blob: 358d591bc539be377225dd4d264284c2134a2747 [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohman3bf63762010-06-18 19:54:20 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohman3bf63762010-06-18 19:54:20 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohman3bf63762010-06-18 19:54:20 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohman3bf63762010-06-18 19:54:20 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
254 if (next(I) != E)
255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
306 // This recurrence is variant w.r.t. QueryLoop if any of its operands
307 // are variant.
308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309 if (!getOperand(i)->isLoopInvariant(QueryLoop))
310 return false;
311
312 // Otherwise it's loop-invariant.
313 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000314}
315
Dan Gohman39125d82010-02-13 00:19:39 +0000316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318 return DT->dominates(L->getHeader(), BB) &&
319 SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324 // This uses a "dominates" query instead of "properly dominates" query because
325 // the instruction which produces the addrec's value is a PHI, and a PHI
326 // effectively properly dominates its entire containing block.
327 return DT->dominates(L->getHeader(), BB) &&
328 SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000331void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000333 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000335 OS << "}<";
336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341 // All non-instruction values are loop invariant. All instructions are loop
342 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000343 // Instructions are never considered invariant in the function body
344 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000346 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347 return true;
348}
Chris Lattner53e677a2004-04-02 20:23:17 +0000349
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351 if (Instruction *I = dyn_cast<Instruction>(getValue()))
352 return DT->dominates(I->getParent(), BB);
353 return true;
354}
355
Dan Gohman6e70e312009-09-27 15:26:03 +0000356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357 if (Instruction *I = dyn_cast<Instruction>(getValue()))
358 return DT->properlyDominates(I->getParent(), BB);
359 return true;
360}
361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362const Type *SCEVUnknown::getType() const {
363 return V->getType();
364}
Chris Lattner53e677a2004-04-02 20:23:17 +0000365
Dan Gohman0f5efe52010-01-28 02:15:55 +0000366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368 if (VCE->getOpcode() == Instruction::PtrToInt)
369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000370 if (CE->getOpcode() == Instruction::GetElementPtr &&
371 CE->getOperand(0)->isNullValue() &&
372 CE->getNumOperands() == 2)
373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374 if (CI->isOne()) {
375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376 ->getElementType();
377 return true;
378 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000379
380 return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385 if (VCE->getOpcode() == Instruction::PtrToInt)
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 if (CE->getOpcode() == Instruction::GetElementPtr &&
388 CE->getOperand(0)->isNullValue()) {
389 const Type *Ty =
390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391 if (const StructType *STy = dyn_cast<StructType>(Ty))
392 if (!STy->isPacked() &&
393 CE->getNumOperands() == 3 &&
394 CE->getOperand(1)->isNullValue()) {
395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396 if (CI->isOne() &&
397 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000398 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000399 AllocTy = STy->getElementType(1);
400 return true;
401 }
402 }
403 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000404
405 return false;
406}
407
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410 if (VCE->getOpcode() == Instruction::PtrToInt)
411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412 if (CE->getOpcode() == Instruction::GetElementPtr &&
413 CE->getNumOperands() == 3 &&
414 CE->getOperand(0)->isNullValue() &&
415 CE->getOperand(1)->isNullValue()) {
416 const Type *Ty =
417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418 // Ignore vector types here so that ScalarEvolutionExpander doesn't
419 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000420 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000421 CTy = Ty;
422 FieldNo = CE->getOperand(2);
423 return true;
424 }
425 }
426
427 return false;
428}
429
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000430void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000431 const Type *AllocTy;
432 if (isSizeOf(AllocTy)) {
433 OS << "sizeof(" << *AllocTy << ")";
434 return;
435 }
436 if (isAlignOf(AllocTy)) {
437 OS << "alignof(" << *AllocTy << ")";
438 return;
439 }
440
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000442 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000443 if (isOffsetOf(CTy, FieldNo)) {
444 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000445 WriteAsOperand(OS, FieldNo, false);
446 OS << ")";
447 return;
448 }
449
450 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000451 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000452}
453
Chris Lattner8d741b82004-06-20 06:23:15 +0000454//===----------------------------------------------------------------------===//
455// SCEV Utilities
456//===----------------------------------------------------------------------===//
457
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000458static bool CompareTypes(const Type *A, const Type *B) {
459 if (A->getTypeID() != B->getTypeID())
460 return A->getTypeID() < B->getTypeID();
461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462 const IntegerType *BI = cast<IntegerType>(B);
463 return AI->getBitWidth() < BI->getBitWidth();
464 }
465 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466 const PointerType *BI = cast<PointerType>(B);
467 return CompareTypes(AI->getElementType(), BI->getElementType());
468 }
469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470 const ArrayType *BI = cast<ArrayType>(B);
471 if (AI->getNumElements() != BI->getNumElements())
472 return AI->getNumElements() < BI->getNumElements();
473 return CompareTypes(AI->getElementType(), BI->getElementType());
474 }
475 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476 const VectorType *BI = cast<VectorType>(B);
477 if (AI->getNumElements() != BI->getNumElements())
478 return AI->getNumElements() < BI->getNumElements();
479 return CompareTypes(AI->getElementType(), BI->getElementType());
480 }
481 if (const StructType *AI = dyn_cast<StructType>(A)) {
482 const StructType *BI = cast<StructType>(B);
483 if (AI->getNumElements() != BI->getNumElements())
484 return AI->getNumElements() < BI->getNumElements();
485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489 }
490 return false;
491}
492
Chris Lattner8d741b82004-06-20 06:23:15 +0000493namespace {
494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495 /// than the complexity of the RHS. This comparator is used to canonicalize
496 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000497 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000498 LoopInfo *LI;
499 public:
500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000502 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000503 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504 if (LHS == RHS)
505 return false;
506
Dan Gohman72861302009-05-07 14:39:04 +0000507 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman3bf63762010-06-18 19:54:20 +0000508 if (LHS->getSCEVType() != RHS->getSCEVType())
509 return LHS->getSCEVType() < RHS->getSCEVType();
Dan Gohman72861302009-05-07 14:39:04 +0000510
Dan Gohman3bf63762010-06-18 19:54:20 +0000511 // Aside from the getSCEVType() ordering, the particular ordering
512 // isn't very important except that it's beneficial to be consistent,
513 // so that (a + b) and (b + a) don't end up as different expressions.
514
515 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
516 // not as complete as it could be.
517 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
518 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
519
520 // Order pointer values after integer values. This helps SCEVExpander
521 // form GEPs.
522 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
523 return false;
524 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
525 return true;
526
527 // Compare getValueID values.
528 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
529 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
530
531 // Sort arguments by their position.
532 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
533 const Argument *RA = cast<Argument>(RU->getValue());
534 return LA->getArgNo() < RA->getArgNo();
535 }
536
537 // For instructions, compare their loop depth, and their opcode.
538 // This is pretty loose.
539 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
540 Instruction *RV = cast<Instruction>(RU->getValue());
541
542 // Compare loop depths.
543 if (LI->getLoopDepth(LV->getParent()) !=
544 LI->getLoopDepth(RV->getParent()))
545 return LI->getLoopDepth(LV->getParent()) <
546 LI->getLoopDepth(RV->getParent());
547
548 // Compare opcodes.
549 if (LV->getOpcode() != RV->getOpcode())
550 return LV->getOpcode() < RV->getOpcode();
551
552 // Compare the number of operands.
553 if (LV->getNumOperands() != RV->getNumOperands())
554 return LV->getNumOperands() < RV->getNumOperands();
555 }
556
557 return false;
558 }
559
560 // Compare constant values.
561 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
562 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
563 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
564 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
565 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
566 }
567
568 // Compare addrec loop depths.
569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
571 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
572 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
573 }
574
575 // Lexicographically compare n-ary expressions.
576 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
579 if (i >= RC->getNumOperands())
580 return false;
581 if (operator()(LC->getOperand(i), RC->getOperand(i)))
582 return true;
583 if (operator()(RC->getOperand(i), LC->getOperand(i)))
584 return false;
585 }
586 return LC->getNumOperands() < RC->getNumOperands();
587 }
588
589 // Lexicographically compare udiv expressions.
590 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
591 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
592 if (operator()(LC->getLHS(), RC->getLHS()))
593 return true;
594 if (operator()(RC->getLHS(), LC->getLHS()))
595 return false;
596 if (operator()(LC->getRHS(), RC->getRHS()))
597 return true;
598 if (operator()(RC->getRHS(), LC->getRHS()))
599 return false;
600 return false;
601 }
602
603 // Compare cast expressions by operand.
604 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
606 return operator()(LC->getOperand(), RC->getOperand());
607 }
608
609 llvm_unreachable("Unknown SCEV kind!");
610 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 }
612 };
613}
614
615/// GroupByComplexity - Given a list of SCEV objects, order them by their
616/// complexity, and group objects of the same complexity together by value.
617/// When this routine is finished, we know that any duplicates in the vector are
618/// consecutive and that complexity is monotonically increasing.
619///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000620/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000621/// results from this routine. In other words, we don't want the results of
622/// this to depend on where the addresses of various SCEV objects happened to
623/// land in memory.
624///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000625static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000626 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000627 if (Ops.size() < 2) return; // Noop
628 if (Ops.size() == 2) {
629 // This is the common case, which also happens to be trivially simple.
630 // Special case it.
Dan Gohman3bf63762010-06-18 19:54:20 +0000631 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000632 std::swap(Ops[0], Ops[1]);
633 return;
634 }
635
Dan Gohman3bf63762010-06-18 19:54:20 +0000636 // Do the rough sort by complexity.
637 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
638
639 // Now that we are sorted by complexity, group elements of the same
640 // complexity. Note that this is, at worst, N^2, but the vector is likely to
641 // be extremely short in practice. Note that we take this approach because we
642 // do not want to depend on the addresses of the objects we are grouping.
643 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
644 const SCEV *S = Ops[i];
645 unsigned Complexity = S->getSCEVType();
646
647 // If there are any objects of the same complexity and same value as this
648 // one, group them.
649 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
650 if (Ops[j] == S) { // Found a duplicate.
651 // Move it to immediately after i'th element.
652 std::swap(Ops[i+1], Ops[j]);
653 ++i; // no need to rescan it.
654 if (i == e-2) return; // Done!
655 }
656 }
657 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000658}
659
Chris Lattner53e677a2004-04-02 20:23:17 +0000660
Chris Lattner53e677a2004-04-02 20:23:17 +0000661
662//===----------------------------------------------------------------------===//
663// Simple SCEV method implementations
664//===----------------------------------------------------------------------===//
665
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000667/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000668static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000669 ScalarEvolution &SE,
670 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // Handle the simplest case efficiently.
672 if (K == 1)
673 return SE.getTruncateOrZeroExtend(It, ResultTy);
674
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 // We are using the following formula for BC(It, K):
676 //
677 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
678 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000679 // Suppose, W is the bitwidth of the return value. We must be prepared for
680 // overflow. Hence, we must assure that the result of our computation is
681 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
682 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000683 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000685 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
687 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000688 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000690 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000691 // This formula is trivially equivalent to the previous formula. However,
692 // this formula can be implemented much more efficiently. The trick is that
693 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
694 // arithmetic. To do exact division in modular arithmetic, all we have
695 // to do is multiply by the inverse. Therefore, this step can be done at
696 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000697 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000698 // The next issue is how to safely do the division by 2^T. The way this
699 // is done is by doing the multiplication step at a width of at least W + T
700 // bits. This way, the bottom W+T bits of the product are accurate. Then,
701 // when we perform the division by 2^T (which is equivalent to a right shift
702 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
703 // truncated out after the division by 2^T.
704 //
705 // In comparison to just directly using the first formula, this technique
706 // is much more efficient; using the first formula requires W * K bits,
707 // but this formula less than W + K bits. Also, the first formula requires
708 // a division step, whereas this formula only requires multiplies and shifts.
709 //
710 // It doesn't matter whether the subtraction step is done in the calculation
711 // width or the input iteration count's width; if the subtraction overflows,
712 // the result must be zero anyway. We prefer here to do it in the width of
713 // the induction variable because it helps a lot for certain cases; CodeGen
714 // isn't smart enough to ignore the overflow, which leads to much less
715 // efficient code if the width of the subtraction is wider than the native
716 // register width.
717 //
718 // (It's possible to not widen at all by pulling out factors of 2 before
719 // the multiplication; for example, K=2 can be calculated as
720 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
721 // extra arithmetic, so it's not an obvious win, and it gets
722 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000723
Eli Friedmanb42a6262008-08-04 23:49:06 +0000724 // Protection from insane SCEVs; this bound is conservative,
725 // but it probably doesn't matter.
726 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000727 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000728
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000729 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000730
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 // Calculate K! / 2^T and T; we divide out the factors of two before
732 // multiplying for calculating K! / 2^T to avoid overflow.
733 // Other overflow doesn't matter because we only care about the bottom
734 // W bits of the result.
735 APInt OddFactorial(W, 1);
736 unsigned T = 1;
737 for (unsigned i = 3; i <= K; ++i) {
738 APInt Mult(W, i);
739 unsigned TwoFactors = Mult.countTrailingZeros();
740 T += TwoFactors;
741 Mult = Mult.lshr(TwoFactors);
742 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000743 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000744
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000746 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000748 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
750
751 // Calculate the multiplicative inverse of K! / 2^T;
752 // this multiplication factor will perform the exact division by
753 // K! / 2^T.
754 APInt Mod = APInt::getSignedMinValue(W+1);
755 APInt MultiplyFactor = OddFactorial.zext(W+1);
756 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
757 MultiplyFactor = MultiplyFactor.trunc(W);
758
759 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000760 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
761 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000762 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000764 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 Dividend = SE.getMulExpr(Dividend,
766 SE.getTruncateOrZeroExtend(S, CalculationTy));
767 }
768
769 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000770 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000771
772 // Truncate the result, and divide by K! / 2^T.
773
774 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
775 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000776}
777
Chris Lattner53e677a2004-04-02 20:23:17 +0000778/// evaluateAtIteration - Return the value of this chain of recurrences at
779/// the specified iteration number. We can evaluate this recurrence by
780/// multiplying each element in the chain by the binomial coefficient
781/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
782///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000783/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000784///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000785/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000786///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000787const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000788 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000790 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000791 // The computation is correct in the face of overflow provided that the
792 // multiplication is performed _after_ the evaluation of the binomial
793 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000794 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000795 if (isa<SCEVCouldNotCompute>(Coeff))
796 return Coeff;
797
798 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000799 }
800 return Result;
801}
802
Chris Lattner53e677a2004-04-02 20:23:17 +0000803//===----------------------------------------------------------------------===//
804// SCEV Expression folder implementations
805//===----------------------------------------------------------------------===//
806
Dan Gohman0bba49c2009-07-07 17:06:11 +0000807const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000808 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000809 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000810 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000811 assert(isSCEVable(Ty) &&
812 "This is not a conversion to a SCEVable type!");
813 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814
Dan Gohmanc050fd92009-07-13 20:50:19 +0000815 FoldingSetNodeID ID;
816 ID.AddInteger(scTruncate);
817 ID.AddPointer(Op);
818 ID.AddPointer(Ty);
819 void *IP = 0;
820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
821
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000822 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000823 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000824 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000825 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
826 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000827
Dan Gohman20900ca2009-04-22 16:20:48 +0000828 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000829 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000830 return getTruncateExpr(ST->getOperand(), Ty);
831
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000832 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000833 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000834 return getTruncateOrSignExtend(SS->getOperand(), Ty);
835
836 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000837 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000838 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
839
Dan Gohman6864db62009-06-18 16:24:47 +0000840 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000841 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000842 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000843 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000844 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
845 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000846 }
847
Dan Gohman420ab912010-06-25 18:47:08 +0000848 // The cast wasn't folded; create an explicit cast node. We can reuse
849 // the existing insert position since if we get here, we won't have
850 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000851 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
852 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000853 UniqueSCEVs.InsertNode(S, IP);
854 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000855}
856
Dan Gohman0bba49c2009-07-07 17:06:11 +0000857const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000858 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000859 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000860 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000861 assert(isSCEVable(Ty) &&
862 "This is not a conversion to a SCEVable type!");
863 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000864
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000865 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000866 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
867 return getConstant(
868 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
869 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000870
Dan Gohman20900ca2009-04-22 16:20:48 +0000871 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000872 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000873 return getZeroExtendExpr(SZ->getOperand(), Ty);
874
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000875 // Before doing any expensive analysis, check to see if we've already
876 // computed a SCEV for this Op and Ty.
877 FoldingSetNodeID ID;
878 ID.AddInteger(scZeroExtend);
879 ID.AddPointer(Op);
880 ID.AddPointer(Ty);
881 void *IP = 0;
882 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
883
Dan Gohman01ecca22009-04-27 20:16:15 +0000884 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000885 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000886 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000887 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000888 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000889 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000890 const SCEV *Start = AR->getStart();
891 const SCEV *Step = AR->getStepRecurrence(*this);
892 unsigned BitWidth = getTypeSizeInBits(AR->getType());
893 const Loop *L = AR->getLoop();
894
Dan Gohmaneb490a72009-07-25 01:22:26 +0000895 // If we have special knowledge that this addrec won't overflow,
896 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000897 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000898 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
899 getZeroExtendExpr(Step, Ty),
900 L);
901
Dan Gohman01ecca22009-04-27 20:16:15 +0000902 // Check whether the backedge-taken count is SCEVCouldNotCompute.
903 // Note that this serves two purposes: It filters out loops that are
904 // simply not analyzable, and it covers the case where this code is
905 // being called from within backedge-taken count analysis, such that
906 // attempting to ask for the backedge-taken count would likely result
907 // in infinite recursion. In the later case, the analysis code will
908 // cope with a conservative value, and it will take care to purge
909 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000910 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000911 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000912 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000913 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000914
915 // Check whether the backedge-taken count can be losslessly casted to
916 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000917 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000918 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000919 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000920 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
921 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000922 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000923 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000924 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000925 const SCEV *Add = getAddExpr(Start, ZMul);
926 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000927 getAddExpr(getZeroExtendExpr(Start, WideTy),
928 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
929 getZeroExtendExpr(Step, WideTy)));
930 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000931 // Return the expression with the addrec on the outside.
932 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
933 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000934 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000935
936 // Similar to above, only this time treat the step value as signed.
937 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000938 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000939 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000940 OperandExtendedAdd =
941 getAddExpr(getZeroExtendExpr(Start, WideTy),
942 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
943 getSignExtendExpr(Step, WideTy)));
944 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000945 // Return the expression with the addrec on the outside.
946 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
947 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000948 L);
949 }
950
951 // If the backedge is guarded by a comparison with the pre-inc value
952 // the addrec is safe. Also, if the entry is guarded by a comparison
953 // with the start value and the backedge is guarded by a comparison
954 // with the post-inc value, the addrec is safe.
955 if (isKnownPositive(Step)) {
956 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
957 getUnsignedRange(Step).getUnsignedMax());
958 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000959 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000960 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
961 AR->getPostIncExpr(*this), N)))
962 // Return the expression with the addrec on the outside.
963 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964 getZeroExtendExpr(Step, Ty),
965 L);
966 } else if (isKnownNegative(Step)) {
967 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
968 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000969 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
970 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000971 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
972 AR->getPostIncExpr(*this), N)))
973 // Return the expression with the addrec on the outside.
974 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
975 getSignExtendExpr(Step, Ty),
976 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000977 }
978 }
979 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000980
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000981 // The cast wasn't folded; create an explicit cast node.
982 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000983 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000984 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
985 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000986 UniqueSCEVs.InsertNode(S, IP);
987 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000988}
989
Dan Gohman0bba49c2009-07-07 17:06:11 +0000990const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000991 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000992 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000993 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000994 assert(isSCEVable(Ty) &&
995 "This is not a conversion to a SCEVable type!");
996 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000997
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000998 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000999 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1000 return getConstant(
1001 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1002 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001003
Dan Gohman20900ca2009-04-22 16:20:48 +00001004 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001005 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001006 return getSignExtendExpr(SS->getOperand(), Ty);
1007
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001008 // Before doing any expensive analysis, check to see if we've already
1009 // computed a SCEV for this Op and Ty.
1010 FoldingSetNodeID ID;
1011 ID.AddInteger(scSignExtend);
1012 ID.AddPointer(Op);
1013 ID.AddPointer(Ty);
1014 void *IP = 0;
1015 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1016
Dan Gohman01ecca22009-04-27 20:16:15 +00001017 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001018 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001019 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001020 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001021 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001022 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001023 const SCEV *Start = AR->getStart();
1024 const SCEV *Step = AR->getStepRecurrence(*this);
1025 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1026 const Loop *L = AR->getLoop();
1027
Dan Gohmaneb490a72009-07-25 01:22:26 +00001028 // If we have special knowledge that this addrec won't overflow,
1029 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001030 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001031 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1032 getSignExtendExpr(Step, Ty),
1033 L);
1034
Dan Gohman01ecca22009-04-27 20:16:15 +00001035 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1036 // Note that this serves two purposes: It filters out loops that are
1037 // simply not analyzable, and it covers the case where this code is
1038 // being called from within backedge-taken count analysis, such that
1039 // attempting to ask for the backedge-taken count would likely result
1040 // in infinite recursion. In the later case, the analysis code will
1041 // cope with a conservative value, and it will take care to purge
1042 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001043 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001044 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001045 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001046 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001047
1048 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001049 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001050 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001051 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001052 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001053 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1054 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001055 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001056 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001057 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001058 const SCEV *Add = getAddExpr(Start, SMul);
1059 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001060 getAddExpr(getSignExtendExpr(Start, WideTy),
1061 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1062 getSignExtendExpr(Step, WideTy)));
1063 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001064 // Return the expression with the addrec on the outside.
1065 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1066 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001067 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001068
1069 // Similar to above, only this time treat the step value as unsigned.
1070 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001071 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001072 Add = getAddExpr(Start, UMul);
1073 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001074 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001075 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1076 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001077 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001078 // Return the expression with the addrec on the outside.
1079 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1080 getZeroExtendExpr(Step, Ty),
1081 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001082 }
1083
1084 // If the backedge is guarded by a comparison with the pre-inc value
1085 // the addrec is safe. Also, if the entry is guarded by a comparison
1086 // with the start value and the backedge is guarded by a comparison
1087 // with the post-inc value, the addrec is safe.
1088 if (isKnownPositive(Step)) {
1089 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1090 getSignedRange(Step).getSignedMax());
1091 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001092 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001093 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1094 AR->getPostIncExpr(*this), N)))
1095 // Return the expression with the addrec on the outside.
1096 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1097 getSignExtendExpr(Step, Ty),
1098 L);
1099 } else if (isKnownNegative(Step)) {
1100 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1101 getSignedRange(Step).getSignedMin());
1102 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001103 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001104 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1105 AR->getPostIncExpr(*this), N)))
1106 // Return the expression with the addrec on the outside.
1107 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1108 getSignExtendExpr(Step, Ty),
1109 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001110 }
1111 }
1112 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001113
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001114 // The cast wasn't folded; create an explicit cast node.
1115 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001116 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001117 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1118 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001119 UniqueSCEVs.InsertNode(S, IP);
1120 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001121}
1122
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001123/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1124/// unspecified bits out to the given type.
1125///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001126const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001127 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001128 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1129 "This is not an extending conversion!");
1130 assert(isSCEVable(Ty) &&
1131 "This is not a conversion to a SCEVable type!");
1132 Ty = getEffectiveSCEVType(Ty);
1133
1134 // Sign-extend negative constants.
1135 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1136 if (SC->getValue()->getValue().isNegative())
1137 return getSignExtendExpr(Op, Ty);
1138
1139 // Peel off a truncate cast.
1140 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001141 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001142 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1143 return getAnyExtendExpr(NewOp, Ty);
1144 return getTruncateOrNoop(NewOp, Ty);
1145 }
1146
1147 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001148 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001149 if (!isa<SCEVZeroExtendExpr>(ZExt))
1150 return ZExt;
1151
1152 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001153 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001154 if (!isa<SCEVSignExtendExpr>(SExt))
1155 return SExt;
1156
Dan Gohmana10756e2010-01-21 02:09:26 +00001157 // Force the cast to be folded into the operands of an addrec.
1158 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1159 SmallVector<const SCEV *, 4> Ops;
1160 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1161 I != E; ++I)
1162 Ops.push_back(getAnyExtendExpr(*I, Ty));
1163 return getAddRecExpr(Ops, AR->getLoop());
1164 }
1165
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001166 // If the expression is obviously signed, use the sext cast value.
1167 if (isa<SCEVSMaxExpr>(Op))
1168 return SExt;
1169
1170 // Absent any other information, use the zext cast value.
1171 return ZExt;
1172}
1173
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001174/// CollectAddOperandsWithScales - Process the given Ops list, which is
1175/// a list of operands to be added under the given scale, update the given
1176/// map. This is a helper function for getAddRecExpr. As an example of
1177/// what it does, given a sequence of operands that would form an add
1178/// expression like this:
1179///
1180/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1181///
1182/// where A and B are constants, update the map with these values:
1183///
1184/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1185///
1186/// and add 13 + A*B*29 to AccumulatedConstant.
1187/// This will allow getAddRecExpr to produce this:
1188///
1189/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1190///
1191/// This form often exposes folding opportunities that are hidden in
1192/// the original operand list.
1193///
1194/// Return true iff it appears that any interesting folding opportunities
1195/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1196/// the common case where no interesting opportunities are present, and
1197/// is also used as a check to avoid infinite recursion.
1198///
1199static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001200CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1201 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001202 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001203 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001204 const APInt &Scale,
1205 ScalarEvolution &SE) {
1206 bool Interesting = false;
1207
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001208 // Iterate over the add operands. They are sorted, with constants first.
1209 unsigned i = 0;
1210 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1211 ++i;
1212 // Pull a buried constant out to the outside.
1213 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1214 Interesting = true;
1215 AccumulatedConstant += Scale * C->getValue()->getValue();
1216 }
1217
1218 // Next comes everything else. We're especially interested in multiplies
1219 // here, but they're in the middle, so just visit the rest with one loop.
1220 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001221 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1222 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1223 APInt NewScale =
1224 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1225 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1226 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001227 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001228 Interesting |=
1229 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001230 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001231 NewScale, SE);
1232 } else {
1233 // A multiplication of a constant with some other value. Update
1234 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001235 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1236 const SCEV *Key = SE.getMulExpr(MulOps);
1237 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001238 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001239 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001240 NewOps.push_back(Pair.first->first);
1241 } else {
1242 Pair.first->second += NewScale;
1243 // The map already had an entry for this value, which may indicate
1244 // a folding opportunity.
1245 Interesting = true;
1246 }
1247 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001248 } else {
1249 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001250 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001251 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001252 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001253 NewOps.push_back(Pair.first->first);
1254 } else {
1255 Pair.first->second += Scale;
1256 // The map already had an entry for this value, which may indicate
1257 // a folding opportunity.
1258 Interesting = true;
1259 }
1260 }
1261 }
1262
1263 return Interesting;
1264}
1265
1266namespace {
1267 struct APIntCompare {
1268 bool operator()(const APInt &LHS, const APInt &RHS) const {
1269 return LHS.ult(RHS);
1270 }
1271 };
1272}
1273
Dan Gohman6c0866c2009-05-24 23:45:28 +00001274/// getAddExpr - Get a canonical add expression, or something simpler if
1275/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001276const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1277 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001278 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001279 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001280#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001281 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001282 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001283 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001284 "SCEVAddExpr operand types don't match!");
1285#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001286
Dan Gohmana10756e2010-01-21 02:09:26 +00001287 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1288 if (!HasNUW && HasNSW) {
1289 bool All = true;
1290 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1291 if (!isKnownNonNegative(Ops[i])) {
1292 All = false;
1293 break;
1294 }
1295 if (All) HasNUW = true;
1296 }
1297
Chris Lattner53e677a2004-04-02 20:23:17 +00001298 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001299 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001300
1301 // If there are any constants, fold them together.
1302 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001303 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001304 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001305 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001306 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001307 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001308 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1309 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001310 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001311 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001312 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001313 }
1314
1315 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001316 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001317 Ops.erase(Ops.begin());
1318 --Idx;
1319 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001320
Dan Gohmanbca091d2010-04-12 23:08:18 +00001321 if (Ops.size() == 1) return Ops[0];
1322 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001323
Chris Lattner53e677a2004-04-02 20:23:17 +00001324 // Okay, check to see if the same value occurs in the operand list twice. If
1325 // so, merge them together into an multiply expression. Since we sorted the
1326 // list, these values are required to be adjacent.
1327 const Type *Ty = Ops[0]->getType();
1328 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1329 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1330 // Found a match, merge the two values into a multiply, and add any
1331 // remaining values to the result.
Dan Gohmandeff6212010-05-03 22:09:21 +00001332 const SCEV *Two = getConstant(Ty, 2);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001333 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001334 if (Ops.size() == 2)
1335 return Mul;
1336 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1337 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001338 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001339 }
1340
Dan Gohman728c7f32009-05-08 21:03:19 +00001341 // Check for truncates. If all the operands are truncated from the same
1342 // type, see if factoring out the truncate would permit the result to be
1343 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1344 // if the contents of the resulting outer trunc fold to something simple.
1345 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1346 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1347 const Type *DstType = Trunc->getType();
1348 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001349 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001350 bool Ok = true;
1351 // Check all the operands to see if they can be represented in the
1352 // source type of the truncate.
1353 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1354 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1355 if (T->getOperand()->getType() != SrcType) {
1356 Ok = false;
1357 break;
1358 }
1359 LargeOps.push_back(T->getOperand());
1360 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001361 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001362 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001363 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001364 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1365 if (const SCEVTruncateExpr *T =
1366 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1367 if (T->getOperand()->getType() != SrcType) {
1368 Ok = false;
1369 break;
1370 }
1371 LargeMulOps.push_back(T->getOperand());
1372 } else if (const SCEVConstant *C =
1373 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001374 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001375 } else {
1376 Ok = false;
1377 break;
1378 }
1379 }
1380 if (Ok)
1381 LargeOps.push_back(getMulExpr(LargeMulOps));
1382 } else {
1383 Ok = false;
1384 break;
1385 }
1386 }
1387 if (Ok) {
1388 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001389 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001390 // If it folds to something simple, use it. Otherwise, don't.
1391 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1392 return getTruncateExpr(Fold, DstType);
1393 }
1394 }
1395
1396 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001397 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1398 ++Idx;
1399
1400 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001401 if (Idx < Ops.size()) {
1402 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001403 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001404 // If we have an add, expand the add operands onto the end of the operands
1405 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001406 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001407 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001408 DeletedAdd = true;
1409 }
1410
1411 // If we deleted at least one add, we added operands to the end of the list,
1412 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001413 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001414 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001415 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001416 }
1417
1418 // Skip over the add expression until we get to a multiply.
1419 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1420 ++Idx;
1421
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001422 // Check to see if there are any folding opportunities present with
1423 // operands multiplied by constant values.
1424 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1425 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001426 DenseMap<const SCEV *, APInt> M;
1427 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001428 APInt AccumulatedConstant(BitWidth, 0);
1429 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001430 Ops.data(), Ops.size(),
1431 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001432 // Some interesting folding opportunity is present, so its worthwhile to
1433 // re-generate the operands list. Group the operands by constant scale,
1434 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001435 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1436 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001437 E = NewOps.end(); I != E; ++I)
1438 MulOpLists[M.find(*I)->second].push_back(*I);
1439 // Re-generate the operands list.
1440 Ops.clear();
1441 if (AccumulatedConstant != 0)
1442 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001443 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1444 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001445 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001446 Ops.push_back(getMulExpr(getConstant(I->first),
1447 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001448 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001449 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001450 if (Ops.size() == 1)
1451 return Ops[0];
1452 return getAddExpr(Ops);
1453 }
1454 }
1455
Chris Lattner53e677a2004-04-02 20:23:17 +00001456 // If we are adding something to a multiply expression, make sure the
1457 // something is not already an operand of the multiply. If so, merge it into
1458 // the multiply.
1459 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001460 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001461 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001462 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001463 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001464 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001465 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001466 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001467 if (Mul->getNumOperands() != 2) {
1468 // If the multiply has more than two operands, we must get the
1469 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001470 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001471 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001472 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001473 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001474 const SCEV *One = getConstant(Ty, 1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001475 const SCEV *AddOne = getAddExpr(InnerMul, One);
1476 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001477 if (Ops.size() == 2) return OuterMul;
1478 if (AddOp < Idx) {
1479 Ops.erase(Ops.begin()+AddOp);
1480 Ops.erase(Ops.begin()+Idx-1);
1481 } else {
1482 Ops.erase(Ops.begin()+Idx);
1483 Ops.erase(Ops.begin()+AddOp-1);
1484 }
1485 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001486 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001487 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001488
Chris Lattner53e677a2004-04-02 20:23:17 +00001489 // Check this multiply against other multiplies being added together.
1490 for (unsigned OtherMulIdx = Idx+1;
1491 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1492 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001493 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 // If MulOp occurs in OtherMul, we can fold the two multiplies
1495 // together.
1496 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1497 OMulOp != e; ++OMulOp)
1498 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1499 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001500 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001502 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1503 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001505 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001506 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001507 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001509 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1510 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001511 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001512 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001514 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1515 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001516 if (Ops.size() == 2) return OuterMul;
1517 Ops.erase(Ops.begin()+Idx);
1518 Ops.erase(Ops.begin()+OtherMulIdx-1);
1519 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001520 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 }
1522 }
1523 }
1524 }
1525
1526 // If there are any add recurrences in the operands list, see if any other
1527 // added values are loop invariant. If so, we can fold them into the
1528 // recurrence.
1529 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1530 ++Idx;
1531
1532 // Scan over all recurrences, trying to fold loop invariants into them.
1533 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1534 // Scan all of the other operands to this add and add them to the vector if
1535 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001536 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001537 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001538 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001539 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001540 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001541 LIOps.push_back(Ops[i]);
1542 Ops.erase(Ops.begin()+i);
1543 --i; --e;
1544 }
1545
1546 // If we found some loop invariants, fold them into the recurrence.
1547 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001548 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001549 LIOps.push_back(AddRec->getStart());
1550
Dan Gohman0bba49c2009-07-07 17:06:11 +00001551 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001552 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001553 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001554
Dan Gohmanb9f96512010-06-30 07:16:37 +00001555 // Build the new addrec. Propagate the NUW and NSW flags if both the
1556 // outer add and the inner addrec are guaranteed to have no overflow.
1557 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1558 HasNUW && AddRec->hasNoUnsignedWrap(),
1559 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001560
Chris Lattner53e677a2004-04-02 20:23:17 +00001561 // If all of the other operands were loop invariant, we are done.
1562 if (Ops.size() == 1) return NewRec;
1563
1564 // Otherwise, add the folded AddRec by the non-liv parts.
1565 for (unsigned i = 0;; ++i)
1566 if (Ops[i] == AddRec) {
1567 Ops[i] = NewRec;
1568 break;
1569 }
Dan Gohman246b2562007-10-22 18:31:58 +00001570 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001571 }
1572
1573 // Okay, if there weren't any loop invariants to be folded, check to see if
1574 // there are multiple AddRec's with the same loop induction variable being
1575 // added together. If so, we can fold them.
1576 for (unsigned OtherIdx = Idx+1;
1577 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1578 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001579 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001580 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001581 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001582 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1583 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001584 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1585 if (i >= NewOps.size()) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001586 NewOps.append(OtherAddRec->op_begin()+i,
Chris Lattner53e677a2004-04-02 20:23:17 +00001587 OtherAddRec->op_end());
1588 break;
1589 }
Dan Gohman246b2562007-10-22 18:31:58 +00001590 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001591 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001592 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001593
1594 if (Ops.size() == 2) return NewAddRec;
1595
1596 Ops.erase(Ops.begin()+Idx);
1597 Ops.erase(Ops.begin()+OtherIdx-1);
1598 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001599 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001600 }
1601 }
1602
1603 // Otherwise couldn't fold anything into this recurrence. Move onto the
1604 // next one.
1605 }
1606
1607 // Okay, it looks like we really DO need an add expr. Check to see if we
1608 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001609 FoldingSetNodeID ID;
1610 ID.AddInteger(scAddExpr);
1611 ID.AddInteger(Ops.size());
1612 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1613 ID.AddPointer(Ops[i]);
1614 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001615 SCEVAddExpr *S =
1616 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1617 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001618 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1619 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001620 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1621 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001622 UniqueSCEVs.InsertNode(S, IP);
1623 }
Dan Gohman3645b012009-10-09 00:10:36 +00001624 if (HasNUW) S->setHasNoUnsignedWrap(true);
1625 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001626 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001627}
1628
Dan Gohman6c0866c2009-05-24 23:45:28 +00001629/// getMulExpr - Get a canonical multiply expression, or something simpler if
1630/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001631const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1632 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001633 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001634 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001635#ifndef NDEBUG
1636 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1637 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1638 getEffectiveSCEVType(Ops[0]->getType()) &&
1639 "SCEVMulExpr operand types don't match!");
1640#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001641
Dan Gohmana10756e2010-01-21 02:09:26 +00001642 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1643 if (!HasNUW && HasNSW) {
1644 bool All = true;
1645 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1646 if (!isKnownNonNegative(Ops[i])) {
1647 All = false;
1648 break;
1649 }
1650 if (All) HasNUW = true;
1651 }
1652
Chris Lattner53e677a2004-04-02 20:23:17 +00001653 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001654 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001655
1656 // If there are any constants, fold them together.
1657 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001658 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001659
1660 // C1*(C2+V) -> C1*C2 + C1*V
1661 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001662 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001663 if (Add->getNumOperands() == 2 &&
1664 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001665 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1666 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001667
Chris Lattner53e677a2004-04-02 20:23:17 +00001668 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001669 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001670 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001671 ConstantInt *Fold = ConstantInt::get(getContext(),
1672 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001673 RHSC->getValue()->getValue());
1674 Ops[0] = getConstant(Fold);
1675 Ops.erase(Ops.begin()+1); // Erase the folded element
1676 if (Ops.size() == 1) return Ops[0];
1677 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001678 }
1679
1680 // If we are left with a constant one being multiplied, strip it off.
1681 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1682 Ops.erase(Ops.begin());
1683 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001684 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001685 // If we have a multiply of zero, it will always be zero.
1686 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001687 } else if (Ops[0]->isAllOnesValue()) {
1688 // If we have a mul by -1 of an add, try distributing the -1 among the
1689 // add operands.
1690 if (Ops.size() == 2)
1691 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1692 SmallVector<const SCEV *, 4> NewOps;
1693 bool AnyFolded = false;
1694 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1695 I != E; ++I) {
1696 const SCEV *Mul = getMulExpr(Ops[0], *I);
1697 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1698 NewOps.push_back(Mul);
1699 }
1700 if (AnyFolded)
1701 return getAddExpr(NewOps);
1702 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001703 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001704
1705 if (Ops.size() == 1)
1706 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001707 }
1708
1709 // Skip over the add expression until we get to a multiply.
1710 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1711 ++Idx;
1712
Chris Lattner53e677a2004-04-02 20:23:17 +00001713 // If there are mul operands inline them all into this expression.
1714 if (Idx < Ops.size()) {
1715 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001716 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001717 // If we have an mul, expand the mul operands onto the end of the operands
1718 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001719 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001720 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001721 DeletedMul = true;
1722 }
1723
1724 // If we deleted at least one mul, we added operands to the end of the list,
1725 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001726 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001727 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001728 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001729 }
1730
1731 // If there are any add recurrences in the operands list, see if any other
1732 // added values are loop invariant. If so, we can fold them into the
1733 // recurrence.
1734 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1735 ++Idx;
1736
1737 // Scan over all recurrences, trying to fold loop invariants into them.
1738 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1739 // Scan all of the other operands to this mul and add them to the vector if
1740 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001741 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001742 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001743 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1744 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1745 LIOps.push_back(Ops[i]);
1746 Ops.erase(Ops.begin()+i);
1747 --i; --e;
1748 }
1749
1750 // If we found some loop invariants, fold them into the recurrence.
1751 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001752 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001753 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001754 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001755 const SCEV *Scale = getMulExpr(LIOps);
1756 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1757 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001758
Dan Gohmanb9f96512010-06-30 07:16:37 +00001759 // Build the new addrec. Propagate the NUW and NSW flags if both the
1760 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohmana10756e2010-01-21 02:09:26 +00001761 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1762 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001763 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001764
1765 // If all of the other operands were loop invariant, we are done.
1766 if (Ops.size() == 1) return NewRec;
1767
1768 // Otherwise, multiply the folded AddRec by the non-liv parts.
1769 for (unsigned i = 0;; ++i)
1770 if (Ops[i] == AddRec) {
1771 Ops[i] = NewRec;
1772 break;
1773 }
Dan Gohman246b2562007-10-22 18:31:58 +00001774 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001775 }
1776
1777 // Okay, if there weren't any loop invariants to be folded, check to see if
1778 // there are multiple AddRec's with the same loop induction variable being
1779 // multiplied together. If so, we can fold them.
1780 for (unsigned OtherIdx = Idx+1;
1781 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1782 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001783 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001784 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1785 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001786 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001787 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001788 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001789 const SCEV *B = F->getStepRecurrence(*this);
1790 const SCEV *D = G->getStepRecurrence(*this);
1791 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001792 getMulExpr(G, B),
1793 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001794 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001795 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001796 if (Ops.size() == 2) return NewAddRec;
1797
1798 Ops.erase(Ops.begin()+Idx);
1799 Ops.erase(Ops.begin()+OtherIdx-1);
1800 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001801 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001802 }
1803 }
1804
1805 // Otherwise couldn't fold anything into this recurrence. Move onto the
1806 // next one.
1807 }
1808
1809 // Okay, it looks like we really DO need an mul expr. Check to see if we
1810 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001811 FoldingSetNodeID ID;
1812 ID.AddInteger(scMulExpr);
1813 ID.AddInteger(Ops.size());
1814 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1815 ID.AddPointer(Ops[i]);
1816 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001817 SCEVMulExpr *S =
1818 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1819 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001820 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1821 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001822 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1823 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001824 UniqueSCEVs.InsertNode(S, IP);
1825 }
Dan Gohman3645b012009-10-09 00:10:36 +00001826 if (HasNUW) S->setHasNoUnsignedWrap(true);
1827 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001828 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001829}
1830
Andreas Bolka8a11c982009-08-07 22:55:26 +00001831/// getUDivExpr - Get a canonical unsigned division expression, or something
1832/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001833const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1834 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001835 assert(getEffectiveSCEVType(LHS->getType()) ==
1836 getEffectiveSCEVType(RHS->getType()) &&
1837 "SCEVUDivExpr operand types don't match!");
1838
Dan Gohman622ed672009-05-04 22:02:23 +00001839 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001840 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001841 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001842 // If the denominator is zero, the result of the udiv is undefined. Don't
1843 // try to analyze it, because the resolution chosen here may differ from
1844 // the resolution chosen in other parts of the compiler.
1845 if (!RHSC->getValue()->isZero()) {
1846 // Determine if the division can be folded into the operands of
1847 // its operands.
1848 // TODO: Generalize this to non-constants by using known-bits information.
1849 const Type *Ty = LHS->getType();
1850 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1851 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1852 // For non-power-of-two values, effectively round the value up to the
1853 // nearest power of two.
1854 if (!RHSC->getValue()->getValue().isPowerOf2())
1855 ++MaxShiftAmt;
1856 const IntegerType *ExtTy =
1857 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1858 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1859 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1860 if (const SCEVConstant *Step =
1861 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1862 if (!Step->getValue()->getValue()
1863 .urem(RHSC->getValue()->getValue()) &&
1864 getZeroExtendExpr(AR, ExtTy) ==
1865 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1866 getZeroExtendExpr(Step, ExtTy),
1867 AR->getLoop())) {
1868 SmallVector<const SCEV *, 4> Operands;
1869 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1870 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1871 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001872 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001873 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1874 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1875 SmallVector<const SCEV *, 4> Operands;
1876 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1877 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1878 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1879 // Find an operand that's safely divisible.
1880 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1881 const SCEV *Op = M->getOperand(i);
1882 const SCEV *Div = getUDivExpr(Op, RHSC);
1883 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1884 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1885 M->op_end());
1886 Operands[i] = Div;
1887 return getMulExpr(Operands);
1888 }
1889 }
Dan Gohman185cf032009-05-08 20:18:49 +00001890 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001891 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1892 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1893 SmallVector<const SCEV *, 4> Operands;
1894 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1895 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1896 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1897 Operands.clear();
1898 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1899 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1900 if (isa<SCEVUDivExpr>(Op) ||
1901 getMulExpr(Op, RHS) != A->getOperand(i))
1902 break;
1903 Operands.push_back(Op);
1904 }
1905 if (Operands.size() == A->getNumOperands())
1906 return getAddExpr(Operands);
1907 }
1908 }
Dan Gohman185cf032009-05-08 20:18:49 +00001909
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001910 // Fold if both operands are constant.
1911 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1912 Constant *LHSCV = LHSC->getValue();
1913 Constant *RHSCV = RHSC->getValue();
1914 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1915 RHSCV)));
1916 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001917 }
1918 }
1919
Dan Gohman1c343752009-06-27 21:21:31 +00001920 FoldingSetNodeID ID;
1921 ID.AddInteger(scUDivExpr);
1922 ID.AddPointer(LHS);
1923 ID.AddPointer(RHS);
1924 void *IP = 0;
1925 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001926 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1927 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001928 UniqueSCEVs.InsertNode(S, IP);
1929 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001930}
1931
1932
Dan Gohman6c0866c2009-05-24 23:45:28 +00001933/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1934/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001935const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001936 const SCEV *Step, const Loop *L,
1937 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001938 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001939 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001940 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001941 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001942 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001943 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001944 }
1945
1946 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001947 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001948}
1949
Dan Gohman6c0866c2009-05-24 23:45:28 +00001950/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1951/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001952const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001953ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001954 const Loop *L,
1955 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001956 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001957#ifndef NDEBUG
1958 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1959 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1960 getEffectiveSCEVType(Operands[0]->getType()) &&
1961 "SCEVAddRecExpr operand types don't match!");
1962#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001963
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001964 if (Operands.back()->isZero()) {
1965 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001966 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001967 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001968
Dan Gohmanbc028532010-02-19 18:49:22 +00001969 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1970 // use that information to infer NUW and NSW flags. However, computing a
1971 // BE count requires calling getAddRecExpr, so we may not yet have a
1972 // meaningful BE count at this point (and if we don't, we'd be stuck
1973 // with a SCEVCouldNotCompute as the cached BE count).
1974
Dan Gohmana10756e2010-01-21 02:09:26 +00001975 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1976 if (!HasNUW && HasNSW) {
1977 bool All = true;
1978 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1979 if (!isKnownNonNegative(Operands[i])) {
1980 All = false;
1981 break;
1982 }
1983 if (All) HasNUW = true;
1984 }
1985
Dan Gohmand9cc7492008-08-08 18:33:12 +00001986 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001987 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001988 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00001989 if (L->contains(NestedLoop->getHeader()) ?
1990 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1991 (!NestedLoop->contains(L->getHeader()) &&
1992 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001993 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001994 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001995 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001996 // AddRecs require their operands be loop-invariant with respect to their
1997 // loops. Don't perform this transformation if it would break this
1998 // requirement.
1999 bool AllInvariant = true;
2000 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2001 if (!Operands[i]->isLoopInvariant(L)) {
2002 AllInvariant = false;
2003 break;
2004 }
2005 if (AllInvariant) {
2006 NestedOperands[0] = getAddRecExpr(Operands, L);
2007 AllInvariant = true;
2008 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2009 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2010 AllInvariant = false;
2011 break;
2012 }
2013 if (AllInvariant)
2014 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002015 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002016 }
2017 // Reset Operands to its original state.
2018 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002019 }
2020 }
2021
Dan Gohman67847532010-01-19 22:27:22 +00002022 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2023 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002024 FoldingSetNodeID ID;
2025 ID.AddInteger(scAddRecExpr);
2026 ID.AddInteger(Operands.size());
2027 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2028 ID.AddPointer(Operands[i]);
2029 ID.AddPointer(L);
2030 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002031 SCEVAddRecExpr *S =
2032 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2033 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002034 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2035 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002036 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2037 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002038 UniqueSCEVs.InsertNode(S, IP);
2039 }
Dan Gohman3645b012009-10-09 00:10:36 +00002040 if (HasNUW) S->setHasNoUnsignedWrap(true);
2041 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002042 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002043}
2044
Dan Gohman9311ef62009-06-24 14:49:00 +00002045const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2046 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002047 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002048 Ops.push_back(LHS);
2049 Ops.push_back(RHS);
2050 return getSMaxExpr(Ops);
2051}
2052
Dan Gohman0bba49c2009-07-07 17:06:11 +00002053const SCEV *
2054ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002055 assert(!Ops.empty() && "Cannot get empty smax!");
2056 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002057#ifndef NDEBUG
2058 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2059 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2060 getEffectiveSCEVType(Ops[0]->getType()) &&
2061 "SCEVSMaxExpr operand types don't match!");
2062#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002063
2064 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002065 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002066
2067 // If there are any constants, fold them together.
2068 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002069 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002070 ++Idx;
2071 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002072 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002073 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002074 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002075 APIntOps::smax(LHSC->getValue()->getValue(),
2076 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002077 Ops[0] = getConstant(Fold);
2078 Ops.erase(Ops.begin()+1); // Erase the folded element
2079 if (Ops.size() == 1) return Ops[0];
2080 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002081 }
2082
Dan Gohmane5aceed2009-06-24 14:46:22 +00002083 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002084 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2085 Ops.erase(Ops.begin());
2086 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002087 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2088 // If we have an smax with a constant maximum-int, it will always be
2089 // maximum-int.
2090 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002091 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002092
Dan Gohman3ab13122010-04-13 16:49:23 +00002093 if (Ops.size() == 1) return Ops[0];
2094 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002095
2096 // Find the first SMax
2097 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2098 ++Idx;
2099
2100 // Check to see if one of the operands is an SMax. If so, expand its operands
2101 // onto our operand list, and recurse to simplify.
2102 if (Idx < Ops.size()) {
2103 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002104 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002105 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002106 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002107 DeletedSMax = true;
2108 }
2109
2110 if (DeletedSMax)
2111 return getSMaxExpr(Ops);
2112 }
2113
2114 // Okay, check to see if the same value occurs in the operand list twice. If
2115 // so, delete one. Since we sorted the list, these values are required to
2116 // be adjacent.
2117 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002118 // X smax Y smax Y --> X smax Y
2119 // X smax Y --> X, if X is always greater than Y
2120 if (Ops[i] == Ops[i+1] ||
2121 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2122 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2123 --i; --e;
2124 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002125 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2126 --i; --e;
2127 }
2128
2129 if (Ops.size() == 1) return Ops[0];
2130
2131 assert(!Ops.empty() && "Reduced smax down to nothing!");
2132
Nick Lewycky3e630762008-02-20 06:48:22 +00002133 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002134 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002135 FoldingSetNodeID ID;
2136 ID.AddInteger(scSMaxExpr);
2137 ID.AddInteger(Ops.size());
2138 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2139 ID.AddPointer(Ops[i]);
2140 void *IP = 0;
2141 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002142 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2143 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002144 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2145 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002146 UniqueSCEVs.InsertNode(S, IP);
2147 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002148}
2149
Dan Gohman9311ef62009-06-24 14:49:00 +00002150const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2151 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002152 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002153 Ops.push_back(LHS);
2154 Ops.push_back(RHS);
2155 return getUMaxExpr(Ops);
2156}
2157
Dan Gohman0bba49c2009-07-07 17:06:11 +00002158const SCEV *
2159ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002160 assert(!Ops.empty() && "Cannot get empty umax!");
2161 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002162#ifndef NDEBUG
2163 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2164 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2165 getEffectiveSCEVType(Ops[0]->getType()) &&
2166 "SCEVUMaxExpr operand types don't match!");
2167#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002168
2169 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002170 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002171
2172 // If there are any constants, fold them together.
2173 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002174 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002175 ++Idx;
2176 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002177 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002178 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002179 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002180 APIntOps::umax(LHSC->getValue()->getValue(),
2181 RHSC->getValue()->getValue()));
2182 Ops[0] = getConstant(Fold);
2183 Ops.erase(Ops.begin()+1); // Erase the folded element
2184 if (Ops.size() == 1) return Ops[0];
2185 LHSC = cast<SCEVConstant>(Ops[0]);
2186 }
2187
Dan Gohmane5aceed2009-06-24 14:46:22 +00002188 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002189 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2190 Ops.erase(Ops.begin());
2191 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002192 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2193 // If we have an umax with a constant maximum-int, it will always be
2194 // maximum-int.
2195 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002196 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002197
Dan Gohman3ab13122010-04-13 16:49:23 +00002198 if (Ops.size() == 1) return Ops[0];
2199 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002200
2201 // Find the first UMax
2202 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2203 ++Idx;
2204
2205 // Check to see if one of the operands is a UMax. If so, expand its operands
2206 // onto our operand list, and recurse to simplify.
2207 if (Idx < Ops.size()) {
2208 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002209 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002210 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002211 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002212 DeletedUMax = true;
2213 }
2214
2215 if (DeletedUMax)
2216 return getUMaxExpr(Ops);
2217 }
2218
2219 // Okay, check to see if the same value occurs in the operand list twice. If
2220 // so, delete one. Since we sorted the list, these values are required to
2221 // be adjacent.
2222 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002223 // X umax Y umax Y --> X umax Y
2224 // X umax Y --> X, if X is always greater than Y
2225 if (Ops[i] == Ops[i+1] ||
2226 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2227 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2228 --i; --e;
2229 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002230 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2231 --i; --e;
2232 }
2233
2234 if (Ops.size() == 1) return Ops[0];
2235
2236 assert(!Ops.empty() && "Reduced umax down to nothing!");
2237
2238 // Okay, it looks like we really DO need a umax expr. Check to see if we
2239 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002240 FoldingSetNodeID ID;
2241 ID.AddInteger(scUMaxExpr);
2242 ID.AddInteger(Ops.size());
2243 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2244 ID.AddPointer(Ops[i]);
2245 void *IP = 0;
2246 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002247 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2248 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002249 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2250 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002251 UniqueSCEVs.InsertNode(S, IP);
2252 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002253}
2254
Dan Gohman9311ef62009-06-24 14:49:00 +00002255const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2256 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002257 // ~smax(~x, ~y) == smin(x, y).
2258 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2259}
2260
Dan Gohman9311ef62009-06-24 14:49:00 +00002261const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2262 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002263 // ~umax(~x, ~y) == umin(x, y)
2264 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2265}
2266
Dan Gohman4f8eea82010-02-01 18:27:38 +00002267const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002268 // If we have TargetData, we can bypass creating a target-independent
2269 // constant expression and then folding it back into a ConstantInt.
2270 // This is just a compile-time optimization.
2271 if (TD)
2272 return getConstant(TD->getIntPtrType(getContext()),
2273 TD->getTypeAllocSize(AllocTy));
2274
Dan Gohman4f8eea82010-02-01 18:27:38 +00002275 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2276 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002277 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2278 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002279 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2280 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2281}
2282
2283const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2284 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2285 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002286 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2287 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002288 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2289 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2290}
2291
2292const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2293 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002294 // If we have TargetData, we can bypass creating a target-independent
2295 // constant expression and then folding it back into a ConstantInt.
2296 // This is just a compile-time optimization.
2297 if (TD)
2298 return getConstant(TD->getIntPtrType(getContext()),
2299 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2300
Dan Gohman0f5efe52010-01-28 02:15:55 +00002301 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2302 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002303 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2304 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002305 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002306 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002307}
2308
Dan Gohman4f8eea82010-02-01 18:27:38 +00002309const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2310 Constant *FieldNo) {
2311 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002312 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002313 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2314 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002315 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002316 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002317}
2318
Dan Gohman0bba49c2009-07-07 17:06:11 +00002319const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002320 // Don't attempt to do anything other than create a SCEVUnknown object
2321 // here. createSCEV only calls getUnknown after checking for all other
2322 // interesting possibilities, and any other code that calls getUnknown
2323 // is doing so in order to hide a value from SCEV canonicalization.
2324
Dan Gohman1c343752009-06-27 21:21:31 +00002325 FoldingSetNodeID ID;
2326 ID.AddInteger(scUnknown);
2327 ID.AddPointer(V);
2328 void *IP = 0;
2329 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +00002330 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002331 UniqueSCEVs.InsertNode(S, IP);
2332 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002333}
2334
Chris Lattner53e677a2004-04-02 20:23:17 +00002335//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002336// Basic SCEV Analysis and PHI Idiom Recognition Code
2337//
2338
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002339/// isSCEVable - Test if values of the given type are analyzable within
2340/// the SCEV framework. This primarily includes integer types, and it
2341/// can optionally include pointer types if the ScalarEvolution class
2342/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002343bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002344 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002345 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002346}
2347
2348/// getTypeSizeInBits - Return the size in bits of the specified type,
2349/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002350uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002351 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2352
2353 // If we have a TargetData, use it!
2354 if (TD)
2355 return TD->getTypeSizeInBits(Ty);
2356
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002357 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002358 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002359 return Ty->getPrimitiveSizeInBits();
2360
2361 // The only other support type is pointer. Without TargetData, conservatively
2362 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002363 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002364 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002365}
2366
2367/// getEffectiveSCEVType - Return a type with the same bitwidth as
2368/// the given type and which represents how SCEV will treat the given
2369/// type, for which isSCEVable must return true. For pointer types,
2370/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002371const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002372 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2373
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002374 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002375 return Ty;
2376
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002377 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002378 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002379 if (TD) return TD->getIntPtrType(getContext());
2380
2381 // Without TargetData, conservatively assume pointers are 64-bit.
2382 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002383}
Chris Lattner53e677a2004-04-02 20:23:17 +00002384
Dan Gohman0bba49c2009-07-07 17:06:11 +00002385const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002386 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002387}
2388
Chris Lattner53e677a2004-04-02 20:23:17 +00002389/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2390/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002391const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002392 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002393
Dan Gohman0bba49c2009-07-07 17:06:11 +00002394 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002395 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002396 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002397 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002398 return S;
2399}
2400
Dan Gohman2d1be872009-04-16 03:18:22 +00002401/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2402///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002403const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002404 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002405 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002406 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002407
2408 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002409 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002410 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002411 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002412}
2413
2414/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002415const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002416 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002417 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002418 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002419
2420 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002421 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002422 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002423 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002424 return getMinusSCEV(AllOnes, V);
2425}
2426
2427/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2428///
Dan Gohman9311ef62009-06-24 14:49:00 +00002429const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2430 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002431 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002432 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002433}
2434
2435/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2436/// input value to the specified type. If the type must be extended, it is zero
2437/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002438const SCEV *
2439ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002440 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002441 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002442 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2443 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002444 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002445 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002446 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002447 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002448 return getTruncateExpr(V, Ty);
2449 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002450}
2451
2452/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2453/// input value to the specified type. If the type must be extended, it is sign
2454/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002455const SCEV *
2456ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002457 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002458 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002459 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2460 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002461 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002462 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002463 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002464 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002465 return getTruncateExpr(V, Ty);
2466 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002467}
2468
Dan Gohman467c4302009-05-13 03:46:30 +00002469/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2470/// input value to the specified type. If the type must be extended, it is zero
2471/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002472const SCEV *
2473ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002474 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002475 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2476 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002477 "Cannot noop or zero extend with non-integer arguments!");
2478 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2479 "getNoopOrZeroExtend cannot truncate!");
2480 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2481 return V; // No conversion
2482 return getZeroExtendExpr(V, Ty);
2483}
2484
2485/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2486/// input value to the specified type. If the type must be extended, it is sign
2487/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002488const SCEV *
2489ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002490 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002491 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2492 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002493 "Cannot noop or sign extend with non-integer arguments!");
2494 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2495 "getNoopOrSignExtend cannot truncate!");
2496 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2497 return V; // No conversion
2498 return getSignExtendExpr(V, Ty);
2499}
2500
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002501/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2502/// the input value to the specified type. If the type must be extended,
2503/// it is extended with unspecified bits. The conversion must not be
2504/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002505const SCEV *
2506ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002507 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002508 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2509 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002510 "Cannot noop or any extend with non-integer arguments!");
2511 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2512 "getNoopOrAnyExtend cannot truncate!");
2513 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2514 return V; // No conversion
2515 return getAnyExtendExpr(V, Ty);
2516}
2517
Dan Gohman467c4302009-05-13 03:46:30 +00002518/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2519/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002520const SCEV *
2521ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002522 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002523 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2524 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002525 "Cannot truncate or noop with non-integer arguments!");
2526 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2527 "getTruncateOrNoop cannot extend!");
2528 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2529 return V; // No conversion
2530 return getTruncateExpr(V, Ty);
2531}
2532
Dan Gohmana334aa72009-06-22 00:31:57 +00002533/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2534/// the types using zero-extension, and then perform a umax operation
2535/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002536const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2537 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002538 const SCEV *PromotedLHS = LHS;
2539 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002540
2541 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2542 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2543 else
2544 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2545
2546 return getUMaxExpr(PromotedLHS, PromotedRHS);
2547}
2548
Dan Gohmanc9759e82009-06-22 15:03:27 +00002549/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2550/// the types using zero-extension, and then perform a umin operation
2551/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002552const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2553 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002554 const SCEV *PromotedLHS = LHS;
2555 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002556
2557 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2558 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2559 else
2560 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2561
2562 return getUMinExpr(PromotedLHS, PromotedRHS);
2563}
2564
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002565/// PushDefUseChildren - Push users of the given Instruction
2566/// onto the given Worklist.
2567static void
2568PushDefUseChildren(Instruction *I,
2569 SmallVectorImpl<Instruction *> &Worklist) {
2570 // Push the def-use children onto the Worklist stack.
2571 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2572 UI != UE; ++UI)
2573 Worklist.push_back(cast<Instruction>(UI));
2574}
2575
2576/// ForgetSymbolicValue - This looks up computed SCEV values for all
2577/// instructions that depend on the given instruction and removes them from
2578/// the Scalars map if they reference SymName. This is used during PHI
2579/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002580void
Dan Gohman85669632010-02-25 06:57:05 +00002581ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002582 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002583 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002584
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002585 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002586 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002587 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002588 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002589 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002590
Dan Gohman5d984912009-12-18 01:14:11 +00002591 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002592 Scalars.find(static_cast<Value *>(I));
2593 if (It != Scalars.end()) {
2594 // Short-circuit the def-use traversal if the symbolic name
2595 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002596 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002597 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002598
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002599 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002600 // structure, it's a PHI that's in the progress of being computed
2601 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2602 // additional loop trip count information isn't going to change anything.
2603 // In the second case, createNodeForPHI will perform the necessary
2604 // updates on its own when it gets to that point. In the third, we do
2605 // want to forget the SCEVUnknown.
2606 if (!isa<PHINode>(I) ||
2607 !isa<SCEVUnknown>(It->second) ||
2608 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002609 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002610 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002611 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002612 }
2613
2614 PushDefUseChildren(I, Worklist);
2615 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002616}
Chris Lattner53e677a2004-04-02 20:23:17 +00002617
2618/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2619/// a loop header, making it a potential recurrence, or it doesn't.
2620///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002621const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002622 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2623 if (L->getHeader() == PN->getParent()) {
2624 // The loop may have multiple entrances or multiple exits; we can analyze
2625 // this phi as an addrec if it has a unique entry value and a unique
2626 // backedge value.
2627 Value *BEValueV = 0, *StartValueV = 0;
2628 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2629 Value *V = PN->getIncomingValue(i);
2630 if (L->contains(PN->getIncomingBlock(i))) {
2631 if (!BEValueV) {
2632 BEValueV = V;
2633 } else if (BEValueV != V) {
2634 BEValueV = 0;
2635 break;
2636 }
2637 } else if (!StartValueV) {
2638 StartValueV = V;
2639 } else if (StartValueV != V) {
2640 StartValueV = 0;
2641 break;
2642 }
2643 }
2644 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002645 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002646 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002647 assert(Scalars.find(PN) == Scalars.end() &&
2648 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002649 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002650
2651 // Using this symbolic name for the PHI, analyze the value coming around
2652 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002653 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002654
2655 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2656 // has a special value for the first iteration of the loop.
2657
2658 // If the value coming around the backedge is an add with the symbolic
2659 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002660 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002661 // If there is a single occurrence of the symbolic value, replace it
2662 // with a recurrence.
2663 unsigned FoundIndex = Add->getNumOperands();
2664 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2665 if (Add->getOperand(i) == SymbolicName)
2666 if (FoundIndex == e) {
2667 FoundIndex = i;
2668 break;
2669 }
2670
2671 if (FoundIndex != Add->getNumOperands()) {
2672 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002673 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002674 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2675 if (i != FoundIndex)
2676 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002677 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002678
2679 // This is not a valid addrec if the step amount is varying each
2680 // loop iteration, but is not itself an addrec in this loop.
2681 if (Accum->isLoopInvariant(L) ||
2682 (isa<SCEVAddRecExpr>(Accum) &&
2683 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002684 bool HasNUW = false;
2685 bool HasNSW = false;
2686
2687 // If the increment doesn't overflow, then neither the addrec nor
2688 // the post-increment will overflow.
2689 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2690 if (OBO->hasNoUnsignedWrap())
2691 HasNUW = true;
2692 if (OBO->hasNoSignedWrap())
2693 HasNSW = true;
2694 }
2695
Dan Gohman27dead42010-04-12 07:49:36 +00002696 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002697 const SCEV *PHISCEV =
2698 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002699
Dan Gohmana10756e2010-01-21 02:09:26 +00002700 // Since the no-wrap flags are on the increment, they apply to the
2701 // post-incremented value as well.
2702 if (Accum->isLoopInvariant(L))
2703 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2704 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002705
2706 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002707 // to be symbolic. We now need to go back and purge all of the
2708 // entries for the scalars that use the symbolic expression.
2709 ForgetSymbolicName(PN, SymbolicName);
2710 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002711 return PHISCEV;
2712 }
2713 }
Dan Gohman622ed672009-05-04 22:02:23 +00002714 } else if (const SCEVAddRecExpr *AddRec =
2715 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002716 // Otherwise, this could be a loop like this:
2717 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2718 // In this case, j = {1,+,1} and BEValue is j.
2719 // Because the other in-value of i (0) fits the evolution of BEValue
2720 // i really is an addrec evolution.
2721 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002722 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002723
2724 // If StartVal = j.start - j.stride, we can use StartVal as the
2725 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002726 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002727 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002728 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002729 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002730
2731 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002732 // to be symbolic. We now need to go back and purge all of the
2733 // entries for the scalars that use the symbolic expression.
2734 ForgetSymbolicName(PN, SymbolicName);
2735 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002736 return PHISCEV;
2737 }
2738 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002739 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002740 }
Dan Gohman27dead42010-04-12 07:49:36 +00002741 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002742
Dan Gohman85669632010-02-25 06:57:05 +00002743 // If the PHI has a single incoming value, follow that value, unless the
2744 // PHI's incoming blocks are in a different loop, in which case doing so
2745 // risks breaking LCSSA form. Instcombine would normally zap these, but
2746 // it doesn't have DominatorTree information, so it may miss cases.
2747 if (Value *V = PN->hasConstantValue(DT)) {
2748 bool AllSameLoop = true;
2749 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2750 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2751 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2752 AllSameLoop = false;
2753 break;
2754 }
2755 if (AllSameLoop)
2756 return getSCEV(V);
2757 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002758
Chris Lattner53e677a2004-04-02 20:23:17 +00002759 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002760 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002761}
2762
Dan Gohmanb9f96512010-06-30 07:16:37 +00002763/// UseFlag - When creating an operator with operands L and R based on an
2764/// LLVM IR instruction in basic block BB where the instruction has
2765/// nsw, nuw, or inbounds, test whether the corresponding flag can be
2766/// set for the resulting SCEV.
2767static bool
2768UseFlag(bool Flag, const SCEV *L, const SCEV *R, const Value *Inst) {
2769 // If the flag is not set, don't use it. This is included here to reduce
2770 // clutter in the callers.
2771 if (!Flag)
2772 return false;
2773
2774 // Determine the block which contains the instruction with the flag.
2775 const Instruction *I = dyn_cast<Instruction>(Inst);
2776 if (!I)
2777 return false;
2778 const BasicBlock *BB = I->getParent();
2779
2780 // Handle an easy case: test if exactly one of the operands is an addrec
2781 // and that the instruction is trivially control-equivalent to the addrec's
2782 // loop's header.
2783 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(L)) {
2784 if (!isa<SCEVAddRecExpr>(R) &&
2785 AR->getLoop()->getHeader() == BB)
2786 return true;
2787 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(R)) {
2788 if (AR->getLoop()->getHeader() == BB)
2789 return true;
2790 }
2791
2792 return false;
2793}
2794
Dan Gohman26466c02009-05-08 20:26:55 +00002795/// createNodeForGEP - Expand GEP instructions into add and multiply
2796/// operations. This allows them to be analyzed by regular SCEV code.
2797///
Dan Gohmand281ed22009-12-18 02:09:29 +00002798const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002799
Dan Gohmanb9f96512010-06-30 07:16:37 +00002800 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2801 // Add expression, because the Instruction may be guarded by control flow
2802 // and the no-overflow bits may not be valid for the expression in any
2803 // context. However, in the special case where the GEP is in the loop header,
2804 // we know it's trivially control-equivalent to any addrecs for that loop.
2805 bool InBounds = GEP->isInBounds();
Dan Gohman7a642572010-06-29 01:41:41 +00002806
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002807 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002808 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002809 // Don't attempt to analyze GEPs over unsized objects.
2810 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2811 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002812 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002813 gep_type_iterator GTI = gep_type_begin(GEP);
2814 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2815 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002816 I != E; ++I) {
2817 Value *Index = *I;
2818 // Compute the (potentially symbolic) offset in bytes for this index.
2819 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2820 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002821 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002822 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2823
2824 // Test if the GEP has the inbounds keyword and is control-equivalent
2825 // to the addrec.
2826 bool HasNUW = UseFlag(InBounds, TotalOffset, FieldOffset, GEP);
2827
2828 // Add the field offset to the running total offset.
2829 TotalOffset = getAddExpr(TotalOffset, FieldOffset,
2830 HasNUW, /*HasNSW=*/false);
Dan Gohman26466c02009-05-08 20:26:55 +00002831 } else {
2832 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002833 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2834 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002835 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002836 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2837
2838 // Test if the GEP has the inbounds keyword and is control-equivalent
2839 // to the addrec.
2840 bool HasNUW = UseFlag(InBounds, IndexS, ElementSize, GEP);
2841
2842 // Multiply the index by the element size to compute the element offset.
2843 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
2844 HasNUW, /*HasNSW=*/false);
2845
2846 // Test if the GEP has the inbounds keyword and is control-equivalent
2847 // to the addrec.
2848 HasNUW = UseFlag(InBounds, TotalOffset, LocalOffset, GEP);
2849
2850 // Add the element offset to the running total offset.
Dan Gohmand281ed22009-12-18 02:09:29 +00002851 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
Dan Gohmanb9f96512010-06-30 07:16:37 +00002852 HasNUW, /*HasNSW=*/false);
Dan Gohman26466c02009-05-08 20:26:55 +00002853 }
2854 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002855
2856 // Get the SCEV for the GEP base.
2857 const SCEV *BaseS = getSCEV(Base);
2858
2859 // Test if the GEP has the inbounds keyword and is control-equivalent
2860 // to the addrec.
2861 bool HasNUW = UseFlag(InBounds, BaseS, TotalOffset, GEP);
2862
2863 // Add the total offset from all the GEP indices to the base.
2864 return getAddExpr(BaseS, TotalOffset, HasNUW, /*HasNSW=*/false);
Dan Gohman26466c02009-05-08 20:26:55 +00002865}
2866
Nick Lewycky83bb0052007-11-22 07:59:40 +00002867/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2868/// guaranteed to end in (at every loop iteration). It is, at the same time,
2869/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2870/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002871uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002872ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002873 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002874 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002875
Dan Gohman622ed672009-05-04 22:02:23 +00002876 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002877 return std::min(GetMinTrailingZeros(T->getOperand()),
2878 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002879
Dan Gohman622ed672009-05-04 22:02:23 +00002880 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002881 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2882 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2883 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002884 }
2885
Dan Gohman622ed672009-05-04 22:02:23 +00002886 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002887 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2888 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2889 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002890 }
2891
Dan Gohman622ed672009-05-04 22:02:23 +00002892 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002893 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002894 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002895 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002896 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002897 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002898 }
2899
Dan Gohman622ed672009-05-04 22:02:23 +00002900 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002901 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002902 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2903 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002904 for (unsigned i = 1, e = M->getNumOperands();
2905 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002906 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002907 BitWidth);
2908 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002909 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002910
Dan Gohman622ed672009-05-04 22:02:23 +00002911 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002912 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002913 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002914 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002915 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002916 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002917 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002918
Dan Gohman622ed672009-05-04 22:02:23 +00002919 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002920 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002921 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002922 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002923 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002924 return MinOpRes;
2925 }
2926
Dan Gohman622ed672009-05-04 22:02:23 +00002927 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002928 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002929 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002930 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002931 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002932 return MinOpRes;
2933 }
2934
Dan Gohman2c364ad2009-06-19 23:29:04 +00002935 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2936 // For a SCEVUnknown, ask ValueTracking.
2937 unsigned BitWidth = getTypeSizeInBits(U->getType());
2938 APInt Mask = APInt::getAllOnesValue(BitWidth);
2939 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2940 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2941 return Zeros.countTrailingOnes();
2942 }
2943
2944 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002945 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002946}
Chris Lattner53e677a2004-04-02 20:23:17 +00002947
Dan Gohman85b05a22009-07-13 21:35:55 +00002948/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2949///
2950ConstantRange
2951ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002952
2953 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002954 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002955
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002956 unsigned BitWidth = getTypeSizeInBits(S->getType());
2957 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2958
2959 // If the value has known zeros, the maximum unsigned value will have those
2960 // known zeros as well.
2961 uint32_t TZ = GetMinTrailingZeros(S);
2962 if (TZ != 0)
2963 ConservativeResult =
2964 ConstantRange(APInt::getMinValue(BitWidth),
2965 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2966
Dan Gohman85b05a22009-07-13 21:35:55 +00002967 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2968 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2969 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2970 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002971 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002972 }
2973
2974 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2975 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2976 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2977 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002978 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002979 }
2980
2981 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2982 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2983 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2984 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002985 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002986 }
2987
2988 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2989 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2990 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2991 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002992 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002993 }
2994
2995 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2996 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2997 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002998 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002999 }
3000
3001 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3002 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003003 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003004 }
3005
3006 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3007 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003008 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003009 }
3010
3011 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3012 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003013 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003014 }
3015
Dan Gohman85b05a22009-07-13 21:35:55 +00003016 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003017 // If there's no unsigned wrap, the value will never be less than its
3018 // initial value.
3019 if (AddRec->hasNoUnsignedWrap())
3020 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003021 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003022 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003023 ConservativeResult.intersectWith(
3024 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003025
3026 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003027 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003028 const Type *Ty = AddRec->getType();
3029 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003030 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3031 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003032 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3033
3034 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003035 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003036
3037 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003038 ConstantRange StepRange = getSignedRange(Step);
3039 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3040 ConstantRange EndRange =
3041 StartRange.add(MaxBECountRange.multiply(StepRange));
3042
3043 // Check for overflow. This must be done with ConstantRange arithmetic
3044 // because we could be called from within the ScalarEvolution overflow
3045 // checking code.
3046 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3047 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3048 ConstantRange ExtMaxBECountRange =
3049 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3050 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3051 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3052 ExtEndRange)
3053 return ConservativeResult;
3054
Dan Gohman85b05a22009-07-13 21:35:55 +00003055 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3056 EndRange.getUnsignedMin());
3057 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3058 EndRange.getUnsignedMax());
3059 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003060 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003061 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003062 }
3063 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003064
3065 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003066 }
3067
3068 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3069 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003070 APInt Mask = APInt::getAllOnesValue(BitWidth);
3071 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3072 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003073 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003074 return ConservativeResult;
3075 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003076 }
3077
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003078 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003079}
3080
Dan Gohman85b05a22009-07-13 21:35:55 +00003081/// getSignedRange - Determine the signed range for a particular SCEV.
3082///
3083ConstantRange
3084ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003085
Dan Gohman85b05a22009-07-13 21:35:55 +00003086 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3087 return ConstantRange(C->getValue()->getValue());
3088
Dan Gohman52fddd32010-01-26 04:40:18 +00003089 unsigned BitWidth = getTypeSizeInBits(S->getType());
3090 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3091
3092 // If the value has known zeros, the maximum signed value will have those
3093 // known zeros as well.
3094 uint32_t TZ = GetMinTrailingZeros(S);
3095 if (TZ != 0)
3096 ConservativeResult =
3097 ConstantRange(APInt::getSignedMinValue(BitWidth),
3098 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3099
Dan Gohman85b05a22009-07-13 21:35:55 +00003100 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3101 ConstantRange X = getSignedRange(Add->getOperand(0));
3102 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3103 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003104 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003105 }
3106
Dan Gohman85b05a22009-07-13 21:35:55 +00003107 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3108 ConstantRange X = getSignedRange(Mul->getOperand(0));
3109 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3110 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003111 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003112 }
3113
Dan Gohman85b05a22009-07-13 21:35:55 +00003114 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3115 ConstantRange X = getSignedRange(SMax->getOperand(0));
3116 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3117 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003118 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003119 }
Dan Gohman62849c02009-06-24 01:05:09 +00003120
Dan Gohman85b05a22009-07-13 21:35:55 +00003121 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3122 ConstantRange X = getSignedRange(UMax->getOperand(0));
3123 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3124 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003125 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003126 }
Dan Gohman62849c02009-06-24 01:05:09 +00003127
Dan Gohman85b05a22009-07-13 21:35:55 +00003128 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3129 ConstantRange X = getSignedRange(UDiv->getLHS());
3130 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003131 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003132 }
Dan Gohman62849c02009-06-24 01:05:09 +00003133
Dan Gohman85b05a22009-07-13 21:35:55 +00003134 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3135 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003136 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003137 }
3138
3139 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3140 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003141 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003142 }
3143
3144 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3145 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003146 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003147 }
3148
Dan Gohman85b05a22009-07-13 21:35:55 +00003149 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003150 // If there's no signed wrap, and all the operands have the same sign or
3151 // zero, the value won't ever change sign.
3152 if (AddRec->hasNoSignedWrap()) {
3153 bool AllNonNeg = true;
3154 bool AllNonPos = true;
3155 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3156 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3157 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3158 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003159 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003160 ConservativeResult = ConservativeResult.intersectWith(
3161 ConstantRange(APInt(BitWidth, 0),
3162 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003163 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003164 ConservativeResult = ConservativeResult.intersectWith(
3165 ConstantRange(APInt::getSignedMinValue(BitWidth),
3166 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003167 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003168
3169 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003170 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003171 const Type *Ty = AddRec->getType();
3172 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003173 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3174 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003175 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3176
3177 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003178 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003179
3180 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003181 ConstantRange StepRange = getSignedRange(Step);
3182 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3183 ConstantRange EndRange =
3184 StartRange.add(MaxBECountRange.multiply(StepRange));
3185
3186 // Check for overflow. This must be done with ConstantRange arithmetic
3187 // because we could be called from within the ScalarEvolution overflow
3188 // checking code.
3189 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3190 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3191 ConstantRange ExtMaxBECountRange =
3192 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3193 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3194 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3195 ExtEndRange)
3196 return ConservativeResult;
3197
Dan Gohman85b05a22009-07-13 21:35:55 +00003198 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3199 EndRange.getSignedMin());
3200 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3201 EndRange.getSignedMax());
3202 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003203 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003204 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003205 }
Dan Gohman62849c02009-06-24 01:05:09 +00003206 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003207
3208 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003209 }
3210
Dan Gohman2c364ad2009-06-19 23:29:04 +00003211 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3212 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003213 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003214 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003215 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3216 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003217 return ConservativeResult;
3218 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003219 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003220 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003221 }
3222
Dan Gohman52fddd32010-01-26 04:40:18 +00003223 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003224}
3225
Chris Lattner53e677a2004-04-02 20:23:17 +00003226/// createSCEV - We know that there is no SCEV for the specified value.
3227/// Analyze the expression.
3228///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003229const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003230 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003231 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003232
Dan Gohman6c459a22008-06-22 19:56:46 +00003233 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003234 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003235 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003236
3237 // Don't attempt to analyze instructions in blocks that aren't
3238 // reachable. Such instructions don't matter, and they aren't required
3239 // to obey basic rules for definitions dominating uses which this
3240 // analysis depends on.
3241 if (!DT->isReachableFromEntry(I->getParent()))
3242 return getUnknown(V);
3243 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003244 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003245 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3246 return getConstant(CI);
3247 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003248 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003249 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3250 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003251 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003252 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003253
Dan Gohmanca178902009-07-17 20:47:02 +00003254 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003255 switch (Opcode) {
Dan Gohmanb9f96512010-06-30 07:16:37 +00003256 case Instruction::Add: {
3257 const SCEV *LHS = getSCEV(U->getOperand(0));
3258 const SCEV *RHS = getSCEV(U->getOperand(1));
3259
Dan Gohman7a721952009-10-09 16:35:06 +00003260 // Don't transfer the NSW and NUW bits from the Add instruction to the
Dan Gohmanb9f96512010-06-30 07:16:37 +00003261 // Add expression unless we can prove that it's safe.
3262 AddOperator *Add = cast<AddOperator>(U);
3263 bool HasNUW = UseFlag(Add->hasNoUnsignedWrap(), LHS, RHS, Add);
3264 bool HasNSW = UseFlag(Add->hasNoSignedWrap(), LHS, RHS, Add);
3265
3266 return getAddExpr(LHS, RHS, HasNUW, HasNSW);
3267 }
3268 case Instruction::Mul: {
3269 const SCEV *LHS = getSCEV(U->getOperand(0));
3270 const SCEV *RHS = getSCEV(U->getOperand(1));
3271
Dan Gohman7a721952009-10-09 16:35:06 +00003272 // Don't transfer the NSW and NUW bits from the Mul instruction to the
Dan Gohmanb9f96512010-06-30 07:16:37 +00003273 // Mul expression unless we can prove that it's safe.
3274 MulOperator *Mul = cast<MulOperator>(U);
3275 bool HasNUW = UseFlag(Mul->hasNoUnsignedWrap(), LHS, RHS, Mul);
3276 bool HasNSW = UseFlag(Mul->hasNoSignedWrap(), LHS, RHS, Mul);
3277
3278 return getMulExpr(LHS, RHS, HasNUW, HasNSW);
3279 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003280 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003281 return getUDivExpr(getSCEV(U->getOperand(0)),
3282 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003283 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003284 return getMinusSCEV(getSCEV(U->getOperand(0)),
3285 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003286 case Instruction::And:
3287 // For an expression like x&255 that merely masks off the high bits,
3288 // use zext(trunc(x)) as the SCEV expression.
3289 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003290 if (CI->isNullValue())
3291 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003292 if (CI->isAllOnesValue())
3293 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003294 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003295
3296 // Instcombine's ShrinkDemandedConstant may strip bits out of
3297 // constants, obscuring what would otherwise be a low-bits mask.
3298 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3299 // knew about to reconstruct a low-bits mask value.
3300 unsigned LZ = A.countLeadingZeros();
3301 unsigned BitWidth = A.getBitWidth();
3302 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3303 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3304 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3305
3306 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3307
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003308 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003309 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003310 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003311 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003312 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003313 }
3314 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003315
Dan Gohman6c459a22008-06-22 19:56:46 +00003316 case Instruction::Or:
3317 // If the RHS of the Or is a constant, we may have something like:
3318 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3319 // optimizations will transparently handle this case.
3320 //
3321 // In order for this transformation to be safe, the LHS must be of the
3322 // form X*(2^n) and the Or constant must be less than 2^n.
3323 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003324 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003325 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003326 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003327 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3328 // Build a plain add SCEV.
3329 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3330 // If the LHS of the add was an addrec and it has no-wrap flags,
3331 // transfer the no-wrap flags, since an or won't introduce a wrap.
3332 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3333 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3334 if (OldAR->hasNoUnsignedWrap())
3335 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3336 if (OldAR->hasNoSignedWrap())
3337 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3338 }
3339 return S;
3340 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003341 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003342 break;
3343 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003344 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003345 // If the RHS of the xor is a signbit, then this is just an add.
3346 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003347 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003348 return getAddExpr(getSCEV(U->getOperand(0)),
3349 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003350
3351 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003352 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003353 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003354
3355 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3356 // This is a variant of the check for xor with -1, and it handles
3357 // the case where instcombine has trimmed non-demanded bits out
3358 // of an xor with -1.
3359 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3360 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3361 if (BO->getOpcode() == Instruction::And &&
3362 LCI->getValue() == CI->getValue())
3363 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003364 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003365 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003366 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003367 const Type *Z0Ty = Z0->getType();
3368 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3369
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003370 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003371 // mask off the high bits. Complement the operand and
3372 // re-apply the zext.
3373 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3374 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3375
3376 // If C is a single bit, it may be in the sign-bit position
3377 // before the zero-extend. In this case, represent the xor
3378 // using an add, which is equivalent, and re-apply the zext.
3379 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3380 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3381 Trunc.isSignBit())
3382 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3383 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003384 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003385 }
3386 break;
3387
3388 case Instruction::Shl:
3389 // Turn shift left of a constant amount into a multiply.
3390 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003391 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003392
3393 // If the shift count is not less than the bitwidth, the result of
3394 // the shift is undefined. Don't try to analyze it, because the
3395 // resolution chosen here may differ from the resolution chosen in
3396 // other parts of the compiler.
3397 if (SA->getValue().uge(BitWidth))
3398 break;
3399
Owen Andersoneed707b2009-07-24 23:12:02 +00003400 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003401 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003402 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003403 }
3404 break;
3405
Nick Lewycky01eaf802008-07-07 06:15:49 +00003406 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003407 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003408 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003409 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003410
3411 // If the shift count is not less than the bitwidth, the result of
3412 // the shift is undefined. Don't try to analyze it, because the
3413 // resolution chosen here may differ from the resolution chosen in
3414 // other parts of the compiler.
3415 if (SA->getValue().uge(BitWidth))
3416 break;
3417
Owen Andersoneed707b2009-07-24 23:12:02 +00003418 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003419 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003420 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003421 }
3422 break;
3423
Dan Gohman4ee29af2009-04-21 02:26:00 +00003424 case Instruction::AShr:
3425 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3426 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003427 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003428 if (L->getOpcode() == Instruction::Shl &&
3429 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003430 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3431
3432 // If the shift count is not less than the bitwidth, the result of
3433 // the shift is undefined. Don't try to analyze it, because the
3434 // resolution chosen here may differ from the resolution chosen in
3435 // other parts of the compiler.
3436 if (CI->getValue().uge(BitWidth))
3437 break;
3438
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003439 uint64_t Amt = BitWidth - CI->getZExtValue();
3440 if (Amt == BitWidth)
3441 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003442 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003443 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003444 IntegerType::get(getContext(),
3445 Amt)),
3446 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003447 }
3448 break;
3449
Dan Gohman6c459a22008-06-22 19:56:46 +00003450 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003451 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003452
3453 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003454 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003455
3456 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003457 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003458
3459 case Instruction::BitCast:
3460 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003461 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003462 return getSCEV(U->getOperand(0));
3463 break;
3464
Dan Gohman4f8eea82010-02-01 18:27:38 +00003465 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3466 // lead to pointer expressions which cannot safely be expanded to GEPs,
3467 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3468 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003469
Dan Gohman26466c02009-05-08 20:26:55 +00003470 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003471 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003472
Dan Gohman6c459a22008-06-22 19:56:46 +00003473 case Instruction::PHI:
3474 return createNodeForPHI(cast<PHINode>(U));
3475
3476 case Instruction::Select:
3477 // This could be a smax or umax that was lowered earlier.
3478 // Try to recover it.
3479 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3480 Value *LHS = ICI->getOperand(0);
3481 Value *RHS = ICI->getOperand(1);
3482 switch (ICI->getPredicate()) {
3483 case ICmpInst::ICMP_SLT:
3484 case ICmpInst::ICMP_SLE:
3485 std::swap(LHS, RHS);
3486 // fall through
3487 case ICmpInst::ICMP_SGT:
3488 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003489 // a >s b ? a+x : b+x -> smax(a, b)+x
3490 // a >s b ? b+x : a+x -> smin(a, b)+x
3491 if (LHS->getType() == U->getType()) {
3492 const SCEV *LS = getSCEV(LHS);
3493 const SCEV *RS = getSCEV(RHS);
3494 const SCEV *LA = getSCEV(U->getOperand(1));
3495 const SCEV *RA = getSCEV(U->getOperand(2));
3496 const SCEV *LDiff = getMinusSCEV(LA, LS);
3497 const SCEV *RDiff = getMinusSCEV(RA, RS);
3498 if (LDiff == RDiff)
3499 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3500 LDiff = getMinusSCEV(LA, RS);
3501 RDiff = getMinusSCEV(RA, LS);
3502 if (LDiff == RDiff)
3503 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3504 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003505 break;
3506 case ICmpInst::ICMP_ULT:
3507 case ICmpInst::ICMP_ULE:
3508 std::swap(LHS, RHS);
3509 // fall through
3510 case ICmpInst::ICMP_UGT:
3511 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003512 // a >u b ? a+x : b+x -> umax(a, b)+x
3513 // a >u b ? b+x : a+x -> umin(a, b)+x
3514 if (LHS->getType() == U->getType()) {
3515 const SCEV *LS = getSCEV(LHS);
3516 const SCEV *RS = getSCEV(RHS);
3517 const SCEV *LA = getSCEV(U->getOperand(1));
3518 const SCEV *RA = getSCEV(U->getOperand(2));
3519 const SCEV *LDiff = getMinusSCEV(LA, LS);
3520 const SCEV *RDiff = getMinusSCEV(RA, RS);
3521 if (LDiff == RDiff)
3522 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3523 LDiff = getMinusSCEV(LA, RS);
3524 RDiff = getMinusSCEV(RA, LS);
3525 if (LDiff == RDiff)
3526 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3527 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003528 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003529 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003530 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3531 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003532 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003533 cast<ConstantInt>(RHS)->isZero()) {
3534 const SCEV *One = getConstant(LHS->getType(), 1);
3535 const SCEV *LS = getSCEV(LHS);
3536 const SCEV *LA = getSCEV(U->getOperand(1));
3537 const SCEV *RA = getSCEV(U->getOperand(2));
3538 const SCEV *LDiff = getMinusSCEV(LA, LS);
3539 const SCEV *RDiff = getMinusSCEV(RA, One);
3540 if (LDiff == RDiff)
3541 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3542 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003543 break;
3544 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003545 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3546 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003547 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003548 cast<ConstantInt>(RHS)->isZero()) {
3549 const SCEV *One = getConstant(LHS->getType(), 1);
3550 const SCEV *LS = getSCEV(LHS);
3551 const SCEV *LA = getSCEV(U->getOperand(1));
3552 const SCEV *RA = getSCEV(U->getOperand(2));
3553 const SCEV *LDiff = getMinusSCEV(LA, One);
3554 const SCEV *RDiff = getMinusSCEV(RA, LS);
3555 if (LDiff == RDiff)
3556 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3557 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003558 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003559 default:
3560 break;
3561 }
3562 }
3563
3564 default: // We cannot analyze this expression.
3565 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003566 }
3567
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003568 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003569}
3570
3571
3572
3573//===----------------------------------------------------------------------===//
3574// Iteration Count Computation Code
3575//
3576
Dan Gohman46bdfb02009-02-24 18:55:53 +00003577/// getBackedgeTakenCount - If the specified loop has a predictable
3578/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3579/// object. The backedge-taken count is the number of times the loop header
3580/// will be branched to from within the loop. This is one less than the
3581/// trip count of the loop, since it doesn't count the first iteration,
3582/// when the header is branched to from outside the loop.
3583///
3584/// Note that it is not valid to call this method on a loop without a
3585/// loop-invariant backedge-taken count (see
3586/// hasLoopInvariantBackedgeTakenCount).
3587///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003588const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003589 return getBackedgeTakenInfo(L).Exact;
3590}
3591
3592/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3593/// return the least SCEV value that is known never to be less than the
3594/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003595const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003596 return getBackedgeTakenInfo(L).Max;
3597}
3598
Dan Gohman59ae6b92009-07-08 19:23:34 +00003599/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3600/// onto the given Worklist.
3601static void
3602PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3603 BasicBlock *Header = L->getHeader();
3604
3605 // Push all Loop-header PHIs onto the Worklist stack.
3606 for (BasicBlock::iterator I = Header->begin();
3607 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3608 Worklist.push_back(PN);
3609}
3610
Dan Gohmana1af7572009-04-30 20:47:05 +00003611const ScalarEvolution::BackedgeTakenInfo &
3612ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003613 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003614 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003615 // update the value. The temporary CouldNotCompute value tells SCEV
3616 // code elsewhere that it shouldn't attempt to request a new
3617 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003618 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003619 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3620 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003621 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3622 if (BECount.Exact != getCouldNotCompute()) {
3623 assert(BECount.Exact->isLoopInvariant(L) &&
3624 BECount.Max->isLoopInvariant(L) &&
3625 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003626 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003627
Dan Gohman01ecca22009-04-27 20:16:15 +00003628 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003629 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003630 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003631 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003632 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003633 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003634 if (isa<PHINode>(L->getHeader()->begin()))
3635 // Only count loops that have phi nodes as not being computable.
3636 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003637 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003638
3639 // Now that we know more about the trip count for this loop, forget any
3640 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003641 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003642 // information. This is similar to the code in forgetLoop, except that
3643 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003644 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003645 SmallVector<Instruction *, 16> Worklist;
3646 PushLoopPHIs(L, Worklist);
3647
3648 SmallPtrSet<Instruction *, 8> Visited;
3649 while (!Worklist.empty()) {
3650 Instruction *I = Worklist.pop_back_val();
3651 if (!Visited.insert(I)) continue;
3652
Dan Gohman5d984912009-12-18 01:14:11 +00003653 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003654 Scalars.find(static_cast<Value *>(I));
3655 if (It != Scalars.end()) {
3656 // SCEVUnknown for a PHI either means that it has an unrecognized
3657 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003658 // by createNodeForPHI. In the former case, additional loop trip
3659 // count information isn't going to change anything. In the later
3660 // case, createNodeForPHI will perform the necessary updates on its
3661 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003662 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3663 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003664 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003665 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003666 if (PHINode *PN = dyn_cast<PHINode>(I))
3667 ConstantEvolutionLoopExitValue.erase(PN);
3668 }
3669
3670 PushDefUseChildren(I, Worklist);
3671 }
3672 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003673 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003674 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003675}
3676
Dan Gohman4c7279a2009-10-31 15:04:55 +00003677/// forgetLoop - This method should be called by the client when it has
3678/// changed a loop in a way that may effect ScalarEvolution's ability to
3679/// compute a trip count, or if the loop is deleted.
3680void ScalarEvolution::forgetLoop(const Loop *L) {
3681 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003682 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003683
Dan Gohman4c7279a2009-10-31 15:04:55 +00003684 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003685 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003686 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003687
Dan Gohman59ae6b92009-07-08 19:23:34 +00003688 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003689 while (!Worklist.empty()) {
3690 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003691 if (!Visited.insert(I)) continue;
3692
Dan Gohman5d984912009-12-18 01:14:11 +00003693 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003694 Scalars.find(static_cast<Value *>(I));
3695 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003696 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003697 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003698 if (PHINode *PN = dyn_cast<PHINode>(I))
3699 ConstantEvolutionLoopExitValue.erase(PN);
3700 }
3701
3702 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003703 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003704}
3705
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003706/// forgetValue - This method should be called by the client when it has
3707/// changed a value in a way that may effect its value, or which may
3708/// disconnect it from a def-use chain linking it to a loop.
3709void ScalarEvolution::forgetValue(Value *V) {
3710 Instruction *I = dyn_cast<Instruction>(V);
3711 if (!I) return;
3712
3713 // Drop information about expressions based on loop-header PHIs.
3714 SmallVector<Instruction *, 16> Worklist;
3715 Worklist.push_back(I);
3716
3717 SmallPtrSet<Instruction *, 8> Visited;
3718 while (!Worklist.empty()) {
3719 I = Worklist.pop_back_val();
3720 if (!Visited.insert(I)) continue;
3721
3722 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3723 Scalars.find(static_cast<Value *>(I));
3724 if (It != Scalars.end()) {
3725 ValuesAtScopes.erase(It->second);
3726 Scalars.erase(It);
3727 if (PHINode *PN = dyn_cast<PHINode>(I))
3728 ConstantEvolutionLoopExitValue.erase(PN);
3729 }
3730
3731 PushDefUseChildren(I, Worklist);
3732 }
3733}
3734
Dan Gohman46bdfb02009-02-24 18:55:53 +00003735/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3736/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003737ScalarEvolution::BackedgeTakenInfo
3738ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003739 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003740 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003741
Dan Gohmana334aa72009-06-22 00:31:57 +00003742 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003743 const SCEV *BECount = getCouldNotCompute();
3744 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003745 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003746 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3747 BackedgeTakenInfo NewBTI =
3748 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003749
Dan Gohman1c343752009-06-27 21:21:31 +00003750 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003751 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003752 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003753 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003754 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003755 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003756 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003757 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003758 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003759 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003760 }
Dan Gohman1c343752009-06-27 21:21:31 +00003761 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003762 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003763 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003764 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003765 }
3766
3767 return BackedgeTakenInfo(BECount, MaxBECount);
3768}
3769
3770/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3771/// of the specified loop will execute if it exits via the specified block.
3772ScalarEvolution::BackedgeTakenInfo
3773ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3774 BasicBlock *ExitingBlock) {
3775
3776 // Okay, we've chosen an exiting block. See what condition causes us to
3777 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003778 //
3779 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003780 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003781 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003782 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003783
Chris Lattner8b0e3602007-01-07 02:24:26 +00003784 // At this point, we know we have a conditional branch that determines whether
3785 // the loop is exited. However, we don't know if the branch is executed each
3786 // time through the loop. If not, then the execution count of the branch will
3787 // not be equal to the trip count of the loop.
3788 //
3789 // Currently we check for this by checking to see if the Exit branch goes to
3790 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003791 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003792 // loop header. This is common for un-rotated loops.
3793 //
3794 // If both of those tests fail, walk up the unique predecessor chain to the
3795 // header, stopping if there is an edge that doesn't exit the loop. If the
3796 // header is reached, the execution count of the branch will be equal to the
3797 // trip count of the loop.
3798 //
3799 // More extensive analysis could be done to handle more cases here.
3800 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003801 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003802 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003803 ExitBr->getParent() != L->getHeader()) {
3804 // The simple checks failed, try climbing the unique predecessor chain
3805 // up to the header.
3806 bool Ok = false;
3807 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3808 BasicBlock *Pred = BB->getUniquePredecessor();
3809 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003810 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003811 TerminatorInst *PredTerm = Pred->getTerminator();
3812 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3813 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3814 if (PredSucc == BB)
3815 continue;
3816 // If the predecessor has a successor that isn't BB and isn't
3817 // outside the loop, assume the worst.
3818 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003819 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003820 }
3821 if (Pred == L->getHeader()) {
3822 Ok = true;
3823 break;
3824 }
3825 BB = Pred;
3826 }
3827 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003828 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003829 }
3830
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003831 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003832 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3833 ExitBr->getSuccessor(0),
3834 ExitBr->getSuccessor(1));
3835}
3836
3837/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3838/// backedge of the specified loop will execute if its exit condition
3839/// were a conditional branch of ExitCond, TBB, and FBB.
3840ScalarEvolution::BackedgeTakenInfo
3841ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3842 Value *ExitCond,
3843 BasicBlock *TBB,
3844 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003845 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003846 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3847 if (BO->getOpcode() == Instruction::And) {
3848 // Recurse on the operands of the and.
3849 BackedgeTakenInfo BTI0 =
3850 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3851 BackedgeTakenInfo BTI1 =
3852 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003853 const SCEV *BECount = getCouldNotCompute();
3854 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003855 if (L->contains(TBB)) {
3856 // Both conditions must be true for the loop to continue executing.
3857 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003858 if (BTI0.Exact == getCouldNotCompute() ||
3859 BTI1.Exact == getCouldNotCompute())
3860 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003861 else
3862 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003863 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003864 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003865 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003866 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003867 else
3868 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003869 } else {
3870 // Both conditions must be true for the loop to exit.
3871 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003872 if (BTI0.Exact != getCouldNotCompute() &&
3873 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003874 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003875 if (BTI0.Max != getCouldNotCompute() &&
3876 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003877 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3878 }
3879
3880 return BackedgeTakenInfo(BECount, MaxBECount);
3881 }
3882 if (BO->getOpcode() == Instruction::Or) {
3883 // Recurse on the operands of the or.
3884 BackedgeTakenInfo BTI0 =
3885 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3886 BackedgeTakenInfo BTI1 =
3887 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003888 const SCEV *BECount = getCouldNotCompute();
3889 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003890 if (L->contains(FBB)) {
3891 // Both conditions must be false for the loop to continue executing.
3892 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003893 if (BTI0.Exact == getCouldNotCompute() ||
3894 BTI1.Exact == getCouldNotCompute())
3895 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003896 else
3897 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003898 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003899 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003900 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003901 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003902 else
3903 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003904 } else {
3905 // Both conditions must be false for the loop to exit.
3906 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003907 if (BTI0.Exact != getCouldNotCompute() &&
3908 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003909 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003910 if (BTI0.Max != getCouldNotCompute() &&
3911 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003912 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3913 }
3914
3915 return BackedgeTakenInfo(BECount, MaxBECount);
3916 }
3917 }
3918
3919 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003920 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003921 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3922 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003923
Dan Gohman00cb5b72010-02-19 18:12:07 +00003924 // Check for a constant condition. These are normally stripped out by
3925 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3926 // preserve the CFG and is temporarily leaving constant conditions
3927 // in place.
3928 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3929 if (L->contains(FBB) == !CI->getZExtValue())
3930 // The backedge is always taken.
3931 return getCouldNotCompute();
3932 else
3933 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003934 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003935 }
3936
Eli Friedman361e54d2009-05-09 12:32:42 +00003937 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003938 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3939}
3940
3941/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3942/// backedge of the specified loop will execute if its exit condition
3943/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3944ScalarEvolution::BackedgeTakenInfo
3945ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3946 ICmpInst *ExitCond,
3947 BasicBlock *TBB,
3948 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003949
Reid Spencere4d87aa2006-12-23 06:05:41 +00003950 // If the condition was exit on true, convert the condition to exit on false
3951 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003952 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003953 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003954 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003955 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003956
3957 // Handle common loops like: for (X = "string"; *X; ++X)
3958 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3959 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003960 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003961 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003962 if (ItCnt.hasAnyInfo())
3963 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003964 }
3965
Dan Gohman0bba49c2009-07-07 17:06:11 +00003966 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3967 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003968
3969 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003970 LHS = getSCEVAtScope(LHS, L);
3971 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003972
Dan Gohman64a845e2009-06-24 04:48:43 +00003973 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003974 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003975 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3976 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003977 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003978 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003979 }
3980
Dan Gohman03557dc2010-05-03 16:35:17 +00003981 // Simplify the operands before analyzing them.
3982 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3983
Chris Lattner53e677a2004-04-02 20:23:17 +00003984 // If we have a comparison of a chrec against a constant, try to use value
3985 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003986 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3987 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003988 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003989 // Form the constant range.
3990 ConstantRange CompRange(
3991 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003992
Dan Gohman0bba49c2009-07-07 17:06:11 +00003993 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003994 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003995 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003996
Chris Lattner53e677a2004-04-02 20:23:17 +00003997 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003998 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003999 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004000 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4001 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004002 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004003 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004004 case ICmpInst::ICMP_EQ: { // while (X == Y)
4005 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004006 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4007 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004008 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004009 }
4010 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004011 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4012 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004013 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004014 }
4015 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004016 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4017 getNotSCEV(RHS), L, true);
4018 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004019 break;
4020 }
4021 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004022 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4023 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004024 break;
4025 }
4026 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004027 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4028 getNotSCEV(RHS), L, false);
4029 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004030 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004031 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004032 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004033#if 0
David Greene25e0e872009-12-23 22:18:14 +00004034 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004035 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004036 dbgs() << "[unsigned] ";
4037 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004038 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004039 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004040#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004041 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004042 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004043 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004044 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004045}
4046
Chris Lattner673e02b2004-10-12 01:49:27 +00004047static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004048EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4049 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004050 const SCEV *InVal = SE.getConstant(C);
4051 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004052 assert(isa<SCEVConstant>(Val) &&
4053 "Evaluation of SCEV at constant didn't fold correctly?");
4054 return cast<SCEVConstant>(Val)->getValue();
4055}
4056
4057/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4058/// and a GEP expression (missing the pointer index) indexing into it, return
4059/// the addressed element of the initializer or null if the index expression is
4060/// invalid.
4061static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004062GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004063 const std::vector<ConstantInt*> &Indices) {
4064 Constant *Init = GV->getInitializer();
4065 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004066 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004067 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4068 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4069 Init = cast<Constant>(CS->getOperand(Idx));
4070 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4071 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4072 Init = cast<Constant>(CA->getOperand(Idx));
4073 } else if (isa<ConstantAggregateZero>(Init)) {
4074 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4075 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004076 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004077 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4078 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004079 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004080 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004081 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004082 }
4083 return 0;
4084 } else {
4085 return 0; // Unknown initializer type
4086 }
4087 }
4088 return Init;
4089}
4090
Dan Gohman46bdfb02009-02-24 18:55:53 +00004091/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4092/// 'icmp op load X, cst', try to see if we can compute the backedge
4093/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004094ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004095ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4096 LoadInst *LI,
4097 Constant *RHS,
4098 const Loop *L,
4099 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004100 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004101
4102 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004103 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004104 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004105 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004106
4107 // Make sure that it is really a constant global we are gepping, with an
4108 // initializer, and make sure the first IDX is really 0.
4109 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004110 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004111 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4112 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004113 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004114
4115 // Okay, we allow one non-constant index into the GEP instruction.
4116 Value *VarIdx = 0;
4117 std::vector<ConstantInt*> Indexes;
4118 unsigned VarIdxNum = 0;
4119 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4120 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4121 Indexes.push_back(CI);
4122 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004123 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004124 VarIdx = GEP->getOperand(i);
4125 VarIdxNum = i-2;
4126 Indexes.push_back(0);
4127 }
4128
4129 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4130 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004131 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004132 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004133
4134 // We can only recognize very limited forms of loop index expressions, in
4135 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004136 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004137 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4138 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4139 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004140 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004141
4142 unsigned MaxSteps = MaxBruteForceIterations;
4143 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004144 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004145 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004146 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004147
4148 // Form the GEP offset.
4149 Indexes[VarIdxNum] = Val;
4150
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004151 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004152 if (Result == 0) break; // Cannot compute!
4153
4154 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004155 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004156 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004157 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004158#if 0
David Greene25e0e872009-12-23 22:18:14 +00004159 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004160 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4161 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004162#endif
4163 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004164 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004165 }
4166 }
Dan Gohman1c343752009-06-27 21:21:31 +00004167 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004168}
4169
4170
Chris Lattner3221ad02004-04-17 22:58:41 +00004171/// CanConstantFold - Return true if we can constant fold an instruction of the
4172/// specified type, assuming that all operands were constants.
4173static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004174 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004175 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4176 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004177
Chris Lattner3221ad02004-04-17 22:58:41 +00004178 if (const CallInst *CI = dyn_cast<CallInst>(I))
4179 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004180 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004181 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004182}
4183
Chris Lattner3221ad02004-04-17 22:58:41 +00004184/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4185/// in the loop that V is derived from. We allow arbitrary operations along the
4186/// way, but the operands of an operation must either be constants or a value
4187/// derived from a constant PHI. If this expression does not fit with these
4188/// constraints, return null.
4189static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4190 // If this is not an instruction, or if this is an instruction outside of the
4191 // loop, it can't be derived from a loop PHI.
4192 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004193 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004194
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004195 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004196 if (L->getHeader() == I->getParent())
4197 return PN;
4198 else
4199 // We don't currently keep track of the control flow needed to evaluate
4200 // PHIs, so we cannot handle PHIs inside of loops.
4201 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004202 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004203
4204 // If we won't be able to constant fold this expression even if the operands
4205 // are constants, return early.
4206 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004207
Chris Lattner3221ad02004-04-17 22:58:41 +00004208 // Otherwise, we can evaluate this instruction if all of its operands are
4209 // constant or derived from a PHI node themselves.
4210 PHINode *PHI = 0;
4211 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004212 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004213 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4214 if (P == 0) return 0; // Not evolving from PHI
4215 if (PHI == 0)
4216 PHI = P;
4217 else if (PHI != P)
4218 return 0; // Evolving from multiple different PHIs.
4219 }
4220
4221 // This is a expression evolving from a constant PHI!
4222 return PHI;
4223}
4224
4225/// EvaluateExpression - Given an expression that passes the
4226/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4227/// in the loop has the value PHIVal. If we can't fold this expression for some
4228/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004229static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4230 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004231 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004232 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004233 Instruction *I = cast<Instruction>(V);
4234
Dan Gohman9d4588f2010-06-22 13:15:46 +00004235 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004236
4237 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004238 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004239 if (Operands[i] == 0) return 0;
4240 }
4241
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004242 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004243 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004244 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004245 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004246 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004247}
4248
4249/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4250/// in the header of its containing loop, we know the loop executes a
4251/// constant number of times, and the PHI node is just a recurrence
4252/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004253Constant *
4254ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004255 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004256 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004257 std::map<PHINode*, Constant*>::iterator I =
4258 ConstantEvolutionLoopExitValue.find(PN);
4259 if (I != ConstantEvolutionLoopExitValue.end())
4260 return I->second;
4261
Dan Gohmane0567812010-04-08 23:03:40 +00004262 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004263 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4264
4265 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4266
4267 // Since the loop is canonicalized, the PHI node must have two entries. One
4268 // entry must be a constant (coming in from outside of the loop), and the
4269 // second must be derived from the same PHI.
4270 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4271 Constant *StartCST =
4272 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4273 if (StartCST == 0)
4274 return RetVal = 0; // Must be a constant.
4275
4276 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004277 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4278 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004279 return RetVal = 0; // Not derived from same PHI.
4280
4281 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004282 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004283 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004284
Dan Gohman46bdfb02009-02-24 18:55:53 +00004285 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004286 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004287 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4288 if (IterationNum == NumIterations)
4289 return RetVal = PHIVal; // Got exit value!
4290
4291 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004292 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004293 if (NextPHI == PHIVal)
4294 return RetVal = NextPHI; // Stopped evolving!
4295 if (NextPHI == 0)
4296 return 0; // Couldn't evaluate!
4297 PHIVal = NextPHI;
4298 }
4299}
4300
Dan Gohman07ad19b2009-07-27 16:09:48 +00004301/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004302/// constant number of times (the condition evolves only from constants),
4303/// try to evaluate a few iterations of the loop until we get the exit
4304/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004305/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004306const SCEV *
4307ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4308 Value *Cond,
4309 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004310 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004311 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004312
Dan Gohmanb92654d2010-06-19 14:17:24 +00004313 // If the loop is canonicalized, the PHI will have exactly two entries.
4314 // That's the only form we support here.
4315 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4316
4317 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004318 // second must be derived from the same PHI.
4319 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4320 Constant *StartCST =
4321 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004322 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004323
4324 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004325 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4326 !isa<Constant>(BEValue))
4327 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004328
4329 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4330 // the loop symbolically to determine when the condition gets a value of
4331 // "ExitWhen".
4332 unsigned IterationNum = 0;
4333 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4334 for (Constant *PHIVal = StartCST;
4335 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004336 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004337 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004338
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004339 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004340 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004341
Reid Spencere8019bb2007-03-01 07:25:48 +00004342 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004343 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004344 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004345 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004346
Chris Lattner3221ad02004-04-17 22:58:41 +00004347 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004348 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004349 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004350 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004351 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004352 }
4353
4354 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004355 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004356}
4357
Dan Gohmane7125f42009-09-03 15:00:26 +00004358/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004359/// at the specified scope in the program. The L value specifies a loop
4360/// nest to evaluate the expression at, where null is the top-level or a
4361/// specified loop is immediately inside of the loop.
4362///
4363/// This method can be used to compute the exit value for a variable defined
4364/// in a loop by querying what the value will hold in the parent loop.
4365///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004366/// In the case that a relevant loop exit value cannot be computed, the
4367/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004368const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004369 // Check to see if we've folded this expression at this loop before.
4370 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4371 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4372 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4373 if (!Pair.second)
4374 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004375
Dan Gohman42214892009-08-31 21:15:23 +00004376 // Otherwise compute it.
4377 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004378 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004379 return C;
4380}
4381
4382const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004383 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004384
Nick Lewycky3e630762008-02-20 06:48:22 +00004385 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004386 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004387 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004388 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004389 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004390 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4391 if (PHINode *PN = dyn_cast<PHINode>(I))
4392 if (PN->getParent() == LI->getHeader()) {
4393 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004394 // to see if the loop that contains it has a known backedge-taken
4395 // count. If so, we may be able to force computation of the exit
4396 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004397 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004398 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004399 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004400 // Okay, we know how many times the containing loop executes. If
4401 // this is a constant evolving PHI node, get the final value at
4402 // the specified iteration number.
4403 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004404 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004405 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004406 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004407 }
4408 }
4409
Reid Spencer09906f32006-12-04 21:33:23 +00004410 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004411 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004412 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004413 // result. This is particularly useful for computing loop exit values.
4414 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004415 SmallVector<Constant *, 4> Operands;
4416 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004417 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4418 Value *Op = I->getOperand(i);
4419 if (Constant *C = dyn_cast<Constant>(Op)) {
4420 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004421 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004422 }
Dan Gohman11046452010-06-29 23:43:06 +00004423
4424 // If any of the operands is non-constant and if they are
4425 // non-integer and non-pointer, don't even try to analyze them
4426 // with scev techniques.
4427 if (!isSCEVable(Op->getType()))
4428 return V;
4429
4430 const SCEV *OrigV = getSCEV(Op);
4431 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4432 MadeImprovement |= OrigV != OpV;
4433
4434 Constant *C = 0;
4435 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4436 C = SC->getValue();
4437 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4438 C = dyn_cast<Constant>(SU->getValue());
4439 if (!C) return V;
4440 if (C->getType() != Op->getType())
4441 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4442 Op->getType(),
4443 false),
4444 C, Op->getType());
4445 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004446 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004447
Dan Gohman11046452010-06-29 23:43:06 +00004448 // Check to see if getSCEVAtScope actually made an improvement.
4449 if (MadeImprovement) {
4450 Constant *C = 0;
4451 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4452 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4453 Operands[0], Operands[1], TD);
4454 else
4455 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4456 &Operands[0], Operands.size(), TD);
4457 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004458 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004459 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004460 }
4461 }
4462
4463 // This is some other type of SCEVUnknown, just return it.
4464 return V;
4465 }
4466
Dan Gohman622ed672009-05-04 22:02:23 +00004467 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004468 // Avoid performing the look-up in the common case where the specified
4469 // expression has no loop-variant portions.
4470 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004471 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004472 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004473 // Okay, at least one of these operands is loop variant but might be
4474 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004475 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4476 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004477 NewOps.push_back(OpAtScope);
4478
4479 for (++i; i != e; ++i) {
4480 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004481 NewOps.push_back(OpAtScope);
4482 }
4483 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004484 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004485 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004486 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004487 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004488 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004489 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004490 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004491 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004492 }
4493 }
4494 // If we got here, all operands are loop invariant.
4495 return Comm;
4496 }
4497
Dan Gohman622ed672009-05-04 22:02:23 +00004498 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004499 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4500 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004501 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4502 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004503 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004504 }
4505
4506 // If this is a loop recurrence for a loop that does not contain L, then we
4507 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004508 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004509 // First, attempt to evaluate each operand.
4510 // Avoid performing the look-up in the common case where the specified
4511 // expression has no loop-variant portions.
4512 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4513 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4514 if (OpAtScope == AddRec->getOperand(i))
4515 continue;
4516
4517 // Okay, at least one of these operands is loop variant but might be
4518 // foldable. Build a new instance of the folded commutative expression.
4519 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4520 AddRec->op_begin()+i);
4521 NewOps.push_back(OpAtScope);
4522 for (++i; i != e; ++i)
4523 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4524
4525 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4526 break;
4527 }
4528
4529 // If the scope is outside the addrec's loop, evaluate it by using the
4530 // loop exit value of the addrec.
4531 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004532 // To evaluate this recurrence, we need to know how many times the AddRec
4533 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004534 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004535 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004536
Eli Friedmanb42a6262008-08-04 23:49:06 +00004537 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004538 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004539 }
Dan Gohman11046452010-06-29 23:43:06 +00004540
Dan Gohmand594e6f2009-05-24 23:25:42 +00004541 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004542 }
4543
Dan Gohman622ed672009-05-04 22:02:23 +00004544 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004545 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004546 if (Op == Cast->getOperand())
4547 return Cast; // must be loop invariant
4548 return getZeroExtendExpr(Op, Cast->getType());
4549 }
4550
Dan Gohman622ed672009-05-04 22:02:23 +00004551 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004552 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004553 if (Op == Cast->getOperand())
4554 return Cast; // must be loop invariant
4555 return getSignExtendExpr(Op, Cast->getType());
4556 }
4557
Dan Gohman622ed672009-05-04 22:02:23 +00004558 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004559 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004560 if (Op == Cast->getOperand())
4561 return Cast; // must be loop invariant
4562 return getTruncateExpr(Op, Cast->getType());
4563 }
4564
Torok Edwinc23197a2009-07-14 16:55:14 +00004565 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004566 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004567}
4568
Dan Gohman66a7e852009-05-08 20:38:54 +00004569/// getSCEVAtScope - This is a convenience function which does
4570/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004571const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004572 return getSCEVAtScope(getSCEV(V), L);
4573}
4574
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004575/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4576/// following equation:
4577///
4578/// A * X = B (mod N)
4579///
4580/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4581/// A and B isn't important.
4582///
4583/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004584static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004585 ScalarEvolution &SE) {
4586 uint32_t BW = A.getBitWidth();
4587 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4588 assert(A != 0 && "A must be non-zero.");
4589
4590 // 1. D = gcd(A, N)
4591 //
4592 // The gcd of A and N may have only one prime factor: 2. The number of
4593 // trailing zeros in A is its multiplicity
4594 uint32_t Mult2 = A.countTrailingZeros();
4595 // D = 2^Mult2
4596
4597 // 2. Check if B is divisible by D.
4598 //
4599 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4600 // is not less than multiplicity of this prime factor for D.
4601 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004602 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004603
4604 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4605 // modulo (N / D).
4606 //
4607 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4608 // bit width during computations.
4609 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4610 APInt Mod(BW + 1, 0);
4611 Mod.set(BW - Mult2); // Mod = N / D
4612 APInt I = AD.multiplicativeInverse(Mod);
4613
4614 // 4. Compute the minimum unsigned root of the equation:
4615 // I * (B / D) mod (N / D)
4616 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4617
4618 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4619 // bits.
4620 return SE.getConstant(Result.trunc(BW));
4621}
Chris Lattner53e677a2004-04-02 20:23:17 +00004622
4623/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4624/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4625/// might be the same) or two SCEVCouldNotCompute objects.
4626///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004627static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004628SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004629 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004630 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4631 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4632 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004633
Chris Lattner53e677a2004-04-02 20:23:17 +00004634 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004635 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004636 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004637 return std::make_pair(CNC, CNC);
4638 }
4639
Reid Spencere8019bb2007-03-01 07:25:48 +00004640 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004641 const APInt &L = LC->getValue()->getValue();
4642 const APInt &M = MC->getValue()->getValue();
4643 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004644 APInt Two(BitWidth, 2);
4645 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004646
Dan Gohman64a845e2009-06-24 04:48:43 +00004647 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004648 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004649 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004650 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4651 // The B coefficient is M-N/2
4652 APInt B(M);
4653 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004654
Reid Spencere8019bb2007-03-01 07:25:48 +00004655 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004656 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004657
Reid Spencere8019bb2007-03-01 07:25:48 +00004658 // Compute the B^2-4ac term.
4659 APInt SqrtTerm(B);
4660 SqrtTerm *= B;
4661 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004662
Reid Spencere8019bb2007-03-01 07:25:48 +00004663 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4664 // integer value or else APInt::sqrt() will assert.
4665 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004666
Dan Gohman64a845e2009-06-24 04:48:43 +00004667 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004668 // The divisions must be performed as signed divisions.
4669 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004670 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004671 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004672 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004673 return std::make_pair(CNC, CNC);
4674 }
4675
Owen Andersone922c022009-07-22 00:24:57 +00004676 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004677
4678 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004679 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004680 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004681 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004682
Dan Gohman64a845e2009-06-24 04:48:43 +00004683 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004684 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004685 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004686}
4687
4688/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004689/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004690ScalarEvolution::BackedgeTakenInfo
4691ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004692 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004693 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004694 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004695 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004696 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004697 }
4698
Dan Gohman35738ac2009-05-04 22:30:44 +00004699 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004700 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004701 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004702
4703 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004704 // If this is an affine expression, the execution count of this branch is
4705 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004706 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004707 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004708 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004709 // equivalent to:
4710 //
4711 // Step*N = -Start (mod 2^BW)
4712 //
4713 // where BW is the common bit width of Start and Step.
4714
Chris Lattner53e677a2004-04-02 20:23:17 +00004715 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004716 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4717 L->getParentLoop());
4718 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4719 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004720
Dan Gohman622ed672009-05-04 22:02:23 +00004721 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004722 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004723
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004724 // First, handle unitary steps.
4725 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004726 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004727 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4728 return Start; // N = Start (as unsigned)
4729
4730 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004731 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004732 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004733 -StartC->getValue()->getValue(),
4734 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004735 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004736 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004737 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4738 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004739 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004740 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004741 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4742 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004743 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004744#if 0
David Greene25e0e872009-12-23 22:18:14 +00004745 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004746 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004747#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004748 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004749 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004750 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004751 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004752 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004753 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004754
Chris Lattner53e677a2004-04-02 20:23:17 +00004755 // We can only use this value if the chrec ends up with an exact zero
4756 // value at this index. When solving for "X*X != 5", for example, we
4757 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004758 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004759 if (Val->isZero())
4760 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004761 }
4762 }
4763 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004764
Dan Gohman1c343752009-06-27 21:21:31 +00004765 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004766}
4767
4768/// HowFarToNonZero - Return the number of times a backedge checking the
4769/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004770/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004771ScalarEvolution::BackedgeTakenInfo
4772ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004773 // Loops that look like: while (X == 0) are very strange indeed. We don't
4774 // handle them yet except for the trivial case. This could be expanded in the
4775 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004776
Chris Lattner53e677a2004-04-02 20:23:17 +00004777 // If the value is a constant, check to see if it is known to be non-zero
4778 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004779 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004780 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004781 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004782 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004783 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004784
Chris Lattner53e677a2004-04-02 20:23:17 +00004785 // We could implement others, but I really doubt anyone writes loops like
4786 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004787 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004788}
4789
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004790/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4791/// (which may not be an immediate predecessor) which has exactly one
4792/// successor from which BB is reachable, or null if no such block is
4793/// found.
4794///
Dan Gohman005752b2010-04-15 16:19:08 +00004795std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004796ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004797 // If the block has a unique predecessor, then there is no path from the
4798 // predecessor to the block that does not go through the direct edge
4799 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004800 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004801 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004802
4803 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004804 // If the header has a unique predecessor outside the loop, it must be
4805 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004806 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004807 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004808
Dan Gohman005752b2010-04-15 16:19:08 +00004809 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004810}
4811
Dan Gohman763bad12009-06-20 00:35:32 +00004812/// HasSameValue - SCEV structural equivalence is usually sufficient for
4813/// testing whether two expressions are equal, however for the purposes of
4814/// looking for a condition guarding a loop, it can be useful to be a little
4815/// more general, since a front-end may have replicated the controlling
4816/// expression.
4817///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004818static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004819 // Quick check to see if they are the same SCEV.
4820 if (A == B) return true;
4821
4822 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4823 // two different instructions with the same value. Check for this case.
4824 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4825 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4826 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4827 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004828 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004829 return true;
4830
4831 // Otherwise assume they may have a different value.
4832 return false;
4833}
4834
Dan Gohmane9796502010-04-24 01:28:42 +00004835/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4836/// predicate Pred. Return true iff any changes were made.
4837///
4838bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4839 const SCEV *&LHS, const SCEV *&RHS) {
4840 bool Changed = false;
4841
4842 // Canonicalize a constant to the right side.
4843 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4844 // Check for both operands constant.
4845 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4846 if (ConstantExpr::getICmp(Pred,
4847 LHSC->getValue(),
4848 RHSC->getValue())->isNullValue())
4849 goto trivially_false;
4850 else
4851 goto trivially_true;
4852 }
4853 // Otherwise swap the operands to put the constant on the right.
4854 std::swap(LHS, RHS);
4855 Pred = ICmpInst::getSwappedPredicate(Pred);
4856 Changed = true;
4857 }
4858
4859 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004860 // addrec's loop, put the addrec on the left. Also make a dominance check,
4861 // as both operands could be addrecs loop-invariant in each other's loop.
4862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4863 const Loop *L = AR->getLoop();
4864 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004865 std::swap(LHS, RHS);
4866 Pred = ICmpInst::getSwappedPredicate(Pred);
4867 Changed = true;
4868 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004869 }
Dan Gohmane9796502010-04-24 01:28:42 +00004870
4871 // If there's a constant operand, canonicalize comparisons with boundary
4872 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4873 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4874 const APInt &RA = RC->getValue()->getValue();
4875 switch (Pred) {
4876 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4877 case ICmpInst::ICMP_EQ:
4878 case ICmpInst::ICMP_NE:
4879 break;
4880 case ICmpInst::ICMP_UGE:
4881 if ((RA - 1).isMinValue()) {
4882 Pred = ICmpInst::ICMP_NE;
4883 RHS = getConstant(RA - 1);
4884 Changed = true;
4885 break;
4886 }
4887 if (RA.isMaxValue()) {
4888 Pred = ICmpInst::ICMP_EQ;
4889 Changed = true;
4890 break;
4891 }
4892 if (RA.isMinValue()) goto trivially_true;
4893
4894 Pred = ICmpInst::ICMP_UGT;
4895 RHS = getConstant(RA - 1);
4896 Changed = true;
4897 break;
4898 case ICmpInst::ICMP_ULE:
4899 if ((RA + 1).isMaxValue()) {
4900 Pred = ICmpInst::ICMP_NE;
4901 RHS = getConstant(RA + 1);
4902 Changed = true;
4903 break;
4904 }
4905 if (RA.isMinValue()) {
4906 Pred = ICmpInst::ICMP_EQ;
4907 Changed = true;
4908 break;
4909 }
4910 if (RA.isMaxValue()) goto trivially_true;
4911
4912 Pred = ICmpInst::ICMP_ULT;
4913 RHS = getConstant(RA + 1);
4914 Changed = true;
4915 break;
4916 case ICmpInst::ICMP_SGE:
4917 if ((RA - 1).isMinSignedValue()) {
4918 Pred = ICmpInst::ICMP_NE;
4919 RHS = getConstant(RA - 1);
4920 Changed = true;
4921 break;
4922 }
4923 if (RA.isMaxSignedValue()) {
4924 Pred = ICmpInst::ICMP_EQ;
4925 Changed = true;
4926 break;
4927 }
4928 if (RA.isMinSignedValue()) goto trivially_true;
4929
4930 Pred = ICmpInst::ICMP_SGT;
4931 RHS = getConstant(RA - 1);
4932 Changed = true;
4933 break;
4934 case ICmpInst::ICMP_SLE:
4935 if ((RA + 1).isMaxSignedValue()) {
4936 Pred = ICmpInst::ICMP_NE;
4937 RHS = getConstant(RA + 1);
4938 Changed = true;
4939 break;
4940 }
4941 if (RA.isMinSignedValue()) {
4942 Pred = ICmpInst::ICMP_EQ;
4943 Changed = true;
4944 break;
4945 }
4946 if (RA.isMaxSignedValue()) goto trivially_true;
4947
4948 Pred = ICmpInst::ICMP_SLT;
4949 RHS = getConstant(RA + 1);
4950 Changed = true;
4951 break;
4952 case ICmpInst::ICMP_UGT:
4953 if (RA.isMinValue()) {
4954 Pred = ICmpInst::ICMP_NE;
4955 Changed = true;
4956 break;
4957 }
4958 if ((RA + 1).isMaxValue()) {
4959 Pred = ICmpInst::ICMP_EQ;
4960 RHS = getConstant(RA + 1);
4961 Changed = true;
4962 break;
4963 }
4964 if (RA.isMaxValue()) goto trivially_false;
4965 break;
4966 case ICmpInst::ICMP_ULT:
4967 if (RA.isMaxValue()) {
4968 Pred = ICmpInst::ICMP_NE;
4969 Changed = true;
4970 break;
4971 }
4972 if ((RA - 1).isMinValue()) {
4973 Pred = ICmpInst::ICMP_EQ;
4974 RHS = getConstant(RA - 1);
4975 Changed = true;
4976 break;
4977 }
4978 if (RA.isMinValue()) goto trivially_false;
4979 break;
4980 case ICmpInst::ICMP_SGT:
4981 if (RA.isMinSignedValue()) {
4982 Pred = ICmpInst::ICMP_NE;
4983 Changed = true;
4984 break;
4985 }
4986 if ((RA + 1).isMaxSignedValue()) {
4987 Pred = ICmpInst::ICMP_EQ;
4988 RHS = getConstant(RA + 1);
4989 Changed = true;
4990 break;
4991 }
4992 if (RA.isMaxSignedValue()) goto trivially_false;
4993 break;
4994 case ICmpInst::ICMP_SLT:
4995 if (RA.isMaxSignedValue()) {
4996 Pred = ICmpInst::ICMP_NE;
4997 Changed = true;
4998 break;
4999 }
5000 if ((RA - 1).isMinSignedValue()) {
5001 Pred = ICmpInst::ICMP_EQ;
5002 RHS = getConstant(RA - 1);
5003 Changed = true;
5004 break;
5005 }
5006 if (RA.isMinSignedValue()) goto trivially_false;
5007 break;
5008 }
5009 }
5010
5011 // Check for obvious equality.
5012 if (HasSameValue(LHS, RHS)) {
5013 if (ICmpInst::isTrueWhenEqual(Pred))
5014 goto trivially_true;
5015 if (ICmpInst::isFalseWhenEqual(Pred))
5016 goto trivially_false;
5017 }
5018
Dan Gohman03557dc2010-05-03 16:35:17 +00005019 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5020 // adding or subtracting 1 from one of the operands.
5021 switch (Pred) {
5022 case ICmpInst::ICMP_SLE:
5023 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5024 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5025 /*HasNUW=*/false, /*HasNSW=*/true);
5026 Pred = ICmpInst::ICMP_SLT;
5027 Changed = true;
5028 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005029 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005030 /*HasNUW=*/false, /*HasNSW=*/true);
5031 Pred = ICmpInst::ICMP_SLT;
5032 Changed = true;
5033 }
5034 break;
5035 case ICmpInst::ICMP_SGE:
5036 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005037 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005038 /*HasNUW=*/false, /*HasNSW=*/true);
5039 Pred = ICmpInst::ICMP_SGT;
5040 Changed = true;
5041 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5042 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5043 /*HasNUW=*/false, /*HasNSW=*/true);
5044 Pred = ICmpInst::ICMP_SGT;
5045 Changed = true;
5046 }
5047 break;
5048 case ICmpInst::ICMP_ULE:
5049 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005050 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005051 /*HasNUW=*/true, /*HasNSW=*/false);
5052 Pred = ICmpInst::ICMP_ULT;
5053 Changed = true;
5054 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005055 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005056 /*HasNUW=*/true, /*HasNSW=*/false);
5057 Pred = ICmpInst::ICMP_ULT;
5058 Changed = true;
5059 }
5060 break;
5061 case ICmpInst::ICMP_UGE:
5062 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005063 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005064 /*HasNUW=*/true, /*HasNSW=*/false);
5065 Pred = ICmpInst::ICMP_UGT;
5066 Changed = true;
5067 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005068 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005069 /*HasNUW=*/true, /*HasNSW=*/false);
5070 Pred = ICmpInst::ICMP_UGT;
5071 Changed = true;
5072 }
5073 break;
5074 default:
5075 break;
5076 }
5077
Dan Gohmane9796502010-04-24 01:28:42 +00005078 // TODO: More simplifications are possible here.
5079
5080 return Changed;
5081
5082trivially_true:
5083 // Return 0 == 0.
5084 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5085 Pred = ICmpInst::ICMP_EQ;
5086 return true;
5087
5088trivially_false:
5089 // Return 0 != 0.
5090 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5091 Pred = ICmpInst::ICMP_NE;
5092 return true;
5093}
5094
Dan Gohman85b05a22009-07-13 21:35:55 +00005095bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5096 return getSignedRange(S).getSignedMax().isNegative();
5097}
5098
5099bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5100 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5101}
5102
5103bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5104 return !getSignedRange(S).getSignedMin().isNegative();
5105}
5106
5107bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5108 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5109}
5110
5111bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5112 return isKnownNegative(S) || isKnownPositive(S);
5113}
5114
5115bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5116 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005117 // Canonicalize the inputs first.
5118 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5119
Dan Gohman53c66ea2010-04-11 22:16:48 +00005120 // If LHS or RHS is an addrec, check to see if the condition is true in
5121 // every iteration of the loop.
5122 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5123 if (isLoopEntryGuardedByCond(
5124 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5125 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005126 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005127 return true;
5128 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5129 if (isLoopEntryGuardedByCond(
5130 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5131 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005132 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005133 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005134
Dan Gohman53c66ea2010-04-11 22:16:48 +00005135 // Otherwise see what can be done with known constant ranges.
5136 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5137}
5138
5139bool
5140ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5141 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005142 if (HasSameValue(LHS, RHS))
5143 return ICmpInst::isTrueWhenEqual(Pred);
5144
Dan Gohman53c66ea2010-04-11 22:16:48 +00005145 // This code is split out from isKnownPredicate because it is called from
5146 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005147 switch (Pred) {
5148 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005149 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005150 break;
5151 case ICmpInst::ICMP_SGT:
5152 Pred = ICmpInst::ICMP_SLT;
5153 std::swap(LHS, RHS);
5154 case ICmpInst::ICMP_SLT: {
5155 ConstantRange LHSRange = getSignedRange(LHS);
5156 ConstantRange RHSRange = getSignedRange(RHS);
5157 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5158 return true;
5159 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5160 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005161 break;
5162 }
5163 case ICmpInst::ICMP_SGE:
5164 Pred = ICmpInst::ICMP_SLE;
5165 std::swap(LHS, RHS);
5166 case ICmpInst::ICMP_SLE: {
5167 ConstantRange LHSRange = getSignedRange(LHS);
5168 ConstantRange RHSRange = getSignedRange(RHS);
5169 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5170 return true;
5171 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5172 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005173 break;
5174 }
5175 case ICmpInst::ICMP_UGT:
5176 Pred = ICmpInst::ICMP_ULT;
5177 std::swap(LHS, RHS);
5178 case ICmpInst::ICMP_ULT: {
5179 ConstantRange LHSRange = getUnsignedRange(LHS);
5180 ConstantRange RHSRange = getUnsignedRange(RHS);
5181 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5182 return true;
5183 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5184 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005185 break;
5186 }
5187 case ICmpInst::ICMP_UGE:
5188 Pred = ICmpInst::ICMP_ULE;
5189 std::swap(LHS, RHS);
5190 case ICmpInst::ICMP_ULE: {
5191 ConstantRange LHSRange = getUnsignedRange(LHS);
5192 ConstantRange RHSRange = getUnsignedRange(RHS);
5193 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5194 return true;
5195 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5196 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005197 break;
5198 }
5199 case ICmpInst::ICMP_NE: {
5200 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5201 return true;
5202 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5203 return true;
5204
5205 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5206 if (isKnownNonZero(Diff))
5207 return true;
5208 break;
5209 }
5210 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005211 // The check at the top of the function catches the case where
5212 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005213 break;
5214 }
5215 return false;
5216}
5217
5218/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5219/// protected by a conditional between LHS and RHS. This is used to
5220/// to eliminate casts.
5221bool
5222ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5223 ICmpInst::Predicate Pred,
5224 const SCEV *LHS, const SCEV *RHS) {
5225 // Interpret a null as meaning no loop, where there is obviously no guard
5226 // (interprocedural conditions notwithstanding).
5227 if (!L) return true;
5228
5229 BasicBlock *Latch = L->getLoopLatch();
5230 if (!Latch)
5231 return false;
5232
5233 BranchInst *LoopContinuePredicate =
5234 dyn_cast<BranchInst>(Latch->getTerminator());
5235 if (!LoopContinuePredicate ||
5236 LoopContinuePredicate->isUnconditional())
5237 return false;
5238
Dan Gohman0f4b2852009-07-21 23:03:19 +00005239 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5240 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005241}
5242
Dan Gohman3948d0b2010-04-11 19:27:13 +00005243/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005244/// by a conditional between LHS and RHS. This is used to help avoid max
5245/// expressions in loop trip counts, and to eliminate casts.
5246bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005247ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5248 ICmpInst::Predicate Pred,
5249 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005250 // Interpret a null as meaning no loop, where there is obviously no guard
5251 // (interprocedural conditions notwithstanding).
5252 if (!L) return false;
5253
Dan Gohman859b4822009-05-18 15:36:09 +00005254 // Starting at the loop predecessor, climb up the predecessor chain, as long
5255 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005256 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005257 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005258 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005259 Pair.first;
5260 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005261
5262 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005263 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005264 if (!LoopEntryPredicate ||
5265 LoopEntryPredicate->isUnconditional())
5266 continue;
5267
Dan Gohman0f4b2852009-07-21 23:03:19 +00005268 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
Dan Gohman005752b2010-04-15 16:19:08 +00005269 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005270 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005271 }
5272
Dan Gohman38372182008-08-12 20:17:31 +00005273 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005274}
5275
Dan Gohman0f4b2852009-07-21 23:03:19 +00005276/// isImpliedCond - Test whether the condition described by Pred, LHS,
5277/// and RHS is true whenever the given Cond value evaluates to true.
5278bool ScalarEvolution::isImpliedCond(Value *CondValue,
5279 ICmpInst::Predicate Pred,
5280 const SCEV *LHS, const SCEV *RHS,
5281 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005282 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005283 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5284 if (BO->getOpcode() == Instruction::And) {
5285 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005286 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5287 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005288 } else if (BO->getOpcode() == Instruction::Or) {
5289 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005290 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5291 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005292 }
5293 }
5294
5295 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5296 if (!ICI) return false;
5297
Dan Gohman85b05a22009-07-13 21:35:55 +00005298 // Bail if the ICmp's operands' types are wider than the needed type
5299 // before attempting to call getSCEV on them. This avoids infinite
5300 // recursion, since the analysis of widening casts can require loop
5301 // exit condition information for overflow checking, which would
5302 // lead back here.
5303 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005304 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005305 return false;
5306
Dan Gohman0f4b2852009-07-21 23:03:19 +00005307 // Now that we found a conditional branch that dominates the loop, check to
5308 // see if it is the comparison we are looking for.
5309 ICmpInst::Predicate FoundPred;
5310 if (Inverse)
5311 FoundPred = ICI->getInversePredicate();
5312 else
5313 FoundPred = ICI->getPredicate();
5314
5315 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5316 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005317
5318 // Balance the types. The case where FoundLHS' type is wider than
5319 // LHS' type is checked for above.
5320 if (getTypeSizeInBits(LHS->getType()) >
5321 getTypeSizeInBits(FoundLHS->getType())) {
5322 if (CmpInst::isSigned(Pred)) {
5323 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5324 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5325 } else {
5326 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5327 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5328 }
5329 }
5330
Dan Gohman0f4b2852009-07-21 23:03:19 +00005331 // Canonicalize the query to match the way instcombine will have
5332 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005333 if (SimplifyICmpOperands(Pred, LHS, RHS))
5334 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005335 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005336 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5337 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005338 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005339
5340 // Check to see if we can make the LHS or RHS match.
5341 if (LHS == FoundRHS || RHS == FoundLHS) {
5342 if (isa<SCEVConstant>(RHS)) {
5343 std::swap(FoundLHS, FoundRHS);
5344 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5345 } else {
5346 std::swap(LHS, RHS);
5347 Pred = ICmpInst::getSwappedPredicate(Pred);
5348 }
5349 }
5350
5351 // Check whether the found predicate is the same as the desired predicate.
5352 if (FoundPred == Pred)
5353 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5354
5355 // Check whether swapping the found predicate makes it the same as the
5356 // desired predicate.
5357 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5358 if (isa<SCEVConstant>(RHS))
5359 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5360 else
5361 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5362 RHS, LHS, FoundLHS, FoundRHS);
5363 }
5364
5365 // Check whether the actual condition is beyond sufficient.
5366 if (FoundPred == ICmpInst::ICMP_EQ)
5367 if (ICmpInst::isTrueWhenEqual(Pred))
5368 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5369 return true;
5370 if (Pred == ICmpInst::ICMP_NE)
5371 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5372 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5373 return true;
5374
5375 // Otherwise assume the worst.
5376 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005377}
5378
Dan Gohman0f4b2852009-07-21 23:03:19 +00005379/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005380/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005381/// and FoundRHS is true.
5382bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5383 const SCEV *LHS, const SCEV *RHS,
5384 const SCEV *FoundLHS,
5385 const SCEV *FoundRHS) {
5386 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5387 FoundLHS, FoundRHS) ||
5388 // ~x < ~y --> x > y
5389 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5390 getNotSCEV(FoundRHS),
5391 getNotSCEV(FoundLHS));
5392}
5393
5394/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005395/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005396/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005397bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005398ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5399 const SCEV *LHS, const SCEV *RHS,
5400 const SCEV *FoundLHS,
5401 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005402 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005403 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5404 case ICmpInst::ICMP_EQ:
5405 case ICmpInst::ICMP_NE:
5406 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5407 return true;
5408 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005409 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005410 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005411 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5412 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005413 return true;
5414 break;
5415 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005416 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005417 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5418 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005419 return true;
5420 break;
5421 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005422 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005423 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5424 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005425 return true;
5426 break;
5427 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005428 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005429 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5430 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005431 return true;
5432 break;
5433 }
5434
5435 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005436}
5437
Dan Gohman51f53b72009-06-21 23:46:38 +00005438/// getBECount - Subtract the end and start values and divide by the step,
5439/// rounding up, to get the number of times the backedge is executed. Return
5440/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005441const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005442 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005443 const SCEV *Step,
5444 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005445 assert(!isKnownNegative(Step) &&
5446 "This code doesn't handle negative strides yet!");
5447
Dan Gohman51f53b72009-06-21 23:46:38 +00005448 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005449 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005450 const SCEV *Diff = getMinusSCEV(End, Start);
5451 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005452
5453 // Add an adjustment to the difference between End and Start so that
5454 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005455 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005456
Dan Gohman1f96e672009-09-17 18:05:20 +00005457 if (!NoWrap) {
5458 // Check Add for unsigned overflow.
5459 // TODO: More sophisticated things could be done here.
5460 const Type *WideTy = IntegerType::get(getContext(),
5461 getTypeSizeInBits(Ty) + 1);
5462 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5463 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5464 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5465 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5466 return getCouldNotCompute();
5467 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005468
5469 return getUDivExpr(Add, Step);
5470}
5471
Chris Lattnerdb25de42005-08-15 23:33:51 +00005472/// HowManyLessThans - Return the number of times a backedge containing the
5473/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005474/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005475ScalarEvolution::BackedgeTakenInfo
5476ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5477 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005478 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005479 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005480
Dan Gohman35738ac2009-05-04 22:30:44 +00005481 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005482 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005483 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005484
Dan Gohman1f96e672009-09-17 18:05:20 +00005485 // Check to see if we have a flag which makes analysis easy.
5486 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5487 AddRec->hasNoUnsignedWrap();
5488
Chris Lattnerdb25de42005-08-15 23:33:51 +00005489 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005490 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005491 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005492
Dan Gohman52fddd32010-01-26 04:40:18 +00005493 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005494 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005495 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005496 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005497 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005498 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005499 // value and past the maximum value for its type in a single step.
5500 // Note that it's not sufficient to check NoWrap here, because even
5501 // though the value after a wrap is undefined, it's not undefined
5502 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005503 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005504 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005505 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005506 if (isSigned) {
5507 APInt Max = APInt::getSignedMaxValue(BitWidth);
5508 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5509 .slt(getSignedRange(RHS).getSignedMax()))
5510 return getCouldNotCompute();
5511 } else {
5512 APInt Max = APInt::getMaxValue(BitWidth);
5513 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5514 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5515 return getCouldNotCompute();
5516 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005517 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005518 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005519 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005520
Dan Gohmana1af7572009-04-30 20:47:05 +00005521 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5522 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5523 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005524 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005525
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005526 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005527 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005528
Dan Gohmana1af7572009-04-30 20:47:05 +00005529 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005530 const SCEV *MinStart = getConstant(isSigned ?
5531 getSignedRange(Start).getSignedMin() :
5532 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005533
Dan Gohmana1af7572009-04-30 20:47:05 +00005534 // If we know that the condition is true in order to enter the loop,
5535 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005536 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5537 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005538 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005539 if (!isLoopEntryGuardedByCond(L,
5540 isSigned ? ICmpInst::ICMP_SLT :
5541 ICmpInst::ICMP_ULT,
5542 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005543 End = isSigned ? getSMaxExpr(RHS, Start)
5544 : getUMaxExpr(RHS, Start);
5545
5546 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005547 const SCEV *MaxEnd = getConstant(isSigned ?
5548 getSignedRange(End).getSignedMax() :
5549 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005550
Dan Gohman52fddd32010-01-26 04:40:18 +00005551 // If MaxEnd is within a step of the maximum integer value in its type,
5552 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005553 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005554 // compute the correct value.
5555 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005556 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005557 MaxEnd = isSigned ?
5558 getSMinExpr(MaxEnd,
5559 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5560 StepMinusOne)) :
5561 getUMinExpr(MaxEnd,
5562 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5563 StepMinusOne));
5564
Dan Gohmana1af7572009-04-30 20:47:05 +00005565 // Finally, we subtract these two values and divide, rounding up, to get
5566 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005567 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005568
5569 // The maximum backedge count is similar, except using the minimum start
5570 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005571 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005572
5573 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005574 }
5575
Dan Gohman1c343752009-06-27 21:21:31 +00005576 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005577}
5578
Chris Lattner53e677a2004-04-02 20:23:17 +00005579/// getNumIterationsInRange - Return the number of iterations of this loop that
5580/// produce values in the specified constant range. Another way of looking at
5581/// this is that it returns the first iteration number where the value is not in
5582/// the condition, thus computing the exit count. If the iteration count can't
5583/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005584const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005585 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005586 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005587 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005588
5589 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005590 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005591 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005592 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005593 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005594 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005595 if (const SCEVAddRecExpr *ShiftedAddRec =
5596 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005597 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005598 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005599 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005600 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005601 }
5602
5603 // The only time we can solve this is when we have all constant indices.
5604 // Otherwise, we cannot determine the overflow conditions.
5605 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5606 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005607 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005608
5609
5610 // Okay at this point we know that all elements of the chrec are constants and
5611 // that the start element is zero.
5612
5613 // First check to see if the range contains zero. If not, the first
5614 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005615 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005616 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005617 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005618
Chris Lattner53e677a2004-04-02 20:23:17 +00005619 if (isAffine()) {
5620 // If this is an affine expression then we have this situation:
5621 // Solve {0,+,A} in Range === Ax in Range
5622
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005623 // We know that zero is in the range. If A is positive then we know that
5624 // the upper value of the range must be the first possible exit value.
5625 // If A is negative then the lower of the range is the last possible loop
5626 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005627 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005628 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5629 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005630
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005631 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005632 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005633 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005634
5635 // Evaluate at the exit value. If we really did fall out of the valid
5636 // range, then we computed our trip count, otherwise wrap around or other
5637 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005638 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005639 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005640 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005641
5642 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005643 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005644 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005645 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005646 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005647 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005648 } else if (isQuadratic()) {
5649 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5650 // quadratic equation to solve it. To do this, we must frame our problem in
5651 // terms of figuring out when zero is crossed, instead of when
5652 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005653 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005654 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005655 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005656
5657 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005658 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005659 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005660 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5661 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005662 if (R1) {
5663 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005664 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005665 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005666 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005667 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005668 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005669
Chris Lattner53e677a2004-04-02 20:23:17 +00005670 // Make sure the root is not off by one. The returned iteration should
5671 // not be in the range, but the previous one should be. When solving
5672 // for "X*X < 5", for example, we should not return a root of 2.
5673 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005674 R1->getValue(),
5675 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005676 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005677 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005678 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005679 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005680
Dan Gohman246b2562007-10-22 18:31:58 +00005681 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005682 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005683 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005684 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005685 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005686
Chris Lattner53e677a2004-04-02 20:23:17 +00005687 // If R1 was not in the range, then it is a good return value. Make
5688 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005689 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005690 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005691 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005692 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005693 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005694 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005695 }
5696 }
5697 }
5698
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005699 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005700}
5701
5702
5703
5704//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005705// SCEVCallbackVH Class Implementation
5706//===----------------------------------------------------------------------===//
5707
Dan Gohman1959b752009-05-19 19:22:47 +00005708void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005709 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005710 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5711 SE->ConstantEvolutionLoopExitValue.erase(PN);
5712 SE->Scalars.erase(getValPtr());
5713 // this now dangles!
5714}
5715
Dan Gohman1959b752009-05-19 19:22:47 +00005716void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005717 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005718
5719 // Forget all the expressions associated with users of the old value,
5720 // so that future queries will recompute the expressions using the new
5721 // value.
5722 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005723 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005724 Value *Old = getValPtr();
5725 bool DeleteOld = false;
5726 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5727 UI != UE; ++UI)
5728 Worklist.push_back(*UI);
5729 while (!Worklist.empty()) {
5730 User *U = Worklist.pop_back_val();
5731 // Deleting the Old value will cause this to dangle. Postpone
5732 // that until everything else is done.
5733 if (U == Old) {
5734 DeleteOld = true;
5735 continue;
5736 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005737 if (!Visited.insert(U))
5738 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005739 if (PHINode *PN = dyn_cast<PHINode>(U))
5740 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005741 SE->Scalars.erase(U);
5742 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5743 UI != UE; ++UI)
5744 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005745 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005746 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005747 if (DeleteOld) {
5748 if (PHINode *PN = dyn_cast<PHINode>(Old))
5749 SE->ConstantEvolutionLoopExitValue.erase(PN);
5750 SE->Scalars.erase(Old);
5751 // this now dangles!
5752 }
5753 // this may dangle!
5754}
5755
Dan Gohman1959b752009-05-19 19:22:47 +00005756ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005757 : CallbackVH(V), SE(se) {}
5758
5759//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005760// ScalarEvolution Class Implementation
5761//===----------------------------------------------------------------------===//
5762
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005763ScalarEvolution::ScalarEvolution()
Dan Gohman3bf63762010-06-18 19:54:20 +00005764 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005765}
5766
Chris Lattner53e677a2004-04-02 20:23:17 +00005767bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005768 this->F = &F;
5769 LI = &getAnalysis<LoopInfo>();
5770 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005771 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005772 return false;
5773}
5774
5775void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005776 Scalars.clear();
5777 BackedgeTakenCounts.clear();
5778 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005779 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005780 UniqueSCEVs.clear();
5781 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005782}
5783
5784void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5785 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005786 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005787 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005788}
5789
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005790bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005791 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005792}
5793
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005794static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005795 const Loop *L) {
5796 // Print all inner loops first
5797 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5798 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005799
Dan Gohman30733292010-01-09 18:17:45 +00005800 OS << "Loop ";
5801 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5802 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005803
Dan Gohman5d984912009-12-18 01:14:11 +00005804 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005805 L->getExitBlocks(ExitBlocks);
5806 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005807 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005808
Dan Gohman46bdfb02009-02-24 18:55:53 +00005809 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5810 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005811 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005812 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005813 }
5814
Dan Gohman30733292010-01-09 18:17:45 +00005815 OS << "\n"
5816 "Loop ";
5817 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5818 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005819
5820 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5821 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5822 } else {
5823 OS << "Unpredictable max backedge-taken count. ";
5824 }
5825
5826 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005827}
5828
Dan Gohman5d984912009-12-18 01:14:11 +00005829void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005830 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005831 // out SCEV values of all instructions that are interesting. Doing
5832 // this potentially causes it to create new SCEV objects though,
5833 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005834 // observable from outside the class though, so casting away the
5835 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005836 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005837
Dan Gohman30733292010-01-09 18:17:45 +00005838 OS << "Classifying expressions for: ";
5839 WriteAsOperand(OS, F, /*PrintType=*/false);
5840 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005841 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005842 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005843 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005844 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005845 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005846 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005847
Dan Gohman0c689c52009-06-19 17:49:54 +00005848 const Loop *L = LI->getLoopFor((*I).getParent());
5849
Dan Gohman0bba49c2009-07-07 17:06:11 +00005850 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005851 if (AtUse != SV) {
5852 OS << " --> ";
5853 AtUse->print(OS);
5854 }
5855
5856 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005857 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005858 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005859 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005860 OS << "<<Unknown>>";
5861 } else {
5862 OS << *ExitValue;
5863 }
5864 }
5865
Chris Lattner53e677a2004-04-02 20:23:17 +00005866 OS << "\n";
5867 }
5868
Dan Gohman30733292010-01-09 18:17:45 +00005869 OS << "Determining loop execution counts for: ";
5870 WriteAsOperand(OS, F, /*PrintType=*/false);
5871 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005872 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5873 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005874}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005875