blob: fc9fcfc561480e7b0c6cfe0a3edd7704f83345af [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Keno Fischer1ec5dd82017-04-05 20:51:38 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000083 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000084 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000085 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000086 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000087 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000088 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Keno Fischer1ec5dd82017-04-05 20:51:38 +000098unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
99 return getRegisterBitWidth(true);
100}
101
Wei Mi062c7442015-05-06 17:12:25 +0000102unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
103 // If the loop will not be vectorized, don't interleave the loop.
104 // Let regular unroll to unroll the loop, which saves the overflow
105 // check and memory check cost.
106 if (VF == 1)
107 return 1;
108
Nadav Rotemb696c362013-01-09 01:15:42 +0000109 if (ST->isAtom())
110 return 1;
111
112 // Sandybridge and Haswell have multiple execution ports and pipelined
113 // vector units.
114 if (ST->hasAVX())
115 return 4;
116
117 return 2;
118}
119
Chandler Carruth93205eb2015-08-05 18:08:10 +0000120int X86TTIImpl::getArithmeticInstrCost(
Simon Pilgrim3e5b5252017-01-20 15:15:59 +0000121 unsigned Opcode, Type *Ty,
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000122 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
123 TTI::OperandValueProperties Opd1PropInfo,
124 TTI::OperandValueProperties Opd2PropInfo,
125 ArrayRef<const Value *> Args) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000126 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000127 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000128
129 int ISD = TLI->InstructionOpcodeToISD(Opcode);
130 assert(ISD && "Invalid opcode");
131
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000132 static const CostTblEntry SLMCostTable[] = {
133 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
134 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
135 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
136 { ISD::FMUL, MVT::f64, 2 }, // mulsd
137 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
138 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
139 { ISD::FDIV, MVT::f32, 17 }, // divss
140 { ISD::FDIV, MVT::v4f32, 39 }, // divps
141 { ISD::FDIV, MVT::f64, 32 }, // divsd
142 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
143 { ISD::FADD, MVT::v2f64, 2 }, // addpd
144 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
145 // v2i64/v4i64 mul is custom lowered as a series of long
146 // multiplies(3), shifts(3) and adds(2).
147 // slm muldq version throughput is 2
148 { ISD::MUL, MVT::v2i64, 11 },
149 };
150
151 if (ST->isSLM()) {
152 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
153 // Check if the operands can be shrinked into a smaller datatype.
154 bool Op1Signed = false;
155 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
156 bool Op2Signed = false;
157 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
158
159 bool signedMode = Op1Signed | Op2Signed;
160 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
161
162 if (OpMinSize <= 7)
163 return LT.first * 3; // pmullw/sext
164 if (!signedMode && OpMinSize <= 8)
165 return LT.first * 3; // pmullw/zext
166 if (OpMinSize <= 15)
167 return LT.first * 5; // pmullw/pmulhw/pshuf
168 if (!signedMode && OpMinSize <= 16)
169 return LT.first * 5; // pmullw/pmulhw/pshuf
170 }
171 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
172 LT.second)) {
173 return LT.first * Entry->Cost;
174 }
175 }
176
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000177 if (ISD == ISD::SDIV &&
178 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
179 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
180 // On X86, vector signed division by constants power-of-two are
181 // normally expanded to the sequence SRA + SRL + ADD + SRA.
182 // The OperandValue properties many not be same as that of previous
183 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000184 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
185 Op2Info, TargetTransformInfo::OP_None,
186 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000187 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
188 TargetTransformInfo::OP_None,
189 TargetTransformInfo::OP_None);
190 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
191 TargetTransformInfo::OP_None,
192 TargetTransformInfo::OP_None);
193
194 return Cost;
195 }
196
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000197 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000198 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
199 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
200 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
201
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000202 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
203 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
204 };
205
206 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
207 ST->hasBWI()) {
208 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
209 LT.second))
210 return LT.first * Entry->Cost;
211 }
212
213 static const CostTblEntry AVX512UniformConstCostTable[] = {
Simon Pilgrimd419b732017-01-14 19:24:23 +0000214 { ISD::SRA, MVT::v2i64, 1 },
215 { ISD::SRA, MVT::v4i64, 1 },
216 { ISD::SRA, MVT::v8i64, 1 },
217
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000218 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
219 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
220 };
221
222 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
223 ST->hasAVX512()) {
224 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
225 LT.second))
226 return LT.first * Entry->Cost;
227 }
228
Craig Topper4b275762015-10-28 04:02:12 +0000229 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000230 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
231 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
232 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
233
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000234 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
235
Benjamin Kramer7c372272014-04-26 14:53:05 +0000236 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
237 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
238 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
239 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
240 };
241
242 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
243 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000244 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
245 LT.second))
246 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000247 }
248
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000249 static const CostTblEntry SSE2UniformConstCostTable[] = {
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000250 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
251 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
252 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
Simon Pilgrim9c589502017-01-08 14:14:36 +0000253
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000254 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split.
255 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split.
256 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
Simon Pilgrim9c589502017-01-08 14:14:36 +0000257
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000258 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
259 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
260 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
261 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
262 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split.
263 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
264 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split.
265 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000266 };
267
268 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
269 ST->hasSSE2()) {
270 // pmuldq sequence.
271 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000272 return LT.first * 32;
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000273 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
274 return LT.first * 15;
275
Simon Pilgrim5bef9c62017-05-14 17:59:46 +0000276 // XOP has faster vXi8 shifts.
277 if ((ISD != ISD::SHL && ISD != ISD::SRL && ISD != ISD::SRA) ||
278 !ST->hasXOP())
279 if (const auto *Entry =
280 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
281 return LT.first * Entry->Cost;
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000282 }
283
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000284 static const CostTblEntry AVX2UniformCostTable[] = {
285 // Uniform splats are cheaper for the following instructions.
286 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
287 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
288 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
289 };
290
291 if (ST->hasAVX2() &&
292 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
293 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
294 if (const auto *Entry =
295 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
296 return LT.first * Entry->Cost;
297 }
298
299 static const CostTblEntry SSE2UniformCostTable[] = {
300 // Uniform splats are cheaper for the following instructions.
301 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
302 { ISD::SHL, MVT::v4i32, 1 }, // pslld
303 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
304
305 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
306 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
307 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
308
309 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
310 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
311 };
312
313 if (ST->hasSSE2() &&
314 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
315 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
316 if (const auto *Entry =
317 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
318 return LT.first * Entry->Cost;
319 }
320
Simon Pilgrim820e1322016-10-27 15:27:00 +0000321 static const CostTblEntry AVX512DQCostTable[] = {
322 { ISD::MUL, MVT::v2i64, 1 },
323 { ISD::MUL, MVT::v4i64, 1 },
324 { ISD::MUL, MVT::v8i64, 1 }
325 };
326
327 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000328 if (ST->hasDQI())
329 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000330 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000331
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000332 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrim6ed996c2017-01-15 20:44:00 +0000333 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw
334 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw
335 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw
336
337 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw
338 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw
339 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw
340
Simon Pilgrima4109d62017-01-07 17:54:10 +0000341 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
342 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
343 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
344
Simon Pilgrim5a81fef2017-01-11 10:36:51 +0000345 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
346 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
347 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
348
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000349 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
350 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
351 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
352
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000353 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
354 { ISD::SDIV, MVT::v64i8, 64*20 },
355 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000356 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000357 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000358 };
359
360 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000361 if (ST->hasBWI())
362 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000363 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000364
Craig Topper4b275762015-10-28 04:02:12 +0000365 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000366 { ISD::SHL, MVT::v16i32, 1 },
367 { ISD::SRL, MVT::v16i32, 1 },
368 { ISD::SRA, MVT::v16i32, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000369
Simon Pilgrimd8333372017-01-06 11:12:53 +0000370 { ISD::SHL, MVT::v8i64, 1 },
371 { ISD::SRL, MVT::v8i64, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000372
373 { ISD::SRA, MVT::v2i64, 1 },
374 { ISD::SRA, MVT::v4i64, 1 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000375 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000376
Simon Pilgrimd8333372017-01-06 11:12:53 +0000377 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
378 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
379 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
380 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
381
382 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
383 { ISD::SDIV, MVT::v16i32, 16*20 },
384 { ISD::SDIV, MVT::v8i64, 8*20 },
385 { ISD::UDIV, MVT::v16i32, 16*20 },
386 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000387 };
388
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000389 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000390 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
391 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000392
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000393 static const CostTblEntry AVX2ShiftCostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000394 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
395 // customize them to detect the cases where shift amount is a scalar one.
396 { ISD::SHL, MVT::v4i32, 1 },
397 { ISD::SRL, MVT::v4i32, 1 },
398 { ISD::SRA, MVT::v4i32, 1 },
399 { ISD::SHL, MVT::v8i32, 1 },
400 { ISD::SRL, MVT::v8i32, 1 },
401 { ISD::SRA, MVT::v8i32, 1 },
402 { ISD::SHL, MVT::v2i64, 1 },
403 { ISD::SRL, MVT::v2i64, 1 },
404 { ISD::SHL, MVT::v4i64, 1 },
405 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000406 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000407
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000408 // Look for AVX2 lowering tricks.
409 if (ST->hasAVX2()) {
410 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
411 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
412 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
413 // On AVX2, a packed v16i16 shift left by a constant build_vector
414 // is lowered into a vector multiply (vpmullw).
415 return LT.first;
416
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000417 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000418 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000419 }
420
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000421 static const CostTblEntry XOPShiftCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000422 // 128bit shifts take 1cy, but right shifts require negation beforehand.
423 { ISD::SHL, MVT::v16i8, 1 },
424 { ISD::SRL, MVT::v16i8, 2 },
425 { ISD::SRA, MVT::v16i8, 2 },
426 { ISD::SHL, MVT::v8i16, 1 },
427 { ISD::SRL, MVT::v8i16, 2 },
428 { ISD::SRA, MVT::v8i16, 2 },
429 { ISD::SHL, MVT::v4i32, 1 },
430 { ISD::SRL, MVT::v4i32, 2 },
431 { ISD::SRA, MVT::v4i32, 2 },
432 { ISD::SHL, MVT::v2i64, 1 },
433 { ISD::SRL, MVT::v2i64, 2 },
434 { ISD::SRA, MVT::v2i64, 2 },
435 // 256bit shifts require splitting if AVX2 didn't catch them above.
Simon Pilgrim4599eaa2017-05-14 13:38:53 +0000436 { ISD::SHL, MVT::v32i8, 2+2 },
437 { ISD::SRL, MVT::v32i8, 4+2 },
438 { ISD::SRA, MVT::v32i8, 4+2 },
439 { ISD::SHL, MVT::v16i16, 2+2 },
440 { ISD::SRL, MVT::v16i16, 4+2 },
441 { ISD::SRA, MVT::v16i16, 4+2 },
442 { ISD::SHL, MVT::v8i32, 2+2 },
443 { ISD::SRL, MVT::v8i32, 4+2 },
444 { ISD::SRA, MVT::v8i32, 4+2 },
445 { ISD::SHL, MVT::v4i64, 2+2 },
446 { ISD::SRL, MVT::v4i64, 4+2 },
447 { ISD::SRA, MVT::v4i64, 4+2 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000448 };
449
450 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000451 if (ST->hasXOP())
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000452 if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000453 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000454
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000455 static const CostTblEntry SSE2UniformShiftCostTable[] = {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000456 // Uniform splats are cheaper for the following instructions.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000457 { ISD::SHL, MVT::v16i16, 2 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000458 { ISD::SHL, MVT::v8i32, 2 }, // pslld
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000459 { ISD::SHL, MVT::v4i64, 2 }, // psllq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000460
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000461 { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000462 { ISD::SRL, MVT::v8i32, 2 }, // psrld.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000463 { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000464
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000465 { ISD::SRA, MVT::v16i16, 2 }, // psraw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000466 { ISD::SRA, MVT::v8i32, 2 }, // psrad.
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000467 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000468 { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000469 };
470
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000471 if (ST->hasSSE2() &&
472 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
473 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000474 if (const auto *Entry =
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000475 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000476 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000477 }
478
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000479 if (ISD == ISD::SHL &&
480 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000481 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000482 // Vector shift left by non uniform constant can be lowered
Simon Pilgrime70644d2017-01-07 21:33:00 +0000483 // into vector multiply.
484 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
485 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000486 ISD = ISD::MUL;
487 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000488
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000489 static const CostTblEntry AVX2CostTable[] = {
490 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
491 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
492
493 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
494 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
495
496 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
497 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
498 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
499 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
500
501 { ISD::SUB, MVT::v32i8, 1 }, // psubb
502 { ISD::ADD, MVT::v32i8, 1 }, // paddb
503 { ISD::SUB, MVT::v16i16, 1 }, // psubw
504 { ISD::ADD, MVT::v16i16, 1 }, // paddw
505 { ISD::SUB, MVT::v8i32, 1 }, // psubd
506 { ISD::ADD, MVT::v8i32, 1 }, // paddd
507 { ISD::SUB, MVT::v4i64, 1 }, // psubq
508 { ISD::ADD, MVT::v4i64, 1 }, // paddq
509
510 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
511 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
512 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
513 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
514 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
515
516 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
517 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
518 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
519 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
520 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
521 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
522 };
523
524 // Look for AVX2 lowering tricks for custom cases.
525 if (ST->hasAVX2())
526 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
527 return LT.first * Entry->Cost;
528
Simon Pilgrim100eae12017-01-07 17:03:51 +0000529 static const CostTblEntry AVX1CostTable[] = {
530 // We don't have to scalarize unsupported ops. We can issue two half-sized
531 // operations and we only need to extract the upper YMM half.
532 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000533 { ISD::MUL, MVT::v16i16, 4 },
534 { ISD::MUL, MVT::v8i32, 4 },
535 { ISD::SUB, MVT::v32i8, 4 },
536 { ISD::ADD, MVT::v32i8, 4 },
537 { ISD::SUB, MVT::v16i16, 4 },
538 { ISD::ADD, MVT::v16i16, 4 },
539 { ISD::SUB, MVT::v8i32, 4 },
540 { ISD::ADD, MVT::v8i32, 4 },
541 { ISD::SUB, MVT::v4i64, 4 },
542 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000543
544 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
545 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
546 // Because we believe v4i64 to be a legal type, we must also include the
547 // extract+insert in the cost table. Therefore, the cost here is 18
548 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000549 { ISD::MUL, MVT::v4i64, 18 },
550
551 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
552
553 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
554 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
555 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
556 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
557 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
558 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
559
560 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
561 { ISD::SDIV, MVT::v32i8, 32*20 },
562 { ISD::SDIV, MVT::v16i16, 16*20 },
563 { ISD::SDIV, MVT::v8i32, 8*20 },
564 { ISD::SDIV, MVT::v4i64, 4*20 },
565 { ISD::UDIV, MVT::v32i8, 32*20 },
566 { ISD::UDIV, MVT::v16i16, 16*20 },
567 { ISD::UDIV, MVT::v8i32, 8*20 },
568 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000569 };
570
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000571 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000572 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
573 return LT.first * Entry->Cost;
574
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000575 static const CostTblEntry SSE42CostTable[] = {
576 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
577 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
578 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
579 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
580 };
581
582 if (ST->hasSSE42())
583 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
584 return LT.first * Entry->Cost;
585
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000586 static const CostTblEntry SSE41CostTable[] = {
587 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
588 { ISD::SHL, MVT::v32i8, 2*11 }, // pblendvb sequence.
589 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
590 { ISD::SHL, MVT::v16i16, 2*14 }, // pblendvb sequence.
Simon Pilgrim9681c402017-01-07 22:27:43 +0000591 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
592 { ISD::SHL, MVT::v8i32, 2*4 }, // pslld/paddd/cvttps2dq/pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000593
594 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
595 { ISD::SRL, MVT::v32i8, 2*12 }, // pblendvb sequence.
596 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
597 { ISD::SRL, MVT::v16i16, 2*14 }, // pblendvb sequence.
598 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
599 { ISD::SRL, MVT::v8i32, 2*11 }, // Shift each lane + blend.
600
601 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
602 { ISD::SRA, MVT::v32i8, 2*24 }, // pblendvb sequence.
603 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
604 { ISD::SRA, MVT::v16i16, 2*14 }, // pblendvb sequence.
605 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
606 { ISD::SRA, MVT::v8i32, 2*12 }, // Shift each lane + blend.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000607
608 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000609 };
610
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000611 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000612 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
613 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000614
Craig Topper4b275762015-10-28 04:02:12 +0000615 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000616 // We don't correctly identify costs of casts because they are marked as
617 // custom.
Simon Pilgrim59656802015-06-11 07:46:37 +0000618 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
619 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
620 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000621 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000622 { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000623
624 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
625 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
626 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000627 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000628 { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000629
630 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
631 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
632 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000633 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000634 { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000635
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000636 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
Simon Pilgrime70644d2017-01-07 21:33:00 +0000637 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000638 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
Simon Pilgrima8bf9752017-01-05 19:01:50 +0000639 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000640
Alexey Bataevd07c7312016-10-31 12:10:53 +0000641 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
642 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
643 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
644 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
645
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000646 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000647 // in the process we will often end up having to spilling regular
648 // registers. The overhead of division is going to dominate most kernels
649 // anyways so try hard to prevent vectorization of division - it is
650 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
651 // to hide "20 cycles" for each lane.
652 { ISD::SDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000653 { ISD::SDIV, MVT::v8i16, 8*20 },
654 { ISD::SDIV, MVT::v4i32, 4*20 },
655 { ISD::SDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000656 { ISD::UDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000657 { ISD::UDIV, MVT::v8i16, 8*20 },
658 { ISD::UDIV, MVT::v4i32, 4*20 },
659 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000660 };
661
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000662 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000663 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
664 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000665
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000666 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000667 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
668 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
669 };
670
671 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000672 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000673 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000674
Chandler Carruth664e3542013-01-07 01:37:14 +0000675 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000676 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000677}
678
Chandler Carruth93205eb2015-08-05 18:08:10 +0000679int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
680 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000681 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
682 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
683 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000684
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000685 // For Broadcasts we are splatting the first element from the first input
686 // register, so only need to reference that input and all the output
687 // registers are the same.
688 if (Kind == TTI::SK_Broadcast)
689 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000690
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000691 // We are going to permute multiple sources and the result will be in multiple
692 // destinations. Providing an accurate cost only for splits where the element
693 // type remains the same.
694 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
695 MVT LegalVT = LT.second;
696 if (LegalVT.getVectorElementType().getSizeInBits() ==
697 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
698 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000699
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000700 unsigned VecTySize = DL.getTypeStoreSize(Tp);
701 unsigned LegalVTSize = LegalVT.getStoreSize();
702 // Number of source vectors after legalization:
703 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
704 // Number of destination vectors after legalization:
705 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000706
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000707 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
708 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000709
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000710 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
711 return NumOfShuffles *
712 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
713 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000714
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000715 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
716 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000717
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000718 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
719 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000720 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000721 int NumOfDests = LT.first;
722 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000723 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000724 }
725
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000726 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
727 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
728 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
729
730 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
731 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
732
733 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
734 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
735 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
736 };
737
738 if (ST->hasVBMI())
739 if (const auto *Entry =
740 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
741 return LT.first * Entry->Cost;
742
743 static const CostTblEntry AVX512BWShuffleTbl[] = {
744 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
745 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
746
747 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
748 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000749 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000750
751 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
752 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
753 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
754 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
755 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
756
757 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
758 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
759 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
760 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
761 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
762 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
763 };
764
765 if (ST->hasBWI())
766 if (const auto *Entry =
767 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
768 return LT.first * Entry->Cost;
769
770 static const CostTblEntry AVX512ShuffleTbl[] = {
771 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
772 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
773 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
774 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
775
776 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
777 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
778 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
779 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
780
781 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
782 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
783 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
784 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
785 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
786 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
787 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
788 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
789 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
790 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
791 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
792 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
793 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
794
795 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
796 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
797 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
798 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
799 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
800 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
801 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
802 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
803 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
804 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
805 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
806 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
807 };
808
809 if (ST->hasAVX512())
810 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
811 return LT.first * Entry->Cost;
812
813 static const CostTblEntry AVX2ShuffleTbl[] = {
814 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
815 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
816 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
817 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
818 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
819 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
820
821 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
822 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
823 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
824 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
825 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
826 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
827
828 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000829 { TTI::SK_Alternate, MVT::v32i8, 1 }, // vpblendvb
830
831 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
832 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
833 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 4 }, // vperm2i128 + 2 * vpshufb
834 // + vpblendvb
835 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 4 } // vperm2i128 + 2 * vpshufb
836 // + vpblendvb
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000837 };
838
839 if (ST->hasAVX2())
840 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
841 return LT.first * Entry->Cost;
842
843 static const CostTblEntry AVX1ShuffleTbl[] = {
844 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
845 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
846 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
847 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
848 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
849 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
850
851 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
852 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
853 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
854 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
855 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
856 // + vinsertf128
857 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
858 // + vinsertf128
859
860 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
861 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
862 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
863 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
864 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
865 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
866 };
867
868 if (ST->hasAVX())
869 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
870 return LT.first * Entry->Cost;
871
872 static const CostTblEntry SSE41ShuffleTbl[] = {
873 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
874 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
875 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
876 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
877 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
878 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
879 };
880
881 if (ST->hasSSE41())
882 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
883 return LT.first * Entry->Cost;
884
885 static const CostTblEntry SSSE3ShuffleTbl[] = {
886 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
887 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
888
889 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
890 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
891
892 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000893 { TTI::SK_Alternate, MVT::v16i8, 3 }, // pshufb + pshufb + por
894
895 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // pshufb
896 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 } // pshufb
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000897 };
898
899 if (ST->hasSSSE3())
900 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
901 return LT.first * Entry->Cost;
902
903 static const CostTblEntry SSE2ShuffleTbl[] = {
904 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
905 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
906 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
907 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
908 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
909
910 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
911 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
912 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
913 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
914 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
915 // + 2*pshufd + 2*unpck + packus
916
917 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
918 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
919 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
920 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000921 { TTI::SK_Alternate, MVT::v16i8, 3 }, // pand + pandn + por
922
923 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // pshufd
924 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 } // pshufd
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000925 };
926
927 if (ST->hasSSE2())
928 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
929 return LT.first * Entry->Cost;
930
931 static const CostTblEntry SSE1ShuffleTbl[] = {
932 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
933 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
934 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
935 };
936
937 if (ST->hasSSE1())
938 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
939 return LT.first * Entry->Cost;
940
Chandler Carruth705b1852015-01-31 03:43:40 +0000941 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000942}
943
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000944int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
945 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000946 int ISD = TLI->InstructionOpcodeToISD(Opcode);
947 assert(ISD && "Invalid opcode");
948
Cong Hou59898d82015-12-11 00:31:39 +0000949 // FIXME: Need a better design of the cost table to handle non-simple types of
950 // potential massive combinations (elem_num x src_type x dst_type).
951
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000952 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000953 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
954 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000955 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
956 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000957 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
958 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
959
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000960 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000961 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000962 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000963 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000964 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000965 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000966
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000967 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000968 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000969 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000970 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000971 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000972 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
973
974 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
975 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
976 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
977 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
978 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
979 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000980 };
981
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000982 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
983 // 256-bit wide vectors.
984
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000985 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000986 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
987 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
988 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000989
990 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
991 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
992 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
993 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000994
995 // v16i1 -> v16i32 - load + broadcast
996 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
997 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000998 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
999 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1000 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1001 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001002 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1003 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001004 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1005 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001006
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001007 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001008 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001009 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001010 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001011 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001012 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
1013 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001014 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001015 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
1016 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001017
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001018 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001019 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001020 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001021 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
1022 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
1023 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
1024 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001025 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001026 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
1027 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1028 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1029 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001030 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001031 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001032 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1033 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1034 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1035 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1036 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001037 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001038 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1039 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
1040 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
1041
1042 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1043 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1044 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
1045 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001046 };
1047
Craig Topper4b275762015-10-28 04:02:12 +00001048 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001049 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1050 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001051 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1052 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001053 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
1054 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001055 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1056 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1057 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1058 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001059 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1060 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001061 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1062 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001063 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1064 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1065
1066 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
1067 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
1068 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
1069 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
1070 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1071 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001072
1073 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1074 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +00001075
1076 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001077 };
1078
Craig Topper4b275762015-10-28 04:02:12 +00001079 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001080 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1081 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001082 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1083 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001084 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
1085 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001086 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1087 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1088 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1089 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001090 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1091 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001092 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1093 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001094 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1095 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1096
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001097 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1098 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1099 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001100 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1101 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1102 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001103 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001104
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001105 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001106 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001107 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1108 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001109 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001110 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1111 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001112 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001113 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1114 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001115 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001116 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001117
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001118 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001119 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001120 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1121 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001122 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001123 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1124 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001125 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001126 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001127 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001128 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001129 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001130 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001131 // The generic code to compute the scalar overhead is currently broken.
1132 // Workaround this limitation by estimating the scalarization overhead
1133 // here. We have roughly 10 instructions per scalar element.
1134 // Multiply that by the vector width.
1135 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001136 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1137 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1138 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1139 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001140
Renato Goline1fb0592013-01-20 20:57:20 +00001141 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001142 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001143 // This node is expanded into scalarized operations but BasicTTI is overly
1144 // optimistic estimating its cost. It computes 3 per element (one
1145 // vector-extract, one scalar conversion and one vector-insert). The
1146 // problem is that the inserts form a read-modify-write chain so latency
1147 // should be factored in too. Inflating the cost per element by 1.
1148 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001149 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001150
1151 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1152 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001153 };
1154
Cong Hou59898d82015-12-11 00:31:39 +00001155 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001156 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1157 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001158 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1159 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1160 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1161 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001162
Cong Hou59898d82015-12-11 00:31:39 +00001163 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1164 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001165 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1166 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1167 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1168 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1169 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1170 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1171 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1172 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1173 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1174 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1175 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1176 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1177 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1178 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1179 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1180 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001181
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001182 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1183 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1184 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001185 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001186 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001187 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001188 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1189
Cong Hou59898d82015-12-11 00:31:39 +00001190 };
1191
1192 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001193 // These are somewhat magic numbers justified by looking at the output of
1194 // Intel's IACA, running some kernels and making sure when we take
1195 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001196 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001197 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1198 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1199 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001200 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001201 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1202 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1203 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001204
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001205 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1206 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1207 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1208 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1209 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1210 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1211 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1212 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001213
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001214 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1215
Cong Hou59898d82015-12-11 00:31:39 +00001216 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1217 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001218 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1219 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1220 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1221 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1222 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1223 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1224 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1225 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1226 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1227 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1228 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1229 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1230 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1231 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1232 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1233 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1234 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1235 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1236 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001237 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001238 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1239 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001240
Cong Hou59898d82015-12-11 00:31:39 +00001241 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001242 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1243 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1244 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1245 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1246 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1247 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1248 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1249 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001250 };
1251
Chandler Carruth93205eb2015-08-05 18:08:10 +00001252 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1253 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001254
1255 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001256 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001257 LTDest.second, LTSrc.second))
1258 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001259 }
1260
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001261 EVT SrcTy = TLI->getValueType(DL, Src);
1262 EVT DstTy = TLI->getValueType(DL, Dst);
1263
1264 // The function getSimpleVT only handles simple value types.
1265 if (!SrcTy.isSimple() || !DstTy.isSimple())
1266 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1267
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001268 if (ST->hasDQI())
1269 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1270 DstTy.getSimpleVT(),
1271 SrcTy.getSimpleVT()))
1272 return Entry->Cost;
1273
1274 if (ST->hasAVX512())
1275 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1276 DstTy.getSimpleVT(),
1277 SrcTy.getSimpleVT()))
1278 return Entry->Cost;
1279
Tim Northoverf0e21612014-02-06 18:18:36 +00001280 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001281 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1282 DstTy.getSimpleVT(),
1283 SrcTy.getSimpleVT()))
1284 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001285 }
1286
Chandler Carruth664e3542013-01-07 01:37:14 +00001287 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001288 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1289 DstTy.getSimpleVT(),
1290 SrcTy.getSimpleVT()))
1291 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001292 }
1293
Cong Hou59898d82015-12-11 00:31:39 +00001294 if (ST->hasSSE41()) {
1295 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1296 DstTy.getSimpleVT(),
1297 SrcTy.getSimpleVT()))
1298 return Entry->Cost;
1299 }
1300
1301 if (ST->hasSSE2()) {
1302 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1303 DstTy.getSimpleVT(),
1304 SrcTy.getSimpleVT()))
1305 return Entry->Cost;
1306 }
1307
Chandler Carruth705b1852015-01-31 03:43:40 +00001308 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001309}
1310
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001311int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1312 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001313 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001314 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001315
1316 MVT MTy = LT.second;
1317
1318 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1319 assert(ISD && "Invalid opcode");
1320
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001321 static const CostTblEntry SSE2CostTbl[] = {
1322 { ISD::SETCC, MVT::v2i64, 8 },
1323 { ISD::SETCC, MVT::v4i32, 1 },
1324 { ISD::SETCC, MVT::v8i16, 1 },
1325 { ISD::SETCC, MVT::v16i8, 1 },
1326 };
1327
Craig Topper4b275762015-10-28 04:02:12 +00001328 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001329 { ISD::SETCC, MVT::v2f64, 1 },
1330 { ISD::SETCC, MVT::v4f32, 1 },
1331 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001332 };
1333
Craig Topper4b275762015-10-28 04:02:12 +00001334 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001335 { ISD::SETCC, MVT::v4f64, 1 },
1336 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001337 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001338 { ISD::SETCC, MVT::v4i64, 4 },
1339 { ISD::SETCC, MVT::v8i32, 4 },
1340 { ISD::SETCC, MVT::v16i16, 4 },
1341 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001342 };
1343
Craig Topper4b275762015-10-28 04:02:12 +00001344 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001345 { ISD::SETCC, MVT::v4i64, 1 },
1346 { ISD::SETCC, MVT::v8i32, 1 },
1347 { ISD::SETCC, MVT::v16i16, 1 },
1348 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001349 };
1350
Craig Topper4b275762015-10-28 04:02:12 +00001351 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001352 { ISD::SETCC, MVT::v8i64, 1 },
1353 { ISD::SETCC, MVT::v16i32, 1 },
1354 { ISD::SETCC, MVT::v8f64, 1 },
1355 { ISD::SETCC, MVT::v16f32, 1 },
1356 };
1357
Craig Topperee0c8592015-10-27 04:14:24 +00001358 if (ST->hasAVX512())
1359 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1360 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001361
Craig Topperee0c8592015-10-27 04:14:24 +00001362 if (ST->hasAVX2())
1363 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1364 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001365
Craig Topperee0c8592015-10-27 04:14:24 +00001366 if (ST->hasAVX())
1367 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1368 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001369
Craig Topperee0c8592015-10-27 04:14:24 +00001370 if (ST->hasSSE42())
1371 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1372 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001373
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001374 if (ST->hasSSE2())
1375 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1376 return LT.first * Entry->Cost;
1377
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001378 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
Chandler Carruth664e3542013-01-07 01:37:14 +00001379}
1380
Simon Pilgrim14000b32016-05-24 08:17:50 +00001381int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001382 ArrayRef<Type *> Tys, FastMathFlags FMF,
1383 unsigned ScalarizationCostPassed) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001384 // Costs should match the codegen from:
1385 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1386 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001387 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001388 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001389 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim14000b32016-05-24 08:17:50 +00001390 static const CostTblEntry XOPCostTbl[] = {
1391 { ISD::BITREVERSE, MVT::v4i64, 4 },
1392 { ISD::BITREVERSE, MVT::v8i32, 4 },
1393 { ISD::BITREVERSE, MVT::v16i16, 4 },
1394 { ISD::BITREVERSE, MVT::v32i8, 4 },
1395 { ISD::BITREVERSE, MVT::v2i64, 1 },
1396 { ISD::BITREVERSE, MVT::v4i32, 1 },
1397 { ISD::BITREVERSE, MVT::v8i16, 1 },
1398 { ISD::BITREVERSE, MVT::v16i8, 1 },
1399 { ISD::BITREVERSE, MVT::i64, 3 },
1400 { ISD::BITREVERSE, MVT::i32, 3 },
1401 { ISD::BITREVERSE, MVT::i16, 3 },
1402 { ISD::BITREVERSE, MVT::i8, 3 }
1403 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001404 static const CostTblEntry AVX2CostTbl[] = {
1405 { ISD::BITREVERSE, MVT::v4i64, 5 },
1406 { ISD::BITREVERSE, MVT::v8i32, 5 },
1407 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001408 { ISD::BITREVERSE, MVT::v32i8, 5 },
1409 { ISD::BSWAP, MVT::v4i64, 1 },
1410 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001411 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001412 { ISD::CTLZ, MVT::v4i64, 23 },
1413 { ISD::CTLZ, MVT::v8i32, 18 },
1414 { ISD::CTLZ, MVT::v16i16, 14 },
1415 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001416 { ISD::CTPOP, MVT::v4i64, 7 },
1417 { ISD::CTPOP, MVT::v8i32, 11 },
1418 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001419 { ISD::CTPOP, MVT::v32i8, 6 },
1420 { ISD::CTTZ, MVT::v4i64, 10 },
1421 { ISD::CTTZ, MVT::v8i32, 14 },
1422 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001423 { ISD::CTTZ, MVT::v32i8, 9 },
1424 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1425 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1426 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1427 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1428 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1429 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001430 };
1431 static const CostTblEntry AVX1CostTbl[] = {
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001432 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert
1433 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert
1434 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
1435 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert
Simon Pilgrim356e8232016-06-20 23:08:21 +00001436 { ISD::BSWAP, MVT::v4i64, 4 },
1437 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001438 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001439 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert
1440 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert
1441 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
1442 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
1443 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert
1444 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert
1445 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
1446 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert
1447 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert
1448 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert
1449 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
1450 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
Alexey Bataevd07c7312016-10-31 12:10:53 +00001451 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1452 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1453 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1454 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1455 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1456 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1457 };
1458 static const CostTblEntry SSE42CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001459 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1460 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001461 };
1462 static const CostTblEntry SSSE3CostTbl[] = {
1463 { ISD::BITREVERSE, MVT::v2i64, 5 },
1464 { ISD::BITREVERSE, MVT::v4i32, 5 },
1465 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001466 { ISD::BITREVERSE, MVT::v16i8, 5 },
1467 { ISD::BSWAP, MVT::v2i64, 1 },
1468 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001469 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001470 { ISD::CTLZ, MVT::v2i64, 23 },
1471 { ISD::CTLZ, MVT::v4i32, 18 },
1472 { ISD::CTLZ, MVT::v8i16, 14 },
1473 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001474 { ISD::CTPOP, MVT::v2i64, 7 },
1475 { ISD::CTPOP, MVT::v4i32, 11 },
1476 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001477 { ISD::CTPOP, MVT::v16i8, 6 },
1478 { ISD::CTTZ, MVT::v2i64, 10 },
1479 { ISD::CTTZ, MVT::v4i32, 14 },
1480 { ISD::CTTZ, MVT::v8i16, 12 },
1481 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001482 };
1483 static const CostTblEntry SSE2CostTbl[] = {
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001484 { ISD::BITREVERSE, MVT::v2i64, 29 },
1485 { ISD::BITREVERSE, MVT::v4i32, 27 },
1486 { ISD::BITREVERSE, MVT::v8i16, 27 },
1487 { ISD::BITREVERSE, MVT::v16i8, 20 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001488 { ISD::BSWAP, MVT::v2i64, 7 },
1489 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001490 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001491 { ISD::CTLZ, MVT::v2i64, 25 },
1492 { ISD::CTLZ, MVT::v4i32, 26 },
1493 { ISD::CTLZ, MVT::v8i16, 20 },
1494 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001495 { ISD::CTPOP, MVT::v2i64, 12 },
1496 { ISD::CTPOP, MVT::v4i32, 15 },
1497 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001498 { ISD::CTPOP, MVT::v16i8, 10 },
1499 { ISD::CTTZ, MVT::v2i64, 14 },
1500 { ISD::CTTZ, MVT::v4i32, 18 },
1501 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001502 { ISD::CTTZ, MVT::v16i8, 13 },
1503 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1504 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1505 };
1506 static const CostTblEntry SSE1CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001507 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1508 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001509 };
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001510 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1511 { ISD::BITREVERSE, MVT::i64, 14 }
1512 };
1513 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1514 { ISD::BITREVERSE, MVT::i32, 14 },
1515 { ISD::BITREVERSE, MVT::i16, 14 },
1516 { ISD::BITREVERSE, MVT::i8, 11 }
1517 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001518
1519 unsigned ISD = ISD::DELETED_NODE;
1520 switch (IID) {
1521 default:
1522 break;
1523 case Intrinsic::bitreverse:
1524 ISD = ISD::BITREVERSE;
1525 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001526 case Intrinsic::bswap:
1527 ISD = ISD::BSWAP;
1528 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001529 case Intrinsic::ctlz:
1530 ISD = ISD::CTLZ;
1531 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001532 case Intrinsic::ctpop:
1533 ISD = ISD::CTPOP;
1534 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001535 case Intrinsic::cttz:
1536 ISD = ISD::CTTZ;
1537 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001538 case Intrinsic::sqrt:
1539 ISD = ISD::FSQRT;
1540 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001541 }
1542
1543 // Legalize the type.
1544 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1545 MVT MTy = LT.second;
1546
1547 // Attempt to lookup cost.
1548 if (ST->hasXOP())
1549 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1550 return LT.first * Entry->Cost;
1551
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001552 if (ST->hasAVX2())
1553 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1554 return LT.first * Entry->Cost;
1555
1556 if (ST->hasAVX())
1557 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1558 return LT.first * Entry->Cost;
1559
Alexey Bataevd07c7312016-10-31 12:10:53 +00001560 if (ST->hasSSE42())
1561 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1562 return LT.first * Entry->Cost;
1563
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001564 if (ST->hasSSSE3())
1565 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1566 return LT.first * Entry->Cost;
1567
Simon Pilgrim356e8232016-06-20 23:08:21 +00001568 if (ST->hasSSE2())
1569 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1570 return LT.first * Entry->Cost;
1571
Alexey Bataevd07c7312016-10-31 12:10:53 +00001572 if (ST->hasSSE1())
1573 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1574 return LT.first * Entry->Cost;
1575
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001576 if (ST->is64Bit())
1577 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
1578 return LT.first * Entry->Cost;
1579
1580 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
1581 return LT.first * Entry->Cost;
1582
Jonas Paulssona48ea232017-03-14 06:35:36 +00001583 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001584}
1585
1586int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001587 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
1588 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001589}
1590
Chandler Carruth93205eb2015-08-05 18:08:10 +00001591int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001592 assert(Val->isVectorTy() && "This must be a vector type");
1593
Sanjay Patelaedc3472016-05-25 17:27:54 +00001594 Type *ScalarType = Val->getScalarType();
1595
Chandler Carruth664e3542013-01-07 01:37:14 +00001596 if (Index != -1U) {
1597 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001598 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001599
1600 // This type is legalized to a scalar type.
1601 if (!LT.second.isVector())
1602 return 0;
1603
1604 // The type may be split. Normalize the index to the new type.
1605 unsigned Width = LT.second.getVectorNumElements();
1606 Index = Index % Width;
1607
1608 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001609 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001610 return 0;
1611 }
1612
Sanjay Patelaedc3472016-05-25 17:27:54 +00001613 // Add to the base cost if we know that the extracted element of a vector is
1614 // destined to be moved to and used in the integer register file.
1615 int RegisterFileMoveCost = 0;
1616 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1617 RegisterFileMoveCost = 1;
1618
1619 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001620}
1621
Chandler Carruth93205eb2015-08-05 18:08:10 +00001622int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001623 unsigned AddressSpace, const Instruction *I) {
Alp Tokerf907b892013-12-05 05:44:44 +00001624 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001625 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1626 unsigned NumElem = VTy->getVectorNumElements();
1627
1628 // Handle a few common cases:
1629 // <3 x float>
1630 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1631 // Cost = 64 bit store + extract + 32 bit store.
1632 return 3;
1633
1634 // <3 x double>
1635 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1636 // Cost = 128 bit store + unpack + 64 bit store.
1637 return 3;
1638
Alp Tokerf907b892013-12-05 05:44:44 +00001639 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001640 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001641 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1642 AddressSpace);
1643 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1644 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001645 return NumElem * Cost + SplitCost;
1646 }
1647 }
1648
Chandler Carruth664e3542013-01-07 01:37:14 +00001649 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001650 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001651 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1652 "Invalid Opcode");
1653
1654 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001655 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001656
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001657 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1658 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1659 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1660 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001661
1662 return Cost;
1663}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001664
Chandler Carruth93205eb2015-08-05 18:08:10 +00001665int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1666 unsigned Alignment,
1667 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001668 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1669 if (!SrcVTy)
1670 // To calculate scalar take the regular cost, without mask
1671 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1672
1673 unsigned NumElem = SrcVTy->getVectorNumElements();
1674 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001675 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001676 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1677 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001678 !isPowerOf2_32(NumElem)) {
1679 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001680 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1681 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001682 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001683 int BranchCost = getCFInstrCost(Instruction::Br);
1684 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001685
Chandler Carruth93205eb2015-08-05 18:08:10 +00001686 int ValueSplitCost = getScalarizationOverhead(
1687 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1688 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001689 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1690 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001691 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1692 }
1693
1694 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001695 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001696 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001697 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001698 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001699 LT.second.getVectorNumElements() == NumElem)
1700 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001701 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1702 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001703
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001704 else if (LT.second.getVectorNumElements() > NumElem) {
1705 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1706 LT.second.getVectorNumElements());
1707 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001708 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001709 }
1710 if (!ST->hasAVX512())
1711 return Cost + LT.first*4; // Each maskmov costs 4
1712
1713 // AVX-512 masked load/store is cheapper
1714 return Cost+LT.first;
1715}
1716
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001717int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1718 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001719 // Address computations in vectorized code with non-consecutive addresses will
1720 // likely result in more instructions compared to scalar code where the
1721 // computation can more often be merged into the index mode. The resulting
1722 // extra micro-ops can significantly decrease throughput.
1723 unsigned NumVectorInstToHideOverhead = 10;
1724
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001725 // Cost modeling of Strided Access Computation is hidden by the indexing
1726 // modes of X86 regardless of the stride value. We dont believe that there
1727 // is a difference between constant strided access in gerenal and constant
1728 // strided value which is less than or equal to 64.
1729 // Even in the case of (loop invariant) stride whose value is not known at
1730 // compile time, the address computation will not incur more than one extra
1731 // ADD instruction.
1732 if (Ty->isVectorTy() && SE) {
1733 if (!BaseT::isStridedAccess(Ptr))
1734 return NumVectorInstToHideOverhead;
1735 if (!BaseT::getConstantStrideStep(SE, Ptr))
1736 return 1;
1737 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001738
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001739 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001740}
Yi Jiang5c343de2013-09-19 17:48:48 +00001741
Chandler Carruth93205eb2015-08-05 18:08:10 +00001742int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1743 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001744
Chandler Carruth93205eb2015-08-05 18:08:10 +00001745 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001746
Yi Jiang5c343de2013-09-19 17:48:48 +00001747 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001748
Yi Jiang5c343de2013-09-19 17:48:48 +00001749 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1750 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001751
1752 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1753 // and make it as the cost.
1754
Craig Topper4b275762015-10-28 04:02:12 +00001755 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001756 { ISD::FADD, MVT::v2f64, 2 },
1757 { ISD::FADD, MVT::v4f32, 4 },
1758 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1759 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1760 { ISD::ADD, MVT::v8i16, 5 },
1761 };
Michael Liao5bf95782014-12-04 05:20:33 +00001762
Craig Topper4b275762015-10-28 04:02:12 +00001763 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001764 { ISD::FADD, MVT::v4f32, 4 },
1765 { ISD::FADD, MVT::v4f64, 5 },
1766 { ISD::FADD, MVT::v8f32, 7 },
1767 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1768 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1769 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1770 { ISD::ADD, MVT::v8i16, 5 },
1771 { ISD::ADD, MVT::v8i32, 5 },
1772 };
1773
Craig Topper4b275762015-10-28 04:02:12 +00001774 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001775 { ISD::FADD, MVT::v2f64, 2 },
1776 { ISD::FADD, MVT::v4f32, 4 },
1777 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1778 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1779 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1780 };
Michael Liao5bf95782014-12-04 05:20:33 +00001781
Craig Topper4b275762015-10-28 04:02:12 +00001782 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001783 { ISD::FADD, MVT::v4f32, 3 },
1784 { ISD::FADD, MVT::v4f64, 3 },
1785 { ISD::FADD, MVT::v8f32, 4 },
1786 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1787 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1788 { ISD::ADD, MVT::v4i64, 3 },
1789 { ISD::ADD, MVT::v8i16, 4 },
1790 { ISD::ADD, MVT::v8i32, 5 },
1791 };
Michael Liao5bf95782014-12-04 05:20:33 +00001792
Yi Jiang5c343de2013-09-19 17:48:48 +00001793 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001794 if (ST->hasAVX())
1795 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1796 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001797
Craig Topperee0c8592015-10-27 04:14:24 +00001798 if (ST->hasSSE42())
1799 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1800 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001801 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001802 if (ST->hasAVX())
1803 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1804 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001805
Craig Topperee0c8592015-10-27 04:14:24 +00001806 if (ST->hasSSE42())
1807 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1808 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001809 }
1810
Chandler Carruth705b1852015-01-31 03:43:40 +00001811 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001812}
1813
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001814/// \brief Calculate the cost of materializing a 64-bit value. This helper
1815/// method might only calculate a fraction of a larger immediate. Therefore it
1816/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001817int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001818 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001819 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001820
1821 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001822 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001823
Chandler Carruth705b1852015-01-31 03:43:40 +00001824 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001825}
1826
Chandler Carruth93205eb2015-08-05 18:08:10 +00001827int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001828 assert(Ty->isIntegerTy());
1829
1830 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1831 if (BitSize == 0)
1832 return ~0U;
1833
Juergen Ributzka43176172014-05-19 21:00:53 +00001834 // Never hoist constants larger than 128bit, because this might lead to
1835 // incorrect code generation or assertions in codegen.
1836 // Fixme: Create a cost model for types larger than i128 once the codegen
1837 // issues have been fixed.
1838 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001839 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001840
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001841 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001842 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001843
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001844 // Sign-extend all constants to a multiple of 64-bit.
1845 APInt ImmVal = Imm;
1846 if (BitSize & 0x3f)
1847 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1848
1849 // Split the constant into 64-bit chunks and calculate the cost for each
1850 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001851 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001852 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1853 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1854 int64_t Val = Tmp.getSExtValue();
1855 Cost += getIntImmCost(Val);
1856 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001857 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001858 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001859}
1860
Chandler Carruth93205eb2015-08-05 18:08:10 +00001861int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1862 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001863 assert(Ty->isIntegerTy());
1864
1865 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001866 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1867 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001868 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001869 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001870
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001871 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001872 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001873 default:
1874 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001875 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001876 // Always hoist the base address of a GetElementPtr. This prevents the
1877 // creation of new constants for every base constant that gets constant
1878 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001879 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001880 return 2 * TTI::TCC_Basic;
1881 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001882 case Instruction::Store:
1883 ImmIdx = 0;
1884 break;
Craig Topper074e8452015-12-20 18:41:54 +00001885 case Instruction::ICmp:
1886 // This is an imperfect hack to prevent constant hoisting of
1887 // compares that might be trying to check if a 64-bit value fits in
1888 // 32-bits. The backend can optimize these cases using a right shift by 32.
1889 // Ideally we would check the compare predicate here. There also other
1890 // similar immediates the backend can use shifts for.
1891 if (Idx == 1 && Imm.getBitWidth() == 64) {
1892 uint64_t ImmVal = Imm.getZExtValue();
1893 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1894 return TTI::TCC_Free;
1895 }
1896 ImmIdx = 1;
1897 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001898 case Instruction::And:
1899 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1900 // by using a 32-bit operation with implicit zero extension. Detect such
1901 // immediates here as the normal path expects bit 31 to be sign extended.
1902 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1903 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001904 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001905 case Instruction::Add:
1906 case Instruction::Sub:
1907 case Instruction::Mul:
1908 case Instruction::UDiv:
1909 case Instruction::SDiv:
1910 case Instruction::URem:
1911 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001912 case Instruction::Or:
1913 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001914 ImmIdx = 1;
1915 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001916 // Always return TCC_Free for the shift value of a shift instruction.
1917 case Instruction::Shl:
1918 case Instruction::LShr:
1919 case Instruction::AShr:
1920 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001921 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001922 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001923 case Instruction::Trunc:
1924 case Instruction::ZExt:
1925 case Instruction::SExt:
1926 case Instruction::IntToPtr:
1927 case Instruction::PtrToInt:
1928 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001929 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001930 case Instruction::Call:
1931 case Instruction::Select:
1932 case Instruction::Ret:
1933 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001934 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001935 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001936
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001937 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001938 int NumConstants = (BitSize + 63) / 64;
1939 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001940 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00001941 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00001942 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001943 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001944
Chandler Carruth705b1852015-01-31 03:43:40 +00001945 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001946}
1947
Chandler Carruth93205eb2015-08-05 18:08:10 +00001948int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1949 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001950 assert(Ty->isIntegerTy());
1951
1952 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001953 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1954 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001955 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001956 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001957
1958 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001959 default:
1960 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001961 case Intrinsic::sadd_with_overflow:
1962 case Intrinsic::uadd_with_overflow:
1963 case Intrinsic::ssub_with_overflow:
1964 case Intrinsic::usub_with_overflow:
1965 case Intrinsic::smul_with_overflow:
1966 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001967 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001968 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001969 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001970 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001971 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001972 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001973 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001974 case Intrinsic::experimental_patchpoint_void:
1975 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001976 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001977 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001978 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001979 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001980 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001981}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00001982
Elena Demikhovsky54946982015-12-28 20:10:59 +00001983// Return an average cost of Gather / Scatter instruction, maybe improved later
1984int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1985 unsigned Alignment, unsigned AddressSpace) {
1986
1987 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1988 unsigned VF = SrcVTy->getVectorNumElements();
1989
1990 // Try to reduce index size from 64 bit (default for GEP)
1991 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1992 // operation will use 16 x 64 indices which do not fit in a zmm and needs
1993 // to split. Also check that the base pointer is the same for all lanes,
1994 // and that there's at most one variable index.
1995 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1996 unsigned IndexSize = DL.getPointerSizeInBits();
1997 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1998 if (IndexSize < 64 || !GEP)
1999 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00002000
Elena Demikhovsky54946982015-12-28 20:10:59 +00002001 unsigned NumOfVarIndices = 0;
2002 Value *Ptrs = GEP->getPointerOperand();
2003 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
2004 return IndexSize;
2005 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
2006 if (isa<Constant>(GEP->getOperand(i)))
2007 continue;
2008 Type *IndxTy = GEP->getOperand(i)->getType();
2009 if (IndxTy->isVectorTy())
2010 IndxTy = IndxTy->getVectorElementType();
2011 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
2012 !isa<SExtInst>(GEP->getOperand(i))) ||
2013 ++NumOfVarIndices > 1)
2014 return IndexSize; // 64
2015 }
2016 return (unsigned)32;
2017 };
2018
2019
2020 // Trying to reduce IndexSize to 32 bits for vector 16.
2021 // By default the IndexSize is equal to pointer size.
2022 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
2023 DL.getPointerSizeInBits();
2024
Mehdi Amini867e9142016-04-14 04:36:40 +00002025 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002026 IndexSize), VF);
2027 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
2028 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2029 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
2030 if (SplitFactor > 1) {
2031 // Handle splitting of vector of pointers
2032 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
2033 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
2034 AddressSpace);
2035 }
2036
2037 // The gather / scatter cost is given by Intel architects. It is a rough
2038 // number since we are looking at one instruction in a time.
2039 const int GSOverhead = 2;
2040 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2041 Alignment, AddressSpace);
2042}
2043
2044/// Return the cost of full scalarization of gather / scatter operation.
2045///
2046/// Opcode - Load or Store instruction.
2047/// SrcVTy - The type of the data vector that should be gathered or scattered.
2048/// VariableMask - The mask is non-constant at compile time.
2049/// Alignment - Alignment for one element.
2050/// AddressSpace - pointer[s] address space.
2051///
2052int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
2053 bool VariableMask, unsigned Alignment,
2054 unsigned AddressSpace) {
2055 unsigned VF = SrcVTy->getVectorNumElements();
2056
2057 int MaskUnpackCost = 0;
2058 if (VariableMask) {
2059 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00002060 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002061 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
2062 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00002063 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002064 nullptr);
2065 int BranchCost = getCFInstrCost(Instruction::Br);
2066 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
2067 }
2068
2069 // The cost of the scalar loads/stores.
2070 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2071 Alignment, AddressSpace);
2072
2073 int InsertExtractCost = 0;
2074 if (Opcode == Instruction::Load)
2075 for (unsigned i = 0; i < VF; ++i)
2076 // Add the cost of inserting each scalar load into the vector
2077 InsertExtractCost +=
2078 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
2079 else
2080 for (unsigned i = 0; i < VF; ++i)
2081 // Add the cost of extracting each element out of the data vector
2082 InsertExtractCost +=
2083 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
2084
2085 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
2086}
2087
2088/// Calculate the cost of Gather / Scatter operation
2089int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2090 Value *Ptr, bool VariableMask,
2091 unsigned Alignment) {
2092 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2093 unsigned VF = SrcVTy->getVectorNumElements();
2094 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2095 if (!PtrTy && Ptr->getType()->isVectorTy())
2096 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2097 assert(PtrTy && "Unexpected type for Ptr argument");
2098 unsigned AddressSpace = PtrTy->getAddressSpace();
2099
2100 bool Scalarize = false;
2101 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2102 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2103 Scalarize = true;
2104 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2105 // Vector-4 of gather/scatter instruction does not exist on KNL.
2106 // We can extend it to 8 elements, but zeroing upper bits of
2107 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002108 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2109 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002110 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2111 Scalarize = true;
2112
2113 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002114 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2115 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002116
2117 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2118}
2119
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002120bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2121 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002122 int DataWidth = isa<PointerType>(ScalarTy) ?
2123 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002124
Igor Bregerf44b79d2016-08-02 09:15:28 +00002125 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2126 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002127}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002128
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002129bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2130 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002131}
2132
Elena Demikhovsky09285852015-10-25 15:37:55 +00002133bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2134 // This function is called now in two cases: from the Loop Vectorizer
2135 // and from the Scalarizer.
2136 // When the Loop Vectorizer asks about legality of the feature,
2137 // the vectorization factor is not calculated yet. The Loop Vectorizer
2138 // sends a scalar type and the decision is based on the width of the
2139 // scalar element.
2140 // Later on, the cost model will estimate usage this intrinsic based on
2141 // the vector type.
2142 // The Scalarizer asks again about legality. It sends a vector type.
2143 // In this case we can reject non-power-of-2 vectors.
2144 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2145 return false;
2146 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002147 int DataWidth = isa<PointerType>(ScalarTy) ?
2148 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002149
2150 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002151 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002152}
2153
2154bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2155 return isLegalMaskedGather(DataType);
2156}
2157
Eric Christopherd566fb12015-07-29 22:09:48 +00002158bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2159 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002160 const TargetMachine &TM = getTLI()->getTargetMachine();
2161
2162 // Work this as a subsetting of subtarget features.
2163 const FeatureBitset &CallerBits =
2164 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2165 const FeatureBitset &CalleeBits =
2166 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2167
2168 // FIXME: This is likely too limiting as it will include subtarget features
2169 // that we might not care about for inlining, but it is conservatively
2170 // correct.
2171 return (CallerBits & CalleeBits) == CalleeBits;
2172}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002173
2174bool X86TTIImpl::enableInterleavedAccessVectorization() {
2175 // TODO: We expect this to be beneficial regardless of arch,
2176 // but there are currently some unexplained performance artifacts on Atom.
2177 // As a temporary solution, disable on Atom.
Mohammed Agabaria20caee92017-01-25 09:14:48 +00002178 return !(ST->isAtom());
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002179}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002180
2181// Get estimation for interleaved load/store operations and strided load.
2182// \p Indices contains indices for strided load.
2183// \p Factor - the factor of interleaving.
2184// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2185int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2186 unsigned Factor,
2187 ArrayRef<unsigned> Indices,
2188 unsigned Alignment,
2189 unsigned AddressSpace) {
2190
2191 // VecTy for interleave memop is <VF*Factor x Elt>.
2192 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2193 // VecTy = <12 x i32>.
2194
2195 // Calculate the number of memory operations (NumOfMemOps), required
2196 // for load/store the VecTy.
2197 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2198 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2199 unsigned LegalVTSize = LegalVT.getStoreSize();
2200 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2201
2202 // Get the cost of one memory operation.
2203 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2204 LegalVT.getVectorNumElements());
2205 unsigned MemOpCost =
2206 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2207
2208 if (Opcode == Instruction::Load) {
2209 // Kind of shuffle depends on number of loaded values.
2210 // If we load the entire data in one register, we can use a 1-src shuffle.
2211 // Otherwise, we'll merge 2 sources in each operation.
2212 TTI::ShuffleKind ShuffleKind =
2213 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2214
2215 unsigned ShuffleCost =
2216 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2217
2218 unsigned NumOfLoadsInInterleaveGrp =
2219 Indices.size() ? Indices.size() : Factor;
2220 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2221 VecTy->getVectorNumElements() / Factor);
2222 unsigned NumOfResults =
2223 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2224 NumOfLoadsInInterleaveGrp;
2225
2226 // About a half of the loads may be folded in shuffles when we have only
2227 // one result. If we have more than one result, we do not fold loads at all.
2228 unsigned NumOfUnfoldedLoads =
2229 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2230
2231 // Get a number of shuffle operations per result.
2232 unsigned NumOfShufflesPerResult =
2233 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2234
2235 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2236 // When we have more than one destination, we need additional instructions
2237 // to keep sources.
2238 unsigned NumOfMoves = 0;
2239 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2240 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2241
2242 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2243 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2244
2245 return Cost;
2246 }
2247
2248 // Store.
2249 assert(Opcode == Instruction::Store &&
2250 "Expected Store Instruction at this point");
2251
2252 // There is no strided stores meanwhile. And store can't be folded in
2253 // shuffle.
2254 unsigned NumOfSources = Factor; // The number of values to be merged.
2255 unsigned ShuffleCost =
2256 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2257 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2258
2259 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2260 // We need additional instructions to keep sources.
2261 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2262 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2263 NumOfMoves;
2264 return Cost;
2265}
2266
2267int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2268 unsigned Factor,
2269 ArrayRef<unsigned> Indices,
2270 unsigned Alignment,
2271 unsigned AddressSpace) {
2272 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2273 RequiresBW = false;
2274 Type *EltTy = VecTy->getVectorElementType();
2275 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2276 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2277 return true;
2278 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2279 RequiresBW = true;
2280 return true;
2281 }
2282 return false;
2283 };
2284 bool RequiresBW;
2285 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2286 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2287 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2288 Alignment, AddressSpace);
2289 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2290 Alignment, AddressSpace);
2291}