blob: fe94079fd8697646f9bfe0e64201d5072739f053 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Keno Fischer1ec5dd82017-04-05 20:51:38 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000083 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000084 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000085 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000086 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000087 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000088 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Keno Fischer1ec5dd82017-04-05 20:51:38 +000098unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
99 return getRegisterBitWidth(true);
100}
101
Wei Mi062c7442015-05-06 17:12:25 +0000102unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
103 // If the loop will not be vectorized, don't interleave the loop.
104 // Let regular unroll to unroll the loop, which saves the overflow
105 // check and memory check cost.
106 if (VF == 1)
107 return 1;
108
Nadav Rotemb696c362013-01-09 01:15:42 +0000109 if (ST->isAtom())
110 return 1;
111
112 // Sandybridge and Haswell have multiple execution ports and pipelined
113 // vector units.
114 if (ST->hasAVX())
115 return 4;
116
117 return 2;
118}
119
Chandler Carruth93205eb2015-08-05 18:08:10 +0000120int X86TTIImpl::getArithmeticInstrCost(
Simon Pilgrim3e5b5252017-01-20 15:15:59 +0000121 unsigned Opcode, Type *Ty,
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000122 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
123 TTI::OperandValueProperties Opd1PropInfo,
124 TTI::OperandValueProperties Opd2PropInfo,
125 ArrayRef<const Value *> Args) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000126 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000127 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000128
129 int ISD = TLI->InstructionOpcodeToISD(Opcode);
130 assert(ISD && "Invalid opcode");
131
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000132 static const CostTblEntry SLMCostTable[] = {
133 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
134 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
135 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
136 { ISD::FMUL, MVT::f64, 2 }, // mulsd
137 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
138 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
139 { ISD::FDIV, MVT::f32, 17 }, // divss
140 { ISD::FDIV, MVT::v4f32, 39 }, // divps
141 { ISD::FDIV, MVT::f64, 32 }, // divsd
142 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
143 { ISD::FADD, MVT::v2f64, 2 }, // addpd
144 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
145 // v2i64/v4i64 mul is custom lowered as a series of long
146 // multiplies(3), shifts(3) and adds(2).
147 // slm muldq version throughput is 2
148 { ISD::MUL, MVT::v2i64, 11 },
149 };
150
151 if (ST->isSLM()) {
152 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
153 // Check if the operands can be shrinked into a smaller datatype.
154 bool Op1Signed = false;
155 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
156 bool Op2Signed = false;
157 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
158
159 bool signedMode = Op1Signed | Op2Signed;
160 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
161
162 if (OpMinSize <= 7)
163 return LT.first * 3; // pmullw/sext
164 if (!signedMode && OpMinSize <= 8)
165 return LT.first * 3; // pmullw/zext
166 if (OpMinSize <= 15)
167 return LT.first * 5; // pmullw/pmulhw/pshuf
168 if (!signedMode && OpMinSize <= 16)
169 return LT.first * 5; // pmullw/pmulhw/pshuf
170 }
171 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
172 LT.second)) {
173 return LT.first * Entry->Cost;
174 }
175 }
176
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000177 if (ISD == ISD::SDIV &&
178 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
179 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
180 // On X86, vector signed division by constants power-of-two are
181 // normally expanded to the sequence SRA + SRL + ADD + SRA.
182 // The OperandValue properties many not be same as that of previous
183 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000184 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
185 Op2Info, TargetTransformInfo::OP_None,
186 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000187 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
188 TargetTransformInfo::OP_None,
189 TargetTransformInfo::OP_None);
190 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
191 TargetTransformInfo::OP_None,
192 TargetTransformInfo::OP_None);
193
194 return Cost;
195 }
196
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000197 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000198 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
199 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
200 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
201
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000202 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
203 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
204 };
205
206 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
207 ST->hasBWI()) {
208 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
209 LT.second))
210 return LT.first * Entry->Cost;
211 }
212
213 static const CostTblEntry AVX512UniformConstCostTable[] = {
Simon Pilgrimd419b732017-01-14 19:24:23 +0000214 { ISD::SRA, MVT::v2i64, 1 },
215 { ISD::SRA, MVT::v4i64, 1 },
216 { ISD::SRA, MVT::v8i64, 1 },
217
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000218 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
219 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
220 };
221
222 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
223 ST->hasAVX512()) {
224 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
225 LT.second))
226 return LT.first * Entry->Cost;
227 }
228
Craig Topper4b275762015-10-28 04:02:12 +0000229 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000230 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
231 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
232 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
233
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000234 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
235
Benjamin Kramer7c372272014-04-26 14:53:05 +0000236 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
237 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
238 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
239 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
240 };
241
242 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
243 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000244 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
245 LT.second))
246 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000247 }
248
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000249 static const CostTblEntry SSE2UniformConstCostTable[] = {
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000250 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
251 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
252 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
Simon Pilgrim9c589502017-01-08 14:14:36 +0000253
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000254 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split.
255 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split.
256 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
Simon Pilgrim9c589502017-01-08 14:14:36 +0000257
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000258 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
259 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
260 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
261 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
262 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split.
263 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
264 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split.
265 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000266 };
267
268 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
269 ST->hasSSE2()) {
270 // pmuldq sequence.
271 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000272 return LT.first * 32;
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000273 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
274 return LT.first * 15;
275
Simon Pilgrim5bef9c62017-05-14 17:59:46 +0000276 // XOP has faster vXi8 shifts.
277 if ((ISD != ISD::SHL && ISD != ISD::SRL && ISD != ISD::SRA) ||
278 !ST->hasXOP())
279 if (const auto *Entry =
280 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
281 return LT.first * Entry->Cost;
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000282 }
283
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000284 static const CostTblEntry AVX2UniformCostTable[] = {
285 // Uniform splats are cheaper for the following instructions.
286 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
287 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
288 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
289 };
290
291 if (ST->hasAVX2() &&
292 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
293 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
294 if (const auto *Entry =
295 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
296 return LT.first * Entry->Cost;
297 }
298
299 static const CostTblEntry SSE2UniformCostTable[] = {
300 // Uniform splats are cheaper for the following instructions.
301 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
302 { ISD::SHL, MVT::v4i32, 1 }, // pslld
303 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
304
305 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
306 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
307 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
308
309 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
310 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
311 };
312
313 if (ST->hasSSE2() &&
314 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
315 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
316 if (const auto *Entry =
317 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
318 return LT.first * Entry->Cost;
319 }
320
Simon Pilgrim820e1322016-10-27 15:27:00 +0000321 static const CostTblEntry AVX512DQCostTable[] = {
322 { ISD::MUL, MVT::v2i64, 1 },
323 { ISD::MUL, MVT::v4i64, 1 },
324 { ISD::MUL, MVT::v8i64, 1 }
325 };
326
327 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000328 if (ST->hasDQI())
329 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000330 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000331
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000332 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrim6ed996c2017-01-15 20:44:00 +0000333 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw
334 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw
335 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw
336
337 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw
338 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw
339 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw
340
Simon Pilgrima4109d62017-01-07 17:54:10 +0000341 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
342 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
343 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
344
Simon Pilgrim5a81fef2017-01-11 10:36:51 +0000345 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
346 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
347 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
348
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000349 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
350 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
351 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
352
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000353 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
354 { ISD::SDIV, MVT::v64i8, 64*20 },
355 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000356 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000357 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000358 };
359
360 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000361 if (ST->hasBWI())
362 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000363 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000364
Craig Topper4b275762015-10-28 04:02:12 +0000365 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000366 { ISD::SHL, MVT::v16i32, 1 },
367 { ISD::SRL, MVT::v16i32, 1 },
368 { ISD::SRA, MVT::v16i32, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000369
Simon Pilgrimd8333372017-01-06 11:12:53 +0000370 { ISD::SHL, MVT::v8i64, 1 },
371 { ISD::SRL, MVT::v8i64, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000372
373 { ISD::SRA, MVT::v2i64, 1 },
374 { ISD::SRA, MVT::v4i64, 1 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000375 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000376
Simon Pilgrimd8333372017-01-06 11:12:53 +0000377 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
378 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
379 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
380 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
381
382 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
383 { ISD::SDIV, MVT::v16i32, 16*20 },
384 { ISD::SDIV, MVT::v8i64, 8*20 },
385 { ISD::UDIV, MVT::v16i32, 16*20 },
386 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000387 };
388
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000389 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000390 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
391 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000392
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000393 static const CostTblEntry AVX2ShiftCostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000394 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
395 // customize them to detect the cases where shift amount is a scalar one.
396 { ISD::SHL, MVT::v4i32, 1 },
397 { ISD::SRL, MVT::v4i32, 1 },
398 { ISD::SRA, MVT::v4i32, 1 },
399 { ISD::SHL, MVT::v8i32, 1 },
400 { ISD::SRL, MVT::v8i32, 1 },
401 { ISD::SRA, MVT::v8i32, 1 },
402 { ISD::SHL, MVT::v2i64, 1 },
403 { ISD::SRL, MVT::v2i64, 1 },
404 { ISD::SHL, MVT::v4i64, 1 },
405 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000406 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000407
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000408 // Look for AVX2 lowering tricks.
409 if (ST->hasAVX2()) {
410 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
411 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
412 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
413 // On AVX2, a packed v16i16 shift left by a constant build_vector
414 // is lowered into a vector multiply (vpmullw).
415 return LT.first;
416
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000417 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000418 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000419 }
420
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000421 static const CostTblEntry XOPShiftCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000422 // 128bit shifts take 1cy, but right shifts require negation beforehand.
423 { ISD::SHL, MVT::v16i8, 1 },
424 { ISD::SRL, MVT::v16i8, 2 },
425 { ISD::SRA, MVT::v16i8, 2 },
426 { ISD::SHL, MVT::v8i16, 1 },
427 { ISD::SRL, MVT::v8i16, 2 },
428 { ISD::SRA, MVT::v8i16, 2 },
429 { ISD::SHL, MVT::v4i32, 1 },
430 { ISD::SRL, MVT::v4i32, 2 },
431 { ISD::SRA, MVT::v4i32, 2 },
432 { ISD::SHL, MVT::v2i64, 1 },
433 { ISD::SRL, MVT::v2i64, 2 },
434 { ISD::SRA, MVT::v2i64, 2 },
435 // 256bit shifts require splitting if AVX2 didn't catch them above.
Simon Pilgrim4599eaa2017-05-14 13:38:53 +0000436 { ISD::SHL, MVT::v32i8, 2+2 },
437 { ISD::SRL, MVT::v32i8, 4+2 },
438 { ISD::SRA, MVT::v32i8, 4+2 },
439 { ISD::SHL, MVT::v16i16, 2+2 },
440 { ISD::SRL, MVT::v16i16, 4+2 },
441 { ISD::SRA, MVT::v16i16, 4+2 },
442 { ISD::SHL, MVT::v8i32, 2+2 },
443 { ISD::SRL, MVT::v8i32, 4+2 },
444 { ISD::SRA, MVT::v8i32, 4+2 },
445 { ISD::SHL, MVT::v4i64, 2+2 },
446 { ISD::SRL, MVT::v4i64, 4+2 },
447 { ISD::SRA, MVT::v4i64, 4+2 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000448 };
449
450 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000451 if (ST->hasXOP())
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000452 if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000453 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000454
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000455 static const CostTblEntry SSE2UniformShiftCostTable[] = {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000456 // Uniform splats are cheaper for the following instructions.
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000457 { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split.
458 { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split.
459 { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000460
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000461 { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split.
462 { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split.
463 { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000464
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000465 { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split.
466 { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split.
467 { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle.
468 { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000469 };
470
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000471 if (ST->hasSSE2() &&
472 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
473 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Simon Pilgrimf96b4ab2017-05-14 20:25:42 +0000474
475 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
476 if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
477 return LT.first * 4; // 2*psrad + shuffle.
478
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000479 if (const auto *Entry =
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000480 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000481 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000482 }
483
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000484 if (ISD == ISD::SHL &&
485 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000486 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000487 // Vector shift left by non uniform constant can be lowered
Simon Pilgrime70644d2017-01-07 21:33:00 +0000488 // into vector multiply.
489 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
490 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000491 ISD = ISD::MUL;
492 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000493
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000494 static const CostTblEntry AVX2CostTable[] = {
495 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
496 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
497
498 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
499 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
500
501 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
502 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
503 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
504 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
505
506 { ISD::SUB, MVT::v32i8, 1 }, // psubb
507 { ISD::ADD, MVT::v32i8, 1 }, // paddb
508 { ISD::SUB, MVT::v16i16, 1 }, // psubw
509 { ISD::ADD, MVT::v16i16, 1 }, // paddw
510 { ISD::SUB, MVT::v8i32, 1 }, // psubd
511 { ISD::ADD, MVT::v8i32, 1 }, // paddd
512 { ISD::SUB, MVT::v4i64, 1 }, // psubq
513 { ISD::ADD, MVT::v4i64, 1 }, // paddq
514
515 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
516 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
517 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
518 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
519 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
520
521 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
522 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
523 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
524 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
525 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
526 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
527 };
528
529 // Look for AVX2 lowering tricks for custom cases.
530 if (ST->hasAVX2())
531 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
532 return LT.first * Entry->Cost;
533
Simon Pilgrim100eae12017-01-07 17:03:51 +0000534 static const CostTblEntry AVX1CostTable[] = {
535 // We don't have to scalarize unsupported ops. We can issue two half-sized
536 // operations and we only need to extract the upper YMM half.
537 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000538 { ISD::MUL, MVT::v16i16, 4 },
539 { ISD::MUL, MVT::v8i32, 4 },
540 { ISD::SUB, MVT::v32i8, 4 },
541 { ISD::ADD, MVT::v32i8, 4 },
542 { ISD::SUB, MVT::v16i16, 4 },
543 { ISD::ADD, MVT::v16i16, 4 },
544 { ISD::SUB, MVT::v8i32, 4 },
545 { ISD::ADD, MVT::v8i32, 4 },
546 { ISD::SUB, MVT::v4i64, 4 },
547 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000548
549 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
550 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
551 // Because we believe v4i64 to be a legal type, we must also include the
552 // extract+insert in the cost table. Therefore, the cost here is 18
553 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000554 { ISD::MUL, MVT::v4i64, 18 },
555
556 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
557
558 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
559 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
560 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
561 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
562 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
563 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
564
565 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
566 { ISD::SDIV, MVT::v32i8, 32*20 },
567 { ISD::SDIV, MVT::v16i16, 16*20 },
568 { ISD::SDIV, MVT::v8i32, 8*20 },
569 { ISD::SDIV, MVT::v4i64, 4*20 },
570 { ISD::UDIV, MVT::v32i8, 32*20 },
571 { ISD::UDIV, MVT::v16i16, 16*20 },
572 { ISD::UDIV, MVT::v8i32, 8*20 },
573 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000574 };
575
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000576 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000577 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
578 return LT.first * Entry->Cost;
579
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000580 static const CostTblEntry SSE42CostTable[] = {
581 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
582 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
583 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
584 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
585 };
586
587 if (ST->hasSSE42())
588 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
589 return LT.first * Entry->Cost;
590
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000591 static const CostTblEntry SSE41CostTable[] = {
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000592 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
593 { ISD::SHL, MVT::v32i8, 2*11+2 }, // pblendvb sequence + split.
594 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
595 { ISD::SHL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
596 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
597 { ISD::SHL, MVT::v8i32, 2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000598
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000599 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
600 { ISD::SRL, MVT::v32i8, 2*12+2 }, // pblendvb sequence + split.
601 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
602 { ISD::SRL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
603 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
604 { ISD::SRL, MVT::v8i32, 2*11+2 }, // Shift each lane + blend + split.
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000605
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000606 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
607 { ISD::SRA, MVT::v32i8, 2*24+2 }, // pblendvb sequence + split.
608 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
609 { ISD::SRA, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
610 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
611 { ISD::SRA, MVT::v8i32, 2*12+2 }, // Shift each lane + blend + split.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000612
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000613 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000614 };
615
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000616 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000617 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
618 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000619
Craig Topper4b275762015-10-28 04:02:12 +0000620 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000621 // We don't correctly identify costs of casts because they are marked as
622 // custom.
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000623 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
624 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
625 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
626 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
627 { ISD::SHL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000628
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000629 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
630 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
631 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
632 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
633 { ISD::SRL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000634
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000635 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
636 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
637 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
638 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
639 { ISD::SRA, MVT::v4i64, 2*12+2 }, // srl/xor/sub sequence+split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000640
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000641 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
642 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
643 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
644 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000645
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000646 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
647 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
648 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
649 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
Alexey Bataevd07c7312016-10-31 12:10:53 +0000650
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000651 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000652 // in the process we will often end up having to spilling regular
653 // registers. The overhead of division is going to dominate most kernels
654 // anyways so try hard to prevent vectorization of division - it is
655 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
656 // to hide "20 cycles" for each lane.
657 { ISD::SDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000658 { ISD::SDIV, MVT::v8i16, 8*20 },
659 { ISD::SDIV, MVT::v4i32, 4*20 },
660 { ISD::SDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000661 { ISD::UDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000662 { ISD::UDIV, MVT::v8i16, 8*20 },
663 { ISD::UDIV, MVT::v4i32, 4*20 },
664 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000665 };
666
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000667 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000668 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
669 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000670
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000671 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000672 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
673 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
674 };
675
676 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000677 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000678 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000679
Chandler Carruth664e3542013-01-07 01:37:14 +0000680 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000681 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000682}
683
Chandler Carruth93205eb2015-08-05 18:08:10 +0000684int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
685 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000686 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
687 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
688 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000689
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000690 // For Broadcasts we are splatting the first element from the first input
691 // register, so only need to reference that input and all the output
692 // registers are the same.
693 if (Kind == TTI::SK_Broadcast)
694 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000695
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000696 // We are going to permute multiple sources and the result will be in multiple
697 // destinations. Providing an accurate cost only for splits where the element
698 // type remains the same.
699 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
700 MVT LegalVT = LT.second;
701 if (LegalVT.getVectorElementType().getSizeInBits() ==
702 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
703 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000704
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000705 unsigned VecTySize = DL.getTypeStoreSize(Tp);
706 unsigned LegalVTSize = LegalVT.getStoreSize();
707 // Number of source vectors after legalization:
708 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
709 // Number of destination vectors after legalization:
710 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000711
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000712 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
713 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000714
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000715 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
716 return NumOfShuffles *
717 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
718 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000719
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000720 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
721 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000722
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000723 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
724 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000725 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000726 int NumOfDests = LT.first;
727 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000728 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000729 }
730
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000731 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
732 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
733 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
734
735 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
736 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
737
738 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
739 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
740 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
741 };
742
743 if (ST->hasVBMI())
744 if (const auto *Entry =
745 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
746 return LT.first * Entry->Cost;
747
748 static const CostTblEntry AVX512BWShuffleTbl[] = {
749 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
750 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
751
752 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
753 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000754 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000755
756 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
757 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
758 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
759 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
760 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
761
762 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
763 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
764 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
765 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
766 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
767 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
768 };
769
770 if (ST->hasBWI())
771 if (const auto *Entry =
772 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
773 return LT.first * Entry->Cost;
774
775 static const CostTblEntry AVX512ShuffleTbl[] = {
776 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
777 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
778 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
779 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
780
781 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
782 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
783 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
784 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
785
786 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
787 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
788 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
789 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
790 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
791 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
792 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
793 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
794 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
795 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
796 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
797 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
798 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
799
800 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
801 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
802 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
803 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
804 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
805 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
806 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
807 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
808 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
809 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
810 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
811 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
812 };
813
814 if (ST->hasAVX512())
815 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
816 return LT.first * Entry->Cost;
817
818 static const CostTblEntry AVX2ShuffleTbl[] = {
819 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
820 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
821 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
822 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
823 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
824 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
825
826 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
827 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
828 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
829 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
830 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
831 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
832
833 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000834 { TTI::SK_Alternate, MVT::v32i8, 1 }, // vpblendvb
835
836 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
837 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
838 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 4 }, // vperm2i128 + 2 * vpshufb
839 // + vpblendvb
840 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 4 } // vperm2i128 + 2 * vpshufb
841 // + vpblendvb
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000842 };
843
844 if (ST->hasAVX2())
845 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
846 return LT.first * Entry->Cost;
847
848 static const CostTblEntry AVX1ShuffleTbl[] = {
849 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
850 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
851 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
852 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
853 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
854 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
855
856 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
857 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
858 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
859 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
860 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
861 // + vinsertf128
862 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
863 // + vinsertf128
864
865 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
866 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
867 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
868 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
869 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
870 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
871 };
872
873 if (ST->hasAVX())
874 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
875 return LT.first * Entry->Cost;
876
877 static const CostTblEntry SSE41ShuffleTbl[] = {
878 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
879 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
880 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
881 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
882 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
883 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
884 };
885
886 if (ST->hasSSE41())
887 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
888 return LT.first * Entry->Cost;
889
890 static const CostTblEntry SSSE3ShuffleTbl[] = {
891 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
892 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
893
894 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
895 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
896
897 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000898 { TTI::SK_Alternate, MVT::v16i8, 3 }, // pshufb + pshufb + por
899
900 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // pshufb
901 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 } // pshufb
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000902 };
903
904 if (ST->hasSSSE3())
905 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
906 return LT.first * Entry->Cost;
907
908 static const CostTblEntry SSE2ShuffleTbl[] = {
909 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
910 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
911 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
912 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
913 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
914
915 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
916 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
917 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
918 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
919 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
920 // + 2*pshufd + 2*unpck + packus
921
922 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
923 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
924 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
925 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000926 { TTI::SK_Alternate, MVT::v16i8, 3 }, // pand + pandn + por
927
928 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // pshufd
929 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 } // pshufd
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000930 };
931
932 if (ST->hasSSE2())
933 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
934 return LT.first * Entry->Cost;
935
936 static const CostTblEntry SSE1ShuffleTbl[] = {
937 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
938 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
939 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
940 };
941
942 if (ST->hasSSE1())
943 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
944 return LT.first * Entry->Cost;
945
Chandler Carruth705b1852015-01-31 03:43:40 +0000946 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000947}
948
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000949int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
950 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000951 int ISD = TLI->InstructionOpcodeToISD(Opcode);
952 assert(ISD && "Invalid opcode");
953
Cong Hou59898d82015-12-11 00:31:39 +0000954 // FIXME: Need a better design of the cost table to handle non-simple types of
955 // potential massive combinations (elem_num x src_type x dst_type).
956
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000957 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000958 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
959 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000960 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
961 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000962 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
963 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
964
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000965 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000966 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000967 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000968 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000969 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000970 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000971
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000972 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000973 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000974 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000975 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000976 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000977 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
978
979 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
980 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
981 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
982 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
983 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
984 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000985 };
986
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000987 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
988 // 256-bit wide vectors.
989
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000990 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000991 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
992 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
993 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000994
995 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
996 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
997 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
998 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000999
1000 // v16i1 -> v16i32 - load + broadcast
1001 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
1002 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001003 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1004 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1005 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1006 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001007 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1008 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001009 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1010 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001011
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001012 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001013 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001014 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001015 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001016 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001017 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
1018 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001019 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001020 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
1021 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001022
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001023 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001024 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001025 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001026 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
1027 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
1028 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
1029 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001030 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001031 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
1032 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1033 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1034 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001035 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001036 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001037 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1038 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1039 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1040 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1041 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001042 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001043 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1044 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
1045 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
1046
1047 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1048 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1049 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
1050 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001051 };
1052
Craig Topper4b275762015-10-28 04:02:12 +00001053 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001054 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1055 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001056 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1057 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001058 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
1059 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001060 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1061 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1062 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1063 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001064 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1065 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001066 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1067 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001068 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1069 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1070
1071 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
1072 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
1073 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
1074 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
1075 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1076 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001077
1078 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1079 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +00001080
1081 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001082 };
1083
Craig Topper4b275762015-10-28 04:02:12 +00001084 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001085 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1086 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001087 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1088 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001089 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
1090 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001091 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1092 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1093 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1094 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001095 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1096 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001097 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1098 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001099 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1100 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1101
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001102 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1103 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1104 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001105 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1106 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1107 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001108 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001109
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001110 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001111 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001112 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1113 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001114 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001115 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1116 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001117 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001118 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1119 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001120 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001121 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001122
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001123 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001124 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001125 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1126 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001127 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001128 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1129 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001130 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001131 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001132 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001133 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001134 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001135 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001136 // The generic code to compute the scalar overhead is currently broken.
1137 // Workaround this limitation by estimating the scalarization overhead
1138 // here. We have roughly 10 instructions per scalar element.
1139 // Multiply that by the vector width.
1140 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001141 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1142 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1143 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1144 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001145
Renato Goline1fb0592013-01-20 20:57:20 +00001146 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001147 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001148 // This node is expanded into scalarized operations but BasicTTI is overly
1149 // optimistic estimating its cost. It computes 3 per element (one
1150 // vector-extract, one scalar conversion and one vector-insert). The
1151 // problem is that the inserts form a read-modify-write chain so latency
1152 // should be factored in too. Inflating the cost per element by 1.
1153 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001154 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001155
1156 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1157 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001158 };
1159
Cong Hou59898d82015-12-11 00:31:39 +00001160 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001161 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1162 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001163 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1164 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1165 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1166 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001167
Cong Hou59898d82015-12-11 00:31:39 +00001168 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1169 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001170 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1171 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1172 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1173 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1174 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1175 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1176 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1177 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1178 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1179 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1180 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1181 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1182 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1183 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1184 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1185 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001186
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001187 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1188 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1189 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001190 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001191 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001192 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001193 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1194
Cong Hou59898d82015-12-11 00:31:39 +00001195 };
1196
1197 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001198 // These are somewhat magic numbers justified by looking at the output of
1199 // Intel's IACA, running some kernels and making sure when we take
1200 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001201 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001202 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1203 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1204 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001205 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001206 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1207 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1208 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001209
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001210 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1211 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1212 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1213 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1214 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1215 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1216 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1217 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001218
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001219 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1220
Cong Hou59898d82015-12-11 00:31:39 +00001221 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1222 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001223 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1224 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1225 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1226 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1227 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1228 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1229 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1230 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1231 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1232 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1233 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1234 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1235 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1236 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1237 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1238 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1239 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1240 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1241 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001242 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001243 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1244 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001245
Cong Hou59898d82015-12-11 00:31:39 +00001246 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001247 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1248 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1249 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1250 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1251 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1252 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1253 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1254 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001255 };
1256
Chandler Carruth93205eb2015-08-05 18:08:10 +00001257 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1258 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001259
1260 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001261 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001262 LTDest.second, LTSrc.second))
1263 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001264 }
1265
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001266 EVT SrcTy = TLI->getValueType(DL, Src);
1267 EVT DstTy = TLI->getValueType(DL, Dst);
1268
1269 // The function getSimpleVT only handles simple value types.
1270 if (!SrcTy.isSimple() || !DstTy.isSimple())
1271 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1272
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001273 if (ST->hasDQI())
1274 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1275 DstTy.getSimpleVT(),
1276 SrcTy.getSimpleVT()))
1277 return Entry->Cost;
1278
1279 if (ST->hasAVX512())
1280 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1281 DstTy.getSimpleVT(),
1282 SrcTy.getSimpleVT()))
1283 return Entry->Cost;
1284
Tim Northoverf0e21612014-02-06 18:18:36 +00001285 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001286 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1287 DstTy.getSimpleVT(),
1288 SrcTy.getSimpleVT()))
1289 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001290 }
1291
Chandler Carruth664e3542013-01-07 01:37:14 +00001292 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001293 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1294 DstTy.getSimpleVT(),
1295 SrcTy.getSimpleVT()))
1296 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001297 }
1298
Cong Hou59898d82015-12-11 00:31:39 +00001299 if (ST->hasSSE41()) {
1300 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1301 DstTy.getSimpleVT(),
1302 SrcTy.getSimpleVT()))
1303 return Entry->Cost;
1304 }
1305
1306 if (ST->hasSSE2()) {
1307 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1308 DstTy.getSimpleVT(),
1309 SrcTy.getSimpleVT()))
1310 return Entry->Cost;
1311 }
1312
Chandler Carruth705b1852015-01-31 03:43:40 +00001313 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001314}
1315
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001316int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1317 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001318 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001319 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001320
1321 MVT MTy = LT.second;
1322
1323 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1324 assert(ISD && "Invalid opcode");
1325
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001326 static const CostTblEntry SSE2CostTbl[] = {
1327 { ISD::SETCC, MVT::v2i64, 8 },
1328 { ISD::SETCC, MVT::v4i32, 1 },
1329 { ISD::SETCC, MVT::v8i16, 1 },
1330 { ISD::SETCC, MVT::v16i8, 1 },
1331 };
1332
Craig Topper4b275762015-10-28 04:02:12 +00001333 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001334 { ISD::SETCC, MVT::v2f64, 1 },
1335 { ISD::SETCC, MVT::v4f32, 1 },
1336 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001337 };
1338
Craig Topper4b275762015-10-28 04:02:12 +00001339 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001340 { ISD::SETCC, MVT::v4f64, 1 },
1341 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001342 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001343 { ISD::SETCC, MVT::v4i64, 4 },
1344 { ISD::SETCC, MVT::v8i32, 4 },
1345 { ISD::SETCC, MVT::v16i16, 4 },
1346 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001347 };
1348
Craig Topper4b275762015-10-28 04:02:12 +00001349 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001350 { ISD::SETCC, MVT::v4i64, 1 },
1351 { ISD::SETCC, MVT::v8i32, 1 },
1352 { ISD::SETCC, MVT::v16i16, 1 },
1353 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001354 };
1355
Craig Topper4b275762015-10-28 04:02:12 +00001356 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001357 { ISD::SETCC, MVT::v8i64, 1 },
1358 { ISD::SETCC, MVT::v16i32, 1 },
1359 { ISD::SETCC, MVT::v8f64, 1 },
1360 { ISD::SETCC, MVT::v16f32, 1 },
1361 };
1362
Craig Topperee0c8592015-10-27 04:14:24 +00001363 if (ST->hasAVX512())
1364 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1365 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001366
Craig Topperee0c8592015-10-27 04:14:24 +00001367 if (ST->hasAVX2())
1368 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1369 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001370
Craig Topperee0c8592015-10-27 04:14:24 +00001371 if (ST->hasAVX())
1372 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1373 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001374
Craig Topperee0c8592015-10-27 04:14:24 +00001375 if (ST->hasSSE42())
1376 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1377 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001378
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001379 if (ST->hasSSE2())
1380 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1381 return LT.first * Entry->Cost;
1382
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001383 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
Chandler Carruth664e3542013-01-07 01:37:14 +00001384}
1385
Simon Pilgrim14000b32016-05-24 08:17:50 +00001386int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001387 ArrayRef<Type *> Tys, FastMathFlags FMF,
1388 unsigned ScalarizationCostPassed) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001389 // Costs should match the codegen from:
1390 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1391 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001392 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001393 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001394 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001395 static const CostTblEntry AVX512CDCostTbl[] = {
1396 { ISD::CTLZ, MVT::v8i64, 1 },
1397 { ISD::CTLZ, MVT::v16i32, 1 },
1398 { ISD::CTLZ, MVT::v32i16, 8 },
1399 { ISD::CTLZ, MVT::v64i8, 20 },
1400 { ISD::CTLZ, MVT::v4i64, 1 },
1401 { ISD::CTLZ, MVT::v8i32, 1 },
1402 { ISD::CTLZ, MVT::v16i16, 4 },
1403 { ISD::CTLZ, MVT::v32i8, 10 },
1404 { ISD::CTLZ, MVT::v2i64, 1 },
1405 { ISD::CTLZ, MVT::v4i32, 1 },
1406 { ISD::CTLZ, MVT::v8i16, 4 },
1407 { ISD::CTLZ, MVT::v16i8, 4 },
1408 };
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001409 static const CostTblEntry AVX512BWCostTbl[] = {
1410 { ISD::BITREVERSE, MVT::v8i64, 5 },
1411 { ISD::BITREVERSE, MVT::v16i32, 5 },
1412 { ISD::BITREVERSE, MVT::v32i16, 5 },
1413 { ISD::BITREVERSE, MVT::v64i8, 5 },
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001414 { ISD::CTLZ, MVT::v8i64, 23 },
1415 { ISD::CTLZ, MVT::v16i32, 22 },
1416 { ISD::CTLZ, MVT::v32i16, 18 },
1417 { ISD::CTLZ, MVT::v64i8, 17 },
Simon Pilgrim6bba6062017-05-18 10:42:34 +00001418 { ISD::CTPOP, MVT::v8i64, 7 },
1419 { ISD::CTPOP, MVT::v16i32, 11 },
1420 { ISD::CTPOP, MVT::v32i16, 9 },
1421 { ISD::CTPOP, MVT::v64i8, 6 },
Simon Pilgrimd0365962017-05-17 20:22:54 +00001422 { ISD::CTTZ, MVT::v8i64, 10 },
1423 { ISD::CTTZ, MVT::v16i32, 14 },
1424 { ISD::CTTZ, MVT::v32i16, 12 },
1425 { ISD::CTTZ, MVT::v64i8, 9 },
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001426 };
1427 static const CostTblEntry AVX512CostTbl[] = {
1428 { ISD::BITREVERSE, MVT::v8i64, 36 },
1429 { ISD::BITREVERSE, MVT::v16i32, 24 },
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001430 { ISD::CTLZ, MVT::v8i64, 29 },
1431 { ISD::CTLZ, MVT::v16i32, 35 },
Simon Pilgrim6bba6062017-05-18 10:42:34 +00001432 { ISD::CTPOP, MVT::v8i64, 16 },
1433 { ISD::CTPOP, MVT::v16i32, 24 },
Simon Pilgrimd0365962017-05-17 20:22:54 +00001434 { ISD::CTTZ, MVT::v8i64, 20 },
1435 { ISD::CTTZ, MVT::v16i32, 28 },
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001436 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001437 static const CostTblEntry XOPCostTbl[] = {
1438 { ISD::BITREVERSE, MVT::v4i64, 4 },
1439 { ISD::BITREVERSE, MVT::v8i32, 4 },
1440 { ISD::BITREVERSE, MVT::v16i16, 4 },
1441 { ISD::BITREVERSE, MVT::v32i8, 4 },
1442 { ISD::BITREVERSE, MVT::v2i64, 1 },
1443 { ISD::BITREVERSE, MVT::v4i32, 1 },
1444 { ISD::BITREVERSE, MVT::v8i16, 1 },
1445 { ISD::BITREVERSE, MVT::v16i8, 1 },
1446 { ISD::BITREVERSE, MVT::i64, 3 },
1447 { ISD::BITREVERSE, MVT::i32, 3 },
1448 { ISD::BITREVERSE, MVT::i16, 3 },
1449 { ISD::BITREVERSE, MVT::i8, 3 }
1450 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001451 static const CostTblEntry AVX2CostTbl[] = {
1452 { ISD::BITREVERSE, MVT::v4i64, 5 },
1453 { ISD::BITREVERSE, MVT::v8i32, 5 },
1454 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001455 { ISD::BITREVERSE, MVT::v32i8, 5 },
1456 { ISD::BSWAP, MVT::v4i64, 1 },
1457 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001458 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001459 { ISD::CTLZ, MVT::v4i64, 23 },
1460 { ISD::CTLZ, MVT::v8i32, 18 },
1461 { ISD::CTLZ, MVT::v16i16, 14 },
1462 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001463 { ISD::CTPOP, MVT::v4i64, 7 },
1464 { ISD::CTPOP, MVT::v8i32, 11 },
1465 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001466 { ISD::CTPOP, MVT::v32i8, 6 },
1467 { ISD::CTTZ, MVT::v4i64, 10 },
1468 { ISD::CTTZ, MVT::v8i32, 14 },
1469 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001470 { ISD::CTTZ, MVT::v32i8, 9 },
1471 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1472 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1473 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1474 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1475 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1476 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001477 };
1478 static const CostTblEntry AVX1CostTbl[] = {
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001479 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert
1480 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert
1481 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
1482 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert
Simon Pilgrim356e8232016-06-20 23:08:21 +00001483 { ISD::BSWAP, MVT::v4i64, 4 },
1484 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001485 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001486 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert
1487 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert
1488 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
1489 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
1490 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert
1491 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert
1492 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
1493 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert
1494 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert
1495 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert
1496 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
1497 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
Alexey Bataevd07c7312016-10-31 12:10:53 +00001498 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1499 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1500 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1501 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1502 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1503 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1504 };
1505 static const CostTblEntry SSE42CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001506 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1507 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001508 };
1509 static const CostTblEntry SSSE3CostTbl[] = {
1510 { ISD::BITREVERSE, MVT::v2i64, 5 },
1511 { ISD::BITREVERSE, MVT::v4i32, 5 },
1512 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001513 { ISD::BITREVERSE, MVT::v16i8, 5 },
1514 { ISD::BSWAP, MVT::v2i64, 1 },
1515 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001516 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001517 { ISD::CTLZ, MVT::v2i64, 23 },
1518 { ISD::CTLZ, MVT::v4i32, 18 },
1519 { ISD::CTLZ, MVT::v8i16, 14 },
1520 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001521 { ISD::CTPOP, MVT::v2i64, 7 },
1522 { ISD::CTPOP, MVT::v4i32, 11 },
1523 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001524 { ISD::CTPOP, MVT::v16i8, 6 },
1525 { ISD::CTTZ, MVT::v2i64, 10 },
1526 { ISD::CTTZ, MVT::v4i32, 14 },
1527 { ISD::CTTZ, MVT::v8i16, 12 },
1528 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001529 };
1530 static const CostTblEntry SSE2CostTbl[] = {
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001531 { ISD::BITREVERSE, MVT::v2i64, 29 },
1532 { ISD::BITREVERSE, MVT::v4i32, 27 },
1533 { ISD::BITREVERSE, MVT::v8i16, 27 },
1534 { ISD::BITREVERSE, MVT::v16i8, 20 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001535 { ISD::BSWAP, MVT::v2i64, 7 },
1536 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001537 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001538 { ISD::CTLZ, MVT::v2i64, 25 },
1539 { ISD::CTLZ, MVT::v4i32, 26 },
1540 { ISD::CTLZ, MVT::v8i16, 20 },
1541 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001542 { ISD::CTPOP, MVT::v2i64, 12 },
1543 { ISD::CTPOP, MVT::v4i32, 15 },
1544 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001545 { ISD::CTPOP, MVT::v16i8, 10 },
1546 { ISD::CTTZ, MVT::v2i64, 14 },
1547 { ISD::CTTZ, MVT::v4i32, 18 },
1548 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001549 { ISD::CTTZ, MVT::v16i8, 13 },
1550 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1551 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1552 };
1553 static const CostTblEntry SSE1CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001554 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1555 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001556 };
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001557 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1558 { ISD::BITREVERSE, MVT::i64, 14 }
1559 };
1560 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1561 { ISD::BITREVERSE, MVT::i32, 14 },
1562 { ISD::BITREVERSE, MVT::i16, 14 },
1563 { ISD::BITREVERSE, MVT::i8, 11 }
1564 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001565
1566 unsigned ISD = ISD::DELETED_NODE;
1567 switch (IID) {
1568 default:
1569 break;
1570 case Intrinsic::bitreverse:
1571 ISD = ISD::BITREVERSE;
1572 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001573 case Intrinsic::bswap:
1574 ISD = ISD::BSWAP;
1575 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001576 case Intrinsic::ctlz:
1577 ISD = ISD::CTLZ;
1578 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001579 case Intrinsic::ctpop:
1580 ISD = ISD::CTPOP;
1581 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001582 case Intrinsic::cttz:
1583 ISD = ISD::CTTZ;
1584 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001585 case Intrinsic::sqrt:
1586 ISD = ISD::FSQRT;
1587 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001588 }
1589
1590 // Legalize the type.
1591 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1592 MVT MTy = LT.second;
1593
1594 // Attempt to lookup cost.
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001595 if (ST->hasCDI())
1596 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
1597 return LT.first * Entry->Cost;
1598
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001599 if (ST->hasBWI())
1600 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1601 return LT.first * Entry->Cost;
1602
1603 if (ST->hasAVX512())
1604 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1605 return LT.first * Entry->Cost;
1606
Simon Pilgrim14000b32016-05-24 08:17:50 +00001607 if (ST->hasXOP())
1608 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1609 return LT.first * Entry->Cost;
1610
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001611 if (ST->hasAVX2())
1612 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1613 return LT.first * Entry->Cost;
1614
1615 if (ST->hasAVX())
1616 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1617 return LT.first * Entry->Cost;
1618
Alexey Bataevd07c7312016-10-31 12:10:53 +00001619 if (ST->hasSSE42())
1620 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1621 return LT.first * Entry->Cost;
1622
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001623 if (ST->hasSSSE3())
1624 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1625 return LT.first * Entry->Cost;
1626
Simon Pilgrim356e8232016-06-20 23:08:21 +00001627 if (ST->hasSSE2())
1628 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1629 return LT.first * Entry->Cost;
1630
Alexey Bataevd07c7312016-10-31 12:10:53 +00001631 if (ST->hasSSE1())
1632 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1633 return LT.first * Entry->Cost;
1634
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001635 if (ST->is64Bit())
1636 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
1637 return LT.first * Entry->Cost;
1638
1639 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
1640 return LT.first * Entry->Cost;
1641
Jonas Paulssona48ea232017-03-14 06:35:36 +00001642 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001643}
1644
1645int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001646 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
1647 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001648}
1649
Chandler Carruth93205eb2015-08-05 18:08:10 +00001650int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001651 assert(Val->isVectorTy() && "This must be a vector type");
1652
Sanjay Patelaedc3472016-05-25 17:27:54 +00001653 Type *ScalarType = Val->getScalarType();
1654
Chandler Carruth664e3542013-01-07 01:37:14 +00001655 if (Index != -1U) {
1656 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001657 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001658
1659 // This type is legalized to a scalar type.
1660 if (!LT.second.isVector())
1661 return 0;
1662
1663 // The type may be split. Normalize the index to the new type.
1664 unsigned Width = LT.second.getVectorNumElements();
1665 Index = Index % Width;
1666
1667 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001668 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001669 return 0;
1670 }
1671
Sanjay Patelaedc3472016-05-25 17:27:54 +00001672 // Add to the base cost if we know that the extracted element of a vector is
1673 // destined to be moved to and used in the integer register file.
1674 int RegisterFileMoveCost = 0;
1675 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1676 RegisterFileMoveCost = 1;
1677
1678 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001679}
1680
Chandler Carruth93205eb2015-08-05 18:08:10 +00001681int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001682 unsigned AddressSpace, const Instruction *I) {
Alp Tokerf907b892013-12-05 05:44:44 +00001683 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001684 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1685 unsigned NumElem = VTy->getVectorNumElements();
1686
1687 // Handle a few common cases:
1688 // <3 x float>
1689 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1690 // Cost = 64 bit store + extract + 32 bit store.
1691 return 3;
1692
1693 // <3 x double>
1694 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1695 // Cost = 128 bit store + unpack + 64 bit store.
1696 return 3;
1697
Alp Tokerf907b892013-12-05 05:44:44 +00001698 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001699 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001700 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1701 AddressSpace);
1702 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1703 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001704 return NumElem * Cost + SplitCost;
1705 }
1706 }
1707
Chandler Carruth664e3542013-01-07 01:37:14 +00001708 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001709 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001710 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1711 "Invalid Opcode");
1712
1713 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001714 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001715
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001716 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1717 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1718 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1719 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001720
1721 return Cost;
1722}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001723
Chandler Carruth93205eb2015-08-05 18:08:10 +00001724int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1725 unsigned Alignment,
1726 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001727 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1728 if (!SrcVTy)
1729 // To calculate scalar take the regular cost, without mask
1730 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1731
1732 unsigned NumElem = SrcVTy->getVectorNumElements();
1733 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001734 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001735 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1736 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001737 !isPowerOf2_32(NumElem)) {
1738 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001739 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1740 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001741 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001742 int BranchCost = getCFInstrCost(Instruction::Br);
1743 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001744
Chandler Carruth93205eb2015-08-05 18:08:10 +00001745 int ValueSplitCost = getScalarizationOverhead(
1746 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1747 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001748 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1749 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001750 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1751 }
1752
1753 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001754 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001755 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001756 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001757 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001758 LT.second.getVectorNumElements() == NumElem)
1759 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001760 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1761 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001762
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001763 else if (LT.second.getVectorNumElements() > NumElem) {
1764 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1765 LT.second.getVectorNumElements());
1766 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001767 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001768 }
1769 if (!ST->hasAVX512())
1770 return Cost + LT.first*4; // Each maskmov costs 4
1771
1772 // AVX-512 masked load/store is cheapper
1773 return Cost+LT.first;
1774}
1775
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001776int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1777 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001778 // Address computations in vectorized code with non-consecutive addresses will
1779 // likely result in more instructions compared to scalar code where the
1780 // computation can more often be merged into the index mode. The resulting
1781 // extra micro-ops can significantly decrease throughput.
1782 unsigned NumVectorInstToHideOverhead = 10;
1783
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001784 // Cost modeling of Strided Access Computation is hidden by the indexing
1785 // modes of X86 regardless of the stride value. We dont believe that there
1786 // is a difference between constant strided access in gerenal and constant
1787 // strided value which is less than or equal to 64.
1788 // Even in the case of (loop invariant) stride whose value is not known at
1789 // compile time, the address computation will not incur more than one extra
1790 // ADD instruction.
1791 if (Ty->isVectorTy() && SE) {
1792 if (!BaseT::isStridedAccess(Ptr))
1793 return NumVectorInstToHideOverhead;
1794 if (!BaseT::getConstantStrideStep(SE, Ptr))
1795 return 1;
1796 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001797
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001798 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001799}
Yi Jiang5c343de2013-09-19 17:48:48 +00001800
Chandler Carruth93205eb2015-08-05 18:08:10 +00001801int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1802 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001803
Chandler Carruth93205eb2015-08-05 18:08:10 +00001804 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001805
Yi Jiang5c343de2013-09-19 17:48:48 +00001806 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001807
Yi Jiang5c343de2013-09-19 17:48:48 +00001808 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1809 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001810
1811 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1812 // and make it as the cost.
1813
Craig Topper4b275762015-10-28 04:02:12 +00001814 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001815 { ISD::FADD, MVT::v2f64, 2 },
1816 { ISD::FADD, MVT::v4f32, 4 },
1817 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1818 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1819 { ISD::ADD, MVT::v8i16, 5 },
1820 };
Michael Liao5bf95782014-12-04 05:20:33 +00001821
Craig Topper4b275762015-10-28 04:02:12 +00001822 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001823 { ISD::FADD, MVT::v4f32, 4 },
1824 { ISD::FADD, MVT::v4f64, 5 },
1825 { ISD::FADD, MVT::v8f32, 7 },
1826 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1827 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1828 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1829 { ISD::ADD, MVT::v8i16, 5 },
1830 { ISD::ADD, MVT::v8i32, 5 },
1831 };
1832
Craig Topper4b275762015-10-28 04:02:12 +00001833 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001834 { ISD::FADD, MVT::v2f64, 2 },
1835 { ISD::FADD, MVT::v4f32, 4 },
1836 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1837 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1838 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1839 };
Michael Liao5bf95782014-12-04 05:20:33 +00001840
Craig Topper4b275762015-10-28 04:02:12 +00001841 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001842 { ISD::FADD, MVT::v4f32, 3 },
1843 { ISD::FADD, MVT::v4f64, 3 },
1844 { ISD::FADD, MVT::v8f32, 4 },
1845 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1846 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1847 { ISD::ADD, MVT::v4i64, 3 },
1848 { ISD::ADD, MVT::v8i16, 4 },
1849 { ISD::ADD, MVT::v8i32, 5 },
1850 };
Michael Liao5bf95782014-12-04 05:20:33 +00001851
Yi Jiang5c343de2013-09-19 17:48:48 +00001852 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001853 if (ST->hasAVX())
1854 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1855 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001856
Craig Topperee0c8592015-10-27 04:14:24 +00001857 if (ST->hasSSE42())
1858 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1859 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001860 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001861 if (ST->hasAVX())
1862 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1863 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001864
Craig Topperee0c8592015-10-27 04:14:24 +00001865 if (ST->hasSSE42())
1866 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1867 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001868 }
1869
Chandler Carruth705b1852015-01-31 03:43:40 +00001870 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001871}
1872
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001873/// \brief Calculate the cost of materializing a 64-bit value. This helper
1874/// method might only calculate a fraction of a larger immediate. Therefore it
1875/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001876int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001877 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001878 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001879
1880 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001881 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001882
Chandler Carruth705b1852015-01-31 03:43:40 +00001883 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001884}
1885
Chandler Carruth93205eb2015-08-05 18:08:10 +00001886int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001887 assert(Ty->isIntegerTy());
1888
1889 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1890 if (BitSize == 0)
1891 return ~0U;
1892
Juergen Ributzka43176172014-05-19 21:00:53 +00001893 // Never hoist constants larger than 128bit, because this might lead to
1894 // incorrect code generation or assertions in codegen.
1895 // Fixme: Create a cost model for types larger than i128 once the codegen
1896 // issues have been fixed.
1897 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001898 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001899
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001900 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001901 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001902
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001903 // Sign-extend all constants to a multiple of 64-bit.
1904 APInt ImmVal = Imm;
1905 if (BitSize & 0x3f)
1906 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1907
1908 // Split the constant into 64-bit chunks and calculate the cost for each
1909 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001910 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001911 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1912 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1913 int64_t Val = Tmp.getSExtValue();
1914 Cost += getIntImmCost(Val);
1915 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001916 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001917 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001918}
1919
Chandler Carruth93205eb2015-08-05 18:08:10 +00001920int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1921 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001922 assert(Ty->isIntegerTy());
1923
1924 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001925 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1926 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001927 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001928 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001929
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001930 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001931 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001932 default:
1933 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001934 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001935 // Always hoist the base address of a GetElementPtr. This prevents the
1936 // creation of new constants for every base constant that gets constant
1937 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001938 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001939 return 2 * TTI::TCC_Basic;
1940 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001941 case Instruction::Store:
1942 ImmIdx = 0;
1943 break;
Craig Topper074e8452015-12-20 18:41:54 +00001944 case Instruction::ICmp:
1945 // This is an imperfect hack to prevent constant hoisting of
1946 // compares that might be trying to check if a 64-bit value fits in
1947 // 32-bits. The backend can optimize these cases using a right shift by 32.
1948 // Ideally we would check the compare predicate here. There also other
1949 // similar immediates the backend can use shifts for.
1950 if (Idx == 1 && Imm.getBitWidth() == 64) {
1951 uint64_t ImmVal = Imm.getZExtValue();
1952 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1953 return TTI::TCC_Free;
1954 }
1955 ImmIdx = 1;
1956 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001957 case Instruction::And:
1958 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1959 // by using a 32-bit operation with implicit zero extension. Detect such
1960 // immediates here as the normal path expects bit 31 to be sign extended.
1961 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1962 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001963 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001964 case Instruction::Add:
1965 case Instruction::Sub:
1966 case Instruction::Mul:
1967 case Instruction::UDiv:
1968 case Instruction::SDiv:
1969 case Instruction::URem:
1970 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001971 case Instruction::Or:
1972 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001973 ImmIdx = 1;
1974 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001975 // Always return TCC_Free for the shift value of a shift instruction.
1976 case Instruction::Shl:
1977 case Instruction::LShr:
1978 case Instruction::AShr:
1979 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001980 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001981 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001982 case Instruction::Trunc:
1983 case Instruction::ZExt:
1984 case Instruction::SExt:
1985 case Instruction::IntToPtr:
1986 case Instruction::PtrToInt:
1987 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001988 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001989 case Instruction::Call:
1990 case Instruction::Select:
1991 case Instruction::Ret:
1992 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001993 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001994 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001995
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001996 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001997 int NumConstants = (BitSize + 63) / 64;
1998 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001999 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00002000 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00002001 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002002 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002003
Chandler Carruth705b1852015-01-31 03:43:40 +00002004 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002005}
2006
Chandler Carruth93205eb2015-08-05 18:08:10 +00002007int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
2008 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002009 assert(Ty->isIntegerTy());
2010
2011 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00002012 // There is no cost model for constants with a bit size of 0. Return TCC_Free
2013 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002014 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002015 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002016
2017 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00002018 default:
2019 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002020 case Intrinsic::sadd_with_overflow:
2021 case Intrinsic::uadd_with_overflow:
2022 case Intrinsic::ssub_with_overflow:
2023 case Intrinsic::usub_with_overflow:
2024 case Intrinsic::smul_with_overflow:
2025 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002026 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00002027 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002028 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002029 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002030 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00002031 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002032 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002033 case Intrinsic::experimental_patchpoint_void:
2034 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002035 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00002036 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002037 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002038 }
Chandler Carruth705b1852015-01-31 03:43:40 +00002039 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002040}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002041
Elena Demikhovsky54946982015-12-28 20:10:59 +00002042// Return an average cost of Gather / Scatter instruction, maybe improved later
2043int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
2044 unsigned Alignment, unsigned AddressSpace) {
2045
2046 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
2047 unsigned VF = SrcVTy->getVectorNumElements();
2048
2049 // Try to reduce index size from 64 bit (default for GEP)
2050 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
2051 // operation will use 16 x 64 indices which do not fit in a zmm and needs
2052 // to split. Also check that the base pointer is the same for all lanes,
2053 // and that there's at most one variable index.
2054 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
2055 unsigned IndexSize = DL.getPointerSizeInBits();
2056 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2057 if (IndexSize < 64 || !GEP)
2058 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00002059
Elena Demikhovsky54946982015-12-28 20:10:59 +00002060 unsigned NumOfVarIndices = 0;
2061 Value *Ptrs = GEP->getPointerOperand();
2062 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
2063 return IndexSize;
2064 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
2065 if (isa<Constant>(GEP->getOperand(i)))
2066 continue;
2067 Type *IndxTy = GEP->getOperand(i)->getType();
2068 if (IndxTy->isVectorTy())
2069 IndxTy = IndxTy->getVectorElementType();
2070 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
2071 !isa<SExtInst>(GEP->getOperand(i))) ||
2072 ++NumOfVarIndices > 1)
2073 return IndexSize; // 64
2074 }
2075 return (unsigned)32;
2076 };
2077
2078
2079 // Trying to reduce IndexSize to 32 bits for vector 16.
2080 // By default the IndexSize is equal to pointer size.
2081 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
2082 DL.getPointerSizeInBits();
2083
Mehdi Amini867e9142016-04-14 04:36:40 +00002084 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002085 IndexSize), VF);
2086 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
2087 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2088 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
2089 if (SplitFactor > 1) {
2090 // Handle splitting of vector of pointers
2091 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
2092 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
2093 AddressSpace);
2094 }
2095
2096 // The gather / scatter cost is given by Intel architects. It is a rough
2097 // number since we are looking at one instruction in a time.
2098 const int GSOverhead = 2;
2099 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2100 Alignment, AddressSpace);
2101}
2102
2103/// Return the cost of full scalarization of gather / scatter operation.
2104///
2105/// Opcode - Load or Store instruction.
2106/// SrcVTy - The type of the data vector that should be gathered or scattered.
2107/// VariableMask - The mask is non-constant at compile time.
2108/// Alignment - Alignment for one element.
2109/// AddressSpace - pointer[s] address space.
2110///
2111int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
2112 bool VariableMask, unsigned Alignment,
2113 unsigned AddressSpace) {
2114 unsigned VF = SrcVTy->getVectorNumElements();
2115
2116 int MaskUnpackCost = 0;
2117 if (VariableMask) {
2118 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00002119 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002120 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
2121 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00002122 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002123 nullptr);
2124 int BranchCost = getCFInstrCost(Instruction::Br);
2125 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
2126 }
2127
2128 // The cost of the scalar loads/stores.
2129 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2130 Alignment, AddressSpace);
2131
2132 int InsertExtractCost = 0;
2133 if (Opcode == Instruction::Load)
2134 for (unsigned i = 0; i < VF; ++i)
2135 // Add the cost of inserting each scalar load into the vector
2136 InsertExtractCost +=
2137 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
2138 else
2139 for (unsigned i = 0; i < VF; ++i)
2140 // Add the cost of extracting each element out of the data vector
2141 InsertExtractCost +=
2142 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
2143
2144 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
2145}
2146
2147/// Calculate the cost of Gather / Scatter operation
2148int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2149 Value *Ptr, bool VariableMask,
2150 unsigned Alignment) {
2151 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2152 unsigned VF = SrcVTy->getVectorNumElements();
2153 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2154 if (!PtrTy && Ptr->getType()->isVectorTy())
2155 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2156 assert(PtrTy && "Unexpected type for Ptr argument");
2157 unsigned AddressSpace = PtrTy->getAddressSpace();
2158
2159 bool Scalarize = false;
2160 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2161 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2162 Scalarize = true;
2163 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2164 // Vector-4 of gather/scatter instruction does not exist on KNL.
2165 // We can extend it to 8 elements, but zeroing upper bits of
2166 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002167 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2168 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002169 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2170 Scalarize = true;
2171
2172 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002173 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2174 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002175
2176 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2177}
2178
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002179bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2180 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002181 int DataWidth = isa<PointerType>(ScalarTy) ?
2182 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002183
Igor Bregerf44b79d2016-08-02 09:15:28 +00002184 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2185 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002186}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002187
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002188bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2189 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002190}
2191
Elena Demikhovsky09285852015-10-25 15:37:55 +00002192bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2193 // This function is called now in two cases: from the Loop Vectorizer
2194 // and from the Scalarizer.
2195 // When the Loop Vectorizer asks about legality of the feature,
2196 // the vectorization factor is not calculated yet. The Loop Vectorizer
2197 // sends a scalar type and the decision is based on the width of the
2198 // scalar element.
2199 // Later on, the cost model will estimate usage this intrinsic based on
2200 // the vector type.
2201 // The Scalarizer asks again about legality. It sends a vector type.
2202 // In this case we can reject non-power-of-2 vectors.
2203 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2204 return false;
2205 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002206 int DataWidth = isa<PointerType>(ScalarTy) ?
2207 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002208
2209 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002210 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002211}
2212
2213bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2214 return isLegalMaskedGather(DataType);
2215}
2216
Eric Christopherd566fb12015-07-29 22:09:48 +00002217bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2218 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002219 const TargetMachine &TM = getTLI()->getTargetMachine();
2220
2221 // Work this as a subsetting of subtarget features.
2222 const FeatureBitset &CallerBits =
2223 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2224 const FeatureBitset &CalleeBits =
2225 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2226
2227 // FIXME: This is likely too limiting as it will include subtarget features
2228 // that we might not care about for inlining, but it is conservatively
2229 // correct.
2230 return (CallerBits & CalleeBits) == CalleeBits;
2231}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002232
2233bool X86TTIImpl::enableInterleavedAccessVectorization() {
2234 // TODO: We expect this to be beneficial regardless of arch,
2235 // but there are currently some unexplained performance artifacts on Atom.
2236 // As a temporary solution, disable on Atom.
Mohammed Agabaria20caee92017-01-25 09:14:48 +00002237 return !(ST->isAtom());
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002238}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002239
2240// Get estimation for interleaved load/store operations and strided load.
2241// \p Indices contains indices for strided load.
2242// \p Factor - the factor of interleaving.
2243// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2244int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2245 unsigned Factor,
2246 ArrayRef<unsigned> Indices,
2247 unsigned Alignment,
2248 unsigned AddressSpace) {
2249
2250 // VecTy for interleave memop is <VF*Factor x Elt>.
2251 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2252 // VecTy = <12 x i32>.
2253
2254 // Calculate the number of memory operations (NumOfMemOps), required
2255 // for load/store the VecTy.
2256 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2257 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2258 unsigned LegalVTSize = LegalVT.getStoreSize();
2259 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2260
2261 // Get the cost of one memory operation.
2262 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2263 LegalVT.getVectorNumElements());
2264 unsigned MemOpCost =
2265 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2266
2267 if (Opcode == Instruction::Load) {
2268 // Kind of shuffle depends on number of loaded values.
2269 // If we load the entire data in one register, we can use a 1-src shuffle.
2270 // Otherwise, we'll merge 2 sources in each operation.
2271 TTI::ShuffleKind ShuffleKind =
2272 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2273
2274 unsigned ShuffleCost =
2275 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2276
2277 unsigned NumOfLoadsInInterleaveGrp =
2278 Indices.size() ? Indices.size() : Factor;
2279 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2280 VecTy->getVectorNumElements() / Factor);
2281 unsigned NumOfResults =
2282 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2283 NumOfLoadsInInterleaveGrp;
2284
2285 // About a half of the loads may be folded in shuffles when we have only
2286 // one result. If we have more than one result, we do not fold loads at all.
2287 unsigned NumOfUnfoldedLoads =
2288 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2289
2290 // Get a number of shuffle operations per result.
2291 unsigned NumOfShufflesPerResult =
2292 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2293
2294 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2295 // When we have more than one destination, we need additional instructions
2296 // to keep sources.
2297 unsigned NumOfMoves = 0;
2298 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2299 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2300
2301 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2302 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2303
2304 return Cost;
2305 }
2306
2307 // Store.
2308 assert(Opcode == Instruction::Store &&
2309 "Expected Store Instruction at this point");
2310
2311 // There is no strided stores meanwhile. And store can't be folded in
2312 // shuffle.
2313 unsigned NumOfSources = Factor; // The number of values to be merged.
2314 unsigned ShuffleCost =
2315 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2316 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2317
2318 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2319 // We need additional instructions to keep sources.
2320 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2321 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2322 NumOfMoves;
2323 return Cost;
2324}
2325
2326int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2327 unsigned Factor,
2328 ArrayRef<unsigned> Indices,
2329 unsigned Alignment,
2330 unsigned AddressSpace) {
2331 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2332 RequiresBW = false;
2333 Type *EltTy = VecTy->getVectorElementType();
2334 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2335 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2336 return true;
2337 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2338 RequiresBW = true;
2339 return true;
2340 }
2341 return false;
2342 };
2343 bool RequiresBW;
2344 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2345 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2346 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2347 Alignment, AddressSpace);
2348 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2349 Alignment, AddressSpace);
2350}