blob: ed7340f7e6da117574068ccfdd46e6d5432cb9d2 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +000025#include "llvm/Transforms/Utils/Local.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000026#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000027#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000028#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000029#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000030#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000032#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000033#include "llvm/Support/CFG.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000034#include "llvm/Support/IRBuilder.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000035#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000036#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000037#include "llvm/Support/raw_ostream.h"
Duncan Sands0fd120b2012-05-25 12:03:02 +000038#include "llvm/ADT/DenseMap.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000039#include "llvm/ADT/PostOrderIterator.h"
Duncan Sands841f4262012-06-08 20:15:33 +000040#include "llvm/ADT/SetVector.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000041#include "llvm/ADT/STLExtras.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000042#include "llvm/ADT/Statistic.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000043#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000044using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000045
Chris Lattner0e5f4992006-12-19 21:40:18 +000046STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000049
Chris Lattner0e5f4992006-12-19 21:40:18 +000050namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000051 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000052 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000059}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000060
Devang Patel50cacb22008-11-21 21:00:20 +000061#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000062/// PrintOps - Print out the expression identified in the Ops list.
63///
Chris Lattner9f7b7082009-12-31 18:40:32 +000064static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000065 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000067 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000069 dbgs() << "[ ";
70 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000072 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000073}
Devang Patel59500c82008-11-21 20:00:59 +000074#endif
Bill Wendlinge8cd3f22012-05-02 23:43:23 +000075
Dan Gohman844731a2008-05-13 00:00:25 +000076namespace {
Chandler Carruth464bda32012-04-26 05:30:30 +000077 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
113}
114
115namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +0000116 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000117 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topperf1d0f772012-03-26 06:58:25 +0000118 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Duncan Sands841f4262012-06-08 20:15:33 +0000119 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000120 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000121 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +0000122 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +0000123 Reassociate() : FunctionPass(ID) {
124 initializeReassociatePass(*PassRegistry::getPassRegistry());
125 }
Devang Patel794fd752007-05-01 21:15:47 +0000126
Chris Lattner7e708292002-06-25 16:13:24 +0000127 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000128
129 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +0000130 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +0000131 }
132 private:
Chris Lattner7e708292002-06-25 16:13:24 +0000133 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000134 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000135 Value *ReassociateExpression(BinaryOperator *I);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000136 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000137 Value *OptimizeExpression(BinaryOperator *I,
138 SmallVectorImpl<ValueEntry> &Ops);
139 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Chandler Carruth464bda32012-04-26 05:30:30 +0000140 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
141 SmallVectorImpl<Factor> &Factors);
142 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
143 SmallVectorImpl<Factor> &Factors);
144 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000145 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands841f4262012-06-08 20:15:33 +0000146 void EraseInst(Instruction *I);
147 void OptimizeInst(Instruction *I);
Chris Lattner4fd56002002-05-08 22:19:27 +0000148 };
149}
150
Dan Gohman844731a2008-05-13 00:00:25 +0000151char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000152INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000153 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000154
Brian Gaeked0fde302003-11-11 22:41:34 +0000155// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000156FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000157
Duncan Sands0fd120b2012-05-25 12:03:02 +0000158/// isReassociableOp - Return true if V is an instruction of the specified
159/// opcode and if it only has one use.
160static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
161 if (V->hasOneUse() && isa<Instruction>(V) &&
162 cast<Instruction>(V)->getOpcode() == Opcode)
163 return cast<BinaryOperator>(V);
164 return 0;
165}
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000166
Chris Lattner9c723192005-05-08 20:57:04 +0000167static bool isUnmovableInstruction(Instruction *I) {
168 if (I->getOpcode() == Instruction::PHI ||
Bill Wendling98bda3d2012-05-04 04:22:32 +0000169 I->getOpcode() == Instruction::LandingPad ||
Chris Lattner9c723192005-05-08 20:57:04 +0000170 I->getOpcode() == Instruction::Alloca ||
171 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000172 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000173 (I->getOpcode() == Instruction::Call &&
174 !isa<DbgInfoIntrinsic>(I)) ||
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000175 I->getOpcode() == Instruction::UDiv ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000176 I->getOpcode() == Instruction::SDiv ||
177 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000178 I->getOpcode() == Instruction::URem ||
179 I->getOpcode() == Instruction::SRem ||
180 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000181 return true;
182 return false;
183}
184
Chris Lattner7e708292002-06-25 16:13:24 +0000185void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000186 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000187
188 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000189 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000190 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000191
Chris Lattner7e708292002-06-25 16:13:24 +0000192 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000193 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000194 E = RPOT.end(); I != E; ++I) {
195 BasicBlock *BB = *I;
196 unsigned BBRank = RankMap[BB] = ++i << 16;
197
198 // Walk the basic block, adding precomputed ranks for any instructions that
199 // we cannot move. This ensures that the ranks for these instructions are
200 // all different in the block.
201 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
202 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000203 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000204 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000205}
206
207unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000208 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000209 if (I == 0) {
210 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
211 return 0; // Otherwise it's a global or constant, rank 0.
212 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000213
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000214 if (unsigned Rank = ValueRankMap[I])
215 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000216
Chris Lattner08b43922005-05-07 04:08:02 +0000217 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
218 // we can reassociate expressions for code motion! Since we do not recurse
219 // for PHI nodes, we cannot have infinite recursion here, because there
220 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000221 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
222 for (unsigned i = 0, e = I->getNumOperands();
223 i != e && Rank != MaxRank; ++i)
224 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000225
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000226 // If this is a not or neg instruction, do not count it for rank. This
227 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000228 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000229 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000230 ++Rank;
231
David Greenea1fa76c2010-01-05 01:27:24 +0000232 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000233 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000234
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000235 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000236}
237
Chris Lattnerf33151a2005-05-08 21:28:52 +0000238/// LowerNegateToMultiply - Replace 0-X with X*-1.
239///
Duncan Sands841f4262012-06-08 20:15:33 +0000240static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000241 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000242
Duncan Sands0fd120b2012-05-25 12:03:02 +0000243 BinaryOperator *Res =
244 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Duncan Sands841f4262012-06-08 20:15:33 +0000245 Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
Chris Lattner6934a042007-02-11 01:23:03 +0000246 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000247 Neg->replaceAllUsesWith(Res);
Devang Patel5367b232011-04-28 22:48:14 +0000248 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000249 return Res;
250}
251
Duncan Sandsc038a782012-06-12 14:33:56 +0000252/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
253/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
254/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
255/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
256/// even x in Bitwidth-bit arithmetic.
257static unsigned CarmichaelShift(unsigned Bitwidth) {
258 if (Bitwidth < 3)
259 return Bitwidth - 1;
260 return Bitwidth - 2;
261}
262
263/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
264/// reducing the combined weight using any special properties of the operation.
265/// The existing weight LHS represents the computation X op X op ... op X where
266/// X occurs LHS times. The combined weight represents X op X op ... op X with
267/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
268/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
269/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
270static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
271 // If we were working with infinite precision arithmetic then the combined
272 // weight would be LHS + RHS. But we are using finite precision arithmetic,
273 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
274 // for nilpotent operations and addition, but not for idempotent operations
275 // and multiplication), so it is important to correctly reduce the combined
276 // weight back into range if wrapping would be wrong.
277
278 // If RHS is zero then the weight didn't change.
279 if (RHS.isMinValue())
280 return;
281 // If LHS is zero then the combined weight is RHS.
282 if (LHS.isMinValue()) {
283 LHS = RHS;
284 return;
285 }
286 // From this point on we know that neither LHS nor RHS is zero.
287
288 if (Instruction::isIdempotent(Opcode)) {
289 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
290 // weight of 1. Keeping weights at zero or one also means that wrapping is
291 // not a problem.
292 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
293 return; // Return a weight of 1.
294 }
295 if (Instruction::isNilpotent(Opcode)) {
296 // Nilpotent means X op X === 0, so reduce weights modulo 2.
297 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
298 LHS = 0; // 1 + 1 === 0 modulo 2.
299 return;
300 }
301 if (Opcode == Instruction::Add) {
302 // TODO: Reduce the weight by exploiting nsw/nuw?
303 LHS += RHS;
304 return;
305 }
306
307 assert(Opcode == Instruction::Mul && "Unknown associative operation!");
308 unsigned Bitwidth = LHS.getBitWidth();
309 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
310 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
311 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
312 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
313 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
314 // which by a happy accident means that they can always be represented using
315 // Bitwidth bits.
316 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
317 // the Carmichael number).
318 if (Bitwidth > 3) {
319 /// CM - The value of Carmichael's lambda function.
320 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
321 // Any weight W >= Threshold can be replaced with W - CM.
322 APInt Threshold = CM + Bitwidth;
323 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
324 // For Bitwidth 4 or more the following sum does not overflow.
325 LHS += RHS;
326 while (LHS.uge(Threshold))
327 LHS -= CM;
328 } else {
329 // To avoid problems with overflow do everything the same as above but using
330 // a larger type.
331 unsigned CM = 1U << CarmichaelShift(Bitwidth);
332 unsigned Threshold = CM + Bitwidth;
333 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
334 "Weights not reduced!");
335 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
336 while (Total >= Threshold)
337 Total -= CM;
338 LHS = Total;
339 }
340}
341
342/// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C
343/// is repeated Weight times.
344static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C,
345 APInt Weight) {
346 // For addition the result can be efficiently computed as the product of the
347 // constant and the weight.
348 if (Opcode == Instruction::Add)
349 return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight));
350
351 // The weight might be huge, so compute by repeated squaring to ensure that
352 // compile time is proportional to the logarithm of the weight.
353 Constant *Result = 0;
354 Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc.
355 // Visit the bits in Weight.
356 while (Weight != 0) {
357 // If the current bit in Weight is non-zero do Result = Result op Power.
358 if (Weight[0])
359 Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power;
360 // Move on to the next bit if any more are non-zero.
361 Weight = Weight.lshr(1);
362 if (Weight.isMinValue())
363 break;
364 // Square the power.
365 Power = ConstantExpr::get(Opcode, Power, Power);
366 }
367
368 assert(Result && "Only positive weights supported!");
369 return Result;
370}
371
372typedef std::pair<Value*, APInt> RepeatedValue;
373
Duncan Sands0fd120b2012-05-25 12:03:02 +0000374/// LinearizeExprTree - Given an associative binary expression, return the leaf
Duncan Sandsc038a782012-06-12 14:33:56 +0000375/// nodes in Ops along with their weights (how many times the leaf occurs). The
376/// original expression is the same as
377/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
378/// op
379/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
380/// op
381/// ...
382/// op
383/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
384///
385/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and
386/// they are all non-constant except possibly for the last one, which if it is
387/// constant will have weight one (Ops[N].second === 1).
388///
389/// This routine may modify the function, in which case it returns 'true'. The
390/// changes it makes may well be destructive, changing the value computed by 'I'
391/// to something completely different. Thus if the routine returns 'true' then
392/// you MUST either replace I with a new expression computed from the Ops array,
393/// or use RewriteExprTree to put the values back in.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000394///
Duncan Sands0fd120b2012-05-25 12:03:02 +0000395/// A leaf node is either not a binary operation of the same kind as the root
396/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
397/// opcode), or is the same kind of binary operator but has a use which either
398/// does not belong to the expression, or does belong to the expression but is
399/// a leaf node. Every leaf node has at least one use that is a non-leaf node
400/// of the expression, while for non-leaf nodes (except for the root 'I') every
401/// use is a non-leaf node of the expression.
402///
403/// For example:
404/// expression graph node names
405///
406/// + | I
407/// / \ |
408/// + + | A, B
409/// / \ / \ |
410/// * + * | C, D, E
411/// / \ / \ / \ |
412/// + * | F, G
413///
414/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsc038a782012-06-12 14:33:56 +0000415/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sands0fd120b2012-05-25 12:03:02 +0000416///
417/// The expression is maximal: if some instruction is a binary operator of the
418/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
419/// then the instruction also belongs to the expression, is not a leaf node of
420/// it, and its operands also belong to the expression (but may be leaf nodes).
421///
422/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
423/// order to ensure that every non-root node in the expression has *exactly one*
424/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sandseacc31a2012-05-26 16:42:52 +0000425/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsc038a782012-06-12 14:33:56 +0000426/// RewriteExprTree to put the values back in if the routine indicates that it
427/// made a change by returning 'true'.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000428///
Duncan Sands0fd120b2012-05-25 12:03:02 +0000429/// In the above example either the right operand of A or the left operand of B
430/// will be replaced by undef. If it is B's operand then this gives:
431///
432/// + | I
433/// / \ |
434/// + + | A, B - operand of B replaced with undef
435/// / \ \ |
436/// * + * | C, D, E
437/// / \ / \ / \ |
438/// + * | F, G
439///
Duncan Sandseacc31a2012-05-26 16:42:52 +0000440/// Note that such undef operands can only be reached by passing through 'I'.
441/// For example, if you visit operands recursively starting from a leaf node
442/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sands0fd120b2012-05-25 12:03:02 +0000443/// which requires passing through a phi node.
444///
445/// Note that this routine may also mutate binary operators of the wrong type
446/// that have all uses inside the expression (i.e. only used by non-leaf nodes
447/// of the expression) if it can turn them into binary operators of the right
448/// type and thus make the expression bigger.
449
Duncan Sandsc038a782012-06-12 14:33:56 +0000450static bool LinearizeExprTree(BinaryOperator *I,
451 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sands0fd120b2012-05-25 12:03:02 +0000452 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsc038a782012-06-12 14:33:56 +0000453 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
454 unsigned Opcode = I->getOpcode();
455 assert(Instruction::isAssociative(Opcode) &&
456 Instruction::isCommutative(Opcode) &&
457 "Expected an associative and commutative operation!");
Duncan Sandsee5a0942012-06-13 09:42:13 +0000458 // If we see an absorbing element then the entire expression must be equal to
459 // it. For example, if this is a multiplication expression and zero occurs as
460 // an operand somewhere in it then the result of the expression must be zero.
461 Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
Duncan Sands0fd120b2012-05-25 12:03:02 +0000462
463 // Visit all operands of the expression, keeping track of their weight (the
464 // number of paths from the expression root to the operand, or if you like
465 // the number of times that operand occurs in the linearized expression).
466 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
467 // while A has weight two.
468
469 // Worklist of non-leaf nodes (their operands are in the expression too) along
470 // with their weights, representing a certain number of paths to the operator.
471 // If an operator occurs in the worklist multiple times then we found multiple
472 // ways to get to it.
Duncan Sandsc038a782012-06-12 14:33:56 +0000473 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
474 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
475 bool MadeChange = false;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000476
Duncan Sands0fd120b2012-05-25 12:03:02 +0000477 // Leaves of the expression are values that either aren't the right kind of
478 // operation (eg: a constant, or a multiply in an add tree), or are, but have
479 // some uses that are not inside the expression. For example, in I = X + X,
480 // X = A + B, the value X has two uses (by I) that are in the expression. If
481 // X has any other uses, for example in a return instruction, then we consider
482 // X to be a leaf, and won't analyze it further. When we first visit a value,
483 // if it has more than one use then at first we conservatively consider it to
484 // be a leaf. Later, as the expression is explored, we may discover some more
485 // uses of the value from inside the expression. If all uses turn out to be
486 // from within the expression (and the value is a binary operator of the right
487 // kind) then the value is no longer considered to be a leaf, and its operands
488 // are explored.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000489
Duncan Sands0fd120b2012-05-25 12:03:02 +0000490 // Leaves - Keeps track of the set of putative leaves as well as the number of
491 // paths to each leaf seen so far.
Duncan Sands5f9e4c12012-06-12 20:26:43 +0000492 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000493 LeafMap Leaves; // Leaf -> Total weight so far.
494 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
495
496#ifndef NDEBUG
497 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
498#endif
499 while (!Worklist.empty()) {
Duncan Sandsc038a782012-06-12 14:33:56 +0000500 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sands0fd120b2012-05-25 12:03:02 +0000501 I = P.first; // We examine the operands of this binary operator.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000502
503 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
504 Value *Op = I->getOperand(OpIdx);
Duncan Sandsc038a782012-06-12 14:33:56 +0000505 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000506 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
507 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
508
Duncan Sandsee5a0942012-06-13 09:42:13 +0000509 // If the expression contains an absorbing element then there is no need
510 // to analyze it further: it must evaluate to the absorbing element.
511 if (Op == Absorber && !Weight.isMinValue()) {
512 Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
513 return MadeChange;
514 }
515
Duncan Sands0fd120b2012-05-25 12:03:02 +0000516 // If this is a binary operation of the right kind with only one use then
517 // add its operands to the expression.
518 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
519 assert(Visited.insert(Op) && "Not first visit!");
520 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
521 Worklist.push_back(std::make_pair(BO, Weight));
522 continue;
523 }
524
525 // Appears to be a leaf. Is the operand already in the set of leaves?
526 LeafMap::iterator It = Leaves.find(Op);
527 if (It == Leaves.end()) {
528 // Not in the leaf map. Must be the first time we saw this operand.
529 assert(Visited.insert(Op) && "Not first visit!");
530 if (!Op->hasOneUse()) {
531 // This value has uses not accounted for by the expression, so it is
532 // not safe to modify. Mark it as being a leaf.
533 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
534 LeafOrder.push_back(Op);
535 Leaves[Op] = Weight;
536 continue;
537 }
538 // No uses outside the expression, try morphing it.
539 } else if (It != Leaves.end()) {
540 // Already in the leaf map.
541 assert(Visited.count(Op) && "In leaf map but not visited!");
542
543 // Update the number of paths to the leaf.
Duncan Sandsc038a782012-06-12 14:33:56 +0000544 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000545
546 // The leaf already has one use from inside the expression. As we want
547 // exactly one such use, drop this new use of the leaf.
548 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
549 I->setOperand(OpIdx, UndefValue::get(I->getType()));
550 MadeChange = true;
551
552 // If the leaf is a binary operation of the right kind and we now see
553 // that its multiple original uses were in fact all by nodes belonging
554 // to the expression, then no longer consider it to be a leaf and add
555 // its operands to the expression.
556 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
557 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
558 Worklist.push_back(std::make_pair(BO, It->second));
559 Leaves.erase(It);
560 continue;
561 }
562
563 // If we still have uses that are not accounted for by the expression
564 // then it is not safe to modify the value.
565 if (!Op->hasOneUse())
566 continue;
567
568 // No uses outside the expression, try morphing it.
569 Weight = It->second;
570 Leaves.erase(It); // Since the value may be morphed below.
571 }
572
573 // At this point we have a value which, first of all, is not a binary
574 // expression of the right kind, and secondly, is only used inside the
575 // expression. This means that it can safely be modified. See if we
576 // can usefully morph it into an expression of the right kind.
577 assert((!isa<Instruction>(Op) ||
578 cast<Instruction>(Op)->getOpcode() != Opcode) &&
579 "Should have been handled above!");
580 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
581
582 // If this is a multiply expression, turn any internal negations into
583 // multiplies by -1 so they can be reassociated.
584 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
585 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
586 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
Duncan Sands841f4262012-06-08 20:15:33 +0000587 BO = LowerNegateToMultiply(BO);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000588 DEBUG(dbgs() << *BO << 'n');
589 Worklist.push_back(std::make_pair(BO, Weight));
590 MadeChange = true;
591 continue;
592 }
593
594 // Failed to morph into an expression of the right type. This really is
595 // a leaf.
596 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
597 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
598 LeafOrder.push_back(Op);
599 Leaves[Op] = Weight;
Chris Lattnerf33151a2005-05-08 21:28:52 +0000600 }
601 }
602
Duncan Sands0fd120b2012-05-25 12:03:02 +0000603 // The leaves, repeated according to their weights, represent the linearized
604 // form of the expression.
Duncan Sandsc038a782012-06-12 14:33:56 +0000605 Constant *Cst = 0; // Accumulate constants here.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000606 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
607 Value *V = LeafOrder[i];
608 LeafMap::iterator It = Leaves.find(V);
609 if (It == Leaves.end())
Duncan Sandsc038a782012-06-12 14:33:56 +0000610 // Node initially thought to be a leaf wasn't.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000611 continue;
612 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsc038a782012-06-12 14:33:56 +0000613 APInt Weight = It->second;
614 if (Weight.isMinValue())
615 // Leaf already output or weight reduction eliminated it.
616 continue;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000617 // Ensure the leaf is only output once.
Duncan Sandsc038a782012-06-12 14:33:56 +0000618 It->second = 0;
619 // Glob all constants together into Cst.
620 if (Constant *C = dyn_cast<Constant>(V)) {
621 C = EvaluateRepeatedConstant(Opcode, C, Weight);
622 Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C;
623 continue;
624 }
625 // Add non-constant
626 Ops.push_back(std::make_pair(V, Weight));
Chris Lattner4fd56002002-05-08 22:19:27 +0000627 }
Duncan Sandsc038a782012-06-12 14:33:56 +0000628
629 // Add any constants back into Ops, all globbed together and reduced to having
630 // weight 1 for the convenience of users.
Duncan Sandsee5a0942012-06-13 09:42:13 +0000631 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
632 if (Cst && Cst != Identity)
Duncan Sandsc038a782012-06-12 14:33:56 +0000633 Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
634
635 // For nilpotent operations or addition there may be no operands, for example
636 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
637 // in both cases the weight reduces to 0 causing the value to be skipped.
638 if (Ops.empty()) {
Duncan Sandsee5a0942012-06-13 09:42:13 +0000639 assert(Identity && "Associative operation without identity!");
Duncan Sandsc038a782012-06-12 14:33:56 +0000640 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
641 }
642
643 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000644}
645
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000646// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sands0fd120b2012-05-25 12:03:02 +0000647// linearized and optimized, emit them in-order.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000648void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sands0fd120b2012-05-25 12:03:02 +0000649 SmallVectorImpl<ValueEntry> &Ops) {
650 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman46985a12011-02-02 02:02:34 +0000651
Duncan Sands0fd120b2012-05-25 12:03:02 +0000652 // Since our optimizations never increase the number of operations, the new
653 // expression can always be written by reusing the existing binary operators
654 // from the original expression tree, without creating any new instructions,
655 // though the rewritten expression may have a completely different topology.
656 // We take care to not change anything if the new expression will be the same
657 // as the original. If more than trivial changes (like commuting operands)
658 // were made then we are obliged to clear out any optional subclass data like
659 // nsw flags.
Dan Gohman46985a12011-02-02 02:02:34 +0000660
Duncan Sands0fd120b2012-05-25 12:03:02 +0000661 /// NodesToRewrite - Nodes from the original expression available for writing
662 /// the new expression into.
663 SmallVector<BinaryOperator*, 8> NodesToRewrite;
664 unsigned Opcode = I->getOpcode();
665 NodesToRewrite.push_back(I);
666
Duncan Sandseacc31a2012-05-26 16:42:52 +0000667 // ExpressionChanged - Non-null if the rewritten expression differs from the
668 // original in some non-trivial way, requiring the clearing of optional flags.
669 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
670 BinaryOperator *ExpressionChanged = 0;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000671 BinaryOperator *Previous;
672 BinaryOperator *Op = 0;
673 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
674 assert(!NodesToRewrite.empty() &&
675 "Optimized expressions has more nodes than original!");
676 Previous = Op; Op = NodesToRewrite.pop_back_val();
Duncan Sandseacc31a2012-05-26 16:42:52 +0000677 if (ExpressionChanged)
678 // Compactify the tree instructions together with each other to guarantee
679 // that the expression tree is dominated by all of Ops.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000680 Op->moveBefore(Previous);
681
682 // The last operation (which comes earliest in the IR) is special as both
683 // operands will come from Ops, rather than just one with the other being
684 // a subexpression.
685 if (i+2 == Ops.size()) {
686 Value *NewLHS = Ops[i].Op;
687 Value *NewRHS = Ops[i+1].Op;
688 Value *OldLHS = Op->getOperand(0);
689 Value *OldRHS = Op->getOperand(1);
690
691 if (NewLHS == OldLHS && NewRHS == OldRHS)
692 // Nothing changed, leave it alone.
693 break;
694
695 if (NewLHS == OldRHS && NewRHS == OldLHS) {
696 // The order of the operands was reversed. Swap them.
697 DEBUG(dbgs() << "RA: " << *Op << '\n');
698 Op->swapOperands();
699 DEBUG(dbgs() << "TO: " << *Op << '\n');
700 MadeChange = true;
701 ++NumChanged;
702 break;
703 }
704
705 // The new operation differs non-trivially from the original. Overwrite
706 // the old operands with the new ones.
707 DEBUG(dbgs() << "RA: " << *Op << '\n');
708 if (NewLHS != OldLHS) {
709 if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
710 NodesToRewrite.push_back(BO);
711 Op->setOperand(0, NewLHS);
712 }
713 if (NewRHS != OldRHS) {
714 if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
715 NodesToRewrite.push_back(BO);
716 Op->setOperand(1, NewRHS);
717 }
718 DEBUG(dbgs() << "TO: " << *Op << '\n');
719
Duncan Sandseacc31a2012-05-26 16:42:52 +0000720 ExpressionChanged = Op;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000721 MadeChange = true;
722 ++NumChanged;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000723
Duncan Sands0fd120b2012-05-25 12:03:02 +0000724 break;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000725 }
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000726
Duncan Sands0fd120b2012-05-25 12:03:02 +0000727 // Not the last operation. The left-hand side will be a sub-expression
728 // while the right-hand side will be the current element of Ops.
729 Value *NewRHS = Ops[i].Op;
730 if (NewRHS != Op->getOperand(1)) {
731 DEBUG(dbgs() << "RA: " << *Op << '\n');
732 if (NewRHS == Op->getOperand(0)) {
733 // The new right-hand side was already present as the left operand. If
734 // we are lucky then swapping the operands will sort out both of them.
735 Op->swapOperands();
736 } else {
737 // Overwrite with the new right-hand side.
738 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
739 NodesToRewrite.push_back(BO);
740 Op->setOperand(1, NewRHS);
Duncan Sandseacc31a2012-05-26 16:42:52 +0000741 ExpressionChanged = Op;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000742 }
743 DEBUG(dbgs() << "TO: " << *Op << '\n');
744 MadeChange = true;
745 ++NumChanged;
746 }
Dan Gohman46985a12011-02-02 02:02:34 +0000747
Duncan Sands0fd120b2012-05-25 12:03:02 +0000748 // Now deal with the left-hand side. If this is already an operation node
749 // from the original expression then just rewrite the rest of the expression
750 // into it.
751 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
752 NodesToRewrite.push_back(BO);
753 continue;
754 }
Dan Gohman46985a12011-02-02 02:02:34 +0000755
Duncan Sands0fd120b2012-05-25 12:03:02 +0000756 // Otherwise, grab a spare node from the original expression and use that as
757 // the left-hand side.
758 assert(!NodesToRewrite.empty() &&
759 "Optimized expressions has more nodes than original!");
760 DEBUG(dbgs() << "RA: " << *Op << '\n');
761 Op->setOperand(0, NodesToRewrite.back());
762 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandseacc31a2012-05-26 16:42:52 +0000763 ExpressionChanged = Op;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000764 MadeChange = true;
765 ++NumChanged;
766 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000767
Duncan Sandseacc31a2012-05-26 16:42:52 +0000768 // If the expression changed non-trivially then clear out all subclass data
769 // starting from the operator specified in ExpressionChanged.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000770 if (ExpressionChanged) {
771 do {
Duncan Sandseacc31a2012-05-26 16:42:52 +0000772 ExpressionChanged->clearSubclassOptionalData();
773 if (ExpressionChanged == I)
Duncan Sands0fd120b2012-05-25 12:03:02 +0000774 break;
Duncan Sandseacc31a2012-05-26 16:42:52 +0000775 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
Duncan Sands0fd120b2012-05-25 12:03:02 +0000776 } while (1);
777 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000778
Duncan Sands0fd120b2012-05-25 12:03:02 +0000779 // Throw away any left over nodes from the original expression.
780 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands841f4262012-06-08 20:15:33 +0000781 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000782}
783
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000784/// NegateValue - Insert instructions before the instruction pointed to by BI,
785/// that computes the negative version of the value specified. The negative
786/// version of the value is returned, and BI is left pointing at the instruction
787/// that should be processed next by the reassociation pass.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000788static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000789 if (Constant *C = dyn_cast<Constant>(V))
790 return ConstantExpr::getNeg(C);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000791
Chris Lattnera36e6c82002-05-16 04:37:07 +0000792 // We are trying to expose opportunity for reassociation. One of the things
793 // that we want to do to achieve this is to push a negation as deep into an
794 // expression chain as possible, to expose the add instructions. In practice,
795 // this means that we turn this:
796 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
797 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
798 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000799 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000800 //
Duncan Sands0fd120b2012-05-25 12:03:02 +0000801 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
802 // Push the negates through the add.
803 I->setOperand(0, NegateValue(I->getOperand(0), BI));
804 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000805
Duncan Sands0fd120b2012-05-25 12:03:02 +0000806 // We must move the add instruction here, because the neg instructions do
807 // not dominate the old add instruction in general. By moving it, we are
808 // assured that the neg instructions we just inserted dominate the
809 // instruction we are about to insert after them.
810 //
811 I->moveBefore(BI);
812 I->setName(I->getName()+".neg");
813 return I;
814 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000815
Chris Lattner35239932009-12-31 20:34:32 +0000816 // Okay, we need to materialize a negated version of V with an instruction.
817 // Scan the use lists of V to see if we have one already.
818 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000819 User *U = *UI;
820 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000821
822 // We found one! Now we have to make sure that the definition dominates
823 // this use. We do this by moving it to the entry block (if it is a
824 // non-instruction value) or right after the definition. These negates will
825 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000826 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000827
828 // Verify that the negate is in this function, V might be a constant expr.
829 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
830 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000831
Chris Lattner35239932009-12-31 20:34:32 +0000832 BasicBlock::iterator InsertPt;
833 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
834 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
835 InsertPt = II->getNormalDest()->begin();
836 } else {
837 InsertPt = InstInput;
838 ++InsertPt;
839 }
840 while (isa<PHINode>(InsertPt)) ++InsertPt;
841 } else {
842 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
843 }
844 TheNeg->moveBefore(InsertPt);
845 return TheNeg;
846 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000847
848 // Insert a 'neg' instruction that subtracts the value from zero to get the
849 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000850 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000851}
852
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000853/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
854/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000855static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000856 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000857 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000858 return false;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000859
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000860 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000861 // subtract or if this is only used by one.
862 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
863 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000864 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000865 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000866 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000867 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000868 if (Sub->hasOneUse() &&
Chris Lattner0b0803a2008-02-17 20:51:26 +0000869 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
870 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000871 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000872
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000873 return false;
874}
875
Chris Lattner08b43922005-05-07 04:08:02 +0000876/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
877/// only used by an add, transform this into (X+(0-Y)) to promote better
878/// reassociation.
Duncan Sands841f4262012-06-08 20:15:33 +0000879static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattner90461932010-01-01 00:04:26 +0000880 // Convert a subtract into an add and a neg instruction. This allows sub
881 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000882 //
Chris Lattner90461932010-01-01 00:04:26 +0000883 // Calculate the negative value of Operand 1 of the sub instruction,
884 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000885 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000886 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Duncan Sands841f4262012-06-08 20:15:33 +0000887 BinaryOperator *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000888 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Duncan Sands841f4262012-06-08 20:15:33 +0000889 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
890 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6934a042007-02-11 01:23:03 +0000891 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000892
893 // Everyone now refers to the add instruction.
894 Sub->replaceAllUsesWith(New);
Devang Patel5367b232011-04-28 22:48:14 +0000895 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen00b168892005-07-27 06:12:32 +0000896
David Greenea1fa76c2010-01-05 01:27:24 +0000897 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000898 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000899}
900
Chris Lattner0975ed52005-05-07 04:24:13 +0000901/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
902/// by one, change this into a multiply by a constant to assist with further
903/// reassociation.
Duncan Sands841f4262012-06-08 20:15:33 +0000904static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
905 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
906 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000907
Duncan Sands841f4262012-06-08 20:15:33 +0000908 BinaryOperator *Mul =
909 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
910 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
911 Mul->takeName(Shl);
912 Shl->replaceAllUsesWith(Mul);
913 Mul->setDebugLoc(Shl->getDebugLoc());
914 return Mul;
Chris Lattner0975ed52005-05-07 04:24:13 +0000915}
916
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000917/// FindInOperandList - Scan backwards and forwards among values with the same
918/// rank as element i to see if X exists. If X does not exist, return i. This
919/// is useful when scanning for 'x' when we see '-x' because they both get the
920/// same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000921static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000922 Value *X) {
923 unsigned XRank = Ops[i].Rank;
924 unsigned e = Ops.size();
925 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
926 if (Ops[j].Op == X)
927 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000928 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000929 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
930 if (Ops[j].Op == X)
931 return j;
932 return i;
933}
934
Chris Lattnere5022fe2006-03-04 09:31:13 +0000935/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
936/// and returning the result. Insert the tree before I.
Bill Wendling55e70982012-05-02 09:59:45 +0000937static Value *EmitAddTreeOfValues(Instruction *I,
938 SmallVectorImpl<WeakVH> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000939 if (Ops.size() == 1) return Ops.back();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000940
Chris Lattnere5022fe2006-03-04 09:31:13 +0000941 Value *V1 = Ops.back();
942 Ops.pop_back();
943 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000944 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000945}
946
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000947/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattnere5022fe2006-03-04 09:31:13 +0000948/// multiplication sequence, and if this sequence contains a multiply by Factor,
949/// remove Factor from the tree and return the new tree.
950Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
951 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
952 if (!BO) return 0;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000953
Duncan Sandsc038a782012-06-12 14:33:56 +0000954 SmallVector<RepeatedValue, 8> Tree;
955 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000956 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsc038a782012-06-12 14:33:56 +0000957 Factors.reserve(Tree.size());
958 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
959 RepeatedValue E = Tree[i];
960 Factors.append(E.second.getZExtValue(),
961 ValueEntry(getRank(E.first), E.first));
962 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000963
964 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000965 bool NeedsNegate = false;
966 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000967 if (Factors[i].Op == Factor) {
968 FoundFactor = true;
969 Factors.erase(Factors.begin()+i);
970 break;
971 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000972
Chris Lattner9506c932010-01-01 01:13:15 +0000973 // If this is a negative version of this factor, remove it.
974 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
975 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
976 if (FC1->getValue() == -FC2->getValue()) {
977 FoundFactor = NeedsNegate = true;
978 Factors.erase(Factors.begin()+i);
979 break;
980 }
981 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000982
Chris Lattnere9efecb2006-03-14 16:04:29 +0000983 if (!FoundFactor) {
984 // Make sure to restore the operands to the expression tree.
985 RewriteExprTree(BO, Factors);
986 return 0;
987 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000988
Chris Lattner9506c932010-01-01 01:13:15 +0000989 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000990
Chris Lattner1e7558b2009-12-31 19:34:45 +0000991 // If this was just a single multiply, remove the multiply and return the only
992 // remaining operand.
993 if (Factors.size() == 1) {
Duncan Sands841f4262012-06-08 20:15:33 +0000994 RedoInsts.insert(BO);
Chris Lattner9506c932010-01-01 01:13:15 +0000995 V = Factors[0].Op;
996 } else {
997 RewriteExprTree(BO, Factors);
998 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000999 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001000
Chris Lattner9506c932010-01-01 01:13:15 +00001001 if (NeedsNegate)
1002 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001003
Chris Lattner9506c932010-01-01 01:13:15 +00001004 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +00001005}
1006
Chris Lattnere9efecb2006-03-14 16:04:29 +00001007/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1008/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +00001009///
1010/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +00001011static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +00001012 SmallVectorImpl<Value*> &Factors,
Duncan Sands0fd120b2012-05-25 12:03:02 +00001013 const SmallVectorImpl<ValueEntry> &Ops) {
1014 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1015 if (!BO) {
Chris Lattnere9efecb2006-03-14 16:04:29 +00001016 Factors.push_back(V);
1017 return;
1018 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001019
Chris Lattnere9efecb2006-03-14 16:04:29 +00001020 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001021 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1022 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnere9efecb2006-03-14 16:04:29 +00001023}
1024
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001025/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1026/// instruction. This optimizes based on identities. If it can be reduced to
1027/// a single Value, it is returned, otherwise the Ops list is mutated as
1028/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001029static Value *OptimizeAndOrXor(unsigned Opcode,
1030 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001031 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1032 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1033 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1034 // First, check for X and ~X in the operand list.
1035 assert(i < Ops.size());
1036 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1037 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1038 unsigned FoundX = FindInOperandList(Ops, i, X);
1039 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001040 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001041 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001042
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001043 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001044 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001045 }
1046 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001047
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001048 // Next, check for duplicate pairs of values, which we assume are next to
1049 // each other, due to our sorting criteria.
1050 assert(i < Ops.size());
1051 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1052 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001053 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001054 Ops.erase(Ops.begin()+i);
1055 --i; --e;
1056 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001057 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001058 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001059
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001060 // Drop pairs of values for Xor.
1061 assert(Opcode == Instruction::Xor);
1062 if (e == 2)
1063 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001064
Chris Lattner90461932010-01-01 00:04:26 +00001065 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001066 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1067 i -= 1; e -= 2;
1068 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001069 }
1070 }
1071 return 0;
1072}
Chris Lattnere9efecb2006-03-14 16:04:29 +00001073
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001074/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1075/// optimizes based on identities. If it can be reduced to a single Value, it
1076/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001077Value *Reassociate::OptimizeAdd(Instruction *I,
1078 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001079 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +00001080 // can simplify the expression. X+-X == 0. While we're at it, scan for any
1081 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +00001082 //
1083 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1084 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001085 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +00001086 Value *TheOp = Ops[i].Op;
1087 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001088 // instances of the operand together. Due to our sorting criteria, we know
1089 // that these need to be next to each other in the vector.
1090 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1091 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +00001092 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001093 do {
1094 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +00001095 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001096 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001097
Chris Lattnerf8a447d2009-12-31 19:25:19 +00001098 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +00001099 ++NumFactor;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001100
Chris Lattner69e98e22009-12-31 19:24:52 +00001101 // Insert a new multiply.
1102 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1103 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001104
Chris Lattner69e98e22009-12-31 19:24:52 +00001105 // Now that we have inserted a multiply, optimize it. This allows us to
1106 // handle cases that require multiple factoring steps, such as this:
1107 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Duncan Sands841f4262012-06-08 20:15:33 +00001108 RedoInsts.insert(cast<Instruction>(Mul));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001109
Chris Lattner69e98e22009-12-31 19:24:52 +00001110 // If every add operand was a duplicate, return the multiply.
1111 if (Ops.empty())
1112 return Mul;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001113
Chris Lattner69e98e22009-12-31 19:24:52 +00001114 // Otherwise, we had some input that didn't have the dupe, such as
1115 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1116 // things being added by this operation.
1117 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001118
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001119 --i;
1120 e = Ops.size();
1121 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +00001122 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001123
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001124 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +00001125 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001126 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001127
Chris Lattner69e98e22009-12-31 19:24:52 +00001128 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001129 unsigned FoundX = FindInOperandList(Ops, i, X);
1130 if (FoundX == i)
1131 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001132
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001133 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001134 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001135 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001136
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001137 Ops.erase(Ops.begin()+i);
1138 if (i < FoundX)
1139 --FoundX;
1140 else
1141 --i; // Need to back up an extra one.
1142 Ops.erase(Ops.begin()+FoundX);
1143 ++NumAnnihil;
1144 --i; // Revisit element.
1145 e -= 2; // Removed two elements.
1146 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001147
Chris Lattner94285e62009-12-31 18:17:13 +00001148 // Scan the operand list, checking to see if there are any common factors
1149 // between operands. Consider something like A*A+A*B*C+D. We would like to
1150 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1151 // To efficiently find this, we count the number of times a factor occurs
1152 // for any ADD operands that are MULs.
1153 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001154
Chris Lattner94285e62009-12-31 18:17:13 +00001155 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1156 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +00001157 unsigned MaxOcc = 0;
1158 Value *MaxOccVal = 0;
1159 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Duncan Sands0fd120b2012-05-25 12:03:02 +00001160 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1161 if (!BOp)
Chris Lattner94285e62009-12-31 18:17:13 +00001162 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001163
Chris Lattner94285e62009-12-31 18:17:13 +00001164 // Compute all of the factors of this added value.
1165 SmallVector<Value*, 8> Factors;
Duncan Sands0fd120b2012-05-25 12:03:02 +00001166 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner94285e62009-12-31 18:17:13 +00001167 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001168
Chris Lattner94285e62009-12-31 18:17:13 +00001169 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +00001170 SmallPtrSet<Value*, 8> Duplicates;
1171 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1172 Value *Factor = Factors[i];
1173 if (!Duplicates.insert(Factor)) continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001174
Chris Lattner9506c932010-01-01 01:13:15 +00001175 unsigned Occ = ++FactorOccurrences[Factor];
1176 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001177
Chris Lattner9506c932010-01-01 01:13:15 +00001178 // If Factor is a negative constant, add the negated value as a factor
1179 // because we can percolate the negate out. Watch for minint, which
1180 // cannot be positivified.
1181 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001182 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner9506c932010-01-01 01:13:15 +00001183 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1184 assert(!Duplicates.count(Factor) &&
1185 "Shouldn't have two constant factors, missed a canonicalize");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001186
Chris Lattner9506c932010-01-01 01:13:15 +00001187 unsigned Occ = ++FactorOccurrences[Factor];
1188 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1189 }
Chris Lattner94285e62009-12-31 18:17:13 +00001190 }
1191 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001192
Chris Lattner94285e62009-12-31 18:17:13 +00001193 // If any factor occurred more than one time, we can pull it out.
1194 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +00001195 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +00001196 ++NumFactor;
1197
1198 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1199 // this, we could otherwise run into situations where removing a factor
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001200 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner94285e62009-12-31 18:17:13 +00001201 // RemoveFactorFromExpression on successive values to behave differently.
1202 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Bill Wendling55e70982012-05-02 09:59:45 +00001203 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands37f87c72011-01-26 10:08:38 +00001204 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +00001205 // Only try to remove factors from expressions we're allowed to.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001206 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1207 if (!BOp)
Chris Lattnerc2d1b692010-01-09 06:01:36 +00001208 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001209
Chris Lattner94285e62009-12-31 18:17:13 +00001210 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands37f87c72011-01-26 10:08:38 +00001211 // The factorized operand may occur several times. Convert them all in
1212 // one fell swoop.
1213 for (unsigned j = Ops.size(); j != i;) {
1214 --j;
1215 if (Ops[j].Op == Ops[i].Op) {
1216 NewMulOps.push_back(V);
1217 Ops.erase(Ops.begin()+j);
1218 }
1219 }
1220 --i;
Chris Lattner94285e62009-12-31 18:17:13 +00001221 }
1222 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001223
Chris Lattner94285e62009-12-31 18:17:13 +00001224 // No need for extra uses anymore.
1225 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +00001226
Chris Lattner94285e62009-12-31 18:17:13 +00001227 unsigned NumAddedValues = NewMulOps.size();
1228 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +00001229
Chris Lattner69e98e22009-12-31 19:24:52 +00001230 // Now that we have inserted the add tree, optimize it. This allows us to
1231 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +00001232 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001233 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +00001234 (void)NumAddedValues;
Duncan Sands841f4262012-06-08 20:15:33 +00001235 if (Instruction *VI = dyn_cast<Instruction>(V))
1236 RedoInsts.insert(VI);
Chris Lattner69e98e22009-12-31 19:24:52 +00001237
1238 // Create the multiply.
Duncan Sands841f4262012-06-08 20:15:33 +00001239 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001240
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001241 // Rerun associate on the multiply in case the inner expression turned into
1242 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands841f4262012-06-08 20:15:33 +00001243 RedoInsts.insert(V2);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001244
Chris Lattner94285e62009-12-31 18:17:13 +00001245 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1246 // entire result expression is just the multiply "A*(B+C)".
1247 if (Ops.empty())
1248 return V2;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001249
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001250 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +00001251 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001252 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +00001253 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1254 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001255
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001256 return 0;
1257}
Chris Lattnere5022fe2006-03-04 09:31:13 +00001258
Chandler Carruth464bda32012-04-26 05:30:30 +00001259namespace {
1260 /// \brief Predicate tests whether a ValueEntry's op is in a map.
1261 struct IsValueInMap {
1262 const DenseMap<Value *, unsigned> &Map;
1263
1264 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1265
1266 bool operator()(const ValueEntry &Entry) {
1267 return Map.find(Entry.Op) != Map.end();
1268 }
1269 };
1270}
1271
1272/// \brief Build up a vector of value/power pairs factoring a product.
1273///
1274/// Given a series of multiplication operands, build a vector of factors and
1275/// the powers each is raised to when forming the final product. Sort them in
1276/// the order of descending power.
1277///
1278/// (x*x) -> [(x, 2)]
1279/// ((x*x)*x) -> [(x, 3)]
1280/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1281///
1282/// \returns Whether any factors have a power greater than one.
1283bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1284 SmallVectorImpl<Factor> &Factors) {
Duncan Sands0fd120b2012-05-25 12:03:02 +00001285 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1286 // Compute the sum of powers of simplifiable factors.
Chandler Carruth464bda32012-04-26 05:30:30 +00001287 unsigned FactorPowerSum = 0;
Duncan Sands0fd120b2012-05-25 12:03:02 +00001288 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1289 Value *Op = Ops[Idx-1].Op;
1290
1291 // Count the number of occurrences of this value.
1292 unsigned Count = 1;
1293 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1294 ++Count;
Chandler Carruth464bda32012-04-26 05:30:30 +00001295 // Track for simplification all factors which occur 2 or more times.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001296 if (Count > 1)
1297 FactorPowerSum += Count;
Chandler Carruth464bda32012-04-26 05:30:30 +00001298 }
Duncan Sands0fd120b2012-05-25 12:03:02 +00001299
Chandler Carruth464bda32012-04-26 05:30:30 +00001300 // We can only simplify factors if the sum of the powers of our simplifiable
1301 // factors is 4 or higher. When that is the case, we will *always* have
1302 // a simplification. This is an important invariant to prevent cyclicly
1303 // trying to simplify already minimal formations.
1304 if (FactorPowerSum < 4)
1305 return false;
1306
Duncan Sands0fd120b2012-05-25 12:03:02 +00001307 // Now gather the simplifiable factors, removing them from Ops.
1308 FactorPowerSum = 0;
1309 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1310 Value *Op = Ops[Idx-1].Op;
Chandler Carruth464bda32012-04-26 05:30:30 +00001311
Duncan Sands0fd120b2012-05-25 12:03:02 +00001312 // Count the number of occurrences of this value.
1313 unsigned Count = 1;
1314 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1315 ++Count;
1316 if (Count == 1)
1317 continue;
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001318 // Move an even number of occurrences to Factors.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001319 Count &= ~1U;
1320 Idx -= Count;
1321 FactorPowerSum += Count;
1322 Factors.push_back(Factor(Op, Count));
1323 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth464bda32012-04-26 05:30:30 +00001324 }
Duncan Sands0fd120b2012-05-25 12:03:02 +00001325
Chandler Carruth464bda32012-04-26 05:30:30 +00001326 // None of the adjustments above should have reduced the sum of factor powers
1327 // below our mininum of '4'.
1328 assert(FactorPowerSum >= 4);
1329
Chandler Carruth464bda32012-04-26 05:30:30 +00001330 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1331 return true;
1332}
1333
1334/// \brief Build a tree of multiplies, computing the product of Ops.
1335static Value *buildMultiplyTree(IRBuilder<> &Builder,
1336 SmallVectorImpl<Value*> &Ops) {
1337 if (Ops.size() == 1)
1338 return Ops.back();
1339
1340 Value *LHS = Ops.pop_back_val();
1341 do {
1342 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1343 } while (!Ops.empty());
1344
1345 return LHS;
1346}
1347
1348/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1349///
1350/// Given a vector of values raised to various powers, where no two values are
1351/// equal and the powers are sorted in decreasing order, compute the minimal
1352/// DAG of multiplies to compute the final product, and return that product
1353/// value.
1354Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1355 SmallVectorImpl<Factor> &Factors) {
1356 assert(Factors[0].Power);
1357 SmallVector<Value *, 4> OuterProduct;
1358 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1359 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1360 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1361 LastIdx = Idx;
1362 continue;
1363 }
1364
1365 // We want to multiply across all the factors with the same power so that
1366 // we can raise them to that power as a single entity. Build a mini tree
1367 // for that.
1368 SmallVector<Value *, 4> InnerProduct;
1369 InnerProduct.push_back(Factors[LastIdx].Base);
1370 do {
1371 InnerProduct.push_back(Factors[Idx].Base);
1372 ++Idx;
1373 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1374
1375 // Reset the base value of the first factor to the new expression tree.
1376 // We'll remove all the factors with the same power in a second pass.
Duncan Sands841f4262012-06-08 20:15:33 +00001377 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1378 if (Instruction *MI = dyn_cast<Instruction>(M))
1379 RedoInsts.insert(MI);
Chandler Carruth464bda32012-04-26 05:30:30 +00001380
1381 LastIdx = Idx;
1382 }
1383 // Unique factors with equal powers -- we've folded them into the first one's
1384 // base.
1385 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1386 Factor::PowerEqual()),
1387 Factors.end());
1388
1389 // Iteratively collect the base of each factor with an add power into the
1390 // outer product, and halve each power in preparation for squaring the
1391 // expression.
1392 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1393 if (Factors[Idx].Power & 1)
1394 OuterProduct.push_back(Factors[Idx].Base);
1395 Factors[Idx].Power >>= 1;
1396 }
1397 if (Factors[0].Power) {
1398 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1399 OuterProduct.push_back(SquareRoot);
1400 OuterProduct.push_back(SquareRoot);
1401 }
1402 if (OuterProduct.size() == 1)
1403 return OuterProduct.front();
1404
Duncan Sandsa3370102012-05-08 12:16:05 +00001405 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sandsa3370102012-05-08 12:16:05 +00001406 return V;
Chandler Carruth464bda32012-04-26 05:30:30 +00001407}
1408
1409Value *Reassociate::OptimizeMul(BinaryOperator *I,
1410 SmallVectorImpl<ValueEntry> &Ops) {
1411 // We can only optimize the multiplies when there is a chain of more than
1412 // three, such that a balanced tree might require fewer total multiplies.
1413 if (Ops.size() < 4)
1414 return 0;
1415
1416 // Try to turn linear trees of multiplies without other uses of the
1417 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1418 // re-use.
1419 SmallVector<Factor, 4> Factors;
1420 if (!collectMultiplyFactors(Ops, Factors))
1421 return 0; // All distinct factors, so nothing left for us to do.
1422
1423 IRBuilder<> Builder(I);
1424 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1425 if (Ops.empty())
1426 return V;
1427
1428 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1429 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1430 return 0;
1431}
1432
Chris Lattnere5022fe2006-03-04 09:31:13 +00001433Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +00001434 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +00001435 // Now that we have the linearized expression tree, try to optimize it.
1436 // Start by folding any constants that we found.
Chris Lattnere5022fe2006-03-04 09:31:13 +00001437 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001438
Chris Lattnere5022fe2006-03-04 09:31:13 +00001439 unsigned Opcode = I->getOpcode();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001440
Chris Lattnerec531232009-12-31 07:33:14 +00001441 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +00001442 // argument list here.
Chandler Carruth464bda32012-04-26 05:30:30 +00001443 unsigned NumOps = Ops.size();
Chris Lattner109d34d2005-05-08 18:59:37 +00001444 switch (Opcode) {
1445 default: break;
1446 case Instruction::And:
1447 case Instruction::Or:
Chandler Carruth464bda32012-04-26 05:30:30 +00001448 case Instruction::Xor:
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001449 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1450 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001451 break;
1452
Chandler Carruth464bda32012-04-26 05:30:30 +00001453 case Instruction::Add:
Chris Lattner94285e62009-12-31 18:17:13 +00001454 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001455 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001456 break;
Chandler Carruth464bda32012-04-26 05:30:30 +00001457
1458 case Instruction::Mul:
1459 if (Value *Result = OptimizeMul(I, Ops))
1460 return Result;
1461 break;
Chris Lattner109d34d2005-05-08 18:59:37 +00001462 }
1463
Duncan Sands841f4262012-06-08 20:15:33 +00001464 if (Ops.size() != NumOps)
Chris Lattnere5022fe2006-03-04 09:31:13 +00001465 return OptimizeExpression(I, Ops);
1466 return 0;
Chris Lattner46900102005-05-08 00:19:31 +00001467}
1468
Duncan Sands841f4262012-06-08 20:15:33 +00001469/// EraseInst - Zap the given instruction, adding interesting operands to the
1470/// work list.
1471void Reassociate::EraseInst(Instruction *I) {
1472 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1473 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1474 // Erase the dead instruction.
1475 ValueRankMap.erase(I);
1476 I->eraseFromParent();
1477 // Optimize its operands.
1478 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1479 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1480 // If this is a node in an expression tree, climb to the expression root
1481 // and add that since that's where optimization actually happens.
1482 unsigned Opcode = Op->getOpcode();
1483 while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode)
1484 Op = Op->use_back();
1485 RedoInsts.insert(Op);
1486 }
1487}
1488
1489/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1490/// instructions is not allowed.
1491void Reassociate::OptimizeInst(Instruction *I) {
1492 // Only consider operations that we understand.
1493 if (!isa<BinaryOperator>(I))
1494 return;
1495
1496 if (I->getOpcode() == Instruction::Shl &&
1497 isa<ConstantInt>(I->getOperand(1)))
1498 // If an operand of this shift is a reassociable multiply, or if the shift
1499 // is used by a reassociable multiply or add, turn into a multiply.
1500 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1501 (I->hasOneUse() &&
1502 (isReassociableOp(I->use_back(), Instruction::Mul) ||
1503 isReassociableOp(I->use_back(), Instruction::Add)))) {
1504 Instruction *NI = ConvertShiftToMul(I);
1505 RedoInsts.insert(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001506 MadeChange = true;
Duncan Sands841f4262012-06-08 20:15:33 +00001507 I = NI;
Chris Lattnerf33151a2005-05-08 21:28:52 +00001508 }
Chris Lattnere4b73042002-10-31 17:12:59 +00001509
Owen Anderson423f19f2012-05-07 20:47:23 +00001510 // Floating point binary operators are not associative, but we can still
1511 // commute (some) of them, to canonicalize the order of their operands.
1512 // This can potentially expose more CSE opportunities, and makes writing
1513 // other transformations simpler.
Duncan Sands841f4262012-06-08 20:15:33 +00001514 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
Owen Anderson423f19f2012-05-07 20:47:23 +00001515 // FAdd and FMul can be commuted.
Duncan Sands841f4262012-06-08 20:15:33 +00001516 if (I->getOpcode() != Instruction::FMul &&
1517 I->getOpcode() != Instruction::FAdd)
Owen Anderson423f19f2012-05-07 20:47:23 +00001518 return;
1519
Duncan Sands841f4262012-06-08 20:15:33 +00001520 Value *LHS = I->getOperand(0);
1521 Value *RHS = I->getOperand(1);
Owen Anderson423f19f2012-05-07 20:47:23 +00001522 unsigned LHSRank = getRank(LHS);
1523 unsigned RHSRank = getRank(RHS);
1524
1525 // Sort the operands by rank.
1526 if (RHSRank < LHSRank) {
Duncan Sands841f4262012-06-08 20:15:33 +00001527 I->setOperand(0, RHS);
1528 I->setOperand(1, LHS);
Owen Anderson423f19f2012-05-07 20:47:23 +00001529 }
1530
1531 return;
1532 }
1533
Dan Gohmandac5dba2011-04-12 00:11:56 +00001534 // Do not reassociate boolean (i1) expressions. We want to preserve the
1535 // original order of evaluation for short-circuited comparisons that
1536 // SimplifyCFG has folded to AND/OR expressions. If the expression
1537 // is not further optimized, it is likely to be transformed back to a
1538 // short-circuited form for code gen, and the source order may have been
1539 // optimized for the most likely conditions.
Duncan Sands841f4262012-06-08 20:15:33 +00001540 if (I->getType()->isIntegerTy(1))
Dan Gohmandac5dba2011-04-12 00:11:56 +00001541 return;
Chris Lattnera36e6c82002-05-16 04:37:07 +00001542
Dan Gohmandac5dba2011-04-12 00:11:56 +00001543 // If this is a subtract instruction which is not already in negate form,
1544 // see if we can convert it to X+-Y.
Duncan Sands841f4262012-06-08 20:15:33 +00001545 if (I->getOpcode() == Instruction::Sub) {
1546 if (ShouldBreakUpSubtract(I)) {
1547 Instruction *NI = BreakUpSubtract(I);
1548 RedoInsts.insert(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001549 MadeChange = true;
Duncan Sands841f4262012-06-08 20:15:33 +00001550 I = NI;
1551 } else if (BinaryOperator::isNeg(I)) {
Dan Gohmandac5dba2011-04-12 00:11:56 +00001552 // Otherwise, this is a negation. See if the operand is a multiply tree
1553 // and if this is not an inner node of a multiply tree.
Duncan Sands841f4262012-06-08 20:15:33 +00001554 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1555 (!I->hasOneUse() ||
1556 !isReassociableOp(I->use_back(), Instruction::Mul))) {
1557 Instruction *NI = LowerNegateToMultiply(I);
1558 RedoInsts.insert(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001559 MadeChange = true;
Duncan Sands841f4262012-06-08 20:15:33 +00001560 I = NI;
Dan Gohmandac5dba2011-04-12 00:11:56 +00001561 }
1562 }
Chris Lattner895b3922006-03-14 07:11:11 +00001563 }
Dan Gohmandac5dba2011-04-12 00:11:56 +00001564
Duncan Sands841f4262012-06-08 20:15:33 +00001565 // If this instruction is an associative binary operator, process it.
1566 if (!I->isAssociative()) return;
1567 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001568
1569 // If this is an interior node of a reassociable tree, ignore it until we
1570 // get to the root of the tree, to avoid N^2 analysis.
Duncan Sands841f4262012-06-08 20:15:33 +00001571 if (BO->hasOneUse() && BO->use_back()->getOpcode() == BO->getOpcode())
Dan Gohmandac5dba2011-04-12 00:11:56 +00001572 return;
1573
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001574 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohmandac5dba2011-04-12 00:11:56 +00001575 // until we process the subtract.
Duncan Sands841f4262012-06-08 20:15:33 +00001576 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1577 cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
Dan Gohmandac5dba2011-04-12 00:11:56 +00001578 return;
1579
Duncan Sands841f4262012-06-08 20:15:33 +00001580 ReassociateExpression(BO);
Chris Lattner895b3922006-03-14 07:11:11 +00001581}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001582
Chris Lattner69e98e22009-12-31 19:24:52 +00001583Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001584
Chris Lattner69e98e22009-12-31 19:24:52 +00001585 // First, walk the expression tree, linearizing the tree, collecting the
1586 // operand information.
Duncan Sandsc038a782012-06-12 14:33:56 +00001587 SmallVector<RepeatedValue, 8> Tree;
1588 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner9f7b7082009-12-31 18:40:32 +00001589 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsc038a782012-06-12 14:33:56 +00001590 Ops.reserve(Tree.size());
1591 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1592 RepeatedValue E = Tree[i];
1593 Ops.append(E.second.getZExtValue(),
1594 ValueEntry(getRank(E.first), E.first));
1595 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001596
Duncan Sands24dfa522012-05-26 07:47:48 +00001597 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1598
Chris Lattner895b3922006-03-14 07:11:11 +00001599 // Now that we have linearized the tree to a list and have gathered all of
1600 // the operands and their ranks, sort the operands by their rank. Use a
1601 // stable_sort so that values with equal ranks will have their relative
1602 // positions maintained (and so the compiler is deterministic). Note that
1603 // this sorts so that the highest ranking values end up at the beginning of
1604 // the vector.
1605 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001606
Chris Lattner895b3922006-03-14 07:11:11 +00001607 // OptimizeExpression - Now that we have the expression tree in a convenient
1608 // sorted form, optimize it globally if possible.
1609 if (Value *V = OptimizeExpression(I, Ops)) {
1610 // This expression tree simplified to something that isn't a tree,
1611 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001612 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001613 I->replaceAllUsesWith(V);
Devang Patel5367b232011-04-28 22:48:14 +00001614 if (Instruction *VI = dyn_cast<Instruction>(V))
1615 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands841f4262012-06-08 20:15:33 +00001616 RedoInsts.insert(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001617 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +00001618 return V;
Chris Lattner895b3922006-03-14 07:11:11 +00001619 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001620
Chris Lattner895b3922006-03-14 07:11:11 +00001621 // We want to sink immediates as deeply as possible except in the case where
1622 // this is a multiply tree used only by an add, and the immediate is a -1.
1623 // In this case we reassociate to put the negation on the outside so that we
1624 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1625 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1626 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1627 isa<ConstantInt>(Ops.back().Op) &&
1628 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001629 ValueEntry Tmp = Ops.pop_back_val();
1630 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001631 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001632
David Greenea1fa76c2010-01-05 01:27:24 +00001633 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001634
Chris Lattner895b3922006-03-14 07:11:11 +00001635 if (Ops.size() == 1) {
1636 // This expression tree simplified to something that isn't a tree,
1637 // eliminate it.
1638 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel5367b232011-04-28 22:48:14 +00001639 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1640 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands841f4262012-06-08 20:15:33 +00001641 RedoInsts.insert(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001642 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001643 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001644
Chris Lattner69e98e22009-12-31 19:24:52 +00001645 // Now that we ordered and optimized the expressions, splat them back into
1646 // the expression tree, removing any unneeded nodes.
1647 RewriteExprTree(I, Ops);
1648 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001649}
1650
Chris Lattner7e708292002-06-25 16:13:24 +00001651bool Reassociate::runOnFunction(Function &F) {
Duncan Sands841f4262012-06-08 20:15:33 +00001652 // Calculate the rank map for F
Chris Lattner4fd56002002-05-08 22:19:27 +00001653 BuildRankMap(F);
1654
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001655 MadeChange = false;
Duncan Sands841f4262012-06-08 20:15:33 +00001656 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1657 // Optimize every instruction in the basic block.
1658 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1659 if (isInstructionTriviallyDead(II)) {
1660 EraseInst(II++);
1661 } else {
1662 OptimizeInst(II);
1663 assert(II->getParent() == BI && "Moved to a different block!");
1664 ++II;
1665 }
Duncan Sands69938a82012-06-08 13:37:30 +00001666
Duncan Sands841f4262012-06-08 20:15:33 +00001667 // If this produced extra instructions to optimize, handle them now.
1668 while (!RedoInsts.empty()) {
1669 Instruction *I = RedoInsts.pop_back_val();
1670 if (isInstructionTriviallyDead(I))
1671 EraseInst(I);
1672 else
1673 OptimizeInst(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001674 }
Duncan Sands841f4262012-06-08 20:15:33 +00001675 }
Chris Lattner4fd56002002-05-08 22:19:27 +00001676
Duncan Sands0fd120b2012-05-25 12:03:02 +00001677 // We are done with the rank map.
1678 RankMap.clear();
1679 ValueRankMap.clear();
1680
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001681 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001682}