
|  | 1651 | if (isa<ConstantFPSDNode>(N0.Val)) { | 
|  | 1652 | // Constant fold or commute setcc. | 
|  | 1653 | SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond); | 
|  | 1654 | if (O.Val) return O; | 
|  | 1655 | } | 
|  | 1656 |  | 
|  | 1657 | if (N0 == N1) { | 
|  | 1658 | // We can always fold X == X for integer setcc's. | 
|  | 1659 | if (MVT::isInteger(N0.getValueType())) | 
|  | 1660 | return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); | 
|  | 1661 | unsigned UOF = ISD::getUnorderedFlavor(Cond); | 
|  | 1662 | if (UOF == 2)   // FP operators that are undefined on NaNs. | 
|  | 1663 | return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); | 
|  | 1664 | if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) | 
|  | 1665 | return DAG.getConstant(UOF, VT); | 
|  | 1666 | // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO | 
|  | 1667 | // if it is not already. | 
|  | 1668 | ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; | 
|  | 1669 | if (NewCond != Cond) | 
|  | 1670 | return DAG.getSetCC(VT, N0, N1, NewCond); | 
|  | 1671 | } | 
|  | 1672 |  | 
|  | 1673 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
|  | 1674 | MVT::isInteger(N0.getValueType())) { | 
|  | 1675 | if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || | 
|  | 1676 | N0.getOpcode() == ISD::XOR) { | 
|  | 1677 | // Simplify (X+Y) == (X+Z) -->  Y == Z | 
|  | 1678 | if (N0.getOpcode() == N1.getOpcode()) { | 
|  | 1679 | if (N0.getOperand(0) == N1.getOperand(0)) | 
|  | 1680 | return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond); | 
|  | 1681 | if (N0.getOperand(1) == N1.getOperand(1)) | 
|  | 1682 | return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond); | 
|  | 1683 | if (DAG.isCommutativeBinOp(N0.getOpcode())) { | 
|  | 1684 | // If X op Y == Y op X, try other combinations. | 
|  | 1685 | if (N0.getOperand(0) == N1.getOperand(1)) | 
|  | 1686 | return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond); | 
|  | 1687 | if (N0.getOperand(1) == N1.getOperand(0)) | 
|  | 1688 | return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond); | 
|  | 1689 | } | 
|  | 1690 | } | 
|  | 1691 |  | 
|  | 1692 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { | 
|  | 1693 | if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
|  | 1694 | // Turn (X+C1) == C2 --> X == C2-C1 | 
|  | 1695 | if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) { | 
|  | 1696 | return DAG.getSetCC(VT, N0.getOperand(0), | 
|  | 1697 | DAG.getConstant(RHSC->getValue()-LHSR->getValue(), | 
|  | 1698 | N0.getValueType()), Cond); | 
|  | 1699 | } | 
|  | 1700 |  | 
|  | 1701 | // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. | 
|  | 1702 | if (N0.getOpcode() == ISD::XOR) | 
|  | 1703 | // If we know that all of the inverted bits are zero, don't bother | 
|  | 1704 | // performing the inversion. | 
|  | 1705 | if (MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue())) | 
|  | 1706 | return DAG.getSetCC(VT, N0.getOperand(0), | 
|  | 1707 | DAG.getConstant(LHSR->getValue()^RHSC->getValue(), | 
|  | 1708 | N0.getValueType()), Cond); | 
|  | 1709 | } | 
|  | 1710 |  | 
|  | 1711 | // Turn (C1-X) == C2 --> X == C1-C2 | 
|  | 1712 | if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { | 
|  | 1713 | if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) { | 
|  | 1714 | return DAG.getSetCC(VT, N0.getOperand(1), | 
|  | 1715 | DAG.getConstant(SUBC->getValue()-RHSC->getValue(), | 
|  | 1716 | N0.getValueType()), Cond); | 
|  | 1717 | } | 
|  | 1718 | } | 
|  | 1719 | } | 
|  | 1720 |  | 
|  | 1721 | // Simplify (X+Z) == X -->  Z == 0 | 
|  | 1722 | if (N0.getOperand(0) == N1) | 
|  | 1723 | return DAG.getSetCC(VT, N0.getOperand(1), | 
|  | 1724 | DAG.getConstant(0, N0.getValueType()), Cond); | 
|  | 1725 | if (N0.getOperand(1) == N1) { | 
|  | 1726 | if (DAG.isCommutativeBinOp(N0.getOpcode())) | 
|  | 1727 | return DAG.getSetCC(VT, N0.getOperand(0), | 
|  | 1728 | DAG.getConstant(0, N0.getValueType()), Cond); | 
|  | 1729 | else { | 
|  | 1730 | assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); | 
|  | 1731 | // (Z-X) == X  --> Z == X<<1 | 
|  | 1732 | SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), | 
|  | 1733 | N1, | 
|  | 1734 | DAG.getConstant(1, getShiftAmountTy())); | 
|  | 1735 | if (!DCI.isCalledByLegalizer()) | 
|  | 1736 | DCI.AddToWorklist(SH.Val); | 
|  | 1737 | return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond); | 
|  | 1738 | } | 
|  | 1739 | } | 
|  | 1740 | } | 
|  | 1741 |  | 
|  | 1742 | if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || | 
|  | 1743 | N1.getOpcode() == ISD::XOR) { | 
|  | 1744 | // Simplify  X == (X+Z) -->  Z == 0 | 
|  | 1745 | if (N1.getOperand(0) == N0) { | 
|  | 1746 | return DAG.getSetCC(VT, N1.getOperand(1), | 
|  | 1747 | DAG.getConstant(0, N1.getValueType()), Cond); | 
|  | 1748 | } else if (N1.getOperand(1) == N0) { | 
|  | 1749 | if (DAG.isCommutativeBinOp(N1.getOpcode())) { | 
|  | 1750 | return DAG.getSetCC(VT, N1.getOperand(0), | 
|  | 1751 | DAG.getConstant(0, N1.getValueType()), Cond); | 
|  | 1752 | } else { | 
|  | 1753 | assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); | 
|  | 1754 | // X == (Z-X)  --> X<<1 == Z | 
|  | 1755 | SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0, | 
|  | 1756 | DAG.getConstant(1, getShiftAmountTy())); | 
|  | 1757 | if (!DCI.isCalledByLegalizer()) | 
|  | 1758 | DCI.AddToWorklist(SH.Val); | 
|  | 1759 | return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond); | 
|  | 1760 | } | 
|  | 1761 | } | 
|  | 1762 | } | 
|  | 1763 | } | 
|  | 1764 |  | 
|  | 1765 | // Fold away ALL boolean setcc's. | 
|  | 1766 | SDOperand Temp; | 
|  | 1767 | if (N0.getValueType() == MVT::i1 && foldBooleans) { | 
|  | 1768 | switch (Cond) { | 
|  | 1769 | default: assert(0 && "Unknown integer setcc!"); | 
|  | 1770 | case ISD::SETEQ:  // X == Y  -> (X^Y)^1 | 
|  | 1771 | Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); | 
|  | 1772 | N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1)); | 
|  | 1773 | if (!DCI.isCalledByLegalizer()) | 
|  | 1774 | DCI.AddToWorklist(Temp.Val); | 
|  | 1775 | break; | 
|  | 1776 | case ISD::SETNE:  // X != Y   -->  (X^Y) | 
|  | 1777 | N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); | 
|  | 1778 | break; | 
|  | 1779 | case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y | 
|  | 1780 | case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y | 
|  | 1781 | Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); | 
|  | 1782 | N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp); | 
|  | 1783 | if (!DCI.isCalledByLegalizer()) | 
|  | 1784 | DCI.AddToWorklist(Temp.Val); | 
|  | 1785 | break; | 
|  | 1786 | case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X | 
|  | 1787 | case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X | 
|  | 1788 | Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1)); | 
|  | 1789 | N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp); | 
|  | 1790 | if (!DCI.isCalledByLegalizer()) | 
|  | 1791 | DCI.AddToWorklist(Temp.Val); | 
|  | 1792 | break; | 
|  | 1793 | case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y | 
|  | 1794 | case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y | 
|  | 1795 | Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); | 
|  | 1796 | N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp); | 
|  | 1797 | if (!DCI.isCalledByLegalizer()) | 
|  | 1798 | DCI.AddToWorklist(Temp.Val); | 
|  | 1799 | break; | 
|  | 1800 | case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X | 
|  | 1801 | case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X | 
|  | 1802 | Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1)); | 
|  | 1803 | N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp); | 
|  | 1804 | break; | 
|  | 1805 | } | 
|  | 1806 | if (VT != MVT::i1) { | 
|  | 1807 | if (!DCI.isCalledByLegalizer()) | 
|  | 1808 | DCI.AddToWorklist(N0.Val); | 
|  | 1809 | // FIXME: If running after legalize, we probably can't do this. | 
|  | 1810 | N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0); | 
|  | 1811 | } | 
|  | 1812 | return N0; | 
|  | 1813 | } | 
|  | 1814 |  | 
|  | 1815 | // Could not fold it. | 
|  | 1816 | return SDOperand(); | 
|  | 1817 | } | 
|  | 1818 |  | 
| Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame] | 1819 | SDOperand TargetLowering:: | 
|  | 1820 | PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { | 
|  | 1821 | // Default implementation: no optimization. | 
|  | 1822 | return SDOperand(); | 
|  | 1823 | } | 
|  | 1824 |  | 
| Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1825 | //===----------------------------------------------------------------------===// | 
|  | 1826 | //  Inline Assembler Implementation Methods | 
|  | 1827 | //===----------------------------------------------------------------------===// | 
|  | 1828 |  | 
|  | 1829 | TargetLowering::ConstraintType | 
|  | 1830 | TargetLowering::getConstraintType(char ConstraintLetter) const { | 
|  | 1831 | // FIXME: lots more standard ones to handle. | 
|  | 1832 | switch (ConstraintLetter) { | 
|  | 1833 | default: return C_Unknown; | 
|  | 1834 | case 'r': return C_RegisterClass; | 
| Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 1835 | case 'm':    // memory | 
|  | 1836 | case 'o':    // offsetable | 
|  | 1837 | case 'V':    // not offsetable | 
|  | 1838 | return C_Memory; | 
| Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1839 | case 'i':    // Simple Integer or Relocatable Constant | 
|  | 1840 | case 'n':    // Simple Integer | 
|  | 1841 | case 's':    // Relocatable Constant | 
|  | 1842 | case 'I':    // Target registers. | 
|  | 1843 | case 'J': | 
|  | 1844 | case 'K': | 
|  | 1845 | case 'L': | 
|  | 1846 | case 'M': | 
|  | 1847 | case 'N': | 
|  | 1848 | case 'O': | 
| Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 1849 | case 'P': | 
|  | 1850 | return C_Other; | 
| Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1851 | } | 
|  | 1852 | } | 
|  | 1853 |  | 
| Chris Lattner | dba1aee | 2006-10-31 19:40:43 +0000 | [diff] [blame] | 1854 | /// isOperandValidForConstraint - Return the specified operand (possibly | 
|  | 1855 | /// modified) if the specified SDOperand is valid for the specified target | 
|  | 1856 | /// constraint letter, otherwise return null. | 
|  | 1857 | SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op, | 
|  | 1858 | char ConstraintLetter, | 
|  | 1859 | SelectionDAG &DAG) { | 
| Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1860 | switch (ConstraintLetter) { | 
| Chris Lattner | 9ff6ee8 | 2007-02-17 06:00:35 +0000 | [diff] [blame] | 1861 | default: break; | 
| Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1862 | case 'i':    // Simple Integer or Relocatable Constant | 
|  | 1863 | case 'n':    // Simple Integer | 
|  | 1864 | case 's':    // Relocatable Constant | 
| Chris Lattner | 9ff6ee8 | 2007-02-17 06:00:35 +0000 | [diff] [blame] | 1865 | // These are okay if the operand is either a global variable address or a | 
|  | 1866 | // simple immediate value.  If we have one of these, map to the TargetXXX | 
|  | 1867 | // version so that the value itself doesn't get selected. | 
|  | 1868 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
|  | 1869 | // Simple constants are not allowed for 's'. | 
|  | 1870 | if (ConstraintLetter != 's') | 
|  | 1871 | return DAG.getTargetConstant(C->getValue(), Op.getValueType()); | 
|  | 1872 | } | 
|  | 1873 | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { | 
|  | 1874 | if (ConstraintLetter != 'n') | 
|  | 1875 | return DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getValueType(), | 
|  | 1876 | GA->getOffset()); | 
|  | 1877 | } | 
|  | 1878 | break; | 
| Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1879 | } | 
| Chris Lattner | 9ff6ee8 | 2007-02-17 06:00:35 +0000 | [diff] [blame] | 1880 | return SDOperand(0,0); | 
| Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1881 | } | 
|  | 1882 |  | 
| Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1883 | std::vector<unsigned> TargetLowering:: | 
| Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1884 | getRegClassForInlineAsmConstraint(const std::string &Constraint, | 
|  | 1885 | MVT::ValueType VT) const { | 
|  | 1886 | return std::vector<unsigned>(); | 
|  | 1887 | } | 
|  | 1888 |  | 
|  | 1889 |  | 
|  | 1890 | std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: | 
| Chris Lattner | 4217ca8dc | 2006-02-21 23:11:00 +0000 | [diff] [blame] | 1891 | getRegForInlineAsmConstraint(const std::string &Constraint, | 
|  | 1892 | MVT::ValueType VT) const { | 
| Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1893 | if (Constraint[0] != '{') | 
|  | 1894 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); | 
| Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 1895 | assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); | 
|  | 1896 |  | 
|  | 1897 | // Remove the braces from around the name. | 
|  | 1898 | std::string RegName(Constraint.begin()+1, Constraint.end()-1); | 
| Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1899 |  | 
|  | 1900 | // Figure out which register class contains this reg. | 
| Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1901 | const MRegisterInfo *RI = TM.getRegisterInfo(); | 
| Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1902 | for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), | 
|  | 1903 | E = RI->regclass_end(); RCI != E; ++RCI) { | 
|  | 1904 | const TargetRegisterClass *RC = *RCI; | 
| Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 1905 |  | 
|  | 1906 | // If none of the the value types for this register class are valid, we | 
|  | 1907 | // can't use it.  For example, 64-bit reg classes on 32-bit targets. | 
|  | 1908 | bool isLegal = false; | 
|  | 1909 | for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); | 
|  | 1910 | I != E; ++I) { | 
|  | 1911 | if (isTypeLegal(*I)) { | 
|  | 1912 | isLegal = true; | 
|  | 1913 | break; | 
|  | 1914 | } | 
|  | 1915 | } | 
|  | 1916 |  | 
|  | 1917 | if (!isLegal) continue; | 
|  | 1918 |  | 
| Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1919 | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); | 
|  | 1920 | I != E; ++I) { | 
| Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 1921 | if (StringsEqualNoCase(RegName, RI->get(*I).Name)) | 
| Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1922 | return std::make_pair(*I, RC); | 
| Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1923 | } | 
| Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1924 | } | 
| Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 1925 |  | 
| Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1926 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); | 
| Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1927 | } | 
| Evan Cheng | 30b37b5 | 2006-03-13 23:18:16 +0000 | [diff] [blame] | 1928 |  | 
|  | 1929 | //===----------------------------------------------------------------------===// | 
|  | 1930 | //  Loop Strength Reduction hooks | 
|  | 1931 | //===----------------------------------------------------------------------===// | 
|  | 1932 |  | 
|  | 1933 | /// isLegalAddressImmediate - Return true if the integer value or | 
|  | 1934 | /// GlobalValue can be used as the offset of the target addressing mode. | 
|  | 1935 | bool TargetLowering::isLegalAddressImmediate(int64_t V) const { | 
|  | 1936 | return false; | 
|  | 1937 | } | 
|  | 1938 | bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const { | 
|  | 1939 | return false; | 
|  | 1940 | } | 
| Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1941 |  | 
|  | 1942 |  | 
|  | 1943 | // Magic for divide replacement | 
|  | 1944 |  | 
|  | 1945 | struct ms { | 
|  | 1946 | int64_t m;  // magic number | 
|  | 1947 | int64_t s;  // shift amount | 
|  | 1948 | }; | 
|  | 1949 |  | 
|  | 1950 | struct mu { | 
|  | 1951 | uint64_t m; // magic number | 
|  | 1952 | int64_t a;  // add indicator | 
|  | 1953 | int64_t s;  // shift amount | 
|  | 1954 | }; | 
|  | 1955 |  | 
|  | 1956 | /// magic - calculate the magic numbers required to codegen an integer sdiv as | 
|  | 1957 | /// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1, | 
|  | 1958 | /// or -1. | 
|  | 1959 | static ms magic32(int32_t d) { | 
|  | 1960 | int32_t p; | 
|  | 1961 | uint32_t ad, anc, delta, q1, r1, q2, r2, t; | 
|  | 1962 | const uint32_t two31 = 0x80000000U; | 
|  | 1963 | struct ms mag; | 
|  | 1964 |  | 
|  | 1965 | ad = abs(d); | 
|  | 1966 | t = two31 + ((uint32_t)d >> 31); | 
|  | 1967 | anc = t - 1 - t%ad;   // absolute value of nc | 
|  | 1968 | p = 31;               // initialize p | 
|  | 1969 | q1 = two31/anc;       // initialize q1 = 2p/abs(nc) | 
|  | 1970 | r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc)) | 
|  | 1971 | q2 = two31/ad;        // initialize q2 = 2p/abs(d) | 
|  | 1972 | r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d)) | 
|  | 1973 | do { | 
|  | 1974 | p = p + 1; | 
|  | 1975 | q1 = 2*q1;        // update q1 = 2p/abs(nc) | 
|  | 1976 | r1 = 2*r1;        // update r1 = rem(2p/abs(nc)) | 
|  | 1977 | if (r1 >= anc) {  // must be unsigned comparison | 
|  | 1978 | q1 = q1 + 1; | 
|  | 1979 | r1 = r1 - anc; | 
|  | 1980 | } | 
|  | 1981 | q2 = 2*q2;        // update q2 = 2p/abs(d) | 
|  | 1982 | r2 = 2*r2;        // update r2 = rem(2p/abs(d)) | 
|  | 1983 | if (r2 >= ad) {   // must be unsigned comparison | 
|  | 1984 | q2 = q2 + 1; | 
|  | 1985 | r2 = r2 - ad; | 
|  | 1986 | } | 
|  | 1987 | delta = ad - r2; | 
|  | 1988 | } while (q1 < delta || (q1 == delta && r1 == 0)); | 
|  | 1989 |  | 
|  | 1990 | mag.m = (int32_t)(q2 + 1); // make sure to sign extend | 
|  | 1991 | if (d < 0) mag.m = -mag.m; // resulting magic number | 
|  | 1992 | mag.s = p - 32;            // resulting shift | 
|  | 1993 | return mag; | 
|  | 1994 | } | 
|  | 1995 |  | 
|  | 1996 | /// magicu - calculate the magic numbers required to codegen an integer udiv as | 
|  | 1997 | /// a sequence of multiply, add and shifts.  Requires that the divisor not be 0. | 
|  | 1998 | static mu magicu32(uint32_t d) { | 
|  | 1999 | int32_t p; | 
|  | 2000 | uint32_t nc, delta, q1, r1, q2, r2; | 
|  | 2001 | struct mu magu; | 
|  | 2002 | magu.a = 0;               // initialize "add" indicator | 
|  | 2003 | nc = - 1 - (-d)%d; | 
|  | 2004 | p = 31;                   // initialize p | 
|  | 2005 | q1 = 0x80000000/nc;       // initialize q1 = 2p/nc | 
|  | 2006 | r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc) | 
|  | 2007 | q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d | 
|  | 2008 | r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d) | 
|  | 2009 | do { | 
|  | 2010 | p = p + 1; | 
|  | 2011 | if (r1 >= nc - r1 ) { | 
|  | 2012 | q1 = 2*q1 + 1;  // update q1 | 
|  | 2013 | r1 = 2*r1 - nc; // update r1 | 
|  | 2014 | } | 
|  | 2015 | else { | 
|  | 2016 | q1 = 2*q1; // update q1 | 
|  | 2017 | r1 = 2*r1; // update r1 | 
|  | 2018 | } | 
|  | 2019 | if (r2 + 1 >= d - r2) { | 
|  | 2020 | if (q2 >= 0x7FFFFFFF) magu.a = 1; | 
|  | 2021 | q2 = 2*q2 + 1;     // update q2 | 
|  | 2022 | r2 = 2*r2 + 1 - d; // update r2 | 
|  | 2023 | } | 
|  | 2024 | else { | 
|  | 2025 | if (q2 >= 0x80000000) magu.a = 1; | 
|  | 2026 | q2 = 2*q2;     // update q2 | 
|  | 2027 | r2 = 2*r2 + 1; // update r2 | 
|  | 2028 | } | 
|  | 2029 | delta = d - 1 - r2; | 
|  | 2030 | } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); | 
|  | 2031 | magu.m = q2 + 1; // resulting magic number | 
|  | 2032 | magu.s = p - 32;  // resulting shift | 
|  | 2033 | return magu; | 
|  | 2034 | } | 
|  | 2035 |  | 
|  | 2036 | /// magic - calculate the magic numbers required to codegen an integer sdiv as | 
|  | 2037 | /// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1, | 
|  | 2038 | /// or -1. | 
|  | 2039 | static ms magic64(int64_t d) { | 
|  | 2040 | int64_t p; | 
|  | 2041 | uint64_t ad, anc, delta, q1, r1, q2, r2, t; | 
|  | 2042 | const uint64_t two63 = 9223372036854775808ULL; // 2^63 | 
|  | 2043 | struct ms mag; | 
|  | 2044 |  | 
|  | 2045 | ad = d >= 0 ? d : -d; | 
|  | 2046 | t = two63 + ((uint64_t)d >> 63); | 
|  | 2047 | anc = t - 1 - t%ad;   // absolute value of nc | 
|  | 2048 | p = 63;               // initialize p | 
|  | 2049 | q1 = two63/anc;       // initialize q1 = 2p/abs(nc) | 
|  | 2050 | r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc)) | 
|  | 2051 | q2 = two63/ad;        // initialize q2 = 2p/abs(d) | 
|  | 2052 | r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d)) | 
|  | 2053 | do { | 
|  | 2054 | p = p + 1; | 
|  | 2055 | q1 = 2*q1;        // update q1 = 2p/abs(nc) | 
|  | 2056 | r1 = 2*r1;        // update r1 = rem(2p/abs(nc)) | 
|  | 2057 | if (r1 >= anc) {  // must be unsigned comparison | 
|  | 2058 | q1 = q1 + 1; | 
|  | 2059 | r1 = r1 - anc; | 
|  | 2060 | } | 
|  | 2061 | q2 = 2*q2;        // update q2 = 2p/abs(d) | 
|  | 2062 | r2 = 2*r2;        // update r2 = rem(2p/abs(d)) | 
|  | 2063 | if (r2 >= ad) {   // must be unsigned comparison | 
|  | 2064 | q2 = q2 + 1; | 
|  | 2065 | r2 = r2 - ad; | 
|  | 2066 | } | 
|  | 2067 | delta = ad - r2; | 
|  | 2068 | } while (q1 < delta || (q1 == delta && r1 == 0)); | 
|  | 2069 |  | 
|  | 2070 | mag.m = q2 + 1; | 
|  | 2071 | if (d < 0) mag.m = -mag.m; // resulting magic number | 
|  | 2072 | mag.s = p - 64;            // resulting shift | 
|  | 2073 | return mag; | 
|  | 2074 | } | 
|  | 2075 |  | 
|  | 2076 | /// magicu - calculate the magic numbers required to codegen an integer udiv as | 
|  | 2077 | /// a sequence of multiply, add and shifts.  Requires that the divisor not be 0. | 
|  | 2078 | static mu magicu64(uint64_t d) | 
|  | 2079 | { | 
|  | 2080 | int64_t p; | 
|  | 2081 | uint64_t nc, delta, q1, r1, q2, r2; | 
|  | 2082 | struct mu magu; | 
|  | 2083 | magu.a = 0;               // initialize "add" indicator | 
|  | 2084 | nc = - 1 - (-d)%d; | 
|  | 2085 | p = 63;                   // initialize p | 
|  | 2086 | q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc | 
|  | 2087 | r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc) | 
|  | 2088 | q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d | 
|  | 2089 | r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d) | 
|  | 2090 | do { | 
|  | 2091 | p = p + 1; | 
|  | 2092 | if (r1 >= nc - r1 ) { | 
|  | 2093 | q1 = 2*q1 + 1;  // update q1 | 
|  | 2094 | r1 = 2*r1 - nc; // update r1 | 
|  | 2095 | } | 
|  | 2096 | else { | 
|  | 2097 | q1 = 2*q1; // update q1 | 
|  | 2098 | r1 = 2*r1; // update r1 | 
|  | 2099 | } | 
|  | 2100 | if (r2 + 1 >= d - r2) { | 
|  | 2101 | if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1; | 
|  | 2102 | q2 = 2*q2 + 1;     // update q2 | 
|  | 2103 | r2 = 2*r2 + 1 - d; // update r2 | 
|  | 2104 | } | 
|  | 2105 | else { | 
|  | 2106 | if (q2 >= 0x8000000000000000ull) magu.a = 1; | 
|  | 2107 | q2 = 2*q2;     // update q2 | 
|  | 2108 | r2 = 2*r2 + 1; // update r2 | 
|  | 2109 | } | 
|  | 2110 | delta = d - 1 - r2; | 
| Andrew Lenharth | 3e34849 | 2006-05-16 17:45:23 +0000 | [diff] [blame] | 2111 | } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0))); | 
| Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 2112 | magu.m = q2 + 1; // resulting magic number | 
|  | 2113 | magu.s = p - 64;  // resulting shift | 
|  | 2114 | return magu; | 
|  | 2115 | } | 
|  | 2116 |  | 
|  | 2117 | /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, | 
|  | 2118 | /// return a DAG expression to select that will generate the same value by | 
|  | 2119 | /// multiplying by a magic number.  See: | 
|  | 2120 | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> | 
|  | 2121 | SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, | 
| Andrew Lenharth | 232c910 | 2006-06-12 16:07:18 +0000 | [diff] [blame] | 2122 | std::vector<SDNode*>* Created) const { | 
| Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 2123 | MVT::ValueType VT = N->getValueType(0); | 
|  | 2124 |  | 
|  | 2125 | // Check to see if we can do this. | 
|  | 2126 | if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) | 
|  | 2127 | return SDOperand();       // BuildSDIV only operates on i32 or i64 | 
|  | 2128 | if (!isOperationLegal(ISD::MULHS, VT)) | 
|  | 2129 | return SDOperand();       // Make sure the target supports MULHS. | 
|  | 2130 |  | 
|  | 2131 | int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended(); | 
|  | 2132 | ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d); | 
|  | 2133 |  | 
|  | 2134 | // Multiply the numerator (operand 0) by the magic value | 
|  | 2135 | SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0), | 
|  | 2136 | DAG.getConstant(magics.m, VT)); | 
|  | 2137 | // If d > 0 and m < 0, add the numerator | 
|  | 2138 | if (d > 0 && magics.m < 0) { | 
|  | 2139 | Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0)); | 
|  | 2140 | if (Created) | 
|  | 2141 | Created->push_back(Q.Val); | 
|  | 2142 | } | 
|  | 2143 | // If d < 0 and m > 0, subtract the numerator. | 
|  | 2144 | if (d < 0 && magics.m > 0) { | 
|  | 2145 | Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0)); | 
|  | 2146 | if (Created) | 
|  | 2147 | Created->push_back(Q.Val); | 
|  | 2148 | } | 
|  | 2149 | // Shift right algebraic if shift value is nonzero | 
|  | 2150 | if (magics.s > 0) { | 
|  | 2151 | Q = DAG.getNode(ISD::SRA, VT, Q, | 
|  | 2152 | DAG.getConstant(magics.s, getShiftAmountTy())); | 
|  | 2153 | if (Created) | 
|  | 2154 | Created->push_back(Q.Val); | 
|  | 2155 | } | 
|  | 2156 | // Extract the sign bit and add it to the quotient | 
|  | 2157 | SDOperand T = | 
|  | 2158 | DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1, | 
|  | 2159 | getShiftAmountTy())); | 
|  | 2160 | if (Created) | 
|  | 2161 | Created->push_back(T.Val); | 
|  | 2162 | return DAG.getNode(ISD::ADD, VT, Q, T); | 
|  | 2163 | } | 
|  | 2164 |  | 
|  | 2165 | /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, | 
|  | 2166 | /// return a DAG expression to select that will generate the same value by | 
|  | 2167 | /// multiplying by a magic number.  See: | 
|  | 2168 | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> | 
|  | 2169 | SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, | 
| Andrew Lenharth | 232c910 | 2006-06-12 16:07:18 +0000 | [diff] [blame] | 2170 | std::vector<SDNode*>* Created) const { | 
| Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 2171 | MVT::ValueType VT = N->getValueType(0); | 
|  | 2172 |  | 
|  | 2173 | // Check to see if we can do this. | 
|  | 2174 | if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) | 
|  | 2175 | return SDOperand();       // BuildUDIV only operates on i32 or i64 | 
|  | 2176 | if (!isOperationLegal(ISD::MULHU, VT)) | 
|  | 2177 | return SDOperand();       // Make sure the target supports MULHU. | 
|  | 2178 |  | 
|  | 2179 | uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue(); | 
|  | 2180 | mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d); | 
|  | 2181 |  | 
|  | 2182 | // Multiply the numerator (operand 0) by the magic value | 
|  | 2183 | SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0), | 
|  | 2184 | DAG.getConstant(magics.m, VT)); | 
|  | 2185 | if (Created) | 
|  | 2186 | Created->push_back(Q.Val); | 
|  | 2187 |  | 
|  | 2188 | if (magics.a == 0) { | 
|  | 2189 | return DAG.getNode(ISD::SRL, VT, Q, | 
|  | 2190 | DAG.getConstant(magics.s, getShiftAmountTy())); | 
|  | 2191 | } else { | 
|  | 2192 | SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q); | 
|  | 2193 | if (Created) | 
|  | 2194 | Created->push_back(NPQ.Val); | 
|  | 2195 | NPQ = DAG.getNode(ISD::SRL, VT, NPQ, | 
|  | 2196 | DAG.getConstant(1, getShiftAmountTy())); | 
|  | 2197 | if (Created) | 
|  | 2198 | Created->push_back(NPQ.Val); | 
|  | 2199 | NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q); | 
|  | 2200 | if (Created) | 
|  | 2201 | Created->push_back(NPQ.Val); | 
|  | 2202 | return DAG.getNode(ISD::SRL, VT, NPQ, | 
|  | 2203 | DAG.getConstant(magics.s-1, getShiftAmountTy())); | 
|  | 2204 | } | 
|  | 2205 | } | 
| Reid Spencer | 02114aa | 2007-01-12 23:30:31 +0000 | [diff] [blame] | 2206 |  | 
|  | 2207 | MVT::ValueType TargetLowering::getValueType(const Type *Ty) const { | 
|  | 2208 | switch (Ty->getTypeID()) { | 
|  | 2209 | default: assert(0 && "Unknown type!"); | 
|  | 2210 | case Type::VoidTyID:    return MVT::isVoid; | 
|  | 2211 | case Type::IntegerTyID: | 
|  | 2212 | switch (cast<IntegerType>(Ty)->getBitWidth()) { | 
|  | 2213 | default: assert(0 && "Invalid width for value type"); | 
|  | 2214 | case 1:    return MVT::i1; | 
|  | 2215 | case 8:    return MVT::i8; | 
|  | 2216 | case 16:   return MVT::i16; | 
|  | 2217 | case 32:   return MVT::i32; | 
|  | 2218 | case 64:   return MVT::i64; | 
| Chris Lattner | f839ce7 | 2007-02-13 23:41:38 +0000 | [diff] [blame] | 2219 | case 128:  return MVT::i128; | 
| Reid Spencer | 02114aa | 2007-01-12 23:30:31 +0000 | [diff] [blame] | 2220 | } | 
|  | 2221 | break; | 
|  | 2222 | case Type::FloatTyID:   return MVT::f32; | 
|  | 2223 | case Type::DoubleTyID:  return MVT::f64; | 
|  | 2224 | case Type::PointerTyID: return PointerTy; | 
| Reid Spencer | 9d6565a | 2007-02-15 02:26:10 +0000 | [diff] [blame] | 2225 | case Type::VectorTyID:  return MVT::Vector; | 
| Reid Spencer | 02114aa | 2007-01-12 23:30:31 +0000 | [diff] [blame] | 2226 | } | 
|  | 2227 | } |