blob: 0d29aa9db6a6ed40e9b143e6f8dd05430a0d21d2 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000021#include "llvm/DerivedTypes.h"
Owen Anderson15b39322009-07-13 04:09:18 +000022#include "llvm/LLVMContext.h"
Owen Anderson1636de92007-09-07 04:06:50 +000023#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000024#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000025#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000027#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029#include "llvm/Support/CommandLine.h"
Edwin Török3cb88482009-07-08 18:01:40 +000030#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
Evan Cheng950aac02007-09-25 01:57:46 +000032#include "llvm/Target/TargetOptions.h"
Chris Lattner621c44d2009-08-22 20:48:53 +000033#include "llvm/MC/MCAsmInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000034using namespace llvm;
35
Chris Lattnerd71b0b02009-08-23 03:41:05 +000036static cl::opt<bool>
37NoFusing("disable-spill-fusing",
38 cl::desc("Disable fusing of spill code into instructions"));
39static cl::opt<bool>
40PrintFailedFusing("print-failed-fuse-candidates",
41 cl::desc("Print instructions that the allocator wants to"
42 " fuse, but the X86 backend currently can't"),
43 cl::Hidden);
44static cl::opt<bool>
45ReMatPICStubLoad("remat-pic-stub-load",
46 cl::desc("Re-materialize load from stub in PIC mode"),
47 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000048
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000050 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000052 SmallVector<unsigned,16> AmbEntries;
53 static const unsigned OpTbl2Addr[][2] = {
54 { X86::ADC32ri, X86::ADC32mi },
55 { X86::ADC32ri8, X86::ADC32mi8 },
56 { X86::ADC32rr, X86::ADC32mr },
57 { X86::ADC64ri32, X86::ADC64mi32 },
58 { X86::ADC64ri8, X86::ADC64mi8 },
59 { X86::ADC64rr, X86::ADC64mr },
60 { X86::ADD16ri, X86::ADD16mi },
61 { X86::ADD16ri8, X86::ADD16mi8 },
62 { X86::ADD16rr, X86::ADD16mr },
63 { X86::ADD32ri, X86::ADD32mi },
64 { X86::ADD32ri8, X86::ADD32mi8 },
65 { X86::ADD32rr, X86::ADD32mr },
66 { X86::ADD64ri32, X86::ADD64mi32 },
67 { X86::ADD64ri8, X86::ADD64mi8 },
68 { X86::ADD64rr, X86::ADD64mr },
69 { X86::ADD8ri, X86::ADD8mi },
70 { X86::ADD8rr, X86::ADD8mr },
71 { X86::AND16ri, X86::AND16mi },
72 { X86::AND16ri8, X86::AND16mi8 },
73 { X86::AND16rr, X86::AND16mr },
74 { X86::AND32ri, X86::AND32mi },
75 { X86::AND32ri8, X86::AND32mi8 },
76 { X86::AND32rr, X86::AND32mr },
77 { X86::AND64ri32, X86::AND64mi32 },
78 { X86::AND64ri8, X86::AND64mi8 },
79 { X86::AND64rr, X86::AND64mr },
80 { X86::AND8ri, X86::AND8mi },
81 { X86::AND8rr, X86::AND8mr },
82 { X86::DEC16r, X86::DEC16m },
83 { X86::DEC32r, X86::DEC32m },
84 { X86::DEC64_16r, X86::DEC64_16m },
85 { X86::DEC64_32r, X86::DEC64_32m },
86 { X86::DEC64r, X86::DEC64m },
87 { X86::DEC8r, X86::DEC8m },
88 { X86::INC16r, X86::INC16m },
89 { X86::INC32r, X86::INC32m },
90 { X86::INC64_16r, X86::INC64_16m },
91 { X86::INC64_32r, X86::INC64_32m },
92 { X86::INC64r, X86::INC64m },
93 { X86::INC8r, X86::INC8m },
94 { X86::NEG16r, X86::NEG16m },
95 { X86::NEG32r, X86::NEG32m },
96 { X86::NEG64r, X86::NEG64m },
97 { X86::NEG8r, X86::NEG8m },
98 { X86::NOT16r, X86::NOT16m },
99 { X86::NOT32r, X86::NOT32m },
100 { X86::NOT64r, X86::NOT64m },
101 { X86::NOT8r, X86::NOT8m },
102 { X86::OR16ri, X86::OR16mi },
103 { X86::OR16ri8, X86::OR16mi8 },
104 { X86::OR16rr, X86::OR16mr },
105 { X86::OR32ri, X86::OR32mi },
106 { X86::OR32ri8, X86::OR32mi8 },
107 { X86::OR32rr, X86::OR32mr },
108 { X86::OR64ri32, X86::OR64mi32 },
109 { X86::OR64ri8, X86::OR64mi8 },
110 { X86::OR64rr, X86::OR64mr },
111 { X86::OR8ri, X86::OR8mi },
112 { X86::OR8rr, X86::OR8mr },
113 { X86::ROL16r1, X86::ROL16m1 },
114 { X86::ROL16rCL, X86::ROL16mCL },
115 { X86::ROL16ri, X86::ROL16mi },
116 { X86::ROL32r1, X86::ROL32m1 },
117 { X86::ROL32rCL, X86::ROL32mCL },
118 { X86::ROL32ri, X86::ROL32mi },
119 { X86::ROL64r1, X86::ROL64m1 },
120 { X86::ROL64rCL, X86::ROL64mCL },
121 { X86::ROL64ri, X86::ROL64mi },
122 { X86::ROL8r1, X86::ROL8m1 },
123 { X86::ROL8rCL, X86::ROL8mCL },
124 { X86::ROL8ri, X86::ROL8mi },
125 { X86::ROR16r1, X86::ROR16m1 },
126 { X86::ROR16rCL, X86::ROR16mCL },
127 { X86::ROR16ri, X86::ROR16mi },
128 { X86::ROR32r1, X86::ROR32m1 },
129 { X86::ROR32rCL, X86::ROR32mCL },
130 { X86::ROR32ri, X86::ROR32mi },
131 { X86::ROR64r1, X86::ROR64m1 },
132 { X86::ROR64rCL, X86::ROR64mCL },
133 { X86::ROR64ri, X86::ROR64mi },
134 { X86::ROR8r1, X86::ROR8m1 },
135 { X86::ROR8rCL, X86::ROR8mCL },
136 { X86::ROR8ri, X86::ROR8mi },
137 { X86::SAR16r1, X86::SAR16m1 },
138 { X86::SAR16rCL, X86::SAR16mCL },
139 { X86::SAR16ri, X86::SAR16mi },
140 { X86::SAR32r1, X86::SAR32m1 },
141 { X86::SAR32rCL, X86::SAR32mCL },
142 { X86::SAR32ri, X86::SAR32mi },
143 { X86::SAR64r1, X86::SAR64m1 },
144 { X86::SAR64rCL, X86::SAR64mCL },
145 { X86::SAR64ri, X86::SAR64mi },
146 { X86::SAR8r1, X86::SAR8m1 },
147 { X86::SAR8rCL, X86::SAR8mCL },
148 { X86::SAR8ri, X86::SAR8mi },
149 { X86::SBB32ri, X86::SBB32mi },
150 { X86::SBB32ri8, X86::SBB32mi8 },
151 { X86::SBB32rr, X86::SBB32mr },
152 { X86::SBB64ri32, X86::SBB64mi32 },
153 { X86::SBB64ri8, X86::SBB64mi8 },
154 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL16rCL, X86::SHL16mCL },
156 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL32rCL, X86::SHL32mCL },
158 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL64rCL, X86::SHL64mCL },
160 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000161 { X86::SHL8rCL, X86::SHL8mCL },
162 { X86::SHL8ri, X86::SHL8mi },
163 { X86::SHLD16rrCL, X86::SHLD16mrCL },
164 { X86::SHLD16rri8, X86::SHLD16mri8 },
165 { X86::SHLD32rrCL, X86::SHLD32mrCL },
166 { X86::SHLD32rri8, X86::SHLD32mri8 },
167 { X86::SHLD64rrCL, X86::SHLD64mrCL },
168 { X86::SHLD64rri8, X86::SHLD64mri8 },
169 { X86::SHR16r1, X86::SHR16m1 },
170 { X86::SHR16rCL, X86::SHR16mCL },
171 { X86::SHR16ri, X86::SHR16mi },
172 { X86::SHR32r1, X86::SHR32m1 },
173 { X86::SHR32rCL, X86::SHR32mCL },
174 { X86::SHR32ri, X86::SHR32mi },
175 { X86::SHR64r1, X86::SHR64m1 },
176 { X86::SHR64rCL, X86::SHR64mCL },
177 { X86::SHR64ri, X86::SHR64mi },
178 { X86::SHR8r1, X86::SHR8m1 },
179 { X86::SHR8rCL, X86::SHR8mCL },
180 { X86::SHR8ri, X86::SHR8mi },
181 { X86::SHRD16rrCL, X86::SHRD16mrCL },
182 { X86::SHRD16rri8, X86::SHRD16mri8 },
183 { X86::SHRD32rrCL, X86::SHRD32mrCL },
184 { X86::SHRD32rri8, X86::SHRD32mri8 },
185 { X86::SHRD64rrCL, X86::SHRD64mrCL },
186 { X86::SHRD64rri8, X86::SHRD64mri8 },
187 { X86::SUB16ri, X86::SUB16mi },
188 { X86::SUB16ri8, X86::SUB16mi8 },
189 { X86::SUB16rr, X86::SUB16mr },
190 { X86::SUB32ri, X86::SUB32mi },
191 { X86::SUB32ri8, X86::SUB32mi8 },
192 { X86::SUB32rr, X86::SUB32mr },
193 { X86::SUB64ri32, X86::SUB64mi32 },
194 { X86::SUB64ri8, X86::SUB64mi8 },
195 { X86::SUB64rr, X86::SUB64mr },
196 { X86::SUB8ri, X86::SUB8mi },
197 { X86::SUB8rr, X86::SUB8mr },
198 { X86::XOR16ri, X86::XOR16mi },
199 { X86::XOR16ri8, X86::XOR16mi8 },
200 { X86::XOR16rr, X86::XOR16mr },
201 { X86::XOR32ri, X86::XOR32mi },
202 { X86::XOR32ri8, X86::XOR32mi8 },
203 { X86::XOR32rr, X86::XOR32mr },
204 { X86::XOR64ri32, X86::XOR64mi32 },
205 { X86::XOR64ri8, X86::XOR64mi8 },
206 { X86::XOR64rr, X86::XOR64mr },
207 { X86::XOR8ri, X86::XOR8mi },
208 { X86::XOR8rr, X86::XOR8mr }
209 };
210
211 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212 unsigned RegOp = OpTbl2Addr[i][0];
213 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000214 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000215 std::make_pair(MemOp,0))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000216 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000217 // Index 0, folded load and store, no alignment requirement.
218 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000219 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000220 std::make_pair(RegOp,
221 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000222 AmbEntries.push_back(MemOp);
223 }
224
225 // If the third value is 1, then it's folding either a load or a store.
Evan Chenga5853792009-07-15 06:10:07 +0000226 static const unsigned OpTbl0[][4] = {
227 { X86::BT16ri8, X86::BT16mi8, 1, 0 },
228 { X86::BT32ri8, X86::BT32mi8, 1, 0 },
229 { X86::BT64ri8, X86::BT64mi8, 1, 0 },
230 { X86::CALL32r, X86::CALL32m, 1, 0 },
231 { X86::CALL64r, X86::CALL64m, 1, 0 },
232 { X86::CMP16ri, X86::CMP16mi, 1, 0 },
233 { X86::CMP16ri8, X86::CMP16mi8, 1, 0 },
234 { X86::CMP16rr, X86::CMP16mr, 1, 0 },
235 { X86::CMP32ri, X86::CMP32mi, 1, 0 },
236 { X86::CMP32ri8, X86::CMP32mi8, 1, 0 },
237 { X86::CMP32rr, X86::CMP32mr, 1, 0 },
238 { X86::CMP64ri32, X86::CMP64mi32, 1, 0 },
239 { X86::CMP64ri8, X86::CMP64mi8, 1, 0 },
240 { X86::CMP64rr, X86::CMP64mr, 1, 0 },
241 { X86::CMP8ri, X86::CMP8mi, 1, 0 },
242 { X86::CMP8rr, X86::CMP8mr, 1, 0 },
243 { X86::DIV16r, X86::DIV16m, 1, 0 },
244 { X86::DIV32r, X86::DIV32m, 1, 0 },
245 { X86::DIV64r, X86::DIV64m, 1, 0 },
246 { X86::DIV8r, X86::DIV8m, 1, 0 },
247 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
248 { X86::FsMOVAPDrr, X86::MOVSDmr, 0, 0 },
249 { X86::FsMOVAPSrr, X86::MOVSSmr, 0, 0 },
250 { X86::IDIV16r, X86::IDIV16m, 1, 0 },
251 { X86::IDIV32r, X86::IDIV32m, 1, 0 },
252 { X86::IDIV64r, X86::IDIV64m, 1, 0 },
253 { X86::IDIV8r, X86::IDIV8m, 1, 0 },
254 { X86::IMUL16r, X86::IMUL16m, 1, 0 },
255 { X86::IMUL32r, X86::IMUL32m, 1, 0 },
256 { X86::IMUL64r, X86::IMUL64m, 1, 0 },
257 { X86::IMUL8r, X86::IMUL8m, 1, 0 },
258 { X86::JMP32r, X86::JMP32m, 1, 0 },
259 { X86::JMP64r, X86::JMP64m, 1, 0 },
260 { X86::MOV16ri, X86::MOV16mi, 0, 0 },
261 { X86::MOV16rr, X86::MOV16mr, 0, 0 },
262 { X86::MOV32ri, X86::MOV32mi, 0, 0 },
263 { X86::MOV32rr, X86::MOV32mr, 0, 0 },
264 { X86::MOV64ri32, X86::MOV64mi32, 0, 0 },
265 { X86::MOV64rr, X86::MOV64mr, 0, 0 },
266 { X86::MOV8ri, X86::MOV8mi, 0, 0 },
267 { X86::MOV8rr, X86::MOV8mr, 0, 0 },
268 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
269 { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 },
270 { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 },
271 { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 },
272 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
273 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
274 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0, 0 },
275 { X86::MOVSDrr, X86::MOVSDmr, 0, 0 },
276 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
277 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 },
278 { X86::MOVSSrr, X86::MOVSSmr, 0, 0 },
279 { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 },
280 { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 },
281 { X86::MUL16r, X86::MUL16m, 1, 0 },
282 { X86::MUL32r, X86::MUL32m, 1, 0 },
283 { X86::MUL64r, X86::MUL64m, 1, 0 },
284 { X86::MUL8r, X86::MUL8m, 1, 0 },
285 { X86::SETAEr, X86::SETAEm, 0, 0 },
286 { X86::SETAr, X86::SETAm, 0, 0 },
287 { X86::SETBEr, X86::SETBEm, 0, 0 },
288 { X86::SETBr, X86::SETBm, 0, 0 },
289 { X86::SETEr, X86::SETEm, 0, 0 },
290 { X86::SETGEr, X86::SETGEm, 0, 0 },
291 { X86::SETGr, X86::SETGm, 0, 0 },
292 { X86::SETLEr, X86::SETLEm, 0, 0 },
293 { X86::SETLr, X86::SETLm, 0, 0 },
294 { X86::SETNEr, X86::SETNEm, 0, 0 },
295 { X86::SETNOr, X86::SETNOm, 0, 0 },
296 { X86::SETNPr, X86::SETNPm, 0, 0 },
297 { X86::SETNSr, X86::SETNSm, 0, 0 },
298 { X86::SETOr, X86::SETOm, 0, 0 },
299 { X86::SETPr, X86::SETPm, 0, 0 },
300 { X86::SETSr, X86::SETSm, 0, 0 },
301 { X86::TAILJMPr, X86::TAILJMPm, 1, 0 },
302 { X86::TEST16ri, X86::TEST16mi, 1, 0 },
303 { X86::TEST32ri, X86::TEST32mi, 1, 0 },
304 { X86::TEST64ri32, X86::TEST64mi32, 1, 0 },
305 { X86::TEST8ri, X86::TEST8mi, 1, 0 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000306 };
307
308 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
309 unsigned RegOp = OpTbl0[i][0];
310 unsigned MemOp = OpTbl0[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000311 unsigned Align = OpTbl0[i][3];
Dan Gohman55d19662008-07-07 17:46:23 +0000312 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000313 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000314 assert(false && "Duplicated entries?");
315 unsigned FoldedLoad = OpTbl0[i][2];
316 // Index 0, folded load or store.
317 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
318 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
319 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000320 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000321 AmbEntries.push_back(MemOp);
322 }
323
Evan Chenga5853792009-07-15 06:10:07 +0000324 static const unsigned OpTbl1[][3] = {
325 { X86::CMP16rr, X86::CMP16rm, 0 },
326 { X86::CMP32rr, X86::CMP32rm, 0 },
327 { X86::CMP64rr, X86::CMP64rm, 0 },
328 { X86::CMP8rr, X86::CMP8rm, 0 },
329 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
330 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
331 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
332 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
333 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
334 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
335 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
336 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
337 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
338 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
339 { X86::FsMOVAPDrr, X86::MOVSDrm, 0 },
340 { X86::FsMOVAPSrr, X86::MOVSSrm, 0 },
341 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
342 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
343 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
344 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
345 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
346 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
347 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
348 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
349 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
350 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
351 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 },
352 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 },
353 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 },
354 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 },
355 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 },
356 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
357 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
358 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm, 0 },
359 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
360 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
361 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
362 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
363 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
364 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
365 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
366 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 },
367 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
368 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
369 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
370 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
371 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
372 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
373 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
374 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
375 { X86::MOV16rr, X86::MOV16rm, 0 },
376 { X86::MOV32rr, X86::MOV32rm, 0 },
377 { X86::MOV64rr, X86::MOV64rm, 0 },
378 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
379 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
380 { X86::MOV8rr, X86::MOV8rm, 0 },
381 { X86::MOVAPDrr, X86::MOVAPDrm, 16 },
382 { X86::MOVAPSrr, X86::MOVAPSrm, 16 },
383 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
384 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
385 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
386 { X86::MOVDQArr, X86::MOVDQArm, 16 },
387 { X86::MOVSD2PDrr, X86::MOVSD2PDrm, 0 },
388 { X86::MOVSDrr, X86::MOVSDrm, 0 },
389 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 },
390 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 },
391 { X86::MOVSS2PSrr, X86::MOVSS2PSrm, 0 },
392 { X86::MOVSSrr, X86::MOVSSrm, 0 },
393 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
394 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
395 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
396 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
397 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
398 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
399 { X86::MOVUPDrr, X86::MOVUPDrm, 16 },
400 { X86::MOVUPSrr, X86::MOVUPSrm, 16 },
401 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
402 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
403 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
404 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
405 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
406 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
407 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
408 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
409 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
410 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
411 { X86::PSHUFDri, X86::PSHUFDmi, 16 },
412 { X86::PSHUFHWri, X86::PSHUFHWmi, 16 },
413 { X86::PSHUFLWri, X86::PSHUFLWmi, 16 },
414 { X86::RCPPSr, X86::RCPPSm, 16 },
415 { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 },
416 { X86::RSQRTPSr, X86::RSQRTPSm, 16 },
417 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 },
418 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
419 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
420 { X86::SQRTPDr, X86::SQRTPDm, 16 },
421 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 },
422 { X86::SQRTPSr, X86::SQRTPSm, 16 },
423 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 },
424 { X86::SQRTSDr, X86::SQRTSDm, 0 },
425 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
426 { X86::SQRTSSr, X86::SQRTSSm, 0 },
427 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
428 { X86::TEST16rr, X86::TEST16rm, 0 },
429 { X86::TEST32rr, X86::TEST32rm, 0 },
430 { X86::TEST64rr, X86::TEST64rm, 0 },
431 { X86::TEST8rr, X86::TEST8rm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000432 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
Evan Chenga5853792009-07-15 06:10:07 +0000433 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
434 { X86::UCOMISSrr, X86::UCOMISSrm, 0 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000435 };
436
437 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
438 unsigned RegOp = OpTbl1[i][0];
439 unsigned MemOp = OpTbl1[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000440 unsigned Align = OpTbl1[i][2];
Dan Gohman55d19662008-07-07 17:46:23 +0000441 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000442 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000443 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000444 // Index 1, folded load
445 unsigned AuxInfo = 1 | (1 << 4);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000446 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
447 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000448 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000449 AmbEntries.push_back(MemOp);
450 }
451
Evan Chenga5853792009-07-15 06:10:07 +0000452 static const unsigned OpTbl2[][3] = {
453 { X86::ADC32rr, X86::ADC32rm, 0 },
454 { X86::ADC64rr, X86::ADC64rm, 0 },
455 { X86::ADD16rr, X86::ADD16rm, 0 },
456 { X86::ADD32rr, X86::ADD32rm, 0 },
457 { X86::ADD64rr, X86::ADD64rm, 0 },
458 { X86::ADD8rr, X86::ADD8rm, 0 },
459 { X86::ADDPDrr, X86::ADDPDrm, 16 },
460 { X86::ADDPSrr, X86::ADDPSrm, 16 },
461 { X86::ADDSDrr, X86::ADDSDrm, 0 },
462 { X86::ADDSSrr, X86::ADDSSrm, 0 },
463 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 },
464 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 },
465 { X86::AND16rr, X86::AND16rm, 0 },
466 { X86::AND32rr, X86::AND32rm, 0 },
467 { X86::AND64rr, X86::AND64rm, 0 },
468 { X86::AND8rr, X86::AND8rm, 0 },
469 { X86::ANDNPDrr, X86::ANDNPDrm, 16 },
470 { X86::ANDNPSrr, X86::ANDNPSrm, 16 },
471 { X86::ANDPDrr, X86::ANDPDrm, 16 },
472 { X86::ANDPSrr, X86::ANDPSrm, 16 },
473 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
474 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
475 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
476 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
477 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
478 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
479 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
480 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
481 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
482 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
483 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
484 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
485 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
486 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
487 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
488 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
489 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
490 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
491 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
492 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
493 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
494 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
495 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
496 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
497 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
498 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
499 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
500 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
501 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
502 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
503 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
504 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
505 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
506 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
507 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
508 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
509 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
510 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
511 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
512 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
513 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
514 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
515 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
516 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
517 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
518 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
519 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
520 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
521 { X86::CMPPDrri, X86::CMPPDrmi, 16 },
522 { X86::CMPPSrri, X86::CMPPSrmi, 16 },
523 { X86::CMPSDrr, X86::CMPSDrm, 0 },
524 { X86::CMPSSrr, X86::CMPSSrm, 0 },
525 { X86::DIVPDrr, X86::DIVPDrm, 16 },
526 { X86::DIVPSrr, X86::DIVPSrm, 16 },
527 { X86::DIVSDrr, X86::DIVSDrm, 0 },
528 { X86::DIVSSrr, X86::DIVSSrm, 0 },
529 { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 },
530 { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 },
531 { X86::FsANDPDrr, X86::FsANDPDrm, 16 },
532 { X86::FsANDPSrr, X86::FsANDPSrm, 16 },
533 { X86::FsORPDrr, X86::FsORPDrm, 16 },
534 { X86::FsORPSrr, X86::FsORPSrm, 16 },
535 { X86::FsXORPDrr, X86::FsXORPDrm, 16 },
536 { X86::FsXORPSrr, X86::FsXORPSrm, 16 },
537 { X86::HADDPDrr, X86::HADDPDrm, 16 },
538 { X86::HADDPSrr, X86::HADDPSrm, 16 },
539 { X86::HSUBPDrr, X86::HSUBPDrm, 16 },
540 { X86::HSUBPSrr, X86::HSUBPSrm, 16 },
541 { X86::IMUL16rr, X86::IMUL16rm, 0 },
542 { X86::IMUL32rr, X86::IMUL32rm, 0 },
543 { X86::IMUL64rr, X86::IMUL64rm, 0 },
544 { X86::MAXPDrr, X86::MAXPDrm, 16 },
545 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 },
546 { X86::MAXPSrr, X86::MAXPSrm, 16 },
547 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 },
548 { X86::MAXSDrr, X86::MAXSDrm, 0 },
549 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
550 { X86::MAXSSrr, X86::MAXSSrm, 0 },
551 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
552 { X86::MINPDrr, X86::MINPDrm, 16 },
553 { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 },
554 { X86::MINPSrr, X86::MINPSrm, 16 },
555 { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 },
556 { X86::MINSDrr, X86::MINSDrm, 0 },
557 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
558 { X86::MINSSrr, X86::MINSSrm, 0 },
559 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
560 { X86::MULPDrr, X86::MULPDrm, 16 },
561 { X86::MULPSrr, X86::MULPSrm, 16 },
562 { X86::MULSDrr, X86::MULSDrm, 0 },
563 { X86::MULSSrr, X86::MULSSrm, 0 },
564 { X86::OR16rr, X86::OR16rm, 0 },
565 { X86::OR32rr, X86::OR32rm, 0 },
566 { X86::OR64rr, X86::OR64rm, 0 },
567 { X86::OR8rr, X86::OR8rm, 0 },
568 { X86::ORPDrr, X86::ORPDrm, 16 },
569 { X86::ORPSrr, X86::ORPSrm, 16 },
570 { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 },
571 { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 },
572 { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 },
573 { X86::PADDBrr, X86::PADDBrm, 16 },
574 { X86::PADDDrr, X86::PADDDrm, 16 },
575 { X86::PADDQrr, X86::PADDQrm, 16 },
576 { X86::PADDSBrr, X86::PADDSBrm, 16 },
577 { X86::PADDSWrr, X86::PADDSWrm, 16 },
578 { X86::PADDWrr, X86::PADDWrm, 16 },
579 { X86::PANDNrr, X86::PANDNrm, 16 },
580 { X86::PANDrr, X86::PANDrm, 16 },
581 { X86::PAVGBrr, X86::PAVGBrm, 16 },
582 { X86::PAVGWrr, X86::PAVGWrm, 16 },
583 { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 },
584 { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 },
585 { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 },
586 { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 },
587 { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 },
588 { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 },
589 { X86::PINSRWrri, X86::PINSRWrmi, 16 },
590 { X86::PMADDWDrr, X86::PMADDWDrm, 16 },
591 { X86::PMAXSWrr, X86::PMAXSWrm, 16 },
592 { X86::PMAXUBrr, X86::PMAXUBrm, 16 },
593 { X86::PMINSWrr, X86::PMINSWrm, 16 },
594 { X86::PMINUBrr, X86::PMINUBrm, 16 },
595 { X86::PMULDQrr, X86::PMULDQrm, 16 },
596 { X86::PMULHUWrr, X86::PMULHUWrm, 16 },
597 { X86::PMULHWrr, X86::PMULHWrm, 16 },
598 { X86::PMULLDrr, X86::PMULLDrm, 16 },
599 { X86::PMULLDrr_int, X86::PMULLDrm_int, 16 },
600 { X86::PMULLWrr, X86::PMULLWrm, 16 },
601 { X86::PMULUDQrr, X86::PMULUDQrm, 16 },
602 { X86::PORrr, X86::PORrm, 16 },
603 { X86::PSADBWrr, X86::PSADBWrm, 16 },
604 { X86::PSLLDrr, X86::PSLLDrm, 16 },
605 { X86::PSLLQrr, X86::PSLLQrm, 16 },
606 { X86::PSLLWrr, X86::PSLLWrm, 16 },
607 { X86::PSRADrr, X86::PSRADrm, 16 },
608 { X86::PSRAWrr, X86::PSRAWrm, 16 },
609 { X86::PSRLDrr, X86::PSRLDrm, 16 },
610 { X86::PSRLQrr, X86::PSRLQrm, 16 },
611 { X86::PSRLWrr, X86::PSRLWrm, 16 },
612 { X86::PSUBBrr, X86::PSUBBrm, 16 },
613 { X86::PSUBDrr, X86::PSUBDrm, 16 },
614 { X86::PSUBSBrr, X86::PSUBSBrm, 16 },
615 { X86::PSUBSWrr, X86::PSUBSWrm, 16 },
616 { X86::PSUBWrr, X86::PSUBWrm, 16 },
617 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 },
618 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 },
619 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 },
620 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 },
621 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 },
622 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 },
623 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 },
624 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 },
625 { X86::PXORrr, X86::PXORrm, 16 },
626 { X86::SBB32rr, X86::SBB32rm, 0 },
627 { X86::SBB64rr, X86::SBB64rm, 0 },
628 { X86::SHUFPDrri, X86::SHUFPDrmi, 16 },
629 { X86::SHUFPSrri, X86::SHUFPSrmi, 16 },
630 { X86::SUB16rr, X86::SUB16rm, 0 },
631 { X86::SUB32rr, X86::SUB32rm, 0 },
632 { X86::SUB64rr, X86::SUB64rm, 0 },
633 { X86::SUB8rr, X86::SUB8rm, 0 },
634 { X86::SUBPDrr, X86::SUBPDrm, 16 },
635 { X86::SUBPSrr, X86::SUBPSrm, 16 },
636 { X86::SUBSDrr, X86::SUBSDrm, 0 },
637 { X86::SUBSSrr, X86::SUBSSrm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000638 // FIXME: TEST*rr -> swapped operand of TEST*mr.
Evan Chenga5853792009-07-15 06:10:07 +0000639 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 },
640 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 },
641 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 },
642 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 },
643 { X86::XOR16rr, X86::XOR16rm, 0 },
644 { X86::XOR32rr, X86::XOR32rm, 0 },
645 { X86::XOR64rr, X86::XOR64rm, 0 },
646 { X86::XOR8rr, X86::XOR8rm, 0 },
647 { X86::XORPDrr, X86::XORPDrm, 16 },
648 { X86::XORPSrr, X86::XORPSrm, 16 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000649 };
650
651 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
652 unsigned RegOp = OpTbl2[i][0];
653 unsigned MemOp = OpTbl2[i][1];
Evan Chenga5853792009-07-15 06:10:07 +0000654 unsigned Align = OpTbl2[i][2];
Dan Gohman55d19662008-07-07 17:46:23 +0000655 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
Evan Chenga5853792009-07-15 06:10:07 +0000656 std::make_pair(MemOp,Align))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000657 assert(false && "Duplicated entries?");
Evan Chenga5853792009-07-15 06:10:07 +0000658 // Index 2, folded load
659 unsigned AuxInfo = 2 | (1 << 4);
Owen Anderson9a184ef2008-01-07 01:35:02 +0000660 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000661 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000662 AmbEntries.push_back(MemOp);
663 }
664
665 // Remove ambiguous entries.
666 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000667}
668
669bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
Evan Chengf97496a2009-01-20 19:12:24 +0000670 unsigned &SrcReg, unsigned &DstReg,
671 unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000672 switch (MI.getOpcode()) {
673 default:
674 return false;
675 case X86::MOV8rr:
Bill Wendling2d1c8222009-04-17 22:40:38 +0000676 case X86::MOV8rr_NOREX:
Chris Lattnerff195282008-03-11 19:28:17 +0000677 case X86::MOV16rr:
678 case X86::MOV32rr:
679 case X86::MOV64rr:
Chris Lattnerff195282008-03-11 19:28:17 +0000680 case X86::MOVSSrr:
681 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000682
683 // FP Stack register class copies
684 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
685 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
686 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
687
Chris Lattnerff195282008-03-11 19:28:17 +0000688 case X86::FsMOVAPSrr:
689 case X86::FsMOVAPDrr:
690 case X86::MOVAPSrr:
691 case X86::MOVAPDrr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000692 case X86::MOVDQArr:
Chris Lattnerff195282008-03-11 19:28:17 +0000693 case X86::MOVSS2PSrr:
694 case X86::MOVSD2PDrr:
695 case X86::MOVPS2SSrr:
696 case X86::MOVPD2SDrr:
Chris Lattnerff195282008-03-11 19:28:17 +0000697 case X86::MMX_MOVQ64rr:
698 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000699 MI.getOperand(0).isReg() &&
700 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000701 "invalid register-register move instruction");
Evan Chengf97496a2009-01-20 19:12:24 +0000702 SrcReg = MI.getOperand(1).getReg();
703 DstReg = MI.getOperand(0).getReg();
704 SrcSubIdx = MI.getOperand(1).getSubReg();
705 DstSubIdx = MI.getOperand(0).getSubReg();
Chris Lattnerff195282008-03-11 19:28:17 +0000706 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000708}
709
Dan Gohman90feee22008-11-18 19:49:32 +0000710unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 int &FrameIndex) const {
712 switch (MI->getOpcode()) {
713 default: break;
714 case X86::MOV8rm:
715 case X86::MOV16rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000716 case X86::MOV32rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717 case X86::MOV64rm:
718 case X86::LD_Fp64m:
719 case X86::MOVSSrm:
720 case X86::MOVSDrm:
721 case X86::MOVAPSrm:
722 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000723 case X86::MOVDQArm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 case X86::MMX_MOVD64rm:
725 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000726 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
727 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000728 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000729 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000730 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000731 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000732 return MI->getOperand(0).getReg();
733 }
734 break;
735 }
736 return 0;
737}
738
Dan Gohman90feee22008-11-18 19:49:32 +0000739unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 int &FrameIndex) const {
741 switch (MI->getOpcode()) {
742 default: break;
743 case X86::MOV8mr:
744 case X86::MOV16mr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745 case X86::MOV32mr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746 case X86::MOV64mr:
747 case X86::ST_FpP64m:
748 case X86::MOVSSmr:
749 case X86::MOVSDmr:
750 case X86::MOVAPSmr:
751 case X86::MOVAPDmr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000752 case X86::MOVDQAmr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000753 case X86::MMX_MOVD64mr:
754 case X86::MMX_MOVQ64mr:
755 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000756 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
757 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000758 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000759 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000760 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000761 FrameIndex = MI->getOperand(0).getIndex();
Rafael Espindola7f69c042009-03-28 17:03:24 +0000762 return MI->getOperand(X86AddrNumOperands).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000763 }
764 break;
765 }
766 return 0;
767}
768
Evan Chengb819a512008-03-27 01:45:11 +0000769/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
770/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000771static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000772 bool isPICBase = false;
773 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
774 E = MRI.def_end(); I != E; ++I) {
775 MachineInstr *DefMI = I.getOperand().getParent();
776 if (DefMI->getOpcode() != X86::MOVPC32r)
777 return false;
778 assert(!isPICBase && "More than one PIC base?");
779 isPICBase = true;
780 }
781 return isPICBase;
782}
Evan Chenge9caab52008-03-31 07:54:19 +0000783
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000784bool
Dan Gohman1ef18852009-10-10 00:34:18 +0000785X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
786 AliasAnalysis *AA) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 switch (MI->getOpcode()) {
788 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000789 case X86::MOV8rm:
790 case X86::MOV16rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000791 case X86::MOV32rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000792 case X86::MOV64rm:
793 case X86::LD_Fp64m:
794 case X86::MOVSSrm:
795 case X86::MOVSDrm:
796 case X86::MOVAPSrm:
797 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000798 case X86::MOVDQArm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000799 case X86::MMX_MOVD64rm:
800 case X86::MMX_MOVQ64rm: {
801 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000802 if (MI->getOperand(1).isReg() &&
803 MI->getOperand(2).isImm() &&
804 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Dan Gohman1ef18852009-10-10 00:34:18 +0000805 MI->isInvariantLoad(AA)) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000806 unsigned BaseReg = MI->getOperand(1).getReg();
Chris Lattnerdc6fc472009-06-27 04:16:01 +0000807 if (BaseReg == 0 || BaseReg == X86::RIP)
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000808 return true;
809 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000810 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000811 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000812 const MachineFunction &MF = *MI->getParent()->getParent();
813 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000814 bool isPICBase = false;
815 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
816 E = MRI.def_end(); I != E; ++I) {
817 MachineInstr *DefMI = I.getOperand().getParent();
818 if (DefMI->getOpcode() != X86::MOVPC32r)
819 return false;
820 assert(!isPICBase && "More than one PIC base?");
821 isPICBase = true;
822 }
823 return isPICBase;
824 }
825 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000826 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000827
828 case X86::LEA32r:
829 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000830 if (MI->getOperand(2).isImm() &&
831 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
832 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000833 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000834 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000835 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000836 unsigned BaseReg = MI->getOperand(1).getReg();
837 if (BaseReg == 0)
838 return true;
839 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000840 const MachineFunction &MF = *MI->getParent()->getParent();
841 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000842 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000843 }
844 return false;
845 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000846 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000847
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000848 // All other instructions marked M_REMATERIALIZABLE are always trivially
849 // rematerializable.
850 return true;
851}
852
Evan Chengc564ded2008-06-24 07:10:51 +0000853/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
854/// would clobber the EFLAGS condition register. Note the result may be
855/// conservative. If it cannot definitely determine the safety after visiting
856/// two instructions it assumes it's not safe.
857static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
858 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000859 // It's always safe to clobber EFLAGS at the end of a block.
860 if (I == MBB.end())
861 return true;
862
Evan Chengc564ded2008-06-24 07:10:51 +0000863 // For compile time consideration, if we are not able to determine the
864 // safety after visiting 2 instructions, we will assume it's not safe.
865 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000866 bool SeenDef = false;
867 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
868 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000869 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000870 continue;
871 if (MO.getReg() == X86::EFLAGS) {
872 if (MO.isUse())
873 return false;
874 SeenDef = true;
875 }
876 }
877
878 if (SeenDef)
879 // This instruction defines EFLAGS, no need to look any further.
880 return true;
881 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000882
883 // If we make it to the end of the block, it's safe to clobber EFLAGS.
884 if (I == MBB.end())
885 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000886 }
887
888 // Conservative answer.
889 return false;
890}
891
Evan Cheng7d73efc2008-03-31 20:40:39 +0000892void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
893 MachineBasicBlock::iterator I,
Evan Cheng463a3e42009-07-16 09:20:10 +0000894 unsigned DestReg, unsigned SubIdx,
Evan Cheng7d73efc2008-03-31 20:40:39 +0000895 const MachineInstr *Orig) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +0000896 DebugLoc DL = DebugLoc::getUnknownLoc();
897 if (I != MBB.end()) DL = I->getDebugLoc();
898
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000899 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
900 DestReg = RI.getSubReg(DestReg, SubIdx);
901 SubIdx = 0;
902 }
903
Evan Cheng7d73efc2008-03-31 20:40:39 +0000904 // MOV32r0 etc. are implemented with xor which clobbers condition code.
905 // Re-materialize them as movri instructions to avoid side effects.
Evan Cheng463a3e42009-07-16 09:20:10 +0000906 bool Clone = true;
907 unsigned Opc = Orig->getOpcode();
908 switch (Opc) {
Evan Chengc564ded2008-06-24 07:10:51 +0000909 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000910 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000911 case X86::MOV16r0:
Chris Lattner17f62252009-07-14 20:19:57 +0000912 case X86::MOV32r0: {
Evan Chengc564ded2008-06-24 07:10:51 +0000913 if (!isSafeToClobberEFLAGS(MBB, I)) {
Evan Cheng463a3e42009-07-16 09:20:10 +0000914 switch (Opc) {
Evan Chengc564ded2008-06-24 07:10:51 +0000915 default: break;
916 case X86::MOV8r0: Opc = X86::MOV8ri; break;
917 case X86::MOV16r0: Opc = X86::MOV16ri; break;
918 case X86::MOV32r0: Opc = X86::MOV32ri; break;
Evan Chengc564ded2008-06-24 07:10:51 +0000919 }
Evan Cheng463a3e42009-07-16 09:20:10 +0000920 Clone = false;
Evan Chengc564ded2008-06-24 07:10:51 +0000921 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000922 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000923 }
924 }
925
Evan Cheng463a3e42009-07-16 09:20:10 +0000926 if (Clone) {
Dan Gohman221a4372008-07-07 23:14:23 +0000927 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000928 MI->getOperand(0).setReg(DestReg);
929 MBB.insert(I, MI);
Evan Cheng463a3e42009-07-16 09:20:10 +0000930 } else {
931 BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000932 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000933
Evan Cheng463a3e42009-07-16 09:20:10 +0000934 MachineInstr *NewMI = prior(I);
935 NewMI->getOperand(0).setSubReg(SubIdx);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000936}
937
Evan Chengfa1a4952007-10-05 08:04:01 +0000938/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
939/// is not marked dead.
940static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000941 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
942 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000943 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000944 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
945 return true;
946 }
947 }
948 return false;
949}
950
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000951/// convertToThreeAddress - This method must be implemented by targets that
952/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
953/// may be able to convert a two-address instruction into a true
954/// three-address instruction on demand. This allows the X86 target (for
955/// example) to convert ADD and SHL instructions into LEA instructions if they
956/// would require register copies due to two-addressness.
957///
958/// This method returns a null pointer if the transformation cannot be
959/// performed, otherwise it returns the new instruction.
960///
961MachineInstr *
962X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
963 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000964 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000965 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +0000966 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000967 // All instructions input are two-addr instructions. Get the known operands.
968 unsigned Dest = MI->getOperand(0).getReg();
969 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +0000970 bool isDead = MI->getOperand(0).isDead();
971 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000972
973 MachineInstr *NewMI = NULL;
974 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
975 // we have better subtarget support, enable the 16-bit LEA generation here.
976 bool DisableLEA16 = true;
977
Evan Cheng6b96ed32007-10-05 20:34:26 +0000978 unsigned MIOpc = MI->getOpcode();
979 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000980 case X86::SHUFPSrri: {
981 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
982 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
983
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000984 unsigned B = MI->getOperand(1).getReg();
985 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000986 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +0000987 unsigned A = MI->getOperand(0).getReg();
988 unsigned M = MI->getOperand(3).getImm();
Bill Wendling13ee2e42009-02-11 21:51:19 +0000989 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
Bill Wendling2b739762009-05-13 21:33:08 +0000990 .addReg(A, RegState::Define | getDeadRegState(isDead))
991 .addReg(B, getKillRegState(isKill)).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000992 break;
993 }
994 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +0000995 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000996 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
997 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000998 unsigned ShAmt = MI->getOperand(2).getImm();
999 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001000
Bill Wendling13ee2e42009-02-11 21:51:19 +00001001 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling2b739762009-05-13 21:33:08 +00001002 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1003 .addReg(0).addImm(1 << ShAmt)
1004 .addReg(Src, getKillRegState(isKill))
1005 .addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001006 break;
1007 }
1008 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001009 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001010 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1011 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001012 unsigned ShAmt = MI->getOperand(2).getImm();
1013 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001014
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001015 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1016 X86::LEA64_32r : X86::LEA32r;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001017 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001018 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Chenge52c1912008-07-03 09:09:37 +00001019 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001020 .addReg(Src, getKillRegState(isKill)).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 break;
1022 }
1023 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001024 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001025 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1026 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001027 unsigned ShAmt = MI->getOperand(2).getImm();
1028 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001029
Christopher Lamb380c6272007-08-10 21:18:25 +00001030 if (DisableLEA16) {
1031 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001032 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001033 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1034 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001035 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1036 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001037
Christopher Lamb8d226a22008-03-11 10:27:36 +00001038 // Build and insert into an implicit UNDEF value. This is OK because
1039 // well be shifting and then extracting the lower 16-bits.
Bill Wendling13ee2e42009-02-11 21:51:19 +00001040 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1041 MachineInstr *InsMI =
1042 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
Bill Wendling2b739762009-05-13 21:33:08 +00001043 .addReg(leaInReg)
1044 .addReg(Src, getKillRegState(isKill))
Evan Chenge52c1912008-07-03 09:09:37 +00001045 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001046
Bill Wendling13ee2e42009-02-11 21:51:19 +00001047 NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1048 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001049 .addReg(leaInReg, RegState::Kill)
1050 .addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001051
Bill Wendling13ee2e42009-02-11 21:51:19 +00001052 MachineInstr *ExtMI =
1053 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
Bill Wendling2b739762009-05-13 21:33:08 +00001054 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1055 .addReg(leaOutReg, RegState::Kill)
1056 .addImm(X86::SUBREG_16BIT);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001057
Owen Andersonc6959722008-07-02 23:41:07 +00001058 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001059 // Update live variables
1060 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1061 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1062 if (isKill)
1063 LV->replaceKillInstruction(Src, MI, InsMI);
1064 if (isDead)
1065 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001066 }
Evan Chenge52c1912008-07-03 09:09:37 +00001067 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001068 } else {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001069 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001070 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Chenge52c1912008-07-03 09:09:37 +00001071 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001072 .addReg(Src, getKillRegState(isKill))
1073 .addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001074 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001075 break;
1076 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001077 default: {
1078 // The following opcodes also sets the condition code register(s). Only
1079 // convert them to equivalent lea if the condition code register def's
1080 // are dead!
1081 if (hasLiveCondCodeDef(MI))
1082 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001083
Evan Chenga28a9562007-10-09 07:14:53 +00001084 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001085 switch (MIOpc) {
1086 default: return 0;
1087 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001088 case X86::INC32r:
1089 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001090 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001091 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1092 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001093 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001094 .addReg(Dest, RegState::Define |
1095 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001096 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001097 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001098 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001099 case X86::INC16r:
1100 case X86::INC64_16r:
1101 if (DisableLEA16) return 0;
1102 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001103 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001104 .addReg(Dest, RegState::Define |
1105 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001106 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001107 break;
1108 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001109 case X86::DEC32r:
1110 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001111 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001112 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1113 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001114 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001115 .addReg(Dest, RegState::Define |
1116 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001117 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001118 break;
1119 }
1120 case X86::DEC16r:
1121 case X86::DEC64_16r:
1122 if (DisableLEA16) return 0;
1123 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001124 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001125 .addReg(Dest, RegState::Define |
1126 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001127 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001128 break;
1129 case X86::ADD64rr:
1130 case X86::ADD32rr: {
1131 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001132 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1133 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001134 unsigned Src2 = MI->getOperand(2).getReg();
1135 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001136 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001137 .addReg(Dest, RegState::Define |
1138 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001139 Src, isKill, Src2, isKill2);
1140 if (LV && isKill2)
1141 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001142 break;
1143 }
Evan Chenge52c1912008-07-03 09:09:37 +00001144 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001145 if (DisableLEA16) return 0;
1146 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001147 unsigned Src2 = MI->getOperand(2).getReg();
1148 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001149 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001150 .addReg(Dest, RegState::Define |
1151 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001152 Src, isKill, Src2, isKill2);
1153 if (LV && isKill2)
1154 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001155 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001156 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001157 case X86::ADD64ri32:
1158 case X86::ADD64ri8:
1159 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001160 if (MI->getOperand(2).isImm())
Rafael Espindolabca99f72009-04-08 21:14:34 +00001161 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling2b739762009-05-13 21:33:08 +00001162 .addReg(Dest, RegState::Define |
1163 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001164 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001165 break;
1166 case X86::ADD32ri:
1167 case X86::ADD32ri8:
1168 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001169 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001170 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Rafael Espindolabca99f72009-04-08 21:14:34 +00001171 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001172 .addReg(Dest, RegState::Define |
1173 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001174 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001175 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001176 break;
1177 case X86::ADD16ri:
1178 case X86::ADD16ri8:
1179 if (DisableLEA16) return 0;
1180 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001181 if (MI->getOperand(2).isImm())
Bill Wendling13ee2e42009-02-11 21:51:19 +00001182 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001183 .addReg(Dest, RegState::Define |
1184 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001185 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001186 break;
1187 case X86::SHL16ri:
1188 if (DisableLEA16) return 0;
1189 case X86::SHL32ri:
1190 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001191 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001192 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001193 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001194 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1195 X86AddressMode AM;
1196 AM.Scale = 1 << ShAmt;
1197 AM.IndexReg = Src;
1198 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001199 : (MIOpc == X86::SHL32ri
1200 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001201 NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001202 .addReg(Dest, RegState::Define |
1203 getDeadRegState(isDead)), AM);
Evan Chenge52c1912008-07-03 09:09:37 +00001204 if (isKill)
1205 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001206 }
1207 break;
1208 }
1209 }
1210 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001211 }
1212
Evan Chengc3cb24d2008-02-07 08:29:53 +00001213 if (!NewMI) return 0;
1214
Evan Chenge52c1912008-07-03 09:09:37 +00001215 if (LV) { // Update live variables
1216 if (isKill)
1217 LV->replaceKillInstruction(Src, MI, NewMI);
1218 if (isDead)
1219 LV->replaceKillInstruction(Dest, MI, NewMI);
1220 }
1221
Evan Cheng6b96ed32007-10-05 20:34:26 +00001222 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001223 return NewMI;
1224}
1225
1226/// commuteInstruction - We have a few instructions that must be hacked on to
1227/// commute them.
1228///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001229MachineInstr *
1230X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001231 switch (MI->getOpcode()) {
1232 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1233 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1234 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001235 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1236 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1237 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001238 unsigned Opc;
1239 unsigned Size;
1240 switch (MI->getOpcode()) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001241 default: llvm_unreachable("Unreachable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1243 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1244 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1245 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001246 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1247 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001248 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001249 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001250 if (NewMI) {
1251 MachineFunction &MF = *MI->getParent()->getParent();
1252 MI = MF.CloneMachineInstr(MI);
1253 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001254 }
Dan Gohman921581d2008-10-17 01:23:35 +00001255 MI->setDesc(get(Opc));
1256 MI->getOperand(3).setImm(Size-Amt);
1257 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001258 }
Evan Cheng926658c2007-10-05 23:13:21 +00001259 case X86::CMOVB16rr:
1260 case X86::CMOVB32rr:
1261 case X86::CMOVB64rr:
1262 case X86::CMOVAE16rr:
1263 case X86::CMOVAE32rr:
1264 case X86::CMOVAE64rr:
1265 case X86::CMOVE16rr:
1266 case X86::CMOVE32rr:
1267 case X86::CMOVE64rr:
1268 case X86::CMOVNE16rr:
1269 case X86::CMOVNE32rr:
1270 case X86::CMOVNE64rr:
1271 case X86::CMOVBE16rr:
1272 case X86::CMOVBE32rr:
1273 case X86::CMOVBE64rr:
1274 case X86::CMOVA16rr:
1275 case X86::CMOVA32rr:
1276 case X86::CMOVA64rr:
1277 case X86::CMOVL16rr:
1278 case X86::CMOVL32rr:
1279 case X86::CMOVL64rr:
1280 case X86::CMOVGE16rr:
1281 case X86::CMOVGE32rr:
1282 case X86::CMOVGE64rr:
1283 case X86::CMOVLE16rr:
1284 case X86::CMOVLE32rr:
1285 case X86::CMOVLE64rr:
1286 case X86::CMOVG16rr:
1287 case X86::CMOVG32rr:
1288 case X86::CMOVG64rr:
1289 case X86::CMOVS16rr:
1290 case X86::CMOVS32rr:
1291 case X86::CMOVS64rr:
1292 case X86::CMOVNS16rr:
1293 case X86::CMOVNS32rr:
1294 case X86::CMOVNS64rr:
1295 case X86::CMOVP16rr:
1296 case X86::CMOVP32rr:
1297 case X86::CMOVP64rr:
1298 case X86::CMOVNP16rr:
1299 case X86::CMOVNP32rr:
Dan Gohman12fd4d72009-01-07 00:35:10 +00001300 case X86::CMOVNP64rr:
1301 case X86::CMOVO16rr:
1302 case X86::CMOVO32rr:
1303 case X86::CMOVO64rr:
1304 case X86::CMOVNO16rr:
1305 case X86::CMOVNO32rr:
1306 case X86::CMOVNO64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001307 unsigned Opc = 0;
1308 switch (MI->getOpcode()) {
1309 default: break;
1310 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1311 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1312 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1313 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1314 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1315 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1316 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1317 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1318 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1319 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1320 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1321 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1322 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1323 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1324 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1325 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1326 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1327 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1328 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1329 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1330 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1331 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1332 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1333 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1334 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1335 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1336 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1337 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1338 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1339 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1340 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1341 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001342 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001343 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1344 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1345 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1346 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1347 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001348 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001349 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1350 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1351 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001352 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1353 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001354 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001355 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1356 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1357 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001358 }
Dan Gohman921581d2008-10-17 01:23:35 +00001359 if (NewMI) {
1360 MachineFunction &MF = *MI->getParent()->getParent();
1361 MI = MF.CloneMachineInstr(MI);
1362 NewMI = false;
1363 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001364 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001365 // Fallthrough intended.
1366 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001367 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001368 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001369 }
1370}
1371
1372static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1373 switch (BrOpc) {
1374 default: return X86::COND_INVALID;
1375 case X86::JE: return X86::COND_E;
1376 case X86::JNE: return X86::COND_NE;
1377 case X86::JL: return X86::COND_L;
1378 case X86::JLE: return X86::COND_LE;
1379 case X86::JG: return X86::COND_G;
1380 case X86::JGE: return X86::COND_GE;
1381 case X86::JB: return X86::COND_B;
1382 case X86::JBE: return X86::COND_BE;
1383 case X86::JA: return X86::COND_A;
1384 case X86::JAE: return X86::COND_AE;
1385 case X86::JS: return X86::COND_S;
1386 case X86::JNS: return X86::COND_NS;
1387 case X86::JP: return X86::COND_P;
1388 case X86::JNP: return X86::COND_NP;
1389 case X86::JO: return X86::COND_O;
1390 case X86::JNO: return X86::COND_NO;
1391 }
1392}
1393
1394unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1395 switch (CC) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001396 default: llvm_unreachable("Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001397 case X86::COND_E: return X86::JE;
1398 case X86::COND_NE: return X86::JNE;
1399 case X86::COND_L: return X86::JL;
1400 case X86::COND_LE: return X86::JLE;
1401 case X86::COND_G: return X86::JG;
1402 case X86::COND_GE: return X86::JGE;
1403 case X86::COND_B: return X86::JB;
1404 case X86::COND_BE: return X86::JBE;
1405 case X86::COND_A: return X86::JA;
1406 case X86::COND_AE: return X86::JAE;
1407 case X86::COND_S: return X86::JS;
1408 case X86::COND_NS: return X86::JNS;
1409 case X86::COND_P: return X86::JP;
1410 case X86::COND_NP: return X86::JNP;
1411 case X86::COND_O: return X86::JO;
1412 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001413 }
1414}
1415
1416/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1417/// e.g. turning COND_E to COND_NE.
1418X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1419 switch (CC) {
Edwin Törökbd448e32009-07-14 16:55:14 +00001420 default: llvm_unreachable("Illegal condition code!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001421 case X86::COND_E: return X86::COND_NE;
1422 case X86::COND_NE: return X86::COND_E;
1423 case X86::COND_L: return X86::COND_GE;
1424 case X86::COND_LE: return X86::COND_G;
1425 case X86::COND_G: return X86::COND_LE;
1426 case X86::COND_GE: return X86::COND_L;
1427 case X86::COND_B: return X86::COND_AE;
1428 case X86::COND_BE: return X86::COND_A;
1429 case X86::COND_A: return X86::COND_BE;
1430 case X86::COND_AE: return X86::COND_B;
1431 case X86::COND_S: return X86::COND_NS;
1432 case X86::COND_NS: return X86::COND_S;
1433 case X86::COND_P: return X86::COND_NP;
1434 case X86::COND_NP: return X86::COND_P;
1435 case X86::COND_O: return X86::COND_NO;
1436 case X86::COND_NO: return X86::COND_O;
1437 }
1438}
1439
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001440bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001441 const TargetInstrDesc &TID = MI->getDesc();
1442 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001443
1444 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001445 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001446 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001447 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001448 return true;
1449 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001450}
1451
Evan Cheng12515792007-07-26 17:32:14 +00001452// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1453static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1454 const X86InstrInfo &TII) {
1455 if (MI->getOpcode() == X86::FP_REG_KILL)
1456 return false;
1457 return TII.isUnpredicatedTerminator(MI);
1458}
1459
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001460bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1461 MachineBasicBlock *&TBB,
1462 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +00001463 SmallVectorImpl<MachineOperand> &Cond,
1464 bool AllowModify) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001465 // Start from the bottom of the block and work up, examining the
1466 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001467 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001468 while (I != MBB.begin()) {
1469 --I;
1470 // Working from the bottom, when we see a non-terminator
1471 // instruction, we're done.
1472 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1473 break;
1474 // A terminator that isn't a branch can't easily be handled
1475 // by this analysis.
1476 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001477 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001478 // Handle unconditional branches.
1479 if (I->getOpcode() == X86::JMP) {
Evan Chengeac31642009-02-09 07:14:22 +00001480 if (!AllowModify) {
1481 TBB = I->getOperand(0).getMBB();
Evan Cheng67bf8e22009-05-08 06:34:09 +00001482 continue;
Evan Chengeac31642009-02-09 07:14:22 +00001483 }
1484
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001485 // If the block has any instructions after a JMP, delete them.
1486 while (next(I) != MBB.end())
1487 next(I)->eraseFromParent();
1488 Cond.clear();
1489 FBB = 0;
1490 // Delete the JMP if it's equivalent to a fall-through.
1491 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1492 TBB = 0;
1493 I->eraseFromParent();
1494 I = MBB.end();
1495 continue;
1496 }
1497 // TBB is used to indicate the unconditinal destination.
1498 TBB = I->getOperand(0).getMBB();
1499 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001500 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001501 // Handle conditional branches.
1502 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001503 if (BranchCode == X86::COND_INVALID)
1504 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001505 // Working from the bottom, handle the first conditional branch.
1506 if (Cond.empty()) {
1507 FBB = TBB;
1508 TBB = I->getOperand(0).getMBB();
1509 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1510 continue;
1511 }
1512 // Handle subsequent conditional branches. Only handle the case
1513 // where all conditional branches branch to the same destination
1514 // and their condition opcodes fit one of the special
1515 // multi-branch idioms.
1516 assert(Cond.size() == 1);
1517 assert(TBB);
1518 // Only handle the case where all conditional branches branch to
1519 // the same destination.
1520 if (TBB != I->getOperand(0).getMBB())
1521 return true;
1522 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1523 // If the conditions are the same, we can leave them alone.
1524 if (OldBranchCode == BranchCode)
1525 continue;
1526 // If they differ, see if they fit one of the known patterns.
1527 // Theoretically we could handle more patterns here, but
1528 // we shouldn't expect to see them if instruction selection
1529 // has done a reasonable job.
1530 if ((OldBranchCode == X86::COND_NP &&
1531 BranchCode == X86::COND_E) ||
1532 (OldBranchCode == X86::COND_E &&
1533 BranchCode == X86::COND_NP))
1534 BranchCode = X86::COND_NP_OR_E;
1535 else if ((OldBranchCode == X86::COND_P &&
1536 BranchCode == X86::COND_NE) ||
1537 (OldBranchCode == X86::COND_NE &&
1538 BranchCode == X86::COND_P))
1539 BranchCode = X86::COND_NE_OR_P;
1540 else
1541 return true;
1542 // Update the MachineOperand.
1543 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001544 }
1545
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001546 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001547}
1548
1549unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1550 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001551 unsigned Count = 0;
1552
1553 while (I != MBB.begin()) {
1554 --I;
1555 if (I->getOpcode() != X86::JMP &&
1556 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1557 break;
1558 // Remove the branch.
1559 I->eraseFromParent();
1560 I = MBB.end();
1561 ++Count;
1562 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001563
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001564 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001565}
1566
1567unsigned
1568X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1569 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001570 const SmallVectorImpl<MachineOperand> &Cond) const {
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001571 // FIXME this should probably have a DebugLoc operand
1572 DebugLoc dl = DebugLoc::getUnknownLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001573 // Shouldn't be a fall through.
1574 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1575 assert((Cond.size() == 1 || Cond.size() == 0) &&
1576 "X86 branch conditions have one component!");
1577
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001578 if (Cond.empty()) {
1579 // Unconditional branch?
1580 assert(!FBB && "Unconditional branch with multiple successors!");
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001581 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001582 return 1;
1583 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001584
1585 // Conditional branch.
1586 unsigned Count = 0;
1587 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1588 switch (CC) {
1589 case X86::COND_NP_OR_E:
1590 // Synthesize NP_OR_E with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001591 BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001592 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001593 BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001594 ++Count;
1595 break;
1596 case X86::COND_NE_OR_P:
1597 // Synthesize NE_OR_P with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001598 BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001599 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001600 BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001601 ++Count;
1602 break;
1603 default: {
1604 unsigned Opc = GetCondBranchFromCond(CC);
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001605 BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001606 ++Count;
1607 }
1608 }
1609 if (FBB) {
1610 // Two-way Conditional branch. Insert the second branch.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001611 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001612 ++Count;
1613 }
1614 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001615}
1616
Dan Gohman2da0db32009-04-15 00:04:23 +00001617/// isHReg - Test if the given register is a physical h register.
1618static bool isHReg(unsigned Reg) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001619 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman2da0db32009-04-15 00:04:23 +00001620}
1621
Owen Anderson9fa72d92008-08-26 18:03:31 +00001622bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001623 MachineBasicBlock::iterator MI,
1624 unsigned DestReg, unsigned SrcReg,
1625 const TargetRegisterClass *DestRC,
1626 const TargetRegisterClass *SrcRC) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001627 DebugLoc DL = DebugLoc::getUnknownLoc();
1628 if (MI != MBB.end()) DL = MI->getDebugLoc();
1629
Dan Gohmand4df6252009-04-20 22:54:34 +00001630 // Determine if DstRC and SrcRC have a common superclass in common.
1631 const TargetRegisterClass *CommonRC = DestRC;
1632 if (DestRC == SrcRC)
1633 /* Source and destination have the same register class. */;
1634 else if (CommonRC->hasSuperClass(SrcRC))
1635 CommonRC = SrcRC;
Dan Gohmanfe606822009-07-30 01:56:29 +00001636 else if (!DestRC->hasSubClass(SrcRC)) {
1637 // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
Dan Gohman861ed262009-08-05 22:18:26 +00001638 // but we want to copy then as GR64. Similarly, for GR32_NOREX and
1639 // GR32_NOSP, copy as GR32.
Dan Gohmande9c0562009-08-11 15:59:48 +00001640 if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
1641 DestRC->hasSuperClass(&X86::GR64RegClass))
Dan Gohmanfe606822009-07-30 01:56:29 +00001642 CommonRC = &X86::GR64RegClass;
Dan Gohmande9c0562009-08-11 15:59:48 +00001643 else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
1644 DestRC->hasSuperClass(&X86::GR32RegClass))
Dan Gohman861ed262009-08-05 22:18:26 +00001645 CommonRC = &X86::GR32RegClass;
Dan Gohmanfe606822009-07-30 01:56:29 +00001646 else
1647 CommonRC = 0;
1648 }
Dan Gohmand4df6252009-04-20 22:54:34 +00001649
1650 if (CommonRC) {
Chris Lattner59707122008-03-09 07:58:04 +00001651 unsigned Opc;
Dan Gohmanfe606822009-07-30 01:56:29 +00001652 if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001653 Opc = X86::MOV64rr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001654 } else if (CommonRC == &X86::GR32RegClass ||
1655 CommonRC == &X86::GR32_NOSPRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001656 Opc = X86::MOV32rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001657 } else if (CommonRC == &X86::GR16RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001658 Opc = X86::MOV16rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001659 } else if (CommonRC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001660 // Copying to or from a physical H register on x86-64 requires a NOREX
Bill Wendling2d1c8222009-04-17 22:40:38 +00001661 // move. Otherwise use a normal move.
1662 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1663 TM.getSubtarget<X86Subtarget>().is64Bit())
Dan Gohman2da0db32009-04-15 00:04:23 +00001664 Opc = X86::MOV8rr_NOREX;
1665 else
1666 Opc = X86::MOV8rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001667 } else if (CommonRC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001668 Opc = X86::MOV64rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001669 } else if (CommonRC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001670 Opc = X86::MOV32rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001671 } else if (CommonRC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001672 Opc = X86::MOV16rr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001673 } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001674 Opc = X86::MOV8rr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001675 } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1676 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1677 Opc = X86::MOV8rr_NOREX;
1678 else
1679 Opc = X86::MOV8rr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001680 } else if (CommonRC == &X86::GR64_NOREXRegClass ||
1681 CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001682 Opc = X86::MOV64rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001683 } else if (CommonRC == &X86::GR32_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001684 Opc = X86::MOV32rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001685 } else if (CommonRC == &X86::GR16_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001686 Opc = X86::MOV16rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001687 } else if (CommonRC == &X86::GR8_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001688 Opc = X86::MOV8rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001689 } else if (CommonRC == &X86::RFP32RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001690 Opc = X86::MOV_Fp3232;
Dan Gohmand4df6252009-04-20 22:54:34 +00001691 } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001692 Opc = X86::MOV_Fp6464;
Dan Gohmand4df6252009-04-20 22:54:34 +00001693 } else if (CommonRC == &X86::RFP80RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001694 Opc = X86::MOV_Fp8080;
Dan Gohmand4df6252009-04-20 22:54:34 +00001695 } else if (CommonRC == &X86::FR32RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001696 Opc = X86::FsMOVAPSrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001697 } else if (CommonRC == &X86::FR64RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001698 Opc = X86::FsMOVAPDrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001699 } else if (CommonRC == &X86::VR128RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001700 Opc = X86::MOVAPSrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001701 } else if (CommonRC == &X86::VR64RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001702 Opc = X86::MMX_MOVQ64rr;
1703 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001704 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001705 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001706 BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001707 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001708 }
Dan Gohmanfe606822009-07-30 01:56:29 +00001709
Chris Lattner59707122008-03-09 07:58:04 +00001710 // Moving EFLAGS to / from another register requires a push and a pop.
1711 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001712 if (SrcReg != X86::EFLAGS)
1713 return false;
Dan Gohmanfe606822009-07-30 01:56:29 +00001714 if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001715 BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1716 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001717 return true;
Dan Gohmanfe606822009-07-30 01:56:29 +00001718 } else if (DestRC == &X86::GR32RegClass ||
1719 DestRC == &X86::GR32_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001720 BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1721 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001722 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001723 }
1724 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001725 if (DestReg != X86::EFLAGS)
1726 return false;
Dan Gohmanfe606822009-07-30 01:56:29 +00001727 if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001728 BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1729 BuildMI(MBB, MI, DL, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001730 return true;
Dan Gohmanfe606822009-07-30 01:56:29 +00001731 } else if (SrcRC == &X86::GR32RegClass ||
1732 DestRC == &X86::GR32_NOSPRegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001733 BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1734 BuildMI(MBB, MI, DL, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001735 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001736 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001737 }
Dan Gohman744d4622009-04-13 16:09:41 +00001738
Chris Lattner0d128722008-03-09 09:15:31 +00001739 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001740 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001741 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001742 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1743 // Can only copy from ST(0)/ST(1) right now
1744 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001745 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001746 unsigned Opc;
1747 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001748 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001749 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001750 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001751 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001752 if (DestRC != &X86::RFP80RegClass)
1753 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001754 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001755 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001756 BuildMI(MBB, MI, DL, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001757 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001758 }
Chris Lattner0d128722008-03-09 09:15:31 +00001759
1760 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1761 if (DestRC == &X86::RSTRegClass) {
Evan Cheng307a72e2009-02-09 23:32:07 +00001762 // Copying to ST(0) / ST(1).
1763 if (DestReg != X86::ST0 && DestReg != X86::ST1)
Owen Anderson9fa72d92008-08-26 18:03:31 +00001764 // Can only copy to TOS right now
1765 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001766 bool isST0 = DestReg == X86::ST0;
Chris Lattner0d128722008-03-09 09:15:31 +00001767 unsigned Opc;
1768 if (SrcRC == &X86::RFP32RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001769 Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
Chris Lattner0d128722008-03-09 09:15:31 +00001770 else if (SrcRC == &X86::RFP64RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001771 Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
Chris Lattner0d128722008-03-09 09:15:31 +00001772 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001773 if (SrcRC != &X86::RFP80RegClass)
1774 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001775 Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
Chris Lattner0d128722008-03-09 09:15:31 +00001776 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001777 BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001778 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001779 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001780
Owen Anderson9fa72d92008-08-26 18:03:31 +00001781 // Not yet supported!
1782 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001783}
1784
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001785static unsigned getStoreRegOpcode(unsigned SrcReg,
1786 const TargetRegisterClass *RC,
1787 bool isStackAligned,
1788 TargetMachine &TM) {
Owen Anderson81875432008-01-01 21:11:32 +00001789 unsigned Opc = 0;
Dan Gohmanfe606822009-07-30 01:56:29 +00001790 if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001791 Opc = X86::MOV64mr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001792 } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001793 Opc = X86::MOV32mr;
1794 } else if (RC == &X86::GR16RegClass) {
1795 Opc = X86::MOV16mr;
1796 } else if (RC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001797 // Copying to or from a physical H register on x86-64 requires a NOREX
1798 // move. Otherwise use a normal move.
1799 if (isHReg(SrcReg) &&
1800 TM.getSubtarget<X86Subtarget>().is64Bit())
1801 Opc = X86::MOV8mr_NOREX;
1802 else
1803 Opc = X86::MOV8mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001804 } else if (RC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001805 Opc = X86::MOV64mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001806 } else if (RC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001807 Opc = X86::MOV32mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001808 } else if (RC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001809 Opc = X86::MOV16mr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001810 } else if (RC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001811 Opc = X86::MOV8mr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001812 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1813 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1814 Opc = X86::MOV8mr_NOREX;
1815 else
1816 Opc = X86::MOV8mr;
Dan Gohmanfe606822009-07-30 01:56:29 +00001817 } else if (RC == &X86::GR64_NOREXRegClass ||
1818 RC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001819 Opc = X86::MOV64mr;
1820 } else if (RC == &X86::GR32_NOREXRegClass) {
1821 Opc = X86::MOV32mr;
1822 } else if (RC == &X86::GR16_NOREXRegClass) {
1823 Opc = X86::MOV16mr;
1824 } else if (RC == &X86::GR8_NOREXRegClass) {
1825 Opc = X86::MOV8mr;
Owen Anderson81875432008-01-01 21:11:32 +00001826 } else if (RC == &X86::RFP80RegClass) {
1827 Opc = X86::ST_FpP80m; // pops
1828 } else if (RC == &X86::RFP64RegClass) {
1829 Opc = X86::ST_Fp64m;
1830 } else if (RC == &X86::RFP32RegClass) {
1831 Opc = X86::ST_Fp32m;
1832 } else if (RC == &X86::FR32RegClass) {
1833 Opc = X86::MOVSSmr;
1834 } else if (RC == &X86::FR64RegClass) {
1835 Opc = X86::MOVSDmr;
1836 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001837 // If stack is realigned we can use aligned stores.
1838 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001839 } else if (RC == &X86::VR64RegClass) {
1840 Opc = X86::MMX_MOVQ64mr;
1841 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00001842 llvm_unreachable("Unknown regclass");
Owen Anderson81875432008-01-01 21:11:32 +00001843 }
1844
1845 return Opc;
1846}
1847
1848void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1849 MachineBasicBlock::iterator MI,
1850 unsigned SrcReg, bool isKill, int FrameIdx,
1851 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001852 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001853 bool isAligned = (RI.getStackAlignment() >= 16) ||
1854 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001855 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001856 DebugLoc DL = DebugLoc::getUnknownLoc();
1857 if (MI != MBB.end()) DL = MI->getDebugLoc();
1858 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendling2b739762009-05-13 21:33:08 +00001859 .addReg(SrcReg, getKillRegState(isKill));
Owen Anderson81875432008-01-01 21:11:32 +00001860}
1861
1862void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1863 bool isKill,
1864 SmallVectorImpl<MachineOperand> &Addr,
1865 const TargetRegisterClass *RC,
Dan Gohmanc7973eb2009-10-09 18:10:05 +00001866 MachineInstr::mmo_iterator MMOBegin,
1867 MachineInstr::mmo_iterator MMOEnd,
Owen Anderson81875432008-01-01 21:11:32 +00001868 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001869 bool isAligned = (RI.getStackAlignment() >= 16) ||
1870 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001871 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001872 DebugLoc DL = DebugLoc::getUnknownLoc();
1873 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001874 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001875 MIB.addOperand(Addr[i]);
Bill Wendling2b739762009-05-13 21:33:08 +00001876 MIB.addReg(SrcReg, getKillRegState(isKill));
Dan Gohmanc7973eb2009-10-09 18:10:05 +00001877 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Anderson81875432008-01-01 21:11:32 +00001878 NewMIs.push_back(MIB);
1879}
1880
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001881static unsigned getLoadRegOpcode(unsigned DestReg,
1882 const TargetRegisterClass *RC,
1883 bool isStackAligned,
1884 const TargetMachine &TM) {
Owen Anderson81875432008-01-01 21:11:32 +00001885 unsigned Opc = 0;
Dan Gohmanfe606822009-07-30 01:56:29 +00001886 if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001887 Opc = X86::MOV64rm;
Dan Gohmanfe606822009-07-30 01:56:29 +00001888 } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
Owen Anderson81875432008-01-01 21:11:32 +00001889 Opc = X86::MOV32rm;
1890 } else if (RC == &X86::GR16RegClass) {
1891 Opc = X86::MOV16rm;
1892 } else if (RC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001893 // Copying to or from a physical H register on x86-64 requires a NOREX
1894 // move. Otherwise use a normal move.
1895 if (isHReg(DestReg) &&
1896 TM.getSubtarget<X86Subtarget>().is64Bit())
1897 Opc = X86::MOV8rm_NOREX;
1898 else
1899 Opc = X86::MOV8rm;
Dan Gohman6e438702009-04-27 16:33:14 +00001900 } else if (RC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001901 Opc = X86::MOV64rm;
Dan Gohman6e438702009-04-27 16:33:14 +00001902 } else if (RC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001903 Opc = X86::MOV32rm;
Dan Gohman6e438702009-04-27 16:33:14 +00001904 } else if (RC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001905 Opc = X86::MOV16rm;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001906 } else if (RC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001907 Opc = X86::MOV8rm;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001908 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1909 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1910 Opc = X86::MOV8rm_NOREX;
1911 else
1912 Opc = X86::MOV8rm;
Dan Gohmanfe606822009-07-30 01:56:29 +00001913 } else if (RC == &X86::GR64_NOREXRegClass ||
1914 RC == &X86::GR64_NOREX_NOSPRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001915 Opc = X86::MOV64rm;
1916 } else if (RC == &X86::GR32_NOREXRegClass) {
1917 Opc = X86::MOV32rm;
1918 } else if (RC == &X86::GR16_NOREXRegClass) {
1919 Opc = X86::MOV16rm;
1920 } else if (RC == &X86::GR8_NOREXRegClass) {
1921 Opc = X86::MOV8rm;
Owen Anderson81875432008-01-01 21:11:32 +00001922 } else if (RC == &X86::RFP80RegClass) {
1923 Opc = X86::LD_Fp80m;
1924 } else if (RC == &X86::RFP64RegClass) {
1925 Opc = X86::LD_Fp64m;
1926 } else if (RC == &X86::RFP32RegClass) {
1927 Opc = X86::LD_Fp32m;
1928 } else if (RC == &X86::FR32RegClass) {
1929 Opc = X86::MOVSSrm;
1930 } else if (RC == &X86::FR64RegClass) {
1931 Opc = X86::MOVSDrm;
1932 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001933 // If stack is realigned we can use aligned loads.
1934 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001935 } else if (RC == &X86::VR64RegClass) {
1936 Opc = X86::MMX_MOVQ64rm;
1937 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00001938 llvm_unreachable("Unknown regclass");
Owen Anderson81875432008-01-01 21:11:32 +00001939 }
1940
1941 return Opc;
1942}
1943
1944void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001945 MachineBasicBlock::iterator MI,
1946 unsigned DestReg, int FrameIdx,
1947 const TargetRegisterClass *RC) const{
1948 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001949 bool isAligned = (RI.getStackAlignment() >= 16) ||
1950 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001951 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001952 DebugLoc DL = DebugLoc::getUnknownLoc();
1953 if (MI != MBB.end()) DL = MI->getDebugLoc();
1954 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Anderson81875432008-01-01 21:11:32 +00001955}
1956
1957void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001958 SmallVectorImpl<MachineOperand> &Addr,
1959 const TargetRegisterClass *RC,
Dan Gohmanc7973eb2009-10-09 18:10:05 +00001960 MachineInstr::mmo_iterator MMOBegin,
1961 MachineInstr::mmo_iterator MMOEnd,
Owen Anderson81875432008-01-01 21:11:32 +00001962 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001963 bool isAligned = (RI.getStackAlignment() >= 16) ||
1964 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001965 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001966 DebugLoc DL = DebugLoc::getUnknownLoc();
1967 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001968 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001969 MIB.addOperand(Addr[i]);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00001970 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Anderson81875432008-01-01 21:11:32 +00001971 NewMIs.push_back(MIB);
1972}
1973
Owen Anderson6690c7f2008-01-04 23:57:37 +00001974bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00001975 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001976 const std::vector<CalleeSavedInfo> &CSI) const {
1977 if (CSI.empty())
1978 return false;
1979
Bill Wendling13ee2e42009-02-11 21:51:19 +00001980 DebugLoc DL = DebugLoc::getUnknownLoc();
1981 if (MI != MBB.end()) DL = MI->getDebugLoc();
1982
Evan Chengc275cf62008-09-26 19:14:21 +00001983 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00001984 bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001985 unsigned SlotSize = is64Bit ? 8 : 4;
1986
1987 MachineFunction &MF = *MBB.getParent();
Evan Cheng10b8d222009-07-09 06:53:48 +00001988 unsigned FPReg = RI.getFrameRegister(MF);
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001989 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
Eli Friedman65b88222009-06-04 02:32:04 +00001990 unsigned CalleeFrameSize = 0;
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001991
Owen Anderson6690c7f2008-01-04 23:57:37 +00001992 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1993 for (unsigned i = CSI.size(); i != 0; --i) {
1994 unsigned Reg = CSI[i-1].getReg();
Eli Friedman65b88222009-06-04 02:32:04 +00001995 const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
Owen Anderson6690c7f2008-01-04 23:57:37 +00001996 // Add the callee-saved register as live-in. It's killed at the spill.
1997 MBB.addLiveIn(Reg);
Evan Cheng10b8d222009-07-09 06:53:48 +00001998 if (Reg == FPReg)
1999 // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2000 continue;
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002001 if (RegClass != &X86::VR128RegClass && !isWin64) {
Eli Friedman65b88222009-06-04 02:32:04 +00002002 CalleeFrameSize += SlotSize;
Evan Cheng10b8d222009-07-09 06:53:48 +00002003 BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
Eli Friedman65b88222009-06-04 02:32:04 +00002004 } else {
2005 storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
2006 }
Owen Anderson6690c7f2008-01-04 23:57:37 +00002007 }
Eli Friedman65b88222009-06-04 02:32:04 +00002008
2009 X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
Owen Anderson6690c7f2008-01-04 23:57:37 +00002010 return true;
2011}
2012
2013bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002014 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00002015 const std::vector<CalleeSavedInfo> &CSI) const {
2016 if (CSI.empty())
2017 return false;
Bill Wendling13ee2e42009-02-11 21:51:19 +00002018
2019 DebugLoc DL = DebugLoc::getUnknownLoc();
2020 if (MI != MBB.end()) DL = MI->getDebugLoc();
2021
Evan Cheng10b8d222009-07-09 06:53:48 +00002022 MachineFunction &MF = *MBB.getParent();
2023 unsigned FPReg = RI.getFrameRegister(MF);
Owen Anderson6690c7f2008-01-04 23:57:37 +00002024 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002025 bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
Owen Anderson6690c7f2008-01-04 23:57:37 +00002026 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2027 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2028 unsigned Reg = CSI[i].getReg();
Evan Cheng10b8d222009-07-09 06:53:48 +00002029 if (Reg == FPReg)
2030 // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2031 continue;
Eli Friedman65b88222009-06-04 02:32:04 +00002032 const TargetRegisterClass *RegClass = CSI[i].getRegClass();
Anton Korobeynikovb5cc6d82009-08-28 16:06:41 +00002033 if (RegClass != &X86::VR128RegClass && !isWin64) {
Eli Friedman65b88222009-06-04 02:32:04 +00002034 BuildMI(MBB, MI, DL, get(Opc), Reg);
2035 } else {
2036 loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
2037 }
Owen Anderson6690c7f2008-01-04 23:57:37 +00002038 }
2039 return true;
2040}
2041
Dan Gohman221a4372008-07-07 23:14:23 +00002042static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002043 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002044 MachineInstr *MI,
2045 const TargetInstrInfo &TII) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002046 // Create the base instruction with the memory operand as the first part.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002047 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2048 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002049 MachineInstrBuilder MIB(NewMI);
2050 unsigned NumAddrOps = MOs.size();
2051 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002052 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002053 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002054 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002055
2056 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00002057 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002058 for (unsigned i = 0; i != NumOps; ++i) {
2059 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002060 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002061 }
2062 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2063 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002064 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002065 }
2066 return MIB;
2067}
2068
Dan Gohman221a4372008-07-07 23:14:23 +00002069static MachineInstr *FuseInst(MachineFunction &MF,
2070 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002071 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002072 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002073 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2074 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002075 MachineInstrBuilder MIB(NewMI);
2076
2077 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2078 MachineOperand &MO = MI->getOperand(i);
2079 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002080 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00002081 unsigned NumAddrOps = MOs.size();
2082 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002083 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002084 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002085 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002086 } else {
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002087 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002088 }
2089 }
2090 return MIB;
2091}
2092
2093static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002094 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002095 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00002096 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendling13ee2e42009-02-11 21:51:19 +00002097 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002098
2099 unsigned NumAddrOps = MOs.size();
2100 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002101 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002102 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002103 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002104 return MIB.addImm(0);
2105}
2106
2107MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00002108X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2109 MachineInstr *MI, unsigned i,
Evan Chenga5853792009-07-15 06:10:07 +00002110 const SmallVectorImpl<MachineOperand> &MOs,
Evan Cheng8f0797f2009-09-11 00:39:26 +00002111 unsigned Size, unsigned Align) const {
Evan Chenga5853792009-07-15 06:10:07 +00002112 const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002113 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00002114 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002115 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002116 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002117
2118 MachineInstr *NewMI = NULL;
2119 // Folding a memory location into the two-address part of a two-address
2120 // instruction is different than folding it other places. It requires
2121 // replacing the *two* registers with the memory location.
2122 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002123 MI->getOperand(0).isReg() &&
2124 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00002125 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2126 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2127 isTwoAddrFold = true;
2128 } else if (i == 0) { // If operand 0
2129 if (MI->getOpcode() == X86::MOV16r0)
2130 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2131 else if (MI->getOpcode() == X86::MOV32r0)
2132 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002133 else if (MI->getOpcode() == X86::MOV8r0)
2134 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002135 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002136 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002137
2138 OpcodeTablePtr = &RegOp2MemOpTable0;
2139 } else if (i == 1) {
2140 OpcodeTablePtr = &RegOp2MemOpTable1;
2141 } else if (i == 2) {
2142 OpcodeTablePtr = &RegOp2MemOpTable2;
2143 }
2144
2145 // If table selected...
2146 if (OpcodeTablePtr) {
2147 // Find the Opcode to fuse
Evan Chenga5853792009-07-15 06:10:07 +00002148 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Owen Anderson9a184ef2008-01-07 01:35:02 +00002149 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2150 if (I != OpcodeTablePtr->end()) {
Evan Cheng8f0797f2009-09-11 00:39:26 +00002151 unsigned Opcode = I->second.first;
Evan Chenga5853792009-07-15 06:10:07 +00002152 unsigned MinAlign = I->second.second;
2153 if (Align < MinAlign)
2154 return NULL;
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002155 bool NarrowToMOV32rm = false;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002156 if (Size) {
2157 unsigned RCSize = MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2158 if (Size < RCSize) {
2159 // Check if it's safe to fold the load. If the size of the object is
2160 // narrower than the load width, then it's not.
2161 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2162 return NULL;
2163 // If this is a 64-bit load, but the spill slot is 32, then we can do
2164 // a 32-bit load which is implicitly zero-extended. This likely is due
2165 // to liveintervalanalysis remat'ing a load from stack slot.
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002166 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2167 return NULL;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002168 Opcode = X86::MOV32rm;
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002169 NarrowToMOV32rm = true;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002170 }
2171 }
2172
Owen Anderson9a184ef2008-01-07 01:35:02 +00002173 if (isTwoAddrFold)
Evan Cheng8f0797f2009-09-11 00:39:26 +00002174 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002175 else
Evan Cheng8f0797f2009-09-11 00:39:26 +00002176 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
Evan Cheng5b7dbbf2009-09-11 01:01:31 +00002177
2178 if (NarrowToMOV32rm) {
2179 // If this is the special case where we use a MOV32rm to load a 32-bit
2180 // value and zero-extend the top bits. Change the destination register
2181 // to a 32-bit one.
2182 unsigned DstReg = NewMI->getOperand(0).getReg();
2183 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2184 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2185 4/*x86_subreg_32bit*/));
2186 else
2187 NewMI->getOperand(0).setSubReg(4/*x86_subreg_32bit*/);
2188 }
Owen Anderson9a184ef2008-01-07 01:35:02 +00002189 return NewMI;
2190 }
2191 }
2192
2193 // No fusion
2194 if (PrintFailedFusing)
Chris Lattnerd71b0b02009-08-23 03:41:05 +00002195 errs() << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002196 return NULL;
2197}
2198
2199
Dan Gohmanedc83d62008-12-03 18:43:12 +00002200MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2201 MachineInstr *MI,
Evan Chenga5853792009-07-15 06:10:07 +00002202 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanedc83d62008-12-03 18:43:12 +00002203 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002204 // Check switch flag
2205 if (NoFusing) return NULL;
2206
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002207 const MachineFrameInfo *MFI = MF.getFrameInfo();
Evan Cheng8f0797f2009-09-11 00:39:26 +00002208 unsigned Size = MFI->getObjectSize(FrameIndex);
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002209 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002210 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2211 unsigned NewOpc = 0;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002212 unsigned RCSize = 0;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002213 switch (MI->getOpcode()) {
2214 default: return NULL;
Evan Cheng8f0797f2009-09-11 00:39:26 +00002215 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
2216 case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break;
2217 case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break;
2218 case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002219 }
Evan Cheng8f0797f2009-09-11 00:39:26 +00002220 // Check if it's safe to fold the load. If the size of the object is
2221 // narrower than the load width, then it's not.
2222 if (Size < RCSize)
2223 return NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002224 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002225 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002226 MI->getOperand(1).ChangeToImmediate(0);
2227 } else if (Ops.size() != 1)
2228 return NULL;
2229
2230 SmallVector<MachineOperand,4> MOs;
2231 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Evan Cheng8f0797f2009-09-11 00:39:26 +00002232 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002233}
2234
Dan Gohmanedc83d62008-12-03 18:43:12 +00002235MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2236 MachineInstr *MI,
Evan Chenga5853792009-07-15 06:10:07 +00002237 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanedc83d62008-12-03 18:43:12 +00002238 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002239 // Check switch flag
2240 if (NoFusing) return NULL;
2241
Dan Gohmand0e8c752008-07-12 00:10:52 +00002242 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002243 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002244 if (LoadMI->hasOneMemOperand())
Dan Gohman4e3bb1b2009-09-25 20:36:54 +00002245 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
Dan Gohman51dbce62009-09-21 18:30:38 +00002246 else
2247 switch (LoadMI->getOpcode()) {
2248 case X86::V_SET0:
2249 case X86::V_SETALLONES:
2250 Alignment = 16;
2251 break;
2252 case X86::FsFLD0SD:
2253 Alignment = 8;
2254 break;
2255 case X86::FsFLD0SS:
2256 Alignment = 4;
2257 break;
2258 default:
2259 llvm_unreachable("Don't know how to fold this instruction!");
2260 }
Owen Anderson9a184ef2008-01-07 01:35:02 +00002261 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2262 unsigned NewOpc = 0;
2263 switch (MI->getOpcode()) {
2264 default: return NULL;
2265 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2266 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2267 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2268 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2269 }
2270 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002271 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002272 MI->getOperand(1).ChangeToImmediate(0);
2273 } else if (Ops.size() != 1)
2274 return NULL;
2275
Rafael Espindolabca99f72009-04-08 21:14:34 +00002276 SmallVector<MachineOperand,X86AddrNumOperands> MOs;
Dan Gohman51dbce62009-09-21 18:30:38 +00002277 switch (LoadMI->getOpcode()) {
2278 case X86::V_SET0:
2279 case X86::V_SETALLONES:
2280 case X86::FsFLD0SD:
2281 case X86::FsFLD0SS: {
Dan Gohman37eb6c82008-12-03 05:21:24 +00002282 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2283 // Create a constant-pool entry and operands to load from it.
2284
2285 // x86-32 PIC requires a PIC base register for constant pools.
2286 unsigned PICBase = 0;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002287 if (TM.getRelocationModel() == Reloc::PIC_) {
Evan Cheng3b570332009-07-16 18:44:05 +00002288 if (TM.getSubtarget<X86Subtarget>().is64Bit())
2289 PICBase = X86::RIP;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002290 else
Evan Cheng3b570332009-07-16 18:44:05 +00002291 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2292 // This doesn't work for several reasons.
2293 // 1. GlobalBaseReg may have been spilled.
2294 // 2. It may not be live at MI.
Dan Gohman51dbce62009-09-21 18:30:38 +00002295 return NULL;
Jakob Stoklund Olesen29867f12009-07-16 21:24:13 +00002296 }
Dan Gohman37eb6c82008-12-03 05:21:24 +00002297
Dan Gohman51dbce62009-09-21 18:30:38 +00002298 // Create a constant-pool entry.
Dan Gohman37eb6c82008-12-03 05:21:24 +00002299 MachineConstantPool &MCP = *MF.getConstantPool();
Dan Gohman51dbce62009-09-21 18:30:38 +00002300 const Type *Ty;
2301 if (LoadMI->getOpcode() == X86::FsFLD0SS)
2302 Ty = Type::getFloatTy(MF.getFunction()->getContext());
2303 else if (LoadMI->getOpcode() == X86::FsFLD0SD)
2304 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2305 else
2306 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2307 Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2308 Constant::getAllOnesValue(Ty) :
2309 Constant::getNullValue(Ty);
2310 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
Dan Gohman37eb6c82008-12-03 05:21:24 +00002311
2312 // Create operands to load from the constant pool entry.
2313 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2314 MOs.push_back(MachineOperand::CreateImm(1));
2315 MOs.push_back(MachineOperand::CreateReg(0, false));
2316 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindolabca99f72009-04-08 21:14:34 +00002317 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman51dbce62009-09-21 18:30:38 +00002318 break;
2319 }
2320 default: {
Dan Gohman37eb6c82008-12-03 05:21:24 +00002321 // Folding a normal load. Just copy the load's address operands.
2322 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002323 for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
Dan Gohman37eb6c82008-12-03 05:21:24 +00002324 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman51dbce62009-09-21 18:30:38 +00002325 break;
2326 }
Dan Gohman37eb6c82008-12-03 05:21:24 +00002327 }
Evan Cheng8f0797f2009-09-11 00:39:26 +00002328 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002329}
2330
2331
Dan Gohman46b948e2008-10-16 01:49:15 +00002332bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2333 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002334 // Check switch flag
2335 if (NoFusing) return 0;
2336
2337 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2338 switch (MI->getOpcode()) {
2339 default: return false;
2340 case X86::TEST8rr:
2341 case X86::TEST16rr:
2342 case X86::TEST32rr:
2343 case X86::TEST64rr:
2344 return true;
2345 }
2346 }
2347
2348 if (Ops.size() != 1)
2349 return false;
2350
2351 unsigned OpNum = Ops[0];
2352 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002353 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002354 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002355 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002356
2357 // Folding a memory location into the two-address part of a two-address
2358 // instruction is different than folding it other places. It requires
2359 // replacing the *two* registers with the memory location.
Evan Chenga5853792009-07-15 06:10:07 +00002360 const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002361 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2362 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2363 } else if (OpNum == 0) { // If operand 0
2364 switch (Opc) {
Chris Lattner17f62252009-07-14 20:19:57 +00002365 case X86::MOV8r0:
Owen Anderson9a184ef2008-01-07 01:35:02 +00002366 case X86::MOV16r0:
2367 case X86::MOV32r0:
Owen Anderson9a184ef2008-01-07 01:35:02 +00002368 return true;
2369 default: break;
2370 }
2371 OpcodeTablePtr = &RegOp2MemOpTable0;
2372 } else if (OpNum == 1) {
2373 OpcodeTablePtr = &RegOp2MemOpTable1;
2374 } else if (OpNum == 2) {
2375 OpcodeTablePtr = &RegOp2MemOpTable2;
2376 }
2377
2378 if (OpcodeTablePtr) {
2379 // Find the Opcode to fuse
Evan Chenga5853792009-07-15 06:10:07 +00002380 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Owen Anderson9a184ef2008-01-07 01:35:02 +00002381 OpcodeTablePtr->find((unsigned*)Opc);
2382 if (I != OpcodeTablePtr->end())
2383 return true;
2384 }
2385 return false;
2386}
2387
2388bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2389 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002390 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002391 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2392 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2393 if (I == MemOp2RegOpTable.end())
2394 return false;
Dale Johannesen77cce4d2009-02-12 23:08:38 +00002395 DebugLoc dl = MI->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002396 unsigned Opc = I->second.first;
2397 unsigned Index = I->second.second & 0xf;
2398 bool FoldedLoad = I->second.second & (1 << 4);
2399 bool FoldedStore = I->second.second & (1 << 5);
2400 if (UnfoldLoad && !FoldedLoad)
2401 return false;
2402 UnfoldLoad &= FoldedLoad;
2403 if (UnfoldStore && !FoldedStore)
2404 return false;
2405 UnfoldStore &= FoldedStore;
2406
Chris Lattner5b930372008-01-07 07:27:27 +00002407 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002408 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattner6a66b292009-07-29 21:10:12 +00002409 const TargetRegisterClass *RC = TOI.getRegClass(&RI);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002410 SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002411 SmallVector<MachineOperand,2> BeforeOps;
2412 SmallVector<MachineOperand,2> AfterOps;
2413 SmallVector<MachineOperand,4> ImpOps;
2414 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2415 MachineOperand &Op = MI->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002416 if (i >= Index && i < Index + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002417 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002418 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002419 ImpOps.push_back(Op);
2420 else if (i < Index)
2421 BeforeOps.push_back(Op);
2422 else if (i > Index)
2423 AfterOps.push_back(Op);
2424 }
2425
2426 // Emit the load instruction.
2427 if (UnfoldLoad) {
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002428 std::pair<MachineInstr::mmo_iterator,
2429 MachineInstr::mmo_iterator> MMOs =
2430 MF.extractLoadMemRefs(MI->memoperands_begin(),
2431 MI->memoperands_end());
2432 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002433 if (UnfoldStore) {
2434 // Address operands cannot be marked isKill.
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002435 for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002436 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002437 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002438 MO.setIsKill(false);
2439 }
2440 }
2441 }
2442
2443 // Emit the data processing instruction.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002444 MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002445 MachineInstrBuilder MIB(DataMI);
2446
2447 if (FoldedStore)
Bill Wendling2b739762009-05-13 21:33:08 +00002448 MIB.addReg(Reg, RegState::Define);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002449 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002450 MIB.addOperand(BeforeOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002451 if (FoldedLoad)
2452 MIB.addReg(Reg);
2453 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002454 MIB.addOperand(AfterOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002455 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2456 MachineOperand &MO = ImpOps[i];
Bill Wendling2b739762009-05-13 21:33:08 +00002457 MIB.addReg(MO.getReg(),
2458 getDefRegState(MO.isDef()) |
2459 RegState::Implicit |
2460 getKillRegState(MO.isKill()) |
Evan Cheng9c73db12009-06-30 08:49:04 +00002461 getDeadRegState(MO.isDead()) |
2462 getUndefRegState(MO.isUndef()));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002463 }
2464 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2465 unsigned NewOpc = 0;
2466 switch (DataMI->getOpcode()) {
2467 default: break;
2468 case X86::CMP64ri32:
2469 case X86::CMP32ri:
2470 case X86::CMP16ri:
2471 case X86::CMP8ri: {
2472 MachineOperand &MO0 = DataMI->getOperand(0);
2473 MachineOperand &MO1 = DataMI->getOperand(1);
2474 if (MO1.getImm() == 0) {
2475 switch (DataMI->getOpcode()) {
2476 default: break;
2477 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2478 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2479 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2480 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2481 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002482 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002483 MO1.ChangeToRegister(MO0.getReg(), false);
2484 }
2485 }
2486 }
2487 NewMIs.push_back(DataMI);
2488
2489 // Emit the store instruction.
2490 if (UnfoldStore) {
Chris Lattner6a66b292009-07-29 21:10:12 +00002491 const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002492 std::pair<MachineInstr::mmo_iterator,
2493 MachineInstr::mmo_iterator> MMOs =
2494 MF.extractStoreMemRefs(MI->memoperands_begin(),
2495 MI->memoperands_end());
2496 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002497 }
2498
2499 return true;
2500}
2501
2502bool
2503X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002504 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002505 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002506 return false;
2507
2508 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002509 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002510 if (I == MemOp2RegOpTable.end())
2511 return false;
2512 unsigned Opc = I->second.first;
2513 unsigned Index = I->second.second & 0xf;
2514 bool FoldedLoad = I->second.second & (1 << 4);
2515 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002516 const TargetInstrDesc &TID = get(Opc);
Chris Lattner6a66b292009-07-29 21:10:12 +00002517 const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
Dan Gohman31b70a62009-03-04 19:23:38 +00002518 unsigned NumDefs = TID.NumDefs;
Dan Gohman8181bd12008-07-27 21:46:04 +00002519 std::vector<SDValue> AddrOps;
2520 std::vector<SDValue> BeforeOps;
2521 std::vector<SDValue> AfterOps;
Dale Johannesen913ba762009-02-06 01:31:28 +00002522 DebugLoc dl = N->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002523 unsigned NumOps = N->getNumOperands();
Dan Gohman4e3bb1b2009-09-25 20:36:54 +00002524 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002525 SDValue Op = N->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002526 if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002527 AddrOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002528 else if (i < Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002529 BeforeOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002530 else if (i > Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002531 AfterOps.push_back(Op);
2532 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002533 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002534 AddrOps.push_back(Chain);
2535
2536 // Emit the load instruction.
2537 SDNode *Load = 0;
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002538 MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002539 if (FoldedLoad) {
Owen Andersonac9de032009-08-10 22:56:29 +00002540 EVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002541 bool isAligned = (RI.getStackAlignment() >= 16) ||
2542 RI.needsStackRealignment(MF);
Dan Gohman61fda0d2009-09-25 18:54:59 +00002543 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2544 VT, MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002545 NewNodes.push_back(Load);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002546
2547 // Preserve memory reference information.
2548 std::pair<MachineInstr::mmo_iterator,
2549 MachineInstr::mmo_iterator> MMOs =
2550 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2551 cast<MachineSDNode>(N)->memoperands_end());
2552 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002553 }
2554
2555 // Emit the data processing instruction.
Owen Andersonac9de032009-08-10 22:56:29 +00002556 std::vector<EVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002557 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002558 if (TID.getNumDefs() > 0) {
Chris Lattner6a66b292009-07-29 21:10:12 +00002559 DstRC = TID.OpInfo[0].getRegClass(&RI);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002560 VTs.push_back(*DstRC->vt_begin());
2561 }
2562 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Owen Andersonac9de032009-08-10 22:56:29 +00002563 EVT VT = N->getValueType(i);
Owen Anderson36e3a6e2009-08-11 20:47:22 +00002564 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002565 VTs.push_back(VT);
2566 }
2567 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002568 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002569 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dan Gohman61fda0d2009-09-25 18:54:59 +00002570 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2571 BeforeOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002572 NewNodes.push_back(NewNode);
2573
2574 // Emit the store instruction.
2575 if (FoldedStore) {
2576 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002577 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002578 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002579 bool isAligned = (RI.getStackAlignment() >= 16) ||
2580 RI.needsStackRealignment(MF);
Dan Gohman61fda0d2009-09-25 18:54:59 +00002581 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2582 isAligned, TM),
2583 dl, MVT::Other,
2584 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002585 NewNodes.push_back(Store);
Dan Gohmanc7973eb2009-10-09 18:10:05 +00002586
2587 // Preserve memory reference information.
2588 std::pair<MachineInstr::mmo_iterator,
2589 MachineInstr::mmo_iterator> MMOs =
2590 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2591 cast<MachineSDNode>(N)->memoperands_end());
2592 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002593 }
2594
2595 return true;
2596}
2597
2598unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2599 bool UnfoldLoad, bool UnfoldStore) const {
2600 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2601 MemOp2RegOpTable.find((unsigned*)Opc);
2602 if (I == MemOp2RegOpTable.end())
2603 return 0;
2604 bool FoldedLoad = I->second.second & (1 << 4);
2605 bool FoldedStore = I->second.second & (1 << 5);
2606 if (UnfoldLoad && !FoldedLoad)
2607 return 0;
2608 if (UnfoldStore && !FoldedStore)
2609 return 0;
2610 return I->second.first;
2611}
2612
Dan Gohman46b948e2008-10-16 01:49:15 +00002613bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002614 if (MBB.empty()) return false;
2615
2616 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002617 case X86::TCRETURNri:
2618 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002619 case X86::RET: // Return.
2620 case X86::RETI:
2621 case X86::TAILJMPd:
2622 case X86::TAILJMPr:
2623 case X86::TAILJMPm:
2624 case X86::JMP: // Uncond branch.
2625 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002626 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002627 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002628 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002629 return true;
2630 default: return false;
2631 }
2632}
2633
2634bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002635ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002636 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002637 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002638 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2639 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002640 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002641 return false;
2642}
2643
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002644bool X86InstrInfo::
Evan Chengf5a8a362009-02-06 17:17:30 +00002645isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2646 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002647 // allow any loads of these registers before FpGet_ST0_80.
Evan Chengf5a8a362009-02-06 17:17:30 +00002648 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2649 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002650}
2651
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002652unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2653 switch (Desc->TSFlags & X86II::ImmMask) {
2654 case X86II::Imm8: return 1;
2655 case X86II::Imm16: return 2;
2656 case X86II::Imm32: return 4;
2657 case X86II::Imm64: return 8;
Edwin Törökbd448e32009-07-14 16:55:14 +00002658 default: llvm_unreachable("Immediate size not set!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002659 return 0;
2660 }
2661}
2662
2663/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2664/// e.g. r8, xmm8, etc.
2665bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002666 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002667 switch (MO.getReg()) {
2668 default: break;
2669 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2670 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2671 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2672 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2673 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2674 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2675 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2676 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2677 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2678 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2679 return true;
2680 }
2681 return false;
2682}
2683
2684
2685/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2686/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2687/// size, and 3) use of X86-64 extended registers.
2688unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2689 unsigned REX = 0;
2690 const TargetInstrDesc &Desc = MI.getDesc();
2691
2692 // Pseudo instructions do not need REX prefix byte.
2693 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2694 return 0;
2695 if (Desc.TSFlags & X86II::REX_W)
2696 REX |= 1 << 3;
2697
2698 unsigned NumOps = Desc.getNumOperands();
2699 if (NumOps) {
2700 bool isTwoAddr = NumOps > 1 &&
2701 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2702
2703 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2704 unsigned i = isTwoAddr ? 1 : 0;
2705 for (unsigned e = NumOps; i != e; ++i) {
2706 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002707 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002708 unsigned Reg = MO.getReg();
2709 if (isX86_64NonExtLowByteReg(Reg))
2710 REX |= 0x40;
2711 }
2712 }
2713
2714 switch (Desc.TSFlags & X86II::FormMask) {
2715 case X86II::MRMInitReg:
2716 if (isX86_64ExtendedReg(MI.getOperand(0)))
2717 REX |= (1 << 0) | (1 << 2);
2718 break;
2719 case X86II::MRMSrcReg: {
2720 if (isX86_64ExtendedReg(MI.getOperand(0)))
2721 REX |= 1 << 2;
2722 i = isTwoAddr ? 2 : 1;
2723 for (unsigned e = NumOps; i != e; ++i) {
2724 const MachineOperand& MO = MI.getOperand(i);
2725 if (isX86_64ExtendedReg(MO))
2726 REX |= 1 << 0;
2727 }
2728 break;
2729 }
2730 case X86II::MRMSrcMem: {
2731 if (isX86_64ExtendedReg(MI.getOperand(0)))
2732 REX |= 1 << 2;
2733 unsigned Bit = 0;
2734 i = isTwoAddr ? 2 : 1;
2735 for (; i != NumOps; ++i) {
2736 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002737 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002738 if (isX86_64ExtendedReg(MO))
2739 REX |= 1 << Bit;
2740 Bit++;
2741 }
2742 }
2743 break;
2744 }
2745 case X86II::MRM0m: case X86II::MRM1m:
2746 case X86II::MRM2m: case X86II::MRM3m:
2747 case X86II::MRM4m: case X86II::MRM5m:
2748 case X86II::MRM6m: case X86II::MRM7m:
2749 case X86II::MRMDestMem: {
Dan Gohman2eff7042009-04-13 15:04:25 +00002750 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002751 i = isTwoAddr ? 1 : 0;
2752 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2753 REX |= 1 << 2;
2754 unsigned Bit = 0;
2755 for (; i != e; ++i) {
2756 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002757 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002758 if (isX86_64ExtendedReg(MO))
2759 REX |= 1 << Bit;
2760 Bit++;
2761 }
2762 }
2763 break;
2764 }
2765 default: {
2766 if (isX86_64ExtendedReg(MI.getOperand(0)))
2767 REX |= 1 << 0;
2768 i = isTwoAddr ? 2 : 1;
2769 for (unsigned e = NumOps; i != e; ++i) {
2770 const MachineOperand& MO = MI.getOperand(i);
2771 if (isX86_64ExtendedReg(MO))
2772 REX |= 1 << 2;
2773 }
2774 break;
2775 }
2776 }
2777 }
2778 return REX;
2779}
2780
2781/// sizePCRelativeBlockAddress - This method returns the size of a PC
2782/// relative block address instruction
2783///
2784static unsigned sizePCRelativeBlockAddress() {
2785 return 4;
2786}
2787
2788/// sizeGlobalAddress - Give the size of the emission of this global address
2789///
2790static unsigned sizeGlobalAddress(bool dword) {
2791 return dword ? 8 : 4;
2792}
2793
2794/// sizeConstPoolAddress - Give the size of the emission of this constant
2795/// pool address
2796///
2797static unsigned sizeConstPoolAddress(bool dword) {
2798 return dword ? 8 : 4;
2799}
2800
2801/// sizeExternalSymbolAddress - Give the size of the emission of this external
2802/// symbol
2803///
2804static unsigned sizeExternalSymbolAddress(bool dword) {
2805 return dword ? 8 : 4;
2806}
2807
2808/// sizeJumpTableAddress - Give the size of the emission of this jump
2809/// table address
2810///
2811static unsigned sizeJumpTableAddress(bool dword) {
2812 return dword ? 8 : 4;
2813}
2814
2815static unsigned sizeConstant(unsigned Size) {
2816 return Size;
2817}
2818
2819static unsigned sizeRegModRMByte(){
2820 return 1;
2821}
2822
2823static unsigned sizeSIBByte(){
2824 return 1;
2825}
2826
2827static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2828 unsigned FinalSize = 0;
2829 // If this is a simple integer displacement that doesn't require a relocation.
2830 if (!RelocOp) {
2831 FinalSize += sizeConstant(4);
2832 return FinalSize;
2833 }
2834
2835 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002836 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002837 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002838 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002839 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002840 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002841 FinalSize += sizeJumpTableAddress(false);
2842 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00002843 llvm_unreachable("Unknown value to relocate!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002844 }
2845 return FinalSize;
2846}
2847
2848static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2849 bool IsPIC, bool Is64BitMode) {
2850 const MachineOperand &Op3 = MI.getOperand(Op+3);
2851 int DispVal = 0;
2852 const MachineOperand *DispForReloc = 0;
2853 unsigned FinalSize = 0;
2854
2855 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002856 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002857 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002858 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002859 if (Is64BitMode || IsPIC) {
2860 DispForReloc = &Op3;
2861 } else {
2862 DispVal = 1;
2863 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002864 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002865 if (Is64BitMode || IsPIC) {
2866 DispForReloc = &Op3;
2867 } else {
2868 DispVal = 1;
2869 }
2870 } else {
2871 DispVal = 1;
2872 }
2873
2874 const MachineOperand &Base = MI.getOperand(Op);
2875 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2876
2877 unsigned BaseReg = Base.getReg();
2878
2879 // Is a SIB byte needed?
Evan Cheng92569ce2009-05-12 00:07:35 +00002880 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
2881 IndexReg.getReg() == 0 &&
Evan Cheng099109d2009-05-04 22:49:16 +00002882 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002883 if (BaseReg == 0) { // Just a displacement?
2884 // Emit special case [disp32] encoding
2885 ++FinalSize;
2886 FinalSize += getDisplacementFieldSize(DispForReloc);
2887 } else {
2888 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2889 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2890 // Emit simple indirect register encoding... [EAX] f.e.
2891 ++FinalSize;
2892 // Be pessimistic and assume it's a disp32, not a disp8
2893 } else {
2894 // Emit the most general non-SIB encoding: [REG+disp32]
2895 ++FinalSize;
2896 FinalSize += getDisplacementFieldSize(DispForReloc);
2897 }
2898 }
2899
2900 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2901 assert(IndexReg.getReg() != X86::ESP &&
2902 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2903
2904 bool ForceDisp32 = false;
2905 if (BaseReg == 0 || DispForReloc) {
2906 // Emit the normal disp32 encoding.
2907 ++FinalSize;
2908 ForceDisp32 = true;
2909 } else {
2910 ++FinalSize;
2911 }
2912
2913 FinalSize += sizeSIBByte();
2914
2915 // Do we need to output a displacement?
2916 if (DispVal != 0 || ForceDisp32) {
2917 FinalSize += getDisplacementFieldSize(DispForReloc);
2918 }
2919 }
2920 return FinalSize;
2921}
2922
2923
2924static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2925 const TargetInstrDesc *Desc,
2926 bool IsPIC, bool Is64BitMode) {
2927
2928 unsigned Opcode = Desc->Opcode;
2929 unsigned FinalSize = 0;
2930
2931 // Emit the lock opcode prefix as needed.
2932 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2933
Bill Wendling6ee76552009-05-28 23:40:46 +00002934 // Emit segment override opcode prefix as needed.
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002935 switch (Desc->TSFlags & X86II::SegOvrMask) {
2936 case X86II::FS:
2937 case X86II::GS:
2938 ++FinalSize;
2939 break;
Edwin Törökbd448e32009-07-14 16:55:14 +00002940 default: llvm_unreachable("Invalid segment!");
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002941 case 0: break; // No segment override!
2942 }
2943
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002944 // Emit the repeat opcode prefix as needed.
2945 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2946
2947 // Emit the operand size opcode prefix as needed.
2948 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2949
2950 // Emit the address size opcode prefix as needed.
2951 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2952
2953 bool Need0FPrefix = false;
2954 switch (Desc->TSFlags & X86II::Op0Mask) {
2955 case X86II::TB: // Two-byte opcode prefix
2956 case X86II::T8: // 0F 38
2957 case X86II::TA: // 0F 3A
2958 Need0FPrefix = true;
2959 break;
Eric Christopherb5f948c2009-08-08 21:55:08 +00002960 case X86II::TF: // F2 0F 38
2961 ++FinalSize;
2962 Need0FPrefix = true;
2963 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002964 case X86II::REP: break; // already handled.
2965 case X86II::XS: // F3 0F
2966 ++FinalSize;
2967 Need0FPrefix = true;
2968 break;
2969 case X86II::XD: // F2 0F
2970 ++FinalSize;
2971 Need0FPrefix = true;
2972 break;
2973 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2974 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2975 ++FinalSize;
2976 break; // Two-byte opcode prefix
Edwin Törökbd448e32009-07-14 16:55:14 +00002977 default: llvm_unreachable("Invalid prefix!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002978 case 0: break; // No prefix!
2979 }
2980
2981 if (Is64BitMode) {
2982 // REX prefix
2983 unsigned REX = X86InstrInfo::determineREX(MI);
2984 if (REX)
2985 ++FinalSize;
2986 }
2987
2988 // 0x0F escape code must be emitted just before the opcode.
2989 if (Need0FPrefix)
2990 ++FinalSize;
2991
2992 switch (Desc->TSFlags & X86II::Op0Mask) {
2993 case X86II::T8: // 0F 38
2994 ++FinalSize;
2995 break;
Bill Wendling6ee76552009-05-28 23:40:46 +00002996 case X86II::TA: // 0F 3A
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002997 ++FinalSize;
2998 break;
Eric Christopherb5f948c2009-08-08 21:55:08 +00002999 case X86II::TF: // F2 0F 38
3000 ++FinalSize;
3001 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003002 }
3003
3004 // If this is a two-address instruction, skip one of the register operands.
3005 unsigned NumOps = Desc->getNumOperands();
3006 unsigned CurOp = 0;
3007 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
3008 CurOp++;
Evan Cheng099109d2009-05-04 22:49:16 +00003009 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
3010 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3011 --NumOps;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003012
3013 switch (Desc->TSFlags & X86II::FormMask) {
Edwin Törökbd448e32009-07-14 16:55:14 +00003014 default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003015 case X86II::Pseudo:
3016 // Remember the current PC offset, this is the PIC relocation
3017 // base address.
3018 switch (Opcode) {
3019 default:
3020 break;
3021 case TargetInstrInfo::INLINEASM: {
3022 const MachineFunction *MF = MI.getParent()->getParent();
Chris Lattner5f1fdb32009-08-02 05:20:37 +00003023 const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
3024 FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
Chris Lattner621c44d2009-08-22 20:48:53 +00003025 *MF->getTarget().getMCAsmInfo());
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003026 break;
3027 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00003028 case TargetInstrInfo::DBG_LABEL:
3029 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003030 break;
3031 case TargetInstrInfo::IMPLICIT_DEF:
Jakob Stoklund Olesen8f12c7c2009-09-28 20:32:26 +00003032 case TargetInstrInfo::KILL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003033 case X86::DWARF_LOC:
3034 case X86::FP_REG_KILL:
3035 break;
3036 case X86::MOVPC32r: {
3037 // This emits the "call" portion of this pseudo instruction.
3038 ++FinalSize;
3039 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3040 break;
3041 }
3042 }
3043 CurOp = NumOps;
3044 break;
3045 case X86II::RawFrm:
3046 ++FinalSize;
3047
3048 if (CurOp != NumOps) {
3049 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003050 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003051 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003052 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003053 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003054 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003055 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003056 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003057 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3058 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00003059 llvm_unreachable("Unknown RawFrm operand!");
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003060 }
3061 }
3062 break;
3063
3064 case X86II::AddRegFrm:
3065 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003066 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003067
3068 if (CurOp != NumOps) {
3069 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3070 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003071 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003072 FinalSize += sizeConstant(Size);
3073 else {
3074 bool dword = false;
3075 if (Opcode == X86::MOV64ri)
3076 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003077 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003078 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003079 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003080 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003081 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003082 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003083 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003084 FinalSize += sizeJumpTableAddress(dword);
3085 }
3086 }
3087 break;
3088
3089 case X86II::MRMDestReg: {
3090 ++FinalSize;
3091 FinalSize += sizeRegModRMByte();
3092 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003093 if (CurOp != NumOps) {
3094 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003095 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003096 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003097 break;
3098 }
3099 case X86II::MRMDestMem: {
3100 ++FinalSize;
3101 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003102 CurOp += X86AddrNumOperands + 1;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003103 if (CurOp != NumOps) {
3104 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003105 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003106 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003107 break;
3108 }
3109
3110 case X86II::MRMSrcReg:
3111 ++FinalSize;
3112 FinalSize += sizeRegModRMByte();
3113 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003114 if (CurOp != NumOps) {
3115 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003116 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003117 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003118 break;
3119
3120 case X86II::MRMSrcMem: {
Evan Cheng099109d2009-05-04 22:49:16 +00003121 int AddrOperands;
3122 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3123 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3124 AddrOperands = X86AddrNumOperands - 1; // No segment register
3125 else
3126 AddrOperands = X86AddrNumOperands;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003127
3128 ++FinalSize;
3129 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003130 CurOp += AddrOperands + 1;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003131 if (CurOp != NumOps) {
3132 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003133 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003134 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003135 break;
3136 }
3137
3138 case X86II::MRM0r: case X86II::MRM1r:
3139 case X86II::MRM2r: case X86II::MRM3r:
3140 case X86II::MRM4r: case X86II::MRM5r:
3141 case X86II::MRM6r: case X86II::MRM7r:
3142 ++FinalSize;
Evan Cheng099109d2009-05-04 22:49:16 +00003143 if (Desc->getOpcode() == X86::LFENCE ||
Bill Wendling6ee76552009-05-28 23:40:46 +00003144 Desc->getOpcode() == X86::MFENCE) {
3145 // Special handling of lfence and mfence;
Evan Cheng099109d2009-05-04 22:49:16 +00003146 FinalSize += sizeRegModRMByte();
Bill Wendling6ee76552009-05-28 23:40:46 +00003147 } else if (Desc->getOpcode() == X86::MONITOR ||
3148 Desc->getOpcode() == X86::MWAIT) {
3149 // Special handling of monitor and mwait.
3150 FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3151 } else {
Evan Cheng099109d2009-05-04 22:49:16 +00003152 ++CurOp;
3153 FinalSize += sizeRegModRMByte();
3154 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003155
3156 if (CurOp != NumOps) {
3157 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3158 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003159 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003160 FinalSize += sizeConstant(Size);
3161 else {
3162 bool dword = false;
3163 if (Opcode == X86::MOV64ri32)
3164 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003165 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003166 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003167 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003168 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003169 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003170 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003171 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003172 FinalSize += sizeJumpTableAddress(dword);
3173 }
3174 }
3175 break;
3176
3177 case X86II::MRM0m: case X86II::MRM1m:
3178 case X86II::MRM2m: case X86II::MRM3m:
3179 case X86II::MRM4m: case X86II::MRM5m:
3180 case X86II::MRM6m: case X86II::MRM7m: {
3181
3182 ++FinalSize;
3183 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003184 CurOp += X86AddrNumOperands;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003185
3186 if (CurOp != NumOps) {
3187 const MachineOperand &MO = MI.getOperand(CurOp++);
3188 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003189 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003190 FinalSize += sizeConstant(Size);
3191 else {
3192 bool dword = false;
3193 if (Opcode == X86::MOV64mi32)
3194 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003195 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003196 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003197 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003198 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003199 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003200 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003201 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003202 FinalSize += sizeJumpTableAddress(dword);
3203 }
3204 }
3205 break;
3206 }
3207
3208 case X86II::MRMInitReg:
3209 ++FinalSize;
3210 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3211 FinalSize += sizeRegModRMByte();
3212 ++CurOp;
3213 break;
3214 }
3215
3216 if (!Desc->isVariadic() && CurOp != NumOps) {
Edwin Török3cb88482009-07-08 18:01:40 +00003217 std::string msg;
3218 raw_string_ostream Msg(msg);
3219 Msg << "Cannot determine size: " << MI;
3220 llvm_report_error(Msg.str());
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003221 }
3222
3223
3224 return FinalSize;
3225}
3226
3227
3228unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3229 const TargetInstrDesc &Desc = MI->getDesc();
Chris Lattner144e3482009-07-10 20:53:38 +00003230 bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003231 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003232 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
Chris Lattner739b0102009-06-25 17:28:07 +00003233 if (Desc.getOpcode() == X86::MOVPC32r)
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003234 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003235 return Size;
3236}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003237
Dan Gohman882ab732008-09-30 00:58:23 +00003238/// getGlobalBaseReg - Return a virtual register initialized with the
3239/// the global base register value. Output instructions required to
3240/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003241///
Dan Gohman882ab732008-09-30 00:58:23 +00003242unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3243 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3244 "X86-64 PIC uses RIP relative addressing");
3245
3246 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3247 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3248 if (GlobalBaseReg != 0)
3249 return GlobalBaseReg;
3250
Dan Gohmanb60482f2008-09-23 18:22:58 +00003251 // Insert the set of GlobalBaseReg into the first MBB of the function
3252 MachineBasicBlock &FirstMBB = MF->front();
3253 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
Bill Wendling13ee2e42009-02-11 21:51:19 +00003254 DebugLoc DL = DebugLoc::getUnknownLoc();
3255 if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
Dan Gohmanb60482f2008-09-23 18:22:58 +00003256 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3257 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3258
3259 const TargetInstrInfo *TII = TM.getInstrInfo();
3260 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3261 // only used in JIT code emission as displacement to pc.
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003262 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
Dan Gohmanb60482f2008-09-23 18:22:58 +00003263
3264 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003265 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
Chris Lattner5d1f2572009-07-09 04:39:06 +00003266 if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003267 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3268 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
Bill Wendling13ee2e42009-02-11 21:51:19 +00003269 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
Daniel Dunbar9f086b92009-09-01 22:06:46 +00003270 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003271 X86II::MO_GOT_ABSOLUTE_ADDRESS);
Dan Gohman882ab732008-09-30 00:58:23 +00003272 } else {
3273 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003274 }
3275
Dan Gohman882ab732008-09-30 00:58:23 +00003276 X86FI->setGlobalBaseReg(GlobalBaseReg);
3277 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003278}