blob: 88dcaf0f8a364422f345d94dd72463f4b65d7189 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Justin Bognerc2bf63d2016-04-26 23:39:29 +000023#include "llvm/Transforms/Scalar/Reassociate.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000024#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/APInt.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000026#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/PostOrderIterator.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include "llvm/ADT/SetVector.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000029#include "llvm/ADT/SmallPtrSet.h"
Fiona Glaserb8a330c2017-12-12 19:18:02 +000030#include "llvm/ADT/SmallSet.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000031#include "llvm/ADT/SmallVector.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000032#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000033#include "llvm/Analysis/GlobalsModRef.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000034#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000035#include "llvm/IR/Argument.h"
36#include "llvm/IR/BasicBlock.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000037#include "llvm/IR/CFG.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000038#include "llvm/IR/Constant.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000039#include "llvm/IR/Constants.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Function.h"
41#include "llvm/IR/IRBuilder.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000042#include "llvm/IR/InstrTypes.h"
43#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000044#include "llvm/IR/Instructions.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000045#include "llvm/IR/Operator.h"
46#include "llvm/IR/PassManager.h"
Craig Toppercbac691c2017-06-21 16:07:09 +000047#include "llvm/IR/PatternMatch.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000048#include "llvm/IR/Type.h"
49#include "llvm/IR/User.h"
50#include "llvm/IR/Value.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000051#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000052#include "llvm/Pass.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000053#include "llvm/Support/Casting.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000054#include "llvm/Support/Debug.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000055#include "llvm/Support/ErrorHandling.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000056#include "llvm/Support/raw_ostream.h"
Justin Bognerc2bf63d2016-04-26 23:39:29 +000057#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000058#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000059#include <algorithm>
Eugene Zelenko306d2992017-10-18 21:46:47 +000060#include <cassert>
61#include <utility>
62
Chris Lattner49525f82004-01-09 06:02:20 +000063using namespace llvm;
Justin Bognerc2bf63d2016-04-26 23:39:29 +000064using namespace reassociate;
Brian Gaeke960707c2003-11-11 22:41:34 +000065
Chandler Carruth964daaa2014-04-22 02:55:47 +000066#define DEBUG_TYPE "reassociate"
67
Chris Lattner79a42ac2006-12-19 21:40:18 +000068STATISTIC(NumChanged, "Number of insts reassociated");
69STATISTIC(NumAnnihil, "Number of expr tree annihilated");
70STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000071
Devang Patel702f45d2008-11-21 21:00:20 +000072#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000073/// Print out the expression identified in the Ops list.
Chris Lattner38abecb2009-12-31 18:40:32 +000074static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000075 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000076 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000077 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000078 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000079 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000080 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000081 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000082 }
Chris Lattner4c065092006-03-04 09:31:13 +000083}
Devang Patelcb181bb2008-11-21 20:00:59 +000084#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000085
Justin Bognerc2bf63d2016-04-26 23:39:29 +000086/// Utility class representing a non-constant Xor-operand. We classify
87/// non-constant Xor-Operands into two categories:
88/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
89/// C2)
90/// C2.1) The operand is in the form of "X | C", where C is a non-zero
91/// constant.
92/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
93/// operand as "E | 0"
94class llvm::reassociate::XorOpnd {
95public:
96 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000097
Justin Bognerc2bf63d2016-04-26 23:39:29 +000098 bool isInvalid() const { return SymbolicPart == nullptr; }
99 bool isOrExpr() const { return isOr; }
100 Value *getValue() const { return OrigVal; }
101 Value *getSymbolicPart() const { return SymbolicPart; }
102 unsigned getSymbolicRank() const { return SymbolicRank; }
103 const APInt &getConstPart() const { return ConstPart; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000104
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000105 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
106 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000107
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000108private:
109 Value *OrigVal;
110 Value *SymbolicPart;
111 APInt ConstPart;
112 unsigned SymbolicRank;
113 bool isOr;
114};
Chris Lattnerc0f58002002-05-08 22:19:27 +0000115
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000116XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000117 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000118 OrigVal = V;
119 Instruction *I = dyn_cast<Instruction>(V);
120 SymbolicRank = 0;
121
122 if (I && (I->getOpcode() == Instruction::Or ||
123 I->getOpcode() == Instruction::And)) {
124 Value *V0 = I->getOperand(0);
125 Value *V1 = I->getOperand(1);
Craig Toppercbac691c2017-06-21 16:07:09 +0000126 const APInt *C;
127 if (match(V0, PatternMatch::m_APInt(C)))
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000128 std::swap(V0, V1);
129
Craig Toppercbac691c2017-06-21 16:07:09 +0000130 if (match(V1, PatternMatch::m_APInt(C))) {
131 ConstPart = *C;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000132 SymbolicPart = V0;
133 isOr = (I->getOpcode() == Instruction::Or);
134 return;
135 }
136 }
137
138 // view the operand as "V | 0"
139 SymbolicPart = V;
Craig Toppercbac691c2017-06-21 16:07:09 +0000140 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000141 isOr = true;
142}
143
Sanjay Patelc96ee082015-04-22 18:04:46 +0000144/// Return true if V is an instruction of the specified opcode and if it
145/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000146static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Sanjay Patel64fd3332017-11-14 23:03:56 +0000147 auto *I = dyn_cast<Instruction>(V);
148 if (I && I->hasOneUse() && I->getOpcode() == Opcode)
149 if (!isa<FPMathOperator>(I) || I->isFast())
150 return cast<BinaryOperator>(I);
Craig Topperf40110f2014-04-25 05:29:35 +0000151 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000152}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000153
Chad Rosier11ab9412014-08-14 15:23:01 +0000154static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
155 unsigned Opcode2) {
Sanjay Patel64fd3332017-11-14 23:03:56 +0000156 auto *I = dyn_cast<Instruction>(V);
157 if (I && I->hasOneUse() &&
158 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
159 if (!isa<FPMathOperator>(I) || I->isFast())
160 return cast<BinaryOperator>(I);
Chad Rosier11ab9412014-08-14 15:23:01 +0000161 return nullptr;
162}
163
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000164void ReassociatePass::BuildRankMap(Function &F,
165 ReversePostOrderTraversal<Function*> &RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000166 unsigned Rank = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000167
Chad Rosierf59e5482014-11-14 15:01:38 +0000168 // Assign distinct ranks to function arguments.
Davide Italianob53b0752017-08-07 01:57:21 +0000169 for (auto &Arg : F.args()) {
170 ValueRankMap[&Arg] = ++Rank;
171 DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
172 << "\n");
Chad Rosierf59e5482014-11-14 15:01:38 +0000173 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000174
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000175 // Traverse basic blocks in ReversePostOrder
Benjamin Kramer135f7352016-06-26 12:28:59 +0000176 for (BasicBlock *BB : RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000177 unsigned BBRank = RankMap[BB] = ++Rank << 16;
Chris Lattner9f284e02005-05-08 20:57:04 +0000178
179 // Walk the basic block, adding precomputed ranks for any instructions that
180 // we cannot move. This ensures that the ranks for these instructions are
181 // all different in the block.
Benjamin Kramer135f7352016-06-26 12:28:59 +0000182 for (Instruction &I : *BB)
183 if (mayBeMemoryDependent(I))
184 ValueRankMap[&I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000185 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000186}
187
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000188unsigned ReassociatePass::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000189 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000190 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000191 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
192 return 0; // Otherwise it's a global or constant, rank 0.
193 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000194
Chris Lattner17229a72010-01-01 00:01:34 +0000195 if (unsigned Rank = ValueRankMap[I])
196 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000197
Chris Lattnerf43e9742005-05-07 04:08:02 +0000198 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
199 // we can reassociate expressions for code motion! Since we do not recurse
200 // for PHI nodes, we cannot have infinite recursion here, because there
201 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000202 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
203 for (unsigned i = 0, e = I->getNumOperands();
204 i != e && Rank != MaxRank; ++i)
205 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000206
Chris Lattner6e2086d2005-05-08 00:08:33 +0000207 // If this is a not or neg instruction, do not count it for rank. This
208 // assures us that X and ~X will have the same rank.
Robert Lougher1858ba72015-03-13 20:53:01 +0000209 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
210 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000211 ++Rank;
212
Chad Rosierf59e5482014-11-14 15:01:38 +0000213 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000214
Chris Lattner17229a72010-01-01 00:01:34 +0000215 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000216}
217
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000218// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000219void ReassociatePass::canonicalizeOperands(Instruction *I) {
Chad Rosierf8b55f12014-11-14 17:05:59 +0000220 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
221 assert(I->isCommutative() && "Expected commutative operator.");
222
223 Value *LHS = I->getOperand(0);
224 Value *RHS = I->getOperand(1);
Davide Italianoa5cdc222017-08-07 01:49:09 +0000225 if (LHS == RHS || isa<Constant>(RHS))
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000226 return;
Davide Italianoa5cdc222017-08-07 01:49:09 +0000227 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
Chad Rosierf8b55f12014-11-14 17:05:59 +0000228 cast<BinaryOperator>(I)->swapOperands();
229}
230
Chad Rosier11ab9412014-08-14 15:23:01 +0000231static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
232 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000233 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000234 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
235 else {
236 BinaryOperator *Res =
237 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
238 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
239 return Res;
240 }
241}
242
243static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
244 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000245 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000246 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
247 else {
248 BinaryOperator *Res =
249 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
250 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
251 return Res;
252 }
253}
254
255static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
256 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000257 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000258 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
259 else {
260 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
261 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
262 return Res;
263 }
264}
265
Sanjay Patelc96ee082015-04-22 18:04:46 +0000266/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000267static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000268 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000269 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
270 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000271
Chad Rosier11ab9412014-08-14 15:23:01 +0000272 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
273 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000274 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000275 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000276 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000277 return Res;
278}
279
Sanjay Patelc96ee082015-04-22 18:04:46 +0000280/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
281/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000282/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
283/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
284/// even x in Bitwidth-bit arithmetic.
285static unsigned CarmichaelShift(unsigned Bitwidth) {
286 if (Bitwidth < 3)
287 return Bitwidth - 1;
288 return Bitwidth - 2;
289}
290
Sanjay Patelc96ee082015-04-22 18:04:46 +0000291/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000292/// reducing the combined weight using any special properties of the operation.
293/// The existing weight LHS represents the computation X op X op ... op X where
294/// X occurs LHS times. The combined weight represents X op X op ... op X with
295/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
296/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
297/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
298static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
299 // If we were working with infinite precision arithmetic then the combined
300 // weight would be LHS + RHS. But we are using finite precision arithmetic,
301 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
302 // for nilpotent operations and addition, but not for idempotent operations
303 // and multiplication), so it is important to correctly reduce the combined
304 // weight back into range if wrapping would be wrong.
305
306 // If RHS is zero then the weight didn't change.
307 if (RHS.isMinValue())
308 return;
309 // If LHS is zero then the combined weight is RHS.
310 if (LHS.isMinValue()) {
311 LHS = RHS;
312 return;
313 }
314 // From this point on we know that neither LHS nor RHS is zero.
315
316 if (Instruction::isIdempotent(Opcode)) {
317 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
318 // weight of 1. Keeping weights at zero or one also means that wrapping is
319 // not a problem.
320 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
321 return; // Return a weight of 1.
322 }
323 if (Instruction::isNilpotent(Opcode)) {
324 // Nilpotent means X op X === 0, so reduce weights modulo 2.
325 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
326 LHS = 0; // 1 + 1 === 0 modulo 2.
327 return;
328 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000329 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000330 // TODO: Reduce the weight by exploiting nsw/nuw?
331 LHS += RHS;
332 return;
333 }
334
Chad Rosier11ab9412014-08-14 15:23:01 +0000335 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
336 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000337 unsigned Bitwidth = LHS.getBitWidth();
338 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
339 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
340 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
341 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
342 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
343 // which by a happy accident means that they can always be represented using
344 // Bitwidth bits.
345 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
346 // the Carmichael number).
347 if (Bitwidth > 3) {
348 /// CM - The value of Carmichael's lambda function.
349 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
350 // Any weight W >= Threshold can be replaced with W - CM.
351 APInt Threshold = CM + Bitwidth;
352 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
353 // For Bitwidth 4 or more the following sum does not overflow.
354 LHS += RHS;
355 while (LHS.uge(Threshold))
356 LHS -= CM;
357 } else {
358 // To avoid problems with overflow do everything the same as above but using
359 // a larger type.
360 unsigned CM = 1U << CarmichaelShift(Bitwidth);
361 unsigned Threshold = CM + Bitwidth;
362 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
363 "Weights not reduced!");
364 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
365 while (Total >= Threshold)
366 Total -= CM;
367 LHS = Total;
368 }
369}
370
Eugene Zelenko306d2992017-10-18 21:46:47 +0000371using RepeatedValue = std::pair<Value*, APInt>;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000372
Sanjay Patelc96ee082015-04-22 18:04:46 +0000373/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000374/// nodes in Ops along with their weights (how many times the leaf occurs). The
375/// original expression is the same as
376/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000377/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000378/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
379/// op
380/// ...
381/// op
382/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
383///
Duncan Sandsac852c72012-11-15 09:58:38 +0000384/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000385///
386/// This routine may modify the function, in which case it returns 'true'. The
387/// changes it makes may well be destructive, changing the value computed by 'I'
388/// to something completely different. Thus if the routine returns 'true' then
389/// you MUST either replace I with a new expression computed from the Ops array,
390/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000391///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000392/// A leaf node is either not a binary operation of the same kind as the root
393/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
394/// opcode), or is the same kind of binary operator but has a use which either
395/// does not belong to the expression, or does belong to the expression but is
396/// a leaf node. Every leaf node has at least one use that is a non-leaf node
397/// of the expression, while for non-leaf nodes (except for the root 'I') every
398/// use is a non-leaf node of the expression.
399///
400/// For example:
401/// expression graph node names
402///
403/// + | I
404/// / \ |
405/// + + | A, B
406/// / \ / \ |
407/// * + * | C, D, E
408/// / \ / \ / \ |
409/// + * | F, G
410///
411/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000412/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000413///
414/// The expression is maximal: if some instruction is a binary operator of the
415/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
416/// then the instruction also belongs to the expression, is not a leaf node of
417/// it, and its operands also belong to the expression (but may be leaf nodes).
418///
419/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
420/// order to ensure that every non-root node in the expression has *exactly one*
421/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000422/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000423/// RewriteExprTree to put the values back in if the routine indicates that it
424/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000425///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000426/// In the above example either the right operand of A or the left operand of B
427/// will be replaced by undef. If it is B's operand then this gives:
428///
429/// + | I
430/// / \ |
431/// + + | A, B - operand of B replaced with undef
432/// / \ \ |
433/// * + * | C, D, E
434/// / \ / \ / \ |
435/// + * | F, G
436///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000437/// Note that such undef operands can only be reached by passing through 'I'.
438/// For example, if you visit operands recursively starting from a leaf node
439/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000440/// which requires passing through a phi node.
441///
442/// Note that this routine may also mutate binary operators of the wrong type
443/// that have all uses inside the expression (i.e. only used by non-leaf nodes
444/// of the expression) if it can turn them into binary operators of the right
445/// type and thus make the expression bigger.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000446static bool LinearizeExprTree(BinaryOperator *I,
447 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000448 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000449 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
450 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000451 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000452 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000453
454 // Visit all operands of the expression, keeping track of their weight (the
455 // number of paths from the expression root to the operand, or if you like
456 // the number of times that operand occurs in the linearized expression).
457 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
458 // while A has weight two.
459
460 // Worklist of non-leaf nodes (their operands are in the expression too) along
461 // with their weights, representing a certain number of paths to the operator.
462 // If an operator occurs in the worklist multiple times then we found multiple
463 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000464 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
465 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000466 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000467
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000468 // Leaves of the expression are values that either aren't the right kind of
469 // operation (eg: a constant, or a multiply in an add tree), or are, but have
470 // some uses that are not inside the expression. For example, in I = X + X,
471 // X = A + B, the value X has two uses (by I) that are in the expression. If
472 // X has any other uses, for example in a return instruction, then we consider
473 // X to be a leaf, and won't analyze it further. When we first visit a value,
474 // if it has more than one use then at first we conservatively consider it to
475 // be a leaf. Later, as the expression is explored, we may discover some more
476 // uses of the value from inside the expression. If all uses turn out to be
477 // from within the expression (and the value is a binary operator of the right
478 // kind) then the value is no longer considered to be a leaf, and its operands
479 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000480
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000481 // Leaves - Keeps track of the set of putative leaves as well as the number of
482 // paths to each leaf seen so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000483 using LeafMap = DenseMap<Value *, APInt>;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000484 LeafMap Leaves; // Leaf -> Total weight so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000485 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000486
487#ifndef NDEBUG
Eugene Zelenko306d2992017-10-18 21:46:47 +0000488 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000489#endif
490 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000491 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000492 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000493
494 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
495 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000496 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000497 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
498 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
499
500 // If this is a binary operation of the right kind with only one use then
501 // add its operands to the expression.
502 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000503 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000504 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
505 Worklist.push_back(std::make_pair(BO, Weight));
506 continue;
507 }
508
509 // Appears to be a leaf. Is the operand already in the set of leaves?
510 LeafMap::iterator It = Leaves.find(Op);
511 if (It == Leaves.end()) {
512 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000513 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000514 if (!Op->hasOneUse()) {
515 // This value has uses not accounted for by the expression, so it is
516 // not safe to modify. Mark it as being a leaf.
517 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
518 LeafOrder.push_back(Op);
519 Leaves[Op] = Weight;
520 continue;
521 }
522 // No uses outside the expression, try morphing it.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000523 } else {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000524 // Already in the leaf map.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000525 assert(It != Leaves.end() && Visited.count(Op) &&
526 "In leaf map but not visited!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000527
528 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000529 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000530
Duncan Sands56514522012-07-26 09:26:40 +0000531#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000532 // The leaf already has one use from inside the expression. As we want
533 // exactly one such use, drop this new use of the leaf.
534 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
535 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000536 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000537
538 // If the leaf is a binary operation of the right kind and we now see
539 // that its multiple original uses were in fact all by nodes belonging
540 // to the expression, then no longer consider it to be a leaf and add
541 // its operands to the expression.
542 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
543 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
544 Worklist.push_back(std::make_pair(BO, It->second));
545 Leaves.erase(It);
546 continue;
547 }
Duncan Sands56514522012-07-26 09:26:40 +0000548#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000549
550 // If we still have uses that are not accounted for by the expression
551 // then it is not safe to modify the value.
552 if (!Op->hasOneUse())
553 continue;
554
555 // No uses outside the expression, try morphing it.
556 Weight = It->second;
557 Leaves.erase(It); // Since the value may be morphed below.
558 }
559
560 // At this point we have a value which, first of all, is not a binary
561 // expression of the right kind, and secondly, is only used inside the
562 // expression. This means that it can safely be modified. See if we
563 // can usefully morph it into an expression of the right kind.
564 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000565 cast<Instruction>(Op)->getOpcode() != Opcode
566 || (isa<FPMathOperator>(Op) &&
Sanjay Patel629c4112017-11-06 16:27:15 +0000567 !cast<Instruction>(Op)->isFast())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000568 "Should have been handled above!");
569 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
570
571 // If this is a multiply expression, turn any internal negations into
572 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000573 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
574 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
575 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
576 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
577 BO = LowerNegateToMultiply(BO);
578 DEBUG(dbgs() << *BO << '\n');
579 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000580 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000581 continue;
582 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000583
584 // Failed to morph into an expression of the right type. This really is
585 // a leaf.
586 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
587 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
588 LeafOrder.push_back(Op);
589 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000590 }
591 }
592
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000593 // The leaves, repeated according to their weights, represent the linearized
594 // form of the expression.
595 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
596 Value *V = LeafOrder[i];
597 LeafMap::iterator It = Leaves.find(V);
598 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000599 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000600 continue;
601 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000602 APInt Weight = It->second;
603 if (Weight.isMinValue())
604 // Leaf already output or weight reduction eliminated it.
605 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000606 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000607 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000608 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000609 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000610
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000611 // For nilpotent operations or addition there may be no operands, for example
612 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
613 // in both cases the weight reduces to 0 causing the value to be skipped.
614 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000615 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000616 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000617 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000618 }
619
Chad Rosiere53e8c82014-11-18 20:21:54 +0000620 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000621}
622
Sanjay Patelc96ee082015-04-22 18:04:46 +0000623/// Now that the operands for this expression tree are
624/// linearized and optimized, emit them in-order.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000625void ReassociatePass::RewriteExprTree(BinaryOperator *I,
626 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000627 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000628
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000629 // Since our optimizations should never increase the number of operations, the
630 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000631 // from the original expression tree, without creating any new instructions,
632 // though the rewritten expression may have a completely different topology.
633 // We take care to not change anything if the new expression will be the same
634 // as the original. If more than trivial changes (like commuting operands)
635 // were made then we are obliged to clear out any optional subclass data like
636 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000637
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000638 /// NodesToRewrite - Nodes from the original expression available for writing
639 /// the new expression into.
640 SmallVector<BinaryOperator*, 8> NodesToRewrite;
641 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000642 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000643
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000644 /// NotRewritable - The operands being written will be the leaves of the new
645 /// expression and must not be used as inner nodes (via NodesToRewrite) by
646 /// mistake. Inner nodes are always reassociable, and usually leaves are not
647 /// (if they were they would have been incorporated into the expression and so
648 /// would not be leaves), so most of the time there is no danger of this. But
649 /// in rare cases a leaf may become reassociable if an optimization kills uses
650 /// of it, or it may momentarily become reassociable during rewriting (below)
651 /// due it being removed as an operand of one of its uses. Ensure that misuse
652 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
653 /// leaves and refusing to reuse any of them as inner nodes.
654 SmallPtrSet<Value*, 8> NotRewritable;
655 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
656 NotRewritable.insert(Ops[i].Op);
657
Duncan Sands3c05cd32012-05-26 16:42:52 +0000658 // ExpressionChanged - Non-null if the rewritten expression differs from the
659 // original in some non-trivial way, requiring the clearing of optional flags.
660 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000661 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000662 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000663 // The last operation (which comes earliest in the IR) is special as both
664 // operands will come from Ops, rather than just one with the other being
665 // a subexpression.
666 if (i+2 == Ops.size()) {
667 Value *NewLHS = Ops[i].Op;
668 Value *NewRHS = Ops[i+1].Op;
669 Value *OldLHS = Op->getOperand(0);
670 Value *OldRHS = Op->getOperand(1);
671
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000672 if (NewLHS == OldLHS && NewRHS == OldRHS)
673 // Nothing changed, leave it alone.
674 break;
675
676 if (NewLHS == OldRHS && NewRHS == OldLHS) {
677 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000678 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000679 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000680 DEBUG(dbgs() << "TO: " << *Op << '\n');
681 MadeChange = true;
682 ++NumChanged;
683 break;
684 }
685
686 // The new operation differs non-trivially from the original. Overwrite
687 // the old operands with the new ones.
688 DEBUG(dbgs() << "RA: " << *Op << '\n');
689 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000690 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
691 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000692 NodesToRewrite.push_back(BO);
693 Op->setOperand(0, NewLHS);
694 }
695 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000696 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
697 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000698 NodesToRewrite.push_back(BO);
699 Op->setOperand(1, NewRHS);
700 }
701 DEBUG(dbgs() << "TO: " << *Op << '\n');
702
Duncan Sands3c05cd32012-05-26 16:42:52 +0000703 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000704 MadeChange = true;
705 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000706
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000707 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000708 }
Chris Lattner1e506502005-05-07 21:59:39 +0000709
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000710 // Not the last operation. The left-hand side will be a sub-expression
711 // while the right-hand side will be the current element of Ops.
712 Value *NewRHS = Ops[i].Op;
713 if (NewRHS != Op->getOperand(1)) {
714 DEBUG(dbgs() << "RA: " << *Op << '\n');
715 if (NewRHS == Op->getOperand(0)) {
716 // The new right-hand side was already present as the left operand. If
717 // we are lucky then swapping the operands will sort out both of them.
718 Op->swapOperands();
719 } else {
720 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000721 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
722 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000723 NodesToRewrite.push_back(BO);
724 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000725 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000726 }
727 DEBUG(dbgs() << "TO: " << *Op << '\n');
728 MadeChange = true;
729 ++NumChanged;
730 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000731
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000732 // Now deal with the left-hand side. If this is already an operation node
733 // from the original expression then just rewrite the rest of the expression
734 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000735 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
736 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000737 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000738 continue;
739 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000740
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000741 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000742 // the left-hand side. If there are no nodes left then the optimizers made
743 // an expression with more nodes than the original! This usually means that
744 // they did something stupid but it might mean that the problem was just too
745 // hard (finding the mimimal number of multiplications needed to realize a
746 // multiplication expression is NP-complete). Whatever the reason, smart or
747 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000748 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000749 if (NodesToRewrite.empty()) {
750 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000751 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
752 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000753 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000754 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000755 } else {
756 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000757 }
758
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000759 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000760 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000761 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000762 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000763 MadeChange = true;
764 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000765 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000766 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000767
Duncan Sands3c05cd32012-05-26 16:42:52 +0000768 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000769 // starting from the operator specified in ExpressionChanged, and compactify
770 // the operators to just before the expression root to guarantee that the
771 // expression tree is dominated by all of Ops.
772 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000773 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000774 // Preserve FastMathFlags.
775 if (isa<FPMathOperator>(I)) {
776 FastMathFlags Flags = I->getFastMathFlags();
777 ExpressionChanged->clearSubclassOptionalData();
778 ExpressionChanged->setFastMathFlags(Flags);
779 } else
780 ExpressionChanged->clearSubclassOptionalData();
781
Duncan Sands3c05cd32012-05-26 16:42:52 +0000782 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000783 break;
Duncan Sands514db112012-06-27 14:19:00 +0000784 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000785 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Eugene Zelenko306d2992017-10-18 21:46:47 +0000786 } while (true);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000787
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000788 // Throw away any left over nodes from the original expression.
789 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000790 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000791}
792
Sanjay Patelc96ee082015-04-22 18:04:46 +0000793/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000794/// that computes the negative version of the value specified. The negative
795/// version of the value is returned, and BI is left pointing at the instruction
796/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000797/// Also add intermediate instructions to the redo list that are modified while
798/// pushing the negates through adds. These will be revisited to see if
799/// additional opportunities have been exposed.
800static Value *NegateValue(Value *V, Instruction *BI,
801 SetVector<AssertingVH<Instruction>> &ToRedo) {
Sanjay Pateld1becd02017-11-15 16:19:17 +0000802 if (auto *C = dyn_cast<Constant>(V))
803 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
804 ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000805
Chris Lattner7bc532d2002-05-16 04:37:07 +0000806 // We are trying to expose opportunity for reassociation. One of the things
807 // that we want to do to achieve this is to push a negation as deep into an
808 // expression chain as possible, to expose the add instructions. In practice,
809 // this means that we turn this:
810 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
811 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
812 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000813 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000814 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000815 if (BinaryOperator *I =
816 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000817 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000818 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
819 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000820 if (I->getOpcode() == Instruction::Add) {
821 I->setHasNoUnsignedWrap(false);
822 I->setHasNoSignedWrap(false);
823 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000824
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000825 // We must move the add instruction here, because the neg instructions do
826 // not dominate the old add instruction in general. By moving it, we are
827 // assured that the neg instructions we just inserted dominate the
828 // instruction we are about to insert after them.
829 //
830 I->moveBefore(BI);
831 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000832
833 // Add the intermediate negates to the redo list as processing them later
834 // could expose more reassociating opportunities.
835 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000836 return I;
837 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000838
Chris Lattnerfed33972009-12-31 20:34:32 +0000839 // Okay, we need to materialize a negated version of V with an instruction.
840 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000841 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000842 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
843 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000844
845 // We found one! Now we have to make sure that the definition dominates
846 // this use. We do this by moving it to the entry block (if it is a
847 // non-instruction value) or right after the definition. These negates will
848 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000849 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000850
851 // Verify that the negate is in this function, V might be a constant expr.
852 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
853 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000854
Chris Lattnerfed33972009-12-31 20:34:32 +0000855 BasicBlock::iterator InsertPt;
856 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
857 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
858 InsertPt = II->getNormalDest()->begin();
859 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000860 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000861 }
862 while (isa<PHINode>(InsertPt)) ++InsertPt;
863 } else {
864 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
865 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000866 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000867 if (TheNeg->getOpcode() == Instruction::Sub) {
868 TheNeg->setHasNoUnsignedWrap(false);
869 TheNeg->setHasNoSignedWrap(false);
870 } else {
871 TheNeg->andIRFlags(BI);
872 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000873 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000874 return TheNeg;
875 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000876
877 // Insert a 'neg' instruction that subtracts the value from zero to get the
878 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000879 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
880 ToRedo.insert(NewNeg);
881 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000882}
883
Sanjay Patelc96ee082015-04-22 18:04:46 +0000884/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000885static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000886 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000887 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000888 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000889
Chad Rosierbd64d462014-10-09 20:06:29 +0000890 // Don't breakup X - undef.
891 if (isa<UndefValue>(Sub->getOperand(1)))
892 return false;
893
Chris Lattner902537c2008-02-17 20:44:51 +0000894 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000895 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000896 Value *V0 = Sub->getOperand(0);
897 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
898 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000899 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000900 Value *V1 = Sub->getOperand(1);
901 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
902 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000903 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000904 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000905 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000906 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
907 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000908 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000909
Chris Lattner902537c2008-02-17 20:44:51 +0000910 return false;
911}
912
Sanjay Patelc96ee082015-04-22 18:04:46 +0000913/// If we have (X-Y), and if either X is an add, or if this is only used by an
914/// add, transform this into (X+(0-Y)) to promote better reassociation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000915static BinaryOperator *
916BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000917 // Convert a subtract into an add and a neg instruction. This allows sub
918 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000919 //
Chris Lattnera5526832010-01-01 00:04:26 +0000920 // Calculate the negative value of Operand 1 of the sub instruction,
921 // and set it as the RHS of the add instruction we just made.
Owen Anderson2de9f542015-11-16 18:07:30 +0000922 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +0000923 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000924 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
925 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000926 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000927
928 // Everyone now refers to the add instruction.
929 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000930 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000931
David Greened17c3912010-01-05 01:27:24 +0000932 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000933 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000934}
935
Sanjay Patelc96ee082015-04-22 18:04:46 +0000936/// If this is a shift of a reassociable multiply or is used by one, change
937/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000938static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
939 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
940 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000941
Duncan Sands3293f462012-06-08 20:15:33 +0000942 BinaryOperator *Mul =
943 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
944 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
945 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +0000946
947 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +0000948 Shl->replaceAllUsesWith(Mul);
949 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +0000950
951 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
952 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
953 // handling.
954 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
955 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
956 if (NSW && NUW)
957 Mul->setHasNoSignedWrap(true);
958 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +0000959 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000960}
961
Sanjay Patelc96ee082015-04-22 18:04:46 +0000962/// Scan backwards and forwards among values with the same rank as element i
963/// to see if X exists. If X does not exist, return i. This is useful when
964/// scanning for 'x' when we see '-x' because they both get the same rank.
Craig Topper99a2e892017-06-21 19:39:33 +0000965static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
966 unsigned i, Value *X) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000967 unsigned XRank = Ops[i].Rank;
968 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +0000969 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000970 if (Ops[j].Op == X)
971 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000972 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
973 if (Instruction *I2 = dyn_cast<Instruction>(X))
974 if (I1->isIdenticalTo(I2))
975 return j;
976 }
Chris Lattner0c59ac32010-01-01 01:13:15 +0000977 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +0000978 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000979 if (Ops[j].Op == X)
980 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000981 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
982 if (Instruction *I2 = dyn_cast<Instruction>(X))
983 if (I1->isIdenticalTo(I2))
984 return j;
985 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000986 return i;
987}
988
Sanjay Patelc96ee082015-04-22 18:04:46 +0000989/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +0000990/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +0000991static Value *EmitAddTreeOfValues(Instruction *I,
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000992 SmallVectorImpl<WeakTrackingVH> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +0000993 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000994
Chris Lattner4c065092006-03-04 09:31:13 +0000995 Value *V1 = Ops.back();
996 Ops.pop_back();
997 Value *V2 = EmitAddTreeOfValues(I, Ops);
Sanjay Patel0d660102017-11-09 18:14:24 +0000998 return CreateAdd(V2, V1, "reass.add", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +0000999}
1000
Sanjay Patelc96ee082015-04-22 18:04:46 +00001001/// If V is an expression tree that is a multiplication sequence,
1002/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +00001003/// remove Factor from the tree and return the new tree.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001004Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001005 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1006 if (!BO)
1007 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001008
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001009 SmallVector<RepeatedValue, 8> Tree;
1010 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001011 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001012 Factors.reserve(Tree.size());
1013 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1014 RepeatedValue E = Tree[i];
1015 Factors.append(E.second.getZExtValue(),
1016 ValueEntry(getRank(E.first), E.first));
1017 }
Chris Lattner4c065092006-03-04 09:31:13 +00001018
1019 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001020 bool NeedsNegate = false;
1021 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001022 if (Factors[i].Op == Factor) {
1023 FoundFactor = true;
1024 Factors.erase(Factors.begin()+i);
1025 break;
1026 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001027
Chris Lattner0c59ac32010-01-01 01:13:15 +00001028 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001029 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001030 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1031 if (FC1->getValue() == -FC2->getValue()) {
1032 FoundFactor = NeedsNegate = true;
1033 Factors.erase(Factors.begin()+i);
1034 break;
1035 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001036 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1037 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001038 const APFloat &F1 = FC1->getValueAPF();
Chad Rosier11ab9412014-08-14 15:23:01 +00001039 APFloat F2(FC2->getValueAPF());
1040 F2.changeSign();
1041 if (F1.compare(F2) == APFloat::cmpEqual) {
1042 FoundFactor = NeedsNegate = true;
1043 Factors.erase(Factors.begin() + i);
1044 break;
1045 }
1046 }
1047 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001048 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001049
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001050 if (!FoundFactor) {
1051 // Make sure to restore the operands to the expression tree.
1052 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001053 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001054 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001055
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001056 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001057
Chris Lattner1d897942009-12-31 19:34:45 +00001058 // If this was just a single multiply, remove the multiply and return the only
1059 // remaining operand.
1060 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001061 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001062 V = Factors[0].Op;
1063 } else {
1064 RewriteExprTree(BO, Factors);
1065 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001066 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001067
Chris Lattner0c59ac32010-01-01 01:13:15 +00001068 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001069 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001070
Chris Lattner0c59ac32010-01-01 01:13:15 +00001071 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001072}
1073
Sanjay Patelc96ee082015-04-22 18:04:46 +00001074/// If V is a single-use multiply, recursively add its operands as factors,
1075/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001076///
1077/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001078static void FindSingleUseMultiplyFactors(Value *V,
Chad Rosiere22c9922017-02-08 17:45:27 +00001079 SmallVectorImpl<Value*> &Factors) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001080 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001081 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001082 Factors.push_back(V);
1083 return;
1084 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001085
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001086 // Otherwise, add the LHS and RHS to the list of factors.
Chad Rosiere22c9922017-02-08 17:45:27 +00001087 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1088 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001089}
1090
Sanjay Patelc96ee082015-04-22 18:04:46 +00001091/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1092/// This optimizes based on identities. If it can be reduced to a single Value,
1093/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001094static Value *OptimizeAndOrXor(unsigned Opcode,
1095 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001096 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1097 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1098 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1099 // First, check for X and ~X in the operand list.
1100 assert(i < Ops.size());
1101 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1102 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1103 unsigned FoundX = FindInOperandList(Ops, i, X);
1104 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001105 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001106 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001107
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001108 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001109 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001110 }
1111 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001112
Chris Lattner5f8a0052009-12-31 07:59:34 +00001113 // Next, check for duplicate pairs of values, which we assume are next to
1114 // each other, due to our sorting criteria.
1115 assert(i < Ops.size());
1116 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1117 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001118 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001119 Ops.erase(Ops.begin()+i);
1120 --i; --e;
1121 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001122 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001123 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001124
Chris Lattner60c2ca72009-12-31 19:49:01 +00001125 // Drop pairs of values for Xor.
1126 assert(Opcode == Instruction::Xor);
1127 if (e == 2)
1128 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001129
Chris Lattnera5526832010-01-01 00:04:26 +00001130 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001131 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1132 i -= 1; e -= 2;
1133 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001134 }
1135 }
Craig Topperf40110f2014-04-25 05:29:35 +00001136 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001137}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001138
Eric Christopherbfba5722015-12-16 23:10:53 +00001139/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001140/// instruction with the given two operands, and return the resulting
1141/// instruction. There are two special cases: 1) if the constant operand is 0,
1142/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1143/// be returned.
Craig Topper34caf532017-06-21 19:39:35 +00001144static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001145 const APInt &ConstOpnd) {
Craig Topper34caf532017-06-21 19:39:35 +00001146 if (ConstOpnd.isNullValue())
1147 return nullptr;
1148
1149 if (ConstOpnd.isAllOnesValue())
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001150 return Opnd;
Craig Topper34caf532017-06-21 19:39:35 +00001151
1152 Instruction *I = BinaryOperator::CreateAnd(
1153 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1154 InsertBefore);
1155 I->setDebugLoc(InsertBefore->getDebugLoc());
1156 return I;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001157}
1158
1159// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1160// into "R ^ C", where C would be 0, and R is a symbolic value.
1161//
1162// If it was successful, true is returned, and the "R" and "C" is returned
1163// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1164// and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001165bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1166 APInt &ConstOpnd, Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001167 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1168 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1169 // = (x & ~c1) ^ (c1 ^ c2)
1170 // It is useful only when c1 == c2.
Craig Topper34caf532017-06-21 19:39:35 +00001171 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1172 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001173
Craig Topper34caf532017-06-21 19:39:35 +00001174 if (!Opnd1->getValue()->hasOneUse())
1175 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001176
Craig Topper34caf532017-06-21 19:39:35 +00001177 const APInt &C1 = Opnd1->getConstPart();
1178 if (C1 != ConstOpnd)
1179 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001180
Craig Topper34caf532017-06-21 19:39:35 +00001181 Value *X = Opnd1->getSymbolicPart();
1182 Res = createAndInstr(I, X, ~C1);
1183 // ConstOpnd was C2, now C1 ^ C2.
1184 ConstOpnd ^= C1;
1185
1186 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1187 RedoInsts.insert(T);
1188 return true;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001189}
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001190
1191// Helper function of OptimizeXor(). It tries to simplify
1192// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1193// symbolic value.
1194//
1195// If it was successful, true is returned, and the "R" and "C" is returned
1196// via "Res" and "ConstOpnd", respectively (If the entire expression is
1197// evaluated to a constant, the Res is set to NULL); otherwise, false is
1198// returned, and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001199bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1200 XorOpnd *Opnd2, APInt &ConstOpnd,
1201 Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001202 Value *X = Opnd1->getSymbolicPart();
1203 if (X != Opnd2->getSymbolicPart())
1204 return false;
1205
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001206 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1207 int DeadInstNum = 1;
1208 if (Opnd1->getValue()->hasOneUse())
1209 DeadInstNum++;
1210 if (Opnd2->getValue()->hasOneUse())
1211 DeadInstNum++;
1212
1213 // Xor-Rule 2:
1214 // (x | c1) ^ (x & c2)
1215 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1216 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1217 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1218 //
1219 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1220 if (Opnd2->isOrExpr())
1221 std::swap(Opnd1, Opnd2);
1222
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001223 const APInt &C1 = Opnd1->getConstPart();
1224 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001225 APInt C3((~C1) ^ C2);
1226
1227 // Do not increase code size!
Craig Topperd96177c2017-06-18 18:15:38 +00001228 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1229 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001230 if (NewInstNum > DeadInstNum)
1231 return false;
1232 }
1233
1234 Res = createAndInstr(I, X, C3);
1235 ConstOpnd ^= C1;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001236 } else if (Opnd1->isOrExpr()) {
1237 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1238 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001239 const APInt &C1 = Opnd1->getConstPart();
1240 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001241 APInt C3 = C1 ^ C2;
1242
1243 // Do not increase code size
Craig Topperd96177c2017-06-18 18:15:38 +00001244 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1245 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001246 if (NewInstNum > DeadInstNum)
1247 return false;
1248 }
1249
1250 Res = createAndInstr(I, X, C3);
1251 ConstOpnd ^= C3;
1252 } else {
1253 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1254 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001255 const APInt &C1 = Opnd1->getConstPart();
1256 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001257 APInt C3 = C1 ^ C2;
1258 Res = createAndInstr(I, X, C3);
1259 }
1260
1261 // Put the original operands in the Redo list; hope they will be deleted
1262 // as dead code.
1263 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1264 RedoInsts.insert(T);
1265 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1266 RedoInsts.insert(T);
1267
1268 return true;
1269}
1270
1271/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1272/// to a single Value, it is returned, otherwise the Ops list is mutated as
1273/// necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001274Value *ReassociatePass::OptimizeXor(Instruction *I,
1275 SmallVectorImpl<ValueEntry> &Ops) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001276 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1277 return V;
1278
1279 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001280 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001281
1282 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001283 SmallVector<XorOpnd*, 8> OpndPtrs;
Craig Toppercbac691c2017-06-21 16:07:09 +00001284 Type *Ty = Ops[0].Op->getType();
1285 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001286
1287 // Step 1: Convert ValueEntry to XorOpnd
1288 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1289 Value *V = Ops[i].Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001290 const APInt *C;
1291 // TODO: Support non-splat vectors.
1292 if (match(V, PatternMatch::m_APInt(C))) {
1293 ConstOpnd ^= *C;
1294 } else {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001295 XorOpnd O(V);
1296 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1297 Opnds.push_back(O);
Craig Toppercbac691c2017-06-21 16:07:09 +00001298 }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001299 }
1300
Shuxin Yang331f01d2013-04-08 22:00:43 +00001301 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1302 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1303 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1304 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1305 // when new elements are added to the vector.
1306 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1307 OpndPtrs.push_back(&Opnds[i]);
1308
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001309 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1310 // the same symbolic value cluster together. For instance, the input operand
1311 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1312 // ("x | 123", "x & 789", "y & 456").
Justin Bognercb8a21c2016-04-26 23:32:00 +00001313 //
1314 // The purpose is twofold:
1315 // 1) Cluster together the operands sharing the same symbolic-value.
1316 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1317 // could potentially shorten crital path, and expose more loop-invariants.
1318 // Note that values' rank are basically defined in RPO order (FIXME).
1319 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1320 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1321 // "z" in the order of X-Y-Z is better than any other orders.
1322 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1323 [](XorOpnd *LHS, XorOpnd *RHS) {
1324 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1325 });
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001326
1327 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001328 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001329 bool Changed = false;
1330 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001331 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001332 // The combined value
1333 Value *CV;
1334
1335 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
Craig Topperd96177c2017-06-18 18:15:38 +00001336 if (!ConstOpnd.isNullValue() &&
1337 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001338 Changed = true;
1339 if (CV)
1340 *CurrOpnd = XorOpnd(CV);
1341 else {
1342 CurrOpnd->Invalidate();
1343 continue;
1344 }
1345 }
1346
1347 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1348 PrevOpnd = CurrOpnd;
1349 continue;
1350 }
1351
1352 // step 3.2: When previous and current operands share the same symbolic
1353 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001354 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1355 // Remove previous operand
1356 PrevOpnd->Invalidate();
1357 if (CV) {
1358 *CurrOpnd = XorOpnd(CV);
1359 PrevOpnd = CurrOpnd;
1360 } else {
1361 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001362 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001363 }
1364 Changed = true;
1365 }
1366 }
1367
1368 // Step 4: Reassemble the Ops
1369 if (Changed) {
1370 Ops.clear();
1371 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1372 XorOpnd &O = Opnds[i];
1373 if (O.isInvalid())
1374 continue;
1375 ValueEntry VE(getRank(O.getValue()), O.getValue());
1376 Ops.push_back(VE);
1377 }
Craig Topperd96177c2017-06-18 18:15:38 +00001378 if (!ConstOpnd.isNullValue()) {
Craig Toppercbac691c2017-06-21 16:07:09 +00001379 Value *C = ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001380 ValueEntry VE(getRank(C), C);
1381 Ops.push_back(VE);
1382 }
Craig Toppercbac691c2017-06-21 16:07:09 +00001383 unsigned Sz = Ops.size();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001384 if (Sz == 1)
1385 return Ops.back().Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001386 if (Sz == 0) {
1387 assert(ConstOpnd.isNullValue());
1388 return ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001389 }
1390 }
1391
Craig Topperf40110f2014-04-25 05:29:35 +00001392 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001393}
1394
Sanjay Patelc96ee082015-04-22 18:04:46 +00001395/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001396/// optimizes based on identities. If it can be reduced to a single Value, it
1397/// is returned, otherwise the Ops list is mutated as necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001398Value *ReassociatePass::OptimizeAdd(Instruction *I,
1399 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001400 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001401 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1402 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001403 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001404
Chris Lattner5f8a0052009-12-31 07:59:34 +00001405 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001406 Value *TheOp = Ops[i].Op;
1407 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001408 // instances of the operand together. Due to our sorting criteria, we know
1409 // that these need to be next to each other in the vector.
1410 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1411 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001412 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001413 do {
1414 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001415 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001416 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001417
Chad Rosier78943bc2014-12-12 14:44:12 +00001418 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001419 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001420
Chris Lattner60b71b52009-12-31 19:24:52 +00001421 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001422 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001423 Constant *C = Ty->isIntOrIntVectorTy() ?
1424 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001425 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001426
Chris Lattner60b71b52009-12-31 19:24:52 +00001427 // Now that we have inserted a multiply, optimize it. This allows us to
1428 // handle cases that require multiple factoring steps, such as this:
1429 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001430 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001431
Chris Lattner60b71b52009-12-31 19:24:52 +00001432 // If every add operand was a duplicate, return the multiply.
1433 if (Ops.empty())
1434 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001435
Chris Lattner60b71b52009-12-31 19:24:52 +00001436 // Otherwise, we had some input that didn't have the dupe, such as
1437 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1438 // things being added by this operation.
1439 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001440
Chris Lattner60c2ca72009-12-31 19:49:01 +00001441 --i;
1442 e = Ops.size();
1443 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001444 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001445
Benjamin Kramer49689442014-05-31 15:01:54 +00001446 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001447 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1448 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001449 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001450
Benjamin Kramer49689442014-05-31 15:01:54 +00001451 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001452 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001453 X = BinaryOperator::getNegArgument(TheOp);
1454 else if (BinaryOperator::isNot(TheOp))
1455 X = BinaryOperator::getNotArgument(TheOp);
1456
Chris Lattner5f8a0052009-12-31 07:59:34 +00001457 unsigned FoundX = FindInOperandList(Ops, i, X);
1458 if (FoundX == i)
1459 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001460
Chris Lattner5f8a0052009-12-31 07:59:34 +00001461 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001462 if (Ops.size() == 2 &&
1463 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001464 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001465
Benjamin Kramer49689442014-05-31 15:01:54 +00001466 // Remove X and ~X from the operand list.
1467 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1468 return Constant::getAllOnesValue(X->getType());
1469
Chris Lattner5f8a0052009-12-31 07:59:34 +00001470 Ops.erase(Ops.begin()+i);
1471 if (i < FoundX)
1472 --FoundX;
1473 else
1474 --i; // Need to back up an extra one.
1475 Ops.erase(Ops.begin()+FoundX);
1476 ++NumAnnihil;
1477 --i; // Revisit element.
1478 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001479
1480 // if X and ~X we append -1 to the operand list.
1481 if (BinaryOperator::isNot(TheOp)) {
1482 Value *V = Constant::getAllOnesValue(X->getType());
1483 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1484 e += 1;
1485 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001486 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001487
Chris Lattner177140a2009-12-31 18:17:13 +00001488 // Scan the operand list, checking to see if there are any common factors
1489 // between operands. Consider something like A*A+A*B*C+D. We would like to
1490 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1491 // To efficiently find this, we count the number of times a factor occurs
1492 // for any ADD operands that are MULs.
1493 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001494
Chris Lattner177140a2009-12-31 18:17:13 +00001495 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1496 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001497 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001498 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001499 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001500 BinaryOperator *BOp =
1501 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001502 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001503 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001504
Chris Lattner177140a2009-12-31 18:17:13 +00001505 // Compute all of the factors of this added value.
1506 SmallVector<Value*, 8> Factors;
Chad Rosiere22c9922017-02-08 17:45:27 +00001507 FindSingleUseMultiplyFactors(BOp, Factors);
Chris Lattner177140a2009-12-31 18:17:13 +00001508 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001509
Chris Lattner177140a2009-12-31 18:17:13 +00001510 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001511 SmallPtrSet<Value*, 8> Duplicates;
1512 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1513 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001514 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001515 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001516
Chris Lattner0c59ac32010-01-01 01:13:15 +00001517 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001518 if (Occ > MaxOcc) {
1519 MaxOcc = Occ;
1520 MaxOccVal = Factor;
1521 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001522
Chris Lattner0c59ac32010-01-01 01:13:15 +00001523 // If Factor is a negative constant, add the negated value as a factor
1524 // because we can percolate the negate out. Watch for minint, which
1525 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001526 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001527 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001528 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
Chad Rosier95abfa32017-02-23 18:49:03 +00001529 if (!Duplicates.insert(Factor).second)
1530 continue;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001531 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001532 if (Occ > MaxOcc) {
1533 MaxOcc = Occ;
1534 MaxOccVal = Factor;
1535 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001536 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001537 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1538 if (CF->isNegative()) {
1539 APFloat F(CF->getValueAPF());
1540 F.changeSign();
1541 Factor = ConstantFP::get(CF->getContext(), F);
Chad Rosier95abfa32017-02-23 18:49:03 +00001542 if (!Duplicates.insert(Factor).second)
1543 continue;
Chad Rosier11ab9412014-08-14 15:23:01 +00001544 unsigned Occ = ++FactorOccurrences[Factor];
1545 if (Occ > MaxOcc) {
1546 MaxOcc = Occ;
1547 MaxOccVal = Factor;
1548 }
1549 }
1550 }
Chris Lattner177140a2009-12-31 18:17:13 +00001551 }
1552 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001553
Chris Lattner177140a2009-12-31 18:17:13 +00001554 // If any factor occurred more than one time, we can pull it out.
1555 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001556 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001557 ++NumFactor;
1558
1559 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1560 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001561 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001562 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001563 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001564 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001565 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1566 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1567
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001568 SmallVector<WeakTrackingVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001569 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001570 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001571 BinaryOperator *BOp =
1572 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001573 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001574 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001575
Chris Lattner177140a2009-12-31 18:17:13 +00001576 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001577 // The factorized operand may occur several times. Convert them all in
1578 // one fell swoop.
1579 for (unsigned j = Ops.size(); j != i;) {
1580 --j;
1581 if (Ops[j].Op == Ops[i].Op) {
1582 NewMulOps.push_back(V);
1583 Ops.erase(Ops.begin()+j);
1584 }
1585 }
1586 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001587 }
1588 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001589
Chris Lattner177140a2009-12-31 18:17:13 +00001590 // No need for extra uses anymore.
Reid Kleckner96ab8722017-05-18 17:24:10 +00001591 DummyInst->deleteValue();
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001592
Chris Lattner177140a2009-12-31 18:17:13 +00001593 unsigned NumAddedValues = NewMulOps.size();
1594 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001595
Chris Lattner60b71b52009-12-31 19:24:52 +00001596 // Now that we have inserted the add tree, optimize it. This allows us to
1597 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001598 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001599 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001600 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001601 if (Instruction *VI = dyn_cast<Instruction>(V))
1602 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001603
1604 // Create the multiply.
Sanjay Patel0d660102017-11-09 18:14:24 +00001605 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001606
Chris Lattner60c2ca72009-12-31 19:49:01 +00001607 // Rerun associate on the multiply in case the inner expression turned into
1608 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001609 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001610
Chris Lattner177140a2009-12-31 18:17:13 +00001611 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1612 // entire result expression is just the multiply "A*(B+C)".
1613 if (Ops.empty())
1614 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001615
Chris Lattnerac615502009-12-31 18:18:46 +00001616 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001617 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001618 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001619 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1620 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001621
Craig Topperf40110f2014-04-25 05:29:35 +00001622 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001623}
Chris Lattner4c065092006-03-04 09:31:13 +00001624
Chandler Carruth739ef802012-04-26 05:30:30 +00001625/// \brief Build up a vector of value/power pairs factoring a product.
1626///
1627/// Given a series of multiplication operands, build a vector of factors and
1628/// the powers each is raised to when forming the final product. Sort them in
1629/// the order of descending power.
1630///
1631/// (x*x) -> [(x, 2)]
1632/// ((x*x)*x) -> [(x, 3)]
1633/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1634///
1635/// \returns Whether any factors have a power greater than one.
Craig Topper43507342017-06-19 16:23:43 +00001636static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1637 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001638 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1639 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001640 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001641 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1642 Value *Op = Ops[Idx-1].Op;
1643
1644 // Count the number of occurrences of this value.
1645 unsigned Count = 1;
1646 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1647 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001648 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001649 if (Count > 1)
1650 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001651 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001652
Chandler Carruth739ef802012-04-26 05:30:30 +00001653 // We can only simplify factors if the sum of the powers of our simplifiable
1654 // factors is 4 or higher. When that is the case, we will *always* have
1655 // a simplification. This is an important invariant to prevent cyclicly
1656 // trying to simplify already minimal formations.
1657 if (FactorPowerSum < 4)
1658 return false;
1659
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001660 // Now gather the simplifiable factors, removing them from Ops.
1661 FactorPowerSum = 0;
1662 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1663 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001664
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001665 // Count the number of occurrences of this value.
1666 unsigned Count = 1;
1667 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1668 ++Count;
1669 if (Count == 1)
1670 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001671 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001672 Count &= ~1U;
1673 Idx -= Count;
1674 FactorPowerSum += Count;
1675 Factors.push_back(Factor(Op, Count));
1676 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001677 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001678
Chandler Carruth739ef802012-04-26 05:30:30 +00001679 // None of the adjustments above should have reduced the sum of factor powers
1680 // below our mininum of '4'.
1681 assert(FactorPowerSum >= 4);
1682
Justin Bogner90744d22016-04-26 22:22:18 +00001683 std::stable_sort(Factors.begin(), Factors.end(),
1684 [](const Factor &LHS, const Factor &RHS) {
1685 return LHS.Power > RHS.Power;
1686 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001687 return true;
1688}
1689
1690/// \brief Build a tree of multiplies, computing the product of Ops.
1691static Value *buildMultiplyTree(IRBuilder<> &Builder,
1692 SmallVectorImpl<Value*> &Ops) {
1693 if (Ops.size() == 1)
1694 return Ops.back();
1695
1696 Value *LHS = Ops.pop_back_val();
1697 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001698 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001699 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1700 else
1701 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001702 } while (!Ops.empty());
1703
1704 return LHS;
1705}
1706
1707/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1708///
1709/// Given a vector of values raised to various powers, where no two values are
1710/// equal and the powers are sorted in decreasing order, compute the minimal
1711/// DAG of multiplies to compute the final product, and return that product
1712/// value.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001713Value *
1714ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1715 SmallVectorImpl<Factor> &Factors) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001716 assert(Factors[0].Power);
1717 SmallVector<Value *, 4> OuterProduct;
1718 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1719 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1720 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1721 LastIdx = Idx;
1722 continue;
1723 }
1724
1725 // We want to multiply across all the factors with the same power so that
1726 // we can raise them to that power as a single entity. Build a mini tree
1727 // for that.
1728 SmallVector<Value *, 4> InnerProduct;
1729 InnerProduct.push_back(Factors[LastIdx].Base);
1730 do {
1731 InnerProduct.push_back(Factors[Idx].Base);
1732 ++Idx;
1733 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1734
1735 // Reset the base value of the first factor to the new expression tree.
1736 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001737 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1738 if (Instruction *MI = dyn_cast<Instruction>(M))
1739 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001740
1741 LastIdx = Idx;
1742 }
1743 // Unique factors with equal powers -- we've folded them into the first one's
1744 // base.
1745 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001746 [](const Factor &LHS, const Factor &RHS) {
1747 return LHS.Power == RHS.Power;
1748 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001749 Factors.end());
1750
1751 // Iteratively collect the base of each factor with an add power into the
1752 // outer product, and halve each power in preparation for squaring the
1753 // expression.
1754 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1755 if (Factors[Idx].Power & 1)
1756 OuterProduct.push_back(Factors[Idx].Base);
1757 Factors[Idx].Power >>= 1;
1758 }
1759 if (Factors[0].Power) {
1760 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1761 OuterProduct.push_back(SquareRoot);
1762 OuterProduct.push_back(SquareRoot);
1763 }
1764 if (OuterProduct.size() == 1)
1765 return OuterProduct.front();
1766
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001767 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001768 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001769}
1770
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001771Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1772 SmallVectorImpl<ValueEntry> &Ops) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001773 // We can only optimize the multiplies when there is a chain of more than
1774 // three, such that a balanced tree might require fewer total multiplies.
1775 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001776 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001777
1778 // Try to turn linear trees of multiplies without other uses of the
1779 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1780 // re-use.
1781 SmallVector<Factor, 4> Factors;
1782 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001783 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001784
1785 IRBuilder<> Builder(I);
Vyacheslav Klochkov68a677a2016-11-22 20:23:04 +00001786 // The reassociate transformation for FP operations is performed only
1787 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1788 // to the newly generated operations.
1789 if (auto FPI = dyn_cast<FPMathOperator>(I))
1790 Builder.setFastMathFlags(FPI->getFastMathFlags());
1791
Chandler Carruth739ef802012-04-26 05:30:30 +00001792 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1793 if (Ops.empty())
1794 return V;
1795
1796 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1797 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001798 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001799}
1800
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001801Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1802 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001803 // Now that we have the linearized expression tree, try to optimize it.
1804 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001805 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001806 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001807 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1808 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1809 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1810 }
1811 // If there was nothing but constants then we are done.
1812 if (Ops.empty())
1813 return Cst;
1814
1815 // Put the combined constant back at the end of the operand list, except if
1816 // there is no point. For example, an add of 0 gets dropped here, while a
1817 // multiplication by zero turns the whole expression into zero.
1818 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1819 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1820 return Cst;
1821 Ops.push_back(ValueEntry(0, Cst));
1822 }
1823
1824 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001825
Chris Lattner9039ff82009-12-31 07:33:14 +00001826 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001827 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001828 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001829 switch (Opcode) {
1830 default: break;
1831 case Instruction::And:
1832 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001833 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1834 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001835 break;
1836
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001837 case Instruction::Xor:
1838 if (Value *Result = OptimizeXor(I, Ops))
1839 return Result;
1840 break;
1841
Chandler Carruth739ef802012-04-26 05:30:30 +00001842 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001843 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001844 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001845 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001846 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001847
1848 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001849 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001850 if (Value *Result = OptimizeMul(I, Ops))
1851 return Result;
1852 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001853 }
1854
Duncan Sands3293f462012-06-08 20:15:33 +00001855 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001856 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001857 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001858}
1859
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001860// Remove dead instructions and if any operands are trivially dead add them to
1861// Insts so they will be removed as well.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001862void ReassociatePass::RecursivelyEraseDeadInsts(
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001863 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1864 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1865 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1866 ValueRankMap.erase(I);
1867 Insts.remove(I);
1868 RedoInsts.remove(I);
1869 I->eraseFromParent();
1870 for (auto Op : Ops)
1871 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1872 if (OpInst->use_empty())
1873 Insts.insert(OpInst);
1874}
1875
Sanjay Patelc96ee082015-04-22 18:04:46 +00001876/// Zap the given instruction, adding interesting operands to the work list.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001877void ReassociatePass::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001878 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
Chad Rosier27ac0d82016-08-30 13:58:35 +00001879 DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1880
Duncan Sands3293f462012-06-08 20:15:33 +00001881 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1882 // Erase the dead instruction.
1883 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001884 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001885 I->eraseFromParent();
1886 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001887 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001888 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1889 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1890 // If this is a node in an expression tree, climb to the expression root
1891 // and add that since that's where optimization actually happens.
1892 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001893 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001894 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001895 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001896 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001897 }
Mikael Holmen37b51202017-06-27 05:32:13 +00001898
1899 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001900}
1901
Chad Rosier094ac772014-11-11 22:58:35 +00001902// Canonicalize expressions of the following form:
1903// x + (-Constant * y) -> x - (Constant * y)
1904// x - (-Constant * y) -> x + (Constant * y)
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001905Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
Chad Rosier094ac772014-11-11 22:58:35 +00001906 if (!I->hasOneUse() || I->getType()->isVectorTy())
1907 return nullptr;
1908
David Majnemer587336d2015-05-28 06:16:39 +00001909 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001910 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001911 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001912 return nullptr;
1913
David Majnemer587336d2015-05-28 06:16:39 +00001914 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1915 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1916
1917 // Both operands are constant, let it get constant folded away.
1918 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001919 return nullptr;
1920
David Majnemer587336d2015-05-28 06:16:39 +00001921 ConstantFP *CF = C0 ? C0 : C1;
1922
1923 // Must have one constant operand.
1924 if (!CF)
1925 return nullptr;
1926
1927 // Must be a negative ConstantFP.
1928 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001929 return nullptr;
1930
1931 // User must be a binary operator with one or more uses.
1932 Instruction *User = I->user_back();
Davide Italiano79eb3b02017-05-16 22:38:40 +00001933 if (!isa<BinaryOperator>(User) || User->use_empty())
Chad Rosier094ac772014-11-11 22:58:35 +00001934 return nullptr;
1935
1936 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001937 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001938 return nullptr;
1939
1940 // Subtraction is not commutative. Explicitly, the following transform is
1941 // not valid: (-Constant * y) - x -> x + (Constant * y)
1942 if (!User->isCommutative() && User->getOperand(1) != I)
1943 return nullptr;
1944
Chad Rosier8db41e92017-08-23 14:10:06 +00001945 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1946 // resulting subtract will be broken up later. This can get us into an
1947 // infinite loop during reassociation.
1948 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1949 return nullptr;
1950
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001951 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001952 APFloat Val = CF->getValueAPF();
1953 Val.changeSign();
1954 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001955
Chad Rosier094ac772014-11-11 22:58:35 +00001956 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1957 // ((-Const*y) + x) -> (x + (-Const*y)).
1958 if (User->getOperand(0) == I && User->isCommutative())
1959 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001960
Chad Rosier094ac772014-11-11 22:58:35 +00001961 Value *Op0 = User->getOperand(0);
1962 Value *Op1 = User->getOperand(1);
1963 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00001964 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00001965 default:
1966 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00001967 case Instruction::FAdd:
1968 NI = BinaryOperator::CreateFSub(Op0, Op1);
1969 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1970 break;
1971 case Instruction::FSub:
1972 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1973 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1974 break;
1975 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001976
Chad Rosier094ac772014-11-11 22:58:35 +00001977 NI->insertBefore(User);
1978 NI->setName(User->getName());
1979 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001980 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00001981 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001982 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00001983 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001984}
1985
Sanjay Patelc96ee082015-04-22 18:04:46 +00001986/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00001987/// instructions is not allowed.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001988void ReassociatePass::OptimizeInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001989 // Only consider operations that we understand.
1990 if (!isa<BinaryOperator>(I))
1991 return;
1992
Chad Rosier11ab9412014-08-14 15:23:01 +00001993 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00001994 // If an operand of this shift is a reassociable multiply, or if the shift
1995 // is used by a reassociable multiply or add, turn into a multiply.
1996 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1997 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00001998 (isReassociableOp(I->user_back(), Instruction::Mul) ||
1999 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002000 Instruction *NI = ConvertShiftToMul(I);
2001 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002002 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002003 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002004 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002005
Chad Rosier094ac772014-11-11 22:58:35 +00002006 // Canonicalize negative constants out of expressions.
2007 if (Instruction *Res = canonicalizeNegConstExpr(I))
2008 I = Res;
2009
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002010 // Commute binary operators, to canonicalize the order of their operands.
2011 // This can potentially expose more CSE opportunities, and makes writing other
2012 // transformations simpler.
2013 if (I->isCommutative())
2014 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002015
Sanjay Patel629c4112017-11-06 16:27:15 +00002016 // Don't optimize floating-point instructions unless they are 'fast'.
2017 if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002018 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002019
Dan Gohman1c6c3482011-04-12 00:11:56 +00002020 // Do not reassociate boolean (i1) expressions. We want to preserve the
2021 // original order of evaluation for short-circuited comparisons that
2022 // SimplifyCFG has folded to AND/OR expressions. If the expression
2023 // is not further optimized, it is likely to be transformed back to a
2024 // short-circuited form for code gen, and the source order may have been
2025 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002026 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002027 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002028
Dan Gohman1c6c3482011-04-12 00:11:56 +00002029 // If this is a subtract instruction which is not already in negate form,
2030 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002031 if (I->getOpcode() == Instruction::Sub) {
2032 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002033 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002034 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002035 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002036 I = NI;
2037 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002038 // Otherwise, this is a negation. See if the operand is a multiply tree
2039 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002040 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2041 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002042 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002043 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002044 // If the negate was simplified, revisit the users to see if we can
2045 // reassociate further.
2046 for (User *U : NI->users()) {
2047 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2048 RedoInsts.insert(Tmp);
2049 }
Duncan Sands3293f462012-06-08 20:15:33 +00002050 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002051 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002052 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002053 }
2054 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002055 } else if (I->getOpcode() == Instruction::FSub) {
2056 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002057 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002058 RedoInsts.insert(I);
2059 MadeChange = true;
2060 I = NI;
2061 } else if (BinaryOperator::isFNeg(I)) {
2062 // Otherwise, this is a negation. See if the operand is a multiply tree
2063 // and if this is not an inner node of a multiply tree.
2064 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2065 (!I->hasOneUse() ||
2066 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002067 // If the negate was simplified, revisit the users to see if we can
2068 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002069 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002070 for (User *U : NI->users()) {
2071 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2072 RedoInsts.insert(Tmp);
2073 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002074 RedoInsts.insert(I);
2075 MadeChange = true;
2076 I = NI;
2077 }
2078 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002079 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002080
Duncan Sands3293f462012-06-08 20:15:33 +00002081 // If this instruction is an associative binary operator, process it.
2082 if (!I->isAssociative()) return;
2083 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002084
2085 // If this is an interior node of a reassociable tree, ignore it until we
2086 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002087 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002088 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2089 // During the initial run we will get to the root of the tree.
2090 // But if we get here while we are redoing instructions, there is no
2091 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002092 if (BO->user_back() != BO &&
2093 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002094 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002095 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002096 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002097
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002098 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002099 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002100 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002101 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002102 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002103 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2104 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2105 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002106
Duncan Sands3293f462012-06-08 20:15:33 +00002107 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002108}
Chris Lattner1e506502005-05-07 21:59:39 +00002109
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002110void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002111 // First, walk the expression tree, linearizing the tree, collecting the
2112 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002113 SmallVector<RepeatedValue, 8> Tree;
2114 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002115 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002116 Ops.reserve(Tree.size());
2117 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2118 RepeatedValue E = Tree[i];
2119 Ops.append(E.second.getZExtValue(),
2120 ValueEntry(getRank(E.first), E.first));
2121 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002122
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002123 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2124
Chris Lattner2fc319d2006-03-14 07:11:11 +00002125 // Now that we have linearized the tree to a list and have gathered all of
2126 // the operands and their ranks, sort the operands by their rank. Use a
2127 // stable_sort so that values with equal ranks will have their relative
2128 // positions maintained (and so the compiler is deterministic). Note that
2129 // this sorts so that the highest ranking values end up at the beginning of
2130 // the vector.
2131 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002132
Sanjay Patelc96ee082015-04-22 18:04:46 +00002133 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002134 // sorted form, optimize it globally if possible.
2135 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002136 if (V == I)
2137 // Self-referential expression in unreachable code.
2138 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002139 // This expression tree simplified to something that isn't a tree,
2140 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002141 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002142 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002143 if (Instruction *VI = dyn_cast<Instruction>(V))
Mikael Holmen7a99e332017-08-24 09:05:00 +00002144 if (I->getDebugLoc())
2145 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002146 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002147 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002148 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002149 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002150
Chris Lattner2fc319d2006-03-14 07:11:11 +00002151 // We want to sink immediates as deeply as possible except in the case where
2152 // this is a multiply tree used only by an add, and the immediate is a -1.
2153 // In this case we reassociate to put the negation on the outside so that we
2154 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002155 if (I->hasOneUse()) {
2156 if (I->getOpcode() == Instruction::Mul &&
2157 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2158 isa<ConstantInt>(Ops.back().Op) &&
Craig Topper79ab6432017-07-06 18:39:47 +00002159 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002160 ValueEntry Tmp = Ops.pop_back_val();
2161 Ops.insert(Ops.begin(), Tmp);
2162 } else if (I->getOpcode() == Instruction::FMul &&
2163 cast<Instruction>(I->user_back())->getOpcode() ==
2164 Instruction::FAdd &&
2165 isa<ConstantFP>(Ops.back().Op) &&
2166 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2167 ValueEntry Tmp = Ops.pop_back_val();
2168 Ops.insert(Ops.begin(), Tmp);
2169 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002170 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002171
David Greened17c3912010-01-05 01:27:24 +00002172 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002173
Chris Lattner2fc319d2006-03-14 07:11:11 +00002174 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002175 if (Ops[0].Op == I)
2176 // Self-referential expression in unreachable code.
2177 return;
2178
Chris Lattner2fc319d2006-03-14 07:11:11 +00002179 // This expression tree simplified to something that isn't a tree,
2180 // eliminate it.
2181 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002182 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2183 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002184 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002185 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002186 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002187
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002188 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2189 // Find the pair with the highest count in the pairmap and move it to the
2190 // back of the list so that it can later be CSE'd.
2191 // example:
2192 // a*b*c*d*e
2193 // if c*e is the most "popular" pair, we can express this as
2194 // (((c*e)*d)*b)*a
2195 unsigned Max = 1;
2196 unsigned BestRank = 0;
2197 std::pair<unsigned, unsigned> BestPair;
2198 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2199 for (unsigned i = 0; i < Ops.size() - 1; ++i)
2200 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2201 unsigned Score = 0;
2202 Value *Op0 = Ops[i].Op;
2203 Value *Op1 = Ops[j].Op;
2204 if (std::less<Value *>()(Op1, Op0))
2205 std::swap(Op0, Op1);
2206 auto it = PairMap[Idx].find({Op0, Op1});
2207 if (it != PairMap[Idx].end())
2208 Score += it->second;
2209
2210 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2211 if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2212 BestPair = {i, j};
2213 Max = Score;
2214 BestRank = MaxRank;
2215 }
2216 }
2217 if (Max > 1) {
2218 auto Op0 = Ops[BestPair.first];
2219 auto Op1 = Ops[BestPair.second];
2220 Ops.erase(&Ops[BestPair.second]);
2221 Ops.erase(&Ops[BestPair.first]);
2222 Ops.push_back(Op0);
2223 Ops.push_back(Op1);
2224 }
2225 }
Chris Lattner60b71b52009-12-31 19:24:52 +00002226 // Now that we ordered and optimized the expressions, splat them back into
2227 // the expression tree, removing any unneeded nodes.
2228 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002229}
2230
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002231void
2232ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2233 // Make a "pairmap" of how often each operand pair occurs.
2234 for (BasicBlock *BI : RPOT) {
2235 for (Instruction &I : *BI) {
2236 if (!I.isAssociative())
2237 continue;
2238
2239 // Ignore nodes that aren't at the root of trees.
2240 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2241 continue;
2242
2243 // Collect all operands in a single reassociable expression.
2244 // Since Reassociate has already been run once, we can assume things
2245 // are already canonical according to Reassociation's regime.
2246 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2247 SmallVector<Value *, 8> Ops;
2248 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2249 Value *Op = Worklist.pop_back_val();
2250 Instruction *OpI = dyn_cast<Instruction>(Op);
2251 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2252 Ops.push_back(Op);
2253 continue;
2254 }
2255 // Be paranoid about self-referencing expressions in unreachable code.
2256 if (OpI->getOperand(0) != OpI)
2257 Worklist.push_back(OpI->getOperand(0));
2258 if (OpI->getOperand(1) != OpI)
2259 Worklist.push_back(OpI->getOperand(1));
2260 }
2261 // Skip extremely long expressions.
2262 if (Ops.size() > GlobalReassociateLimit)
2263 continue;
2264
2265 // Add all pairwise combinations of operands to the pair map.
2266 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2267 SmallSet<std::pair<Value *, Value*>, 32> Visited;
2268 for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2269 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2270 // Canonicalize operand orderings.
2271 Value *Op0 = Ops[i];
2272 Value *Op1 = Ops[j];
2273 if (std::less<Value *>()(Op1, Op0))
2274 std::swap(Op0, Op1);
2275 if (!Visited.insert({Op0, Op1}).second)
2276 continue;
2277 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1});
2278 if (!res.second)
2279 ++res.first->second;
2280 }
2281 }
2282 }
2283 }
2284}
2285
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002286PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002287 // Get the functions basic blocks in Reverse Post Order. This order is used by
2288 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2289 // blocks (it has been seen that the analysis in this pass could hang when
2290 // analysing dead basic blocks).
2291 ReversePostOrderTraversal<Function *> RPOT(&F);
2292
Chad Rosierea7e4642016-08-17 15:54:39 +00002293 // Calculate the rank map for F.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002294 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002295
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002296 // Build the pair map before running reassociate.
2297 // Technically this would be more accurate if we did it after one round
2298 // of reassociation, but in practice it doesn't seem to help much on
2299 // real-world code, so don't waste the compile time running reassociate
2300 // twice.
2301 // If a user wants, they could expicitly run reassociate twice in their
2302 // pass pipeline for further potential gains.
2303 // It might also be possible to update the pair map during runtime, but the
2304 // overhead of that may be large if there's many reassociable chains.
2305 BuildPairMap(RPOT);
2306
Chris Lattner1e506502005-05-07 21:59:39 +00002307 MadeChange = false;
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002308
2309 // Traverse the same blocks that were analysed by BuildRankMap.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002310 for (BasicBlock *BI : RPOT) {
2311 assert(RankMap.count(&*BI) && "BB should be ranked.");
Duncan Sands3293f462012-06-08 20:15:33 +00002312 // Optimize every instruction in the basic block.
Chad Rosierea7e4642016-08-17 15:54:39 +00002313 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002314 if (isInstructionTriviallyDead(&*II)) {
2315 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002316 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002317 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002318 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002319 ++II;
2320 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002321
Chad Rosierea7e4642016-08-17 15:54:39 +00002322 // Make a copy of all the instructions to be redone so we can remove dead
2323 // instructions.
2324 SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2325 // Iterate over all instructions to be reevaluated and remove trivially dead
2326 // instructions. If any operand of the trivially dead instruction becomes
2327 // dead mark it for deletion as well. Continue this process until all
2328 // trivially dead instructions have been removed.
2329 while (!ToRedo.empty()) {
2330 Instruction *I = ToRedo.pop_back_val();
Davide Italiano631cd272016-10-28 02:47:09 +00002331 if (isInstructionTriviallyDead(I)) {
Chad Rosierea7e4642016-08-17 15:54:39 +00002332 RecursivelyEraseDeadInsts(I, ToRedo);
Davide Italiano631cd272016-10-28 02:47:09 +00002333 MadeChange = true;
2334 }
Chad Rosierea7e4642016-08-17 15:54:39 +00002335 }
2336
2337 // Now that we have removed dead instructions, we can reoptimize the
2338 // remaining instructions.
2339 while (!RedoInsts.empty()) {
2340 Instruction *I = RedoInsts.pop_back_val();
2341 if (isInstructionTriviallyDead(I))
2342 EraseInst(I);
2343 else
2344 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002345 }
Duncan Sands3293f462012-06-08 20:15:33 +00002346 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002347
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002348 // We are done with the rank map and pair map.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002349 RankMap.clear();
2350 ValueRankMap.clear();
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002351 for (auto &Entry : PairMap)
2352 Entry.clear();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002353
Davide Italiano39893bd2016-05-29 00:41:17 +00002354 if (MadeChange) {
Chandler Carruthca68a3e2017-01-15 06:32:49 +00002355 PreservedAnalyses PA;
2356 PA.preserveSet<CFGAnalyses>();
Davide Italiano39893bd2016-05-29 00:41:17 +00002357 PA.preserve<GlobalsAA>();
2358 return PA;
2359 }
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002360
2361 return PreservedAnalyses::all();
2362}
2363
2364namespace {
Eugene Zelenko306d2992017-10-18 21:46:47 +00002365
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002366 class ReassociateLegacyPass : public FunctionPass {
2367 ReassociatePass Impl;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002368
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002369 public:
2370 static char ID; // Pass identification, replacement for typeid
Eugene Zelenko306d2992017-10-18 21:46:47 +00002371
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002372 ReassociateLegacyPass() : FunctionPass(ID) {
2373 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2374 }
2375
2376 bool runOnFunction(Function &F) override {
2377 if (skipFunction(F))
2378 return false;
2379
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002380 FunctionAnalysisManager DummyFAM;
2381 auto PA = Impl.run(F, DummyFAM);
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002382 return !PA.areAllPreserved();
2383 }
2384
2385 void getAnalysisUsage(AnalysisUsage &AU) const override {
2386 AU.setPreservesCFG();
2387 AU.addPreserved<GlobalsAAWrapperPass>();
2388 }
2389 };
Eugene Zelenko306d2992017-10-18 21:46:47 +00002390
2391} // end anonymous namespace
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002392
2393char ReassociateLegacyPass::ID = 0;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002394
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002395INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2396 "Reassociate expressions", false, false)
2397
2398// Public interface to the Reassociate pass
2399FunctionPass *llvm::createReassociatePass() {
2400 return new ReassociateLegacyPass();
Chris Lattnerc0f58002002-05-08 22:19:27 +00002401}