blob: 50de946a3071b4e2d1a80b56dbe9fb4eaf346438 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +000025#include "llvm/Transforms/Utils/Local.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000026#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000027#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000028#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000029#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000030#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000032#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000033#include "llvm/Support/CFG.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000034#include "llvm/Support/IRBuilder.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000035#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000036#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000037#include "llvm/Support/raw_ostream.h"
Duncan Sands0fd120b2012-05-25 12:03:02 +000038#include "llvm/ADT/DenseMap.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000039#include "llvm/ADT/PostOrderIterator.h"
Duncan Sands841f4262012-06-08 20:15:33 +000040#include "llvm/ADT/SetVector.h"
Duncan Sands0fd120b2012-05-25 12:03:02 +000041#include "llvm/ADT/SmallMap.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000042#include "llvm/ADT/STLExtras.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000043#include "llvm/ADT/Statistic.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000044#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000045using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000046
Chris Lattner0e5f4992006-12-19 21:40:18 +000047STATISTIC(NumChanged, "Number of insts reassociated");
48STATISTIC(NumAnnihil, "Number of expr tree annihilated");
49STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000050
Chris Lattner0e5f4992006-12-19 21:40:18 +000051namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000052 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000053 unsigned Rank;
54 Value *Op;
55 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
56 };
57 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
58 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
59 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000060}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000061
Devang Patel50cacb22008-11-21 21:00:20 +000062#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000063/// PrintOps - Print out the expression identified in the Ops list.
64///
Chris Lattner9f7b7082009-12-31 18:40:32 +000065static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000066 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000067 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000068 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000069 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000070 dbgs() << "[ ";
71 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
72 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000073 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000074}
Devang Patel59500c82008-11-21 20:00:59 +000075#endif
Bill Wendlinge8cd3f22012-05-02 23:43:23 +000076
Dan Gohman844731a2008-05-13 00:00:25 +000077namespace {
Chandler Carruth464bda32012-04-26 05:30:30 +000078 /// \brief Utility class representing a base and exponent pair which form one
79 /// factor of some product.
80 struct Factor {
81 Value *Base;
82 unsigned Power;
83
84 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
85
86 /// \brief Sort factors by their Base.
87 struct BaseSorter {
88 bool operator()(const Factor &LHS, const Factor &RHS) {
89 return LHS.Base < RHS.Base;
90 }
91 };
92
93 /// \brief Compare factors for equal bases.
94 struct BaseEqual {
95 bool operator()(const Factor &LHS, const Factor &RHS) {
96 return LHS.Base == RHS.Base;
97 }
98 };
99
100 /// \brief Sort factors in descending order by their power.
101 struct PowerDescendingSorter {
102 bool operator()(const Factor &LHS, const Factor &RHS) {
103 return LHS.Power > RHS.Power;
104 }
105 };
106
107 /// \brief Compare factors for equal powers.
108 struct PowerEqual {
109 bool operator()(const Factor &LHS, const Factor &RHS) {
110 return LHS.Power == RHS.Power;
111 }
112 };
113 };
114}
115
116namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +0000117 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000118 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topperf1d0f772012-03-26 06:58:25 +0000119 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Duncan Sands841f4262012-06-08 20:15:33 +0000120 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000121 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000122 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +0000123 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +0000124 Reassociate() : FunctionPass(ID) {
125 initializeReassociatePass(*PassRegistry::getPassRegistry());
126 }
Devang Patel794fd752007-05-01 21:15:47 +0000127
Chris Lattner7e708292002-06-25 16:13:24 +0000128 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000129
130 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +0000131 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +0000132 }
133 private:
Chris Lattner7e708292002-06-25 16:13:24 +0000134 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000135 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000136 Value *ReassociateExpression(BinaryOperator *I);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000137 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000138 Value *OptimizeExpression(BinaryOperator *I,
139 SmallVectorImpl<ValueEntry> &Ops);
140 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Chandler Carruth464bda32012-04-26 05:30:30 +0000141 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
142 SmallVectorImpl<Factor> &Factors);
143 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
144 SmallVectorImpl<Factor> &Factors);
145 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000146 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands841f4262012-06-08 20:15:33 +0000147 void EraseInst(Instruction *I);
148 void OptimizeInst(Instruction *I);
Chris Lattner4fd56002002-05-08 22:19:27 +0000149 };
150}
151
Dan Gohman844731a2008-05-13 00:00:25 +0000152char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000153INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000154 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000155
Brian Gaeked0fde302003-11-11 22:41:34 +0000156// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000157FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000158
Duncan Sands0fd120b2012-05-25 12:03:02 +0000159/// isReassociableOp - Return true if V is an instruction of the specified
160/// opcode and if it only has one use.
161static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
162 if (V->hasOneUse() && isa<Instruction>(V) &&
163 cast<Instruction>(V)->getOpcode() == Opcode)
164 return cast<BinaryOperator>(V);
165 return 0;
166}
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000167
Chris Lattner9c723192005-05-08 20:57:04 +0000168static bool isUnmovableInstruction(Instruction *I) {
169 if (I->getOpcode() == Instruction::PHI ||
Bill Wendling98bda3d2012-05-04 04:22:32 +0000170 I->getOpcode() == Instruction::LandingPad ||
Chris Lattner9c723192005-05-08 20:57:04 +0000171 I->getOpcode() == Instruction::Alloca ||
172 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000173 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000174 (I->getOpcode() == Instruction::Call &&
175 !isa<DbgInfoIntrinsic>(I)) ||
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000176 I->getOpcode() == Instruction::UDiv ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000177 I->getOpcode() == Instruction::SDiv ||
178 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000179 I->getOpcode() == Instruction::URem ||
180 I->getOpcode() == Instruction::SRem ||
181 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000182 return true;
183 return false;
184}
185
Chris Lattner7e708292002-06-25 16:13:24 +0000186void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000187 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000188
189 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000190 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000191 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000192
Chris Lattner7e708292002-06-25 16:13:24 +0000193 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000194 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000195 E = RPOT.end(); I != E; ++I) {
196 BasicBlock *BB = *I;
197 unsigned BBRank = RankMap[BB] = ++i << 16;
198
199 // Walk the basic block, adding precomputed ranks for any instructions that
200 // we cannot move. This ensures that the ranks for these instructions are
201 // all different in the block.
202 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
203 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000204 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000205 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000206}
207
208unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000209 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000210 if (I == 0) {
211 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
212 return 0; // Otherwise it's a global or constant, rank 0.
213 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000214
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000215 if (unsigned Rank = ValueRankMap[I])
216 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000217
Chris Lattner08b43922005-05-07 04:08:02 +0000218 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
219 // we can reassociate expressions for code motion! Since we do not recurse
220 // for PHI nodes, we cannot have infinite recursion here, because there
221 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000222 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
223 for (unsigned i = 0, e = I->getNumOperands();
224 i != e && Rank != MaxRank; ++i)
225 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000226
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000227 // If this is a not or neg instruction, do not count it for rank. This
228 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000229 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000230 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000231 ++Rank;
232
David Greenea1fa76c2010-01-05 01:27:24 +0000233 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000234 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000235
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000236 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000237}
238
Chris Lattnerf33151a2005-05-08 21:28:52 +0000239/// LowerNegateToMultiply - Replace 0-X with X*-1.
240///
Duncan Sands841f4262012-06-08 20:15:33 +0000241static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000242 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000243
Duncan Sands0fd120b2012-05-25 12:03:02 +0000244 BinaryOperator *Res =
245 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Duncan Sands841f4262012-06-08 20:15:33 +0000246 Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
Chris Lattner6934a042007-02-11 01:23:03 +0000247 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000248 Neg->replaceAllUsesWith(Res);
Devang Patel5367b232011-04-28 22:48:14 +0000249 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000250 return Res;
251}
252
Duncan Sandsc038a782012-06-12 14:33:56 +0000253/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
254/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
255/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
256/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
257/// even x in Bitwidth-bit arithmetic.
258static unsigned CarmichaelShift(unsigned Bitwidth) {
259 if (Bitwidth < 3)
260 return Bitwidth - 1;
261 return Bitwidth - 2;
262}
263
264/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
265/// reducing the combined weight using any special properties of the operation.
266/// The existing weight LHS represents the computation X op X op ... op X where
267/// X occurs LHS times. The combined weight represents X op X op ... op X with
268/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
269/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
270/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
271static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
272 // If we were working with infinite precision arithmetic then the combined
273 // weight would be LHS + RHS. But we are using finite precision arithmetic,
274 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
275 // for nilpotent operations and addition, but not for idempotent operations
276 // and multiplication), so it is important to correctly reduce the combined
277 // weight back into range if wrapping would be wrong.
278
279 // If RHS is zero then the weight didn't change.
280 if (RHS.isMinValue())
281 return;
282 // If LHS is zero then the combined weight is RHS.
283 if (LHS.isMinValue()) {
284 LHS = RHS;
285 return;
286 }
287 // From this point on we know that neither LHS nor RHS is zero.
288
289 if (Instruction::isIdempotent(Opcode)) {
290 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
291 // weight of 1. Keeping weights at zero or one also means that wrapping is
292 // not a problem.
293 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
294 return; // Return a weight of 1.
295 }
296 if (Instruction::isNilpotent(Opcode)) {
297 // Nilpotent means X op X === 0, so reduce weights modulo 2.
298 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
299 LHS = 0; // 1 + 1 === 0 modulo 2.
300 return;
301 }
302 if (Opcode == Instruction::Add) {
303 // TODO: Reduce the weight by exploiting nsw/nuw?
304 LHS += RHS;
305 return;
306 }
307
308 assert(Opcode == Instruction::Mul && "Unknown associative operation!");
309 unsigned Bitwidth = LHS.getBitWidth();
310 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
311 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
312 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
313 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
314 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
315 // which by a happy accident means that they can always be represented using
316 // Bitwidth bits.
317 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
318 // the Carmichael number).
319 if (Bitwidth > 3) {
320 /// CM - The value of Carmichael's lambda function.
321 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
322 // Any weight W >= Threshold can be replaced with W - CM.
323 APInt Threshold = CM + Bitwidth;
324 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
325 // For Bitwidth 4 or more the following sum does not overflow.
326 LHS += RHS;
327 while (LHS.uge(Threshold))
328 LHS -= CM;
329 } else {
330 // To avoid problems with overflow do everything the same as above but using
331 // a larger type.
332 unsigned CM = 1U << CarmichaelShift(Bitwidth);
333 unsigned Threshold = CM + Bitwidth;
334 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
335 "Weights not reduced!");
336 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
337 while (Total >= Threshold)
338 Total -= CM;
339 LHS = Total;
340 }
341}
342
343/// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C
344/// is repeated Weight times.
345static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C,
346 APInt Weight) {
347 // For addition the result can be efficiently computed as the product of the
348 // constant and the weight.
349 if (Opcode == Instruction::Add)
350 return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight));
351
352 // The weight might be huge, so compute by repeated squaring to ensure that
353 // compile time is proportional to the logarithm of the weight.
354 Constant *Result = 0;
355 Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc.
356 // Visit the bits in Weight.
357 while (Weight != 0) {
358 // If the current bit in Weight is non-zero do Result = Result op Power.
359 if (Weight[0])
360 Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power;
361 // Move on to the next bit if any more are non-zero.
362 Weight = Weight.lshr(1);
363 if (Weight.isMinValue())
364 break;
365 // Square the power.
366 Power = ConstantExpr::get(Opcode, Power, Power);
367 }
368
369 assert(Result && "Only positive weights supported!");
370 return Result;
371}
372
373typedef std::pair<Value*, APInt> RepeatedValue;
374
Duncan Sands0fd120b2012-05-25 12:03:02 +0000375/// LinearizeExprTree - Given an associative binary expression, return the leaf
Duncan Sandsc038a782012-06-12 14:33:56 +0000376/// nodes in Ops along with their weights (how many times the leaf occurs). The
377/// original expression is the same as
378/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
379/// op
380/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
381/// op
382/// ...
383/// op
384/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
385///
386/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and
387/// they are all non-constant except possibly for the last one, which if it is
388/// constant will have weight one (Ops[N].second === 1).
389///
390/// This routine may modify the function, in which case it returns 'true'. The
391/// changes it makes may well be destructive, changing the value computed by 'I'
392/// to something completely different. Thus if the routine returns 'true' then
393/// you MUST either replace I with a new expression computed from the Ops array,
394/// or use RewriteExprTree to put the values back in.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000395///
Duncan Sands0fd120b2012-05-25 12:03:02 +0000396/// A leaf node is either not a binary operation of the same kind as the root
397/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
398/// opcode), or is the same kind of binary operator but has a use which either
399/// does not belong to the expression, or does belong to the expression but is
400/// a leaf node. Every leaf node has at least one use that is a non-leaf node
401/// of the expression, while for non-leaf nodes (except for the root 'I') every
402/// use is a non-leaf node of the expression.
403///
404/// For example:
405/// expression graph node names
406///
407/// + | I
408/// / \ |
409/// + + | A, B
410/// / \ / \ |
411/// * + * | C, D, E
412/// / \ / \ / \ |
413/// + * | F, G
414///
415/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsc038a782012-06-12 14:33:56 +0000416/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sands0fd120b2012-05-25 12:03:02 +0000417///
418/// The expression is maximal: if some instruction is a binary operator of the
419/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
420/// then the instruction also belongs to the expression, is not a leaf node of
421/// it, and its operands also belong to the expression (but may be leaf nodes).
422///
423/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
424/// order to ensure that every non-root node in the expression has *exactly one*
425/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sandseacc31a2012-05-26 16:42:52 +0000426/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsc038a782012-06-12 14:33:56 +0000427/// RewriteExprTree to put the values back in if the routine indicates that it
428/// made a change by returning 'true'.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000429///
Duncan Sands0fd120b2012-05-25 12:03:02 +0000430/// In the above example either the right operand of A or the left operand of B
431/// will be replaced by undef. If it is B's operand then this gives:
432///
433/// + | I
434/// / \ |
435/// + + | A, B - operand of B replaced with undef
436/// / \ \ |
437/// * + * | C, D, E
438/// / \ / \ / \ |
439/// + * | F, G
440///
Duncan Sandseacc31a2012-05-26 16:42:52 +0000441/// Note that such undef operands can only be reached by passing through 'I'.
442/// For example, if you visit operands recursively starting from a leaf node
443/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sands0fd120b2012-05-25 12:03:02 +0000444/// which requires passing through a phi node.
445///
446/// Note that this routine may also mutate binary operators of the wrong type
447/// that have all uses inside the expression (i.e. only used by non-leaf nodes
448/// of the expression) if it can turn them into binary operators of the right
449/// type and thus make the expression bigger.
450
Duncan Sandsc038a782012-06-12 14:33:56 +0000451static bool LinearizeExprTree(BinaryOperator *I,
452 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sands0fd120b2012-05-25 12:03:02 +0000453 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsc038a782012-06-12 14:33:56 +0000454 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
455 unsigned Opcode = I->getOpcode();
456 assert(Instruction::isAssociative(Opcode) &&
457 Instruction::isCommutative(Opcode) &&
458 "Expected an associative and commutative operation!");
Duncan Sands0fd120b2012-05-25 12:03:02 +0000459
460 // Visit all operands of the expression, keeping track of their weight (the
461 // number of paths from the expression root to the operand, or if you like
462 // the number of times that operand occurs in the linearized expression).
463 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
464 // while A has weight two.
465
466 // Worklist of non-leaf nodes (their operands are in the expression too) along
467 // with their weights, representing a certain number of paths to the operator.
468 // If an operator occurs in the worklist multiple times then we found multiple
469 // ways to get to it.
Duncan Sandsc038a782012-06-12 14:33:56 +0000470 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
471 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
472 bool MadeChange = false;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000473
Duncan Sands0fd120b2012-05-25 12:03:02 +0000474 // Leaves of the expression are values that either aren't the right kind of
475 // operation (eg: a constant, or a multiply in an add tree), or are, but have
476 // some uses that are not inside the expression. For example, in I = X + X,
477 // X = A + B, the value X has two uses (by I) that are in the expression. If
478 // X has any other uses, for example in a return instruction, then we consider
479 // X to be a leaf, and won't analyze it further. When we first visit a value,
480 // if it has more than one use then at first we conservatively consider it to
481 // be a leaf. Later, as the expression is explored, we may discover some more
482 // uses of the value from inside the expression. If all uses turn out to be
483 // from within the expression (and the value is a binary operator of the right
484 // kind) then the value is no longer considered to be a leaf, and its operands
485 // are explored.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000486
Duncan Sands0fd120b2012-05-25 12:03:02 +0000487 // Leaves - Keeps track of the set of putative leaves as well as the number of
488 // paths to each leaf seen so far.
Duncan Sandsc038a782012-06-12 14:33:56 +0000489 typedef SmallMap<Value*, APInt, 8> LeafMap;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000490 LeafMap Leaves; // Leaf -> Total weight so far.
491 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
492
493#ifndef NDEBUG
494 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
495#endif
496 while (!Worklist.empty()) {
Duncan Sandsc038a782012-06-12 14:33:56 +0000497 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sands0fd120b2012-05-25 12:03:02 +0000498 I = P.first; // We examine the operands of this binary operator.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000499
500 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
501 Value *Op = I->getOperand(OpIdx);
Duncan Sandsc038a782012-06-12 14:33:56 +0000502 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000503 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
504 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
505
506 // If this is a binary operation of the right kind with only one use then
507 // add its operands to the expression.
508 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
509 assert(Visited.insert(Op) && "Not first visit!");
510 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
511 Worklist.push_back(std::make_pair(BO, Weight));
512 continue;
513 }
514
515 // Appears to be a leaf. Is the operand already in the set of leaves?
516 LeafMap::iterator It = Leaves.find(Op);
517 if (It == Leaves.end()) {
518 // Not in the leaf map. Must be the first time we saw this operand.
519 assert(Visited.insert(Op) && "Not first visit!");
520 if (!Op->hasOneUse()) {
521 // This value has uses not accounted for by the expression, so it is
522 // not safe to modify. Mark it as being a leaf.
523 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
524 LeafOrder.push_back(Op);
525 Leaves[Op] = Weight;
526 continue;
527 }
528 // No uses outside the expression, try morphing it.
529 } else if (It != Leaves.end()) {
530 // Already in the leaf map.
531 assert(Visited.count(Op) && "In leaf map but not visited!");
532
533 // Update the number of paths to the leaf.
Duncan Sandsc038a782012-06-12 14:33:56 +0000534 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000535
536 // The leaf already has one use from inside the expression. As we want
537 // exactly one such use, drop this new use of the leaf.
538 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
539 I->setOperand(OpIdx, UndefValue::get(I->getType()));
540 MadeChange = true;
541
542 // If the leaf is a binary operation of the right kind and we now see
543 // that its multiple original uses were in fact all by nodes belonging
544 // to the expression, then no longer consider it to be a leaf and add
545 // its operands to the expression.
546 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
547 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
548 Worklist.push_back(std::make_pair(BO, It->second));
549 Leaves.erase(It);
550 continue;
551 }
552
553 // If we still have uses that are not accounted for by the expression
554 // then it is not safe to modify the value.
555 if (!Op->hasOneUse())
556 continue;
557
558 // No uses outside the expression, try morphing it.
559 Weight = It->second;
560 Leaves.erase(It); // Since the value may be morphed below.
561 }
562
563 // At this point we have a value which, first of all, is not a binary
564 // expression of the right kind, and secondly, is only used inside the
565 // expression. This means that it can safely be modified. See if we
566 // can usefully morph it into an expression of the right kind.
567 assert((!isa<Instruction>(Op) ||
568 cast<Instruction>(Op)->getOpcode() != Opcode) &&
569 "Should have been handled above!");
570 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
571
572 // If this is a multiply expression, turn any internal negations into
573 // multiplies by -1 so they can be reassociated.
574 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
575 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
576 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
Duncan Sands841f4262012-06-08 20:15:33 +0000577 BO = LowerNegateToMultiply(BO);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000578 DEBUG(dbgs() << *BO << 'n');
579 Worklist.push_back(std::make_pair(BO, Weight));
580 MadeChange = true;
581 continue;
582 }
583
584 // Failed to morph into an expression of the right type. This really is
585 // a leaf.
586 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
587 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
588 LeafOrder.push_back(Op);
589 Leaves[Op] = Weight;
Chris Lattnerf33151a2005-05-08 21:28:52 +0000590 }
591 }
592
Duncan Sands0fd120b2012-05-25 12:03:02 +0000593 // The leaves, repeated according to their weights, represent the linearized
594 // form of the expression.
Duncan Sandsc038a782012-06-12 14:33:56 +0000595 Constant *Cst = 0; // Accumulate constants here.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000596 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
597 Value *V = LeafOrder[i];
598 LeafMap::iterator It = Leaves.find(V);
599 if (It == Leaves.end())
Duncan Sandsc038a782012-06-12 14:33:56 +0000600 // Node initially thought to be a leaf wasn't.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000601 continue;
602 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsc038a782012-06-12 14:33:56 +0000603 APInt Weight = It->second;
604 if (Weight.isMinValue())
605 // Leaf already output or weight reduction eliminated it.
606 continue;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000607 // Ensure the leaf is only output once.
Duncan Sandsc038a782012-06-12 14:33:56 +0000608 It->second = 0;
609 // Glob all constants together into Cst.
610 if (Constant *C = dyn_cast<Constant>(V)) {
611 C = EvaluateRepeatedConstant(Opcode, C, Weight);
612 Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C;
613 continue;
614 }
615 // Add non-constant
616 Ops.push_back(std::make_pair(V, Weight));
Chris Lattner4fd56002002-05-08 22:19:27 +0000617 }
Duncan Sandsc038a782012-06-12 14:33:56 +0000618
619 // Add any constants back into Ops, all globbed together and reduced to having
620 // weight 1 for the convenience of users.
621 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
622 Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
623
624 // For nilpotent operations or addition there may be no operands, for example
625 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
626 // in both cases the weight reduces to 0 causing the value to be skipped.
627 if (Ops.empty()) {
628 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
629 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
630 }
631
632 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000633}
634
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000635// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sands0fd120b2012-05-25 12:03:02 +0000636// linearized and optimized, emit them in-order.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000637void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sands0fd120b2012-05-25 12:03:02 +0000638 SmallVectorImpl<ValueEntry> &Ops) {
639 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman46985a12011-02-02 02:02:34 +0000640
Duncan Sands0fd120b2012-05-25 12:03:02 +0000641 // Since our optimizations never increase the number of operations, the new
642 // expression can always be written by reusing the existing binary operators
643 // from the original expression tree, without creating any new instructions,
644 // though the rewritten expression may have a completely different topology.
645 // We take care to not change anything if the new expression will be the same
646 // as the original. If more than trivial changes (like commuting operands)
647 // were made then we are obliged to clear out any optional subclass data like
648 // nsw flags.
Dan Gohman46985a12011-02-02 02:02:34 +0000649
Duncan Sands0fd120b2012-05-25 12:03:02 +0000650 /// NodesToRewrite - Nodes from the original expression available for writing
651 /// the new expression into.
652 SmallVector<BinaryOperator*, 8> NodesToRewrite;
653 unsigned Opcode = I->getOpcode();
654 NodesToRewrite.push_back(I);
655
Duncan Sandseacc31a2012-05-26 16:42:52 +0000656 // ExpressionChanged - Non-null if the rewritten expression differs from the
657 // original in some non-trivial way, requiring the clearing of optional flags.
658 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
659 BinaryOperator *ExpressionChanged = 0;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000660 BinaryOperator *Previous;
661 BinaryOperator *Op = 0;
662 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
663 assert(!NodesToRewrite.empty() &&
664 "Optimized expressions has more nodes than original!");
665 Previous = Op; Op = NodesToRewrite.pop_back_val();
Duncan Sandseacc31a2012-05-26 16:42:52 +0000666 if (ExpressionChanged)
667 // Compactify the tree instructions together with each other to guarantee
668 // that the expression tree is dominated by all of Ops.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000669 Op->moveBefore(Previous);
670
671 // The last operation (which comes earliest in the IR) is special as both
672 // operands will come from Ops, rather than just one with the other being
673 // a subexpression.
674 if (i+2 == Ops.size()) {
675 Value *NewLHS = Ops[i].Op;
676 Value *NewRHS = Ops[i+1].Op;
677 Value *OldLHS = Op->getOperand(0);
678 Value *OldRHS = Op->getOperand(1);
679
680 if (NewLHS == OldLHS && NewRHS == OldRHS)
681 // Nothing changed, leave it alone.
682 break;
683
684 if (NewLHS == OldRHS && NewRHS == OldLHS) {
685 // The order of the operands was reversed. Swap them.
686 DEBUG(dbgs() << "RA: " << *Op << '\n');
687 Op->swapOperands();
688 DEBUG(dbgs() << "TO: " << *Op << '\n');
689 MadeChange = true;
690 ++NumChanged;
691 break;
692 }
693
694 // The new operation differs non-trivially from the original. Overwrite
695 // the old operands with the new ones.
696 DEBUG(dbgs() << "RA: " << *Op << '\n');
697 if (NewLHS != OldLHS) {
698 if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
699 NodesToRewrite.push_back(BO);
700 Op->setOperand(0, NewLHS);
701 }
702 if (NewRHS != OldRHS) {
703 if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
704 NodesToRewrite.push_back(BO);
705 Op->setOperand(1, NewRHS);
706 }
707 DEBUG(dbgs() << "TO: " << *Op << '\n');
708
Duncan Sandseacc31a2012-05-26 16:42:52 +0000709 ExpressionChanged = Op;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000710 MadeChange = true;
711 ++NumChanged;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000712
Duncan Sands0fd120b2012-05-25 12:03:02 +0000713 break;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000714 }
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000715
Duncan Sands0fd120b2012-05-25 12:03:02 +0000716 // Not the last operation. The left-hand side will be a sub-expression
717 // while the right-hand side will be the current element of Ops.
718 Value *NewRHS = Ops[i].Op;
719 if (NewRHS != Op->getOperand(1)) {
720 DEBUG(dbgs() << "RA: " << *Op << '\n');
721 if (NewRHS == Op->getOperand(0)) {
722 // The new right-hand side was already present as the left operand. If
723 // we are lucky then swapping the operands will sort out both of them.
724 Op->swapOperands();
725 } else {
726 // Overwrite with the new right-hand side.
727 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
728 NodesToRewrite.push_back(BO);
729 Op->setOperand(1, NewRHS);
Duncan Sandseacc31a2012-05-26 16:42:52 +0000730 ExpressionChanged = Op;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000731 }
732 DEBUG(dbgs() << "TO: " << *Op << '\n');
733 MadeChange = true;
734 ++NumChanged;
735 }
Dan Gohman46985a12011-02-02 02:02:34 +0000736
Duncan Sands0fd120b2012-05-25 12:03:02 +0000737 // Now deal with the left-hand side. If this is already an operation node
738 // from the original expression then just rewrite the rest of the expression
739 // into it.
740 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
741 NodesToRewrite.push_back(BO);
742 continue;
743 }
Dan Gohman46985a12011-02-02 02:02:34 +0000744
Duncan Sands0fd120b2012-05-25 12:03:02 +0000745 // Otherwise, grab a spare node from the original expression and use that as
746 // the left-hand side.
747 assert(!NodesToRewrite.empty() &&
748 "Optimized expressions has more nodes than original!");
749 DEBUG(dbgs() << "RA: " << *Op << '\n');
750 Op->setOperand(0, NodesToRewrite.back());
751 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandseacc31a2012-05-26 16:42:52 +0000752 ExpressionChanged = Op;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000753 MadeChange = true;
754 ++NumChanged;
755 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000756
Duncan Sandseacc31a2012-05-26 16:42:52 +0000757 // If the expression changed non-trivially then clear out all subclass data
758 // starting from the operator specified in ExpressionChanged.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000759 if (ExpressionChanged) {
760 do {
Duncan Sandseacc31a2012-05-26 16:42:52 +0000761 ExpressionChanged->clearSubclassOptionalData();
762 if (ExpressionChanged == I)
Duncan Sands0fd120b2012-05-25 12:03:02 +0000763 break;
Duncan Sandseacc31a2012-05-26 16:42:52 +0000764 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
Duncan Sands0fd120b2012-05-25 12:03:02 +0000765 } while (1);
766 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000767
Duncan Sands0fd120b2012-05-25 12:03:02 +0000768 // Throw away any left over nodes from the original expression.
769 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands841f4262012-06-08 20:15:33 +0000770 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000771}
772
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000773/// NegateValue - Insert instructions before the instruction pointed to by BI,
774/// that computes the negative version of the value specified. The negative
775/// version of the value is returned, and BI is left pointing at the instruction
776/// that should be processed next by the reassociation pass.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000777static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000778 if (Constant *C = dyn_cast<Constant>(V))
779 return ConstantExpr::getNeg(C);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000780
Chris Lattnera36e6c82002-05-16 04:37:07 +0000781 // We are trying to expose opportunity for reassociation. One of the things
782 // that we want to do to achieve this is to push a negation as deep into an
783 // expression chain as possible, to expose the add instructions. In practice,
784 // this means that we turn this:
785 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
786 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
787 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000788 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000789 //
Duncan Sands0fd120b2012-05-25 12:03:02 +0000790 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
791 // Push the negates through the add.
792 I->setOperand(0, NegateValue(I->getOperand(0), BI));
793 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000794
Duncan Sands0fd120b2012-05-25 12:03:02 +0000795 // We must move the add instruction here, because the neg instructions do
796 // not dominate the old add instruction in general. By moving it, we are
797 // assured that the neg instructions we just inserted dominate the
798 // instruction we are about to insert after them.
799 //
800 I->moveBefore(BI);
801 I->setName(I->getName()+".neg");
802 return I;
803 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000804
Chris Lattner35239932009-12-31 20:34:32 +0000805 // Okay, we need to materialize a negated version of V with an instruction.
806 // Scan the use lists of V to see if we have one already.
807 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000808 User *U = *UI;
809 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000810
811 // We found one! Now we have to make sure that the definition dominates
812 // this use. We do this by moving it to the entry block (if it is a
813 // non-instruction value) or right after the definition. These negates will
814 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000815 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000816
817 // Verify that the negate is in this function, V might be a constant expr.
818 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
819 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000820
Chris Lattner35239932009-12-31 20:34:32 +0000821 BasicBlock::iterator InsertPt;
822 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
823 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
824 InsertPt = II->getNormalDest()->begin();
825 } else {
826 InsertPt = InstInput;
827 ++InsertPt;
828 }
829 while (isa<PHINode>(InsertPt)) ++InsertPt;
830 } else {
831 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
832 }
833 TheNeg->moveBefore(InsertPt);
834 return TheNeg;
835 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000836
837 // Insert a 'neg' instruction that subtracts the value from zero to get the
838 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000839 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000840}
841
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000842/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
843/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000844static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000845 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000846 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000847 return false;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000848
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000849 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000850 // subtract or if this is only used by one.
851 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
852 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000853 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000854 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000855 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000856 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000857 if (Sub->hasOneUse() &&
Chris Lattner0b0803a2008-02-17 20:51:26 +0000858 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
859 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000860 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000861
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000862 return false;
863}
864
Chris Lattner08b43922005-05-07 04:08:02 +0000865/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
866/// only used by an add, transform this into (X+(0-Y)) to promote better
867/// reassociation.
Duncan Sands841f4262012-06-08 20:15:33 +0000868static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattner90461932010-01-01 00:04:26 +0000869 // Convert a subtract into an add and a neg instruction. This allows sub
870 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000871 //
Chris Lattner90461932010-01-01 00:04:26 +0000872 // Calculate the negative value of Operand 1 of the sub instruction,
873 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000874 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000875 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Duncan Sands841f4262012-06-08 20:15:33 +0000876 BinaryOperator *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000877 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Duncan Sands841f4262012-06-08 20:15:33 +0000878 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
879 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6934a042007-02-11 01:23:03 +0000880 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000881
882 // Everyone now refers to the add instruction.
883 Sub->replaceAllUsesWith(New);
Devang Patel5367b232011-04-28 22:48:14 +0000884 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen00b168892005-07-27 06:12:32 +0000885
David Greenea1fa76c2010-01-05 01:27:24 +0000886 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000887 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000888}
889
Chris Lattner0975ed52005-05-07 04:24:13 +0000890/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
891/// by one, change this into a multiply by a constant to assist with further
892/// reassociation.
Duncan Sands841f4262012-06-08 20:15:33 +0000893static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
894 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
895 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000896
Duncan Sands841f4262012-06-08 20:15:33 +0000897 BinaryOperator *Mul =
898 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
899 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
900 Mul->takeName(Shl);
901 Shl->replaceAllUsesWith(Mul);
902 Mul->setDebugLoc(Shl->getDebugLoc());
903 return Mul;
Chris Lattner0975ed52005-05-07 04:24:13 +0000904}
905
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000906/// FindInOperandList - Scan backwards and forwards among values with the same
907/// rank as element i to see if X exists. If X does not exist, return i. This
908/// is useful when scanning for 'x' when we see '-x' because they both get the
909/// same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000910static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000911 Value *X) {
912 unsigned XRank = Ops[i].Rank;
913 unsigned e = Ops.size();
914 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
915 if (Ops[j].Op == X)
916 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000917 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000918 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
919 if (Ops[j].Op == X)
920 return j;
921 return i;
922}
923
Chris Lattnere5022fe2006-03-04 09:31:13 +0000924/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
925/// and returning the result. Insert the tree before I.
Bill Wendling55e70982012-05-02 09:59:45 +0000926static Value *EmitAddTreeOfValues(Instruction *I,
927 SmallVectorImpl<WeakVH> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000928 if (Ops.size() == 1) return Ops.back();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000929
Chris Lattnere5022fe2006-03-04 09:31:13 +0000930 Value *V1 = Ops.back();
931 Ops.pop_back();
932 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000933 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000934}
935
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000936/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattnere5022fe2006-03-04 09:31:13 +0000937/// multiplication sequence, and if this sequence contains a multiply by Factor,
938/// remove Factor from the tree and return the new tree.
939Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
940 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
941 if (!BO) return 0;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000942
Duncan Sandsc038a782012-06-12 14:33:56 +0000943 SmallVector<RepeatedValue, 8> Tree;
944 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000945 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsc038a782012-06-12 14:33:56 +0000946 Factors.reserve(Tree.size());
947 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
948 RepeatedValue E = Tree[i];
949 Factors.append(E.second.getZExtValue(),
950 ValueEntry(getRank(E.first), E.first));
951 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000952
953 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000954 bool NeedsNegate = false;
955 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000956 if (Factors[i].Op == Factor) {
957 FoundFactor = true;
958 Factors.erase(Factors.begin()+i);
959 break;
960 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000961
Chris Lattner9506c932010-01-01 01:13:15 +0000962 // If this is a negative version of this factor, remove it.
963 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
964 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
965 if (FC1->getValue() == -FC2->getValue()) {
966 FoundFactor = NeedsNegate = true;
967 Factors.erase(Factors.begin()+i);
968 break;
969 }
970 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000971
Chris Lattnere9efecb2006-03-14 16:04:29 +0000972 if (!FoundFactor) {
973 // Make sure to restore the operands to the expression tree.
974 RewriteExprTree(BO, Factors);
975 return 0;
976 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000977
Chris Lattner9506c932010-01-01 01:13:15 +0000978 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000979
Chris Lattner1e7558b2009-12-31 19:34:45 +0000980 // If this was just a single multiply, remove the multiply and return the only
981 // remaining operand.
982 if (Factors.size() == 1) {
Duncan Sands841f4262012-06-08 20:15:33 +0000983 RedoInsts.insert(BO);
Chris Lattner9506c932010-01-01 01:13:15 +0000984 V = Factors[0].Op;
985 } else {
986 RewriteExprTree(BO, Factors);
987 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000988 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000989
Chris Lattner9506c932010-01-01 01:13:15 +0000990 if (NeedsNegate)
991 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000992
Chris Lattner9506c932010-01-01 01:13:15 +0000993 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000994}
995
Chris Lattnere9efecb2006-03-14 16:04:29 +0000996/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
997/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000998///
999/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +00001000static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +00001001 SmallVectorImpl<Value*> &Factors,
Duncan Sands0fd120b2012-05-25 12:03:02 +00001002 const SmallVectorImpl<ValueEntry> &Ops) {
1003 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1004 if (!BO) {
Chris Lattnere9efecb2006-03-14 16:04:29 +00001005 Factors.push_back(V);
1006 return;
1007 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001008
Chris Lattnere9efecb2006-03-14 16:04:29 +00001009 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001010 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1011 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnere9efecb2006-03-14 16:04:29 +00001012}
1013
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001014/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1015/// instruction. This optimizes based on identities. If it can be reduced to
1016/// a single Value, it is returned, otherwise the Ops list is mutated as
1017/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001018static Value *OptimizeAndOrXor(unsigned Opcode,
1019 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001020 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1021 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1022 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1023 // First, check for X and ~X in the operand list.
1024 assert(i < Ops.size());
1025 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1026 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1027 unsigned FoundX = FindInOperandList(Ops, i, X);
1028 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001029 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001030 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001031
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001032 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001033 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001034 }
1035 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001036
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001037 // Next, check for duplicate pairs of values, which we assume are next to
1038 // each other, due to our sorting criteria.
1039 assert(i < Ops.size());
1040 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1041 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001042 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001043 Ops.erase(Ops.begin()+i);
1044 --i; --e;
1045 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001046 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001047 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001048
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001049 // Drop pairs of values for Xor.
1050 assert(Opcode == Instruction::Xor);
1051 if (e == 2)
1052 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001053
Chris Lattner90461932010-01-01 00:04:26 +00001054 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001055 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1056 i -= 1; e -= 2;
1057 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001058 }
1059 }
1060 return 0;
1061}
Chris Lattnere9efecb2006-03-14 16:04:29 +00001062
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001063/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1064/// optimizes based on identities. If it can be reduced to a single Value, it
1065/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001066Value *Reassociate::OptimizeAdd(Instruction *I,
1067 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001068 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +00001069 // can simplify the expression. X+-X == 0. While we're at it, scan for any
1070 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +00001071 //
1072 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1073 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001074 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +00001075 Value *TheOp = Ops[i].Op;
1076 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001077 // instances of the operand together. Due to our sorting criteria, we know
1078 // that these need to be next to each other in the vector.
1079 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1080 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +00001081 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001082 do {
1083 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +00001084 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001085 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001086
Chris Lattnerf8a447d2009-12-31 19:25:19 +00001087 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +00001088 ++NumFactor;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001089
Chris Lattner69e98e22009-12-31 19:24:52 +00001090 // Insert a new multiply.
1091 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1092 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001093
Chris Lattner69e98e22009-12-31 19:24:52 +00001094 // Now that we have inserted a multiply, optimize it. This allows us to
1095 // handle cases that require multiple factoring steps, such as this:
1096 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Duncan Sands841f4262012-06-08 20:15:33 +00001097 RedoInsts.insert(cast<Instruction>(Mul));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001098
Chris Lattner69e98e22009-12-31 19:24:52 +00001099 // If every add operand was a duplicate, return the multiply.
1100 if (Ops.empty())
1101 return Mul;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001102
Chris Lattner69e98e22009-12-31 19:24:52 +00001103 // Otherwise, we had some input that didn't have the dupe, such as
1104 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1105 // things being added by this operation.
1106 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001107
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001108 --i;
1109 e = Ops.size();
1110 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +00001111 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001112
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001113 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +00001114 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001115 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001116
Chris Lattner69e98e22009-12-31 19:24:52 +00001117 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001118 unsigned FoundX = FindInOperandList(Ops, i, X);
1119 if (FoundX == i)
1120 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001121
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001122 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001123 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001124 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001125
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001126 Ops.erase(Ops.begin()+i);
1127 if (i < FoundX)
1128 --FoundX;
1129 else
1130 --i; // Need to back up an extra one.
1131 Ops.erase(Ops.begin()+FoundX);
1132 ++NumAnnihil;
1133 --i; // Revisit element.
1134 e -= 2; // Removed two elements.
1135 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001136
Chris Lattner94285e62009-12-31 18:17:13 +00001137 // Scan the operand list, checking to see if there are any common factors
1138 // between operands. Consider something like A*A+A*B*C+D. We would like to
1139 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1140 // To efficiently find this, we count the number of times a factor occurs
1141 // for any ADD operands that are MULs.
1142 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001143
Chris Lattner94285e62009-12-31 18:17:13 +00001144 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1145 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +00001146 unsigned MaxOcc = 0;
1147 Value *MaxOccVal = 0;
1148 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Duncan Sands0fd120b2012-05-25 12:03:02 +00001149 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1150 if (!BOp)
Chris Lattner94285e62009-12-31 18:17:13 +00001151 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001152
Chris Lattner94285e62009-12-31 18:17:13 +00001153 // Compute all of the factors of this added value.
1154 SmallVector<Value*, 8> Factors;
Duncan Sands0fd120b2012-05-25 12:03:02 +00001155 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner94285e62009-12-31 18:17:13 +00001156 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001157
Chris Lattner94285e62009-12-31 18:17:13 +00001158 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +00001159 SmallPtrSet<Value*, 8> Duplicates;
1160 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1161 Value *Factor = Factors[i];
1162 if (!Duplicates.insert(Factor)) continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001163
Chris Lattner9506c932010-01-01 01:13:15 +00001164 unsigned Occ = ++FactorOccurrences[Factor];
1165 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001166
Chris Lattner9506c932010-01-01 01:13:15 +00001167 // If Factor is a negative constant, add the negated value as a factor
1168 // because we can percolate the negate out. Watch for minint, which
1169 // cannot be positivified.
1170 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001171 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner9506c932010-01-01 01:13:15 +00001172 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1173 assert(!Duplicates.count(Factor) &&
1174 "Shouldn't have two constant factors, missed a canonicalize");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001175
Chris Lattner9506c932010-01-01 01:13:15 +00001176 unsigned Occ = ++FactorOccurrences[Factor];
1177 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1178 }
Chris Lattner94285e62009-12-31 18:17:13 +00001179 }
1180 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001181
Chris Lattner94285e62009-12-31 18:17:13 +00001182 // If any factor occurred more than one time, we can pull it out.
1183 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +00001184 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +00001185 ++NumFactor;
1186
1187 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1188 // this, we could otherwise run into situations where removing a factor
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001189 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner94285e62009-12-31 18:17:13 +00001190 // RemoveFactorFromExpression on successive values to behave differently.
1191 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Bill Wendling55e70982012-05-02 09:59:45 +00001192 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands37f87c72011-01-26 10:08:38 +00001193 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +00001194 // Only try to remove factors from expressions we're allowed to.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001195 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1196 if (!BOp)
Chris Lattnerc2d1b692010-01-09 06:01:36 +00001197 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001198
Chris Lattner94285e62009-12-31 18:17:13 +00001199 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands37f87c72011-01-26 10:08:38 +00001200 // The factorized operand may occur several times. Convert them all in
1201 // one fell swoop.
1202 for (unsigned j = Ops.size(); j != i;) {
1203 --j;
1204 if (Ops[j].Op == Ops[i].Op) {
1205 NewMulOps.push_back(V);
1206 Ops.erase(Ops.begin()+j);
1207 }
1208 }
1209 --i;
Chris Lattner94285e62009-12-31 18:17:13 +00001210 }
1211 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001212
Chris Lattner94285e62009-12-31 18:17:13 +00001213 // No need for extra uses anymore.
1214 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +00001215
Chris Lattner94285e62009-12-31 18:17:13 +00001216 unsigned NumAddedValues = NewMulOps.size();
1217 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +00001218
Chris Lattner69e98e22009-12-31 19:24:52 +00001219 // Now that we have inserted the add tree, optimize it. This allows us to
1220 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +00001221 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001222 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +00001223 (void)NumAddedValues;
Duncan Sands841f4262012-06-08 20:15:33 +00001224 if (Instruction *VI = dyn_cast<Instruction>(V))
1225 RedoInsts.insert(VI);
Chris Lattner69e98e22009-12-31 19:24:52 +00001226
1227 // Create the multiply.
Duncan Sands841f4262012-06-08 20:15:33 +00001228 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001229
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001230 // Rerun associate on the multiply in case the inner expression turned into
1231 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands841f4262012-06-08 20:15:33 +00001232 RedoInsts.insert(V2);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001233
Chris Lattner94285e62009-12-31 18:17:13 +00001234 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1235 // entire result expression is just the multiply "A*(B+C)".
1236 if (Ops.empty())
1237 return V2;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001238
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001239 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +00001240 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001241 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +00001242 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1243 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001244
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001245 return 0;
1246}
Chris Lattnere5022fe2006-03-04 09:31:13 +00001247
Chandler Carruth464bda32012-04-26 05:30:30 +00001248namespace {
1249 /// \brief Predicate tests whether a ValueEntry's op is in a map.
1250 struct IsValueInMap {
1251 const DenseMap<Value *, unsigned> &Map;
1252
1253 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1254
1255 bool operator()(const ValueEntry &Entry) {
1256 return Map.find(Entry.Op) != Map.end();
1257 }
1258 };
1259}
1260
1261/// \brief Build up a vector of value/power pairs factoring a product.
1262///
1263/// Given a series of multiplication operands, build a vector of factors and
1264/// the powers each is raised to when forming the final product. Sort them in
1265/// the order of descending power.
1266///
1267/// (x*x) -> [(x, 2)]
1268/// ((x*x)*x) -> [(x, 3)]
1269/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1270///
1271/// \returns Whether any factors have a power greater than one.
1272bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1273 SmallVectorImpl<Factor> &Factors) {
Duncan Sands0fd120b2012-05-25 12:03:02 +00001274 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1275 // Compute the sum of powers of simplifiable factors.
Chandler Carruth464bda32012-04-26 05:30:30 +00001276 unsigned FactorPowerSum = 0;
Duncan Sands0fd120b2012-05-25 12:03:02 +00001277 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1278 Value *Op = Ops[Idx-1].Op;
1279
1280 // Count the number of occurrences of this value.
1281 unsigned Count = 1;
1282 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1283 ++Count;
Chandler Carruth464bda32012-04-26 05:30:30 +00001284 // Track for simplification all factors which occur 2 or more times.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001285 if (Count > 1)
1286 FactorPowerSum += Count;
Chandler Carruth464bda32012-04-26 05:30:30 +00001287 }
Duncan Sands0fd120b2012-05-25 12:03:02 +00001288
Chandler Carruth464bda32012-04-26 05:30:30 +00001289 // We can only simplify factors if the sum of the powers of our simplifiable
1290 // factors is 4 or higher. When that is the case, we will *always* have
1291 // a simplification. This is an important invariant to prevent cyclicly
1292 // trying to simplify already minimal formations.
1293 if (FactorPowerSum < 4)
1294 return false;
1295
Duncan Sands0fd120b2012-05-25 12:03:02 +00001296 // Now gather the simplifiable factors, removing them from Ops.
1297 FactorPowerSum = 0;
1298 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1299 Value *Op = Ops[Idx-1].Op;
Chandler Carruth464bda32012-04-26 05:30:30 +00001300
Duncan Sands0fd120b2012-05-25 12:03:02 +00001301 // Count the number of occurrences of this value.
1302 unsigned Count = 1;
1303 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1304 ++Count;
1305 if (Count == 1)
1306 continue;
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001307 // Move an even number of occurrences to Factors.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001308 Count &= ~1U;
1309 Idx -= Count;
1310 FactorPowerSum += Count;
1311 Factors.push_back(Factor(Op, Count));
1312 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth464bda32012-04-26 05:30:30 +00001313 }
Duncan Sands0fd120b2012-05-25 12:03:02 +00001314
Chandler Carruth464bda32012-04-26 05:30:30 +00001315 // None of the adjustments above should have reduced the sum of factor powers
1316 // below our mininum of '4'.
1317 assert(FactorPowerSum >= 4);
1318
Chandler Carruth464bda32012-04-26 05:30:30 +00001319 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1320 return true;
1321}
1322
1323/// \brief Build a tree of multiplies, computing the product of Ops.
1324static Value *buildMultiplyTree(IRBuilder<> &Builder,
1325 SmallVectorImpl<Value*> &Ops) {
1326 if (Ops.size() == 1)
1327 return Ops.back();
1328
1329 Value *LHS = Ops.pop_back_val();
1330 do {
1331 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1332 } while (!Ops.empty());
1333
1334 return LHS;
1335}
1336
1337/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1338///
1339/// Given a vector of values raised to various powers, where no two values are
1340/// equal and the powers are sorted in decreasing order, compute the minimal
1341/// DAG of multiplies to compute the final product, and return that product
1342/// value.
1343Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1344 SmallVectorImpl<Factor> &Factors) {
1345 assert(Factors[0].Power);
1346 SmallVector<Value *, 4> OuterProduct;
1347 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1348 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1349 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1350 LastIdx = Idx;
1351 continue;
1352 }
1353
1354 // We want to multiply across all the factors with the same power so that
1355 // we can raise them to that power as a single entity. Build a mini tree
1356 // for that.
1357 SmallVector<Value *, 4> InnerProduct;
1358 InnerProduct.push_back(Factors[LastIdx].Base);
1359 do {
1360 InnerProduct.push_back(Factors[Idx].Base);
1361 ++Idx;
1362 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1363
1364 // Reset the base value of the first factor to the new expression tree.
1365 // We'll remove all the factors with the same power in a second pass.
Duncan Sands841f4262012-06-08 20:15:33 +00001366 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1367 if (Instruction *MI = dyn_cast<Instruction>(M))
1368 RedoInsts.insert(MI);
Chandler Carruth464bda32012-04-26 05:30:30 +00001369
1370 LastIdx = Idx;
1371 }
1372 // Unique factors with equal powers -- we've folded them into the first one's
1373 // base.
1374 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1375 Factor::PowerEqual()),
1376 Factors.end());
1377
1378 // Iteratively collect the base of each factor with an add power into the
1379 // outer product, and halve each power in preparation for squaring the
1380 // expression.
1381 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1382 if (Factors[Idx].Power & 1)
1383 OuterProduct.push_back(Factors[Idx].Base);
1384 Factors[Idx].Power >>= 1;
1385 }
1386 if (Factors[0].Power) {
1387 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1388 OuterProduct.push_back(SquareRoot);
1389 OuterProduct.push_back(SquareRoot);
1390 }
1391 if (OuterProduct.size() == 1)
1392 return OuterProduct.front();
1393
Duncan Sandsa3370102012-05-08 12:16:05 +00001394 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sandsa3370102012-05-08 12:16:05 +00001395 return V;
Chandler Carruth464bda32012-04-26 05:30:30 +00001396}
1397
1398Value *Reassociate::OptimizeMul(BinaryOperator *I,
1399 SmallVectorImpl<ValueEntry> &Ops) {
1400 // We can only optimize the multiplies when there is a chain of more than
1401 // three, such that a balanced tree might require fewer total multiplies.
1402 if (Ops.size() < 4)
1403 return 0;
1404
1405 // Try to turn linear trees of multiplies without other uses of the
1406 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1407 // re-use.
1408 SmallVector<Factor, 4> Factors;
1409 if (!collectMultiplyFactors(Ops, Factors))
1410 return 0; // All distinct factors, so nothing left for us to do.
1411
1412 IRBuilder<> Builder(I);
1413 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1414 if (Ops.empty())
1415 return V;
1416
1417 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1418 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1419 return 0;
1420}
1421
Chris Lattnere5022fe2006-03-04 09:31:13 +00001422Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +00001423 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +00001424 // Now that we have the linearized expression tree, try to optimize it.
1425 // Start by folding any constants that we found.
Chris Lattnere5022fe2006-03-04 09:31:13 +00001426 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001427
Chris Lattnere5022fe2006-03-04 09:31:13 +00001428 unsigned Opcode = I->getOpcode();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001429
Chris Lattner46900102005-05-08 00:19:31 +00001430 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
1431 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
1432 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +00001433 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +00001434 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +00001435 }
1436
1437 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001438 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +00001439 switch (Opcode) {
1440 default: break;
1441 case Instruction::And:
Chris Lattner90461932010-01-01 00:04:26 +00001442 if (CstVal->isZero()) // X & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +00001443 return CstVal;
Chris Lattner90461932010-01-01 00:04:26 +00001444 if (CstVal->isAllOnesValue()) // X & -1 -> X
Chris Lattner8d93b252009-12-31 07:48:51 +00001445 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +00001446 break;
1447 case Instruction::Mul:
Chris Lattner90461932010-01-01 00:04:26 +00001448 if (CstVal->isZero()) { // X * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +00001449 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +00001450 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +00001451 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001452
Chris Lattner8d93b252009-12-31 07:48:51 +00001453 if (cast<ConstantInt>(CstVal)->isOne())
Chris Lattner90461932010-01-01 00:04:26 +00001454 Ops.pop_back(); // X * 1 -> X
Chris Lattner46900102005-05-08 00:19:31 +00001455 break;
1456 case Instruction::Or:
Chris Lattner90461932010-01-01 00:04:26 +00001457 if (CstVal->isAllOnesValue()) // X | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +00001458 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +00001459 // FALLTHROUGH!
1460 case Instruction::Add:
1461 case Instruction::Xor:
Chris Lattner90461932010-01-01 00:04:26 +00001462 if (CstVal->isZero()) // X [|^+] 0 -> X
Chris Lattner46900102005-05-08 00:19:31 +00001463 Ops.pop_back();
1464 break;
1465 }
Chris Lattnere5022fe2006-03-04 09:31:13 +00001466 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001467
Chris Lattnerec531232009-12-31 07:33:14 +00001468 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +00001469 // argument list here.
Chandler Carruth464bda32012-04-26 05:30:30 +00001470 unsigned NumOps = Ops.size();
Chris Lattner109d34d2005-05-08 18:59:37 +00001471 switch (Opcode) {
1472 default: break;
1473 case Instruction::And:
1474 case Instruction::Or:
Chandler Carruth464bda32012-04-26 05:30:30 +00001475 case Instruction::Xor:
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001476 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1477 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001478 break;
1479
Chandler Carruth464bda32012-04-26 05:30:30 +00001480 case Instruction::Add:
Chris Lattner94285e62009-12-31 18:17:13 +00001481 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001482 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001483 break;
Chandler Carruth464bda32012-04-26 05:30:30 +00001484
1485 case Instruction::Mul:
1486 if (Value *Result = OptimizeMul(I, Ops))
1487 return Result;
1488 break;
Chris Lattner109d34d2005-05-08 18:59:37 +00001489 }
1490
Duncan Sands841f4262012-06-08 20:15:33 +00001491 if (Ops.size() != NumOps)
Chris Lattnere5022fe2006-03-04 09:31:13 +00001492 return OptimizeExpression(I, Ops);
1493 return 0;
Chris Lattner46900102005-05-08 00:19:31 +00001494}
1495
Duncan Sands841f4262012-06-08 20:15:33 +00001496/// EraseInst - Zap the given instruction, adding interesting operands to the
1497/// work list.
1498void Reassociate::EraseInst(Instruction *I) {
1499 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1500 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1501 // Erase the dead instruction.
1502 ValueRankMap.erase(I);
1503 I->eraseFromParent();
1504 // Optimize its operands.
1505 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1506 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1507 // If this is a node in an expression tree, climb to the expression root
1508 // and add that since that's where optimization actually happens.
1509 unsigned Opcode = Op->getOpcode();
1510 while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode)
1511 Op = Op->use_back();
1512 RedoInsts.insert(Op);
1513 }
1514}
1515
1516/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1517/// instructions is not allowed.
1518void Reassociate::OptimizeInst(Instruction *I) {
1519 // Only consider operations that we understand.
1520 if (!isa<BinaryOperator>(I))
1521 return;
1522
1523 if (I->getOpcode() == Instruction::Shl &&
1524 isa<ConstantInt>(I->getOperand(1)))
1525 // If an operand of this shift is a reassociable multiply, or if the shift
1526 // is used by a reassociable multiply or add, turn into a multiply.
1527 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1528 (I->hasOneUse() &&
1529 (isReassociableOp(I->use_back(), Instruction::Mul) ||
1530 isReassociableOp(I->use_back(), Instruction::Add)))) {
1531 Instruction *NI = ConvertShiftToMul(I);
1532 RedoInsts.insert(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001533 MadeChange = true;
Duncan Sands841f4262012-06-08 20:15:33 +00001534 I = NI;
Chris Lattnerf33151a2005-05-08 21:28:52 +00001535 }
Chris Lattnere4b73042002-10-31 17:12:59 +00001536
Owen Anderson423f19f2012-05-07 20:47:23 +00001537 // Floating point binary operators are not associative, but we can still
1538 // commute (some) of them, to canonicalize the order of their operands.
1539 // This can potentially expose more CSE opportunities, and makes writing
1540 // other transformations simpler.
Duncan Sands841f4262012-06-08 20:15:33 +00001541 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
Owen Anderson423f19f2012-05-07 20:47:23 +00001542 // FAdd and FMul can be commuted.
Duncan Sands841f4262012-06-08 20:15:33 +00001543 if (I->getOpcode() != Instruction::FMul &&
1544 I->getOpcode() != Instruction::FAdd)
Owen Anderson423f19f2012-05-07 20:47:23 +00001545 return;
1546
Duncan Sands841f4262012-06-08 20:15:33 +00001547 Value *LHS = I->getOperand(0);
1548 Value *RHS = I->getOperand(1);
Owen Anderson423f19f2012-05-07 20:47:23 +00001549 unsigned LHSRank = getRank(LHS);
1550 unsigned RHSRank = getRank(RHS);
1551
1552 // Sort the operands by rank.
1553 if (RHSRank < LHSRank) {
Duncan Sands841f4262012-06-08 20:15:33 +00001554 I->setOperand(0, RHS);
1555 I->setOperand(1, LHS);
Owen Anderson423f19f2012-05-07 20:47:23 +00001556 }
1557
1558 return;
1559 }
1560
Dan Gohmandac5dba2011-04-12 00:11:56 +00001561 // Do not reassociate boolean (i1) expressions. We want to preserve the
1562 // original order of evaluation for short-circuited comparisons that
1563 // SimplifyCFG has folded to AND/OR expressions. If the expression
1564 // is not further optimized, it is likely to be transformed back to a
1565 // short-circuited form for code gen, and the source order may have been
1566 // optimized for the most likely conditions.
Duncan Sands841f4262012-06-08 20:15:33 +00001567 if (I->getType()->isIntegerTy(1))
Dan Gohmandac5dba2011-04-12 00:11:56 +00001568 return;
Chris Lattnera36e6c82002-05-16 04:37:07 +00001569
Dan Gohmandac5dba2011-04-12 00:11:56 +00001570 // If this is a subtract instruction which is not already in negate form,
1571 // see if we can convert it to X+-Y.
Duncan Sands841f4262012-06-08 20:15:33 +00001572 if (I->getOpcode() == Instruction::Sub) {
1573 if (ShouldBreakUpSubtract(I)) {
1574 Instruction *NI = BreakUpSubtract(I);
1575 RedoInsts.insert(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001576 MadeChange = true;
Duncan Sands841f4262012-06-08 20:15:33 +00001577 I = NI;
1578 } else if (BinaryOperator::isNeg(I)) {
Dan Gohmandac5dba2011-04-12 00:11:56 +00001579 // Otherwise, this is a negation. See if the operand is a multiply tree
1580 // and if this is not an inner node of a multiply tree.
Duncan Sands841f4262012-06-08 20:15:33 +00001581 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1582 (!I->hasOneUse() ||
1583 !isReassociableOp(I->use_back(), Instruction::Mul))) {
1584 Instruction *NI = LowerNegateToMultiply(I);
1585 RedoInsts.insert(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001586 MadeChange = true;
Duncan Sands841f4262012-06-08 20:15:33 +00001587 I = NI;
Dan Gohmandac5dba2011-04-12 00:11:56 +00001588 }
1589 }
Chris Lattner895b3922006-03-14 07:11:11 +00001590 }
Dan Gohmandac5dba2011-04-12 00:11:56 +00001591
Duncan Sands841f4262012-06-08 20:15:33 +00001592 // If this instruction is an associative binary operator, process it.
1593 if (!I->isAssociative()) return;
1594 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001595
1596 // If this is an interior node of a reassociable tree, ignore it until we
1597 // get to the root of the tree, to avoid N^2 analysis.
Duncan Sands841f4262012-06-08 20:15:33 +00001598 if (BO->hasOneUse() && BO->use_back()->getOpcode() == BO->getOpcode())
Dan Gohmandac5dba2011-04-12 00:11:56 +00001599 return;
1600
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001601 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohmandac5dba2011-04-12 00:11:56 +00001602 // until we process the subtract.
Duncan Sands841f4262012-06-08 20:15:33 +00001603 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1604 cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
Dan Gohmandac5dba2011-04-12 00:11:56 +00001605 return;
1606
Duncan Sands841f4262012-06-08 20:15:33 +00001607 ReassociateExpression(BO);
Chris Lattner895b3922006-03-14 07:11:11 +00001608}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001609
Chris Lattner69e98e22009-12-31 19:24:52 +00001610Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001611
Chris Lattner69e98e22009-12-31 19:24:52 +00001612 // First, walk the expression tree, linearizing the tree, collecting the
1613 // operand information.
Duncan Sandsc038a782012-06-12 14:33:56 +00001614 SmallVector<RepeatedValue, 8> Tree;
1615 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner9f7b7082009-12-31 18:40:32 +00001616 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsc038a782012-06-12 14:33:56 +00001617 Ops.reserve(Tree.size());
1618 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1619 RepeatedValue E = Tree[i];
1620 Ops.append(E.second.getZExtValue(),
1621 ValueEntry(getRank(E.first), E.first));
1622 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001623
Duncan Sands24dfa522012-05-26 07:47:48 +00001624 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1625
Chris Lattner895b3922006-03-14 07:11:11 +00001626 // Now that we have linearized the tree to a list and have gathered all of
1627 // the operands and their ranks, sort the operands by their rank. Use a
1628 // stable_sort so that values with equal ranks will have their relative
1629 // positions maintained (and so the compiler is deterministic). Note that
1630 // this sorts so that the highest ranking values end up at the beginning of
1631 // the vector.
1632 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001633
Chris Lattner895b3922006-03-14 07:11:11 +00001634 // OptimizeExpression - Now that we have the expression tree in a convenient
1635 // sorted form, optimize it globally if possible.
1636 if (Value *V = OptimizeExpression(I, Ops)) {
1637 // This expression tree simplified to something that isn't a tree,
1638 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001639 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001640 I->replaceAllUsesWith(V);
Devang Patel5367b232011-04-28 22:48:14 +00001641 if (Instruction *VI = dyn_cast<Instruction>(V))
1642 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands841f4262012-06-08 20:15:33 +00001643 RedoInsts.insert(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001644 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +00001645 return V;
Chris Lattner895b3922006-03-14 07:11:11 +00001646 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001647
Chris Lattner895b3922006-03-14 07:11:11 +00001648 // We want to sink immediates as deeply as possible except in the case where
1649 // this is a multiply tree used only by an add, and the immediate is a -1.
1650 // In this case we reassociate to put the negation on the outside so that we
1651 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1652 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1653 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1654 isa<ConstantInt>(Ops.back().Op) &&
1655 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001656 ValueEntry Tmp = Ops.pop_back_val();
1657 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001658 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001659
David Greenea1fa76c2010-01-05 01:27:24 +00001660 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001661
Chris Lattner895b3922006-03-14 07:11:11 +00001662 if (Ops.size() == 1) {
1663 // This expression tree simplified to something that isn't a tree,
1664 // eliminate it.
1665 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel5367b232011-04-28 22:48:14 +00001666 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1667 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands841f4262012-06-08 20:15:33 +00001668 RedoInsts.insert(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001669 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001670 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001671
Chris Lattner69e98e22009-12-31 19:24:52 +00001672 // Now that we ordered and optimized the expressions, splat them back into
1673 // the expression tree, removing any unneeded nodes.
1674 RewriteExprTree(I, Ops);
1675 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001676}
1677
Chris Lattner7e708292002-06-25 16:13:24 +00001678bool Reassociate::runOnFunction(Function &F) {
Duncan Sands841f4262012-06-08 20:15:33 +00001679 // Calculate the rank map for F
Chris Lattner4fd56002002-05-08 22:19:27 +00001680 BuildRankMap(F);
1681
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001682 MadeChange = false;
Duncan Sands841f4262012-06-08 20:15:33 +00001683 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1684 // Optimize every instruction in the basic block.
1685 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1686 if (isInstructionTriviallyDead(II)) {
1687 EraseInst(II++);
1688 } else {
1689 OptimizeInst(II);
1690 assert(II->getParent() == BI && "Moved to a different block!");
1691 ++II;
1692 }
Duncan Sands69938a82012-06-08 13:37:30 +00001693
Duncan Sands841f4262012-06-08 20:15:33 +00001694 // If this produced extra instructions to optimize, handle them now.
1695 while (!RedoInsts.empty()) {
1696 Instruction *I = RedoInsts.pop_back_val();
1697 if (isInstructionTriviallyDead(I))
1698 EraseInst(I);
1699 else
1700 OptimizeInst(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001701 }
Duncan Sands841f4262012-06-08 20:15:33 +00001702 }
Chris Lattner4fd56002002-05-08 22:19:27 +00001703
Duncan Sands0fd120b2012-05-25 12:03:02 +00001704 // We are done with the rank map.
1705 RankMap.clear();
1706 ValueRankMap.clear();
1707
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001708 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001709}