blob: c5a0c8994e45e4230ea24f1d522ce21c63f3454f [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Chris Lattner434136d2009-06-27 04:38:55 +000021#include "llvm/GlobalVariable.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000022#include "llvm/DerivedTypes.h"
Owen Anderson1636de92007-09-07 04:06:50 +000023#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000024#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000025#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000027#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029#include "llvm/Support/CommandLine.h"
Edwin Török3cb88482009-07-08 18:01:40 +000030#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
Evan Cheng950aac02007-09-25 01:57:46 +000032#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000033#include "llvm/Target/TargetAsmInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000034using namespace llvm;
35
Owen Anderson9a184ef2008-01-07 01:35:02 +000036namespace {
37 cl::opt<bool>
38 NoFusing("disable-spill-fusing",
39 cl::desc("Disable fusing of spill code into instructions"));
40 cl::opt<bool>
41 PrintFailedFusing("print-failed-fuse-candidates",
42 cl::desc("Print instructions that the allocator wants to"
43 " fuse, but the X86 backend currently can't"),
44 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000045 cl::opt<bool>
46 ReMatPICStubLoad("remat-pic-stub-load",
47 cl::desc("Re-materialize load from stub in PIC mode"),
48 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000049}
50
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000052 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000054 SmallVector<unsigned,16> AmbEntries;
55 static const unsigned OpTbl2Addr[][2] = {
56 { X86::ADC32ri, X86::ADC32mi },
57 { X86::ADC32ri8, X86::ADC32mi8 },
58 { X86::ADC32rr, X86::ADC32mr },
59 { X86::ADC64ri32, X86::ADC64mi32 },
60 { X86::ADC64ri8, X86::ADC64mi8 },
61 { X86::ADC64rr, X86::ADC64mr },
62 { X86::ADD16ri, X86::ADD16mi },
63 { X86::ADD16ri8, X86::ADD16mi8 },
64 { X86::ADD16rr, X86::ADD16mr },
65 { X86::ADD32ri, X86::ADD32mi },
66 { X86::ADD32ri8, X86::ADD32mi8 },
67 { X86::ADD32rr, X86::ADD32mr },
68 { X86::ADD64ri32, X86::ADD64mi32 },
69 { X86::ADD64ri8, X86::ADD64mi8 },
70 { X86::ADD64rr, X86::ADD64mr },
71 { X86::ADD8ri, X86::ADD8mi },
72 { X86::ADD8rr, X86::ADD8mr },
73 { X86::AND16ri, X86::AND16mi },
74 { X86::AND16ri8, X86::AND16mi8 },
75 { X86::AND16rr, X86::AND16mr },
76 { X86::AND32ri, X86::AND32mi },
77 { X86::AND32ri8, X86::AND32mi8 },
78 { X86::AND32rr, X86::AND32mr },
79 { X86::AND64ri32, X86::AND64mi32 },
80 { X86::AND64ri8, X86::AND64mi8 },
81 { X86::AND64rr, X86::AND64mr },
82 { X86::AND8ri, X86::AND8mi },
83 { X86::AND8rr, X86::AND8mr },
84 { X86::DEC16r, X86::DEC16m },
85 { X86::DEC32r, X86::DEC32m },
86 { X86::DEC64_16r, X86::DEC64_16m },
87 { X86::DEC64_32r, X86::DEC64_32m },
88 { X86::DEC64r, X86::DEC64m },
89 { X86::DEC8r, X86::DEC8m },
90 { X86::INC16r, X86::INC16m },
91 { X86::INC32r, X86::INC32m },
92 { X86::INC64_16r, X86::INC64_16m },
93 { X86::INC64_32r, X86::INC64_32m },
94 { X86::INC64r, X86::INC64m },
95 { X86::INC8r, X86::INC8m },
96 { X86::NEG16r, X86::NEG16m },
97 { X86::NEG32r, X86::NEG32m },
98 { X86::NEG64r, X86::NEG64m },
99 { X86::NEG8r, X86::NEG8m },
100 { X86::NOT16r, X86::NOT16m },
101 { X86::NOT32r, X86::NOT32m },
102 { X86::NOT64r, X86::NOT64m },
103 { X86::NOT8r, X86::NOT8m },
104 { X86::OR16ri, X86::OR16mi },
105 { X86::OR16ri8, X86::OR16mi8 },
106 { X86::OR16rr, X86::OR16mr },
107 { X86::OR32ri, X86::OR32mi },
108 { X86::OR32ri8, X86::OR32mi8 },
109 { X86::OR32rr, X86::OR32mr },
110 { X86::OR64ri32, X86::OR64mi32 },
111 { X86::OR64ri8, X86::OR64mi8 },
112 { X86::OR64rr, X86::OR64mr },
113 { X86::OR8ri, X86::OR8mi },
114 { X86::OR8rr, X86::OR8mr },
115 { X86::ROL16r1, X86::ROL16m1 },
116 { X86::ROL16rCL, X86::ROL16mCL },
117 { X86::ROL16ri, X86::ROL16mi },
118 { X86::ROL32r1, X86::ROL32m1 },
119 { X86::ROL32rCL, X86::ROL32mCL },
120 { X86::ROL32ri, X86::ROL32mi },
121 { X86::ROL64r1, X86::ROL64m1 },
122 { X86::ROL64rCL, X86::ROL64mCL },
123 { X86::ROL64ri, X86::ROL64mi },
124 { X86::ROL8r1, X86::ROL8m1 },
125 { X86::ROL8rCL, X86::ROL8mCL },
126 { X86::ROL8ri, X86::ROL8mi },
127 { X86::ROR16r1, X86::ROR16m1 },
128 { X86::ROR16rCL, X86::ROR16mCL },
129 { X86::ROR16ri, X86::ROR16mi },
130 { X86::ROR32r1, X86::ROR32m1 },
131 { X86::ROR32rCL, X86::ROR32mCL },
132 { X86::ROR32ri, X86::ROR32mi },
133 { X86::ROR64r1, X86::ROR64m1 },
134 { X86::ROR64rCL, X86::ROR64mCL },
135 { X86::ROR64ri, X86::ROR64mi },
136 { X86::ROR8r1, X86::ROR8m1 },
137 { X86::ROR8rCL, X86::ROR8mCL },
138 { X86::ROR8ri, X86::ROR8mi },
139 { X86::SAR16r1, X86::SAR16m1 },
140 { X86::SAR16rCL, X86::SAR16mCL },
141 { X86::SAR16ri, X86::SAR16mi },
142 { X86::SAR32r1, X86::SAR32m1 },
143 { X86::SAR32rCL, X86::SAR32mCL },
144 { X86::SAR32ri, X86::SAR32mi },
145 { X86::SAR64r1, X86::SAR64m1 },
146 { X86::SAR64rCL, X86::SAR64mCL },
147 { X86::SAR64ri, X86::SAR64mi },
148 { X86::SAR8r1, X86::SAR8m1 },
149 { X86::SAR8rCL, X86::SAR8mCL },
150 { X86::SAR8ri, X86::SAR8mi },
151 { X86::SBB32ri, X86::SBB32mi },
152 { X86::SBB32ri8, X86::SBB32mi8 },
153 { X86::SBB32rr, X86::SBB32mr },
154 { X86::SBB64ri32, X86::SBB64mi32 },
155 { X86::SBB64ri8, X86::SBB64mi8 },
156 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL16rCL, X86::SHL16mCL },
158 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL32rCL, X86::SHL32mCL },
160 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000161 { X86::SHL64rCL, X86::SHL64mCL },
162 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000163 { X86::SHL8rCL, X86::SHL8mCL },
164 { X86::SHL8ri, X86::SHL8mi },
165 { X86::SHLD16rrCL, X86::SHLD16mrCL },
166 { X86::SHLD16rri8, X86::SHLD16mri8 },
167 { X86::SHLD32rrCL, X86::SHLD32mrCL },
168 { X86::SHLD32rri8, X86::SHLD32mri8 },
169 { X86::SHLD64rrCL, X86::SHLD64mrCL },
170 { X86::SHLD64rri8, X86::SHLD64mri8 },
171 { X86::SHR16r1, X86::SHR16m1 },
172 { X86::SHR16rCL, X86::SHR16mCL },
173 { X86::SHR16ri, X86::SHR16mi },
174 { X86::SHR32r1, X86::SHR32m1 },
175 { X86::SHR32rCL, X86::SHR32mCL },
176 { X86::SHR32ri, X86::SHR32mi },
177 { X86::SHR64r1, X86::SHR64m1 },
178 { X86::SHR64rCL, X86::SHR64mCL },
179 { X86::SHR64ri, X86::SHR64mi },
180 { X86::SHR8r1, X86::SHR8m1 },
181 { X86::SHR8rCL, X86::SHR8mCL },
182 { X86::SHR8ri, X86::SHR8mi },
183 { X86::SHRD16rrCL, X86::SHRD16mrCL },
184 { X86::SHRD16rri8, X86::SHRD16mri8 },
185 { X86::SHRD32rrCL, X86::SHRD32mrCL },
186 { X86::SHRD32rri8, X86::SHRD32mri8 },
187 { X86::SHRD64rrCL, X86::SHRD64mrCL },
188 { X86::SHRD64rri8, X86::SHRD64mri8 },
189 { X86::SUB16ri, X86::SUB16mi },
190 { X86::SUB16ri8, X86::SUB16mi8 },
191 { X86::SUB16rr, X86::SUB16mr },
192 { X86::SUB32ri, X86::SUB32mi },
193 { X86::SUB32ri8, X86::SUB32mi8 },
194 { X86::SUB32rr, X86::SUB32mr },
195 { X86::SUB64ri32, X86::SUB64mi32 },
196 { X86::SUB64ri8, X86::SUB64mi8 },
197 { X86::SUB64rr, X86::SUB64mr },
198 { X86::SUB8ri, X86::SUB8mi },
199 { X86::SUB8rr, X86::SUB8mr },
200 { X86::XOR16ri, X86::XOR16mi },
201 { X86::XOR16ri8, X86::XOR16mi8 },
202 { X86::XOR16rr, X86::XOR16mr },
203 { X86::XOR32ri, X86::XOR32mi },
204 { X86::XOR32ri8, X86::XOR32mi8 },
205 { X86::XOR32rr, X86::XOR32mr },
206 { X86::XOR64ri32, X86::XOR64mi32 },
207 { X86::XOR64ri8, X86::XOR64mi8 },
208 { X86::XOR64rr, X86::XOR64mr },
209 { X86::XOR8ri, X86::XOR8mi },
210 { X86::XOR8rr, X86::XOR8mr }
211 };
212
213 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
214 unsigned RegOp = OpTbl2Addr[i][0];
215 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000216 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
217 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000218 assert(false && "Duplicated entries?");
219 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
220 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000221 std::make_pair(RegOp,
222 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000223 AmbEntries.push_back(MemOp);
224 }
225
226 // If the third value is 1, then it's folding either a load or a store.
227 static const unsigned OpTbl0[][3] = {
Dan Gohman27a4bc02009-01-15 17:57:09 +0000228 { X86::BT16ri8, X86::BT16mi8, 1 },
229 { X86::BT32ri8, X86::BT32mi8, 1 },
230 { X86::BT64ri8, X86::BT64mi8, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000231 { X86::CALL32r, X86::CALL32m, 1 },
232 { X86::CALL64r, X86::CALL64m, 1 },
233 { X86::CMP16ri, X86::CMP16mi, 1 },
234 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000235 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000236 { X86::CMP32ri, X86::CMP32mi, 1 },
237 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000238 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000239 { X86::CMP64ri32, X86::CMP64mi32, 1 },
240 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000241 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000242 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000243 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000244 { X86::DIV16r, X86::DIV16m, 1 },
245 { X86::DIV32r, X86::DIV32m, 1 },
246 { X86::DIV64r, X86::DIV64m, 1 },
247 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000248 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000249 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
250 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
251 { X86::IDIV16r, X86::IDIV16m, 1 },
252 { X86::IDIV32r, X86::IDIV32m, 1 },
253 { X86::IDIV64r, X86::IDIV64m, 1 },
254 { X86::IDIV8r, X86::IDIV8m, 1 },
255 { X86::IMUL16r, X86::IMUL16m, 1 },
256 { X86::IMUL32r, X86::IMUL32m, 1 },
257 { X86::IMUL64r, X86::IMUL64m, 1 },
258 { X86::IMUL8r, X86::IMUL8m, 1 },
259 { X86::JMP32r, X86::JMP32m, 1 },
260 { X86::JMP64r, X86::JMP64m, 1 },
261 { X86::MOV16ri, X86::MOV16mi, 0 },
262 { X86::MOV16rr, X86::MOV16mr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000263 { X86::MOV32ri, X86::MOV32mi, 0 },
264 { X86::MOV32rr, X86::MOV32mr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000265 { X86::MOV64ri32, X86::MOV64mi32, 0 },
266 { X86::MOV64rr, X86::MOV64mr, 0 },
267 { X86::MOV8ri, X86::MOV8mi, 0 },
268 { X86::MOV8rr, X86::MOV8mr, 0 },
Dan Gohman43f87e72009-04-15 19:48:28 +0000269 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000270 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
271 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000272 { X86::MOVDQArr, X86::MOVDQAmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000273 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
274 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
275 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
276 { X86::MOVSDrr, X86::MOVSDmr, 0 },
277 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
278 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
279 { X86::MOVSSrr, X86::MOVSSmr, 0 },
280 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
281 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
282 { X86::MUL16r, X86::MUL16m, 1 },
283 { X86::MUL32r, X86::MUL32m, 1 },
284 { X86::MUL64r, X86::MUL64m, 1 },
285 { X86::MUL8r, X86::MUL8m, 1 },
286 { X86::SETAEr, X86::SETAEm, 0 },
287 { X86::SETAr, X86::SETAm, 0 },
288 { X86::SETBEr, X86::SETBEm, 0 },
289 { X86::SETBr, X86::SETBm, 0 },
290 { X86::SETEr, X86::SETEm, 0 },
291 { X86::SETGEr, X86::SETGEm, 0 },
292 { X86::SETGr, X86::SETGm, 0 },
293 { X86::SETLEr, X86::SETLEm, 0 },
294 { X86::SETLr, X86::SETLm, 0 },
295 { X86::SETNEr, X86::SETNEm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000296 { X86::SETNOr, X86::SETNOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000297 { X86::SETNPr, X86::SETNPm, 0 },
298 { X86::SETNSr, X86::SETNSm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000299 { X86::SETOr, X86::SETOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000300 { X86::SETPr, X86::SETPm, 0 },
301 { X86::SETSr, X86::SETSm, 0 },
302 { X86::TAILJMPr, X86::TAILJMPm, 1 },
303 { X86::TEST16ri, X86::TEST16mi, 1 },
304 { X86::TEST32ri, X86::TEST32mi, 1 },
305 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000306 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000307 };
308
309 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
310 unsigned RegOp = OpTbl0[i][0];
311 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000312 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
313 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000314 assert(false && "Duplicated entries?");
315 unsigned FoldedLoad = OpTbl0[i][2];
316 // Index 0, folded load or store.
317 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
318 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
319 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000320 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000321 AmbEntries.push_back(MemOp);
322 }
323
324 static const unsigned OpTbl1[][2] = {
325 { X86::CMP16rr, X86::CMP16rm },
326 { X86::CMP32rr, X86::CMP32rm },
327 { X86::CMP64rr, X86::CMP64rm },
328 { X86::CMP8rr, X86::CMP8rm },
329 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
330 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
331 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
332 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
333 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
334 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
335 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
336 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
337 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
338 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
339 { X86::FsMOVAPDrr, X86::MOVSDrm },
340 { X86::FsMOVAPSrr, X86::MOVSSrm },
341 { X86::IMUL16rri, X86::IMUL16rmi },
342 { X86::IMUL16rri8, X86::IMUL16rmi8 },
343 { X86::IMUL32rri, X86::IMUL32rmi },
344 { X86::IMUL32rri8, X86::IMUL32rmi8 },
345 { X86::IMUL64rri32, X86::IMUL64rmi32 },
346 { X86::IMUL64rri8, X86::IMUL64rmi8 },
347 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
348 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
349 { X86::Int_COMISDrr, X86::Int_COMISDrm },
350 { X86::Int_COMISSrr, X86::Int_COMISSrm },
351 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
352 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
353 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
354 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
355 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
356 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
357 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
358 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
359 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
360 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
361 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
362 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
363 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
364 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
365 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
366 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
367 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
368 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
369 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
370 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
371 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
372 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
373 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
374 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
375 { X86::MOV16rr, X86::MOV16rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000376 { X86::MOV32rr, X86::MOV32rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000377 { X86::MOV64rr, X86::MOV64rm },
378 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
379 { X86::MOV64toSDrr, X86::MOV64toSDrm },
380 { X86::MOV8rr, X86::MOV8rm },
381 { X86::MOVAPDrr, X86::MOVAPDrm },
382 { X86::MOVAPSrr, X86::MOVAPSrm },
383 { X86::MOVDDUPrr, X86::MOVDDUPrm },
384 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
385 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000386 { X86::MOVDQArr, X86::MOVDQArm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000387 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
388 { X86::MOVSDrr, X86::MOVSDrm },
389 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
390 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
391 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
392 { X86::MOVSSrr, X86::MOVSSrm },
393 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
394 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
395 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
396 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
397 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
398 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
399 { X86::MOVUPDrr, X86::MOVUPDrm },
400 { X86::MOVUPSrr, X86::MOVUPSrm },
401 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
402 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
403 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
404 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
405 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
Dan Gohman744d4622009-04-13 16:09:41 +0000406 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000407 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
408 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000409 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000410 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
411 { X86::PSHUFDri, X86::PSHUFDmi },
412 { X86::PSHUFHWri, X86::PSHUFHWmi },
413 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000414 { X86::RCPPSr, X86::RCPPSm },
415 { X86::RCPPSr_Int, X86::RCPPSm_Int },
416 { X86::RSQRTPSr, X86::RSQRTPSm },
417 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
418 { X86::RSQRTSSr, X86::RSQRTSSm },
419 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
420 { X86::SQRTPDr, X86::SQRTPDm },
421 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
422 { X86::SQRTPSr, X86::SQRTPSm },
423 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
424 { X86::SQRTSDr, X86::SQRTSDm },
425 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
426 { X86::SQRTSSr, X86::SQRTSSm },
427 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
428 { X86::TEST16rr, X86::TEST16rm },
429 { X86::TEST32rr, X86::TEST32rm },
430 { X86::TEST64rr, X86::TEST64rm },
431 { X86::TEST8rr, X86::TEST8rm },
432 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
433 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000434 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000435 };
436
437 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
438 unsigned RegOp = OpTbl1[i][0];
439 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000440 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
441 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000442 assert(false && "Duplicated entries?");
443 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
444 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
445 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000446 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000447 AmbEntries.push_back(MemOp);
448 }
449
450 static const unsigned OpTbl2[][2] = {
451 { X86::ADC32rr, X86::ADC32rm },
452 { X86::ADC64rr, X86::ADC64rm },
453 { X86::ADD16rr, X86::ADD16rm },
454 { X86::ADD32rr, X86::ADD32rm },
455 { X86::ADD64rr, X86::ADD64rm },
456 { X86::ADD8rr, X86::ADD8rm },
457 { X86::ADDPDrr, X86::ADDPDrm },
458 { X86::ADDPSrr, X86::ADDPSrm },
459 { X86::ADDSDrr, X86::ADDSDrm },
460 { X86::ADDSSrr, X86::ADDSSrm },
461 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
462 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
463 { X86::AND16rr, X86::AND16rm },
464 { X86::AND32rr, X86::AND32rm },
465 { X86::AND64rr, X86::AND64rm },
466 { X86::AND8rr, X86::AND8rm },
467 { X86::ANDNPDrr, X86::ANDNPDrm },
468 { X86::ANDNPSrr, X86::ANDNPSrm },
469 { X86::ANDPDrr, X86::ANDPDrm },
470 { X86::ANDPSrr, X86::ANDPSrm },
471 { X86::CMOVA16rr, X86::CMOVA16rm },
472 { X86::CMOVA32rr, X86::CMOVA32rm },
473 { X86::CMOVA64rr, X86::CMOVA64rm },
474 { X86::CMOVAE16rr, X86::CMOVAE16rm },
475 { X86::CMOVAE32rr, X86::CMOVAE32rm },
476 { X86::CMOVAE64rr, X86::CMOVAE64rm },
477 { X86::CMOVB16rr, X86::CMOVB16rm },
478 { X86::CMOVB32rr, X86::CMOVB32rm },
479 { X86::CMOVB64rr, X86::CMOVB64rm },
480 { X86::CMOVBE16rr, X86::CMOVBE16rm },
481 { X86::CMOVBE32rr, X86::CMOVBE32rm },
482 { X86::CMOVBE64rr, X86::CMOVBE64rm },
483 { X86::CMOVE16rr, X86::CMOVE16rm },
484 { X86::CMOVE32rr, X86::CMOVE32rm },
485 { X86::CMOVE64rr, X86::CMOVE64rm },
486 { X86::CMOVG16rr, X86::CMOVG16rm },
487 { X86::CMOVG32rr, X86::CMOVG32rm },
488 { X86::CMOVG64rr, X86::CMOVG64rm },
489 { X86::CMOVGE16rr, X86::CMOVGE16rm },
490 { X86::CMOVGE32rr, X86::CMOVGE32rm },
491 { X86::CMOVGE64rr, X86::CMOVGE64rm },
492 { X86::CMOVL16rr, X86::CMOVL16rm },
493 { X86::CMOVL32rr, X86::CMOVL32rm },
494 { X86::CMOVL64rr, X86::CMOVL64rm },
495 { X86::CMOVLE16rr, X86::CMOVLE16rm },
496 { X86::CMOVLE32rr, X86::CMOVLE32rm },
497 { X86::CMOVLE64rr, X86::CMOVLE64rm },
498 { X86::CMOVNE16rr, X86::CMOVNE16rm },
499 { X86::CMOVNE32rr, X86::CMOVNE32rm },
500 { X86::CMOVNE64rr, X86::CMOVNE64rm },
Dan Gohmanac441ab2009-01-07 00:44:53 +0000501 { X86::CMOVNO16rr, X86::CMOVNO16rm },
502 { X86::CMOVNO32rr, X86::CMOVNO32rm },
503 { X86::CMOVNO64rr, X86::CMOVNO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000504 { X86::CMOVNP16rr, X86::CMOVNP16rm },
505 { X86::CMOVNP32rr, X86::CMOVNP32rm },
506 { X86::CMOVNP64rr, X86::CMOVNP64rm },
507 { X86::CMOVNS16rr, X86::CMOVNS16rm },
508 { X86::CMOVNS32rr, X86::CMOVNS32rm },
509 { X86::CMOVNS64rr, X86::CMOVNS64rm },
Dan Gohman12fd4d72009-01-07 00:35:10 +0000510 { X86::CMOVO16rr, X86::CMOVO16rm },
511 { X86::CMOVO32rr, X86::CMOVO32rm },
512 { X86::CMOVO64rr, X86::CMOVO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000513 { X86::CMOVP16rr, X86::CMOVP16rm },
514 { X86::CMOVP32rr, X86::CMOVP32rm },
515 { X86::CMOVP64rr, X86::CMOVP64rm },
516 { X86::CMOVS16rr, X86::CMOVS16rm },
517 { X86::CMOVS32rr, X86::CMOVS32rm },
518 { X86::CMOVS64rr, X86::CMOVS64rm },
519 { X86::CMPPDrri, X86::CMPPDrmi },
520 { X86::CMPPSrri, X86::CMPPSrmi },
521 { X86::CMPSDrr, X86::CMPSDrm },
522 { X86::CMPSSrr, X86::CMPSSrm },
523 { X86::DIVPDrr, X86::DIVPDrm },
524 { X86::DIVPSrr, X86::DIVPSrm },
525 { X86::DIVSDrr, X86::DIVSDrm },
526 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000527 { X86::FsANDNPDrr, X86::FsANDNPDrm },
528 { X86::FsANDNPSrr, X86::FsANDNPSrm },
529 { X86::FsANDPDrr, X86::FsANDPDrm },
530 { X86::FsANDPSrr, X86::FsANDPSrm },
531 { X86::FsORPDrr, X86::FsORPDrm },
532 { X86::FsORPSrr, X86::FsORPSrm },
533 { X86::FsXORPDrr, X86::FsXORPDrm },
534 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000535 { X86::HADDPDrr, X86::HADDPDrm },
536 { X86::HADDPSrr, X86::HADDPSrm },
537 { X86::HSUBPDrr, X86::HSUBPDrm },
538 { X86::HSUBPSrr, X86::HSUBPSrm },
539 { X86::IMUL16rr, X86::IMUL16rm },
540 { X86::IMUL32rr, X86::IMUL32rm },
541 { X86::IMUL64rr, X86::IMUL64rm },
542 { X86::MAXPDrr, X86::MAXPDrm },
543 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
544 { X86::MAXPSrr, X86::MAXPSrm },
545 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
546 { X86::MAXSDrr, X86::MAXSDrm },
547 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
548 { X86::MAXSSrr, X86::MAXSSrm },
549 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
550 { X86::MINPDrr, X86::MINPDrm },
551 { X86::MINPDrr_Int, X86::MINPDrm_Int },
552 { X86::MINPSrr, X86::MINPSrm },
553 { X86::MINPSrr_Int, X86::MINPSrm_Int },
554 { X86::MINSDrr, X86::MINSDrm },
555 { X86::MINSDrr_Int, X86::MINSDrm_Int },
556 { X86::MINSSrr, X86::MINSSrm },
557 { X86::MINSSrr_Int, X86::MINSSrm_Int },
558 { X86::MULPDrr, X86::MULPDrm },
559 { X86::MULPSrr, X86::MULPSrm },
560 { X86::MULSDrr, X86::MULSDrm },
561 { X86::MULSSrr, X86::MULSSrm },
562 { X86::OR16rr, X86::OR16rm },
563 { X86::OR32rr, X86::OR32rm },
564 { X86::OR64rr, X86::OR64rm },
565 { X86::OR8rr, X86::OR8rm },
566 { X86::ORPDrr, X86::ORPDrm },
567 { X86::ORPSrr, X86::ORPSrm },
568 { X86::PACKSSDWrr, X86::PACKSSDWrm },
569 { X86::PACKSSWBrr, X86::PACKSSWBrm },
570 { X86::PACKUSWBrr, X86::PACKUSWBrm },
571 { X86::PADDBrr, X86::PADDBrm },
572 { X86::PADDDrr, X86::PADDDrm },
573 { X86::PADDQrr, X86::PADDQrm },
574 { X86::PADDSBrr, X86::PADDSBrm },
575 { X86::PADDSWrr, X86::PADDSWrm },
576 { X86::PADDWrr, X86::PADDWrm },
577 { X86::PANDNrr, X86::PANDNrm },
578 { X86::PANDrr, X86::PANDrm },
579 { X86::PAVGBrr, X86::PAVGBrm },
580 { X86::PAVGWrr, X86::PAVGWrm },
581 { X86::PCMPEQBrr, X86::PCMPEQBrm },
582 { X86::PCMPEQDrr, X86::PCMPEQDrm },
583 { X86::PCMPEQWrr, X86::PCMPEQWrm },
584 { X86::PCMPGTBrr, X86::PCMPGTBrm },
585 { X86::PCMPGTDrr, X86::PCMPGTDrm },
586 { X86::PCMPGTWrr, X86::PCMPGTWrm },
587 { X86::PINSRWrri, X86::PINSRWrmi },
588 { X86::PMADDWDrr, X86::PMADDWDrm },
589 { X86::PMAXSWrr, X86::PMAXSWrm },
590 { X86::PMAXUBrr, X86::PMAXUBrm },
591 { X86::PMINSWrr, X86::PMINSWrm },
592 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000593 { X86::PMULDQrr, X86::PMULDQrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000594 { X86::PMULHUWrr, X86::PMULHUWrm },
595 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000596 { X86::PMULLDrr, X86::PMULLDrm },
597 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000598 { X86::PMULLWrr, X86::PMULLWrm },
599 { X86::PMULUDQrr, X86::PMULUDQrm },
600 { X86::PORrr, X86::PORrm },
601 { X86::PSADBWrr, X86::PSADBWrm },
602 { X86::PSLLDrr, X86::PSLLDrm },
603 { X86::PSLLQrr, X86::PSLLQrm },
604 { X86::PSLLWrr, X86::PSLLWrm },
605 { X86::PSRADrr, X86::PSRADrm },
606 { X86::PSRAWrr, X86::PSRAWrm },
607 { X86::PSRLDrr, X86::PSRLDrm },
608 { X86::PSRLQrr, X86::PSRLQrm },
609 { X86::PSRLWrr, X86::PSRLWrm },
610 { X86::PSUBBrr, X86::PSUBBrm },
611 { X86::PSUBDrr, X86::PSUBDrm },
612 { X86::PSUBSBrr, X86::PSUBSBrm },
613 { X86::PSUBSWrr, X86::PSUBSWrm },
614 { X86::PSUBWrr, X86::PSUBWrm },
615 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
616 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
617 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
618 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
619 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
620 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
621 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
622 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
623 { X86::PXORrr, X86::PXORrm },
624 { X86::SBB32rr, X86::SBB32rm },
625 { X86::SBB64rr, X86::SBB64rm },
626 { X86::SHUFPDrri, X86::SHUFPDrmi },
627 { X86::SHUFPSrri, X86::SHUFPSrmi },
628 { X86::SUB16rr, X86::SUB16rm },
629 { X86::SUB32rr, X86::SUB32rm },
630 { X86::SUB64rr, X86::SUB64rm },
631 { X86::SUB8rr, X86::SUB8rm },
632 { X86::SUBPDrr, X86::SUBPDrm },
633 { X86::SUBPSrr, X86::SUBPSrm },
634 { X86::SUBSDrr, X86::SUBSDrm },
635 { X86::SUBSSrr, X86::SUBSSrm },
636 // FIXME: TEST*rr -> swapped operand of TEST*mr.
637 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
638 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
639 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
640 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
641 { X86::XOR16rr, X86::XOR16rm },
642 { X86::XOR32rr, X86::XOR32rm },
643 { X86::XOR64rr, X86::XOR64rm },
644 { X86::XOR8rr, X86::XOR8rm },
645 { X86::XORPDrr, X86::XORPDrm },
646 { X86::XORPSrr, X86::XORPSrm }
647 };
648
649 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
650 unsigned RegOp = OpTbl2[i][0];
651 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000652 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
653 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000654 assert(false && "Duplicated entries?");
Dan Gohman590c05b2009-03-04 19:24:25 +0000655 unsigned AuxInfo = 2 | (1 << 4); // Index 2, folded load
Owen Anderson9a184ef2008-01-07 01:35:02 +0000656 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000657 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000658 AmbEntries.push_back(MemOp);
659 }
660
661 // Remove ambiguous entries.
662 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000663}
664
665bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
Evan Chengf97496a2009-01-20 19:12:24 +0000666 unsigned &SrcReg, unsigned &DstReg,
667 unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000668 switch (MI.getOpcode()) {
669 default:
670 return false;
671 case X86::MOV8rr:
Bill Wendling2d1c8222009-04-17 22:40:38 +0000672 case X86::MOV8rr_NOREX:
Chris Lattnerff195282008-03-11 19:28:17 +0000673 case X86::MOV16rr:
674 case X86::MOV32rr:
675 case X86::MOV64rr:
Chris Lattnerff195282008-03-11 19:28:17 +0000676 case X86::MOVSSrr:
677 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000678
679 // FP Stack register class copies
680 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
681 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
682 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
683
Chris Lattnerff195282008-03-11 19:28:17 +0000684 case X86::FsMOVAPSrr:
685 case X86::FsMOVAPDrr:
686 case X86::MOVAPSrr:
687 case X86::MOVAPDrr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000688 case X86::MOVDQArr:
Chris Lattnerff195282008-03-11 19:28:17 +0000689 case X86::MOVSS2PSrr:
690 case X86::MOVSD2PDrr:
691 case X86::MOVPS2SSrr:
692 case X86::MOVPD2SDrr:
Chris Lattnerff195282008-03-11 19:28:17 +0000693 case X86::MMX_MOVQ64rr:
694 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000695 MI.getOperand(0).isReg() &&
696 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000697 "invalid register-register move instruction");
Evan Chengf97496a2009-01-20 19:12:24 +0000698 SrcReg = MI.getOperand(1).getReg();
699 DstReg = MI.getOperand(0).getReg();
700 SrcSubIdx = MI.getOperand(1).getSubReg();
701 DstSubIdx = MI.getOperand(0).getSubReg();
Chris Lattnerff195282008-03-11 19:28:17 +0000702 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000703 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704}
705
Dan Gohman90feee22008-11-18 19:49:32 +0000706unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 int &FrameIndex) const {
708 switch (MI->getOpcode()) {
709 default: break;
710 case X86::MOV8rm:
711 case X86::MOV16rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000712 case X86::MOV32rm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000713 case X86::MOV64rm:
714 case X86::LD_Fp64m:
715 case X86::MOVSSrm:
716 case X86::MOVSDrm:
717 case X86::MOVAPSrm:
718 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000719 case X86::MOVDQArm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 case X86::MMX_MOVD64rm:
721 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000722 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
723 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000724 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000725 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000726 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000727 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000728 return MI->getOperand(0).getReg();
729 }
730 break;
731 }
732 return 0;
733}
734
Dan Gohman90feee22008-11-18 19:49:32 +0000735unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000736 int &FrameIndex) const {
737 switch (MI->getOpcode()) {
738 default: break;
739 case X86::MOV8mr:
740 case X86::MOV16mr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000741 case X86::MOV32mr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 case X86::MOV64mr:
743 case X86::ST_FpP64m:
744 case X86::MOVSSmr:
745 case X86::MOVSDmr:
746 case X86::MOVAPSmr:
747 case X86::MOVAPDmr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000748 case X86::MOVDQAmr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000749 case X86::MMX_MOVD64mr:
750 case X86::MMX_MOVQ64mr:
751 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000752 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
753 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000754 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000756 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000757 FrameIndex = MI->getOperand(0).getIndex();
Rafael Espindola7f69c042009-03-28 17:03:24 +0000758 return MI->getOperand(X86AddrNumOperands).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000759 }
760 break;
761 }
762 return 0;
763}
764
Evan Chengb819a512008-03-27 01:45:11 +0000765/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
766/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000767static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000768 bool isPICBase = false;
769 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
770 E = MRI.def_end(); I != E; ++I) {
771 MachineInstr *DefMI = I.getOperand().getParent();
772 if (DefMI->getOpcode() != X86::MOVPC32r)
773 return false;
774 assert(!isPICBase && "More than one PIC base?");
775 isPICBase = true;
776 }
777 return isPICBase;
778}
Evan Chenge9caab52008-03-31 07:54:19 +0000779
Chris Lattner434136d2009-06-27 04:38:55 +0000780/// CanRematLoadWithDispOperand - Return true if a load with the specified
781/// operand is a candidate for remat: for this to be true we need to know that
782/// the load will always return the same value, even if moved.
783static bool CanRematLoadWithDispOperand(const MachineOperand &MO,
784 X86TargetMachine &TM) {
785 // Loads from constant pool entries can be remat'd.
786 if (MO.isCPI()) return true;
787
788 // We can remat globals in some cases.
789 if (MO.isGlobal()) {
790 // If this is a load of a stub, not of the global, we can remat it. This
791 // access will always return the address of the global.
Chris Lattner6d62ab92009-07-10 06:29:59 +0000792 if (isGlobalStubReference(MO.getTargetFlags()))
Chris Lattner434136d2009-06-27 04:38:55 +0000793 return true;
794
795 // If the global itself is constant, we can remat the load.
796 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal()))
797 if (GV->isConstant())
798 return true;
799 }
800 return false;
801}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000802
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000803bool
804X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000805 switch (MI->getOpcode()) {
806 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000807 case X86::MOV8rm:
808 case X86::MOV16rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000809 case X86::MOV32rm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000810 case X86::MOV64rm:
811 case X86::LD_Fp64m:
812 case X86::MOVSSrm:
813 case X86::MOVSDrm:
814 case X86::MOVAPSrm:
815 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000816 case X86::MOVDQArm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000817 case X86::MMX_MOVD64rm:
818 case X86::MMX_MOVQ64rm: {
819 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000820 if (MI->getOperand(1).isReg() &&
821 MI->getOperand(2).isImm() &&
822 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Chris Lattner434136d2009-06-27 04:38:55 +0000823 CanRematLoadWithDispOperand(MI->getOperand(4), TM)) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000824 unsigned BaseReg = MI->getOperand(1).getReg();
Chris Lattnerdc6fc472009-06-27 04:16:01 +0000825 if (BaseReg == 0 || BaseReg == X86::RIP)
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000826 return true;
827 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000828 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000829 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000830 const MachineFunction &MF = *MI->getParent()->getParent();
831 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000832 bool isPICBase = false;
833 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
834 E = MRI.def_end(); I != E; ++I) {
835 MachineInstr *DefMI = I.getOperand().getParent();
836 if (DefMI->getOpcode() != X86::MOVPC32r)
837 return false;
838 assert(!isPICBase && "More than one PIC base?");
839 isPICBase = true;
840 }
841 return isPICBase;
842 }
843 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000844 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000845
846 case X86::LEA32r:
847 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000848 if (MI->getOperand(2).isImm() &&
849 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
850 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000851 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000852 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000853 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000854 unsigned BaseReg = MI->getOperand(1).getReg();
855 if (BaseReg == 0)
856 return true;
857 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000858 const MachineFunction &MF = *MI->getParent()->getParent();
859 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000860 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000861 }
862 return false;
863 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000864 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000865
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000866 // All other instructions marked M_REMATERIALIZABLE are always trivially
867 // rematerializable.
868 return true;
869}
870
Evan Chengc564ded2008-06-24 07:10:51 +0000871/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
872/// would clobber the EFLAGS condition register. Note the result may be
873/// conservative. If it cannot definitely determine the safety after visiting
874/// two instructions it assumes it's not safe.
875static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
876 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000877 // It's always safe to clobber EFLAGS at the end of a block.
878 if (I == MBB.end())
879 return true;
880
Evan Chengc564ded2008-06-24 07:10:51 +0000881 // For compile time consideration, if we are not able to determine the
882 // safety after visiting 2 instructions, we will assume it's not safe.
883 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000884 bool SeenDef = false;
885 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
886 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000887 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000888 continue;
889 if (MO.getReg() == X86::EFLAGS) {
890 if (MO.isUse())
891 return false;
892 SeenDef = true;
893 }
894 }
895
896 if (SeenDef)
897 // This instruction defines EFLAGS, no need to look any further.
898 return true;
899 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000900
901 // If we make it to the end of the block, it's safe to clobber EFLAGS.
902 if (I == MBB.end())
903 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000904 }
905
906 // Conservative answer.
907 return false;
908}
909
Evan Cheng7d73efc2008-03-31 20:40:39 +0000910void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
911 MachineBasicBlock::iterator I,
912 unsigned DestReg,
913 const MachineInstr *Orig) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +0000914 DebugLoc DL = DebugLoc::getUnknownLoc();
915 if (I != MBB.end()) DL = I->getDebugLoc();
916
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000917 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000918 ? Orig->getOperand(0).getSubReg() : 0;
919 bool ChangeSubIdx = SubIdx != 0;
920 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
921 DestReg = RI.getSubReg(DestReg, SubIdx);
922 SubIdx = 0;
923 }
924
Evan Cheng7d73efc2008-03-31 20:40:39 +0000925 // MOV32r0 etc. are implemented with xor which clobbers condition code.
926 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000927 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000928 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000929 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000930 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000931 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000932 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000933 case X86::MOV64r0: {
934 if (!isSafeToClobberEFLAGS(MBB, I)) {
935 unsigned Opc = 0;
936 switch (Orig->getOpcode()) {
937 default: break;
938 case X86::MOV8r0: Opc = X86::MOV8ri; break;
939 case X86::MOV16r0: Opc = X86::MOV16ri; break;
940 case X86::MOV32r0: Opc = X86::MOV32ri; break;
941 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
942 }
Bill Wendling13ee2e42009-02-11 21:51:19 +0000943 BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
Evan Chengc564ded2008-06-24 07:10:51 +0000944 Emitted = true;
945 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000946 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000947 }
948 }
949
950 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000951 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000952 MI->getOperand(0).setReg(DestReg);
953 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000954 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000955
956 if (ChangeSubIdx) {
957 MachineInstr *NewMI = prior(I);
958 NewMI->getOperand(0).setSubReg(SubIdx);
959 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000960}
961
Chris Lattnerea3a1812008-01-10 23:08:24 +0000962/// isInvariantLoad - Return true if the specified instruction (which is marked
963/// mayLoad) is loading from a location whose value is invariant across the
964/// function. For example, loading a value from the constant pool or from
965/// from the argument area of a function if it does not change. This should
966/// only return true of *all* loads the instruction does are invariant (if it
967/// does multiple loads).
Dan Gohman90feee22008-11-18 19:49:32 +0000968bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000969 // This code cares about loads from three cases: constant pool entries,
970 // invariant argument slots, and global stubs. In order to handle these cases
971 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000972 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000973 // none of these three cases is ever used as anything other than a load base
974 // and X86 doesn't have any instructions that load from multiple places.
975
976 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
977 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000978 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000979 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000980 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000981
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000982 if (MO.isGlobal())
Chris Lattner6d62ab92009-07-10 06:29:59 +0000983 return isGlobalStubReference(MO.getTargetFlags());
Chris Lattner0875b572008-01-12 00:35:08 +0000984
985 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000986 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000987 const MachineFrameInfo &MFI =
988 *MI->getParent()->getParent()->getFrameInfo();
989 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000990 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
991 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000992 }
Chris Lattner0875b572008-01-12 00:35:08 +0000993
Chris Lattnerea3a1812008-01-10 23:08:24 +0000994 // All other instances of these instructions are presumed to have other
995 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000996 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000997}
998
Evan Chengfa1a4952007-10-05 08:04:01 +0000999/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1000/// is not marked dead.
1001static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +00001002 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1003 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001004 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +00001005 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1006 return true;
1007 }
1008 }
1009 return false;
1010}
1011
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001012/// convertToThreeAddress - This method must be implemented by targets that
1013/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1014/// may be able to convert a two-address instruction into a true
1015/// three-address instruction on demand. This allows the X86 target (for
1016/// example) to convert ADD and SHL instructions into LEA instructions if they
1017/// would require register copies due to two-addressness.
1018///
1019/// This method returns a null pointer if the transformation cannot be
1020/// performed, otherwise it returns the new instruction.
1021///
1022MachineInstr *
1023X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1024 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +00001025 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001026 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +00001027 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 // All instructions input are two-addr instructions. Get the known operands.
1029 unsigned Dest = MI->getOperand(0).getReg();
1030 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001031 bool isDead = MI->getOperand(0).isDead();
1032 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001033
1034 MachineInstr *NewMI = NULL;
1035 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1036 // we have better subtarget support, enable the 16-bit LEA generation here.
1037 bool DisableLEA16 = true;
1038
Evan Cheng6b96ed32007-10-05 20:34:26 +00001039 unsigned MIOpc = MI->getOpcode();
1040 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 case X86::SHUFPSrri: {
1042 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1043 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1044
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001045 unsigned B = MI->getOperand(1).getReg();
1046 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001048 unsigned A = MI->getOperand(0).getReg();
1049 unsigned M = MI->getOperand(3).getImm();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001050 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
Bill Wendling2b739762009-05-13 21:33:08 +00001051 .addReg(A, RegState::Define | getDeadRegState(isDead))
1052 .addReg(B, getKillRegState(isKill)).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 break;
1054 }
1055 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001056 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001057 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1058 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001059 unsigned ShAmt = MI->getOperand(2).getImm();
1060 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001061
Bill Wendling13ee2e42009-02-11 21:51:19 +00001062 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling2b739762009-05-13 21:33:08 +00001063 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1064 .addReg(0).addImm(1 << ShAmt)
1065 .addReg(Src, getKillRegState(isKill))
1066 .addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001067 break;
1068 }
1069 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001070 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001071 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1072 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001073 unsigned ShAmt = MI->getOperand(2).getImm();
1074 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001075
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001076 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1077 X86::LEA64_32r : X86::LEA32r;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001078 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001079 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Chenge52c1912008-07-03 09:09:37 +00001080 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001081 .addReg(Src, getKillRegState(isKill)).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001082 break;
1083 }
1084 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001085 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001086 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1087 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001088 unsigned ShAmt = MI->getOperand(2).getImm();
1089 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001090
Christopher Lamb380c6272007-08-10 21:18:25 +00001091 if (DisableLEA16) {
1092 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001093 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001094 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1095 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001096 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1097 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001098
Christopher Lamb8d226a22008-03-11 10:27:36 +00001099 // Build and insert into an implicit UNDEF value. This is OK because
1100 // well be shifting and then extracting the lower 16-bits.
Bill Wendling13ee2e42009-02-11 21:51:19 +00001101 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1102 MachineInstr *InsMI =
1103 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
Bill Wendling2b739762009-05-13 21:33:08 +00001104 .addReg(leaInReg)
1105 .addReg(Src, getKillRegState(isKill))
Evan Chenge52c1912008-07-03 09:09:37 +00001106 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001107
Bill Wendling13ee2e42009-02-11 21:51:19 +00001108 NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1109 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001110 .addReg(leaInReg, RegState::Kill)
1111 .addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001112
Bill Wendling13ee2e42009-02-11 21:51:19 +00001113 MachineInstr *ExtMI =
1114 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
Bill Wendling2b739762009-05-13 21:33:08 +00001115 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1116 .addReg(leaOutReg, RegState::Kill)
1117 .addImm(X86::SUBREG_16BIT);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001118
Owen Andersonc6959722008-07-02 23:41:07 +00001119 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001120 // Update live variables
1121 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1122 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1123 if (isKill)
1124 LV->replaceKillInstruction(Src, MI, InsMI);
1125 if (isDead)
1126 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001127 }
Evan Chenge52c1912008-07-03 09:09:37 +00001128 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001129 } else {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001130 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001131 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Chenge52c1912008-07-03 09:09:37 +00001132 .addReg(0).addImm(1 << ShAmt)
Bill Wendling2b739762009-05-13 21:33:08 +00001133 .addReg(Src, getKillRegState(isKill))
1134 .addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001135 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001136 break;
1137 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001138 default: {
1139 // The following opcodes also sets the condition code register(s). Only
1140 // convert them to equivalent lea if the condition code register def's
1141 // are dead!
1142 if (hasLiveCondCodeDef(MI))
1143 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001144
Evan Chenga28a9562007-10-09 07:14:53 +00001145 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001146 switch (MIOpc) {
1147 default: return 0;
1148 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001149 case X86::INC32r:
1150 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001151 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001152 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1153 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001154 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001155 .addReg(Dest, RegState::Define |
1156 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001157 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001158 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001159 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001160 case X86::INC16r:
1161 case X86::INC64_16r:
1162 if (DisableLEA16) return 0;
1163 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001164 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001165 .addReg(Dest, RegState::Define |
1166 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001167 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001168 break;
1169 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001170 case X86::DEC32r:
1171 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001172 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001173 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1174 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Rafael Espindolabca99f72009-04-08 21:14:34 +00001175 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001176 .addReg(Dest, RegState::Define |
1177 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001178 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001179 break;
1180 }
1181 case X86::DEC16r:
1182 case X86::DEC64_16r:
1183 if (DisableLEA16) return 0;
1184 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001185 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001186 .addReg(Dest, RegState::Define |
1187 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001188 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001189 break;
1190 case X86::ADD64rr:
1191 case X86::ADD32rr: {
1192 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001193 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1194 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001195 unsigned Src2 = MI->getOperand(2).getReg();
1196 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001197 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001198 .addReg(Dest, RegState::Define |
1199 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001200 Src, isKill, Src2, isKill2);
1201 if (LV && isKill2)
1202 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001203 break;
1204 }
Evan Chenge52c1912008-07-03 09:09:37 +00001205 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001206 if (DisableLEA16) return 0;
1207 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001208 unsigned Src2 = MI->getOperand(2).getReg();
1209 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001210 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001211 .addReg(Dest, RegState::Define |
1212 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001213 Src, isKill, Src2, isKill2);
1214 if (LV && isKill2)
1215 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001216 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001217 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001218 case X86::ADD64ri32:
1219 case X86::ADD64ri8:
1220 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001221 if (MI->getOperand(2).isImm())
Rafael Espindolabca99f72009-04-08 21:14:34 +00001222 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling2b739762009-05-13 21:33:08 +00001223 .addReg(Dest, RegState::Define |
1224 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001225 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001226 break;
1227 case X86::ADD32ri:
1228 case X86::ADD32ri8:
1229 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001230 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001231 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Rafael Espindolabca99f72009-04-08 21:14:34 +00001232 NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001233 .addReg(Dest, RegState::Define |
1234 getDeadRegState(isDead)),
Rafael Espindolabca99f72009-04-08 21:14:34 +00001235 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001236 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001237 break;
1238 case X86::ADD16ri:
1239 case X86::ADD16ri8:
1240 if (DisableLEA16) return 0;
1241 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001242 if (MI->getOperand(2).isImm())
Bill Wendling13ee2e42009-02-11 21:51:19 +00001243 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling2b739762009-05-13 21:33:08 +00001244 .addReg(Dest, RegState::Define |
1245 getDeadRegState(isDead)),
Evan Chenge52c1912008-07-03 09:09:37 +00001246 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001247 break;
1248 case X86::SHL16ri:
1249 if (DisableLEA16) return 0;
1250 case X86::SHL32ri:
1251 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001252 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001253 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001254 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001255 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1256 X86AddressMode AM;
1257 AM.Scale = 1 << ShAmt;
1258 AM.IndexReg = Src;
1259 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001260 : (MIOpc == X86::SHL32ri
1261 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001262 NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling2b739762009-05-13 21:33:08 +00001263 .addReg(Dest, RegState::Define |
1264 getDeadRegState(isDead)), AM);
Evan Chenge52c1912008-07-03 09:09:37 +00001265 if (isKill)
1266 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001267 }
1268 break;
1269 }
1270 }
1271 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001272 }
1273
Evan Chengc3cb24d2008-02-07 08:29:53 +00001274 if (!NewMI) return 0;
1275
Evan Chenge52c1912008-07-03 09:09:37 +00001276 if (LV) { // Update live variables
1277 if (isKill)
1278 LV->replaceKillInstruction(Src, MI, NewMI);
1279 if (isDead)
1280 LV->replaceKillInstruction(Dest, MI, NewMI);
1281 }
1282
Evan Cheng6b96ed32007-10-05 20:34:26 +00001283 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001284 return NewMI;
1285}
1286
1287/// commuteInstruction - We have a few instructions that must be hacked on to
1288/// commute them.
1289///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001290MachineInstr *
1291X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001292 switch (MI->getOpcode()) {
1293 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1294 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1295 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001296 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1297 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1298 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001299 unsigned Opc;
1300 unsigned Size;
1301 switch (MI->getOpcode()) {
1302 default: assert(0 && "Unreachable!");
1303 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1304 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1305 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1306 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001307 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1308 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001309 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001310 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001311 if (NewMI) {
1312 MachineFunction &MF = *MI->getParent()->getParent();
1313 MI = MF.CloneMachineInstr(MI);
1314 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001315 }
Dan Gohman921581d2008-10-17 01:23:35 +00001316 MI->setDesc(get(Opc));
1317 MI->getOperand(3).setImm(Size-Amt);
1318 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001319 }
Evan Cheng926658c2007-10-05 23:13:21 +00001320 case X86::CMOVB16rr:
1321 case X86::CMOVB32rr:
1322 case X86::CMOVB64rr:
1323 case X86::CMOVAE16rr:
1324 case X86::CMOVAE32rr:
1325 case X86::CMOVAE64rr:
1326 case X86::CMOVE16rr:
1327 case X86::CMOVE32rr:
1328 case X86::CMOVE64rr:
1329 case X86::CMOVNE16rr:
1330 case X86::CMOVNE32rr:
1331 case X86::CMOVNE64rr:
1332 case X86::CMOVBE16rr:
1333 case X86::CMOVBE32rr:
1334 case X86::CMOVBE64rr:
1335 case X86::CMOVA16rr:
1336 case X86::CMOVA32rr:
1337 case X86::CMOVA64rr:
1338 case X86::CMOVL16rr:
1339 case X86::CMOVL32rr:
1340 case X86::CMOVL64rr:
1341 case X86::CMOVGE16rr:
1342 case X86::CMOVGE32rr:
1343 case X86::CMOVGE64rr:
1344 case X86::CMOVLE16rr:
1345 case X86::CMOVLE32rr:
1346 case X86::CMOVLE64rr:
1347 case X86::CMOVG16rr:
1348 case X86::CMOVG32rr:
1349 case X86::CMOVG64rr:
1350 case X86::CMOVS16rr:
1351 case X86::CMOVS32rr:
1352 case X86::CMOVS64rr:
1353 case X86::CMOVNS16rr:
1354 case X86::CMOVNS32rr:
1355 case X86::CMOVNS64rr:
1356 case X86::CMOVP16rr:
1357 case X86::CMOVP32rr:
1358 case X86::CMOVP64rr:
1359 case X86::CMOVNP16rr:
1360 case X86::CMOVNP32rr:
Dan Gohman12fd4d72009-01-07 00:35:10 +00001361 case X86::CMOVNP64rr:
1362 case X86::CMOVO16rr:
1363 case X86::CMOVO32rr:
1364 case X86::CMOVO64rr:
1365 case X86::CMOVNO16rr:
1366 case X86::CMOVNO32rr:
1367 case X86::CMOVNO64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001368 unsigned Opc = 0;
1369 switch (MI->getOpcode()) {
1370 default: break;
1371 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1372 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1373 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1374 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1375 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1376 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1377 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1378 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1379 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1380 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1381 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1382 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1383 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1384 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1385 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1386 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1387 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1388 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1389 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1390 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1391 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1392 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1393 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1394 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1395 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1396 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1397 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1398 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1399 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1400 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1401 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1402 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001403 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001404 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1405 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1406 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1407 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1408 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001409 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001410 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1411 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1412 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001413 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1414 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wangb866cc82009-04-18 05:16:01 +00001415 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001416 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1417 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1418 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001419 }
Dan Gohman921581d2008-10-17 01:23:35 +00001420 if (NewMI) {
1421 MachineFunction &MF = *MI->getParent()->getParent();
1422 MI = MF.CloneMachineInstr(MI);
1423 NewMI = false;
1424 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001425 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001426 // Fallthrough intended.
1427 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001428 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001429 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001430 }
1431}
1432
Evan Cheng40c3e212009-07-10 19:26:57 +00001433/// findCommutedOpIndices - If specified MI is commutable, return the two
1434/// operand indices that would swap value. Return true if the instruction
1435/// is not in a form which this routine understands.
1436bool X86InstrInfo::findCommutedOpIndices(MachineInstr *MI,
1437 unsigned &SrcOpIdx1,
1438 unsigned &SrcOpIdx2) const {
1439 switch (MI->getOpcode()) {
1440 case X86::CMOVB16rr:
1441 case X86::CMOVB32rr:
1442 case X86::CMOVB64rr:
1443 case X86::CMOVAE16rr:
1444 case X86::CMOVAE32rr:
1445 case X86::CMOVAE64rr:
1446 case X86::CMOVE16rr:
1447 case X86::CMOVE32rr:
1448 case X86::CMOVE64rr:
1449 case X86::CMOVNE16rr:
1450 case X86::CMOVNE32rr:
1451 case X86::CMOVNE64rr:
1452 case X86::CMOVBE16rr:
1453 case X86::CMOVBE32rr:
1454 case X86::CMOVBE64rr:
1455 case X86::CMOVA16rr:
1456 case X86::CMOVA32rr:
1457 case X86::CMOVA64rr:
1458 case X86::CMOVL16rr:
1459 case X86::CMOVL32rr:
1460 case X86::CMOVL64rr:
1461 case X86::CMOVGE16rr:
1462 case X86::CMOVGE32rr:
1463 case X86::CMOVGE64rr:
1464 case X86::CMOVLE16rr:
1465 case X86::CMOVLE32rr:
1466 case X86::CMOVLE64rr:
1467 case X86::CMOVG16rr:
1468 case X86::CMOVG32rr:
1469 case X86::CMOVG64rr:
1470 case X86::CMOVS16rr:
1471 case X86::CMOVS32rr:
1472 case X86::CMOVS64rr:
1473 case X86::CMOVNS16rr:
1474 case X86::CMOVNS32rr:
1475 case X86::CMOVNS64rr:
1476 case X86::CMOVP16rr:
1477 case X86::CMOVP32rr:
1478 case X86::CMOVP64rr:
1479 case X86::CMOVNP16rr:
1480 case X86::CMOVNP32rr:
1481 case X86::CMOVNP64rr:
1482 case X86::CMOVO16rr:
1483 case X86::CMOVO32rr:
1484 case X86::CMOVO64rr:
1485 case X86::CMOVNO16rr:
1486 case X86::CMOVNO32rr:
1487 case X86::CMOVNO64rr:
1488 return false;
1489 default:
1490 return TargetInstrInfoImpl::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1491 }
1492}
1493
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1495 switch (BrOpc) {
1496 default: return X86::COND_INVALID;
1497 case X86::JE: return X86::COND_E;
1498 case X86::JNE: return X86::COND_NE;
1499 case X86::JL: return X86::COND_L;
1500 case X86::JLE: return X86::COND_LE;
1501 case X86::JG: return X86::COND_G;
1502 case X86::JGE: return X86::COND_GE;
1503 case X86::JB: return X86::COND_B;
1504 case X86::JBE: return X86::COND_BE;
1505 case X86::JA: return X86::COND_A;
1506 case X86::JAE: return X86::COND_AE;
1507 case X86::JS: return X86::COND_S;
1508 case X86::JNS: return X86::COND_NS;
1509 case X86::JP: return X86::COND_P;
1510 case X86::JNP: return X86::COND_NP;
1511 case X86::JO: return X86::COND_O;
1512 case X86::JNO: return X86::COND_NO;
1513 }
1514}
1515
1516unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1517 switch (CC) {
1518 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001519 case X86::COND_E: return X86::JE;
1520 case X86::COND_NE: return X86::JNE;
1521 case X86::COND_L: return X86::JL;
1522 case X86::COND_LE: return X86::JLE;
1523 case X86::COND_G: return X86::JG;
1524 case X86::COND_GE: return X86::JGE;
1525 case X86::COND_B: return X86::JB;
1526 case X86::COND_BE: return X86::JBE;
1527 case X86::COND_A: return X86::JA;
1528 case X86::COND_AE: return X86::JAE;
1529 case X86::COND_S: return X86::JS;
1530 case X86::COND_NS: return X86::JNS;
1531 case X86::COND_P: return X86::JP;
1532 case X86::COND_NP: return X86::JNP;
1533 case X86::COND_O: return X86::JO;
1534 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001535 }
1536}
1537
1538/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1539/// e.g. turning COND_E to COND_NE.
1540X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1541 switch (CC) {
1542 default: assert(0 && "Illegal condition code!");
1543 case X86::COND_E: return X86::COND_NE;
1544 case X86::COND_NE: return X86::COND_E;
1545 case X86::COND_L: return X86::COND_GE;
1546 case X86::COND_LE: return X86::COND_G;
1547 case X86::COND_G: return X86::COND_LE;
1548 case X86::COND_GE: return X86::COND_L;
1549 case X86::COND_B: return X86::COND_AE;
1550 case X86::COND_BE: return X86::COND_A;
1551 case X86::COND_A: return X86::COND_BE;
1552 case X86::COND_AE: return X86::COND_B;
1553 case X86::COND_S: return X86::COND_NS;
1554 case X86::COND_NS: return X86::COND_S;
1555 case X86::COND_P: return X86::COND_NP;
1556 case X86::COND_NP: return X86::COND_P;
1557 case X86::COND_O: return X86::COND_NO;
1558 case X86::COND_NO: return X86::COND_O;
1559 }
1560}
1561
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001562bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001563 const TargetInstrDesc &TID = MI->getDesc();
1564 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001565
1566 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001567 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001568 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001569 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001570 return true;
1571 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001572}
1573
Evan Cheng12515792007-07-26 17:32:14 +00001574// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1575static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1576 const X86InstrInfo &TII) {
1577 if (MI->getOpcode() == X86::FP_REG_KILL)
1578 return false;
1579 return TII.isUnpredicatedTerminator(MI);
1580}
1581
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001582bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1583 MachineBasicBlock *&TBB,
1584 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +00001585 SmallVectorImpl<MachineOperand> &Cond,
1586 bool AllowModify) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001587 // Start from the bottom of the block and work up, examining the
1588 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001589 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001590 while (I != MBB.begin()) {
1591 --I;
1592 // Working from the bottom, when we see a non-terminator
1593 // instruction, we're done.
1594 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1595 break;
1596 // A terminator that isn't a branch can't easily be handled
1597 // by this analysis.
1598 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001599 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001600 // Handle unconditional branches.
1601 if (I->getOpcode() == X86::JMP) {
Evan Chengeac31642009-02-09 07:14:22 +00001602 if (!AllowModify) {
1603 TBB = I->getOperand(0).getMBB();
Evan Cheng67bf8e22009-05-08 06:34:09 +00001604 continue;
Evan Chengeac31642009-02-09 07:14:22 +00001605 }
1606
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001607 // If the block has any instructions after a JMP, delete them.
1608 while (next(I) != MBB.end())
1609 next(I)->eraseFromParent();
1610 Cond.clear();
1611 FBB = 0;
1612 // Delete the JMP if it's equivalent to a fall-through.
1613 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1614 TBB = 0;
1615 I->eraseFromParent();
1616 I = MBB.end();
1617 continue;
1618 }
1619 // TBB is used to indicate the unconditinal destination.
1620 TBB = I->getOperand(0).getMBB();
1621 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001622 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001623 // Handle conditional branches.
1624 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001625 if (BranchCode == X86::COND_INVALID)
1626 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001627 // Working from the bottom, handle the first conditional branch.
1628 if (Cond.empty()) {
1629 FBB = TBB;
1630 TBB = I->getOperand(0).getMBB();
1631 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1632 continue;
1633 }
1634 // Handle subsequent conditional branches. Only handle the case
1635 // where all conditional branches branch to the same destination
1636 // and their condition opcodes fit one of the special
1637 // multi-branch idioms.
1638 assert(Cond.size() == 1);
1639 assert(TBB);
1640 // Only handle the case where all conditional branches branch to
1641 // the same destination.
1642 if (TBB != I->getOperand(0).getMBB())
1643 return true;
1644 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1645 // If the conditions are the same, we can leave them alone.
1646 if (OldBranchCode == BranchCode)
1647 continue;
1648 // If they differ, see if they fit one of the known patterns.
1649 // Theoretically we could handle more patterns here, but
1650 // we shouldn't expect to see them if instruction selection
1651 // has done a reasonable job.
1652 if ((OldBranchCode == X86::COND_NP &&
1653 BranchCode == X86::COND_E) ||
1654 (OldBranchCode == X86::COND_E &&
1655 BranchCode == X86::COND_NP))
1656 BranchCode = X86::COND_NP_OR_E;
1657 else if ((OldBranchCode == X86::COND_P &&
1658 BranchCode == X86::COND_NE) ||
1659 (OldBranchCode == X86::COND_NE &&
1660 BranchCode == X86::COND_P))
1661 BranchCode = X86::COND_NE_OR_P;
1662 else
1663 return true;
1664 // Update the MachineOperand.
1665 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001666 }
1667
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001668 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001669}
1670
1671unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1672 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001673 unsigned Count = 0;
1674
1675 while (I != MBB.begin()) {
1676 --I;
1677 if (I->getOpcode() != X86::JMP &&
1678 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1679 break;
1680 // Remove the branch.
1681 I->eraseFromParent();
1682 I = MBB.end();
1683 ++Count;
1684 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001685
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001686 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001687}
1688
1689unsigned
1690X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1691 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001692 const SmallVectorImpl<MachineOperand> &Cond) const {
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001693 // FIXME this should probably have a DebugLoc operand
1694 DebugLoc dl = DebugLoc::getUnknownLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001695 // Shouldn't be a fall through.
1696 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1697 assert((Cond.size() == 1 || Cond.size() == 0) &&
1698 "X86 branch conditions have one component!");
1699
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001700 if (Cond.empty()) {
1701 // Unconditional branch?
1702 assert(!FBB && "Unconditional branch with multiple successors!");
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001703 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001704 return 1;
1705 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001706
1707 // Conditional branch.
1708 unsigned Count = 0;
1709 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1710 switch (CC) {
1711 case X86::COND_NP_OR_E:
1712 // Synthesize NP_OR_E with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001713 BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001714 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001715 BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001716 ++Count;
1717 break;
1718 case X86::COND_NE_OR_P:
1719 // Synthesize NE_OR_P with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001720 BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001721 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001722 BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001723 ++Count;
1724 break;
1725 default: {
1726 unsigned Opc = GetCondBranchFromCond(CC);
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001727 BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001728 ++Count;
1729 }
1730 }
1731 if (FBB) {
1732 // Two-way Conditional branch. Insert the second branch.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001733 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001734 ++Count;
1735 }
1736 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001737}
1738
Dan Gohman2da0db32009-04-15 00:04:23 +00001739/// isHReg - Test if the given register is a physical h register.
1740static bool isHReg(unsigned Reg) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001741 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman2da0db32009-04-15 00:04:23 +00001742}
1743
Owen Anderson9fa72d92008-08-26 18:03:31 +00001744bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001745 MachineBasicBlock::iterator MI,
1746 unsigned DestReg, unsigned SrcReg,
1747 const TargetRegisterClass *DestRC,
1748 const TargetRegisterClass *SrcRC) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001749 DebugLoc DL = DebugLoc::getUnknownLoc();
1750 if (MI != MBB.end()) DL = MI->getDebugLoc();
1751
Dan Gohmand4df6252009-04-20 22:54:34 +00001752 // Determine if DstRC and SrcRC have a common superclass in common.
1753 const TargetRegisterClass *CommonRC = DestRC;
1754 if (DestRC == SrcRC)
1755 /* Source and destination have the same register class. */;
1756 else if (CommonRC->hasSuperClass(SrcRC))
1757 CommonRC = SrcRC;
1758 else if (!DestRC->hasSubClass(SrcRC))
1759 CommonRC = 0;
1760
1761 if (CommonRC) {
Chris Lattner59707122008-03-09 07:58:04 +00001762 unsigned Opc;
Dan Gohmand4df6252009-04-20 22:54:34 +00001763 if (CommonRC == &X86::GR64RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001764 Opc = X86::MOV64rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001765 } else if (CommonRC == &X86::GR32RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001766 Opc = X86::MOV32rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001767 } else if (CommonRC == &X86::GR16RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001768 Opc = X86::MOV16rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001769 } else if (CommonRC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001770 // Copying to or from a physical H register on x86-64 requires a NOREX
Bill Wendling2d1c8222009-04-17 22:40:38 +00001771 // move. Otherwise use a normal move.
1772 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1773 TM.getSubtarget<X86Subtarget>().is64Bit())
Dan Gohman2da0db32009-04-15 00:04:23 +00001774 Opc = X86::MOV8rr_NOREX;
1775 else
1776 Opc = X86::MOV8rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001777 } else if (CommonRC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001778 Opc = X86::MOV64rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001779 } else if (CommonRC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001780 Opc = X86::MOV32rr;
Dan Gohman6e438702009-04-27 16:33:14 +00001781 } else if (CommonRC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001782 Opc = X86::MOV16rr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001783 } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001784 Opc = X86::MOV8rr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001785 } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1786 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1787 Opc = X86::MOV8rr_NOREX;
1788 else
1789 Opc = X86::MOV8rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001790 } else if (CommonRC == &X86::GR64_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001791 Opc = X86::MOV64rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001792 } else if (CommonRC == &X86::GR32_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001793 Opc = X86::MOV32rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001794 } else if (CommonRC == &X86::GR16_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001795 Opc = X86::MOV16rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001796 } else if (CommonRC == &X86::GR8_NOREXRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001797 Opc = X86::MOV8rr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001798 } else if (CommonRC == &X86::RFP32RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001799 Opc = X86::MOV_Fp3232;
Dan Gohmand4df6252009-04-20 22:54:34 +00001800 } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001801 Opc = X86::MOV_Fp6464;
Dan Gohmand4df6252009-04-20 22:54:34 +00001802 } else if (CommonRC == &X86::RFP80RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001803 Opc = X86::MOV_Fp8080;
Dan Gohmand4df6252009-04-20 22:54:34 +00001804 } else if (CommonRC == &X86::FR32RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001805 Opc = X86::FsMOVAPSrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001806 } else if (CommonRC == &X86::FR64RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001807 Opc = X86::FsMOVAPDrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001808 } else if (CommonRC == &X86::VR128RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001809 Opc = X86::MOVAPSrr;
Dan Gohmand4df6252009-04-20 22:54:34 +00001810 } else if (CommonRC == &X86::VR64RegClass) {
Chris Lattner59707122008-03-09 07:58:04 +00001811 Opc = X86::MMX_MOVQ64rr;
1812 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001813 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001814 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001815 BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001816 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001817 }
Chris Lattner59707122008-03-09 07:58:04 +00001818
1819 // Moving EFLAGS to / from another register requires a push and a pop.
1820 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001821 if (SrcReg != X86::EFLAGS)
1822 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001823 if (DestRC == &X86::GR64RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001824 BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1825 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001826 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001827 } else if (DestRC == &X86::GR32RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001828 BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1829 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001830 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001831 }
1832 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001833 if (DestReg != X86::EFLAGS)
1834 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001835 if (SrcRC == &X86::GR64RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001836 BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1837 BuildMI(MBB, MI, DL, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001838 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001839 } else if (SrcRC == &X86::GR32RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001840 BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1841 BuildMI(MBB, MI, DL, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001842 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001843 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001844 }
Dan Gohman744d4622009-04-13 16:09:41 +00001845
Chris Lattner0d128722008-03-09 09:15:31 +00001846 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001847 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001848 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001849 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1850 // Can only copy from ST(0)/ST(1) right now
1851 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001852 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001853 unsigned Opc;
1854 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001855 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001856 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001857 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001858 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001859 if (DestRC != &X86::RFP80RegClass)
1860 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001861 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001862 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001863 BuildMI(MBB, MI, DL, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001864 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001865 }
Chris Lattner0d128722008-03-09 09:15:31 +00001866
1867 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1868 if (DestRC == &X86::RSTRegClass) {
Evan Cheng307a72e2009-02-09 23:32:07 +00001869 // Copying to ST(0) / ST(1).
1870 if (DestReg != X86::ST0 && DestReg != X86::ST1)
Owen Anderson9fa72d92008-08-26 18:03:31 +00001871 // Can only copy to TOS right now
1872 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001873 bool isST0 = DestReg == X86::ST0;
Chris Lattner0d128722008-03-09 09:15:31 +00001874 unsigned Opc;
1875 if (SrcRC == &X86::RFP32RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001876 Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
Chris Lattner0d128722008-03-09 09:15:31 +00001877 else if (SrcRC == &X86::RFP64RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001878 Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
Chris Lattner0d128722008-03-09 09:15:31 +00001879 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001880 if (SrcRC != &X86::RFP80RegClass)
1881 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001882 Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
Chris Lattner0d128722008-03-09 09:15:31 +00001883 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001884 BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001885 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001886 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001887
Owen Anderson9fa72d92008-08-26 18:03:31 +00001888 // Not yet supported!
1889 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001890}
1891
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001892static unsigned getStoreRegOpcode(unsigned SrcReg,
1893 const TargetRegisterClass *RC,
1894 bool isStackAligned,
1895 TargetMachine &TM) {
Owen Anderson81875432008-01-01 21:11:32 +00001896 unsigned Opc = 0;
1897 if (RC == &X86::GR64RegClass) {
1898 Opc = X86::MOV64mr;
1899 } else if (RC == &X86::GR32RegClass) {
1900 Opc = X86::MOV32mr;
1901 } else if (RC == &X86::GR16RegClass) {
1902 Opc = X86::MOV16mr;
1903 } else if (RC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001904 // Copying to or from a physical H register on x86-64 requires a NOREX
1905 // move. Otherwise use a normal move.
1906 if (isHReg(SrcReg) &&
1907 TM.getSubtarget<X86Subtarget>().is64Bit())
1908 Opc = X86::MOV8mr_NOREX;
1909 else
1910 Opc = X86::MOV8mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001911 } else if (RC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001912 Opc = X86::MOV64mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001913 } else if (RC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001914 Opc = X86::MOV32mr;
Dan Gohman6e438702009-04-27 16:33:14 +00001915 } else if (RC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001916 Opc = X86::MOV16mr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001917 } else if (RC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00001918 Opc = X86::MOV8mr;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001919 } else if (RC == &X86::GR8_ABCD_HRegClass) {
1920 if (TM.getSubtarget<X86Subtarget>().is64Bit())
1921 Opc = X86::MOV8mr_NOREX;
1922 else
1923 Opc = X86::MOV8mr;
Dan Gohman744d4622009-04-13 16:09:41 +00001924 } else if (RC == &X86::GR64_NOREXRegClass) {
1925 Opc = X86::MOV64mr;
1926 } else if (RC == &X86::GR32_NOREXRegClass) {
1927 Opc = X86::MOV32mr;
1928 } else if (RC == &X86::GR16_NOREXRegClass) {
1929 Opc = X86::MOV16mr;
1930 } else if (RC == &X86::GR8_NOREXRegClass) {
1931 Opc = X86::MOV8mr;
Owen Anderson81875432008-01-01 21:11:32 +00001932 } else if (RC == &X86::RFP80RegClass) {
1933 Opc = X86::ST_FpP80m; // pops
1934 } else if (RC == &X86::RFP64RegClass) {
1935 Opc = X86::ST_Fp64m;
1936 } else if (RC == &X86::RFP32RegClass) {
1937 Opc = X86::ST_Fp32m;
1938 } else if (RC == &X86::FR32RegClass) {
1939 Opc = X86::MOVSSmr;
1940 } else if (RC == &X86::FR64RegClass) {
1941 Opc = X86::MOVSDmr;
1942 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001943 // If stack is realigned we can use aligned stores.
1944 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001945 } else if (RC == &X86::VR64RegClass) {
1946 Opc = X86::MMX_MOVQ64mr;
1947 } else {
Edwin Török3cb88482009-07-08 18:01:40 +00001948 LLVM_UNREACHABLE("Unknown regclass");
Owen Anderson81875432008-01-01 21:11:32 +00001949 }
1950
1951 return Opc;
1952}
1953
1954void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1955 MachineBasicBlock::iterator MI,
1956 unsigned SrcReg, bool isKill, int FrameIdx,
1957 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001958 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001959 bool isAligned = (RI.getStackAlignment() >= 16) ||
1960 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001961 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001962 DebugLoc DL = DebugLoc::getUnknownLoc();
1963 if (MI != MBB.end()) DL = MI->getDebugLoc();
1964 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendling2b739762009-05-13 21:33:08 +00001965 .addReg(SrcReg, getKillRegState(isKill));
Owen Anderson81875432008-01-01 21:11:32 +00001966}
1967
1968void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1969 bool isKill,
1970 SmallVectorImpl<MachineOperand> &Addr,
1971 const TargetRegisterClass *RC,
1972 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001973 bool isAligned = (RI.getStackAlignment() >= 16) ||
1974 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001975 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001976 DebugLoc DL = DebugLoc::getUnknownLoc();
1977 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001978 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00001979 MIB.addOperand(Addr[i]);
Bill Wendling2b739762009-05-13 21:33:08 +00001980 MIB.addReg(SrcReg, getKillRegState(isKill));
Owen Anderson81875432008-01-01 21:11:32 +00001981 NewMIs.push_back(MIB);
1982}
1983
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001984static unsigned getLoadRegOpcode(unsigned DestReg,
1985 const TargetRegisterClass *RC,
1986 bool isStackAligned,
1987 const TargetMachine &TM) {
Owen Anderson81875432008-01-01 21:11:32 +00001988 unsigned Opc = 0;
1989 if (RC == &X86::GR64RegClass) {
1990 Opc = X86::MOV64rm;
1991 } else if (RC == &X86::GR32RegClass) {
1992 Opc = X86::MOV32rm;
1993 } else if (RC == &X86::GR16RegClass) {
1994 Opc = X86::MOV16rm;
1995 } else if (RC == &X86::GR8RegClass) {
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00001996 // Copying to or from a physical H register on x86-64 requires a NOREX
1997 // move. Otherwise use a normal move.
1998 if (isHReg(DestReg) &&
1999 TM.getSubtarget<X86Subtarget>().is64Bit())
2000 Opc = X86::MOV8rm_NOREX;
2001 else
2002 Opc = X86::MOV8rm;
Dan Gohman6e438702009-04-27 16:33:14 +00002003 } else if (RC == &X86::GR64_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00002004 Opc = X86::MOV64rm;
Dan Gohman6e438702009-04-27 16:33:14 +00002005 } else if (RC == &X86::GR32_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00002006 Opc = X86::MOV32rm;
Dan Gohman6e438702009-04-27 16:33:14 +00002007 } else if (RC == &X86::GR16_ABCDRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00002008 Opc = X86::MOV16rm;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002009 } else if (RC == &X86::GR8_ABCD_LRegClass) {
Dan Gohman744d4622009-04-13 16:09:41 +00002010 Opc = X86::MOV8rm;
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002011 } else if (RC == &X86::GR8_ABCD_HRegClass) {
2012 if (TM.getSubtarget<X86Subtarget>().is64Bit())
2013 Opc = X86::MOV8rm_NOREX;
2014 else
2015 Opc = X86::MOV8rm;
Dan Gohman744d4622009-04-13 16:09:41 +00002016 } else if (RC == &X86::GR64_NOREXRegClass) {
2017 Opc = X86::MOV64rm;
2018 } else if (RC == &X86::GR32_NOREXRegClass) {
2019 Opc = X86::MOV32rm;
2020 } else if (RC == &X86::GR16_NOREXRegClass) {
2021 Opc = X86::MOV16rm;
2022 } else if (RC == &X86::GR8_NOREXRegClass) {
2023 Opc = X86::MOV8rm;
Owen Anderson81875432008-01-01 21:11:32 +00002024 } else if (RC == &X86::RFP80RegClass) {
2025 Opc = X86::LD_Fp80m;
2026 } else if (RC == &X86::RFP64RegClass) {
2027 Opc = X86::LD_Fp64m;
2028 } else if (RC == &X86::RFP32RegClass) {
2029 Opc = X86::LD_Fp32m;
2030 } else if (RC == &X86::FR32RegClass) {
2031 Opc = X86::MOVSSrm;
2032 } else if (RC == &X86::FR64RegClass) {
2033 Opc = X86::MOVSDrm;
2034 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002035 // If stack is realigned we can use aligned loads.
2036 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00002037 } else if (RC == &X86::VR64RegClass) {
2038 Opc = X86::MMX_MOVQ64rm;
2039 } else {
Edwin Török3cb88482009-07-08 18:01:40 +00002040 LLVM_UNREACHABLE("Unknown regclass");
Owen Anderson81875432008-01-01 21:11:32 +00002041 }
2042
2043 return Opc;
2044}
2045
2046void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002047 MachineBasicBlock::iterator MI,
2048 unsigned DestReg, int FrameIdx,
2049 const TargetRegisterClass *RC) const{
2050 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00002051 bool isAligned = (RI.getStackAlignment() >= 16) ||
2052 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002053 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Bill Wendling13ee2e42009-02-11 21:51:19 +00002054 DebugLoc DL = DebugLoc::getUnknownLoc();
2055 if (MI != MBB.end()) DL = MI->getDebugLoc();
2056 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Anderson81875432008-01-01 21:11:32 +00002057}
2058
2059void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00002060 SmallVectorImpl<MachineOperand> &Addr,
2061 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00002062 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00002063 bool isAligned = (RI.getStackAlignment() >= 16) ||
2064 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002065 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00002066 DebugLoc DL = DebugLoc::getUnknownLoc();
2067 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00002068 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002069 MIB.addOperand(Addr[i]);
Owen Anderson81875432008-01-01 21:11:32 +00002070 NewMIs.push_back(MIB);
2071}
2072
Owen Anderson6690c7f2008-01-04 23:57:37 +00002073bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002074 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00002075 const std::vector<CalleeSavedInfo> &CSI) const {
2076 if (CSI.empty())
2077 return false;
2078
Bill Wendling13ee2e42009-02-11 21:51:19 +00002079 DebugLoc DL = DebugLoc::getUnknownLoc();
2080 if (MI != MBB.end()) DL = MI->getDebugLoc();
2081
Evan Chengc275cf62008-09-26 19:14:21 +00002082 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002083 unsigned SlotSize = is64Bit ? 8 : 4;
2084
2085 MachineFunction &MF = *MBB.getParent();
Evan Cheng10b8d222009-07-09 06:53:48 +00002086 unsigned FPReg = RI.getFrameRegister(MF);
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002087 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
Eli Friedman65b88222009-06-04 02:32:04 +00002088 unsigned CalleeFrameSize = 0;
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00002089
Owen Anderson6690c7f2008-01-04 23:57:37 +00002090 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2091 for (unsigned i = CSI.size(); i != 0; --i) {
2092 unsigned Reg = CSI[i-1].getReg();
Eli Friedman65b88222009-06-04 02:32:04 +00002093 const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
Owen Anderson6690c7f2008-01-04 23:57:37 +00002094 // Add the callee-saved register as live-in. It's killed at the spill.
2095 MBB.addLiveIn(Reg);
Evan Cheng10b8d222009-07-09 06:53:48 +00002096 if (Reg == FPReg)
2097 // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2098 continue;
Eli Friedman65b88222009-06-04 02:32:04 +00002099 if (RegClass != &X86::VR128RegClass) {
2100 CalleeFrameSize += SlotSize;
Evan Cheng10b8d222009-07-09 06:53:48 +00002101 BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
Eli Friedman65b88222009-06-04 02:32:04 +00002102 } else {
2103 storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
2104 }
Owen Anderson6690c7f2008-01-04 23:57:37 +00002105 }
Eli Friedman65b88222009-06-04 02:32:04 +00002106
2107 X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
Owen Anderson6690c7f2008-01-04 23:57:37 +00002108 return true;
2109}
2110
2111bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002112 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00002113 const std::vector<CalleeSavedInfo> &CSI) const {
2114 if (CSI.empty())
2115 return false;
Bill Wendling13ee2e42009-02-11 21:51:19 +00002116
2117 DebugLoc DL = DebugLoc::getUnknownLoc();
2118 if (MI != MBB.end()) DL = MI->getDebugLoc();
2119
Evan Cheng10b8d222009-07-09 06:53:48 +00002120 MachineFunction &MF = *MBB.getParent();
2121 unsigned FPReg = RI.getFrameRegister(MF);
Owen Anderson6690c7f2008-01-04 23:57:37 +00002122 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Owen Anderson6690c7f2008-01-04 23:57:37 +00002123 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2124 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2125 unsigned Reg = CSI[i].getReg();
Evan Cheng10b8d222009-07-09 06:53:48 +00002126 if (Reg == FPReg)
2127 // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2128 continue;
Eli Friedman65b88222009-06-04 02:32:04 +00002129 const TargetRegisterClass *RegClass = CSI[i].getRegClass();
2130 if (RegClass != &X86::VR128RegClass) {
2131 BuildMI(MBB, MI, DL, get(Opc), Reg);
2132 } else {
2133 loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
2134 }
Owen Anderson6690c7f2008-01-04 23:57:37 +00002135 }
2136 return true;
2137}
2138
Dan Gohman221a4372008-07-07 23:14:23 +00002139static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002140 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002141 MachineInstr *MI,
2142 const TargetInstrInfo &TII) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002143 // Create the base instruction with the memory operand as the first part.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002144 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2145 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002146 MachineInstrBuilder MIB(NewMI);
2147 unsigned NumAddrOps = MOs.size();
2148 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002149 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002150 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002151 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002152
2153 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00002154 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002155 for (unsigned i = 0; i != NumOps; ++i) {
2156 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002157 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002158 }
2159 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2160 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002161 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002162 }
2163 return MIB;
2164}
2165
Dan Gohman221a4372008-07-07 23:14:23 +00002166static MachineInstr *FuseInst(MachineFunction &MF,
2167 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002168 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002169 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002170 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2171 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002172 MachineInstrBuilder MIB(NewMI);
2173
2174 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2175 MachineOperand &MO = MI->getOperand(i);
2176 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002177 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00002178 unsigned NumAddrOps = MOs.size();
2179 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002180 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002181 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002182 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002183 } else {
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002184 MIB.addOperand(MO);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002185 }
2186 }
2187 return MIB;
2188}
2189
2190static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002191 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002192 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00002193 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendling13ee2e42009-02-11 21:51:19 +00002194 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002195
2196 unsigned NumAddrOps = MOs.size();
2197 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002198 MIB.addOperand(MOs[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002199 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindolabca99f72009-04-08 21:14:34 +00002200 addOffset(MIB, 0);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002201 return MIB.addImm(0);
2202}
2203
2204MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00002205X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2206 MachineInstr *MI, unsigned i,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002207 const SmallVectorImpl<MachineOperand> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00002208 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2209 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00002210 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002211 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002212 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002213
2214 MachineInstr *NewMI = NULL;
2215 // Folding a memory location into the two-address part of a two-address
2216 // instruction is different than folding it other places. It requires
2217 // replacing the *two* registers with the memory location.
2218 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002219 MI->getOperand(0).isReg() &&
2220 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00002221 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2222 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2223 isTwoAddrFold = true;
2224 } else if (i == 0) { // If operand 0
2225 if (MI->getOpcode() == X86::MOV16r0)
2226 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2227 else if (MI->getOpcode() == X86::MOV32r0)
2228 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2229 else if (MI->getOpcode() == X86::MOV64r0)
2230 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2231 else if (MI->getOpcode() == X86::MOV8r0)
2232 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002233 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002234 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002235
2236 OpcodeTablePtr = &RegOp2MemOpTable0;
2237 } else if (i == 1) {
2238 OpcodeTablePtr = &RegOp2MemOpTable1;
2239 } else if (i == 2) {
2240 OpcodeTablePtr = &RegOp2MemOpTable2;
2241 }
2242
2243 // If table selected...
2244 if (OpcodeTablePtr) {
2245 // Find the Opcode to fuse
2246 DenseMap<unsigned*, unsigned>::iterator I =
2247 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2248 if (I != OpcodeTablePtr->end()) {
2249 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00002250 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002251 else
Dan Gohman221a4372008-07-07 23:14:23 +00002252 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002253 return NewMI;
2254 }
2255 }
2256
2257 // No fusion
2258 if (PrintFailedFusing)
Dan Gohman5f599f62008-12-23 00:19:20 +00002259 cerr << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002260 return NULL;
2261}
2262
2263
Dan Gohmanedc83d62008-12-03 18:43:12 +00002264MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2265 MachineInstr *MI,
2266 const SmallVectorImpl<unsigned> &Ops,
2267 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002268 // Check switch flag
2269 if (NoFusing) return NULL;
2270
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002271 const MachineFrameInfo *MFI = MF.getFrameInfo();
2272 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2273 // FIXME: Move alignment requirement into tables?
2274 if (Alignment < 16) {
2275 switch (MI->getOpcode()) {
2276 default: break;
2277 // Not always safe to fold movsd into these instructions since their load
2278 // folding variants expects the address to be 16 byte aligned.
2279 case X86::FsANDNPDrr:
2280 case X86::FsANDNPSrr:
2281 case X86::FsANDPDrr:
2282 case X86::FsANDPSrr:
2283 case X86::FsORPDrr:
2284 case X86::FsORPSrr:
2285 case X86::FsXORPDrr:
2286 case X86::FsXORPSrr:
2287 return NULL;
2288 }
2289 }
2290
Owen Anderson9a184ef2008-01-07 01:35:02 +00002291 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2292 unsigned NewOpc = 0;
2293 switch (MI->getOpcode()) {
2294 default: return NULL;
2295 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2296 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2297 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2298 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2299 }
2300 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002301 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002302 MI->getOperand(1).ChangeToImmediate(0);
2303 } else if (Ops.size() != 1)
2304 return NULL;
2305
2306 SmallVector<MachineOperand,4> MOs;
2307 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohmanedc83d62008-12-03 18:43:12 +00002308 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002309}
2310
Dan Gohmanedc83d62008-12-03 18:43:12 +00002311MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2312 MachineInstr *MI,
2313 const SmallVectorImpl<unsigned> &Ops,
2314 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002315 // Check switch flag
2316 if (NoFusing) return NULL;
2317
Dan Gohmand0e8c752008-07-12 00:10:52 +00002318 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002319 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002320 if (LoadMI->hasOneMemOperand())
2321 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002322
2323 // FIXME: Move alignment requirement into tables?
2324 if (Alignment < 16) {
2325 switch (MI->getOpcode()) {
2326 default: break;
2327 // Not always safe to fold movsd into these instructions since their load
2328 // folding variants expects the address to be 16 byte aligned.
2329 case X86::FsANDNPDrr:
2330 case X86::FsANDNPSrr:
2331 case X86::FsANDPDrr:
2332 case X86::FsANDPSrr:
2333 case X86::FsORPDrr:
2334 case X86::FsORPSrr:
2335 case X86::FsXORPDrr:
2336 case X86::FsXORPSrr:
2337 return NULL;
2338 }
2339 }
2340
Owen Anderson9a184ef2008-01-07 01:35:02 +00002341 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2342 unsigned NewOpc = 0;
2343 switch (MI->getOpcode()) {
2344 default: return NULL;
2345 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2346 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2347 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2348 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2349 }
2350 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002351 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002352 MI->getOperand(1).ChangeToImmediate(0);
2353 } else if (Ops.size() != 1)
2354 return NULL;
2355
Rafael Espindolabca99f72009-04-08 21:14:34 +00002356 SmallVector<MachineOperand,X86AddrNumOperands> MOs;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002357 if (LoadMI->getOpcode() == X86::V_SET0 ||
2358 LoadMI->getOpcode() == X86::V_SETALLONES) {
2359 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2360 // Create a constant-pool entry and operands to load from it.
2361
2362 // x86-32 PIC requires a PIC base register for constant pools.
2363 unsigned PICBase = 0;
2364 if (TM.getRelocationModel() == Reloc::PIC_ &&
2365 !TM.getSubtarget<X86Subtarget>().is64Bit())
Evan Chengf95d0fc2008-12-05 17:23:48 +00002366 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2367 // This doesn't work for several reasons.
2368 // 1. GlobalBaseReg may have been spilled.
2369 // 2. It may not be live at MI.
Evan Chengf95d0fc2008-12-05 17:23:48 +00002370 return false;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002371
2372 // Create a v4i32 constant-pool entry.
2373 MachineConstantPool &MCP = *MF.getConstantPool();
2374 const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2375 Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2376 ConstantVector::getNullValue(Ty) :
2377 ConstantVector::getAllOnesValue(Ty);
Evan Cheng68c18682009-03-13 07:51:59 +00002378 unsigned CPI = MCP.getConstantPoolIndex(C, 16);
Dan Gohman37eb6c82008-12-03 05:21:24 +00002379
2380 // Create operands to load from the constant pool entry.
2381 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2382 MOs.push_back(MachineOperand::CreateImm(1));
2383 MOs.push_back(MachineOperand::CreateReg(0, false));
2384 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindolabca99f72009-04-08 21:14:34 +00002385 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman37eb6c82008-12-03 05:21:24 +00002386 } else {
2387 // Folding a normal load. Just copy the load's address operands.
2388 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002389 for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
Dan Gohman37eb6c82008-12-03 05:21:24 +00002390 MOs.push_back(LoadMI->getOperand(i));
2391 }
Dan Gohmanedc83d62008-12-03 18:43:12 +00002392 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002393}
2394
2395
Dan Gohman46b948e2008-10-16 01:49:15 +00002396bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2397 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002398 // Check switch flag
2399 if (NoFusing) return 0;
2400
2401 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2402 switch (MI->getOpcode()) {
2403 default: return false;
2404 case X86::TEST8rr:
2405 case X86::TEST16rr:
2406 case X86::TEST32rr:
2407 case X86::TEST64rr:
2408 return true;
2409 }
2410 }
2411
2412 if (Ops.size() != 1)
2413 return false;
2414
2415 unsigned OpNum = Ops[0];
2416 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002417 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002418 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002419 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002420
2421 // Folding a memory location into the two-address part of a two-address
2422 // instruction is different than folding it other places. It requires
2423 // replacing the *two* registers with the memory location.
2424 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2425 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2426 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2427 } else if (OpNum == 0) { // If operand 0
2428 switch (Opc) {
2429 case X86::MOV16r0:
2430 case X86::MOV32r0:
2431 case X86::MOV64r0:
2432 case X86::MOV8r0:
2433 return true;
2434 default: break;
2435 }
2436 OpcodeTablePtr = &RegOp2MemOpTable0;
2437 } else if (OpNum == 1) {
2438 OpcodeTablePtr = &RegOp2MemOpTable1;
2439 } else if (OpNum == 2) {
2440 OpcodeTablePtr = &RegOp2MemOpTable2;
2441 }
2442
2443 if (OpcodeTablePtr) {
2444 // Find the Opcode to fuse
2445 DenseMap<unsigned*, unsigned>::iterator I =
2446 OpcodeTablePtr->find((unsigned*)Opc);
2447 if (I != OpcodeTablePtr->end())
2448 return true;
2449 }
2450 return false;
2451}
2452
2453bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2454 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002455 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002456 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2457 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2458 if (I == MemOp2RegOpTable.end())
2459 return false;
Dale Johannesen77cce4d2009-02-12 23:08:38 +00002460 DebugLoc dl = MI->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002461 unsigned Opc = I->second.first;
2462 unsigned Index = I->second.second & 0xf;
2463 bool FoldedLoad = I->second.second & (1 << 4);
2464 bool FoldedStore = I->second.second & (1 << 5);
2465 if (UnfoldLoad && !FoldedLoad)
2466 return false;
2467 UnfoldLoad &= FoldedLoad;
2468 if (UnfoldStore && !FoldedStore)
2469 return false;
2470 UnfoldStore &= FoldedStore;
2471
Chris Lattner5b930372008-01-07 07:27:27 +00002472 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002473 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002474 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002475 ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002476 SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002477 SmallVector<MachineOperand,2> BeforeOps;
2478 SmallVector<MachineOperand,2> AfterOps;
2479 SmallVector<MachineOperand,4> ImpOps;
2480 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2481 MachineOperand &Op = MI->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002482 if (i >= Index && i < Index + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002483 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002484 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002485 ImpOps.push_back(Op);
2486 else if (i < Index)
2487 BeforeOps.push_back(Op);
2488 else if (i > Index)
2489 AfterOps.push_back(Op);
2490 }
2491
2492 // Emit the load instruction.
2493 if (UnfoldLoad) {
2494 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2495 if (UnfoldStore) {
2496 // Address operands cannot be marked isKill.
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002497 for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002498 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002499 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002500 MO.setIsKill(false);
2501 }
2502 }
2503 }
2504
2505 // Emit the data processing instruction.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002506 MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002507 MachineInstrBuilder MIB(DataMI);
2508
2509 if (FoldedStore)
Bill Wendling2b739762009-05-13 21:33:08 +00002510 MIB.addReg(Reg, RegState::Define);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002511 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002512 MIB.addOperand(BeforeOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002513 if (FoldedLoad)
2514 MIB.addReg(Reg);
2515 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohmanc909bbb2009-02-18 05:45:50 +00002516 MIB.addOperand(AfterOps[i]);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002517 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2518 MachineOperand &MO = ImpOps[i];
Bill Wendling2b739762009-05-13 21:33:08 +00002519 MIB.addReg(MO.getReg(),
2520 getDefRegState(MO.isDef()) |
2521 RegState::Implicit |
2522 getKillRegState(MO.isKill()) |
Evan Cheng9c73db12009-06-30 08:49:04 +00002523 getDeadRegState(MO.isDead()) |
2524 getUndefRegState(MO.isUndef()));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002525 }
2526 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2527 unsigned NewOpc = 0;
2528 switch (DataMI->getOpcode()) {
2529 default: break;
2530 case X86::CMP64ri32:
2531 case X86::CMP32ri:
2532 case X86::CMP16ri:
2533 case X86::CMP8ri: {
2534 MachineOperand &MO0 = DataMI->getOperand(0);
2535 MachineOperand &MO1 = DataMI->getOperand(1);
2536 if (MO1.getImm() == 0) {
2537 switch (DataMI->getOpcode()) {
2538 default: break;
2539 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2540 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2541 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2542 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2543 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002544 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002545 MO1.ChangeToRegister(MO0.getReg(), false);
2546 }
2547 }
2548 }
2549 NewMIs.push_back(DataMI);
2550
2551 // Emit the store instruction.
2552 if (UnfoldStore) {
2553 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002554 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002555 ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002556 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2557 }
2558
2559 return true;
2560}
2561
2562bool
2563X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002564 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002565 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002566 return false;
2567
2568 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002569 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002570 if (I == MemOp2RegOpTable.end())
2571 return false;
2572 unsigned Opc = I->second.first;
2573 unsigned Index = I->second.second & 0xf;
2574 bool FoldedLoad = I->second.second & (1 << 4);
2575 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002576 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002577 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002578 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002579 ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman31b70a62009-03-04 19:23:38 +00002580 unsigned NumDefs = TID.NumDefs;
Dan Gohman8181bd12008-07-27 21:46:04 +00002581 std::vector<SDValue> AddrOps;
2582 std::vector<SDValue> BeforeOps;
2583 std::vector<SDValue> AfterOps;
Dale Johannesen913ba762009-02-06 01:31:28 +00002584 DebugLoc dl = N->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002585 unsigned NumOps = N->getNumOperands();
2586 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002587 SDValue Op = N->getOperand(i);
Rafael Espindola6cdf4be2009-03-27 15:57:50 +00002588 if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002589 AddrOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002590 else if (i < Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002591 BeforeOps.push_back(Op);
Dan Gohman31b70a62009-03-04 19:23:38 +00002592 else if (i > Index-NumDefs)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002593 AfterOps.push_back(Op);
2594 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002595 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002596 AddrOps.push_back(Chain);
2597
2598 // Emit the load instruction.
2599 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002600 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002601 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002602 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002603 bool isAligned = (RI.getStackAlignment() >= 16) ||
2604 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002605 Load = DAG.getTargetNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2606 VT, MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002607 NewNodes.push_back(Load);
2608 }
2609
2610 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002611 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002612 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002613 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002614 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002615 DstRC = DstTOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002616 ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002617 VTs.push_back(*DstRC->vt_begin());
2618 }
2619 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002620 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002621 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002622 VTs.push_back(VT);
2623 }
2624 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002625 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002626 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dale Johannesen913ba762009-02-06 01:31:28 +00002627 SDNode *NewNode= DAG.getTargetNode(Opc, dl, VTs, &BeforeOps[0],
2628 BeforeOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002629 NewNodes.push_back(NewNode);
2630
2631 // Emit the store instruction.
2632 if (FoldedStore) {
2633 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002634 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002635 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002636 bool isAligned = (RI.getStackAlignment() >= 16) ||
2637 RI.needsStackRealignment(MF);
Dan Gohman1d8ce9c2009-04-27 16:41:36 +00002638 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(0, DstRC,
2639 isAligned, TM),
2640 dl, MVT::Other,
2641 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002642 NewNodes.push_back(Store);
2643 }
2644
2645 return true;
2646}
2647
2648unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2649 bool UnfoldLoad, bool UnfoldStore) const {
2650 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2651 MemOp2RegOpTable.find((unsigned*)Opc);
2652 if (I == MemOp2RegOpTable.end())
2653 return 0;
2654 bool FoldedLoad = I->second.second & (1 << 4);
2655 bool FoldedStore = I->second.second & (1 << 5);
2656 if (UnfoldLoad && !FoldedLoad)
2657 return 0;
2658 if (UnfoldStore && !FoldedStore)
2659 return 0;
2660 return I->second.first;
2661}
2662
Dan Gohman46b948e2008-10-16 01:49:15 +00002663bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002664 if (MBB.empty()) return false;
2665
2666 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002667 case X86::TCRETURNri:
2668 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002669 case X86::RET: // Return.
2670 case X86::RETI:
2671 case X86::TAILJMPd:
2672 case X86::TAILJMPr:
2673 case X86::TAILJMPm:
2674 case X86::JMP: // Uncond branch.
2675 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002676 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002677 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002678 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002679 return true;
2680 default: return false;
2681 }
2682}
2683
2684bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002685ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002686 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002687 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002688 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2689 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002690 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002691 return false;
2692}
2693
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002694bool X86InstrInfo::
Evan Chengf5a8a362009-02-06 17:17:30 +00002695isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2696 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002697 // allow any loads of these registers before FpGet_ST0_80.
Evan Chengf5a8a362009-02-06 17:17:30 +00002698 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2699 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002700}
2701
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002702unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2703 switch (Desc->TSFlags & X86II::ImmMask) {
2704 case X86II::Imm8: return 1;
2705 case X86II::Imm16: return 2;
2706 case X86II::Imm32: return 4;
2707 case X86II::Imm64: return 8;
2708 default: assert(0 && "Immediate size not set!");
2709 return 0;
2710 }
2711}
2712
2713/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2714/// e.g. r8, xmm8, etc.
2715bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002716 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002717 switch (MO.getReg()) {
2718 default: break;
2719 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2720 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2721 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2722 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2723 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2724 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2725 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2726 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2727 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2728 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2729 return true;
2730 }
2731 return false;
2732}
2733
2734
2735/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2736/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2737/// size, and 3) use of X86-64 extended registers.
2738unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2739 unsigned REX = 0;
2740 const TargetInstrDesc &Desc = MI.getDesc();
2741
2742 // Pseudo instructions do not need REX prefix byte.
2743 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2744 return 0;
2745 if (Desc.TSFlags & X86II::REX_W)
2746 REX |= 1 << 3;
2747
2748 unsigned NumOps = Desc.getNumOperands();
2749 if (NumOps) {
2750 bool isTwoAddr = NumOps > 1 &&
2751 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2752
2753 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2754 unsigned i = isTwoAddr ? 1 : 0;
2755 for (unsigned e = NumOps; i != e; ++i) {
2756 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002757 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002758 unsigned Reg = MO.getReg();
2759 if (isX86_64NonExtLowByteReg(Reg))
2760 REX |= 0x40;
2761 }
2762 }
2763
2764 switch (Desc.TSFlags & X86II::FormMask) {
2765 case X86II::MRMInitReg:
2766 if (isX86_64ExtendedReg(MI.getOperand(0)))
2767 REX |= (1 << 0) | (1 << 2);
2768 break;
2769 case X86II::MRMSrcReg: {
2770 if (isX86_64ExtendedReg(MI.getOperand(0)))
2771 REX |= 1 << 2;
2772 i = isTwoAddr ? 2 : 1;
2773 for (unsigned e = NumOps; i != e; ++i) {
2774 const MachineOperand& MO = MI.getOperand(i);
2775 if (isX86_64ExtendedReg(MO))
2776 REX |= 1 << 0;
2777 }
2778 break;
2779 }
2780 case X86II::MRMSrcMem: {
2781 if (isX86_64ExtendedReg(MI.getOperand(0)))
2782 REX |= 1 << 2;
2783 unsigned Bit = 0;
2784 i = isTwoAddr ? 2 : 1;
2785 for (; i != NumOps; ++i) {
2786 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002787 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002788 if (isX86_64ExtendedReg(MO))
2789 REX |= 1 << Bit;
2790 Bit++;
2791 }
2792 }
2793 break;
2794 }
2795 case X86II::MRM0m: case X86II::MRM1m:
2796 case X86II::MRM2m: case X86II::MRM3m:
2797 case X86II::MRM4m: case X86II::MRM5m:
2798 case X86II::MRM6m: case X86II::MRM7m:
2799 case X86II::MRMDestMem: {
Dan Gohman2eff7042009-04-13 15:04:25 +00002800 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002801 i = isTwoAddr ? 1 : 0;
2802 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2803 REX |= 1 << 2;
2804 unsigned Bit = 0;
2805 for (; i != e; ++i) {
2806 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002807 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002808 if (isX86_64ExtendedReg(MO))
2809 REX |= 1 << Bit;
2810 Bit++;
2811 }
2812 }
2813 break;
2814 }
2815 default: {
2816 if (isX86_64ExtendedReg(MI.getOperand(0)))
2817 REX |= 1 << 0;
2818 i = isTwoAddr ? 2 : 1;
2819 for (unsigned e = NumOps; i != e; ++i) {
2820 const MachineOperand& MO = MI.getOperand(i);
2821 if (isX86_64ExtendedReg(MO))
2822 REX |= 1 << 2;
2823 }
2824 break;
2825 }
2826 }
2827 }
2828 return REX;
2829}
2830
2831/// sizePCRelativeBlockAddress - This method returns the size of a PC
2832/// relative block address instruction
2833///
2834static unsigned sizePCRelativeBlockAddress() {
2835 return 4;
2836}
2837
2838/// sizeGlobalAddress - Give the size of the emission of this global address
2839///
2840static unsigned sizeGlobalAddress(bool dword) {
2841 return dword ? 8 : 4;
2842}
2843
2844/// sizeConstPoolAddress - Give the size of the emission of this constant
2845/// pool address
2846///
2847static unsigned sizeConstPoolAddress(bool dword) {
2848 return dword ? 8 : 4;
2849}
2850
2851/// sizeExternalSymbolAddress - Give the size of the emission of this external
2852/// symbol
2853///
2854static unsigned sizeExternalSymbolAddress(bool dword) {
2855 return dword ? 8 : 4;
2856}
2857
2858/// sizeJumpTableAddress - Give the size of the emission of this jump
2859/// table address
2860///
2861static unsigned sizeJumpTableAddress(bool dword) {
2862 return dword ? 8 : 4;
2863}
2864
2865static unsigned sizeConstant(unsigned Size) {
2866 return Size;
2867}
2868
2869static unsigned sizeRegModRMByte(){
2870 return 1;
2871}
2872
2873static unsigned sizeSIBByte(){
2874 return 1;
2875}
2876
2877static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2878 unsigned FinalSize = 0;
2879 // If this is a simple integer displacement that doesn't require a relocation.
2880 if (!RelocOp) {
2881 FinalSize += sizeConstant(4);
2882 return FinalSize;
2883 }
2884
2885 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002886 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002887 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002888 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002889 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002890 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002891 FinalSize += sizeJumpTableAddress(false);
2892 } else {
2893 assert(0 && "Unknown value to relocate!");
2894 }
2895 return FinalSize;
2896}
2897
2898static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2899 bool IsPIC, bool Is64BitMode) {
2900 const MachineOperand &Op3 = MI.getOperand(Op+3);
2901 int DispVal = 0;
2902 const MachineOperand *DispForReloc = 0;
2903 unsigned FinalSize = 0;
2904
2905 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002906 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002907 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002908 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002909 if (Is64BitMode || IsPIC) {
2910 DispForReloc = &Op3;
2911 } else {
2912 DispVal = 1;
2913 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002914 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002915 if (Is64BitMode || IsPIC) {
2916 DispForReloc = &Op3;
2917 } else {
2918 DispVal = 1;
2919 }
2920 } else {
2921 DispVal = 1;
2922 }
2923
2924 const MachineOperand &Base = MI.getOperand(Op);
2925 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2926
2927 unsigned BaseReg = Base.getReg();
2928
2929 // Is a SIB byte needed?
Evan Cheng92569ce2009-05-12 00:07:35 +00002930 if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
2931 IndexReg.getReg() == 0 &&
Evan Cheng099109d2009-05-04 22:49:16 +00002932 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002933 if (BaseReg == 0) { // Just a displacement?
2934 // Emit special case [disp32] encoding
2935 ++FinalSize;
2936 FinalSize += getDisplacementFieldSize(DispForReloc);
2937 } else {
2938 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2939 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2940 // Emit simple indirect register encoding... [EAX] f.e.
2941 ++FinalSize;
2942 // Be pessimistic and assume it's a disp32, not a disp8
2943 } else {
2944 // Emit the most general non-SIB encoding: [REG+disp32]
2945 ++FinalSize;
2946 FinalSize += getDisplacementFieldSize(DispForReloc);
2947 }
2948 }
2949
2950 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2951 assert(IndexReg.getReg() != X86::ESP &&
2952 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2953
2954 bool ForceDisp32 = false;
2955 if (BaseReg == 0 || DispForReloc) {
2956 // Emit the normal disp32 encoding.
2957 ++FinalSize;
2958 ForceDisp32 = true;
2959 } else {
2960 ++FinalSize;
2961 }
2962
2963 FinalSize += sizeSIBByte();
2964
2965 // Do we need to output a displacement?
2966 if (DispVal != 0 || ForceDisp32) {
2967 FinalSize += getDisplacementFieldSize(DispForReloc);
2968 }
2969 }
2970 return FinalSize;
2971}
2972
2973
2974static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2975 const TargetInstrDesc *Desc,
2976 bool IsPIC, bool Is64BitMode) {
2977
2978 unsigned Opcode = Desc->Opcode;
2979 unsigned FinalSize = 0;
2980
2981 // Emit the lock opcode prefix as needed.
2982 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2983
Bill Wendling6ee76552009-05-28 23:40:46 +00002984 // Emit segment override opcode prefix as needed.
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002985 switch (Desc->TSFlags & X86II::SegOvrMask) {
2986 case X86II::FS:
2987 case X86II::GS:
2988 ++FinalSize;
2989 break;
2990 default: assert(0 && "Invalid segment!");
2991 case 0: break; // No segment override!
2992 }
2993
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002994 // Emit the repeat opcode prefix as needed.
2995 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2996
2997 // Emit the operand size opcode prefix as needed.
2998 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2999
3000 // Emit the address size opcode prefix as needed.
3001 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
3002
3003 bool Need0FPrefix = false;
3004 switch (Desc->TSFlags & X86II::Op0Mask) {
3005 case X86II::TB: // Two-byte opcode prefix
3006 case X86II::T8: // 0F 38
3007 case X86II::TA: // 0F 3A
3008 Need0FPrefix = true;
3009 break;
3010 case X86II::REP: break; // already handled.
3011 case X86II::XS: // F3 0F
3012 ++FinalSize;
3013 Need0FPrefix = true;
3014 break;
3015 case X86II::XD: // F2 0F
3016 ++FinalSize;
3017 Need0FPrefix = true;
3018 break;
3019 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
3020 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
3021 ++FinalSize;
3022 break; // Two-byte opcode prefix
3023 default: assert(0 && "Invalid prefix!");
3024 case 0: break; // No prefix!
3025 }
3026
3027 if (Is64BitMode) {
3028 // REX prefix
3029 unsigned REX = X86InstrInfo::determineREX(MI);
3030 if (REX)
3031 ++FinalSize;
3032 }
3033
3034 // 0x0F escape code must be emitted just before the opcode.
3035 if (Need0FPrefix)
3036 ++FinalSize;
3037
3038 switch (Desc->TSFlags & X86II::Op0Mask) {
3039 case X86II::T8: // 0F 38
3040 ++FinalSize;
3041 break;
Bill Wendling6ee76552009-05-28 23:40:46 +00003042 case X86II::TA: // 0F 3A
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003043 ++FinalSize;
3044 break;
3045 }
3046
3047 // If this is a two-address instruction, skip one of the register operands.
3048 unsigned NumOps = Desc->getNumOperands();
3049 unsigned CurOp = 0;
3050 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
3051 CurOp++;
Evan Cheng099109d2009-05-04 22:49:16 +00003052 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
3053 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3054 --NumOps;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003055
3056 switch (Desc->TSFlags & X86II::FormMask) {
3057 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
3058 case X86II::Pseudo:
3059 // Remember the current PC offset, this is the PIC relocation
3060 // base address.
3061 switch (Opcode) {
3062 default:
3063 break;
3064 case TargetInstrInfo::INLINEASM: {
3065 const MachineFunction *MF = MI.getParent()->getParent();
3066 const char *AsmStr = MI.getOperand(0).getSymbolName();
3067 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
3068 FinalSize += AI->getInlineAsmLength(AsmStr);
3069 break;
3070 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00003071 case TargetInstrInfo::DBG_LABEL:
3072 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003073 break;
3074 case TargetInstrInfo::IMPLICIT_DEF:
3075 case TargetInstrInfo::DECLARE:
3076 case X86::DWARF_LOC:
3077 case X86::FP_REG_KILL:
3078 break;
3079 case X86::MOVPC32r: {
3080 // This emits the "call" portion of this pseudo instruction.
3081 ++FinalSize;
3082 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3083 break;
3084 }
3085 }
3086 CurOp = NumOps;
3087 break;
3088 case X86II::RawFrm:
3089 ++FinalSize;
3090
3091 if (CurOp != NumOps) {
3092 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003093 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003094 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003095 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003096 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003097 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003098 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003099 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003100 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3101 } else {
3102 assert(0 && "Unknown RawFrm operand!");
3103 }
3104 }
3105 break;
3106
3107 case X86II::AddRegFrm:
3108 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003109 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003110
3111 if (CurOp != NumOps) {
3112 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3113 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003114 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003115 FinalSize += sizeConstant(Size);
3116 else {
3117 bool dword = false;
3118 if (Opcode == X86::MOV64ri)
3119 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003120 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003121 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003122 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003123 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003124 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003125 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003126 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003127 FinalSize += sizeJumpTableAddress(dword);
3128 }
3129 }
3130 break;
3131
3132 case X86II::MRMDestReg: {
3133 ++FinalSize;
3134 FinalSize += sizeRegModRMByte();
3135 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003136 if (CurOp != NumOps) {
3137 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003138 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003139 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003140 break;
3141 }
3142 case X86II::MRMDestMem: {
3143 ++FinalSize;
3144 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003145 CurOp += X86AddrNumOperands + 1;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003146 if (CurOp != NumOps) {
3147 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003148 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003149 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003150 break;
3151 }
3152
3153 case X86II::MRMSrcReg:
3154 ++FinalSize;
3155 FinalSize += sizeRegModRMByte();
3156 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003157 if (CurOp != NumOps) {
3158 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003159 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003160 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003161 break;
3162
3163 case X86II::MRMSrcMem: {
Evan Cheng099109d2009-05-04 22:49:16 +00003164 int AddrOperands;
3165 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3166 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3167 AddrOperands = X86AddrNumOperands - 1; // No segment register
3168 else
3169 AddrOperands = X86AddrNumOperands;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003170
3171 ++FinalSize;
3172 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003173 CurOp += AddrOperands + 1;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003174 if (CurOp != NumOps) {
3175 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003176 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003177 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003178 break;
3179 }
3180
3181 case X86II::MRM0r: case X86II::MRM1r:
3182 case X86II::MRM2r: case X86II::MRM3r:
3183 case X86II::MRM4r: case X86II::MRM5r:
3184 case X86II::MRM6r: case X86II::MRM7r:
3185 ++FinalSize;
Evan Cheng099109d2009-05-04 22:49:16 +00003186 if (Desc->getOpcode() == X86::LFENCE ||
Bill Wendling6ee76552009-05-28 23:40:46 +00003187 Desc->getOpcode() == X86::MFENCE) {
3188 // Special handling of lfence and mfence;
Evan Cheng099109d2009-05-04 22:49:16 +00003189 FinalSize += sizeRegModRMByte();
Bill Wendling6ee76552009-05-28 23:40:46 +00003190 } else if (Desc->getOpcode() == X86::MONITOR ||
3191 Desc->getOpcode() == X86::MWAIT) {
3192 // Special handling of monitor and mwait.
3193 FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3194 } else {
Evan Cheng099109d2009-05-04 22:49:16 +00003195 ++CurOp;
3196 FinalSize += sizeRegModRMByte();
3197 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003198
3199 if (CurOp != NumOps) {
3200 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3201 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003202 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003203 FinalSize += sizeConstant(Size);
3204 else {
3205 bool dword = false;
3206 if (Opcode == X86::MOV64ri32)
3207 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003208 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003209 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003210 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003211 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003212 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003213 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003214 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003215 FinalSize += sizeJumpTableAddress(dword);
3216 }
3217 }
3218 break;
3219
3220 case X86II::MRM0m: case X86II::MRM1m:
3221 case X86II::MRM2m: case X86II::MRM3m:
3222 case X86II::MRM4m: case X86II::MRM5m:
3223 case X86II::MRM6m: case X86II::MRM7m: {
3224
3225 ++FinalSize;
3226 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
Evan Cheng099109d2009-05-04 22:49:16 +00003227 CurOp += X86AddrNumOperands;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003228
3229 if (CurOp != NumOps) {
3230 const MachineOperand &MO = MI.getOperand(CurOp++);
3231 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003232 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003233 FinalSize += sizeConstant(Size);
3234 else {
3235 bool dword = false;
3236 if (Opcode == X86::MOV64mi32)
3237 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003238 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003239 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003240 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003241 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003242 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003243 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003244 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003245 FinalSize += sizeJumpTableAddress(dword);
3246 }
3247 }
3248 break;
3249 }
3250
3251 case X86II::MRMInitReg:
3252 ++FinalSize;
3253 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3254 FinalSize += sizeRegModRMByte();
3255 ++CurOp;
3256 break;
3257 }
3258
3259 if (!Desc->isVariadic() && CurOp != NumOps) {
Edwin Török3cb88482009-07-08 18:01:40 +00003260 std::string msg;
3261 raw_string_ostream Msg(msg);
3262 Msg << "Cannot determine size: " << MI;
3263 llvm_report_error(Msg.str());
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003264 }
3265
3266
3267 return FinalSize;
3268}
3269
3270
3271unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3272 const TargetInstrDesc &Desc = MI->getDesc();
Chris Lattner144e3482009-07-10 20:53:38 +00003273 bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003274 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003275 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
Chris Lattner739b0102009-06-25 17:28:07 +00003276 if (Desc.getOpcode() == X86::MOVPC32r)
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003277 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003278 return Size;
3279}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003280
Dan Gohman882ab732008-09-30 00:58:23 +00003281/// getGlobalBaseReg - Return a virtual register initialized with the
3282/// the global base register value. Output instructions required to
3283/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003284///
Dan Gohman882ab732008-09-30 00:58:23 +00003285unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3286 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3287 "X86-64 PIC uses RIP relative addressing");
3288
3289 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3290 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3291 if (GlobalBaseReg != 0)
3292 return GlobalBaseReg;
3293
Dan Gohmanb60482f2008-09-23 18:22:58 +00003294 // Insert the set of GlobalBaseReg into the first MBB of the function
3295 MachineBasicBlock &FirstMBB = MF->front();
3296 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
Bill Wendling13ee2e42009-02-11 21:51:19 +00003297 DebugLoc DL = DebugLoc::getUnknownLoc();
3298 if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
Dan Gohmanb60482f2008-09-23 18:22:58 +00003299 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3300 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3301
3302 const TargetInstrInfo *TII = TM.getInstrInfo();
3303 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3304 // only used in JIT code emission as displacement to pc.
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003305 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
Dan Gohmanb60482f2008-09-23 18:22:58 +00003306
3307 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003308 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
Chris Lattner5d1f2572009-07-09 04:39:06 +00003309 if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003310 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3311 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
Bill Wendling13ee2e42009-02-11 21:51:19 +00003312 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
Chris Lattner13d6c2d2009-06-25 17:38:33 +00003313 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 0,
3314 X86II::MO_GOT_ABSOLUTE_ADDRESS);
Dan Gohman882ab732008-09-30 00:58:23 +00003315 } else {
3316 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003317 }
3318
Dan Gohman882ab732008-09-30 00:58:23 +00003319 X86FI->setGlobalBaseReg(GlobalBaseReg);
3320 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003321}