blob: 3f18696d8555c5f3b3d779407050f8a28e2c5d68 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
34 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Chris Lattner835acab2010-02-12 23:00:36 +000041 return 3;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Chris Lattner11eafa82010-02-11 21:17:54 +000046 { "reloc_pcrel_4byte", 0, 4 * 8 },
Chris Lattner835acab2010-02-12 23:00:36 +000047 { "reloc_pcrel_1byte", 0, 1 * 8 },
48 { "reloc_riprel_4byte", 0, 4 * 8 }
Daniel Dunbar73c55742010-02-09 22:59:55 +000049 };
Chris Lattner8d31de62010-02-11 21:27:18 +000050
51 if (Kind < FirstTargetFixupKind)
52 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000053
Chris Lattner8d31de62010-02-11 21:27:18 +000054 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000055 "Invalid kind!");
56 return Infos[Kind - FirstTargetFixupKind];
57 }
Chris Lattner45762472010-02-03 21:24:49 +000058
Chris Lattner28249d92010-02-05 01:53:19 +000059 static unsigned GetX86RegNum(const MCOperand &MO) {
60 return X86RegisterInfo::getX86RegNum(MO.getReg());
61 }
62
Chris Lattner37ce80e2010-02-10 06:41:02 +000063 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000064 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000065 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000066 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000067
Chris Lattner37ce80e2010-02-10 06:41:02 +000068 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
69 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000070 // Output the constant in little endian byte order.
71 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000072 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000073 Val >>= 8;
74 }
75 }
Chris Lattner0e73c392010-02-05 06:16:07 +000076
Chris Lattnercf653392010-02-12 22:36:47 +000077 void EmitImmediate(const MCOperand &Disp,
78 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000079 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000080 SmallVectorImpl<MCFixup> &Fixups,
81 int ImmOffset = 0) const;
Chris Lattner28249d92010-02-05 01:53:19 +000082
83 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
84 unsigned RM) {
85 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
86 return RM | (RegOpcode << 3) | (Mod << 6);
87 }
88
89 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000090 unsigned &CurByte, raw_ostream &OS) const {
91 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000092 }
93
Chris Lattner0e73c392010-02-05 06:16:07 +000094 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +000095 unsigned &CurByte, raw_ostream &OS) const {
96 // SIB byte is in the same format as the ModRMByte.
97 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +000098 }
99
100
Chris Lattner1ac23b12010-02-05 02:18:40 +0000101 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000102 unsigned RegOpcodeField,
Chris Lattner835acab2010-02-12 23:00:36 +0000103 unsigned TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000104 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000105
Daniel Dunbar73c55742010-02-09 22:59:55 +0000106 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
107 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000108
Chris Lattner45762472010-02-03 21:24:49 +0000109};
110
111} // end anonymous namespace
112
113
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000114MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000115 TargetMachine &TM,
116 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000117 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000118}
119
120MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000121 TargetMachine &TM,
122 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000123 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000124}
125
126
Chris Lattner1ac23b12010-02-05 02:18:40 +0000127/// isDisp8 - Return true if this signed displacement fits in a 8-bit
128/// sign-extended field.
129static bool isDisp8(int Value) {
130 return Value == (signed char)Value;
131}
132
Chris Lattnercf653392010-02-12 22:36:47 +0000133/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
134/// in an instruction with the specified TSFlags.
135static MCFixupKind getImmFixupKind(unsigned TSFlags) {
136 unsigned Size = X86II::getSizeOfImm(TSFlags);
137 bool isPCRel = X86II::isImmPCRel(TSFlags);
138
Chris Lattnercf653392010-02-12 22:36:47 +0000139 switch (Size) {
140 default: assert(0 && "Unknown immediate size");
141 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
142 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
143 case 2: assert(!isPCRel); return FK_Data_2;
144 case 8: assert(!isPCRel); return FK_Data_8;
145 }
146}
147
148
Chris Lattner0e73c392010-02-05 06:16:07 +0000149void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000150EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000151 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000152 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000153 // If this is a simple integer displacement that doesn't require a relocation,
154 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000155 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000156 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
157 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000158 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000159 return;
160 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000161
Chris Lattner835acab2010-02-12 23:00:36 +0000162 // If we have an immoffset, add it to the expression.
163 const MCExpr *Expr = DispOp.getExpr();
Chris Lattnera08b5872010-02-16 05:03:17 +0000164
165 // If the fixup is pc-relative, we need to bias the value to be relative to
166 // the start of the field, not the end of the field.
167 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
168 FixupKind == MCFixupKind(X86::reloc_riprel_4byte))
169 ImmOffset -= 4;
170 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
171 ImmOffset -= 1;
172
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000173 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000174 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000175 Ctx);
Chris Lattner835acab2010-02-12 23:00:36 +0000176
Chris Lattner5dccfad2010-02-10 06:52:12 +0000177 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000178 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000179 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000180}
181
182
Chris Lattner1ac23b12010-02-05 02:18:40 +0000183void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
184 unsigned RegOpcodeField,
Chris Lattner835acab2010-02-12 23:00:36 +0000185 unsigned TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000186 raw_ostream &OS,
187 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000188 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000189 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000190 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000191 const MCOperand &IndexReg = MI.getOperand(Op+2);
192 unsigned BaseReg = Base.getReg();
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000193
194 // Handle %rip relative addressing.
195 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
196 assert(IndexReg.getReg() == 0 && Is64BitMode &&
197 "Invalid rip-relative address");
198 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner835acab2010-02-12 23:00:36 +0000199
200 // rip-relative addressing is actually relative to the *next* instruction.
201 // Since an immediate can follow the mod/rm byte for an instruction, this
202 // means that we need to bias the immediate field of the instruction with
203 // the size of the immediate field. If we have this case, add it into the
204 // expression to emit.
205 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnera08b5872010-02-16 05:03:17 +0000206
Chris Lattner835acab2010-02-12 23:00:36 +0000207 EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_riprel_4byte),
208 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000209 return;
210 }
211
212 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000213
Chris Lattnera8168ec2010-02-09 21:57:34 +0000214 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000215 // If no BaseReg, issue a RIP relative instruction only if the MCE can
216 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
217 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000218
Chris Lattnera8168ec2010-02-09 21:57:34 +0000219 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000220 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000221 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
222 // encode to an R/M value of 4, which indicates that a SIB byte is
223 // present.
224 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000225 // If there is no base register and we're in 64-bit mode, we need a SIB
226 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
227 (!Is64BitMode || BaseReg != 0)) {
228
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000229 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000230 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000231 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000232 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000233 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000234
Chris Lattnera8168ec2010-02-09 21:57:34 +0000235 // If the base is not EBP/ESP and there is no displacement, use simple
236 // indirect register encoding, this handles addresses like [EAX]. The
237 // encoding for [EBP] with no displacement means [disp32] so we handle it
238 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000239 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000240 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000241 return;
242 }
243
244 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000245 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000246 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000247 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000248 return;
249 }
250
251 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000252 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000253 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000254 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000255 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000256
257 // We need a SIB byte, so start by outputting the ModR/M byte first
258 assert(IndexReg.getReg() != X86::ESP &&
259 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
260
261 bool ForceDisp32 = false;
262 bool ForceDisp8 = false;
263 if (BaseReg == 0) {
264 // If there is no base register, we emit the special case SIB byte with
265 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000266 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000267 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000268 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000269 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000270 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000271 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000272 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000273 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000274 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000275 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000276 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000277 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000278 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
279 } else {
280 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000281 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000282 }
283
284 // Calculate what the SS field value should be...
285 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
286 unsigned SS = SSTable[Scale.getImm()];
287
288 if (BaseReg == 0) {
289 // Handle the SIB byte for the case where there is no base, see Intel
290 // Manual 2A, table 2-7. The displacement has already been output.
291 unsigned IndexRegNo;
292 if (IndexReg.getReg())
293 IndexRegNo = GetX86RegNum(IndexReg);
294 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
295 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000296 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000297 } else {
298 unsigned IndexRegNo;
299 if (IndexReg.getReg())
300 IndexRegNo = GetX86RegNum(IndexReg);
301 else
302 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000303 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000304 }
305
306 // Do we need to output a displacement?
307 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000308 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000309 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000310 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000311}
312
Chris Lattner39a612e2010-02-05 22:10:22 +0000313/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
314/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
315/// size, and 3) use of X86-64 extended registers.
316static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
317 const TargetInstrDesc &Desc) {
Chris Lattner1cea10a2010-02-13 19:16:53 +0000318 // Pseudo instructions never have a rex byte.
319 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
320 return 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000321
Chris Lattner7e851802010-02-11 22:39:10 +0000322 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000323 if (TSFlags & X86II::REX_W)
324 REX |= 1 << 3;
325
326 if (MI.getNumOperands() == 0) return REX;
327
328 unsigned NumOps = MI.getNumOperands();
329 // FIXME: MCInst should explicitize the two-addrness.
330 bool isTwoAddr = NumOps > 1 &&
331 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
332
333 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
334 unsigned i = isTwoAddr ? 1 : 0;
335 for (; i != NumOps; ++i) {
336 const MCOperand &MO = MI.getOperand(i);
337 if (!MO.isReg()) continue;
338 unsigned Reg = MO.getReg();
339 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000340 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
341 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000342 REX |= 0x40;
343 break;
344 }
345
346 switch (TSFlags & X86II::FormMask) {
347 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
348 case X86II::MRMSrcReg:
349 if (MI.getOperand(0).isReg() &&
350 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
351 REX |= 1 << 2;
352 i = isTwoAddr ? 2 : 1;
353 for (; i != NumOps; ++i) {
354 const MCOperand &MO = MI.getOperand(i);
355 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
356 REX |= 1 << 0;
357 }
358 break;
359 case X86II::MRMSrcMem: {
360 if (MI.getOperand(0).isReg() &&
361 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
362 REX |= 1 << 2;
363 unsigned Bit = 0;
364 i = isTwoAddr ? 2 : 1;
365 for (; i != NumOps; ++i) {
366 const MCOperand &MO = MI.getOperand(i);
367 if (MO.isReg()) {
368 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
369 REX |= 1 << Bit;
370 Bit++;
371 }
372 }
373 break;
374 }
375 case X86II::MRM0m: case X86II::MRM1m:
376 case X86II::MRM2m: case X86II::MRM3m:
377 case X86II::MRM4m: case X86II::MRM5m:
378 case X86II::MRM6m: case X86II::MRM7m:
379 case X86II::MRMDestMem: {
380 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
381 i = isTwoAddr ? 1 : 0;
382 if (NumOps > e && MI.getOperand(e).isReg() &&
383 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
384 REX |= 1 << 2;
385 unsigned Bit = 0;
386 for (; i != e; ++i) {
387 const MCOperand &MO = MI.getOperand(i);
388 if (MO.isReg()) {
389 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
390 REX |= 1 << Bit;
391 Bit++;
392 }
393 }
394 break;
395 }
396 default:
397 if (MI.getOperand(0).isReg() &&
398 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
399 REX |= 1 << 0;
400 i = isTwoAddr ? 2 : 1;
401 for (unsigned e = NumOps; i != e; ++i) {
402 const MCOperand &MO = MI.getOperand(i);
403 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
404 REX |= 1 << 2;
405 }
406 break;
407 }
408 return REX;
409}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000410
411void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000412EncodeInstruction(const MCInst &MI, raw_ostream &OS,
413 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000414 unsigned Opcode = MI.getOpcode();
415 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000416 unsigned TSFlags = Desc.TSFlags;
417
Chris Lattner37ce80e2010-02-10 06:41:02 +0000418 // Keep track of the current byte being emitted.
419 unsigned CurByte = 0;
420
Chris Lattner1e80f402010-02-03 21:57:59 +0000421 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
422 // in order to provide diffability.
423
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000424 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000425 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000426 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000427
428 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000429 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000430 default: assert(0 && "Invalid segment!");
431 case 0: break; // No segment override!
432 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000433 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000434 break;
435 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000436 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000437 break;
438 }
439
Chris Lattner1e80f402010-02-03 21:57:59 +0000440 // Emit the repeat opcode prefix as needed.
441 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000442 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000443
Chris Lattner1e80f402010-02-03 21:57:59 +0000444 // Emit the operand size opcode prefix as needed.
445 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000446 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000447
448 // Emit the address size opcode prefix as needed.
449 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000450 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000451
452 bool Need0FPrefix = false;
453 switch (TSFlags & X86II::Op0Mask) {
454 default: assert(0 && "Invalid prefix!");
455 case 0: break; // No prefix!
456 case X86II::REP: break; // already handled.
457 case X86II::TB: // Two-byte opcode prefix
458 case X86II::T8: // 0F 38
459 case X86II::TA: // 0F 3A
460 Need0FPrefix = true;
461 break;
462 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000463 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000464 Need0FPrefix = true;
465 break;
466 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000467 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000468 Need0FPrefix = true;
469 break;
470 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000471 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000472 Need0FPrefix = true;
473 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000474 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
475 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
476 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
477 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
478 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
479 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
480 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
481 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000482 }
483
484 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000485 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000486 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000487 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000488 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000489 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000490
491 // 0x0F escape code must be emitted just before the opcode.
492 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000493 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000494
495 // FIXME: Pull this up into previous switch if REX can be moved earlier.
496 switch (TSFlags & X86II::Op0Mask) {
497 case X86II::TF: // F2 0F 38
498 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000499 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000500 break;
501 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000502 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000503 break;
504 }
505
506 // If this is a two-address instruction, skip one of the register operands.
507 unsigned NumOps = Desc.getNumOperands();
508 unsigned CurOp = 0;
509 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
510 ++CurOp;
511 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
512 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
513 --NumOps;
514
Chris Lattner74a21512010-02-05 19:24:13 +0000515 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000516 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000517 case X86II::MRMInitReg:
518 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000519 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000520 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1cea10a2010-02-13 19:16:53 +0000521 case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000522 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000523 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000524 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000525
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000526 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000527 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000528 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000529
530 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000531 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000532 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000533 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000534 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000535 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000536
537 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000538 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000539 EmitMemModRMByte(MI, CurOp,
540 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000541 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000542 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000543 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000544
545 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000546 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000547 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000548 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000549 CurOp += 2;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000550 break;
551
552 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000553 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000554
555 // FIXME: Maybe lea should have its own form? This is a horrible hack.
556 int AddrOperands;
557 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
558 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
559 AddrOperands = X86AddrNumOperands - 1; // No segment register
560 else
561 AddrOperands = X86AddrNumOperands;
562
Chris Lattnerdaa45552010-02-05 19:04:37 +0000563 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000564 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000565 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000566 break;
567 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000568
569 case X86II::MRM0r: case X86II::MRM1r:
570 case X86II::MRM2r: case X86II::MRM3r:
571 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000572 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000573 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000574 EmitRegModRMByte(MI.getOperand(CurOp++),
575 (TSFlags & X86II::FormMask)-X86II::MRM0r,
576 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000577 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000578 case X86II::MRM0m: case X86II::MRM1m:
579 case X86II::MRM2m: case X86II::MRM3m:
580 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000581 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000582 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000583 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000584 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000585 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000586 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000587 case X86II::MRM_C1:
588 EmitByte(BaseOpcode, CurByte, OS);
589 EmitByte(0xC1, CurByte, OS);
590 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000591 case X86II::MRM_C2:
592 EmitByte(BaseOpcode, CurByte, OS);
593 EmitByte(0xC2, CurByte, OS);
594 break;
595 case X86II::MRM_C3:
596 EmitByte(BaseOpcode, CurByte, OS);
597 EmitByte(0xC3, CurByte, OS);
598 break;
599 case X86II::MRM_C4:
600 EmitByte(BaseOpcode, CurByte, OS);
601 EmitByte(0xC4, CurByte, OS);
602 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000603 case X86II::MRM_C8:
604 EmitByte(BaseOpcode, CurByte, OS);
605 EmitByte(0xC8, CurByte, OS);
606 break;
607 case X86II::MRM_C9:
608 EmitByte(BaseOpcode, CurByte, OS);
609 EmitByte(0xC9, CurByte, OS);
610 break;
611 case X86II::MRM_E8:
612 EmitByte(BaseOpcode, CurByte, OS);
613 EmitByte(0xE8, CurByte, OS);
614 break;
615 case X86II::MRM_F0:
616 EmitByte(BaseOpcode, CurByte, OS);
617 EmitByte(0xF0, CurByte, OS);
618 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000619 case X86II::MRM_F8:
620 EmitByte(BaseOpcode, CurByte, OS);
621 EmitByte(0xF8, CurByte, OS);
622 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000623 case X86II::MRM_F9:
624 EmitByte(BaseOpcode, CurByte, OS);
625 EmitByte(0xF9, CurByte, OS);
626 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000627 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000628
629 // If there is a remaining operand, it must be a trailing immediate. Emit it
630 // according to the right size for the instruction.
631 if (CurOp != NumOps)
Chris Lattnercf653392010-02-12 22:36:47 +0000632 EmitImmediate(MI.getOperand(CurOp++),
633 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000634 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000635
636#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000637 // FIXME: Verify.
638 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000639 errs() << "Cannot encode all operands of: ";
640 MI.dump();
641 errs() << '\n';
642 abort();
643 }
644#endif
Chris Lattner45762472010-02-03 21:24:49 +0000645}