blob: 78e0fe47be07e75c2d87583de1cb98716c371170 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Justin Bognerc2bf63d2016-04-26 23:39:29 +000023#include "llvm/Transforms/Scalar/Reassociate.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000024#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/APInt.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000026#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/PostOrderIterator.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include "llvm/ADT/SetVector.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000029#include "llvm/ADT/SmallPtrSet.h"
Fiona Glaserb8a330c2017-12-12 19:18:02 +000030#include "llvm/ADT/SmallSet.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000031#include "llvm/ADT/SmallVector.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000032#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000033#include "llvm/Analysis/GlobalsModRef.h"
David Blaikie31b98d22018-06-04 21:23:21 +000034#include "llvm/Transforms/Utils/Local.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000035#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000036#include "llvm/IR/Argument.h"
37#include "llvm/IR/BasicBlock.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000038#include "llvm/IR/CFG.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000039#include "llvm/IR/Constant.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000041#include "llvm/IR/Function.h"
42#include "llvm/IR/IRBuilder.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000043#include "llvm/IR/InstrTypes.h"
44#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000045#include "llvm/IR/Instructions.h"
Bjorn Petterssonbec2a7c2018-04-25 09:23:56 +000046#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000047#include "llvm/IR/Operator.h"
48#include "llvm/IR/PassManager.h"
Craig Toppercbac691c2017-06-21 16:07:09 +000049#include "llvm/IR/PatternMatch.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000050#include "llvm/IR/Type.h"
51#include "llvm/IR/User.h"
52#include "llvm/IR/Value.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000053#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000054#include "llvm/Pass.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000055#include "llvm/Support/Casting.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000056#include "llvm/Support/Debug.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000057#include "llvm/Support/ErrorHandling.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000058#include "llvm/Support/raw_ostream.h"
Justin Bognerc2bf63d2016-04-26 23:39:29 +000059#include "llvm/Transforms/Scalar.h"
Chris Lattner1e506502005-05-07 21:59:39 +000060#include <algorithm>
Eugene Zelenko306d2992017-10-18 21:46:47 +000061#include <cassert>
62#include <utility>
63
Chris Lattner49525f82004-01-09 06:02:20 +000064using namespace llvm;
Justin Bognerc2bf63d2016-04-26 23:39:29 +000065using namespace reassociate;
Sanjay Pateldd1c3df2018-10-22 21:37:02 +000066using namespace PatternMatch;
Brian Gaeke960707c2003-11-11 22:41:34 +000067
Chandler Carruth964daaa2014-04-22 02:55:47 +000068#define DEBUG_TYPE "reassociate"
69
Chris Lattner79a42ac2006-12-19 21:40:18 +000070STATISTIC(NumChanged, "Number of insts reassociated");
71STATISTIC(NumAnnihil, "Number of expr tree annihilated");
72STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000073
Devang Patel702f45d2008-11-21 21:00:20 +000074#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000075/// Print out the expression identified in the Ops list.
Chris Lattner38abecb2009-12-31 18:40:32 +000076static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000077 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000078 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000079 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000080 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000081 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000082 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000083 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000084 }
Chris Lattner4c065092006-03-04 09:31:13 +000085}
Devang Patelcb181bb2008-11-21 20:00:59 +000086#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000087
Justin Bognerc2bf63d2016-04-26 23:39:29 +000088/// Utility class representing a non-constant Xor-operand. We classify
89/// non-constant Xor-Operands into two categories:
90/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
91/// C2)
92/// C2.1) The operand is in the form of "X | C", where C is a non-zero
93/// constant.
94/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
95/// operand as "E | 0"
96class llvm::reassociate::XorOpnd {
97public:
98 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000099
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000100 bool isInvalid() const { return SymbolicPart == nullptr; }
101 bool isOrExpr() const { return isOr; }
102 Value *getValue() const { return OrigVal; }
103 Value *getSymbolicPart() const { return SymbolicPart; }
104 unsigned getSymbolicRank() const { return SymbolicRank; }
105 const APInt &getConstPart() const { return ConstPart; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000106
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000107 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
108 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000109
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000110private:
111 Value *OrigVal;
112 Value *SymbolicPart;
113 APInt ConstPart;
114 unsigned SymbolicRank;
115 bool isOr;
116};
Chris Lattnerc0f58002002-05-08 22:19:27 +0000117
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000118XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000119 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000120 OrigVal = V;
121 Instruction *I = dyn_cast<Instruction>(V);
122 SymbolicRank = 0;
123
124 if (I && (I->getOpcode() == Instruction::Or ||
125 I->getOpcode() == Instruction::And)) {
126 Value *V0 = I->getOperand(0);
127 Value *V1 = I->getOperand(1);
Craig Toppercbac691c2017-06-21 16:07:09 +0000128 const APInt *C;
Sanjay Pateldd1c3df2018-10-22 21:37:02 +0000129 if (match(V0, m_APInt(C)))
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000130 std::swap(V0, V1);
131
Sanjay Pateldd1c3df2018-10-22 21:37:02 +0000132 if (match(V1, m_APInt(C))) {
Craig Toppercbac691c2017-06-21 16:07:09 +0000133 ConstPart = *C;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000134 SymbolicPart = V0;
135 isOr = (I->getOpcode() == Instruction::Or);
136 return;
137 }
138 }
139
140 // view the operand as "V | 0"
141 SymbolicPart = V;
Craig Toppercbac691c2017-06-21 16:07:09 +0000142 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000143 isOr = true;
144}
145
Sanjay Patelc96ee082015-04-22 18:04:46 +0000146/// Return true if V is an instruction of the specified opcode and if it
147/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000148static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Sanjay Patel64fd3332017-11-14 23:03:56 +0000149 auto *I = dyn_cast<Instruction>(V);
150 if (I && I->hasOneUse() && I->getOpcode() == Opcode)
151 if (!isa<FPMathOperator>(I) || I->isFast())
152 return cast<BinaryOperator>(I);
Craig Topperf40110f2014-04-25 05:29:35 +0000153 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000154}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000155
Chad Rosier11ab9412014-08-14 15:23:01 +0000156static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
157 unsigned Opcode2) {
Sanjay Patel64fd3332017-11-14 23:03:56 +0000158 auto *I = dyn_cast<Instruction>(V);
159 if (I && I->hasOneUse() &&
160 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
161 if (!isa<FPMathOperator>(I) || I->isFast())
162 return cast<BinaryOperator>(I);
Chad Rosier11ab9412014-08-14 15:23:01 +0000163 return nullptr;
164}
165
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000166void ReassociatePass::BuildRankMap(Function &F,
167 ReversePostOrderTraversal<Function*> &RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000168 unsigned Rank = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000169
Chad Rosierf59e5482014-11-14 15:01:38 +0000170 // Assign distinct ranks to function arguments.
Davide Italianob53b0752017-08-07 01:57:21 +0000171 for (auto &Arg : F.args()) {
172 ValueRankMap[&Arg] = ++Rank;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000173 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
174 << "\n");
Chad Rosierf59e5482014-11-14 15:01:38 +0000175 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000176
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000177 // Traverse basic blocks in ReversePostOrder
Benjamin Kramer135f7352016-06-26 12:28:59 +0000178 for (BasicBlock *BB : RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000179 unsigned BBRank = RankMap[BB] = ++Rank << 16;
Chris Lattner9f284e02005-05-08 20:57:04 +0000180
181 // Walk the basic block, adding precomputed ranks for any instructions that
182 // we cannot move. This ensures that the ranks for these instructions are
183 // all different in the block.
Benjamin Kramer135f7352016-06-26 12:28:59 +0000184 for (Instruction &I : *BB)
185 if (mayBeMemoryDependent(I))
186 ValueRankMap[&I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000187 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000188}
189
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000190unsigned ReassociatePass::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000191 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000192 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000193 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
194 return 0; // Otherwise it's a global or constant, rank 0.
195 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000196
Chris Lattner17229a72010-01-01 00:01:34 +0000197 if (unsigned Rank = ValueRankMap[I])
198 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000199
Chris Lattnerf43e9742005-05-07 04:08:02 +0000200 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
201 // we can reassociate expressions for code motion! Since we do not recurse
202 // for PHI nodes, we cannot have infinite recursion here, because there
203 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000204 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
Sanjay Patela2017872018-04-19 17:56:36 +0000205 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
Chris Lattnerf43e9742005-05-07 04:08:02 +0000206 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000207
Chris Lattner6e2086d2005-05-08 00:08:33 +0000208 // If this is a not or neg instruction, do not count it for rank. This
209 // assures us that X and ~X will have the same rank.
Sanjay Patela2017872018-04-19 17:56:36 +0000210 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
211 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000212 ++Rank;
213
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000214 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
215 << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000216
Chris Lattner17229a72010-01-01 00:01:34 +0000217 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000218}
219
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000220// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000221void ReassociatePass::canonicalizeOperands(Instruction *I) {
Chad Rosierf8b55f12014-11-14 17:05:59 +0000222 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
223 assert(I->isCommutative() && "Expected commutative operator.");
224
225 Value *LHS = I->getOperand(0);
226 Value *RHS = I->getOperand(1);
Davide Italianoa5cdc222017-08-07 01:49:09 +0000227 if (LHS == RHS || isa<Constant>(RHS))
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000228 return;
Davide Italianoa5cdc222017-08-07 01:49:09 +0000229 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
Chad Rosierf8b55f12014-11-14 17:05:59 +0000230 cast<BinaryOperator>(I)->swapOperands();
231}
232
Chad Rosier11ab9412014-08-14 15:23:01 +0000233static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
234 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000235 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000236 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
237 else {
238 BinaryOperator *Res =
239 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
240 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
241 return Res;
242 }
243}
244
245static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
246 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000247 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000248 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
249 else {
250 BinaryOperator *Res =
251 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
252 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
253 return Res;
254 }
255}
256
257static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
258 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000259 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000260 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
261 else {
262 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
263 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
264 return Res;
265 }
266}
267
Sanjay Patelc96ee082015-04-22 18:04:46 +0000268/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000269static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000270 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000271 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
272 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000273
Chad Rosier11ab9412014-08-14 15:23:01 +0000274 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
275 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000276 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000277 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000278 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000279 return Res;
280}
281
Sanjay Patelc96ee082015-04-22 18:04:46 +0000282/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
283/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000284/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
285/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
286/// even x in Bitwidth-bit arithmetic.
287static unsigned CarmichaelShift(unsigned Bitwidth) {
288 if (Bitwidth < 3)
289 return Bitwidth - 1;
290 return Bitwidth - 2;
291}
292
Sanjay Patelc96ee082015-04-22 18:04:46 +0000293/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000294/// reducing the combined weight using any special properties of the operation.
295/// The existing weight LHS represents the computation X op X op ... op X where
296/// X occurs LHS times. The combined weight represents X op X op ... op X with
297/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
298/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
299/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
300static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
301 // If we were working with infinite precision arithmetic then the combined
302 // weight would be LHS + RHS. But we are using finite precision arithmetic,
303 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
304 // for nilpotent operations and addition, but not for idempotent operations
305 // and multiplication), so it is important to correctly reduce the combined
306 // weight back into range if wrapping would be wrong.
307
308 // If RHS is zero then the weight didn't change.
309 if (RHS.isMinValue())
310 return;
311 // If LHS is zero then the combined weight is RHS.
312 if (LHS.isMinValue()) {
313 LHS = RHS;
314 return;
315 }
316 // From this point on we know that neither LHS nor RHS is zero.
317
318 if (Instruction::isIdempotent(Opcode)) {
319 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
320 // weight of 1. Keeping weights at zero or one also means that wrapping is
321 // not a problem.
322 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
323 return; // Return a weight of 1.
324 }
325 if (Instruction::isNilpotent(Opcode)) {
326 // Nilpotent means X op X === 0, so reduce weights modulo 2.
327 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
328 LHS = 0; // 1 + 1 === 0 modulo 2.
329 return;
330 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000331 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000332 // TODO: Reduce the weight by exploiting nsw/nuw?
333 LHS += RHS;
334 return;
335 }
336
Chad Rosier11ab9412014-08-14 15:23:01 +0000337 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
338 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000339 unsigned Bitwidth = LHS.getBitWidth();
340 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
341 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
342 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
343 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
344 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
345 // which by a happy accident means that they can always be represented using
346 // Bitwidth bits.
347 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
348 // the Carmichael number).
349 if (Bitwidth > 3) {
350 /// CM - The value of Carmichael's lambda function.
351 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
352 // Any weight W >= Threshold can be replaced with W - CM.
353 APInt Threshold = CM + Bitwidth;
354 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
355 // For Bitwidth 4 or more the following sum does not overflow.
356 LHS += RHS;
357 while (LHS.uge(Threshold))
358 LHS -= CM;
359 } else {
360 // To avoid problems with overflow do everything the same as above but using
361 // a larger type.
362 unsigned CM = 1U << CarmichaelShift(Bitwidth);
363 unsigned Threshold = CM + Bitwidth;
364 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
365 "Weights not reduced!");
366 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
367 while (Total >= Threshold)
368 Total -= CM;
369 LHS = Total;
370 }
371}
372
Eugene Zelenko306d2992017-10-18 21:46:47 +0000373using RepeatedValue = std::pair<Value*, APInt>;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000374
Sanjay Patelc96ee082015-04-22 18:04:46 +0000375/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000376/// nodes in Ops along with their weights (how many times the leaf occurs). The
377/// original expression is the same as
378/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000379/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000380/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
381/// op
382/// ...
383/// op
384/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
385///
Duncan Sandsac852c72012-11-15 09:58:38 +0000386/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000387///
388/// This routine may modify the function, in which case it returns 'true'. The
389/// changes it makes may well be destructive, changing the value computed by 'I'
390/// to something completely different. Thus if the routine returns 'true' then
391/// you MUST either replace I with a new expression computed from the Ops array,
392/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000393///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000394/// A leaf node is either not a binary operation of the same kind as the root
395/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
396/// opcode), or is the same kind of binary operator but has a use which either
397/// does not belong to the expression, or does belong to the expression but is
398/// a leaf node. Every leaf node has at least one use that is a non-leaf node
399/// of the expression, while for non-leaf nodes (except for the root 'I') every
400/// use is a non-leaf node of the expression.
401///
402/// For example:
403/// expression graph node names
404///
405/// + | I
406/// / \ |
407/// + + | A, B
408/// / \ / \ |
409/// * + * | C, D, E
410/// / \ / \ / \ |
411/// + * | F, G
412///
413/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000414/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000415///
416/// The expression is maximal: if some instruction is a binary operator of the
417/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
418/// then the instruction also belongs to the expression, is not a leaf node of
419/// it, and its operands also belong to the expression (but may be leaf nodes).
420///
421/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
422/// order to ensure that every non-root node in the expression has *exactly one*
423/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000424/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000425/// RewriteExprTree to put the values back in if the routine indicates that it
426/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000427///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000428/// In the above example either the right operand of A or the left operand of B
429/// will be replaced by undef. If it is B's operand then this gives:
430///
431/// + | I
432/// / \ |
433/// + + | A, B - operand of B replaced with undef
434/// / \ \ |
435/// * + * | C, D, E
436/// / \ / \ / \ |
437/// + * | F, G
438///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000439/// Note that such undef operands can only be reached by passing through 'I'.
440/// For example, if you visit operands recursively starting from a leaf node
441/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000442/// which requires passing through a phi node.
443///
444/// Note that this routine may also mutate binary operators of the wrong type
445/// that have all uses inside the expression (i.e. only used by non-leaf nodes
446/// of the expression) if it can turn them into binary operators of the right
447/// type and thus make the expression bigger.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000448static bool LinearizeExprTree(BinaryOperator *I,
449 SmallVectorImpl<RepeatedValue> &Ops) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000450 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000451 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
452 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000453 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000454 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000455
456 // Visit all operands of the expression, keeping track of their weight (the
457 // number of paths from the expression root to the operand, or if you like
458 // the number of times that operand occurs in the linearized expression).
459 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
460 // while A has weight two.
461
462 // Worklist of non-leaf nodes (their operands are in the expression too) along
463 // with their weights, representing a certain number of paths to the operator.
464 // If an operator occurs in the worklist multiple times then we found multiple
465 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000466 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
467 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000468 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000469
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000470 // Leaves of the expression are values that either aren't the right kind of
471 // operation (eg: a constant, or a multiply in an add tree), or are, but have
472 // some uses that are not inside the expression. For example, in I = X + X,
473 // X = A + B, the value X has two uses (by I) that are in the expression. If
474 // X has any other uses, for example in a return instruction, then we consider
475 // X to be a leaf, and won't analyze it further. When we first visit a value,
476 // if it has more than one use then at first we conservatively consider it to
477 // be a leaf. Later, as the expression is explored, we may discover some more
478 // uses of the value from inside the expression. If all uses turn out to be
479 // from within the expression (and the value is a binary operator of the right
480 // kind) then the value is no longer considered to be a leaf, and its operands
481 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000482
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000483 // Leaves - Keeps track of the set of putative leaves as well as the number of
484 // paths to each leaf seen so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000485 using LeafMap = DenseMap<Value *, APInt>;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000486 LeafMap Leaves; // Leaf -> Total weight so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000487 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000488
489#ifndef NDEBUG
Eugene Zelenko306d2992017-10-18 21:46:47 +0000490 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000491#endif
492 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000493 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000494 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000495
496 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
497 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000498 APInt Weight = P.second; // Number of paths to this operand.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000499 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000500 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
501
502 // If this is a binary operation of the right kind with only one use then
503 // add its operands to the expression.
504 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000505 assert(Visited.insert(Op).second && "Not first visit!");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000506 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000507 Worklist.push_back(std::make_pair(BO, Weight));
508 continue;
509 }
510
511 // Appears to be a leaf. Is the operand already in the set of leaves?
512 LeafMap::iterator It = Leaves.find(Op);
513 if (It == Leaves.end()) {
514 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000515 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000516 if (!Op->hasOneUse()) {
517 // This value has uses not accounted for by the expression, so it is
518 // not safe to modify. Mark it as being a leaf.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000519 LLVM_DEBUG(dbgs()
520 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000521 LeafOrder.push_back(Op);
522 Leaves[Op] = Weight;
523 continue;
524 }
525 // No uses outside the expression, try morphing it.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000526 } else {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000527 // Already in the leaf map.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000528 assert(It != Leaves.end() && Visited.count(Op) &&
529 "In leaf map but not visited!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000530
531 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000532 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000533
Duncan Sands56514522012-07-26 09:26:40 +0000534#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000535 // The leaf already has one use from inside the expression. As we want
536 // exactly one such use, drop this new use of the leaf.
537 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
538 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000539 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000540
541 // If the leaf is a binary operation of the right kind and we now see
542 // that its multiple original uses were in fact all by nodes belonging
543 // to the expression, then no longer consider it to be a leaf and add
544 // its operands to the expression.
545 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000546 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000547 Worklist.push_back(std::make_pair(BO, It->second));
548 Leaves.erase(It);
549 continue;
550 }
Duncan Sands56514522012-07-26 09:26:40 +0000551#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000552
553 // If we still have uses that are not accounted for by the expression
554 // then it is not safe to modify the value.
555 if (!Op->hasOneUse())
556 continue;
557
558 // No uses outside the expression, try morphing it.
559 Weight = It->second;
560 Leaves.erase(It); // Since the value may be morphed below.
561 }
562
563 // At this point we have a value which, first of all, is not a binary
564 // expression of the right kind, and secondly, is only used inside the
565 // expression. This means that it can safely be modified. See if we
566 // can usefully morph it into an expression of the right kind.
567 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000568 cast<Instruction>(Op)->getOpcode() != Opcode
569 || (isa<FPMathOperator>(Op) &&
Sanjay Patel629c4112017-11-06 16:27:15 +0000570 !cast<Instruction>(Op)->isFast())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000571 "Should have been handled above!");
572 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
573
574 // If this is a multiply expression, turn any internal negations into
575 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000576 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
577 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
578 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000579 LLVM_DEBUG(dbgs()
580 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
Chad Rosier11ab9412014-08-14 15:23:01 +0000581 BO = LowerNegateToMultiply(BO);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000582 LLVM_DEBUG(dbgs() << *BO << '\n');
Chad Rosier11ab9412014-08-14 15:23:01 +0000583 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000584 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000585 continue;
586 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000587
588 // Failed to morph into an expression of the right type. This really is
589 // a leaf.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000590 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000591 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
592 LeafOrder.push_back(Op);
593 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000594 }
595 }
596
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000597 // The leaves, repeated according to their weights, represent the linearized
598 // form of the expression.
599 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
600 Value *V = LeafOrder[i];
601 LeafMap::iterator It = Leaves.find(V);
602 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000603 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000604 continue;
605 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000606 APInt Weight = It->second;
607 if (Weight.isMinValue())
608 // Leaf already output or weight reduction eliminated it.
609 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000610 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000611 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000612 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000613 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000614
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000615 // For nilpotent operations or addition there may be no operands, for example
616 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
617 // in both cases the weight reduces to 0 causing the value to be skipped.
618 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000619 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000620 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000621 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000622 }
623
Chad Rosiere53e8c82014-11-18 20:21:54 +0000624 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000625}
626
Sanjay Patelc96ee082015-04-22 18:04:46 +0000627/// Now that the operands for this expression tree are
628/// linearized and optimized, emit them in-order.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000629void ReassociatePass::RewriteExprTree(BinaryOperator *I,
630 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000631 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000632
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000633 // Since our optimizations should never increase the number of operations, the
634 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000635 // from the original expression tree, without creating any new instructions,
636 // though the rewritten expression may have a completely different topology.
637 // We take care to not change anything if the new expression will be the same
638 // as the original. If more than trivial changes (like commuting operands)
639 // were made then we are obliged to clear out any optional subclass data like
640 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000641
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000642 /// NodesToRewrite - Nodes from the original expression available for writing
643 /// the new expression into.
644 SmallVector<BinaryOperator*, 8> NodesToRewrite;
645 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000646 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000647
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000648 /// NotRewritable - The operands being written will be the leaves of the new
649 /// expression and must not be used as inner nodes (via NodesToRewrite) by
650 /// mistake. Inner nodes are always reassociable, and usually leaves are not
651 /// (if they were they would have been incorporated into the expression and so
652 /// would not be leaves), so most of the time there is no danger of this. But
653 /// in rare cases a leaf may become reassociable if an optimization kills uses
654 /// of it, or it may momentarily become reassociable during rewriting (below)
655 /// due it being removed as an operand of one of its uses. Ensure that misuse
656 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
657 /// leaves and refusing to reuse any of them as inner nodes.
658 SmallPtrSet<Value*, 8> NotRewritable;
659 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
660 NotRewritable.insert(Ops[i].Op);
661
Duncan Sands3c05cd32012-05-26 16:42:52 +0000662 // ExpressionChanged - Non-null if the rewritten expression differs from the
663 // original in some non-trivial way, requiring the clearing of optional flags.
664 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000665 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000666 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000667 // The last operation (which comes earliest in the IR) is special as both
668 // operands will come from Ops, rather than just one with the other being
669 // a subexpression.
670 if (i+2 == Ops.size()) {
671 Value *NewLHS = Ops[i].Op;
672 Value *NewRHS = Ops[i+1].Op;
673 Value *OldLHS = Op->getOperand(0);
674 Value *OldRHS = Op->getOperand(1);
675
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000676 if (NewLHS == OldLHS && NewRHS == OldRHS)
677 // Nothing changed, leave it alone.
678 break;
679
680 if (NewLHS == OldRHS && NewRHS == OldLHS) {
681 // The order of the operands was reversed. Swap them.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000682 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000683 Op->swapOperands();
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000684 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000685 MadeChange = true;
686 ++NumChanged;
687 break;
688 }
689
690 // The new operation differs non-trivially from the original. Overwrite
691 // the old operands with the new ones.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000692 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000693 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000694 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
695 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000696 NodesToRewrite.push_back(BO);
697 Op->setOperand(0, NewLHS);
698 }
699 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000700 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
701 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000702 NodesToRewrite.push_back(BO);
703 Op->setOperand(1, NewRHS);
704 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000705 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000706
Duncan Sands3c05cd32012-05-26 16:42:52 +0000707 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000708 MadeChange = true;
709 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000710
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000711 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000712 }
Chris Lattner1e506502005-05-07 21:59:39 +0000713
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000714 // Not the last operation. The left-hand side will be a sub-expression
715 // while the right-hand side will be the current element of Ops.
716 Value *NewRHS = Ops[i].Op;
717 if (NewRHS != Op->getOperand(1)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000718 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000719 if (NewRHS == Op->getOperand(0)) {
720 // The new right-hand side was already present as the left operand. If
721 // we are lucky then swapping the operands will sort out both of them.
722 Op->swapOperands();
723 } else {
724 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000725 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
726 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000727 NodesToRewrite.push_back(BO);
728 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000729 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000730 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000731 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000732 MadeChange = true;
733 ++NumChanged;
734 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000735
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000736 // Now deal with the left-hand side. If this is already an operation node
737 // from the original expression then just rewrite the rest of the expression
738 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000739 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
740 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000741 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000742 continue;
743 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000744
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000745 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000746 // the left-hand side. If there are no nodes left then the optimizers made
747 // an expression with more nodes than the original! This usually means that
748 // they did something stupid but it might mean that the problem was just too
749 // hard (finding the mimimal number of multiplications needed to realize a
750 // multiplication expression is NP-complete). Whatever the reason, smart or
751 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000752 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000753 if (NodesToRewrite.empty()) {
754 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000755 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
756 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000757 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000758 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000759 } else {
760 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000761 }
762
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000763 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000764 Op->setOperand(0, NewOp);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000765 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000766 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000767 MadeChange = true;
768 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000769 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000770 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000771
Duncan Sands3c05cd32012-05-26 16:42:52 +0000772 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000773 // starting from the operator specified in ExpressionChanged, and compactify
774 // the operators to just before the expression root to guarantee that the
775 // expression tree is dominated by all of Ops.
776 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000777 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000778 // Preserve FastMathFlags.
779 if (isa<FPMathOperator>(I)) {
780 FastMathFlags Flags = I->getFastMathFlags();
781 ExpressionChanged->clearSubclassOptionalData();
782 ExpressionChanged->setFastMathFlags(Flags);
783 } else
784 ExpressionChanged->clearSubclassOptionalData();
785
Duncan Sands3c05cd32012-05-26 16:42:52 +0000786 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000787 break;
Bjorn Petterssonbec2a7c2018-04-25 09:23:56 +0000788
789 // Discard any debug info related to the expressions that has changed (we
790 // can leave debug infor related to the root, since the result of the
791 // expression tree should be the same even after reassociation).
Hsiangkai Wangef72e482018-08-06 03:59:47 +0000792 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
Bjorn Petterssonbec2a7c2018-04-25 09:23:56 +0000793 findDbgUsers(DbgUsers, ExpressionChanged);
794 for (auto *DII : DbgUsers) {
795 Value *Undef = UndefValue::get(ExpressionChanged->getType());
796 DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
797 ValueAsMetadata::get(Undef)));
798 }
799
Duncan Sands514db112012-06-27 14:19:00 +0000800 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000801 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Eugene Zelenko306d2992017-10-18 21:46:47 +0000802 } while (true);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000803
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000804 // Throw away any left over nodes from the original expression.
805 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000806 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000807}
808
Sanjay Patelc96ee082015-04-22 18:04:46 +0000809/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000810/// that computes the negative version of the value specified. The negative
811/// version of the value is returned, and BI is left pointing at the instruction
812/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000813/// Also add intermediate instructions to the redo list that are modified while
814/// pushing the negates through adds. These will be revisited to see if
815/// additional opportunities have been exposed.
816static Value *NegateValue(Value *V, Instruction *BI,
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +0000817 ReassociatePass::OrderedSet &ToRedo) {
Sanjay Pateld1becd02017-11-15 16:19:17 +0000818 if (auto *C = dyn_cast<Constant>(V))
819 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
820 ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000821
Chris Lattner7bc532d2002-05-16 04:37:07 +0000822 // We are trying to expose opportunity for reassociation. One of the things
823 // that we want to do to achieve this is to push a negation as deep into an
824 // expression chain as possible, to expose the add instructions. In practice,
825 // this means that we turn this:
826 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
827 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
828 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000829 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000830 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000831 if (BinaryOperator *I =
832 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000833 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000834 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
835 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000836 if (I->getOpcode() == Instruction::Add) {
837 I->setHasNoUnsignedWrap(false);
838 I->setHasNoSignedWrap(false);
839 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000840
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000841 // We must move the add instruction here, because the neg instructions do
842 // not dominate the old add instruction in general. By moving it, we are
843 // assured that the neg instructions we just inserted dominate the
844 // instruction we are about to insert after them.
845 //
846 I->moveBefore(BI);
847 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000848
849 // Add the intermediate negates to the redo list as processing them later
850 // could expose more reassociating opportunities.
851 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000852 return I;
853 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000854
Chris Lattnerfed33972009-12-31 20:34:32 +0000855 // Okay, we need to materialize a negated version of V with an instruction.
856 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000857 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000858 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
859 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000860
861 // We found one! Now we have to make sure that the definition dominates
862 // this use. We do this by moving it to the entry block (if it is a
863 // non-instruction value) or right after the definition. These negates will
864 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000865 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000866
867 // Verify that the negate is in this function, V might be a constant expr.
868 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
869 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000870
Chris Lattnerfed33972009-12-31 20:34:32 +0000871 BasicBlock::iterator InsertPt;
872 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
873 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
874 InsertPt = II->getNormalDest()->begin();
875 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000876 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000877 }
878 while (isa<PHINode>(InsertPt)) ++InsertPt;
879 } else {
880 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
881 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000882 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000883 if (TheNeg->getOpcode() == Instruction::Sub) {
884 TheNeg->setHasNoUnsignedWrap(false);
885 TheNeg->setHasNoSignedWrap(false);
886 } else {
887 TheNeg->andIRFlags(BI);
888 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000889 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000890 return TheNeg;
891 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000892
893 // Insert a 'neg' instruction that subtracts the value from zero to get the
894 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000895 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
896 ToRedo.insert(NewNeg);
897 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000898}
899
Sanjay Patelc96ee082015-04-22 18:04:46 +0000900/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000901static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000902 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000903 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000904 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000905
Chad Rosierbd64d462014-10-09 20:06:29 +0000906 // Don't breakup X - undef.
907 if (isa<UndefValue>(Sub->getOperand(1)))
908 return false;
909
Chris Lattner902537c2008-02-17 20:44:51 +0000910 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000911 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000912 Value *V0 = Sub->getOperand(0);
913 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
914 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000915 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000916 Value *V1 = Sub->getOperand(1);
917 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
918 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000919 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000920 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000921 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000922 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
923 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000924 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000925
Chris Lattner902537c2008-02-17 20:44:51 +0000926 return false;
927}
928
Sanjay Patelc96ee082015-04-22 18:04:46 +0000929/// If we have (X-Y), and if either X is an add, or if this is only used by an
930/// add, transform this into (X+(0-Y)) to promote better reassociation.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +0000931static BinaryOperator *BreakUpSubtract(Instruction *Sub,
932 ReassociatePass::OrderedSet &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000933 // Convert a subtract into an add and a neg instruction. This allows sub
934 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000935 //
Chris Lattnera5526832010-01-01 00:04:26 +0000936 // Calculate the negative value of Operand 1 of the sub instruction,
937 // and set it as the RHS of the add instruction we just made.
Owen Anderson2de9f542015-11-16 18:07:30 +0000938 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +0000939 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000940 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
941 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000942 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000943
944 // Everyone now refers to the add instruction.
945 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000946 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000947
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000948 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000949 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000950}
951
Sanjay Patelc96ee082015-04-22 18:04:46 +0000952/// If this is a shift of a reassociable multiply or is used by one, change
953/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000954static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
955 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
956 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000957
Duncan Sands3293f462012-06-08 20:15:33 +0000958 BinaryOperator *Mul =
959 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
960 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
961 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +0000962
963 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +0000964 Shl->replaceAllUsesWith(Mul);
965 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +0000966
967 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
968 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
969 // handling.
970 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
971 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
972 if (NSW && NUW)
973 Mul->setHasNoSignedWrap(true);
974 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +0000975 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000976}
977
Sanjay Patelc96ee082015-04-22 18:04:46 +0000978/// Scan backwards and forwards among values with the same rank as element i
979/// to see if X exists. If X does not exist, return i. This is useful when
980/// scanning for 'x' when we see '-x' because they both get the same rank.
Craig Topper99a2e892017-06-21 19:39:33 +0000981static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
982 unsigned i, Value *X) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000983 unsigned XRank = Ops[i].Rank;
984 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +0000985 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000986 if (Ops[j].Op == X)
987 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000988 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
989 if (Instruction *I2 = dyn_cast<Instruction>(X))
990 if (I1->isIdenticalTo(I2))
991 return j;
992 }
Chris Lattner0c59ac32010-01-01 01:13:15 +0000993 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +0000994 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000995 if (Ops[j].Op == X)
996 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000997 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
998 if (Instruction *I2 = dyn_cast<Instruction>(X))
999 if (I1->isIdenticalTo(I2))
1000 return j;
1001 }
Chris Lattner5847e5e2005-05-08 18:59:37 +00001002 return i;
1003}
1004
Sanjay Patelc96ee082015-04-22 18:04:46 +00001005/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +00001006/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001007static Value *EmitAddTreeOfValues(Instruction *I,
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001008 SmallVectorImpl<WeakTrackingVH> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +00001009 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001010
Chris Lattner4c065092006-03-04 09:31:13 +00001011 Value *V1 = Ops.back();
1012 Ops.pop_back();
1013 Value *V2 = EmitAddTreeOfValues(I, Ops);
Sanjay Patel0d660102017-11-09 18:14:24 +00001014 return CreateAdd(V2, V1, "reass.add", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001015}
1016
Sanjay Patelc96ee082015-04-22 18:04:46 +00001017/// If V is an expression tree that is a multiplication sequence,
1018/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +00001019/// remove Factor from the tree and return the new tree.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001020Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001021 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1022 if (!BO)
1023 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001024
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001025 SmallVector<RepeatedValue, 8> Tree;
1026 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001027 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001028 Factors.reserve(Tree.size());
1029 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1030 RepeatedValue E = Tree[i];
1031 Factors.append(E.second.getZExtValue(),
1032 ValueEntry(getRank(E.first), E.first));
1033 }
Chris Lattner4c065092006-03-04 09:31:13 +00001034
1035 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001036 bool NeedsNegate = false;
1037 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001038 if (Factors[i].Op == Factor) {
1039 FoundFactor = true;
1040 Factors.erase(Factors.begin()+i);
1041 break;
1042 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001043
Chris Lattner0c59ac32010-01-01 01:13:15 +00001044 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001045 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001046 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1047 if (FC1->getValue() == -FC2->getValue()) {
1048 FoundFactor = NeedsNegate = true;
1049 Factors.erase(Factors.begin()+i);
1050 break;
1051 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001052 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1053 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001054 const APFloat &F1 = FC1->getValueAPF();
Chad Rosier11ab9412014-08-14 15:23:01 +00001055 APFloat F2(FC2->getValueAPF());
1056 F2.changeSign();
1057 if (F1.compare(F2) == APFloat::cmpEqual) {
1058 FoundFactor = NeedsNegate = true;
1059 Factors.erase(Factors.begin() + i);
1060 break;
1061 }
1062 }
1063 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001064 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001065
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001066 if (!FoundFactor) {
1067 // Make sure to restore the operands to the expression tree.
1068 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001069 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001070 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001071
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001072 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001073
Chris Lattner1d897942009-12-31 19:34:45 +00001074 // If this was just a single multiply, remove the multiply and return the only
1075 // remaining operand.
1076 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001077 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001078 V = Factors[0].Op;
1079 } else {
1080 RewriteExprTree(BO, Factors);
1081 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001082 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001083
Chris Lattner0c59ac32010-01-01 01:13:15 +00001084 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001085 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001086
Chris Lattner0c59ac32010-01-01 01:13:15 +00001087 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001088}
1089
Sanjay Patelc96ee082015-04-22 18:04:46 +00001090/// If V is a single-use multiply, recursively add its operands as factors,
1091/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001092///
1093/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001094static void FindSingleUseMultiplyFactors(Value *V,
Chad Rosiere22c9922017-02-08 17:45:27 +00001095 SmallVectorImpl<Value*> &Factors) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001096 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001097 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001098 Factors.push_back(V);
1099 return;
1100 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001101
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001102 // Otherwise, add the LHS and RHS to the list of factors.
Chad Rosiere22c9922017-02-08 17:45:27 +00001103 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1104 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001105}
1106
Sanjay Patelc96ee082015-04-22 18:04:46 +00001107/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1108/// This optimizes based on identities. If it can be reduced to a single Value,
1109/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001110static Value *OptimizeAndOrXor(unsigned Opcode,
1111 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001112 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1113 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1114 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1115 // First, check for X and ~X in the operand list.
1116 assert(i < Ops.size());
1117 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1118 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1119 unsigned FoundX = FindInOperandList(Ops, i, X);
1120 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001121 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001122 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001123
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001124 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001125 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001126 }
1127 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001128
Chris Lattner5f8a0052009-12-31 07:59:34 +00001129 // Next, check for duplicate pairs of values, which we assume are next to
1130 // each other, due to our sorting criteria.
1131 assert(i < Ops.size());
1132 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1133 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001134 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001135 Ops.erase(Ops.begin()+i);
1136 --i; --e;
1137 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001138 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001139 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001140
Chris Lattner60c2ca72009-12-31 19:49:01 +00001141 // Drop pairs of values for Xor.
1142 assert(Opcode == Instruction::Xor);
1143 if (e == 2)
1144 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001145
Chris Lattnera5526832010-01-01 00:04:26 +00001146 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001147 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1148 i -= 1; e -= 2;
1149 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001150 }
1151 }
Craig Topperf40110f2014-04-25 05:29:35 +00001152 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001153}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001154
Eric Christopherbfba5722015-12-16 23:10:53 +00001155/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001156/// instruction with the given two operands, and return the resulting
1157/// instruction. There are two special cases: 1) if the constant operand is 0,
1158/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1159/// be returned.
Craig Topper34caf532017-06-21 19:39:35 +00001160static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001161 const APInt &ConstOpnd) {
Craig Topper34caf532017-06-21 19:39:35 +00001162 if (ConstOpnd.isNullValue())
1163 return nullptr;
1164
1165 if (ConstOpnd.isAllOnesValue())
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001166 return Opnd;
Craig Topper34caf532017-06-21 19:39:35 +00001167
1168 Instruction *I = BinaryOperator::CreateAnd(
1169 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1170 InsertBefore);
1171 I->setDebugLoc(InsertBefore->getDebugLoc());
1172 return I;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001173}
1174
1175// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1176// into "R ^ C", where C would be 0, and R is a symbolic value.
1177//
1178// If it was successful, true is returned, and the "R" and "C" is returned
1179// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1180// and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001181bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1182 APInt &ConstOpnd, Value *&Res) {
Fangrui Songf78650a2018-07-30 19:41:25 +00001183 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001184 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1185 // = (x & ~c1) ^ (c1 ^ c2)
1186 // It is useful only when c1 == c2.
Craig Topper34caf532017-06-21 19:39:35 +00001187 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1188 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001189
Craig Topper34caf532017-06-21 19:39:35 +00001190 if (!Opnd1->getValue()->hasOneUse())
1191 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001192
Craig Topper34caf532017-06-21 19:39:35 +00001193 const APInt &C1 = Opnd1->getConstPart();
1194 if (C1 != ConstOpnd)
1195 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001196
Craig Topper34caf532017-06-21 19:39:35 +00001197 Value *X = Opnd1->getSymbolicPart();
1198 Res = createAndInstr(I, X, ~C1);
1199 // ConstOpnd was C2, now C1 ^ C2.
1200 ConstOpnd ^= C1;
1201
1202 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1203 RedoInsts.insert(T);
1204 return true;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001205}
Fangrui Songf78650a2018-07-30 19:41:25 +00001206
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001207// Helper function of OptimizeXor(). It tries to simplify
1208// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
Fangrui Songf78650a2018-07-30 19:41:25 +00001209// symbolic value.
1210//
1211// If it was successful, true is returned, and the "R" and "C" is returned
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001212// via "Res" and "ConstOpnd", respectively (If the entire expression is
1213// evaluated to a constant, the Res is set to NULL); otherwise, false is
1214// returned, and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001215bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1216 XorOpnd *Opnd2, APInt &ConstOpnd,
1217 Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001218 Value *X = Opnd1->getSymbolicPart();
1219 if (X != Opnd2->getSymbolicPart())
1220 return false;
1221
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001222 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1223 int DeadInstNum = 1;
1224 if (Opnd1->getValue()->hasOneUse())
1225 DeadInstNum++;
1226 if (Opnd2->getValue()->hasOneUse())
1227 DeadInstNum++;
1228
1229 // Xor-Rule 2:
1230 // (x | c1) ^ (x & c2)
1231 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1232 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1233 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1234 //
1235 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1236 if (Opnd2->isOrExpr())
1237 std::swap(Opnd1, Opnd2);
1238
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001239 const APInt &C1 = Opnd1->getConstPart();
1240 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001241 APInt C3((~C1) ^ C2);
1242
1243 // Do not increase code size!
Craig Topperd96177c2017-06-18 18:15:38 +00001244 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1245 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001246 if (NewInstNum > DeadInstNum)
1247 return false;
1248 }
1249
1250 Res = createAndInstr(I, X, C3);
1251 ConstOpnd ^= C1;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001252 } else if (Opnd1->isOrExpr()) {
1253 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1254 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001255 const APInt &C1 = Opnd1->getConstPart();
1256 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001257 APInt C3 = C1 ^ C2;
Fangrui Songf78650a2018-07-30 19:41:25 +00001258
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001259 // Do not increase code size
Craig Topperd96177c2017-06-18 18:15:38 +00001260 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1261 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001262 if (NewInstNum > DeadInstNum)
1263 return false;
1264 }
1265
1266 Res = createAndInstr(I, X, C3);
1267 ConstOpnd ^= C3;
1268 } else {
1269 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1270 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001271 const APInt &C1 = Opnd1->getConstPart();
1272 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001273 APInt C3 = C1 ^ C2;
1274 Res = createAndInstr(I, X, C3);
1275 }
1276
1277 // Put the original operands in the Redo list; hope they will be deleted
1278 // as dead code.
1279 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1280 RedoInsts.insert(T);
1281 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1282 RedoInsts.insert(T);
1283
1284 return true;
1285}
1286
1287/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1288/// to a single Value, it is returned, otherwise the Ops list is mutated as
1289/// necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001290Value *ReassociatePass::OptimizeXor(Instruction *I,
1291 SmallVectorImpl<ValueEntry> &Ops) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001292 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1293 return V;
Fangrui Songf78650a2018-07-30 19:41:25 +00001294
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001295 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001296 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001297
1298 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001299 SmallVector<XorOpnd*, 8> OpndPtrs;
Craig Toppercbac691c2017-06-21 16:07:09 +00001300 Type *Ty = Ops[0].Op->getType();
1301 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001302
1303 // Step 1: Convert ValueEntry to XorOpnd
1304 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1305 Value *V = Ops[i].Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001306 const APInt *C;
1307 // TODO: Support non-splat vectors.
Sanjay Pateldd1c3df2018-10-22 21:37:02 +00001308 if (match(V, m_APInt(C))) {
Craig Toppercbac691c2017-06-21 16:07:09 +00001309 ConstOpnd ^= *C;
1310 } else {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001311 XorOpnd O(V);
1312 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1313 Opnds.push_back(O);
Craig Toppercbac691c2017-06-21 16:07:09 +00001314 }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001315 }
1316
Shuxin Yang331f01d2013-04-08 22:00:43 +00001317 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1318 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1319 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1320 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1321 // when new elements are added to the vector.
1322 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1323 OpndPtrs.push_back(&Opnds[i]);
1324
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001325 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1326 // the same symbolic value cluster together. For instance, the input operand
1327 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1328 // ("x | 123", "x & 789", "y & 456").
Justin Bognercb8a21c2016-04-26 23:32:00 +00001329 //
1330 // The purpose is twofold:
1331 // 1) Cluster together the operands sharing the same symbolic-value.
1332 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1333 // could potentially shorten crital path, and expose more loop-invariants.
1334 // Note that values' rank are basically defined in RPO order (FIXME).
1335 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1336 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1337 // "z" in the order of X-Y-Z is better than any other orders.
1338 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1339 [](XorOpnd *LHS, XorOpnd *RHS) {
1340 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1341 });
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001342
1343 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001344 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001345 bool Changed = false;
1346 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001347 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001348 // The combined value
1349 Value *CV;
1350
1351 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
Craig Topperd96177c2017-06-18 18:15:38 +00001352 if (!ConstOpnd.isNullValue() &&
1353 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001354 Changed = true;
1355 if (CV)
1356 *CurrOpnd = XorOpnd(CV);
1357 else {
1358 CurrOpnd->Invalidate();
1359 continue;
1360 }
1361 }
1362
1363 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1364 PrevOpnd = CurrOpnd;
1365 continue;
1366 }
1367
1368 // step 3.2: When previous and current operands share the same symbolic
Fangrui Songf78650a2018-07-30 19:41:25 +00001369 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001370 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1371 // Remove previous operand
1372 PrevOpnd->Invalidate();
1373 if (CV) {
1374 *CurrOpnd = XorOpnd(CV);
1375 PrevOpnd = CurrOpnd;
1376 } else {
1377 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001378 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001379 }
1380 Changed = true;
1381 }
1382 }
1383
1384 // Step 4: Reassemble the Ops
1385 if (Changed) {
1386 Ops.clear();
1387 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1388 XorOpnd &O = Opnds[i];
1389 if (O.isInvalid())
1390 continue;
1391 ValueEntry VE(getRank(O.getValue()), O.getValue());
1392 Ops.push_back(VE);
1393 }
Craig Topperd96177c2017-06-18 18:15:38 +00001394 if (!ConstOpnd.isNullValue()) {
Craig Toppercbac691c2017-06-21 16:07:09 +00001395 Value *C = ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001396 ValueEntry VE(getRank(C), C);
1397 Ops.push_back(VE);
1398 }
Craig Toppercbac691c2017-06-21 16:07:09 +00001399 unsigned Sz = Ops.size();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001400 if (Sz == 1)
1401 return Ops.back().Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001402 if (Sz == 0) {
1403 assert(ConstOpnd.isNullValue());
1404 return ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001405 }
1406 }
1407
Craig Topperf40110f2014-04-25 05:29:35 +00001408 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001409}
1410
Sanjay Patelc96ee082015-04-22 18:04:46 +00001411/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001412/// optimizes based on identities. If it can be reduced to a single Value, it
1413/// is returned, otherwise the Ops list is mutated as necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001414Value *ReassociatePass::OptimizeAdd(Instruction *I,
1415 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001416 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001417 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1418 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001419 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001420
Chris Lattner5f8a0052009-12-31 07:59:34 +00001421 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001422 Value *TheOp = Ops[i].Op;
1423 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001424 // instances of the operand together. Due to our sorting criteria, we know
1425 // that these need to be next to each other in the vector.
1426 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1427 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001428 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001429 do {
1430 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001431 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001432 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001433
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001434 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1435 << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001436 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001437
Chris Lattner60b71b52009-12-31 19:24:52 +00001438 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001439 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001440 Constant *C = Ty->isIntOrIntVectorTy() ?
1441 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001442 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001443
Chris Lattner60b71b52009-12-31 19:24:52 +00001444 // Now that we have inserted a multiply, optimize it. This allows us to
1445 // handle cases that require multiple factoring steps, such as this:
1446 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001447 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001448
Chris Lattner60b71b52009-12-31 19:24:52 +00001449 // If every add operand was a duplicate, return the multiply.
1450 if (Ops.empty())
1451 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001452
Chris Lattner60b71b52009-12-31 19:24:52 +00001453 // Otherwise, we had some input that didn't have the dupe, such as
1454 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1455 // things being added by this operation.
1456 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001457
Chris Lattner60c2ca72009-12-31 19:49:01 +00001458 --i;
1459 e = Ops.size();
1460 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001461 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001462
Benjamin Kramer49689442014-05-31 15:01:54 +00001463 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001464 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1465 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001466 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001467
Benjamin Kramer49689442014-05-31 15:01:54 +00001468 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001469 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001470 X = BinaryOperator::getNegArgument(TheOp);
1471 else if (BinaryOperator::isNot(TheOp))
1472 X = BinaryOperator::getNotArgument(TheOp);
1473
Chris Lattner5f8a0052009-12-31 07:59:34 +00001474 unsigned FoundX = FindInOperandList(Ops, i, X);
1475 if (FoundX == i)
1476 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001477
Chris Lattner5f8a0052009-12-31 07:59:34 +00001478 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001479 if (Ops.size() == 2 &&
1480 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001481 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001482
Benjamin Kramer49689442014-05-31 15:01:54 +00001483 // Remove X and ~X from the operand list.
1484 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1485 return Constant::getAllOnesValue(X->getType());
1486
Chris Lattner5f8a0052009-12-31 07:59:34 +00001487 Ops.erase(Ops.begin()+i);
1488 if (i < FoundX)
1489 --FoundX;
1490 else
1491 --i; // Need to back up an extra one.
1492 Ops.erase(Ops.begin()+FoundX);
1493 ++NumAnnihil;
1494 --i; // Revisit element.
1495 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001496
1497 // if X and ~X we append -1 to the operand list.
1498 if (BinaryOperator::isNot(TheOp)) {
1499 Value *V = Constant::getAllOnesValue(X->getType());
1500 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1501 e += 1;
1502 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001503 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001504
Chris Lattner177140a2009-12-31 18:17:13 +00001505 // Scan the operand list, checking to see if there are any common factors
1506 // between operands. Consider something like A*A+A*B*C+D. We would like to
1507 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1508 // To efficiently find this, we count the number of times a factor occurs
1509 // for any ADD operands that are MULs.
1510 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001511
Chris Lattner177140a2009-12-31 18:17:13 +00001512 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1513 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001514 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001515 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001516 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001517 BinaryOperator *BOp =
1518 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001519 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001520 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001521
Chris Lattner177140a2009-12-31 18:17:13 +00001522 // Compute all of the factors of this added value.
1523 SmallVector<Value*, 8> Factors;
Chad Rosiere22c9922017-02-08 17:45:27 +00001524 FindSingleUseMultiplyFactors(BOp, Factors);
Chris Lattner177140a2009-12-31 18:17:13 +00001525 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001526
Chris Lattner177140a2009-12-31 18:17:13 +00001527 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001528 SmallPtrSet<Value*, 8> Duplicates;
1529 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1530 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001531 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001532 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001533
Chris Lattner0c59ac32010-01-01 01:13:15 +00001534 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001535 if (Occ > MaxOcc) {
1536 MaxOcc = Occ;
1537 MaxOccVal = Factor;
1538 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001539
Chris Lattner0c59ac32010-01-01 01:13:15 +00001540 // If Factor is a negative constant, add the negated value as a factor
1541 // because we can percolate the negate out. Watch for minint, which
1542 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001543 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001544 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001545 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
Chad Rosier95abfa32017-02-23 18:49:03 +00001546 if (!Duplicates.insert(Factor).second)
1547 continue;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001548 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001549 if (Occ > MaxOcc) {
1550 MaxOcc = Occ;
1551 MaxOccVal = Factor;
1552 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001553 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001554 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1555 if (CF->isNegative()) {
1556 APFloat F(CF->getValueAPF());
1557 F.changeSign();
1558 Factor = ConstantFP::get(CF->getContext(), F);
Chad Rosier95abfa32017-02-23 18:49:03 +00001559 if (!Duplicates.insert(Factor).second)
1560 continue;
Chad Rosier11ab9412014-08-14 15:23:01 +00001561 unsigned Occ = ++FactorOccurrences[Factor];
1562 if (Occ > MaxOcc) {
1563 MaxOcc = Occ;
1564 MaxOccVal = Factor;
1565 }
1566 }
1567 }
Chris Lattner177140a2009-12-31 18:17:13 +00001568 }
1569 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001570
Chris Lattner177140a2009-12-31 18:17:13 +00001571 // If any factor occurred more than one time, we can pull it out.
1572 if (MaxOcc > 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001573 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1574 << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001575 ++NumFactor;
1576
1577 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1578 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001579 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001580 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001581 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001582 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001583 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1584 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1585
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001586 SmallVector<WeakTrackingVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001587 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001588 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001589 BinaryOperator *BOp =
1590 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001591 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001592 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001593
Chris Lattner177140a2009-12-31 18:17:13 +00001594 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001595 // The factorized operand may occur several times. Convert them all in
1596 // one fell swoop.
1597 for (unsigned j = Ops.size(); j != i;) {
1598 --j;
1599 if (Ops[j].Op == Ops[i].Op) {
1600 NewMulOps.push_back(V);
1601 Ops.erase(Ops.begin()+j);
1602 }
1603 }
1604 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001605 }
1606 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001607
Chris Lattner177140a2009-12-31 18:17:13 +00001608 // No need for extra uses anymore.
Reid Kleckner96ab8722017-05-18 17:24:10 +00001609 DummyInst->deleteValue();
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001610
Chris Lattner177140a2009-12-31 18:17:13 +00001611 unsigned NumAddedValues = NewMulOps.size();
1612 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001613
Chris Lattner60b71b52009-12-31 19:24:52 +00001614 // Now that we have inserted the add tree, optimize it. This allows us to
1615 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001616 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001617 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001618 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001619 if (Instruction *VI = dyn_cast<Instruction>(V))
1620 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001621
1622 // Create the multiply.
Sanjay Patel0d660102017-11-09 18:14:24 +00001623 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001624
Chris Lattner60c2ca72009-12-31 19:49:01 +00001625 // Rerun associate on the multiply in case the inner expression turned into
1626 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001627 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001628
Chris Lattner177140a2009-12-31 18:17:13 +00001629 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1630 // entire result expression is just the multiply "A*(B+C)".
1631 if (Ops.empty())
1632 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001633
Chris Lattnerac615502009-12-31 18:18:46 +00001634 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001635 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001636 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001637 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1638 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001639
Craig Topperf40110f2014-04-25 05:29:35 +00001640 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001641}
Chris Lattner4c065092006-03-04 09:31:13 +00001642
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001643/// Build up a vector of value/power pairs factoring a product.
Chandler Carruth739ef802012-04-26 05:30:30 +00001644///
1645/// Given a series of multiplication operands, build a vector of factors and
1646/// the powers each is raised to when forming the final product. Sort them in
1647/// the order of descending power.
1648///
1649/// (x*x) -> [(x, 2)]
1650/// ((x*x)*x) -> [(x, 3)]
1651/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1652///
1653/// \returns Whether any factors have a power greater than one.
Craig Topper43507342017-06-19 16:23:43 +00001654static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1655 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001656 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1657 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001658 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001659 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1660 Value *Op = Ops[Idx-1].Op;
1661
1662 // Count the number of occurrences of this value.
1663 unsigned Count = 1;
1664 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1665 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001666 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001667 if (Count > 1)
1668 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001669 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001670
Chandler Carruth739ef802012-04-26 05:30:30 +00001671 // We can only simplify factors if the sum of the powers of our simplifiable
1672 // factors is 4 or higher. When that is the case, we will *always* have
1673 // a simplification. This is an important invariant to prevent cyclicly
1674 // trying to simplify already minimal formations.
1675 if (FactorPowerSum < 4)
1676 return false;
1677
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001678 // Now gather the simplifiable factors, removing them from Ops.
1679 FactorPowerSum = 0;
1680 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1681 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001682
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001683 // Count the number of occurrences of this value.
1684 unsigned Count = 1;
1685 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1686 ++Count;
1687 if (Count == 1)
1688 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001689 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001690 Count &= ~1U;
1691 Idx -= Count;
1692 FactorPowerSum += Count;
1693 Factors.push_back(Factor(Op, Count));
1694 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001695 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001696
Chandler Carruth739ef802012-04-26 05:30:30 +00001697 // None of the adjustments above should have reduced the sum of factor powers
1698 // below our mininum of '4'.
1699 assert(FactorPowerSum >= 4);
1700
Justin Bogner90744d22016-04-26 22:22:18 +00001701 std::stable_sort(Factors.begin(), Factors.end(),
1702 [](const Factor &LHS, const Factor &RHS) {
1703 return LHS.Power > RHS.Power;
1704 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001705 return true;
1706}
1707
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001708/// Build a tree of multiplies, computing the product of Ops.
Chandler Carruth739ef802012-04-26 05:30:30 +00001709static Value *buildMultiplyTree(IRBuilder<> &Builder,
1710 SmallVectorImpl<Value*> &Ops) {
1711 if (Ops.size() == 1)
1712 return Ops.back();
1713
1714 Value *LHS = Ops.pop_back_val();
1715 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001716 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001717 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1718 else
1719 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001720 } while (!Ops.empty());
1721
1722 return LHS;
1723}
1724
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001725/// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
Chandler Carruth739ef802012-04-26 05:30:30 +00001726///
1727/// Given a vector of values raised to various powers, where no two values are
1728/// equal and the powers are sorted in decreasing order, compute the minimal
1729/// DAG of multiplies to compute the final product, and return that product
1730/// value.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001731Value *
1732ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1733 SmallVectorImpl<Factor> &Factors) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001734 assert(Factors[0].Power);
1735 SmallVector<Value *, 4> OuterProduct;
1736 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1737 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1738 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1739 LastIdx = Idx;
1740 continue;
1741 }
1742
1743 // We want to multiply across all the factors with the same power so that
1744 // we can raise them to that power as a single entity. Build a mini tree
1745 // for that.
1746 SmallVector<Value *, 4> InnerProduct;
1747 InnerProduct.push_back(Factors[LastIdx].Base);
1748 do {
1749 InnerProduct.push_back(Factors[Idx].Base);
1750 ++Idx;
1751 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1752
1753 // Reset the base value of the first factor to the new expression tree.
1754 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001755 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1756 if (Instruction *MI = dyn_cast<Instruction>(M))
1757 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001758
1759 LastIdx = Idx;
1760 }
1761 // Unique factors with equal powers -- we've folded them into the first one's
1762 // base.
1763 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001764 [](const Factor &LHS, const Factor &RHS) {
1765 return LHS.Power == RHS.Power;
1766 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001767 Factors.end());
1768
1769 // Iteratively collect the base of each factor with an add power into the
1770 // outer product, and halve each power in preparation for squaring the
1771 // expression.
1772 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1773 if (Factors[Idx].Power & 1)
1774 OuterProduct.push_back(Factors[Idx].Base);
1775 Factors[Idx].Power >>= 1;
1776 }
1777 if (Factors[0].Power) {
1778 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1779 OuterProduct.push_back(SquareRoot);
1780 OuterProduct.push_back(SquareRoot);
1781 }
1782 if (OuterProduct.size() == 1)
1783 return OuterProduct.front();
1784
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001785 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001786 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001787}
1788
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001789Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1790 SmallVectorImpl<ValueEntry> &Ops) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001791 // We can only optimize the multiplies when there is a chain of more than
1792 // three, such that a balanced tree might require fewer total multiplies.
1793 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001794 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001795
1796 // Try to turn linear trees of multiplies without other uses of the
1797 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1798 // re-use.
1799 SmallVector<Factor, 4> Factors;
1800 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001801 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001802
1803 IRBuilder<> Builder(I);
Vyacheslav Klochkov68a677a2016-11-22 20:23:04 +00001804 // The reassociate transformation for FP operations is performed only
1805 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1806 // to the newly generated operations.
1807 if (auto FPI = dyn_cast<FPMathOperator>(I))
1808 Builder.setFastMathFlags(FPI->getFastMathFlags());
1809
Chandler Carruth739ef802012-04-26 05:30:30 +00001810 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1811 if (Ops.empty())
1812 return V;
1813
1814 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1815 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001816 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001817}
1818
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001819Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1820 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001821 // Now that we have the linearized expression tree, try to optimize it.
1822 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001823 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001824 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001825 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1826 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1827 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1828 }
1829 // If there was nothing but constants then we are done.
1830 if (Ops.empty())
1831 return Cst;
1832
1833 // Put the combined constant back at the end of the operand list, except if
1834 // there is no point. For example, an add of 0 gets dropped here, while a
1835 // multiplication by zero turns the whole expression into zero.
1836 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1837 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1838 return Cst;
1839 Ops.push_back(ValueEntry(0, Cst));
1840 }
1841
1842 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001843
Chris Lattner9039ff82009-12-31 07:33:14 +00001844 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001845 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001846 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001847 switch (Opcode) {
1848 default: break;
1849 case Instruction::And:
1850 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001851 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1852 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001853 break;
1854
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001855 case Instruction::Xor:
1856 if (Value *Result = OptimizeXor(I, Ops))
1857 return Result;
1858 break;
1859
Chandler Carruth739ef802012-04-26 05:30:30 +00001860 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001861 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001862 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001863 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001864 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001865
1866 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001867 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001868 if (Value *Result = OptimizeMul(I, Ops))
1869 return Result;
1870 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001871 }
1872
Duncan Sands3293f462012-06-08 20:15:33 +00001873 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001874 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001875 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001876}
1877
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001878// Remove dead instructions and if any operands are trivially dead add them to
1879// Insts so they will be removed as well.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00001880void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1881 OrderedSet &Insts) {
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001882 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1883 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1884 ValueRankMap.erase(I);
1885 Insts.remove(I);
1886 RedoInsts.remove(I);
1887 I->eraseFromParent();
1888 for (auto Op : Ops)
1889 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1890 if (OpInst->use_empty())
1891 Insts.insert(OpInst);
1892}
1893
Sanjay Patelc96ee082015-04-22 18:04:46 +00001894/// Zap the given instruction, adding interesting operands to the work list.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001895void ReassociatePass::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001896 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001897 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
Chad Rosier27ac0d82016-08-30 13:58:35 +00001898
Duncan Sands3293f462012-06-08 20:15:33 +00001899 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1900 // Erase the dead instruction.
1901 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001902 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001903 I->eraseFromParent();
1904 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001905 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001906 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1907 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1908 // If this is a node in an expression tree, climb to the expression root
1909 // and add that since that's where optimization actually happens.
1910 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001911 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001912 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001913 Op = Op->user_back();
Davide Italiano6e1f7bf2018-05-11 15:45:36 +00001914
1915 // The instruction we're going to push may be coming from a
1916 // dead block, and Reassociate skips the processing of unreachable
1917 // blocks because it's a waste of time and also because it can
1918 // lead to infinite loop due to LLVM's non-standard definition
1919 // of dominance.
1920 if (ValueRankMap.find(Op) != ValueRankMap.end())
1921 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001922 }
Mikael Holmen37b51202017-06-27 05:32:13 +00001923
1924 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001925}
1926
Chad Rosier094ac772014-11-11 22:58:35 +00001927// Canonicalize expressions of the following form:
1928// x + (-Constant * y) -> x - (Constant * y)
1929// x - (-Constant * y) -> x + (Constant * y)
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001930Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
Chad Rosier094ac772014-11-11 22:58:35 +00001931 if (!I->hasOneUse() || I->getType()->isVectorTy())
1932 return nullptr;
1933
David Majnemer587336d2015-05-28 06:16:39 +00001934 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001935 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001936 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001937 return nullptr;
1938
David Majnemer587336d2015-05-28 06:16:39 +00001939 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1940 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1941
1942 // Both operands are constant, let it get constant folded away.
1943 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001944 return nullptr;
1945
David Majnemer587336d2015-05-28 06:16:39 +00001946 ConstantFP *CF = C0 ? C0 : C1;
1947
1948 // Must have one constant operand.
1949 if (!CF)
1950 return nullptr;
1951
1952 // Must be a negative ConstantFP.
1953 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001954 return nullptr;
1955
1956 // User must be a binary operator with one or more uses.
1957 Instruction *User = I->user_back();
Davide Italiano79eb3b02017-05-16 22:38:40 +00001958 if (!isa<BinaryOperator>(User) || User->use_empty())
Chad Rosier094ac772014-11-11 22:58:35 +00001959 return nullptr;
1960
1961 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001962 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001963 return nullptr;
1964
1965 // Subtraction is not commutative. Explicitly, the following transform is
1966 // not valid: (-Constant * y) - x -> x + (Constant * y)
1967 if (!User->isCommutative() && User->getOperand(1) != I)
1968 return nullptr;
1969
Chad Rosier8db41e92017-08-23 14:10:06 +00001970 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1971 // resulting subtract will be broken up later. This can get us into an
1972 // infinite loop during reassociation.
1973 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1974 return nullptr;
1975
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001976 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001977 APFloat Val = CF->getValueAPF();
1978 Val.changeSign();
1979 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001980
Chad Rosier094ac772014-11-11 22:58:35 +00001981 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1982 // ((-Const*y) + x) -> (x + (-Const*y)).
1983 if (User->getOperand(0) == I && User->isCommutative())
1984 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001985
Chad Rosier094ac772014-11-11 22:58:35 +00001986 Value *Op0 = User->getOperand(0);
1987 Value *Op1 = User->getOperand(1);
1988 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00001989 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00001990 default:
1991 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00001992 case Instruction::FAdd:
1993 NI = BinaryOperator::CreateFSub(Op0, Op1);
1994 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1995 break;
1996 case Instruction::FSub:
1997 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1998 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1999 break;
2000 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002001
Chad Rosier094ac772014-11-11 22:58:35 +00002002 NI->insertBefore(User);
2003 NI->setName(User->getName());
2004 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002005 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00002006 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002007 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00002008 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002009}
2010
Sanjay Patelc96ee082015-04-22 18:04:46 +00002011/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00002012/// instructions is not allowed.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002013void ReassociatePass::OptimizeInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00002014 // Only consider operations that we understand.
2015 if (!isa<BinaryOperator>(I))
2016 return;
2017
Chad Rosier11ab9412014-08-14 15:23:01 +00002018 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002019 // If an operand of this shift is a reassociable multiply, or if the shift
2020 // is used by a reassociable multiply or add, turn into a multiply.
2021 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2022 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002023 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2024 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002025 Instruction *NI = ConvertShiftToMul(I);
2026 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002027 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002028 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002029 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002030
Chad Rosier094ac772014-11-11 22:58:35 +00002031 // Canonicalize negative constants out of expressions.
2032 if (Instruction *Res = canonicalizeNegConstExpr(I))
2033 I = Res;
2034
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002035 // Commute binary operators, to canonicalize the order of their operands.
2036 // This can potentially expose more CSE opportunities, and makes writing other
2037 // transformations simpler.
2038 if (I->isCommutative())
2039 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002040
Sanjay Patel629c4112017-11-06 16:27:15 +00002041 // Don't optimize floating-point instructions unless they are 'fast'.
2042 if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002043 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002044
Dan Gohman1c6c3482011-04-12 00:11:56 +00002045 // Do not reassociate boolean (i1) expressions. We want to preserve the
2046 // original order of evaluation for short-circuited comparisons that
2047 // SimplifyCFG has folded to AND/OR expressions. If the expression
2048 // is not further optimized, it is likely to be transformed back to a
2049 // short-circuited form for code gen, and the source order may have been
2050 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002051 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002052 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002053
Dan Gohman1c6c3482011-04-12 00:11:56 +00002054 // If this is a subtract instruction which is not already in negate form,
2055 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002056 if (I->getOpcode() == Instruction::Sub) {
2057 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002058 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002059 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002060 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002061 I = NI;
2062 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002063 // Otherwise, this is a negation. See if the operand is a multiply tree
2064 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002065 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2066 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002067 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002068 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002069 // If the negate was simplified, revisit the users to see if we can
2070 // reassociate further.
2071 for (User *U : NI->users()) {
2072 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2073 RedoInsts.insert(Tmp);
2074 }
Duncan Sands3293f462012-06-08 20:15:33 +00002075 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002076 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002077 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002078 }
2079 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002080 } else if (I->getOpcode() == Instruction::FSub) {
2081 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002082 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002083 RedoInsts.insert(I);
2084 MadeChange = true;
2085 I = NI;
2086 } else if (BinaryOperator::isFNeg(I)) {
2087 // Otherwise, this is a negation. See if the operand is a multiply tree
2088 // and if this is not an inner node of a multiply tree.
2089 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2090 (!I->hasOneUse() ||
2091 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002092 // If the negate was simplified, revisit the users to see if we can
2093 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002094 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002095 for (User *U : NI->users()) {
2096 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2097 RedoInsts.insert(Tmp);
2098 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002099 RedoInsts.insert(I);
2100 MadeChange = true;
2101 I = NI;
2102 }
2103 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002104 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002105
Duncan Sands3293f462012-06-08 20:15:33 +00002106 // If this instruction is an associative binary operator, process it.
2107 if (!I->isAssociative()) return;
2108 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002109
2110 // If this is an interior node of a reassociable tree, ignore it until we
2111 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002112 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002113 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2114 // During the initial run we will get to the root of the tree.
2115 // But if we get here while we are redoing instructions, there is no
2116 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002117 if (BO->user_back() != BO &&
2118 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002119 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002120 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002121 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002122
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002123 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002124 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002125 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002126 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002127 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002128 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2129 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2130 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002131
Duncan Sands3293f462012-06-08 20:15:33 +00002132 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002133}
Chris Lattner1e506502005-05-07 21:59:39 +00002134
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002135void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002136 // First, walk the expression tree, linearizing the tree, collecting the
2137 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002138 SmallVector<RepeatedValue, 8> Tree;
2139 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002140 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002141 Ops.reserve(Tree.size());
2142 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2143 RepeatedValue E = Tree[i];
2144 Ops.append(E.second.getZExtValue(),
2145 ValueEntry(getRank(E.first), E.first));
2146 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002147
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002148 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002149
Chris Lattner2fc319d2006-03-14 07:11:11 +00002150 // Now that we have linearized the tree to a list and have gathered all of
2151 // the operands and their ranks, sort the operands by their rank. Use a
2152 // stable_sort so that values with equal ranks will have their relative
2153 // positions maintained (and so the compiler is deterministic). Note that
2154 // this sorts so that the highest ranking values end up at the beginning of
2155 // the vector.
2156 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002157
Sanjay Patelc96ee082015-04-22 18:04:46 +00002158 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002159 // sorted form, optimize it globally if possible.
2160 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002161 if (V == I)
2162 // Self-referential expression in unreachable code.
2163 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002164 // This expression tree simplified to something that isn't a tree,
2165 // eliminate it.
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002166 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002167 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002168 if (Instruction *VI = dyn_cast<Instruction>(V))
Mikael Holmen7a99e332017-08-24 09:05:00 +00002169 if (I->getDebugLoc())
2170 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002171 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002172 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002173 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002174 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002175
Chris Lattner2fc319d2006-03-14 07:11:11 +00002176 // We want to sink immediates as deeply as possible except in the case where
2177 // this is a multiply tree used only by an add, and the immediate is a -1.
2178 // In this case we reassociate to put the negation on the outside so that we
2179 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002180 if (I->hasOneUse()) {
2181 if (I->getOpcode() == Instruction::Mul &&
2182 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2183 isa<ConstantInt>(Ops.back().Op) &&
Craig Topper79ab6432017-07-06 18:39:47 +00002184 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002185 ValueEntry Tmp = Ops.pop_back_val();
2186 Ops.insert(Ops.begin(), Tmp);
2187 } else if (I->getOpcode() == Instruction::FMul &&
2188 cast<Instruction>(I->user_back())->getOpcode() ==
2189 Instruction::FAdd &&
2190 isa<ConstantFP>(Ops.back().Op) &&
2191 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2192 ValueEntry Tmp = Ops.pop_back_val();
2193 Ops.insert(Ops.begin(), Tmp);
2194 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002195 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002196
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002197 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002198
Chris Lattner2fc319d2006-03-14 07:11:11 +00002199 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002200 if (Ops[0].Op == I)
2201 // Self-referential expression in unreachable code.
2202 return;
2203
Chris Lattner2fc319d2006-03-14 07:11:11 +00002204 // This expression tree simplified to something that isn't a tree,
2205 // eliminate it.
2206 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002207 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2208 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002209 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002210 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002211 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002212
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002213 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2214 // Find the pair with the highest count in the pairmap and move it to the
2215 // back of the list so that it can later be CSE'd.
2216 // example:
2217 // a*b*c*d*e
2218 // if c*e is the most "popular" pair, we can express this as
2219 // (((c*e)*d)*b)*a
2220 unsigned Max = 1;
2221 unsigned BestRank = 0;
2222 std::pair<unsigned, unsigned> BestPair;
2223 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2224 for (unsigned i = 0; i < Ops.size() - 1; ++i)
2225 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2226 unsigned Score = 0;
2227 Value *Op0 = Ops[i].Op;
2228 Value *Op1 = Ops[j].Op;
2229 if (std::less<Value *>()(Op1, Op0))
2230 std::swap(Op0, Op1);
2231 auto it = PairMap[Idx].find({Op0, Op1});
2232 if (it != PairMap[Idx].end())
2233 Score += it->second;
2234
2235 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2236 if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2237 BestPair = {i, j};
2238 Max = Score;
2239 BestRank = MaxRank;
2240 }
2241 }
2242 if (Max > 1) {
2243 auto Op0 = Ops[BestPair.first];
2244 auto Op1 = Ops[BestPair.second];
2245 Ops.erase(&Ops[BestPair.second]);
2246 Ops.erase(&Ops[BestPair.first]);
2247 Ops.push_back(Op0);
2248 Ops.push_back(Op1);
2249 }
2250 }
Chris Lattner60b71b52009-12-31 19:24:52 +00002251 // Now that we ordered and optimized the expressions, splat them back into
2252 // the expression tree, removing any unneeded nodes.
2253 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002254}
2255
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002256void
2257ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2258 // Make a "pairmap" of how often each operand pair occurs.
2259 for (BasicBlock *BI : RPOT) {
2260 for (Instruction &I : *BI) {
2261 if (!I.isAssociative())
2262 continue;
2263
2264 // Ignore nodes that aren't at the root of trees.
2265 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2266 continue;
2267
2268 // Collect all operands in a single reassociable expression.
2269 // Since Reassociate has already been run once, we can assume things
2270 // are already canonical according to Reassociation's regime.
2271 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2272 SmallVector<Value *, 8> Ops;
2273 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2274 Value *Op = Worklist.pop_back_val();
2275 Instruction *OpI = dyn_cast<Instruction>(Op);
2276 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2277 Ops.push_back(Op);
2278 continue;
2279 }
2280 // Be paranoid about self-referencing expressions in unreachable code.
2281 if (OpI->getOperand(0) != OpI)
2282 Worklist.push_back(OpI->getOperand(0));
2283 if (OpI->getOperand(1) != OpI)
2284 Worklist.push_back(OpI->getOperand(1));
2285 }
2286 // Skip extremely long expressions.
2287 if (Ops.size() > GlobalReassociateLimit)
2288 continue;
2289
2290 // Add all pairwise combinations of operands to the pair map.
2291 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2292 SmallSet<std::pair<Value *, Value*>, 32> Visited;
2293 for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2294 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2295 // Canonicalize operand orderings.
2296 Value *Op0 = Ops[i];
2297 Value *Op1 = Ops[j];
2298 if (std::less<Value *>()(Op1, Op0))
2299 std::swap(Op0, Op1);
2300 if (!Visited.insert({Op0, Op1}).second)
2301 continue;
2302 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1});
2303 if (!res.second)
2304 ++res.first->second;
2305 }
2306 }
2307 }
2308 }
2309}
2310
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002311PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002312 // Get the functions basic blocks in Reverse Post Order. This order is used by
2313 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2314 // blocks (it has been seen that the analysis in this pass could hang when
2315 // analysing dead basic blocks).
2316 ReversePostOrderTraversal<Function *> RPOT(&F);
2317
Chad Rosierea7e4642016-08-17 15:54:39 +00002318 // Calculate the rank map for F.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002319 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002320
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002321 // Build the pair map before running reassociate.
2322 // Technically this would be more accurate if we did it after one round
2323 // of reassociation, but in practice it doesn't seem to help much on
2324 // real-world code, so don't waste the compile time running reassociate
2325 // twice.
2326 // If a user wants, they could expicitly run reassociate twice in their
2327 // pass pipeline for further potential gains.
2328 // It might also be possible to update the pair map during runtime, but the
2329 // overhead of that may be large if there's many reassociable chains.
2330 BuildPairMap(RPOT);
2331
Chris Lattner1e506502005-05-07 21:59:39 +00002332 MadeChange = false;
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002333
2334 // Traverse the same blocks that were analysed by BuildRankMap.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002335 for (BasicBlock *BI : RPOT) {
2336 assert(RankMap.count(&*BI) && "BB should be ranked.");
Duncan Sands3293f462012-06-08 20:15:33 +00002337 // Optimize every instruction in the basic block.
Chad Rosierea7e4642016-08-17 15:54:39 +00002338 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002339 if (isInstructionTriviallyDead(&*II)) {
2340 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002341 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002342 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002343 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002344 ++II;
2345 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002346
Chad Rosierea7e4642016-08-17 15:54:39 +00002347 // Make a copy of all the instructions to be redone so we can remove dead
2348 // instructions.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00002349 OrderedSet ToRedo(RedoInsts);
Chad Rosierea7e4642016-08-17 15:54:39 +00002350 // Iterate over all instructions to be reevaluated and remove trivially dead
2351 // instructions. If any operand of the trivially dead instruction becomes
2352 // dead mark it for deletion as well. Continue this process until all
2353 // trivially dead instructions have been removed.
2354 while (!ToRedo.empty()) {
2355 Instruction *I = ToRedo.pop_back_val();
Davide Italiano631cd272016-10-28 02:47:09 +00002356 if (isInstructionTriviallyDead(I)) {
Chad Rosierea7e4642016-08-17 15:54:39 +00002357 RecursivelyEraseDeadInsts(I, ToRedo);
Davide Italiano631cd272016-10-28 02:47:09 +00002358 MadeChange = true;
2359 }
Chad Rosierea7e4642016-08-17 15:54:39 +00002360 }
2361
2362 // Now that we have removed dead instructions, we can reoptimize the
2363 // remaining instructions.
2364 while (!RedoInsts.empty()) {
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00002365 Instruction *I = RedoInsts.front();
2366 RedoInsts.erase(RedoInsts.begin());
Chad Rosierea7e4642016-08-17 15:54:39 +00002367 if (isInstructionTriviallyDead(I))
2368 EraseInst(I);
2369 else
2370 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002371 }
Duncan Sands3293f462012-06-08 20:15:33 +00002372 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002373
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002374 // We are done with the rank map and pair map.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002375 RankMap.clear();
2376 ValueRankMap.clear();
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002377 for (auto &Entry : PairMap)
2378 Entry.clear();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002379
Davide Italiano39893bd2016-05-29 00:41:17 +00002380 if (MadeChange) {
Chandler Carruthca68a3e2017-01-15 06:32:49 +00002381 PreservedAnalyses PA;
2382 PA.preserveSet<CFGAnalyses>();
Davide Italiano39893bd2016-05-29 00:41:17 +00002383 PA.preserve<GlobalsAA>();
2384 return PA;
2385 }
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002386
2387 return PreservedAnalyses::all();
2388}
2389
2390namespace {
Eugene Zelenko306d2992017-10-18 21:46:47 +00002391
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002392 class ReassociateLegacyPass : public FunctionPass {
2393 ReassociatePass Impl;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002394
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002395 public:
2396 static char ID; // Pass identification, replacement for typeid
Eugene Zelenko306d2992017-10-18 21:46:47 +00002397
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002398 ReassociateLegacyPass() : FunctionPass(ID) {
2399 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2400 }
2401
2402 bool runOnFunction(Function &F) override {
2403 if (skipFunction(F))
2404 return false;
2405
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002406 FunctionAnalysisManager DummyFAM;
2407 auto PA = Impl.run(F, DummyFAM);
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002408 return !PA.areAllPreserved();
2409 }
2410
2411 void getAnalysisUsage(AnalysisUsage &AU) const override {
2412 AU.setPreservesCFG();
2413 AU.addPreserved<GlobalsAAWrapperPass>();
2414 }
2415 };
Eugene Zelenko306d2992017-10-18 21:46:47 +00002416
2417} // end anonymous namespace
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002418
2419char ReassociateLegacyPass::ID = 0;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002420
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002421INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2422 "Reassociate expressions", false, false)
2423
2424// Public interface to the Reassociate pass
2425FunctionPass *llvm::createReassociatePass() {
2426 return new ReassociateLegacyPass();
Chris Lattnerc0f58002002-05-08 22:19:27 +00002427}