Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1 | .. _advanced: |
| 2 | |
| 3 | Advanced topics |
| 4 | ############### |
| 5 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 6 | For brevity, the rest of this chapter assumes that the following two lines are |
| 7 | present: |
| 8 | |
| 9 | .. code-block:: cpp |
| 10 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 11 | #include <pybind11/pybind11.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 12 | |
Wenzel Jakob | 10e62e1 | 2015-10-15 22:46:07 +0200 | [diff] [blame] | 13 | namespace py = pybind11; |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 14 | |
Wenzel Jakob | de3ad07 | 2016-02-02 11:38:21 +0100 | [diff] [blame] | 15 | Exporting constants and mutable objects |
| 16 | ======================================= |
| 17 | |
| 18 | To expose a C++ constant, use the ``attr`` function to register it in a module |
| 19 | as shown below. The ``int_`` class is one of many small wrapper objects defined |
| 20 | in ``pybind11/pytypes.h``. General objects (including integers) can also be |
| 21 | converted using the function ``cast``. |
| 22 | |
| 23 | .. code-block:: cpp |
| 24 | |
| 25 | PYBIND11_PLUGIN(example) { |
| 26 | py::module m("example", "pybind11 example plugin"); |
| 27 | m.attr("MY_CONSTANT") = py::int_(123); |
| 28 | m.attr("MY_CONSTANT_2") = py::cast(new MyObject()); |
| 29 | } |
| 30 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 31 | Operator overloading |
| 32 | ==================== |
| 33 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 34 | Suppose that we're given the following ``Vector2`` class with a vector addition |
| 35 | and scalar multiplication operation, all implemented using overloaded operators |
| 36 | in C++. |
| 37 | |
| 38 | .. code-block:: cpp |
| 39 | |
| 40 | class Vector2 { |
| 41 | public: |
| 42 | Vector2(float x, float y) : x(x), y(y) { } |
| 43 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 44 | Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); } |
| 45 | Vector2 operator*(float value) const { return Vector2(x * value, y * value); } |
| 46 | Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; } |
| 47 | Vector2& operator*=(float v) { x *= v; y *= v; return *this; } |
| 48 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 49 | friend Vector2 operator*(float f, const Vector2 &v) { |
| 50 | return Vector2(f * v.x, f * v.y); |
| 51 | } |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 52 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 53 | std::string toString() const { |
| 54 | return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; |
| 55 | } |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 56 | private: |
| 57 | float x, y; |
| 58 | }; |
| 59 | |
| 60 | The following snippet shows how the above operators can be conveniently exposed |
| 61 | to Python. |
| 62 | |
| 63 | .. code-block:: cpp |
| 64 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 65 | #include <pybind11/operators.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 66 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 67 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 68 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 69 | |
| 70 | py::class_<Vector2>(m, "Vector2") |
| 71 | .def(py::init<float, float>()) |
| 72 | .def(py::self + py::self) |
| 73 | .def(py::self += py::self) |
| 74 | .def(py::self *= float()) |
| 75 | .def(float() * py::self) |
| 76 | .def("__repr__", &Vector2::toString); |
| 77 | |
| 78 | return m.ptr(); |
| 79 | } |
| 80 | |
| 81 | Note that a line like |
| 82 | |
| 83 | .. code-block:: cpp |
| 84 | |
| 85 | .def(py::self * float()) |
| 86 | |
| 87 | is really just short hand notation for |
| 88 | |
| 89 | .. code-block:: cpp |
| 90 | |
| 91 | .def("__mul__", [](const Vector2 &a, float b) { |
| 92 | return a * b; |
Wenzel Jakob | 382484a | 2016-09-10 15:28:37 +0900 | [diff] [blame] | 93 | }, py::is_operator()) |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 94 | |
| 95 | This can be useful for exposing additional operators that don't exist on the |
Wenzel Jakob | 382484a | 2016-09-10 15:28:37 +0900 | [diff] [blame] | 96 | C++ side, or to perform other types of customization. The ``py::is_operator`` |
| 97 | flag marker is needed to inform pybind11 that this is an operator, which |
| 98 | returns ``NotImplemented`` when invoked with incompatible arguments rather than |
| 99 | throwing a type error. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 100 | |
| 101 | .. note:: |
| 102 | |
| 103 | To use the more convenient ``py::self`` notation, the additional |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 104 | header file :file:`pybind11/operators.h` must be included. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 105 | |
| 106 | .. seealso:: |
| 107 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 108 | The file :file:`tests/test_operator_overloading.cpp` contains a |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 109 | complete example that demonstrates how to work with overloaded operators in |
| 110 | more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 111 | |
| 112 | Callbacks and passing anonymous functions |
| 113 | ========================================= |
| 114 | |
| 115 | The C++11 standard brought lambda functions and the generic polymorphic |
| 116 | function wrapper ``std::function<>`` to the C++ programming language, which |
| 117 | enable powerful new ways of working with functions. Lambda functions come in |
| 118 | two flavors: stateless lambda function resemble classic function pointers that |
| 119 | link to an anonymous piece of code, while stateful lambda functions |
| 120 | additionally depend on captured variables that are stored in an anonymous |
| 121 | *lambda closure object*. |
| 122 | |
| 123 | Here is a simple example of a C++ function that takes an arbitrary function |
| 124 | (stateful or stateless) with signature ``int -> int`` as an argument and runs |
| 125 | it with the value 10. |
| 126 | |
| 127 | .. code-block:: cpp |
| 128 | |
| 129 | int func_arg(const std::function<int(int)> &f) { |
| 130 | return f(10); |
| 131 | } |
| 132 | |
| 133 | The example below is more involved: it takes a function of signature ``int -> int`` |
| 134 | and returns another function of the same kind. The return value is a stateful |
| 135 | lambda function, which stores the value ``f`` in the capture object and adds 1 to |
| 136 | its return value upon execution. |
| 137 | |
| 138 | .. code-block:: cpp |
| 139 | |
| 140 | std::function<int(int)> func_ret(const std::function<int(int)> &f) { |
| 141 | return [f](int i) { |
| 142 | return f(i) + 1; |
| 143 | }; |
| 144 | } |
| 145 | |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 146 | This example demonstrates using python named parameters in C++ callbacks which |
| 147 | requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining |
| 148 | methods of classes: |
| 149 | |
| 150 | .. code-block:: cpp |
| 151 | |
| 152 | py::cpp_function func_cpp() { |
| 153 | return py::cpp_function([](int i) { return i+1; }, |
| 154 | py::arg("number")); |
| 155 | } |
| 156 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 157 | After including the extra header file :file:`pybind11/functional.h`, it is almost |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 158 | trivial to generate binding code for all of these functions. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 159 | |
| 160 | .. code-block:: cpp |
| 161 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 162 | #include <pybind11/functional.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 163 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 164 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 165 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 166 | |
| 167 | m.def("func_arg", &func_arg); |
| 168 | m.def("func_ret", &func_ret); |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 169 | m.def("func_cpp", &func_cpp); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 170 | |
| 171 | return m.ptr(); |
| 172 | } |
| 173 | |
| 174 | The following interactive session shows how to call them from Python. |
| 175 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 176 | .. code-block:: pycon |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 177 | |
| 178 | $ python |
| 179 | >>> import example |
| 180 | >>> def square(i): |
| 181 | ... return i * i |
| 182 | ... |
| 183 | >>> example.func_arg(square) |
| 184 | 100L |
| 185 | >>> square_plus_1 = example.func_ret(square) |
| 186 | >>> square_plus_1(4) |
| 187 | 17L |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 188 | >>> plus_1 = func_cpp() |
| 189 | >>> plus_1(number=43) |
| 190 | 44L |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 191 | |
Wenzel Jakob | a4175d6 | 2015-11-17 08:30:34 +0100 | [diff] [blame] | 192 | .. warning:: |
| 193 | |
| 194 | Keep in mind that passing a function from C++ to Python (or vice versa) |
| 195 | will instantiate a piece of wrapper code that translates function |
Wenzel Jakob | 954b793 | 2016-07-10 10:13:18 +0200 | [diff] [blame] | 196 | invocations between the two languages. Naturally, this translation |
| 197 | increases the computational cost of each function call somewhat. A |
| 198 | problematic situation can arise when a function is copied back and forth |
| 199 | between Python and C++ many times in a row, in which case the underlying |
| 200 | wrappers will accumulate correspondingly. The resulting long sequence of |
| 201 | C++ -> Python -> C++ -> ... roundtrips can significantly decrease |
| 202 | performance. |
| 203 | |
| 204 | There is one exception: pybind11 detects case where a stateless function |
| 205 | (i.e. a function pointer or a lambda function without captured variables) |
| 206 | is passed as an argument to another C++ function exposed in Python. In this |
| 207 | case, there is no overhead. Pybind11 will extract the underlying C++ |
| 208 | function pointer from the wrapped function to sidestep a potential C++ -> |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 209 | Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`. |
Wenzel Jakob | 954b793 | 2016-07-10 10:13:18 +0200 | [diff] [blame] | 210 | |
| 211 | .. note:: |
| 212 | |
| 213 | This functionality is very useful when generating bindings for callbacks in |
| 214 | C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.). |
| 215 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 216 | The file :file:`tests/test_callbacks.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 217 | that demonstrates how to work with callbacks and anonymous functions in |
| 218 | more detail. |
Wenzel Jakob | a4175d6 | 2015-11-17 08:30:34 +0100 | [diff] [blame] | 219 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 220 | Overriding virtual functions in Python |
| 221 | ====================================== |
| 222 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 223 | Suppose that a C++ class or interface has a virtual function that we'd like to |
| 224 | to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is |
| 225 | given as a specific example of how one would do this with traditional C++ |
| 226 | code). |
| 227 | |
| 228 | .. code-block:: cpp |
| 229 | |
| 230 | class Animal { |
| 231 | public: |
| 232 | virtual ~Animal() { } |
| 233 | virtual std::string go(int n_times) = 0; |
| 234 | }; |
| 235 | |
| 236 | class Dog : public Animal { |
| 237 | public: |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 238 | std::string go(int n_times) override { |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 239 | std::string result; |
| 240 | for (int i=0; i<n_times; ++i) |
| 241 | result += "woof! "; |
| 242 | return result; |
| 243 | } |
| 244 | }; |
| 245 | |
| 246 | Let's also suppose that we are given a plain function which calls the |
| 247 | function ``go()`` on an arbitrary ``Animal`` instance. |
| 248 | |
| 249 | .. code-block:: cpp |
| 250 | |
| 251 | std::string call_go(Animal *animal) { |
| 252 | return animal->go(3); |
| 253 | } |
| 254 | |
| 255 | Normally, the binding code for these classes would look as follows: |
| 256 | |
| 257 | .. code-block:: cpp |
| 258 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 259 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 260 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 261 | |
| 262 | py::class_<Animal> animal(m, "Animal"); |
| 263 | animal |
| 264 | .def("go", &Animal::go); |
| 265 | |
| 266 | py::class_<Dog>(m, "Dog", animal) |
| 267 | .def(py::init<>()); |
| 268 | |
| 269 | m.def("call_go", &call_go); |
| 270 | |
| 271 | return m.ptr(); |
| 272 | } |
| 273 | |
| 274 | However, these bindings are impossible to extend: ``Animal`` is not |
| 275 | constructible, and we clearly require some kind of "trampoline" that |
| 276 | redirects virtual calls back to Python. |
| 277 | |
| 278 | Defining a new type of ``Animal`` from within Python is possible but requires a |
| 279 | helper class that is defined as follows: |
| 280 | |
| 281 | .. code-block:: cpp |
| 282 | |
| 283 | class PyAnimal : public Animal { |
| 284 | public: |
| 285 | /* Inherit the constructors */ |
| 286 | using Animal::Animal; |
| 287 | |
| 288 | /* Trampoline (need one for each virtual function) */ |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 289 | std::string go(int n_times) override { |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 290 | PYBIND11_OVERLOAD_PURE( |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 291 | std::string, /* Return type */ |
| 292 | Animal, /* Parent class */ |
| 293 | go, /* Name of function */ |
| 294 | n_times /* Argument(s) */ |
| 295 | ); |
| 296 | } |
| 297 | }; |
| 298 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 299 | The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual |
| 300 | functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 301 | a default implementation. |
Wenzel Jakob | 1e3be73 | 2016-05-24 23:42:05 +0200 | [diff] [blame] | 302 | |
| 303 | There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and |
Jason Rhinelander | 64830e3 | 2016-08-29 16:58:59 -0400 | [diff] [blame] | 304 | :func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument between |
| 305 | the *Parent class* and *Name of the function* slots. This is useful when the |
| 306 | C++ and Python versions of the function have different names, e.g. |
| 307 | ``operator()`` vs ``__call__``. |
Wenzel Jakob | 1e3be73 | 2016-05-24 23:42:05 +0200 | [diff] [blame] | 308 | |
| 309 | The binding code also needs a few minor adaptations (highlighted): |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 310 | |
| 311 | .. code-block:: cpp |
| 312 | :emphasize-lines: 4,6,7 |
| 313 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 314 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 315 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 316 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 317 | py::class_<Animal, PyAnimal /* <--- trampoline*/> animal(m, "Animal"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 318 | animal |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 319 | .def(py::init<>()) |
| 320 | .def("go", &Animal::go); |
| 321 | |
| 322 | py::class_<Dog>(m, "Dog", animal) |
| 323 | .def(py::init<>()); |
| 324 | |
| 325 | m.def("call_go", &call_go); |
| 326 | |
| 327 | return m.ptr(); |
| 328 | } |
| 329 | |
Jason Rhinelander | 6eca083 | 2016-09-08 13:25:45 -0400 | [diff] [blame] | 330 | Importantly, pybind11 is made aware of the trampoline helper class by |
| 331 | specifying it as an extra template argument to :class:`class_`. (This can also |
| 332 | be combined with other template arguments such as a custom holder type; the |
| 333 | order of template types does not matter). Following this, we are able to |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 334 | define a constructor as usual. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 335 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 336 | Note, however, that the above is sufficient for allowing python classes to |
| 337 | extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the |
| 338 | necessary steps required to providing proper overload support for inherited |
| 339 | classes. |
| 340 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 341 | The Python session below shows how to override ``Animal::go`` and invoke it via |
| 342 | a virtual method call. |
| 343 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 344 | .. code-block:: pycon |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 345 | |
| 346 | >>> from example import * |
| 347 | >>> d = Dog() |
| 348 | >>> call_go(d) |
| 349 | u'woof! woof! woof! ' |
| 350 | >>> class Cat(Animal): |
| 351 | ... def go(self, n_times): |
| 352 | ... return "meow! " * n_times |
| 353 | ... |
| 354 | >>> c = Cat() |
| 355 | >>> call_go(c) |
| 356 | u'meow! meow! meow! ' |
| 357 | |
Wenzel Jakob | 9bb97c1 | 2016-06-03 11:19:41 +0200 | [diff] [blame] | 358 | Please take a look at the :ref:`macro_notes` before using this feature. |
Wenzel Jakob | bd986fe | 2016-05-21 10:48:30 +0200 | [diff] [blame] | 359 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 360 | .. seealso:: |
| 361 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 362 | The file :file:`tests/test_virtual_functions.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 363 | example that demonstrates how to override virtual functions using pybind11 |
| 364 | in more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 365 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 366 | .. _virtual_and_inheritance: |
| 367 | |
| 368 | Combining virtual functions and inheritance |
| 369 | =========================================== |
| 370 | |
| 371 | When combining virtual methods with inheritance, you need to be sure to provide |
| 372 | an override for each method for which you want to allow overrides from derived |
| 373 | python classes. For example, suppose we extend the above ``Animal``/``Dog`` |
| 374 | example as follows: |
| 375 | |
| 376 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 377 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 378 | class Animal { |
| 379 | public: |
| 380 | virtual std::string go(int n_times) = 0; |
| 381 | virtual std::string name() { return "unknown"; } |
| 382 | }; |
| 383 | class Dog : public class Animal { |
| 384 | public: |
| 385 | std::string go(int n_times) override { |
| 386 | std::string result; |
| 387 | for (int i=0; i<n_times; ++i) |
| 388 | result += bark() + " "; |
| 389 | return result; |
| 390 | } |
| 391 | virtual std::string bark() { return "woof!"; } |
| 392 | }; |
| 393 | |
| 394 | then the trampoline class for ``Animal`` must, as described in the previous |
| 395 | section, override ``go()`` and ``name()``, but in order to allow python code to |
| 396 | inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that |
| 397 | overrides both the added ``bark()`` method *and* the ``go()`` and ``name()`` |
| 398 | methods inherited from ``Animal`` (even though ``Dog`` doesn't directly |
| 399 | override the ``name()`` method): |
| 400 | |
| 401 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 402 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 403 | class PyAnimal : public Animal { |
| 404 | public: |
| 405 | using Animal::Animal; // Inherit constructors |
| 406 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); } |
| 407 | std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); } |
| 408 | }; |
| 409 | class PyDog : public Dog { |
| 410 | public: |
| 411 | using Dog::Dog; // Inherit constructors |
| 412 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); } |
| 413 | std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); } |
| 414 | std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); } |
| 415 | }; |
| 416 | |
| 417 | A registered class derived from a pybind11-registered class with virtual |
| 418 | methods requires a similar trampoline class, *even if* it doesn't explicitly |
| 419 | declare or override any virtual methods itself: |
| 420 | |
| 421 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 422 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 423 | class Husky : public Dog {}; |
| 424 | class PyHusky : public Husky { |
| 425 | using Dog::Dog; // Inherit constructors |
| 426 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); } |
| 427 | std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); } |
| 428 | std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); } |
| 429 | }; |
| 430 | |
| 431 | There is, however, a technique that can be used to avoid this duplication |
| 432 | (which can be especially helpful for a base class with several virtual |
| 433 | methods). The technique involves using template trampoline classes, as |
| 434 | follows: |
| 435 | |
| 436 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 437 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 438 | template <class AnimalBase = Animal> class PyAnimal : public AnimalBase { |
| 439 | using AnimalBase::AnimalBase; // Inherit constructors |
| 440 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); } |
| 441 | std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); } |
| 442 | }; |
| 443 | template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> { |
| 444 | using PyAnimal<DogBase>::PyAnimal; // Inherit constructors |
| 445 | // Override PyAnimal's pure virtual go() with a non-pure one: |
| 446 | std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); } |
| 447 | std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); } |
| 448 | }; |
| 449 | |
| 450 | This technique has the advantage of requiring just one trampoline method to be |
| 451 | declared per virtual method and pure virtual method override. It does, |
| 452 | however, require the compiler to generate at least as many methods (and |
| 453 | possibly more, if both pure virtual and overridden pure virtual methods are |
| 454 | exposed, as above). |
| 455 | |
| 456 | The classes are then registered with pybind11 using: |
| 457 | |
| 458 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 459 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 460 | py::class_<Animal, PyAnimal<>> animal(m, "Animal"); |
| 461 | py::class_<Dog, PyDog<>> dog(m, "Dog"); |
| 462 | py::class_<Husky, PyDog<Husky>> husky(m, "Husky"); |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 463 | // ... add animal, dog, husky definitions |
| 464 | |
| 465 | Note that ``Husky`` did not require a dedicated trampoline template class at |
| 466 | all, since it neither declares any new virtual methods nor provides any pure |
| 467 | virtual method implementations. |
| 468 | |
| 469 | With either the repeated-virtuals or templated trampoline methods in place, you |
| 470 | can now create a python class that inherits from ``Dog``: |
| 471 | |
| 472 | .. code-block:: python |
| 473 | |
| 474 | class ShihTzu(Dog): |
| 475 | def bark(self): |
| 476 | return "yip!" |
| 477 | |
| 478 | .. seealso:: |
| 479 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 480 | See the file :file:`tests/test_virtual_functions.cpp` for complete examples |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 481 | using both the duplication and templated trampoline approaches. |
| 482 | |
Jason Rhinelander | ec62d97 | 2016-09-09 02:42:51 -0400 | [diff] [blame] | 483 | Extended trampoline class functionality |
| 484 | ======================================= |
| 485 | |
| 486 | The trampoline classes described in the previous sections are, by default, only |
| 487 | initialized when needed. More specifically, they are initialized when a python |
| 488 | class actually inherits from a registered type (instead of merely creating an |
| 489 | instance of the registered type), or when a registered constructor is only |
| 490 | valid for the trampoline class but not the registered class. This is primarily |
| 491 | for performance reasons: when the trampoline class is not needed for anything |
| 492 | except virtual method dispatching, not initializing the trampoline class |
| 493 | improves performance by avoiding needing to do a run-time check to see if the |
| 494 | inheriting python instance has an overloaded method. |
| 495 | |
| 496 | Sometimes, however, it is useful to always initialize a trampoline class as an |
| 497 | intermediate class that does more than just handle virtual method dispatching. |
| 498 | For example, such a class might perform extra class initialization, extra |
| 499 | destruction operations, and might define new members and methods to enable a |
| 500 | more python-like interface to a class. |
| 501 | |
| 502 | In order to tell pybind11 that it should *always* initialize the trampoline |
| 503 | class when creating new instances of a type, the class constructors should be |
| 504 | declared using ``py::init_alias<Args, ...>()`` instead of the usual |
| 505 | ``py::init<Args, ...>()``. This forces construction via the trampoline class, |
| 506 | ensuring member initialization and (eventual) destruction. |
| 507 | |
| 508 | .. seealso:: |
| 509 | |
| 510 | See the file :file:`tests/test_alias_initialization.cpp` for complete examples |
| 511 | showing both normal and forced trampoline instantiation. |
| 512 | |
Wenzel Jakob | 9bb97c1 | 2016-06-03 11:19:41 +0200 | [diff] [blame] | 513 | .. _macro_notes: |
| 514 | |
| 515 | General notes regarding convenience macros |
| 516 | ========================================== |
| 517 | |
| 518 | pybind11 provides a few convenience macros such as |
| 519 | :func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and |
| 520 | ``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated |
| 521 | in the preprocessor (which has no concept of types), they *will* get confused |
| 522 | by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1, |
| 523 | T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates |
| 524 | the beginnning of the next parameter. Use a ``typedef`` to bind the template to |
| 525 | another name and use it in the macro to avoid this problem. |
| 526 | |
| 527 | |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 528 | Global Interpreter Lock (GIL) |
| 529 | ============================= |
| 530 | |
| 531 | The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be |
| 532 | used to acquire and release the global interpreter lock in the body of a C++ |
| 533 | function call. In this way, long-running C++ code can be parallelized using |
| 534 | multiple Python threads. Taking the previous section as an example, this could |
| 535 | be realized as follows (important changes highlighted): |
| 536 | |
| 537 | .. code-block:: cpp |
| 538 | :emphasize-lines: 8,9,33,34 |
| 539 | |
| 540 | class PyAnimal : public Animal { |
| 541 | public: |
| 542 | /* Inherit the constructors */ |
| 543 | using Animal::Animal; |
| 544 | |
| 545 | /* Trampoline (need one for each virtual function) */ |
| 546 | std::string go(int n_times) { |
| 547 | /* Acquire GIL before calling Python code */ |
Wenzel Jakob | a4caa85 | 2015-12-14 12:39:02 +0100 | [diff] [blame] | 548 | py::gil_scoped_acquire acquire; |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 549 | |
| 550 | PYBIND11_OVERLOAD_PURE( |
| 551 | std::string, /* Return type */ |
| 552 | Animal, /* Parent class */ |
| 553 | go, /* Name of function */ |
| 554 | n_times /* Argument(s) */ |
| 555 | ); |
| 556 | } |
| 557 | }; |
| 558 | |
| 559 | PYBIND11_PLUGIN(example) { |
| 560 | py::module m("example", "pybind11 example plugin"); |
| 561 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 562 | py::class_<Animal, PyAnimal> animal(m, "Animal"); |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 563 | animal |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 564 | .def(py::init<>()) |
| 565 | .def("go", &Animal::go); |
| 566 | |
| 567 | py::class_<Dog>(m, "Dog", animal) |
| 568 | .def(py::init<>()); |
| 569 | |
| 570 | m.def("call_go", [](Animal *animal) -> std::string { |
| 571 | /* Release GIL before calling into (potentially long-running) C++ code */ |
Wenzel Jakob | a4caa85 | 2015-12-14 12:39:02 +0100 | [diff] [blame] | 572 | py::gil_scoped_release release; |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 573 | return call_go(animal); |
| 574 | }); |
| 575 | |
| 576 | return m.ptr(); |
| 577 | } |
| 578 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 579 | Passing STL data structures |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 580 | =========================== |
| 581 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 582 | When including the additional header file :file:`pybind11/stl.h`, conversions |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 583 | between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>`` |
| 584 | and the Python ``list``, ``set`` and ``dict`` data structures are automatically |
| 585 | enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported |
| 586 | out of the box with just the core :file:`pybind11/pybind11.h` header. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 587 | |
Wenzel Jakob | fe34241 | 2016-09-06 13:02:29 +0900 | [diff] [blame] | 588 | The major downside of these implicit conversions is that containers must be |
| 589 | converted (i.e. copied) on every Python->C++ and C++->Python transition, which |
| 590 | can have implications on the program semantics and performance. Please read the |
| 591 | next sections for more details and alternative approaches that avoid this. |
Sergey Lyskov | 7520418 | 2016-08-29 22:50:38 -0400 | [diff] [blame] | 592 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 593 | .. note:: |
| 594 | |
Wenzel Jakob | fe34241 | 2016-09-06 13:02:29 +0900 | [diff] [blame] | 595 | Arbitrary nesting of any of these types is possible. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 596 | |
| 597 | .. seealso:: |
| 598 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 599 | The file :file:`tests/test_python_types.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 600 | example that demonstrates how to pass STL data types in more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 601 | |
Wenzel Jakob | fe34241 | 2016-09-06 13:02:29 +0900 | [diff] [blame] | 602 | .. _opaque: |
| 603 | |
| 604 | Treating STL data structures as opaque objects |
| 605 | ============================================== |
| 606 | |
| 607 | pybind11 heavily relies on a template matching mechanism to convert parameters |
| 608 | and return values that are constructed from STL data types such as vectors, |
| 609 | linked lists, hash tables, etc. This even works in a recursive manner, for |
| 610 | instance to deal with lists of hash maps of pairs of elementary and custom |
| 611 | types, etc. |
| 612 | |
| 613 | However, a fundamental limitation of this approach is that internal conversions |
| 614 | between Python and C++ types involve a copy operation that prevents |
| 615 | pass-by-reference semantics. What does this mean? |
| 616 | |
| 617 | Suppose we bind the following function |
| 618 | |
| 619 | .. code-block:: cpp |
| 620 | |
| 621 | void append_1(std::vector<int> &v) { |
| 622 | v.push_back(1); |
| 623 | } |
| 624 | |
| 625 | and call it from Python, the following happens: |
| 626 | |
| 627 | .. code-block:: pycon |
| 628 | |
| 629 | >>> v = [5, 6] |
| 630 | >>> append_1(v) |
| 631 | >>> print(v) |
| 632 | [5, 6] |
| 633 | |
| 634 | As you can see, when passing STL data structures by reference, modifications |
| 635 | are not propagated back the Python side. A similar situation arises when |
| 636 | exposing STL data structures using the ``def_readwrite`` or ``def_readonly`` |
| 637 | functions: |
| 638 | |
| 639 | .. code-block:: cpp |
| 640 | |
| 641 | /* ... definition ... */ |
| 642 | |
| 643 | class MyClass { |
| 644 | std::vector<int> contents; |
| 645 | }; |
| 646 | |
| 647 | /* ... binding code ... */ |
| 648 | |
| 649 | py::class_<MyClass>(m, "MyClass") |
| 650 | .def(py::init<>) |
| 651 | .def_readwrite("contents", &MyClass::contents); |
| 652 | |
| 653 | In this case, properties can be read and written in their entirety. However, an |
| 654 | ``append`` operaton involving such a list type has no effect: |
| 655 | |
| 656 | .. code-block:: pycon |
| 657 | |
| 658 | >>> m = MyClass() |
| 659 | >>> m.contents = [5, 6] |
| 660 | >>> print(m.contents) |
| 661 | [5, 6] |
| 662 | >>> m.contents.append(7) |
| 663 | >>> print(m.contents) |
| 664 | [5, 6] |
| 665 | |
| 666 | Finally, the involved copy operations can be costly when dealing with very |
| 667 | large lists. To deal with all of the above situations, pybind11 provides a |
| 668 | macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based |
| 669 | conversion machinery of types, thus rendering them *opaque*. The contents of |
| 670 | opaque objects are never inspected or extracted, hence they *can* be passed by |
| 671 | reference. For instance, to turn ``std::vector<int>`` into an opaque type, add |
| 672 | the declaration |
| 673 | |
| 674 | .. code-block:: cpp |
| 675 | |
| 676 | PYBIND11_MAKE_OPAQUE(std::vector<int>); |
| 677 | |
| 678 | before any binding code (e.g. invocations to ``class_::def()``, etc.). This |
| 679 | macro must be specified at the top level (and outside of any namespaces), since |
| 680 | it instantiates a partial template overload. If your binding code consists of |
| 681 | multiple compilation units, it must be present in every file preceding any |
| 682 | usage of ``std::vector<int>``. Opaque types must also have a corresponding |
| 683 | ``class_`` declaration to associate them with a name in Python, and to define a |
| 684 | set of available operations, e.g.: |
| 685 | |
| 686 | .. code-block:: cpp |
| 687 | |
| 688 | py::class_<std::vector<int>>(m, "IntVector") |
| 689 | .def(py::init<>()) |
| 690 | .def("clear", &std::vector<int>::clear) |
| 691 | .def("pop_back", &std::vector<int>::pop_back) |
| 692 | .def("__len__", [](const std::vector<int> &v) { return v.size(); }) |
| 693 | .def("__iter__", [](std::vector<int> &v) { |
| 694 | return py::make_iterator(v.begin(), v.end()); |
| 695 | }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */ |
| 696 | // .... |
| 697 | |
| 698 | The ability to expose STL containers as native Python objects is a fairly |
| 699 | common request, hence pybind11 also provides an optional header file named |
| 700 | :file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try |
| 701 | to match the behavior of their native Python counterparts as much as possible. |
| 702 | |
| 703 | The following example showcases usage of :file:`pybind11/stl_bind.h`: |
| 704 | |
| 705 | .. code-block:: cpp |
| 706 | |
| 707 | // Don't forget this |
| 708 | #include <pybind11/stl_bind.h> |
| 709 | |
| 710 | PYBIND11_MAKE_OPAQUE(std::vector<int>); |
| 711 | PYBIND11_MAKE_OPAQUE(std::map<std::string, double>); |
| 712 | |
| 713 | // ... |
| 714 | |
| 715 | // later in binding code: |
| 716 | py::bind_vector<std::vector<int>>(m, "VectorInt"); |
| 717 | py::bind_map<std::map<std::string, double>>(m, "MapStringDouble"); |
| 718 | |
| 719 | Please take a look at the :ref:`macro_notes` before using the |
| 720 | ``PYBIND11_MAKE_OPAQUE`` macro. |
| 721 | |
| 722 | .. seealso:: |
| 723 | |
| 724 | The file :file:`tests/test_opaque_types.cpp` contains a complete |
| 725 | example that demonstrates how to create and expose opaque types using |
| 726 | pybind11 in more detail. |
| 727 | |
| 728 | The file :file:`tests/test_stl_binders.cpp` shows how to use the |
| 729 | convenience STL container wrappers. |
| 730 | |
| 731 | |
Wenzel Jakob | b282595 | 2016-04-13 23:33:00 +0200 | [diff] [blame] | 732 | Binding sequence data types, iterators, the slicing protocol, etc. |
| 733 | ================================================================== |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 734 | |
| 735 | Please refer to the supplemental example for details. |
| 736 | |
| 737 | .. seealso:: |
| 738 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 739 | The file :file:`tests/test_sequences_and_iterators.cpp` contains a |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 740 | complete example that shows how to bind a sequence data type, including |
| 741 | length queries (``__len__``), iterators (``__iter__``), the slicing |
| 742 | protocol and other kinds of useful operations. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 743 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 744 | Return value policies |
| 745 | ===================== |
| 746 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 747 | Python and C++ use wildly different ways of managing the memory and lifetime of |
| 748 | objects managed by them. This can lead to issues when creating bindings for |
| 749 | functions that return a non-trivial type. Just by looking at the type |
| 750 | information, it is not clear whether Python should take charge of the returned |
| 751 | value and eventually free its resources, or if this is handled on the C++ side. |
| 752 | For this reason, pybind11 provides a several `return value policy` annotations |
| 753 | that can be passed to the :func:`module::def` and :func:`class_::def` |
Wenzel Jakob | 61d67f0 | 2015-12-14 12:53:06 +0100 | [diff] [blame] | 754 | functions. The default policy is :enum:`return_value_policy::automatic`. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 755 | |
Wenzel Jakob | bf09958 | 2016-08-22 12:52:02 +0200 | [diff] [blame] | 756 | Return value policies can also be applied to properties, in which case the |
| 757 | arguments must be passed through the :class:`cpp_function` constructor: |
| 758 | |
| 759 | .. code-block:: cpp |
| 760 | |
| 761 | class_<MyClass>(m, "MyClass") |
| 762 | def_property("data" |
| 763 | py::cpp_function(&MyClass::getData, py::return_value_policy::copy), |
| 764 | py::cpp_function(&MyClass::setData) |
| 765 | ); |
| 766 | |
| 767 | The following table provides an overview of the available return value policies: |
| 768 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 769 | .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}| |
| 770 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 771 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 772 | | Return value policy | Description | |
| 773 | +==================================================+============================================================================+ |
| 774 | | :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy | |
| 775 | | | :enum:`return_value_policy::take_ownership` when the return value is a | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 776 | | | pointer. Otherwise, it uses :enum:`return_value::move` or | |
| 777 | | | :enum:`return_value::copy` for rvalue and lvalue references, respectively. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 778 | | | See below for a description of what all of these different policies do. | |
| 779 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 780 | | :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the | |
Wenzel Jakob | 37e1f61 | 2016-06-22 14:29:13 +0200 | [diff] [blame] | 781 | | | return value is a pointer. This is the default conversion policy for | |
| 782 | | | function arguments when calling Python functions manually from C++ code | |
| 783 | | | (i.e. via handle::operator()). You probably won't need to use this. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 784 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 785 | | :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take | |
| 786 | | | ownership. Python will call the destructor and delete operator when the | |
| 787 | | | object's reference count reaches zero. Undefined behavior ensues when the | |
Wenzel Jakob | f53e300 | 2016-06-30 14:59:23 +0200 | [diff] [blame] | 788 | | | C++ side does the same. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 789 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 790 | | :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. | |
| 791 | | | This policy is comparably safe because the lifetimes of the two instances | |
| 792 | | | are decoupled. | |
| 793 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 794 | | :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance | |
| 795 | | | that will be owned by Python. This policy is comparably safe because the | |
| 796 | | | lifetimes of the two instances (move source and destination) are decoupled.| |
| 797 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 798 | | :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is | |
| 799 | | | responsible for managing the object's lifetime and deallocating it when | |
| 800 | | | it is no longer used. Warning: undefined behavior will ensue when the C++ | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 801 | | | side deletes an object that is still referenced and used by Python. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 802 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
Wenzel Jakob | bf09958 | 2016-08-22 12:52:02 +0200 | [diff] [blame] | 803 | | :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime | |
| 804 | | | of a parent object, namely the implicit ``this``, or ``self`` argument of | |
| 805 | | | the called method or property. Internally, this policy works just like | |
| 806 | | | :enum:`return_value_policy::reference` but additionally applies a | |
| 807 | | | ``keep_alive<0, 1>`` *call policy* (described in the next section) that | |
| 808 | | | prevents the parent object from being garbage collected as long as the | |
| 809 | | | return value is referenced by Python. This is the default policy for | |
| 810 | | | property getters created via ``def_property``, ``def_readwrite``, etc.) | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 811 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 812 | |
Wenzel Jakob | fb6aed2 | 2016-07-18 20:29:53 +0200 | [diff] [blame] | 813 | .. warning:: |
| 814 | |
Jason Rhinelander | efc2aa7 | 2016-08-10 11:38:33 -0400 | [diff] [blame] | 815 | Code with invalid return value policies might access unitialized memory or |
| 816 | free data structures multiple times, which can lead to hard-to-debug |
Wenzel Jakob | fb6aed2 | 2016-07-18 20:29:53 +0200 | [diff] [blame] | 817 | non-determinism and segmentation faults, hence it is worth spending the |
| 818 | time to understand all the different options in the table above. |
| 819 | |
Jason Rhinelander | efc2aa7 | 2016-08-10 11:38:33 -0400 | [diff] [blame] | 820 | One important aspect of the above policies is that they only apply to instances |
| 821 | which pybind11 has *not* seen before, in which case the policy clarifies |
| 822 | essential questions about the return value's lifetime and ownership. When |
| 823 | pybind11 knows the instance already (as identified by its type and address in |
Wenzel Jakob | fb6aed2 | 2016-07-18 20:29:53 +0200 | [diff] [blame] | 824 | memory), it will return the existing Python object wrapper rather than creating |
Wenzel Jakob | bf09958 | 2016-08-22 12:52:02 +0200 | [diff] [blame] | 825 | a new copy. |
nafur | 717df75 | 2016-06-28 18:07:11 +0200 | [diff] [blame] | 826 | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 827 | .. note:: |
| 828 | |
| 829 | The next section on :ref:`call_policies` discusses *call policies* that can be |
| 830 | specified *in addition* to a return value policy from the list above. Call |
| 831 | policies indicate reference relationships that can involve both return values |
| 832 | and parameters of functions. |
| 833 | |
| 834 | .. note:: |
| 835 | |
| 836 | As an alternative to elaborate call policies and lifetime management logic, |
| 837 | consider using smart pointers (see the section on :ref:`smart_pointers` for |
| 838 | details). Smart pointers can tell whether an object is still referenced from |
| 839 | C++ or Python, which generally eliminates the kinds of inconsistencies that |
| 840 | can lead to crashes or undefined behavior. For functions returning smart |
| 841 | pointers, it is not necessary to specify a return value policy. |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 842 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 843 | .. _call_policies: |
| 844 | |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 845 | Additional call policies |
| 846 | ======================== |
| 847 | |
| 848 | In addition to the above return value policies, further `call policies` can be |
| 849 | specified to indicate dependencies between parameters. There is currently just |
| 850 | one policy named ``keep_alive<Nurse, Patient>``, which indicates that the |
| 851 | argument with index ``Patient`` should be kept alive at least until the |
Wenzel Jakob | 0b63231 | 2016-08-18 10:58:21 +0200 | [diff] [blame] | 852 | argument with index ``Nurse`` is freed by the garbage collector. Argument |
| 853 | indices start at one, while zero refers to the return value. For methods, index |
| 854 | ``1`` refers to the implicit ``this`` pointer, while regular arguments begin at |
| 855 | index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse`` |
| 856 | with value ``None`` is detected at runtime, the call policy does nothing. |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 857 | |
Wenzel Jakob | 0b63231 | 2016-08-18 10:58:21 +0200 | [diff] [blame] | 858 | This feature internally relies on the ability to create a *weak reference* to |
| 859 | the nurse object, which is permitted by all classes exposed via pybind11. When |
| 860 | the nurse object does not support weak references, an exception will be thrown. |
| 861 | |
| 862 | Consider the following example: here, the binding code for a list append |
| 863 | operation ties the lifetime of the newly added element to the underlying |
| 864 | container: |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 865 | |
| 866 | .. code-block:: cpp |
| 867 | |
| 868 | py::class_<List>(m, "List") |
| 869 | .def("append", &List::append, py::keep_alive<1, 2>()); |
| 870 | |
| 871 | .. note:: |
| 872 | |
| 873 | ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse, |
| 874 | Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient == |
| 875 | 0) policies from Boost.Python. |
| 876 | |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 877 | .. seealso:: |
| 878 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 879 | The file :file:`tests/test_keep_alive.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 880 | that demonstrates using :class:`keep_alive` in more detail. |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 881 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 882 | Implicit type conversions |
| 883 | ========================= |
| 884 | |
| 885 | Suppose that instances of two types ``A`` and ``B`` are used in a project, and |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 886 | that an ``A`` can easily be converted into an instance of type ``B`` (examples of this |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 887 | could be a fixed and an arbitrary precision number type). |
| 888 | |
| 889 | .. code-block:: cpp |
| 890 | |
| 891 | py::class_<A>(m, "A") |
| 892 | /// ... members ... |
| 893 | |
| 894 | py::class_<B>(m, "B") |
| 895 | .def(py::init<A>()) |
| 896 | /// ... members ... |
| 897 | |
| 898 | m.def("func", |
| 899 | [](const B &) { /* .... */ } |
| 900 | ); |
| 901 | |
| 902 | To invoke the function ``func`` using a variable ``a`` containing an ``A`` |
| 903 | instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++ |
| 904 | will automatically apply an implicit type conversion, which makes it possible |
| 905 | to directly write ``func(a)``. |
| 906 | |
| 907 | In this situation (i.e. where ``B`` has a constructor that converts from |
| 908 | ``A``), the following statement enables similar implicit conversions on the |
| 909 | Python side: |
| 910 | |
| 911 | .. code-block:: cpp |
| 912 | |
| 913 | py::implicitly_convertible<A, B>(); |
| 914 | |
Wenzel Jakob | 3eeea6f | 2016-06-30 18:10:28 +0200 | [diff] [blame] | 915 | .. note:: |
| 916 | |
| 917 | Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom |
| 918 | data type that is exposed to Python via pybind11. |
| 919 | |
Wenzel Jakob | f88af0c | 2016-06-22 13:52:31 +0200 | [diff] [blame] | 920 | .. _static_properties: |
| 921 | |
| 922 | Static properties |
| 923 | ================= |
| 924 | |
| 925 | The section on :ref:`properties` discussed the creation of instance properties |
| 926 | that are implemented in terms of C++ getters and setters. |
| 927 | |
| 928 | Static properties can also be created in a similar way to expose getters and |
| 929 | setters of static class attributes. It is important to note that the implicit |
| 930 | ``self`` argument also exists in this case and is used to pass the Python |
| 931 | ``type`` subclass instance. This parameter will often not be needed by the C++ |
| 932 | side, and the following example illustrates how to instantiate a lambda getter |
| 933 | function that ignores it: |
| 934 | |
| 935 | .. code-block:: cpp |
| 936 | |
| 937 | py::class_<Foo>(m, "Foo") |
| 938 | .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); }); |
| 939 | |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 940 | Unique pointers |
| 941 | =============== |
| 942 | |
| 943 | Given a class ``Example`` with Python bindings, it's possible to return |
| 944 | instances wrapped in C++11 unique pointers, like so |
| 945 | |
| 946 | .. code-block:: cpp |
| 947 | |
| 948 | std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); } |
| 949 | |
| 950 | .. code-block:: cpp |
| 951 | |
| 952 | m.def("create_example", &create_example); |
| 953 | |
| 954 | In other words, there is nothing special that needs to be done. While returning |
| 955 | unique pointers in this way is allowed, it is *illegal* to use them as function |
| 956 | arguments. For instance, the following function signature cannot be processed |
| 957 | by pybind11. |
| 958 | |
| 959 | .. code-block:: cpp |
| 960 | |
| 961 | void do_something_with_example(std::unique_ptr<Example> ex) { ... } |
| 962 | |
| 963 | The above signature would imply that Python needs to give up ownership of an |
| 964 | object that is passed to this function, which is generally not possible (for |
| 965 | instance, the object might be referenced elsewhere). |
| 966 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 967 | .. _smart_pointers: |
| 968 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 969 | Smart pointers |
| 970 | ============== |
| 971 | |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 972 | This section explains how to pass values that are wrapped in "smart" pointer |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 973 | types with internal reference counting. For the simpler C++11 unique pointers, |
| 974 | refer to the previous section. |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 975 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 976 | The binding generator for classes, :class:`class_`, can be passed a template |
| 977 | type that denotes a special *holder* type that is used to manage references to |
| 978 | the object. If no such holder type template argument is given, the default for |
| 979 | a type named ``Type`` is ``std::unique_ptr<Type>``, which means that the object |
| 980 | is deallocated when Python's reference count goes to zero. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 981 | |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 982 | It is possible to switch to other types of reference counting wrappers or smart |
| 983 | pointers, which is useful in codebases that rely on them. For instance, the |
| 984 | following snippet causes ``std::shared_ptr`` to be used instead. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 985 | |
| 986 | .. code-block:: cpp |
| 987 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 988 | py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example"); |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 989 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 990 | Note that any particular class can only be associated with a single holder type. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 991 | |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 992 | To enable transparent conversions for functions that take shared pointers as an |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 993 | argument or that return them, a macro invocation similar to the following must |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 994 | be declared at the top level before any binding code: |
| 995 | |
| 996 | .. code-block:: cpp |
| 997 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 998 | PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>); |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 999 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1000 | .. note:: |
Wenzel Jakob | 61d67f0 | 2015-12-14 12:53:06 +0100 | [diff] [blame] | 1001 | |
| 1002 | The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a |
| 1003 | placeholder name that is used as a template parameter of the second |
| 1004 | argument. Thus, feel free to use any identifier, but use it consistently on |
| 1005 | both sides; also, don't use the name of a type that already exists in your |
| 1006 | codebase. |
| 1007 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1008 | One potential stumbling block when using holder types is that they need to be |
| 1009 | applied consistently. Can you guess what's broken about the following binding |
| 1010 | code? |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 1011 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1012 | .. code-block:: cpp |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 1013 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 1014 | PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>); |
| 1015 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1016 | class Child { }; |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1017 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1018 | class Parent { |
| 1019 | public: |
| 1020 | Parent() : child(std::make_shared<Child>()) { } |
| 1021 | Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */ |
| 1022 | private: |
| 1023 | std::shared_ptr<Child> child; |
| 1024 | }; |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1025 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1026 | PYBIND11_PLUGIN(example) { |
| 1027 | py::module m("example"); |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1028 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1029 | py::class_<Child, std::shared_ptr<Child>>(m, "Child"); |
| 1030 | |
| 1031 | py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent") |
| 1032 | .def(py::init<>()) |
| 1033 | .def("get_child", &Parent::get_child); |
| 1034 | |
| 1035 | return m.ptr(); |
| 1036 | } |
| 1037 | |
| 1038 | The following Python code will cause undefined behavior (and likely a |
| 1039 | segmentation fault). |
| 1040 | |
| 1041 | .. code-block:: python |
| 1042 | |
| 1043 | from example import Parent |
| 1044 | print(Parent().get_child()) |
| 1045 | |
| 1046 | The problem is that ``Parent::get_child()`` returns a pointer to an instance of |
| 1047 | ``Child``, but the fact that this instance is already managed by |
| 1048 | ``std::shared_ptr<...>`` is lost when passing raw pointers. In this case, |
| 1049 | pybind11 will create a second independent ``std::shared_ptr<...>`` that also |
| 1050 | claims ownership of the pointer. In the end, the object will be freed **twice** |
| 1051 | since these shared pointers have no way of knowing about each other. |
| 1052 | |
| 1053 | There are two ways to resolve this issue: |
| 1054 | |
| 1055 | 1. For types that are managed by a smart pointer class, never use raw pointers |
| 1056 | in function arguments or return values. In other words: always consistently |
| 1057 | wrap pointers into their designated holder types (such as |
| 1058 | ``std::shared_ptr<...>``). In this case, the signature of ``get_child()`` |
| 1059 | should be modified as follows: |
| 1060 | |
| 1061 | .. code-block:: cpp |
| 1062 | |
| 1063 | std::shared_ptr<Child> get_child() { return child; } |
| 1064 | |
| 1065 | 2. Adjust the definition of ``Child`` by specifying |
| 1066 | ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a |
| 1067 | base class. This adds a small bit of information to ``Child`` that allows |
| 1068 | pybind11 to realize that there is already an existing |
| 1069 | ``std::shared_ptr<...>`` and communicate with it. In this case, the |
| 1070 | declaration of ``Child`` should look as follows: |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1071 | |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 1072 | .. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this |
| 1073 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1074 | .. code-block:: cpp |
| 1075 | |
| 1076 | class Child : public std::enable_shared_from_this<Child> { }; |
| 1077 | |
Wenzel Jakob | 9bb97c1 | 2016-06-03 11:19:41 +0200 | [diff] [blame] | 1078 | |
| 1079 | Please take a look at the :ref:`macro_notes` before using this feature. |
| 1080 | |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1081 | .. seealso:: |
| 1082 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1083 | The file :file:`tests/test_smart_ptr.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1084 | that demonstrates how to work with custom reference-counting holder types |
| 1085 | in more detail. |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1086 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1087 | .. _custom_constructors: |
| 1088 | |
| 1089 | Custom constructors |
| 1090 | =================== |
| 1091 | |
| 1092 | The syntax for binding constructors was previously introduced, but it only |
| 1093 | works when a constructor with the given parameters actually exists on the C++ |
| 1094 | side. To extend this to more general cases, let's take a look at what actually |
| 1095 | happens under the hood: the following statement |
| 1096 | |
| 1097 | .. code-block:: cpp |
| 1098 | |
| 1099 | py::class_<Example>(m, "Example") |
| 1100 | .def(py::init<int>()); |
| 1101 | |
| 1102 | is short hand notation for |
| 1103 | |
| 1104 | .. code-block:: cpp |
| 1105 | |
| 1106 | py::class_<Example>(m, "Example") |
| 1107 | .def("__init__", |
| 1108 | [](Example &instance, int arg) { |
| 1109 | new (&instance) Example(arg); |
| 1110 | } |
| 1111 | ); |
| 1112 | |
| 1113 | In other words, :func:`init` creates an anonymous function that invokes an |
| 1114 | in-place constructor. Memory allocation etc. is already take care of beforehand |
| 1115 | within pybind11. |
| 1116 | |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1117 | .. _classes_with_non_public_destructors: |
| 1118 | |
| 1119 | Classes with non-public destructors |
| 1120 | =================================== |
| 1121 | |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1122 | If a class has a private or protected destructor (as might e.g. be the case in |
| 1123 | a singleton pattern), a compile error will occur when creating bindings via |
| 1124 | pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that |
| 1125 | is responsible for managing the lifetime of instances will reference the |
| 1126 | destructor even if no deallocations ever take place. In order to expose classes |
| 1127 | with private or protected destructors, it is possible to override the holder |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 1128 | type via a holder type argument to ``class_``. Pybind11 provides a helper class |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1129 | ``py::nodelete`` that disables any destructor invocations. In this case, it is |
| 1130 | crucial that instances are deallocated on the C++ side to avoid memory leaks. |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1131 | |
| 1132 | .. code-block:: cpp |
| 1133 | |
| 1134 | /* ... definition ... */ |
| 1135 | |
| 1136 | class MyClass { |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1137 | private: |
| 1138 | ~MyClass() { } |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1139 | }; |
| 1140 | |
| 1141 | /* ... binding code ... */ |
| 1142 | |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1143 | py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass") |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1144 | .def(py::init<>) |
| 1145 | |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1146 | .. _catching_and_throwing_exceptions: |
| 1147 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1148 | Catching and throwing exceptions |
| 1149 | ================================ |
| 1150 | |
| 1151 | When C++ code invoked from Python throws an ``std::exception``, it is |
| 1152 | automatically converted into a Python ``Exception``. pybind11 defines multiple |
| 1153 | special exception classes that will map to different types of Python |
| 1154 | exceptions: |
| 1155 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 1156 | .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}| |
| 1157 | |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1158 | +--------------------------------------+------------------------------+ |
| 1159 | | C++ exception type | Python exception type | |
| 1160 | +======================================+==============================+ |
| 1161 | | :class:`std::exception` | ``RuntimeError`` | |
| 1162 | +--------------------------------------+------------------------------+ |
| 1163 | | :class:`std::bad_alloc` | ``MemoryError`` | |
| 1164 | +--------------------------------------+------------------------------+ |
| 1165 | | :class:`std::domain_error` | ``ValueError`` | |
| 1166 | +--------------------------------------+------------------------------+ |
| 1167 | | :class:`std::invalid_argument` | ``ValueError`` | |
| 1168 | +--------------------------------------+------------------------------+ |
| 1169 | | :class:`std::length_error` | ``ValueError`` | |
| 1170 | +--------------------------------------+------------------------------+ |
| 1171 | | :class:`std::out_of_range` | ``ValueError`` | |
| 1172 | +--------------------------------------+------------------------------+ |
| 1173 | | :class:`std::range_error` | ``ValueError`` | |
| 1174 | +--------------------------------------+------------------------------+ |
| 1175 | | :class:`pybind11::stop_iteration` | ``StopIteration`` (used to | |
| 1176 | | | implement custom iterators) | |
| 1177 | +--------------------------------------+------------------------------+ |
| 1178 | | :class:`pybind11::index_error` | ``IndexError`` (used to | |
| 1179 | | | indicate out of bounds | |
| 1180 | | | accesses in ``__getitem__``, | |
| 1181 | | | ``__setitem__``, etc.) | |
| 1182 | +--------------------------------------+------------------------------+ |
Sergey Lyskov | a95bde1 | 2016-05-08 19:31:55 -0400 | [diff] [blame] | 1183 | | :class:`pybind11::value_error` | ``ValueError`` (used to | |
| 1184 | | | indicate wrong value passed | |
| 1185 | | | in ``container.remove(...)`` | |
| 1186 | +--------------------------------------+------------------------------+ |
Jason Rhinelander | 5aa85be | 2016-08-11 21:22:05 -0400 | [diff] [blame] | 1187 | | :class:`pybind11::key_error` | ``KeyError`` (used to | |
| 1188 | | | indicate out of bounds | |
| 1189 | | | accesses in ``__getitem__``, | |
| 1190 | | | ``__setitem__`` in dict-like | |
| 1191 | | | objects, etc.) | |
| 1192 | +--------------------------------------+------------------------------+ |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1193 | | :class:`pybind11::error_already_set` | Indicates that the Python | |
| 1194 | | | exception flag has already | |
| 1195 | | | been initialized | |
| 1196 | +--------------------------------------+------------------------------+ |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1197 | |
| 1198 | When a Python function invoked from C++ throws an exception, it is converted |
| 1199 | into a C++ exception of type :class:`error_already_set` whose string payload |
| 1200 | contains a textual summary. |
| 1201 | |
| 1202 | There is also a special exception :class:`cast_error` that is thrown by |
| 1203 | :func:`handle::call` when the input arguments cannot be converted to Python |
| 1204 | objects. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1205 | |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1206 | Registering custom exception translators |
| 1207 | ======================================== |
| 1208 | |
| 1209 | If the default exception conversion policy described |
| 1210 | :ref:`above <catching_and_throwing_exceptions>` |
| 1211 | is insufficient, pybind11 also provides support for registering custom |
| 1212 | exception translators. |
| 1213 | |
| 1214 | The function ``register_exception_translator(translator)`` takes a stateless |
| 1215 | callable (e.g. a function pointer or a lambda function without captured |
| 1216 | variables) with the following call signature: ``void(std::exception_ptr)``. |
| 1217 | |
| 1218 | When a C++ exception is thrown, registered exception translators are tried |
| 1219 | in reverse order of registration (i.e. the last registered translator gets |
| 1220 | a first shot at handling the exception). |
| 1221 | |
| 1222 | Inside the translator, ``std::rethrow_exception`` should be used within |
| 1223 | a try block to re-throw the exception. A catch clause can then use |
| 1224 | ``PyErr_SetString`` to set a Python exception as demonstrated |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1225 | in :file:`tests/test_exceptions.cpp`. |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1226 | |
| 1227 | This example also demonstrates how to create custom exception types |
| 1228 | with ``py::exception``. |
| 1229 | |
| 1230 | The following example demonstrates this for a hypothetical exception class |
| 1231 | ``MyCustomException``: |
| 1232 | |
| 1233 | .. code-block:: cpp |
| 1234 | |
| 1235 | py::register_exception_translator([](std::exception_ptr p) { |
| 1236 | try { |
| 1237 | if (p) std::rethrow_exception(p); |
| 1238 | } catch (const MyCustomException &e) { |
| 1239 | PyErr_SetString(PyExc_RuntimeError, e.what()); |
| 1240 | } |
| 1241 | }); |
| 1242 | |
| 1243 | Multiple exceptions can be handled by a single translator. If the exception is |
| 1244 | not caught by the current translator, the previously registered one gets a |
| 1245 | chance. |
| 1246 | |
| 1247 | If none of the registered exception translators is able to handle the |
| 1248 | exception, it is handled by the default converter as described in the previous |
| 1249 | section. |
| 1250 | |
| 1251 | .. note:: |
| 1252 | |
| 1253 | You must either call ``PyErr_SetString`` for every exception caught in a |
| 1254 | custom exception translator. Failure to do so will cause Python to crash |
| 1255 | with ``SystemError: error return without exception set``. |
| 1256 | |
| 1257 | Exceptions that you do not plan to handle should simply not be caught. |
| 1258 | |
| 1259 | You may also choose to explicity (re-)throw the exception to delegate it to |
| 1260 | the other existing exception translators. |
| 1261 | |
| 1262 | The ``py::exception`` wrapper for creating custom exceptions cannot (yet) |
Jason Rhinelander | 6b52c83 | 2016-09-06 12:27:00 -0400 | [diff] [blame] | 1263 | be used as a base type. |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1264 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1265 | .. _eigen: |
| 1266 | |
| 1267 | Transparent conversion of dense and sparse Eigen data types |
| 1268 | =========================================================== |
| 1269 | |
| 1270 | Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to |
| 1271 | its popularity and widespread adoption, pybind11 provides transparent |
| 1272 | conversion support between Eigen and Scientific Python linear algebra data types. |
| 1273 | |
| 1274 | Specifically, when including the optional header file :file:`pybind11/eigen.h`, |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1275 | pybind11 will automatically and transparently convert |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1276 | |
| 1277 | 1. Static and dynamic Eigen dense vectors and matrices to instances of |
| 1278 | ``numpy.ndarray`` (and vice versa). |
| 1279 | |
Jason Rhinelander | b68d8fc | 2016-08-04 16:39:30 -0400 | [diff] [blame] | 1280 | 2. Returned matrix expressions such as blocks (including columns or rows) and |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1281 | diagonals will be converted to ``numpy.ndarray`` of the expression |
| 1282 | values. |
| 1283 | |
Jason Rhinelander | b68d8fc | 2016-08-04 16:39:30 -0400 | [diff] [blame] | 1284 | 3. Returned matrix-like objects such as Eigen::DiagonalMatrix or |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1285 | Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the |
| 1286 | expressed value. |
| 1287 | |
Jason Rhinelander | b68d8fc | 2016-08-04 16:39:30 -0400 | [diff] [blame] | 1288 | 4. Eigen sparse vectors and matrices to instances of |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1289 | ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa). |
| 1290 | |
| 1291 | This makes it possible to bind most kinds of functions that rely on these types. |
| 1292 | One major caveat are functions that take Eigen matrices *by reference* and modify |
| 1293 | them somehow, in which case the information won't be propagated to the caller. |
| 1294 | |
| 1295 | .. code-block:: cpp |
| 1296 | |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1297 | /* The Python bindings of these functions won't replicate |
| 1298 | the intended effect of modifying the function arguments */ |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1299 | void scale_by_2(Eigen::Vector3f &v) { |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1300 | v *= 2; |
| 1301 | } |
| 1302 | void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) { |
| 1303 | v *= 2; |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1304 | } |
| 1305 | |
| 1306 | To see why this is, refer to the section on :ref:`opaque` (although that |
| 1307 | section specifically covers STL data types, the underlying issue is the same). |
| 1308 | The next two sections discuss an efficient alternative for exposing the |
| 1309 | underlying native Eigen types as opaque objects in a way that still integrates |
| 1310 | with NumPy and SciPy. |
| 1311 | |
| 1312 | .. [#f1] http://eigen.tuxfamily.org |
| 1313 | |
| 1314 | .. seealso:: |
| 1315 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1316 | The file :file:`tests/test_eigen.cpp` contains a complete example that |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1317 | shows how to pass Eigen sparse and dense data types in more detail. |
| 1318 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1319 | Buffer protocol |
| 1320 | =============== |
| 1321 | |
| 1322 | Python supports an extremely general and convenient approach for exchanging |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1323 | data between plugin libraries. Types can expose a buffer view [#f2]_, which |
| 1324 | provides fast direct access to the raw internal data representation. Suppose we |
| 1325 | want to bind the following simplistic Matrix class: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1326 | |
| 1327 | .. code-block:: cpp |
| 1328 | |
| 1329 | class Matrix { |
| 1330 | public: |
| 1331 | Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) { |
| 1332 | m_data = new float[rows*cols]; |
| 1333 | } |
| 1334 | float *data() { return m_data; } |
| 1335 | size_t rows() const { return m_rows; } |
| 1336 | size_t cols() const { return m_cols; } |
| 1337 | private: |
| 1338 | size_t m_rows, m_cols; |
| 1339 | float *m_data; |
| 1340 | }; |
| 1341 | |
| 1342 | The following binding code exposes the ``Matrix`` contents as a buffer object, |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 1343 | making it possible to cast Matrices into NumPy arrays. It is even possible to |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1344 | completely avoid copy operations with Python expressions like |
| 1345 | ``np.array(matrix_instance, copy = False)``. |
| 1346 | |
| 1347 | .. code-block:: cpp |
| 1348 | |
| 1349 | py::class_<Matrix>(m, "Matrix") |
| 1350 | .def_buffer([](Matrix &m) -> py::buffer_info { |
| 1351 | return py::buffer_info( |
Ivan Smirnov | 5e71e17 | 2016-06-26 12:42:34 +0100 | [diff] [blame] | 1352 | m.data(), /* Pointer to buffer */ |
| 1353 | sizeof(float), /* Size of one scalar */ |
| 1354 | py::format_descriptor<float>::format(), /* Python struct-style format descriptor */ |
| 1355 | 2, /* Number of dimensions */ |
| 1356 | { m.rows(), m.cols() }, /* Buffer dimensions */ |
| 1357 | { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */ |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1358 | sizeof(float) } |
| 1359 | ); |
| 1360 | }); |
| 1361 | |
| 1362 | The snippet above binds a lambda function, which can create ``py::buffer_info`` |
| 1363 | description records on demand describing a given matrix. The contents of |
| 1364 | ``py::buffer_info`` mirror the Python buffer protocol specification. |
| 1365 | |
| 1366 | .. code-block:: cpp |
| 1367 | |
| 1368 | struct buffer_info { |
| 1369 | void *ptr; |
| 1370 | size_t itemsize; |
| 1371 | std::string format; |
| 1372 | int ndim; |
| 1373 | std::vector<size_t> shape; |
| 1374 | std::vector<size_t> strides; |
| 1375 | }; |
| 1376 | |
| 1377 | To create a C++ function that can take a Python buffer object as an argument, |
| 1378 | simply use the type ``py::buffer`` as one of its arguments. Buffers can exist |
| 1379 | in a great variety of configurations, hence some safety checks are usually |
| 1380 | necessary in the function body. Below, you can see an basic example on how to |
| 1381 | define a custom constructor for the Eigen double precision matrix |
| 1382 | (``Eigen::MatrixXd``) type, which supports initialization from compatible |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1383 | buffer objects (e.g. a NumPy matrix). |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1384 | |
| 1385 | .. code-block:: cpp |
| 1386 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1387 | /* Bind MatrixXd (or some other Eigen type) to Python */ |
| 1388 | typedef Eigen::MatrixXd Matrix; |
| 1389 | |
| 1390 | typedef Matrix::Scalar Scalar; |
| 1391 | constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit; |
| 1392 | |
| 1393 | py::class_<Matrix>(m, "Matrix") |
| 1394 | .def("__init__", [](Matrix &m, py::buffer b) { |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1395 | typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides; |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1396 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1397 | /* Request a buffer descriptor from Python */ |
| 1398 | py::buffer_info info = b.request(); |
| 1399 | |
| 1400 | /* Some sanity checks ... */ |
Ivan Smirnov | 5e71e17 | 2016-06-26 12:42:34 +0100 | [diff] [blame] | 1401 | if (info.format != py::format_descriptor<Scalar>::format()) |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1402 | throw std::runtime_error("Incompatible format: expected a double array!"); |
| 1403 | |
| 1404 | if (info.ndim != 2) |
| 1405 | throw std::runtime_error("Incompatible buffer dimension!"); |
| 1406 | |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1407 | auto strides = Strides( |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1408 | info.strides[rowMajor ? 0 : 1] / sizeof(Scalar), |
| 1409 | info.strides[rowMajor ? 1 : 0] / sizeof(Scalar)); |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1410 | |
| 1411 | auto map = Eigen::Map<Matrix, 0, Strides>( |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1412 | static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides); |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1413 | |
| 1414 | new (&m) Matrix(map); |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1415 | }); |
| 1416 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1417 | For reference, the ``def_buffer()`` call for this Eigen data type should look |
| 1418 | as follows: |
| 1419 | |
| 1420 | .. code-block:: cpp |
| 1421 | |
| 1422 | .def_buffer([](Matrix &m) -> py::buffer_info { |
| 1423 | return py::buffer_info( |
| 1424 | m.data(), /* Pointer to buffer */ |
| 1425 | sizeof(Scalar), /* Size of one scalar */ |
| 1426 | /* Python struct-style format descriptor */ |
Ivan Smirnov | 5e71e17 | 2016-06-26 12:42:34 +0100 | [diff] [blame] | 1427 | py::format_descriptor<Scalar>::format(), |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1428 | /* Number of dimensions */ |
| 1429 | 2, |
| 1430 | /* Buffer dimensions */ |
| 1431 | { (size_t) m.rows(), |
| 1432 | (size_t) m.cols() }, |
| 1433 | /* Strides (in bytes) for each index */ |
| 1434 | { sizeof(Scalar) * (rowMajor ? m.cols() : 1), |
| 1435 | sizeof(Scalar) * (rowMajor ? 1 : m.rows()) } |
| 1436 | ); |
| 1437 | }) |
| 1438 | |
| 1439 | For a much easier approach of binding Eigen types (although with some |
| 1440 | limitations), refer to the section on :ref:`eigen`. |
| 1441 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1442 | .. seealso:: |
| 1443 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1444 | The file :file:`tests/test_buffers.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1445 | that demonstrates using the buffer protocol with pybind11 in more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1446 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1447 | .. [#f2] http://docs.python.org/3/c-api/buffer.html |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1448 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1449 | NumPy support |
| 1450 | ============= |
| 1451 | |
| 1452 | By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can |
| 1453 | restrict the function so that it only accepts NumPy arrays (rather than any |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1454 | type of Python object satisfying the buffer protocol). |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1455 | |
| 1456 | In many situations, we want to define a function which only accepts a NumPy |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1457 | array of a certain data type. This is possible via the ``py::array_t<T>`` |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1458 | template. For instance, the following function requires the argument to be a |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1459 | NumPy array containing double precision values. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1460 | |
| 1461 | .. code-block:: cpp |
| 1462 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1463 | void f(py::array_t<double> array); |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1464 | |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1465 | When it is invoked with a different type (e.g. an integer or a list of |
| 1466 | integers), the binding code will attempt to cast the input into a NumPy array |
| 1467 | of the requested type. Note that this feature requires the |
| 1468 | :file:``pybind11/numpy.h`` header to be included. |
| 1469 | |
| 1470 | Data in NumPy arrays is not guaranteed to packed in a dense manner; |
| 1471 | furthermore, entries can be separated by arbitrary column and row strides. |
| 1472 | Sometimes, it can be useful to require a function to only accept dense arrays |
| 1473 | using either the C (row-major) or Fortran (column-major) ordering. This can be |
| 1474 | accomplished via a second template argument with values ``py::array::c_style`` |
| 1475 | or ``py::array::f_style``. |
| 1476 | |
| 1477 | .. code-block:: cpp |
| 1478 | |
Wenzel Jakob | b47a9de | 2016-05-19 16:02:09 +0200 | [diff] [blame] | 1479 | void f(py::array_t<double, py::array::c_style | py::array::forcecast> array); |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1480 | |
Wenzel Jakob | b47a9de | 2016-05-19 16:02:09 +0200 | [diff] [blame] | 1481 | The ``py::array::forcecast`` argument is the default value of the second |
| 1482 | template paramenter, and it ensures that non-conforming arguments are converted |
| 1483 | into an array satisfying the specified requirements instead of trying the next |
| 1484 | function overload. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1485 | |
Ivan Smirnov | 223afe3 | 2016-07-02 15:33:04 +0100 | [diff] [blame] | 1486 | NumPy structured types |
| 1487 | ====================== |
| 1488 | |
| 1489 | In order for ``py::array_t`` to work with structured (record) types, we first need |
Ivan Smirnov | 5412a05 | 2016-07-02 16:18:42 +0100 | [diff] [blame] | 1490 | to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE`` |
Ivan Smirnov | 223afe3 | 2016-07-02 15:33:04 +0100 | [diff] [blame] | 1491 | macro which expects the type followed by field names: |
| 1492 | |
| 1493 | .. code-block:: cpp |
| 1494 | |
| 1495 | struct A { |
| 1496 | int x; |
| 1497 | double y; |
| 1498 | }; |
| 1499 | |
| 1500 | struct B { |
| 1501 | int z; |
| 1502 | A a; |
| 1503 | }; |
| 1504 | |
Ivan Smirnov | 5412a05 | 2016-07-02 16:18:42 +0100 | [diff] [blame] | 1505 | PYBIND11_NUMPY_DTYPE(A, x, y); |
| 1506 | PYBIND11_NUMPY_DTYPE(B, z, a); |
Ivan Smirnov | 223afe3 | 2016-07-02 15:33:04 +0100 | [diff] [blame] | 1507 | |
| 1508 | /* now both A and B can be used as template arguments to py::array_t */ |
| 1509 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1510 | Vectorizing functions |
| 1511 | ===================== |
| 1512 | |
| 1513 | Suppose we want to bind a function with the following signature to Python so |
| 1514 | that it can process arbitrary NumPy array arguments (vectors, matrices, general |
| 1515 | N-D arrays) in addition to its normal arguments: |
| 1516 | |
| 1517 | .. code-block:: cpp |
| 1518 | |
| 1519 | double my_func(int x, float y, double z); |
| 1520 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 1521 | After including the ``pybind11/numpy.h`` header, this is extremely simple: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1522 | |
| 1523 | .. code-block:: cpp |
| 1524 | |
| 1525 | m.def("vectorized_func", py::vectorize(my_func)); |
| 1526 | |
| 1527 | Invoking the function like below causes 4 calls to be made to ``my_func`` with |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 1528 | each of the array elements. The significant advantage of this compared to |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1529 | solutions like ``numpy.vectorize()`` is that the loop over the elements runs |
| 1530 | entirely on the C++ side and can be crunched down into a tight, optimized loop |
| 1531 | by the compiler. The result is returned as a NumPy array of type |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1532 | ``numpy.dtype.float64``. |
| 1533 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 1534 | .. code-block:: pycon |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1535 | |
| 1536 | >>> x = np.array([[1, 3],[5, 7]]) |
| 1537 | >>> y = np.array([[2, 4],[6, 8]]) |
| 1538 | >>> z = 3 |
| 1539 | >>> result = vectorized_func(x, y, z) |
| 1540 | |
| 1541 | The scalar argument ``z`` is transparently replicated 4 times. The input |
| 1542 | arrays ``x`` and ``y`` are automatically converted into the right types (they |
| 1543 | are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and |
| 1544 | ``numpy.dtype.float32``, respectively) |
| 1545 | |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 1546 | Sometimes we might want to explicitly exclude an argument from the vectorization |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1547 | because it makes little sense to wrap it in a NumPy array. For instance, |
| 1548 | suppose the function signature was |
| 1549 | |
| 1550 | .. code-block:: cpp |
| 1551 | |
| 1552 | double my_func(int x, float y, my_custom_type *z); |
| 1553 | |
| 1554 | This can be done with a stateful Lambda closure: |
| 1555 | |
| 1556 | .. code-block:: cpp |
| 1557 | |
| 1558 | // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) |
| 1559 | m.def("vectorized_func", |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1560 | [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) { |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1561 | auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); }; |
| 1562 | return py::vectorize(stateful_closure)(x, y); |
| 1563 | } |
| 1564 | ); |
| 1565 | |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 1566 | In cases where the computation is too complicated to be reduced to |
| 1567 | ``vectorize``, it will be necessary to create and access the buffer contents |
| 1568 | manually. The following snippet contains a complete example that shows how this |
| 1569 | works (the code is somewhat contrived, since it could have been done more |
| 1570 | simply using ``vectorize``). |
| 1571 | |
| 1572 | .. code-block:: cpp |
| 1573 | |
| 1574 | #include <pybind11/pybind11.h> |
| 1575 | #include <pybind11/numpy.h> |
| 1576 | |
| 1577 | namespace py = pybind11; |
| 1578 | |
| 1579 | py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) { |
| 1580 | auto buf1 = input1.request(), buf2 = input2.request(); |
| 1581 | |
| 1582 | if (buf1.ndim != 1 || buf2.ndim != 1) |
| 1583 | throw std::runtime_error("Number of dimensions must be one"); |
| 1584 | |
Ivan Smirnov | b651859 | 2016-08-13 13:28:56 +0100 | [diff] [blame] | 1585 | if (buf1.size != buf2.size) |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 1586 | throw std::runtime_error("Input shapes must match"); |
| 1587 | |
Ivan Smirnov | b651859 | 2016-08-13 13:28:56 +0100 | [diff] [blame] | 1588 | /* No pointer is passed, so NumPy will allocate the buffer */ |
| 1589 | auto result = py::array_t<double>(buf1.size); |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 1590 | |
| 1591 | auto buf3 = result.request(); |
| 1592 | |
| 1593 | double *ptr1 = (double *) buf1.ptr, |
| 1594 | *ptr2 = (double *) buf2.ptr, |
| 1595 | *ptr3 = (double *) buf3.ptr; |
| 1596 | |
| 1597 | for (size_t idx = 0; idx < buf1.shape[0]; idx++) |
| 1598 | ptr3[idx] = ptr1[idx] + ptr2[idx]; |
| 1599 | |
| 1600 | return result; |
| 1601 | } |
| 1602 | |
| 1603 | PYBIND11_PLUGIN(test) { |
| 1604 | py::module m("test"); |
| 1605 | m.def("add_arrays", &add_arrays, "Add two NumPy arrays"); |
| 1606 | return m.ptr(); |
| 1607 | } |
| 1608 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1609 | .. seealso:: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1610 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1611 | The file :file:`tests/test_numpy_vectorize.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1612 | example that demonstrates using :func:`vectorize` in more detail. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1613 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1614 | Functions taking Python objects as arguments |
| 1615 | ============================================ |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1616 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1617 | pybind11 exposes all major Python types using thin C++ wrapper classes. These |
| 1618 | wrapper classes can also be used as parameters of functions in bindings, which |
| 1619 | makes it possible to directly work with native Python types on the C++ side. |
| 1620 | For instance, the following statement iterates over a Python ``dict``: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1621 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1622 | .. code-block:: cpp |
| 1623 | |
| 1624 | void print_dict(py::dict dict) { |
| 1625 | /* Easily interact with Python types */ |
| 1626 | for (auto item : dict) |
| 1627 | std::cout << "key=" << item.first << ", " |
| 1628 | << "value=" << item.second << std::endl; |
| 1629 | } |
| 1630 | |
| 1631 | Available types include :class:`handle`, :class:`object`, :class:`bool_`, |
Wenzel Jakob | 27e8e10 | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1632 | :class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`, |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 1633 | :class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`, |
| 1634 | :class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`, |
| 1635 | :class:`array`, and :class:`array_t`. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1636 | |
Wenzel Jakob | 436b731 | 2015-10-20 01:04:30 +0200 | [diff] [blame] | 1637 | In this kind of mixed code, it is often necessary to convert arbitrary C++ |
| 1638 | types to Python, which can be done using :func:`cast`: |
| 1639 | |
| 1640 | .. code-block:: cpp |
| 1641 | |
| 1642 | MyClass *cls = ..; |
| 1643 | py::object obj = py::cast(cls); |
| 1644 | |
| 1645 | The reverse direction uses the following syntax: |
| 1646 | |
| 1647 | .. code-block:: cpp |
| 1648 | |
| 1649 | py::object obj = ...; |
| 1650 | MyClass *cls = obj.cast<MyClass *>(); |
| 1651 | |
| 1652 | When conversion fails, both directions throw the exception :class:`cast_error`. |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1653 | It is also possible to call python functions via ``operator()``. |
| 1654 | |
| 1655 | .. code-block:: cpp |
| 1656 | |
| 1657 | py::function f = <...>; |
| 1658 | py::object result_py = f(1234, "hello", some_instance); |
| 1659 | MyClass &result = result_py.cast<MyClass>(); |
| 1660 | |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1661 | Keyword arguments are also supported. In Python, there is the usual call syntax: |
| 1662 | |
| 1663 | .. code-block:: python |
| 1664 | |
| 1665 | def f(number, say, to): |
| 1666 | ... # function code |
| 1667 | |
| 1668 | f(1234, say="hello", to=some_instance) # keyword call in Python |
| 1669 | |
| 1670 | In C++, the same call can be made using: |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1671 | |
| 1672 | .. code-block:: cpp |
| 1673 | |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1674 | using pybind11::literals; // to bring in the `_a` literal |
| 1675 | f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++ |
| 1676 | |
| 1677 | Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with |
| 1678 | other arguments: |
| 1679 | |
| 1680 | .. code-block:: cpp |
| 1681 | |
| 1682 | // * unpacking |
| 1683 | py::tuple args = py::make_tuple(1234, "hello", some_instance); |
| 1684 | f(*args); |
| 1685 | |
| 1686 | // ** unpacking |
| 1687 | py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance); |
| 1688 | f(**kwargs); |
| 1689 | |
| 1690 | // mixed keywords, * and ** unpacking |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1691 | py::tuple args = py::make_tuple(1234); |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1692 | py::dict kwargs = py::dict("to"_a=some_instance); |
| 1693 | f(*args, "say"_a="hello", **kwargs); |
| 1694 | |
| 1695 | Generalized unpacking according to PEP448_ is also supported: |
| 1696 | |
| 1697 | .. code-block:: cpp |
| 1698 | |
| 1699 | py::dict kwargs1 = py::dict("number"_a=1234); |
| 1700 | py::dict kwargs2 = py::dict("to"_a=some_instance); |
| 1701 | f(**kwargs1, "say"_a="hello", **kwargs2); |
Wenzel Jakob | 436b731 | 2015-10-20 01:04:30 +0200 | [diff] [blame] | 1702 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1703 | .. seealso:: |
| 1704 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1705 | The file :file:`tests/test_python_types.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1706 | example that demonstrates passing native Python types in more detail. The |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1707 | file :file:`tests/test_callbacks.cpp` presents a few examples of calling |
| 1708 | Python functions from C++, including keywords arguments and unpacking. |
| 1709 | |
| 1710 | .. _PEP448: https://www.python.org/dev/peps/pep-0448/ |
| 1711 | |
| 1712 | Using Python's print function in C++ |
| 1713 | ==================================== |
| 1714 | |
| 1715 | The usual way to write output in C++ is using ``std::cout`` while in Python one |
| 1716 | would use ``print``. Since these methods use different buffers, mixing them can |
| 1717 | lead to output order issues. To resolve this, pybind11 modules can use the |
| 1718 | :func:`py::print` function which writes to Python's ``sys.stdout`` for consistency. |
| 1719 | |
| 1720 | Python's ``print`` function is replicated in the C++ API including optional |
| 1721 | keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as |
| 1722 | expected in Python: |
| 1723 | |
| 1724 | .. code-block:: cpp |
| 1725 | |
| 1726 | py::print(1, 2.0, "three"); // 1 2.0 three |
| 1727 | py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three |
| 1728 | |
| 1729 | auto args = py::make_tuple("unpacked", true); |
| 1730 | py::print("->", *args, "end"_a="<-"); // -> unpacked True <- |
Wenzel Jakob | 2ac5044 | 2016-01-17 22:36:35 +0100 | [diff] [blame] | 1731 | |
| 1732 | Default arguments revisited |
| 1733 | =========================== |
| 1734 | |
| 1735 | The section on :ref:`default_args` previously discussed basic usage of default |
| 1736 | arguments using pybind11. One noteworthy aspect of their implementation is that |
| 1737 | default arguments are converted to Python objects right at declaration time. |
| 1738 | Consider the following example: |
| 1739 | |
| 1740 | .. code-block:: cpp |
| 1741 | |
| 1742 | py::class_<MyClass>("MyClass") |
| 1743 | .def("myFunction", py::arg("arg") = SomeType(123)); |
| 1744 | |
| 1745 | In this case, pybind11 must already be set up to deal with values of the type |
| 1746 | ``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an |
| 1747 | exception will be thrown. |
| 1748 | |
| 1749 | Another aspect worth highlighting is that the "preview" of the default argument |
| 1750 | in the function signature is generated using the object's ``__repr__`` method. |
| 1751 | If not available, the signature may not be very helpful, e.g.: |
| 1752 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 1753 | .. code-block:: pycon |
Wenzel Jakob | 2ac5044 | 2016-01-17 22:36:35 +0100 | [diff] [blame] | 1754 | |
| 1755 | FUNCTIONS |
| 1756 | ... |
| 1757 | | myFunction(...) |
Wenzel Jakob | 48548ea | 2016-01-17 22:36:44 +0100 | [diff] [blame] | 1758 | | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType |
Wenzel Jakob | 2ac5044 | 2016-01-17 22:36:35 +0100 | [diff] [blame] | 1759 | ... |
| 1760 | |
| 1761 | The first way of addressing this is by defining ``SomeType.__repr__``. |
| 1762 | Alternatively, it is possible to specify the human-readable preview of the |
| 1763 | default argument manually using the ``arg_t`` notation: |
| 1764 | |
| 1765 | .. code-block:: cpp |
| 1766 | |
| 1767 | py::class_<MyClass>("MyClass") |
| 1768 | .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)")); |
| 1769 | |
Wenzel Jakob | c769fce | 2016-03-03 12:03:30 +0100 | [diff] [blame] | 1770 | Sometimes it may be necessary to pass a null pointer value as a default |
| 1771 | argument. In this case, remember to cast it to the underlying type in question, |
| 1772 | like so: |
| 1773 | |
| 1774 | .. code-block:: cpp |
| 1775 | |
| 1776 | py::class_<MyClass>("MyClass") |
| 1777 | .def("myFunction", py::arg("arg") = (SomeType *) nullptr); |
| 1778 | |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1779 | Binding functions that accept arbitrary numbers of arguments and keywords arguments |
| 1780 | =================================================================================== |
| 1781 | |
| 1782 | Python provides a useful mechanism to define functions that accept arbitrary |
| 1783 | numbers of arguments and keyword arguments: |
| 1784 | |
| 1785 | .. code-block:: cpp |
| 1786 | |
| 1787 | def generic(*args, **kwargs): |
| 1788 | # .. do something with args and kwargs |
| 1789 | |
| 1790 | Such functions can also be created using pybind11: |
| 1791 | |
| 1792 | .. code-block:: cpp |
| 1793 | |
| 1794 | void generic(py::args args, py::kwargs kwargs) { |
| 1795 | /// .. do something with args |
| 1796 | if (kwargs) |
| 1797 | /// .. do something with kwargs |
| 1798 | } |
| 1799 | |
| 1800 | /// Binding code |
| 1801 | m.def("generic", &generic); |
| 1802 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1803 | (See ``tests/test_kwargs_and_defaults.cpp``). The class ``py::args`` |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1804 | derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note |
| 1805 | that the ``kwargs`` argument is invalid if no keyword arguments were actually |
| 1806 | provided. Please refer to the other examples for details on how to iterate |
| 1807 | over these, and on how to cast their entries into C++ objects. |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1808 | |
Wenzel Jakob | 3764e28 | 2016-08-01 23:34:48 +0200 | [diff] [blame] | 1809 | .. warning:: |
| 1810 | |
| 1811 | Unlike Python, pybind11 does not allow combining normal parameters with the |
| 1812 | ``args`` / ``kwargs`` special parameters. |
| 1813 | |
Wenzel Jakob | 2dfbade | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1814 | Partitioning code over multiple extension modules |
| 1815 | ================================================= |
| 1816 | |
Wenzel Jakob | 90d2f5e | 2016-04-11 14:30:11 +0200 | [diff] [blame] | 1817 | It's straightforward to split binding code over multiple extension modules, |
| 1818 | while referencing types that are declared elsewhere. Everything "just" works |
| 1819 | without any special precautions. One exception to this rule occurs when |
| 1820 | extending a type declared in another extension module. Recall the basic example |
| 1821 | from Section :ref:`inheritance`. |
Wenzel Jakob | 2dfbade | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1822 | |
| 1823 | .. code-block:: cpp |
| 1824 | |
| 1825 | py::class_<Pet> pet(m, "Pet"); |
| 1826 | pet.def(py::init<const std::string &>()) |
| 1827 | .def_readwrite("name", &Pet::name); |
| 1828 | |
| 1829 | py::class_<Dog>(m, "Dog", pet /* <- specify parent */) |
| 1830 | .def(py::init<const std::string &>()) |
| 1831 | .def("bark", &Dog::bark); |
| 1832 | |
| 1833 | Suppose now that ``Pet`` bindings are defined in a module named ``basic``, |
| 1834 | whereas the ``Dog`` bindings are defined somewhere else. The challenge is of |
| 1835 | course that the variable ``pet`` is not available anymore though it is needed |
| 1836 | to indicate the inheritance relationship to the constructor of ``class_<Dog>``. |
| 1837 | However, it can be acquired as follows: |
| 1838 | |
| 1839 | .. code-block:: cpp |
| 1840 | |
| 1841 | py::object pet = (py::object) py::module::import("basic").attr("Pet"); |
| 1842 | |
| 1843 | py::class_<Dog>(m, "Dog", pet) |
| 1844 | .def(py::init<const std::string &>()) |
| 1845 | .def("bark", &Dog::bark); |
| 1846 | |
Jason Rhinelander | 6b52c83 | 2016-09-06 12:27:00 -0400 | [diff] [blame] | 1847 | Alternatively, you can specify the base class as a template parameter option to |
| 1848 | ``class_``, which performs an automated lookup of the corresponding Python |
| 1849 | type. Like the above code, however, this also requires invoking the ``import`` |
| 1850 | function once to ensure that the pybind11 binding code of the module ``basic`` |
| 1851 | has been executed: |
Wenzel Jakob | 8d862b3 | 2016-03-06 13:37:22 +0100 | [diff] [blame] | 1852 | |
Wenzel Jakob | 8d862b3 | 2016-03-06 13:37:22 +0100 | [diff] [blame] | 1853 | .. code-block:: cpp |
| 1854 | |
| 1855 | py::module::import("basic"); |
| 1856 | |
Jason Rhinelander | 6b52c83 | 2016-09-06 12:27:00 -0400 | [diff] [blame] | 1857 | py::class_<Dog, Pet>(m, "Dog") |
Wenzel Jakob | 8d862b3 | 2016-03-06 13:37:22 +0100 | [diff] [blame] | 1858 | .def(py::init<const std::string &>()) |
| 1859 | .def("bark", &Dog::bark); |
Wenzel Jakob | eda978e | 2016-03-15 15:05:40 +0100 | [diff] [blame] | 1860 | |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1861 | Naturally, both methods will fail when there are cyclic dependencies. |
| 1862 | |
Wenzel Jakob | 90d2f5e | 2016-04-11 14:30:11 +0200 | [diff] [blame] | 1863 | Note that compiling code which has its default symbol visibility set to |
| 1864 | *hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the |
| 1865 | ability to access types defined in another extension module. Workarounds |
| 1866 | include changing the global symbol visibility (not recommended, because it will |
| 1867 | lead unnecessarily large binaries) or manually exporting types that are |
| 1868 | accessed by multiple extension modules: |
| 1869 | |
| 1870 | .. code-block:: cpp |
| 1871 | |
| 1872 | #ifdef _WIN32 |
| 1873 | # define EXPORT_TYPE __declspec(dllexport) |
| 1874 | #else |
| 1875 | # define EXPORT_TYPE __attribute__ ((visibility("default"))) |
| 1876 | #endif |
| 1877 | |
| 1878 | class EXPORT_TYPE Dog : public Animal { |
| 1879 | ... |
| 1880 | }; |
| 1881 | |
| 1882 | |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1883 | Pickling support |
| 1884 | ================ |
| 1885 | |
| 1886 | Python's ``pickle`` module provides a powerful facility to serialize and |
| 1887 | de-serialize a Python object graph into a binary data stream. To pickle and |
Wenzel Jakob | 3d0e6ff | 2016-04-13 11:48:10 +0200 | [diff] [blame] | 1888 | unpickle C++ classes using pybind11, two additional functions must be provided. |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1889 | Suppose the class in question has the following signature: |
| 1890 | |
| 1891 | .. code-block:: cpp |
| 1892 | |
| 1893 | class Pickleable { |
| 1894 | public: |
| 1895 | Pickleable(const std::string &value) : m_value(value) { } |
| 1896 | const std::string &value() const { return m_value; } |
| 1897 | |
| 1898 | void setExtra(int extra) { m_extra = extra; } |
| 1899 | int extra() const { return m_extra; } |
| 1900 | private: |
| 1901 | std::string m_value; |
| 1902 | int m_extra = 0; |
| 1903 | }; |
| 1904 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1905 | The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_ |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1906 | looks as follows: |
| 1907 | |
| 1908 | .. code-block:: cpp |
| 1909 | |
| 1910 | py::class_<Pickleable>(m, "Pickleable") |
| 1911 | .def(py::init<std::string>()) |
| 1912 | .def("value", &Pickleable::value) |
| 1913 | .def("extra", &Pickleable::extra) |
| 1914 | .def("setExtra", &Pickleable::setExtra) |
| 1915 | .def("__getstate__", [](const Pickleable &p) { |
| 1916 | /* Return a tuple that fully encodes the state of the object */ |
| 1917 | return py::make_tuple(p.value(), p.extra()); |
| 1918 | }) |
| 1919 | .def("__setstate__", [](Pickleable &p, py::tuple t) { |
| 1920 | if (t.size() != 2) |
| 1921 | throw std::runtime_error("Invalid state!"); |
| 1922 | |
Wenzel Jakob | d40885a | 2016-04-13 13:30:05 +0200 | [diff] [blame] | 1923 | /* Invoke the in-place constructor. Note that this is needed even |
| 1924 | when the object just has a trivial default constructor */ |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1925 | new (&p) Pickleable(t[0].cast<std::string>()); |
| 1926 | |
| 1927 | /* Assign any additional state */ |
| 1928 | p.setExtra(t[1].cast<int>()); |
| 1929 | }); |
| 1930 | |
| 1931 | An instance can now be pickled as follows: |
| 1932 | |
| 1933 | .. code-block:: python |
| 1934 | |
| 1935 | try: |
| 1936 | import cPickle as pickle # Use cPickle on Python 2.7 |
| 1937 | except ImportError: |
| 1938 | import pickle |
| 1939 | |
| 1940 | p = Pickleable("test_value") |
| 1941 | p.setExtra(15) |
Wenzel Jakob | 81e0975 | 2016-04-30 23:13:03 +0200 | [diff] [blame] | 1942 | data = pickle.dumps(p, 2) |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1943 | |
Wenzel Jakob | 81e0975 | 2016-04-30 23:13:03 +0200 | [diff] [blame] | 1944 | Note that only the cPickle module is supported on Python 2.7. The second |
| 1945 | argument to ``dumps`` is also crucial: it selects the pickle protocol version |
| 1946 | 2, since the older version 1 is not supported. Newer versions are also fineāfor |
| 1947 | instance, specify ``-1`` to always use the latest available version. Beware: |
| 1948 | failure to follow these instructions will cause important pybind11 memory |
| 1949 | allocation routines to be skipped during unpickling, which will likely lead to |
| 1950 | memory corruption and/or segmentation faults. |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1951 | |
| 1952 | .. seealso:: |
| 1953 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1954 | The file :file:`tests/test_pickling.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1955 | that demonstrates how to pickle and unpickle types using pybind11 in more |
| 1956 | detail. |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1957 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1958 | .. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 1959 | |
| 1960 | Generating documentation using Sphinx |
| 1961 | ===================================== |
| 1962 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1963 | Sphinx [#f4]_ has the ability to inspect the signatures and documentation |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 1964 | strings in pybind11-based extension modules to automatically generate beautiful |
Wenzel Jakob | ca8dc08 | 2016-06-03 14:24:17 +0200 | [diff] [blame] | 1965 | documentation in a variety formats. The python_example repository [#f5]_ contains a |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 1966 | simple example repository which uses this approach. |
| 1967 | |
| 1968 | There are two potential gotchas when using this approach: first, make sure that |
| 1969 | the resulting strings do not contain any :kbd:`TAB` characters, which break the |
| 1970 | docstring parsing routines. You may want to use C++11 raw string literals, |
| 1971 | which are convenient for multi-line comments. Conveniently, any excess |
| 1972 | indentation will be automatically be removed by Sphinx. However, for this to |
| 1973 | work, it is important that all lines are indented consistently, i.e.: |
| 1974 | |
| 1975 | .. code-block:: cpp |
| 1976 | |
| 1977 | // ok |
| 1978 | m.def("foo", &foo, R"mydelimiter( |
| 1979 | The foo function |
| 1980 | |
| 1981 | Parameters |
| 1982 | ---------- |
| 1983 | )mydelimiter"); |
| 1984 | |
| 1985 | // *not ok* |
| 1986 | m.def("foo", &foo, R"mydelimiter(The foo function |
| 1987 | |
| 1988 | Parameters |
| 1989 | ---------- |
| 1990 | )mydelimiter"); |
| 1991 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1992 | .. [#f4] http://www.sphinx-doc.org |
Wenzel Jakob | ca8dc08 | 2016-06-03 14:24:17 +0200 | [diff] [blame] | 1993 | .. [#f5] http://github.com/pybind/python_example |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 1994 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 1995 | Evaluating Python expressions from strings and files |
| 1996 | ==================================================== |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 1997 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 1998 | pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate |
| 1999 | Python expressions and statements. The following example illustrates how they |
| 2000 | can be used. |
| 2001 | |
| 2002 | Both functions accept a template parameter that describes how the argument |
| 2003 | should be interpreted. Possible choices include ``eval_expr`` (isolated |
| 2004 | expression), ``eval_single_statement`` (a single statement, return value is |
| 2005 | always ``none``), and ``eval_statements`` (sequence of statements, return value |
| 2006 | is always ``none``). |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2007 | |
| 2008 | .. code-block:: cpp |
| 2009 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2010 | // At beginning of file |
| 2011 | #include <pybind11/eval.h> |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2012 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2013 | ... |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2014 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2015 | // Evaluate in scope of main module |
| 2016 | py::object scope = py::module::import("__main__").attr("__dict__"); |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2017 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2018 | // Evaluate an isolated expression |
| 2019 | int result = py::eval("my_variable + 10", scope).cast<int>(); |
| 2020 | |
| 2021 | // Evaluate a sequence of statements |
| 2022 | py::eval<py::eval_statements>( |
| 2023 | "print('Hello')\n" |
| 2024 | "print('world!');", |
| 2025 | scope); |
| 2026 | |
| 2027 | // Evaluate the statements in an separate Python file on disk |
| 2028 | py::eval_file("script.py", scope); |
Wenzel Jakob | 48ce072 | 2016-09-06 14:13:22 +0900 | [diff] [blame] | 2029 | |
| 2030 | Development of custom type casters |
| 2031 | ================================== |
| 2032 | |
| 2033 | In very rare cases, applications may require custom type casters that cannot be |
| 2034 | expressed using the abstractions provided by pybind11, thus requiring raw |
| 2035 | Python C API calls. This is fairly advanced usage and should only be pursued by |
| 2036 | experts who are familiar with the intricacies of Python reference counting. |
| 2037 | |
| 2038 | The following snippets demonstrate how this works for a very simple ``inty`` |
| 2039 | type that that should be convertible from Python types that provide a |
| 2040 | ``__int__(self)`` method. |
| 2041 | |
| 2042 | .. code-block:: cpp |
| 2043 | |
| 2044 | struct inty { long long_value; }; |
| 2045 | |
| 2046 | void print(inty s) { |
| 2047 | std::cout << s.long_value << std::endl; |
| 2048 | } |
| 2049 | |
| 2050 | The following Python snippet demonstrates the intended usage from the Python side: |
| 2051 | |
| 2052 | .. code-block:: python |
| 2053 | |
| 2054 | class A: |
| 2055 | def __int__(self): |
| 2056 | return 123 |
| 2057 | |
| 2058 | from example import print |
| 2059 | print(A()) |
| 2060 | |
| 2061 | To register the necessary conversion routines, it is necessary to add |
| 2062 | a partial overload to the ``pybind11::detail::type_caster<T>`` template. |
| 2063 | Although this is an implementation detail, adding partial overloads to this |
| 2064 | type is explicitly allowed. |
| 2065 | |
| 2066 | .. code-block:: cpp |
| 2067 | |
| 2068 | namespace pybind11 { |
| 2069 | namespace detail { |
| 2070 | template <> struct type_caster<inty> { |
| 2071 | public: |
| 2072 | /** |
| 2073 | * This macro establishes the name 'inty' in |
| 2074 | * function signatures and declares a local variable |
| 2075 | * 'value' of type inty |
| 2076 | */ |
| 2077 | PYBIND11_TYPE_CASTER(inty, _("inty")); |
| 2078 | |
| 2079 | /** |
| 2080 | * Conversion part 1 (Python->C++): convert a PyObject into a inty |
| 2081 | * instance or return false upon failure. The second argument |
| 2082 | * indicates whether implicit conversions should be applied. |
| 2083 | */ |
| 2084 | bool load(handle src, bool) { |
| 2085 | /* Extract PyObject from handle */ |
| 2086 | PyObject *source = src.ptr(); |
| 2087 | /* Try converting into a Python integer value */ |
| 2088 | PyObject *tmp = PyNumber_Long(source); |
| 2089 | if (!tmp) |
| 2090 | return false; |
| 2091 | /* Now try to convert into a C++ int */ |
| 2092 | value.long_value = PyLong_AsLong(tmp); |
| 2093 | Py_DECREF(tmp); |
| 2094 | /* Ensure return code was OK (to avoid out-of-range errors etc) */ |
| 2095 | return !(value.long_value == -1 && !PyErr_Occurred()); |
| 2096 | } |
| 2097 | |
| 2098 | /** |
| 2099 | * Conversion part 2 (C++ -> Python): convert an inty instance into |
| 2100 | * a Python object. The second and third arguments are used to |
| 2101 | * indicate the return value policy and parent object (for |
| 2102 | * ``return_value_policy::reference_internal``) and are generally |
| 2103 | * ignored by implicit casters. |
| 2104 | */ |
| 2105 | static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) { |
| 2106 | return PyLong_FromLong(src.long_value); |
| 2107 | } |
| 2108 | }; |
| 2109 | } |
| 2110 | }; |