blob: 6edd8621ab3fff400882b9c27a1d98e5a6205559 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Owen Anderson8ac477f2010-10-12 19:48:12 +0000117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
Chandler Carruth66b31302015-01-04 12:03:27 +0000119INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000120INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Chandler Carruth73523022014-01-13 13:07:17 +0000121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chandler Carruthb98f63d2015-01-15 10:41:28 +0000122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000124 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000125char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000126
127//===----------------------------------------------------------------------===//
128// SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
Dan Gohman3423e722009-06-30 20:13:32 +0000134
Manman Ren49d684e2012-09-12 05:06:18 +0000135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000136void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000137 print(dbgs());
138 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000139}
Manman Renc3366cc2012-09-06 19:55:56 +0000140#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000141
Dan Gohman534749b2010-11-17 22:27:42 +0000142void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000143 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000144 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000177 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000190 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000201 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000202 OS << OpStr;
203 }
204 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
Dan Gohman534749b2010-11-17 22:27:42 +0000213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Chris Lattner229907c2011-07-18 04:54:35 +0000232 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000236 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000237 OS << ")";
238 return;
239 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000240
Dan Gohman534749b2010-11-17 22:27:42 +0000241 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000242 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000248 }
249 llvm_unreachable("Unknown SCEV kind!");
250}
251
Chris Lattner229907c2011-07-18 04:54:35 +0000252Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000253 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000274 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000275}
276
Dan Gohmanbe928e32008-06-18 16:23:07 +0000277bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281}
282
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000283bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287}
Chris Lattnerd934c702004-04-02 20:23:17 +0000288
Dan Gohman18a96bb2009-06-24 00:30:26 +0000289bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293}
294
Andrew Trick881a7762012-01-07 00:27:31 +0000295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307}
308
Owen Anderson04052ec2009-06-22 21:57:23 +0000309SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311
Chris Lattnerd934c702004-04-02 20:23:17 +0000312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314}
315
Dan Gohmanaf752342009-07-07 17:06:11 +0000316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000320 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000325}
Chris Lattnerd934c702004-04-02 20:23:17 +0000326
Nick Lewycky31eaca52014-01-27 10:04:03 +0000327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000328 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000329}
330
Dan Gohmanaf752342009-07-07 17:06:11 +0000331const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000334 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000335}
336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000340
Dan Gohman24ceda82010-06-18 19:54:20 +0000341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347}
Chris Lattnerd934c702004-04-02 20:23:17 +0000348
Dan Gohman24ceda82010-06-18 19:54:20 +0000349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000354 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000355}
356
Dan Gohman24ceda82010-06-18 19:54:20 +0000357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000358 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000362 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000363}
364
Dan Gohman7cac9572010-08-02 23:49:30 +0000365void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000366 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000367 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000373 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000377 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000378 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387}
388
Chris Lattner229907c2011-07-18 04:54:35 +0000389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
Dan Gohmancf913832010-01-28 02:15:55 +0000402
403 return false;
404}
405
Chris Lattner229907c2011-07-18 04:54:35 +0000406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000412 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000414 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000421 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
Dan Gohmancf913832010-01-28 02:15:55 +0000427
428 return false;
429}
430
Chris Lattner229907c2011-07-18 04:54:35 +0000431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000439 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000443 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451}
452
Chris Lattnereb3e8402004-06-20 06:23:15 +0000453//===----------------------------------------------------------------------===//
454// SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000461 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000462 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463 public:
Dan Gohman992db002010-07-23 21:18:55 +0000464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000465
Dan Gohman27065672010-08-27 15:26:01 +0000466 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
474 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000478
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000482 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000483
Dan Gohman24ceda82010-06-18 19:54:20 +0000484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000487 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000500 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000501 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000502
503 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000506 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000507 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000508
509 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000514 }
515
Dan Gohman27065672010-08-27 15:26:01 +0000516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000529 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000530
531 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000534 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000535 }
536
Dan Gohman27065672010-08-27 15:26:01 +0000537 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 }
539
Dan Gohman27065672010-08-27 15:26:01 +0000540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000543
544 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000548 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 }
552
Dan Gohman27065672010-08-27 15:26:01 +0000553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000563 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000564 }
Dan Gohman27065672010-08-27 15:26:01 +0000565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000579 }
580
Dan Gohman27065672010-08-27 15:26:01 +0000581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000587
588 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
Dan Gohman5ae31022010-07-23 21:20:52 +0000593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
Dan Gohman27065672010-08-27 15:26:01 +0000600 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 }
602
Dan Gohman27065672010-08-27 15:26:01 +0000603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000612 }
613
Dan Gohman27065672010-08-27 15:26:01 +0000614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
Benjamin Kramer987b8502014-02-11 19:02:55 +0000624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000626 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000627 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628 }
629 };
630}
631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000637/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000638/// results from this routine. In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
Dan Gohmanaf752342009-07-07 17:06:11 +0000642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000643 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000651 return;
652 }
653
Dan Gohman24ceda82010-06-18 19:54:20 +0000654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000676}
677
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000678namespace {
679struct FindSCEVSize {
680 int Size;
681 FindSCEVSize() : Size(0) {}
682
683 bool follow(const SCEV *S) {
684 ++Size;
685 // Keep looking at all operands of S.
686 return true;
687 }
688 bool isDone() const {
689 return false;
690 }
691};
692}
693
694// Returns the size of the SCEV S.
695static inline int sizeOfSCEV(const SCEV *S) {
696 FindSCEVSize F;
697 SCEVTraversal<FindSCEVSize> ST(F);
698 ST.visitAll(S);
699 return F.Size;
700}
701
702namespace {
703
David Majnemer4e879362014-12-14 09:12:33 +0000704struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705public:
706 // Computes the Quotient and Remainder of the division of Numerator by
707 // Denominator.
708 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709 const SCEV *Denominator, const SCEV **Quotient,
710 const SCEV **Remainder) {
711 assert(Numerator && Denominator && "Uninitialized SCEV");
712
David Majnemer4e879362014-12-14 09:12:33 +0000713 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000714
715 // Check for the trivial case here to avoid having to check for it in the
716 // rest of the code.
717 if (Numerator == Denominator) {
718 *Quotient = D.One;
719 *Remainder = D.Zero;
720 return;
721 }
722
723 if (Numerator->isZero()) {
724 *Quotient = D.Zero;
725 *Remainder = D.Zero;
726 return;
727 }
728
729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762 void visitUnknown(const SCEVUnknown *Numerator) {}
763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
David Majnemer4e879362014-12-14 09:12:33 +0000765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767 APInt NumeratorVal = Numerator->getValue()->getValue();
768 APInt DenominatorVal = D->getValue()->getValue();
769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
788 assert(Numerator->isAffine() && "Numerator should be affine");
789 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
790 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
791 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
792 Numerator->getNoWrapFlags());
793 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
794 Numerator->getNoWrapFlags());
795 }
796
797 void visitAddExpr(const SCEVAddExpr *Numerator) {
798 SmallVector<const SCEV *, 2> Qs, Rs;
799 Type *Ty = Denominator->getType();
800
801 for (const SCEV *Op : Numerator->operands()) {
802 const SCEV *Q, *R;
803 divide(SE, Op, Denominator, &Q, &R);
804
805 // Bail out if types do not match.
806 if (Ty != Q->getType() || Ty != R->getType()) {
807 Quotient = Zero;
808 Remainder = Numerator;
809 return;
810 }
811
812 Qs.push_back(Q);
813 Rs.push_back(R);
814 }
815
816 if (Qs.size() == 1) {
817 Quotient = Qs[0];
818 Remainder = Rs[0];
819 return;
820 }
821
822 Quotient = SE.getAddExpr(Qs);
823 Remainder = SE.getAddExpr(Rs);
824 }
825
826 void visitMulExpr(const SCEVMulExpr *Numerator) {
827 SmallVector<const SCEV *, 2> Qs;
828 Type *Ty = Denominator->getType();
829
830 bool FoundDenominatorTerm = false;
831 for (const SCEV *Op : Numerator->operands()) {
832 // Bail out if types do not match.
833 if (Ty != Op->getType()) {
834 Quotient = Zero;
835 Remainder = Numerator;
836 return;
837 }
838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
853 if (Ty != Q->getType()) {
854 Quotient = Zero;
855 Remainder = Numerator;
856 return;
857 }
858
859 FoundDenominatorTerm = true;
860 Qs.push_back(Q);
861 }
862
863 if (FoundDenominatorTerm) {
864 Remainder = Zero;
865 if (Qs.size() == 1)
866 Quotient = Qs[0];
867 else
868 Quotient = SE.getMulExpr(Qs);
869 return;
870 }
871
872 if (!isa<SCEVUnknown>(Denominator)) {
873 Quotient = Zero;
874 Remainder = Numerator;
875 return;
876 }
877
878 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
879 ValueToValueMap RewriteMap;
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(Zero)->getValue();
882 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
883
884 if (Remainder->isZero()) {
885 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
886 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
887 cast<SCEVConstant>(One)->getValue();
888 Quotient =
889 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
890 return;
891 }
892
893 // Quotient is (Numerator - Remainder) divided by Denominator.
894 const SCEV *Q, *R;
895 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
896 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
897 // This SCEV does not seem to simplify: fail the division here.
898 Quotient = Zero;
899 Remainder = Numerator;
900 return;
901 }
902 divide(SE, Diff, Denominator, &Q, &R);
903 assert(R == Zero &&
904 "(Numerator - Remainder) should evenly divide Denominator");
905 Quotient = Q;
906 }
907
908private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000909 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
910 const SCEV *Denominator)
911 : SE(S), Denominator(Denominator) {
912 Zero = SE.getConstant(Denominator->getType(), 0);
913 One = SE.getConstant(Denominator->getType(), 1);
914
915 // By default, we don't know how to divide Expr by Denominator.
916 // Providing the default here simplifies the rest of the code.
917 Quotient = Zero;
918 Remainder = Numerator;
919 }
920
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000921 ScalarEvolution &SE;
922 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000923};
924
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000925}
926
Chris Lattnerd934c702004-04-02 20:23:17 +0000927//===----------------------------------------------------------------------===//
928// Simple SCEV method implementations
929//===----------------------------------------------------------------------===//
930
Eli Friedman61f67622008-08-04 23:49:06 +0000931/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000932/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000933static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000934 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000935 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000936 // Handle the simplest case efficiently.
937 if (K == 1)
938 return SE.getTruncateOrZeroExtend(It, ResultTy);
939
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000940 // We are using the following formula for BC(It, K):
941 //
942 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
943 //
Eli Friedman61f67622008-08-04 23:49:06 +0000944 // Suppose, W is the bitwidth of the return value. We must be prepared for
945 // overflow. Hence, we must assure that the result of our computation is
946 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
947 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000948 //
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000950 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000951 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
952 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000953 //
Eli Friedman61f67622008-08-04 23:49:06 +0000954 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000955 //
Eli Friedman61f67622008-08-04 23:49:06 +0000956 // This formula is trivially equivalent to the previous formula. However,
957 // this formula can be implemented much more efficiently. The trick is that
958 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
959 // arithmetic. To do exact division in modular arithmetic, all we have
960 // to do is multiply by the inverse. Therefore, this step can be done at
961 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000962 //
Eli Friedman61f67622008-08-04 23:49:06 +0000963 // The next issue is how to safely do the division by 2^T. The way this
964 // is done is by doing the multiplication step at a width of at least W + T
965 // bits. This way, the bottom W+T bits of the product are accurate. Then,
966 // when we perform the division by 2^T (which is equivalent to a right shift
967 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
968 // truncated out after the division by 2^T.
969 //
970 // In comparison to just directly using the first formula, this technique
971 // is much more efficient; using the first formula requires W * K bits,
972 // but this formula less than W + K bits. Also, the first formula requires
973 // a division step, whereas this formula only requires multiplies and shifts.
974 //
975 // It doesn't matter whether the subtraction step is done in the calculation
976 // width or the input iteration count's width; if the subtraction overflows,
977 // the result must be zero anyway. We prefer here to do it in the width of
978 // the induction variable because it helps a lot for certain cases; CodeGen
979 // isn't smart enough to ignore the overflow, which leads to much less
980 // efficient code if the width of the subtraction is wider than the native
981 // register width.
982 //
983 // (It's possible to not widen at all by pulling out factors of 2 before
984 // the multiplication; for example, K=2 can be calculated as
985 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
986 // extra arithmetic, so it's not an obvious win, and it gets
987 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000988
Eli Friedman61f67622008-08-04 23:49:06 +0000989 // Protection from insane SCEVs; this bound is conservative,
990 // but it probably doesn't matter.
991 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000992 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000993
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000994 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000995
Eli Friedman61f67622008-08-04 23:49:06 +0000996 // Calculate K! / 2^T and T; we divide out the factors of two before
997 // multiplying for calculating K! / 2^T to avoid overflow.
998 // Other overflow doesn't matter because we only care about the bottom
999 // W bits of the result.
1000 APInt OddFactorial(W, 1);
1001 unsigned T = 1;
1002 for (unsigned i = 3; i <= K; ++i) {
1003 APInt Mult(W, i);
1004 unsigned TwoFactors = Mult.countTrailingZeros();
1005 T += TwoFactors;
1006 Mult = Mult.lshr(TwoFactors);
1007 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001008 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001009
Eli Friedman61f67622008-08-04 23:49:06 +00001010 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001011 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001012
Dan Gohman8b0a4192010-03-01 17:49:51 +00001013 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001014 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001015
1016 // Calculate the multiplicative inverse of K! / 2^T;
1017 // this multiplication factor will perform the exact division by
1018 // K! / 2^T.
1019 APInt Mod = APInt::getSignedMinValue(W+1);
1020 APInt MultiplyFactor = OddFactorial.zext(W+1);
1021 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1022 MultiplyFactor = MultiplyFactor.trunc(W);
1023
1024 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001025 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001026 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001027 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001028 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001029 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001030 Dividend = SE.getMulExpr(Dividend,
1031 SE.getTruncateOrZeroExtend(S, CalculationTy));
1032 }
1033
1034 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001035 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001036
1037 // Truncate the result, and divide by K! / 2^T.
1038
1039 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1040 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001041}
1042
Chris Lattnerd934c702004-04-02 20:23:17 +00001043/// evaluateAtIteration - Return the value of this chain of recurrences at
1044/// the specified iteration number. We can evaluate this recurrence by
1045/// multiplying each element in the chain by the binomial coefficient
1046/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1047///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001048/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001049///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001050/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001051///
Dan Gohmanaf752342009-07-07 17:06:11 +00001052const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001053 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001054 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001055 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001056 // The computation is correct in the face of overflow provided that the
1057 // multiplication is performed _after_ the evaluation of the binomial
1058 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001059 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001060 if (isa<SCEVCouldNotCompute>(Coeff))
1061 return Coeff;
1062
1063 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001064 }
1065 return Result;
1066}
1067
Chris Lattnerd934c702004-04-02 20:23:17 +00001068//===----------------------------------------------------------------------===//
1069// SCEV Expression folder implementations
1070//===----------------------------------------------------------------------===//
1071
Dan Gohmanaf752342009-07-07 17:06:11 +00001072const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001073 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001074 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001075 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001076 assert(isSCEVable(Ty) &&
1077 "This is not a conversion to a SCEVable type!");
1078 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001079
Dan Gohman3a302cb2009-07-13 20:50:19 +00001080 FoldingSetNodeID ID;
1081 ID.AddInteger(scTruncate);
1082 ID.AddPointer(Op);
1083 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001084 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1086
Dan Gohman3423e722009-06-30 20:13:32 +00001087 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001088 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001089 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001090 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001091
Dan Gohman79af8542009-04-22 16:20:48 +00001092 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001094 return getTruncateExpr(ST->getOperand(), Ty);
1095
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1099
1100 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001101 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001102 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1103
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001104 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1105 // eliminate all the truncates.
1106 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1107 SmallVector<const SCEV *, 4> Operands;
1108 bool hasTrunc = false;
1109 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1110 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1111 hasTrunc = isa<SCEVTruncateExpr>(S);
1112 Operands.push_back(S);
1113 }
1114 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001115 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001116 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001117 }
1118
Nick Lewycky5c901f32011-01-19 18:56:00 +00001119 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1120 // eliminate all the truncates.
1121 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1122 SmallVector<const SCEV *, 4> Operands;
1123 bool hasTrunc = false;
1124 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1125 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1126 hasTrunc = isa<SCEVTruncateExpr>(S);
1127 Operands.push_back(S);
1128 }
1129 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001130 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001132 }
1133
Dan Gohman5a728c92009-06-18 16:24:47 +00001134 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001136 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001137 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001138 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001140 }
1141
Dan Gohman89dd42a2010-06-25 18:47:08 +00001142 // The cast wasn't folded; create an explicit cast node. We can reuse
1143 // the existing insert position since if we get here, we won't have
1144 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001147 UniqueSCEVs.InsertNode(S, IP);
1148 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001149}
1150
Dan Gohmanaf752342009-07-07 17:06:11 +00001151const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001152 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001154 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001155 assert(isSCEVable(Ty) &&
1156 "This is not a conversion to a SCEVable type!");
1157 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001158
Dan Gohman3423e722009-06-30 20:13:32 +00001159 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1161 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001162 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001163
Dan Gohman79af8542009-04-22 16:20:48 +00001164 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001165 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001166 return getZeroExtendExpr(SZ->getOperand(), Ty);
1167
Dan Gohman74a0ba12009-07-13 20:55:53 +00001168 // Before doing any expensive analysis, check to see if we've already
1169 // computed a SCEV for this Op and Ty.
1170 FoldingSetNodeID ID;
1171 ID.AddInteger(scZeroExtend);
1172 ID.AddPointer(Op);
1173 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001174 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001175 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1176
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001177 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1178 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1179 // It's possible the bits taken off by the truncate were all zero bits. If
1180 // so, we should be able to simplify this further.
1181 const SCEV *X = ST->getOperand();
1182 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001183 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1184 unsigned NewBits = getTypeSizeInBits(Ty);
1185 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001186 CR.zextOrTrunc(NewBits)))
1187 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001188 }
1189
Dan Gohman76466372009-04-27 20:16:15 +00001190 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001191 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001192 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001193 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001194 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001195 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001196 const SCEV *Start = AR->getStart();
1197 const SCEV *Step = AR->getStepRecurrence(*this);
1198 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1199 const Loop *L = AR->getLoop();
1200
Dan Gohman62ef6a72009-07-25 01:22:26 +00001201 // If we have special knowledge that this addrec won't overflow,
1202 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001203 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +00001204 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1205 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001206 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001207
Dan Gohman76466372009-04-27 20:16:15 +00001208 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1209 // Note that this serves two purposes: It filters out loops that are
1210 // simply not analyzable, and it covers the case where this code is
1211 // being called from within backedge-taken count analysis, such that
1212 // attempting to ask for the backedge-taken count would likely result
1213 // in infinite recursion. In the later case, the analysis code will
1214 // cope with a conservative value, and it will take care to purge
1215 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001216 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001217 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001218 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001219 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001220
1221 // Check whether the backedge-taken count can be losslessly casted to
1222 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001223 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001224 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001225 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001226 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1227 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001228 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001229 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001230 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001231 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1232 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1233 const SCEV *WideMaxBECount =
1234 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001235 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001236 getAddExpr(WideStart,
1237 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001238 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001239 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001240 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1241 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001242 // Return the expression with the addrec on the outside.
1243 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1244 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001245 L, AR->getNoWrapFlags());
1246 }
Dan Gohman76466372009-04-27 20:16:15 +00001247 // Similar to above, only this time treat the step value as signed.
1248 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001249 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001250 getAddExpr(WideStart,
1251 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001252 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001253 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001254 // Cache knowledge of AR NW, which is propagated to this AddRec.
1255 // Negative step causes unsigned wrap, but it still can't self-wrap.
1256 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001257 // Return the expression with the addrec on the outside.
1258 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1259 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001260 L, AR->getNoWrapFlags());
1261 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001262 }
1263
1264 // If the backedge is guarded by a comparison with the pre-inc value
1265 // the addrec is safe. Also, if the entry is guarded by a comparison
1266 // with the start value and the backedge is guarded by a comparison
1267 // with the post-inc value, the addrec is safe.
1268 if (isKnownPositive(Step)) {
1269 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1270 getUnsignedRange(Step).getUnsignedMax());
1271 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001272 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001273 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001274 AR->getPostIncExpr(*this), N))) {
1275 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1276 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001277 // Return the expression with the addrec on the outside.
1278 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1279 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001280 L, AR->getNoWrapFlags());
1281 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001282 } else if (isKnownNegative(Step)) {
1283 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1284 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001285 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1286 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001287 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001288 AR->getPostIncExpr(*this), N))) {
1289 // Cache knowledge of AR NW, which is propagated to this AddRec.
1290 // Negative step causes unsigned wrap, but it still can't self-wrap.
1291 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1292 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001293 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1294 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001295 L, AR->getNoWrapFlags());
1296 }
Dan Gohman76466372009-04-27 20:16:15 +00001297 }
1298 }
1299 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001300
Dan Gohman74a0ba12009-07-13 20:55:53 +00001301 // The cast wasn't folded; create an explicit cast node.
1302 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001303 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001304 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1305 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001306 UniqueSCEVs.InsertNode(S, IP);
1307 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001308}
1309
Andrew Trick812276e2011-05-31 21:17:47 +00001310// Get the limit of a recurrence such that incrementing by Step cannot cause
1311// signed overflow as long as the value of the recurrence within the loop does
1312// not exceed this limit before incrementing.
1313static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1314 ICmpInst::Predicate *Pred,
1315 ScalarEvolution *SE) {
1316 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1317 if (SE->isKnownPositive(Step)) {
1318 *Pred = ICmpInst::ICMP_SLT;
1319 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1320 SE->getSignedRange(Step).getSignedMax());
1321 }
1322 if (SE->isKnownNegative(Step)) {
1323 *Pred = ICmpInst::ICMP_SGT;
1324 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1325 SE->getSignedRange(Step).getSignedMin());
1326 }
Craig Topper9f008862014-04-15 04:59:12 +00001327 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001328}
1329
1330// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1331// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1332// or postincrement sibling. This allows normalizing a sign extended AddRec as
1333// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1334// result, the expression "Step + sext(PreIncAR)" is congruent with
1335// "sext(PostIncAR)"
1336static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001337 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001338 ScalarEvolution *SE) {
1339 const Loop *L = AR->getLoop();
1340 const SCEV *Start = AR->getStart();
1341 const SCEV *Step = AR->getStepRecurrence(*SE);
1342
1343 // Check for a simple looking step prior to loop entry.
1344 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001345 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001346 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001347
1348 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1349 // subtraction is expensive. For this purpose, perform a quick and dirty
1350 // difference, by checking for Step in the operand list.
1351 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001352 for (const SCEV *Op : SA->operands())
1353 if (Op != Step)
1354 DiffOps.push_back(Op);
1355
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001356 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001357 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001358
1359 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1360 // same three conditions that getSignExtendedExpr checks.
1361
1362 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001363 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001364 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1365 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1366
Sanjoy Dasf2e931c2015-02-08 22:52:17 +00001367 // WARNING: FIXME: the optimization below assumes that a sign-overflowing nsw
1368 // operation is undefined behavior. This is strictly more aggressive than the
1369 // interpretation of nsw in other parts of LLVM (for instance, they may
1370 // unconditionally hoist nsw arithmetic through control flow). This logic
1371 // needs to be revisited once we have a consistent semantics for poison
1372 // values.
1373 //
1374 // "{S,+,X} is <nsw>" and "{S,+,X} is evaluated at least once" implies "S+X
1375 // does not sign-overflow" (we'd have undefined behavior if it did). If
1376 // `L->getExitingBlock() == L->getLoopLatch()` then `PreAR` (= {S,+,X}<nsw>)
1377 // is evaluated every-time `AR` (= {S+X,+,X}) is evaluated, and hence within
1378 // `AR` we are safe to assume that "S+X" will not sign-overflow.
1379 //
1380
1381 BasicBlock *ExitingBlock = L->getExitingBlock();
1382 BasicBlock *LatchBlock = L->getLoopLatch();
1383 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW) &&
1384 ExitingBlock != nullptr && ExitingBlock == LatchBlock)
Andrew Trick812276e2011-05-31 21:17:47 +00001385 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001386
1387 // 2. Direct overflow check on the step operation's expression.
1388 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001389 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001390 const SCEV *OperandExtendedStart =
1391 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1392 SE->getSignExtendExpr(Step, WideTy));
1393 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1394 // Cache knowledge of PreAR NSW.
1395 if (PreAR)
1396 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1397 // FIXME: this optimization needs a unit test
1398 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1399 return PreStart;
1400 }
1401
1402 // 3. Loop precondition.
1403 ICmpInst::Predicate Pred;
1404 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1405
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001406 if (OverflowLimit &&
1407 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001408 return PreStart;
1409 }
Craig Topper9f008862014-04-15 04:59:12 +00001410 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001411}
1412
1413// Get the normalized sign-extended expression for this AddRec's Start.
1414static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001415 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001416 ScalarEvolution *SE) {
1417 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1418 if (!PreStart)
1419 return SE->getSignExtendExpr(AR->getStart(), Ty);
1420
1421 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1422 SE->getSignExtendExpr(PreStart, Ty));
1423}
1424
Dan Gohmanaf752342009-07-07 17:06:11 +00001425const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001426 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001427 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001428 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001429 assert(isSCEVable(Ty) &&
1430 "This is not a conversion to a SCEVable type!");
1431 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001432
Dan Gohman3423e722009-06-30 20:13:32 +00001433 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001434 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1435 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001436 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001437
Dan Gohman79af8542009-04-22 16:20:48 +00001438 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001439 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001440 return getSignExtendExpr(SS->getOperand(), Ty);
1441
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001442 // sext(zext(x)) --> zext(x)
1443 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1444 return getZeroExtendExpr(SZ->getOperand(), Ty);
1445
Dan Gohman74a0ba12009-07-13 20:55:53 +00001446 // Before doing any expensive analysis, check to see if we've already
1447 // computed a SCEV for this Op and Ty.
1448 FoldingSetNodeID ID;
1449 ID.AddInteger(scSignExtend);
1450 ID.AddPointer(Op);
1451 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001452 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001453 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1454
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001455 // If the input value is provably positive, build a zext instead.
1456 if (isKnownNonNegative(Op))
1457 return getZeroExtendExpr(Op, Ty);
1458
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001459 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1460 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1461 // It's possible the bits taken off by the truncate were all sign bits. If
1462 // so, we should be able to simplify this further.
1463 const SCEV *X = ST->getOperand();
1464 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001465 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1466 unsigned NewBits = getTypeSizeInBits(Ty);
1467 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001468 CR.sextOrTrunc(NewBits)))
1469 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001470 }
1471
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001472 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1473 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1474 if (SA->getNumOperands() == 2) {
1475 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1476 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1477 if (SMul && SC1) {
1478 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001479 const APInt &C1 = SC1->getValue()->getValue();
1480 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001481 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001482 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001483 return getAddExpr(getSignExtendExpr(SC1, Ty),
1484 getSignExtendExpr(SMul, Ty));
1485 }
1486 }
1487 }
1488 }
Dan Gohman76466372009-04-27 20:16:15 +00001489 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001490 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001491 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001492 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001493 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001494 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001495 const SCEV *Start = AR->getStart();
1496 const SCEV *Step = AR->getStepRecurrence(*this);
1497 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1498 const Loop *L = AR->getLoop();
1499
Dan Gohman62ef6a72009-07-25 01:22:26 +00001500 // If we have special knowledge that this addrec won't overflow,
1501 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001502 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001503 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001504 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001505 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001506
Dan Gohman76466372009-04-27 20:16:15 +00001507 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1508 // Note that this serves two purposes: It filters out loops that are
1509 // simply not analyzable, and it covers the case where this code is
1510 // being called from within backedge-taken count analysis, such that
1511 // attempting to ask for the backedge-taken count would likely result
1512 // in infinite recursion. In the later case, the analysis code will
1513 // cope with a conservative value, and it will take care to purge
1514 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001515 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001516 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001517 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001518 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001519
1520 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001521 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001522 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001523 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001524 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001525 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1526 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001527 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001528 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001529 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001530 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1531 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1532 const SCEV *WideMaxBECount =
1533 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001534 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001535 getAddExpr(WideStart,
1536 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001537 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001538 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001539 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1540 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001541 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001542 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001543 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001544 L, AR->getNoWrapFlags());
1545 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001546 // Similar to above, only this time treat the step value as unsigned.
1547 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001548 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001549 getAddExpr(WideStart,
1550 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001551 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001552 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001553 // If AR wraps around then
1554 //
1555 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1556 // => SAdd != OperandExtendedAdd
1557 //
1558 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1559 // (SAdd == OperandExtendedAdd => AR is NW)
1560
1561 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1562
Dan Gohman8c129d72009-07-16 17:34:36 +00001563 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001564 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001565 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001566 L, AR->getNoWrapFlags());
1567 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001568 }
1569
1570 // If the backedge is guarded by a comparison with the pre-inc value
1571 // the addrec is safe. Also, if the entry is guarded by a comparison
1572 // with the start value and the backedge is guarded by a comparison
1573 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001574 ICmpInst::Predicate Pred;
1575 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1576 if (OverflowLimit &&
1577 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1578 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1579 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1580 OverflowLimit)))) {
1581 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1582 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1583 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1584 getSignExtendExpr(Step, Ty),
1585 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001586 }
1587 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001588 // If Start and Step are constants, check if we can apply this
1589 // transformation:
1590 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1591 auto SC1 = dyn_cast<SCEVConstant>(Start);
1592 auto SC2 = dyn_cast<SCEVConstant>(Step);
1593 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001594 const APInt &C1 = SC1->getValue()->getValue();
1595 const APInt &C2 = SC2->getValue()->getValue();
1596 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1597 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001598 Start = getSignExtendExpr(Start, Ty);
1599 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1600 L, AR->getNoWrapFlags());
1601 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1602 }
1603 }
Dan Gohman76466372009-04-27 20:16:15 +00001604 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001605
Dan Gohman74a0ba12009-07-13 20:55:53 +00001606 // The cast wasn't folded; create an explicit cast node.
1607 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001608 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001609 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1610 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001611 UniqueSCEVs.InsertNode(S, IP);
1612 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001613}
1614
Dan Gohman8db2edc2009-06-13 15:56:47 +00001615/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1616/// unspecified bits out to the given type.
1617///
Dan Gohmanaf752342009-07-07 17:06:11 +00001618const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001619 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001620 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1621 "This is not an extending conversion!");
1622 assert(isSCEVable(Ty) &&
1623 "This is not a conversion to a SCEVable type!");
1624 Ty = getEffectiveSCEVType(Ty);
1625
1626 // Sign-extend negative constants.
1627 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1628 if (SC->getValue()->getValue().isNegative())
1629 return getSignExtendExpr(Op, Ty);
1630
1631 // Peel off a truncate cast.
1632 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001633 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001634 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1635 return getAnyExtendExpr(NewOp, Ty);
1636 return getTruncateOrNoop(NewOp, Ty);
1637 }
1638
1639 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001640 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001641 if (!isa<SCEVZeroExtendExpr>(ZExt))
1642 return ZExt;
1643
1644 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001645 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001646 if (!isa<SCEVSignExtendExpr>(SExt))
1647 return SExt;
1648
Dan Gohman51ad99d2010-01-21 02:09:26 +00001649 // Force the cast to be folded into the operands of an addrec.
1650 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1651 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001652 for (const SCEV *Op : AR->operands())
1653 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001654 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001655 }
1656
Dan Gohman8db2edc2009-06-13 15:56:47 +00001657 // If the expression is obviously signed, use the sext cast value.
1658 if (isa<SCEVSMaxExpr>(Op))
1659 return SExt;
1660
1661 // Absent any other information, use the zext cast value.
1662 return ZExt;
1663}
1664
Dan Gohman038d02e2009-06-14 22:58:51 +00001665/// CollectAddOperandsWithScales - Process the given Ops list, which is
1666/// a list of operands to be added under the given scale, update the given
1667/// map. This is a helper function for getAddRecExpr. As an example of
1668/// what it does, given a sequence of operands that would form an add
1669/// expression like this:
1670///
Tobias Grosserba49e422014-03-05 10:37:17 +00001671/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001672///
1673/// where A and B are constants, update the map with these values:
1674///
1675/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1676///
1677/// and add 13 + A*B*29 to AccumulatedConstant.
1678/// This will allow getAddRecExpr to produce this:
1679///
1680/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1681///
1682/// This form often exposes folding opportunities that are hidden in
1683/// the original operand list.
1684///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001685/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001686/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1687/// the common case where no interesting opportunities are present, and
1688/// is also used as a check to avoid infinite recursion.
1689///
1690static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001691CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001692 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001693 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001694 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001695 const APInt &Scale,
1696 ScalarEvolution &SE) {
1697 bool Interesting = false;
1698
Dan Gohman45073042010-06-18 19:12:32 +00001699 // Iterate over the add operands. They are sorted, with constants first.
1700 unsigned i = 0;
1701 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1702 ++i;
1703 // Pull a buried constant out to the outside.
1704 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1705 Interesting = true;
1706 AccumulatedConstant += Scale * C->getValue()->getValue();
1707 }
1708
1709 // Next comes everything else. We're especially interested in multiplies
1710 // here, but they're in the middle, so just visit the rest with one loop.
1711 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001712 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1713 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1714 APInt NewScale =
1715 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1716 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1717 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001718 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001719 Interesting |=
1720 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001721 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001722 NewScale, SE);
1723 } else {
1724 // A multiplication of a constant with some other value. Update
1725 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001726 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1727 const SCEV *Key = SE.getMulExpr(MulOps);
1728 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001729 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001730 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001731 NewOps.push_back(Pair.first->first);
1732 } else {
1733 Pair.first->second += NewScale;
1734 // The map already had an entry for this value, which may indicate
1735 // a folding opportunity.
1736 Interesting = true;
1737 }
1738 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001739 } else {
1740 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001741 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001742 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001743 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001744 NewOps.push_back(Pair.first->first);
1745 } else {
1746 Pair.first->second += Scale;
1747 // The map already had an entry for this value, which may indicate
1748 // a folding opportunity.
1749 Interesting = true;
1750 }
1751 }
1752 }
1753
1754 return Interesting;
1755}
1756
1757namespace {
1758 struct APIntCompare {
1759 bool operator()(const APInt &LHS, const APInt &RHS) const {
1760 return LHS.ult(RHS);
1761 }
1762 };
1763}
1764
Sanjoy Das81401d42015-01-10 23:41:24 +00001765// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1766// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1767// can't-overflow flags for the operation if possible.
1768static SCEV::NoWrapFlags
1769StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1770 const SmallVectorImpl<const SCEV *> &Ops,
1771 SCEV::NoWrapFlags OldFlags) {
1772 using namespace std::placeholders;
1773
1774 bool CanAnalyze =
1775 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1776 (void)CanAnalyze;
1777 assert(CanAnalyze && "don't call from other places!");
1778
1779 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1780 SCEV::NoWrapFlags SignOrUnsignWrap =
1781 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1782
1783 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1784 auto IsKnownNonNegative =
1785 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1786
1787 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1788 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1789 return ScalarEvolution::setFlags(OldFlags,
1790 (SCEV::NoWrapFlags)SignOrUnsignMask);
1791
1792 return OldFlags;
1793}
1794
Dan Gohman4d5435d2009-05-24 23:45:28 +00001795/// getAddExpr - Get a canonical add expression, or something simpler if
1796/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001797const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001798 SCEV::NoWrapFlags Flags) {
1799 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1800 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001801 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001802 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001803#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001804 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001805 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001806 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001807 "SCEVAddExpr operand types don't match!");
1808#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001809
Sanjoy Das81401d42015-01-10 23:41:24 +00001810 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001811
Chris Lattnerd934c702004-04-02 20:23:17 +00001812 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001813 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001814
1815 // If there are any constants, fold them together.
1816 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001817 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001818 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001819 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001820 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001821 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001822 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1823 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001824 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001825 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001826 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001827 }
1828
1829 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001830 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001831 Ops.erase(Ops.begin());
1832 --Idx;
1833 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001834
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001835 if (Ops.size() == 1) return Ops[0];
1836 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001837
Dan Gohman15871f22010-08-27 21:39:59 +00001838 // Okay, check to see if the same value occurs in the operand list more than
1839 // once. If so, merge them together into an multiply expression. Since we
1840 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001841 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001842 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001843 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001844 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001845 // Scan ahead to count how many equal operands there are.
1846 unsigned Count = 2;
1847 while (i+Count != e && Ops[i+Count] == Ops[i])
1848 ++Count;
1849 // Merge the values into a multiply.
1850 const SCEV *Scale = getConstant(Ty, Count);
1851 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1852 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001853 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001854 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001855 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001856 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001857 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001858 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001859 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001860 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001861
Dan Gohman2e55cc52009-05-08 21:03:19 +00001862 // Check for truncates. If all the operands are truncated from the same
1863 // type, see if factoring out the truncate would permit the result to be
1864 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1865 // if the contents of the resulting outer trunc fold to something simple.
1866 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1867 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001868 Type *DstType = Trunc->getType();
1869 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001870 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001871 bool Ok = true;
1872 // Check all the operands to see if they can be represented in the
1873 // source type of the truncate.
1874 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1875 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1876 if (T->getOperand()->getType() != SrcType) {
1877 Ok = false;
1878 break;
1879 }
1880 LargeOps.push_back(T->getOperand());
1881 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001882 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001883 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001884 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001885 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1886 if (const SCEVTruncateExpr *T =
1887 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1888 if (T->getOperand()->getType() != SrcType) {
1889 Ok = false;
1890 break;
1891 }
1892 LargeMulOps.push_back(T->getOperand());
1893 } else if (const SCEVConstant *C =
1894 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001895 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001896 } else {
1897 Ok = false;
1898 break;
1899 }
1900 }
1901 if (Ok)
1902 LargeOps.push_back(getMulExpr(LargeMulOps));
1903 } else {
1904 Ok = false;
1905 break;
1906 }
1907 }
1908 if (Ok) {
1909 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001910 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001911 // If it folds to something simple, use it. Otherwise, don't.
1912 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1913 return getTruncateExpr(Fold, DstType);
1914 }
1915 }
1916
1917 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001918 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1919 ++Idx;
1920
1921 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001922 if (Idx < Ops.size()) {
1923 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001924 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001925 // If we have an add, expand the add operands onto the end of the operands
1926 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001927 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001928 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001929 DeletedAdd = true;
1930 }
1931
1932 // If we deleted at least one add, we added operands to the end of the list,
1933 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001934 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001935 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001936 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001937 }
1938
1939 // Skip over the add expression until we get to a multiply.
1940 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1941 ++Idx;
1942
Dan Gohman038d02e2009-06-14 22:58:51 +00001943 // Check to see if there are any folding opportunities present with
1944 // operands multiplied by constant values.
1945 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1946 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001947 DenseMap<const SCEV *, APInt> M;
1948 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001949 APInt AccumulatedConstant(BitWidth, 0);
1950 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001951 Ops.data(), Ops.size(),
1952 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001953 // Some interesting folding opportunity is present, so its worthwhile to
1954 // re-generate the operands list. Group the operands by constant scale,
1955 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001956 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001957 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001958 E = NewOps.end(); I != E; ++I)
1959 MulOpLists[M.find(*I)->second].push_back(*I);
1960 // Re-generate the operands list.
1961 Ops.clear();
1962 if (AccumulatedConstant != 0)
1963 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001964 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1965 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001966 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001967 Ops.push_back(getMulExpr(getConstant(I->first),
1968 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001969 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001970 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001971 if (Ops.size() == 1)
1972 return Ops[0];
1973 return getAddExpr(Ops);
1974 }
1975 }
1976
Chris Lattnerd934c702004-04-02 20:23:17 +00001977 // If we are adding something to a multiply expression, make sure the
1978 // something is not already an operand of the multiply. If so, merge it into
1979 // the multiply.
1980 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001981 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001982 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001983 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00001984 if (isa<SCEVConstant>(MulOpSCEV))
1985 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00001986 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00001987 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001988 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00001989 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001990 if (Mul->getNumOperands() != 2) {
1991 // If the multiply has more than two operands, we must get the
1992 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00001993 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1994 Mul->op_begin()+MulOp);
1995 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001996 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001997 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00001998 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00001999 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002000 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002001 if (Ops.size() == 2) return OuterMul;
2002 if (AddOp < Idx) {
2003 Ops.erase(Ops.begin()+AddOp);
2004 Ops.erase(Ops.begin()+Idx-1);
2005 } else {
2006 Ops.erase(Ops.begin()+Idx);
2007 Ops.erase(Ops.begin()+AddOp-1);
2008 }
2009 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002010 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002011 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002012
Chris Lattnerd934c702004-04-02 20:23:17 +00002013 // Check this multiply against other multiplies being added together.
2014 for (unsigned OtherMulIdx = Idx+1;
2015 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2016 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002017 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002018 // If MulOp occurs in OtherMul, we can fold the two multiplies
2019 // together.
2020 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2021 OMulOp != e; ++OMulOp)
2022 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2023 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002024 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002025 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002026 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002027 Mul->op_begin()+MulOp);
2028 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002029 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002030 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002031 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002032 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002033 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002034 OtherMul->op_begin()+OMulOp);
2035 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002036 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002037 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002038 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2039 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002040 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002041 Ops.erase(Ops.begin()+Idx);
2042 Ops.erase(Ops.begin()+OtherMulIdx-1);
2043 Ops.push_back(OuterMul);
2044 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002045 }
2046 }
2047 }
2048 }
2049
2050 // If there are any add recurrences in the operands list, see if any other
2051 // added values are loop invariant. If so, we can fold them into the
2052 // recurrence.
2053 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2054 ++Idx;
2055
2056 // Scan over all recurrences, trying to fold loop invariants into them.
2057 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2058 // Scan all of the other operands to this add and add them to the vector if
2059 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002060 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002061 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002062 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002063 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002064 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002065 LIOps.push_back(Ops[i]);
2066 Ops.erase(Ops.begin()+i);
2067 --i; --e;
2068 }
2069
2070 // If we found some loop invariants, fold them into the recurrence.
2071 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002072 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002073 LIOps.push_back(AddRec->getStart());
2074
Dan Gohmanaf752342009-07-07 17:06:11 +00002075 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002076 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002077 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002078
Dan Gohman16206132010-06-30 07:16:37 +00002079 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002080 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002081 // Always propagate NW.
2082 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002083 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002084
Chris Lattnerd934c702004-04-02 20:23:17 +00002085 // If all of the other operands were loop invariant, we are done.
2086 if (Ops.size() == 1) return NewRec;
2087
Nick Lewyckydb66b822011-09-06 05:08:09 +00002088 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002089 for (unsigned i = 0;; ++i)
2090 if (Ops[i] == AddRec) {
2091 Ops[i] = NewRec;
2092 break;
2093 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002094 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002095 }
2096
2097 // Okay, if there weren't any loop invariants to be folded, check to see if
2098 // there are multiple AddRec's with the same loop induction variable being
2099 // added together. If so, we can fold them.
2100 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002101 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2102 ++OtherIdx)
2103 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2104 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2105 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2106 AddRec->op_end());
2107 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2108 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002109 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002110 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002111 if (OtherAddRec->getLoop() == AddRecLoop) {
2112 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2113 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002114 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002115 AddRecOps.append(OtherAddRec->op_begin()+i,
2116 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002117 break;
2118 }
Dan Gohman028c1812010-08-29 14:53:34 +00002119 AddRecOps[i] = getAddExpr(AddRecOps[i],
2120 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002121 }
2122 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002123 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002124 // Step size has changed, so we cannot guarantee no self-wraparound.
2125 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002126 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002127 }
2128
2129 // Otherwise couldn't fold anything into this recurrence. Move onto the
2130 // next one.
2131 }
2132
2133 // Okay, it looks like we really DO need an add expr. Check to see if we
2134 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002135 FoldingSetNodeID ID;
2136 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002137 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2138 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002139 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002140 SCEVAddExpr *S =
2141 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2142 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002143 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2144 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002145 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2146 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002147 UniqueSCEVs.InsertNode(S, IP);
2148 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002149 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002150 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002151}
2152
Nick Lewycky287682e2011-10-04 06:51:26 +00002153static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2154 uint64_t k = i*j;
2155 if (j > 1 && k / j != i) Overflow = true;
2156 return k;
2157}
2158
2159/// Compute the result of "n choose k", the binomial coefficient. If an
2160/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002161/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002162static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2163 // We use the multiplicative formula:
2164 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2165 // At each iteration, we take the n-th term of the numeral and divide by the
2166 // (k-n)th term of the denominator. This division will always produce an
2167 // integral result, and helps reduce the chance of overflow in the
2168 // intermediate computations. However, we can still overflow even when the
2169 // final result would fit.
2170
2171 if (n == 0 || n == k) return 1;
2172 if (k > n) return 0;
2173
2174 if (k > n/2)
2175 k = n-k;
2176
2177 uint64_t r = 1;
2178 for (uint64_t i = 1; i <= k; ++i) {
2179 r = umul_ov(r, n-(i-1), Overflow);
2180 r /= i;
2181 }
2182 return r;
2183}
2184
Nick Lewycky05044c22014-12-06 00:45:50 +00002185/// Determine if any of the operands in this SCEV are a constant or if
2186/// any of the add or multiply expressions in this SCEV contain a constant.
2187static bool containsConstantSomewhere(const SCEV *StartExpr) {
2188 SmallVector<const SCEV *, 4> Ops;
2189 Ops.push_back(StartExpr);
2190 while (!Ops.empty()) {
2191 const SCEV *CurrentExpr = Ops.pop_back_val();
2192 if (isa<SCEVConstant>(*CurrentExpr))
2193 return true;
2194
2195 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2196 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002197 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002198 }
2199 }
2200 return false;
2201}
2202
Dan Gohman4d5435d2009-05-24 23:45:28 +00002203/// getMulExpr - Get a canonical multiply expression, or something simpler if
2204/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002205const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002206 SCEV::NoWrapFlags Flags) {
2207 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2208 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002209 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002210 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002211#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002212 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002213 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002214 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002215 "SCEVMulExpr operand types don't match!");
2216#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002217
Sanjoy Das81401d42015-01-10 23:41:24 +00002218 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002219
Chris Lattnerd934c702004-04-02 20:23:17 +00002220 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002221 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002222
2223 // If there are any constants, fold them together.
2224 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002225 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002226
2227 // C1*(C2+V) -> C1*C2 + C1*V
2228 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002229 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2230 // If any of Add's ops are Adds or Muls with a constant,
2231 // apply this transformation as well.
2232 if (Add->getNumOperands() == 2)
2233 if (containsConstantSomewhere(Add))
2234 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2235 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002236
Chris Lattnerd934c702004-04-02 20:23:17 +00002237 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002238 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002239 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002240 ConstantInt *Fold = ConstantInt::get(getContext(),
2241 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002242 RHSC->getValue()->getValue());
2243 Ops[0] = getConstant(Fold);
2244 Ops.erase(Ops.begin()+1); // Erase the folded element
2245 if (Ops.size() == 1) return Ops[0];
2246 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002247 }
2248
2249 // If we are left with a constant one being multiplied, strip it off.
2250 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2251 Ops.erase(Ops.begin());
2252 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002253 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002254 // If we have a multiply of zero, it will always be zero.
2255 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002256 } else if (Ops[0]->isAllOnesValue()) {
2257 // If we have a mul by -1 of an add, try distributing the -1 among the
2258 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002259 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002260 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2261 SmallVector<const SCEV *, 4> NewOps;
2262 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002263 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2264 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002265 const SCEV *Mul = getMulExpr(Ops[0], *I);
2266 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2267 NewOps.push_back(Mul);
2268 }
2269 if (AnyFolded)
2270 return getAddExpr(NewOps);
2271 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002272 else if (const SCEVAddRecExpr *
2273 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2274 // Negation preserves a recurrence's no self-wrap property.
2275 SmallVector<const SCEV *, 4> Operands;
2276 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2277 E = AddRec->op_end(); I != E; ++I) {
2278 Operands.push_back(getMulExpr(Ops[0], *I));
2279 }
2280 return getAddRecExpr(Operands, AddRec->getLoop(),
2281 AddRec->getNoWrapFlags(SCEV::FlagNW));
2282 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002283 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002284 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002285
2286 if (Ops.size() == 1)
2287 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002288 }
2289
2290 // Skip over the add expression until we get to a multiply.
2291 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2292 ++Idx;
2293
Chris Lattnerd934c702004-04-02 20:23:17 +00002294 // If there are mul operands inline them all into this expression.
2295 if (Idx < Ops.size()) {
2296 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002297 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002298 // If we have an mul, expand the mul operands onto the end of the operands
2299 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002300 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002301 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002302 DeletedMul = true;
2303 }
2304
2305 // If we deleted at least one mul, we added operands to the end of the list,
2306 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002307 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002308 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002309 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002310 }
2311
2312 // If there are any add recurrences in the operands list, see if any other
2313 // added values are loop invariant. If so, we can fold them into the
2314 // recurrence.
2315 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2316 ++Idx;
2317
2318 // Scan over all recurrences, trying to fold loop invariants into them.
2319 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2320 // Scan all of the other operands to this mul and add them to the vector if
2321 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002322 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002323 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002324 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002325 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002326 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002327 LIOps.push_back(Ops[i]);
2328 Ops.erase(Ops.begin()+i);
2329 --i; --e;
2330 }
2331
2332 // If we found some loop invariants, fold them into the recurrence.
2333 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002334 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002335 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002336 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002337 const SCEV *Scale = getMulExpr(LIOps);
2338 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2339 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002340
Dan Gohman16206132010-06-30 07:16:37 +00002341 // Build the new addrec. Propagate the NUW and NSW flags if both the
2342 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002343 //
2344 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002345 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002346 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2347 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002348
2349 // If all of the other operands were loop invariant, we are done.
2350 if (Ops.size() == 1) return NewRec;
2351
Nick Lewyckydb66b822011-09-06 05:08:09 +00002352 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002353 for (unsigned i = 0;; ++i)
2354 if (Ops[i] == AddRec) {
2355 Ops[i] = NewRec;
2356 break;
2357 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002358 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002359 }
2360
2361 // Okay, if there weren't any loop invariants to be folded, check to see if
2362 // there are multiple AddRec's with the same loop induction variable being
2363 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002364
2365 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2366 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2367 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2368 // ]]],+,...up to x=2n}.
2369 // Note that the arguments to choose() are always integers with values
2370 // known at compile time, never SCEV objects.
2371 //
2372 // The implementation avoids pointless extra computations when the two
2373 // addrec's are of different length (mathematically, it's equivalent to
2374 // an infinite stream of zeros on the right).
2375 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002376 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002377 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002378 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002379 const SCEVAddRecExpr *OtherAddRec =
2380 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2381 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002382 continue;
2383
Nick Lewycky97756402014-09-01 05:17:15 +00002384 bool Overflow = false;
2385 Type *Ty = AddRec->getType();
2386 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2387 SmallVector<const SCEV*, 7> AddRecOps;
2388 for (int x = 0, xe = AddRec->getNumOperands() +
2389 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2390 const SCEV *Term = getConstant(Ty, 0);
2391 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2392 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2393 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2394 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2395 z < ze && !Overflow; ++z) {
2396 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2397 uint64_t Coeff;
2398 if (LargerThan64Bits)
2399 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2400 else
2401 Coeff = Coeff1*Coeff2;
2402 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2403 const SCEV *Term1 = AddRec->getOperand(y-z);
2404 const SCEV *Term2 = OtherAddRec->getOperand(z);
2405 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002406 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002407 }
Nick Lewycky97756402014-09-01 05:17:15 +00002408 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002409 }
Nick Lewycky97756402014-09-01 05:17:15 +00002410 if (!Overflow) {
2411 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2412 SCEV::FlagAnyWrap);
2413 if (Ops.size() == 2) return NewAddRec;
2414 Ops[Idx] = NewAddRec;
2415 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2416 OpsModified = true;
2417 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2418 if (!AddRec)
2419 break;
2420 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002421 }
Nick Lewycky97756402014-09-01 05:17:15 +00002422 if (OpsModified)
2423 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002424
2425 // Otherwise couldn't fold anything into this recurrence. Move onto the
2426 // next one.
2427 }
2428
2429 // Okay, it looks like we really DO need an mul expr. Check to see if we
2430 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002431 FoldingSetNodeID ID;
2432 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002433 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2434 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002435 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002436 SCEVMulExpr *S =
2437 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2438 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002439 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2440 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002441 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2442 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002443 UniqueSCEVs.InsertNode(S, IP);
2444 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002445 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002446 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002447}
2448
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002449/// getUDivExpr - Get a canonical unsigned division expression, or something
2450/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002451const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2452 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002453 assert(getEffectiveSCEVType(LHS->getType()) ==
2454 getEffectiveSCEVType(RHS->getType()) &&
2455 "SCEVUDivExpr operand types don't match!");
2456
Dan Gohmana30370b2009-05-04 22:02:23 +00002457 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002458 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002459 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002460 // If the denominator is zero, the result of the udiv is undefined. Don't
2461 // try to analyze it, because the resolution chosen here may differ from
2462 // the resolution chosen in other parts of the compiler.
2463 if (!RHSC->getValue()->isZero()) {
2464 // Determine if the division can be folded into the operands of
2465 // its operands.
2466 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002467 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002468 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002469 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002470 // For non-power-of-two values, effectively round the value up to the
2471 // nearest power of two.
2472 if (!RHSC->getValue()->getValue().isPowerOf2())
2473 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002474 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002475 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002476 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2477 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002478 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2479 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2480 const APInt &StepInt = Step->getValue()->getValue();
2481 const APInt &DivInt = RHSC->getValue()->getValue();
2482 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002483 getZeroExtendExpr(AR, ExtTy) ==
2484 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2485 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002486 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002487 SmallVector<const SCEV *, 4> Operands;
2488 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2489 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002490 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002491 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002492 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002493 /// Get a canonical UDivExpr for a recurrence.
2494 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2495 // We can currently only fold X%N if X is constant.
2496 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2497 if (StartC && !DivInt.urem(StepInt) &&
2498 getZeroExtendExpr(AR, ExtTy) ==
2499 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2500 getZeroExtendExpr(Step, ExtTy),
2501 AR->getLoop(), SCEV::FlagAnyWrap)) {
2502 const APInt &StartInt = StartC->getValue()->getValue();
2503 const APInt &StartRem = StartInt.urem(StepInt);
2504 if (StartRem != 0)
2505 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2506 AR->getLoop(), SCEV::FlagNW);
2507 }
2508 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002509 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2510 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2511 SmallVector<const SCEV *, 4> Operands;
2512 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2513 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2514 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2515 // Find an operand that's safely divisible.
2516 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2517 const SCEV *Op = M->getOperand(i);
2518 const SCEV *Div = getUDivExpr(Op, RHSC);
2519 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2520 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2521 M->op_end());
2522 Operands[i] = Div;
2523 return getMulExpr(Operands);
2524 }
2525 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002526 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002527 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002528 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002529 SmallVector<const SCEV *, 4> Operands;
2530 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2531 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2532 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2533 Operands.clear();
2534 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2535 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2536 if (isa<SCEVUDivExpr>(Op) ||
2537 getMulExpr(Op, RHS) != A->getOperand(i))
2538 break;
2539 Operands.push_back(Op);
2540 }
2541 if (Operands.size() == A->getNumOperands())
2542 return getAddExpr(Operands);
2543 }
2544 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002545
Dan Gohmanacd700a2010-04-22 01:35:11 +00002546 // Fold if both operands are constant.
2547 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2548 Constant *LHSCV = LHSC->getValue();
2549 Constant *RHSCV = RHSC->getValue();
2550 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2551 RHSCV)));
2552 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002553 }
2554 }
2555
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002556 FoldingSetNodeID ID;
2557 ID.AddInteger(scUDivExpr);
2558 ID.AddPointer(LHS);
2559 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002560 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002561 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002562 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2563 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002564 UniqueSCEVs.InsertNode(S, IP);
2565 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002566}
2567
Nick Lewycky31eaca52014-01-27 10:04:03 +00002568static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2569 APInt A = C1->getValue()->getValue().abs();
2570 APInt B = C2->getValue()->getValue().abs();
2571 uint32_t ABW = A.getBitWidth();
2572 uint32_t BBW = B.getBitWidth();
2573
2574 if (ABW > BBW)
2575 B = B.zext(ABW);
2576 else if (ABW < BBW)
2577 A = A.zext(BBW);
2578
2579 return APIntOps::GreatestCommonDivisor(A, B);
2580}
2581
2582/// getUDivExactExpr - Get a canonical unsigned division expression, or
2583/// something simpler if possible. There is no representation for an exact udiv
2584/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2585/// We can't do this when it's not exact because the udiv may be clearing bits.
2586const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2587 const SCEV *RHS) {
2588 // TODO: we could try to find factors in all sorts of things, but for now we
2589 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2590 // end of this file for inspiration.
2591
2592 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2593 if (!Mul)
2594 return getUDivExpr(LHS, RHS);
2595
2596 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2597 // If the mulexpr multiplies by a constant, then that constant must be the
2598 // first element of the mulexpr.
2599 if (const SCEVConstant *LHSCst =
2600 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2601 if (LHSCst == RHSCst) {
2602 SmallVector<const SCEV *, 2> Operands;
2603 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2604 return getMulExpr(Operands);
2605 }
2606
2607 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2608 // that there's a factor provided by one of the other terms. We need to
2609 // check.
2610 APInt Factor = gcd(LHSCst, RHSCst);
2611 if (!Factor.isIntN(1)) {
2612 LHSCst = cast<SCEVConstant>(
2613 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2614 RHSCst = cast<SCEVConstant>(
2615 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2616 SmallVector<const SCEV *, 2> Operands;
2617 Operands.push_back(LHSCst);
2618 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2619 LHS = getMulExpr(Operands);
2620 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002621 Mul = dyn_cast<SCEVMulExpr>(LHS);
2622 if (!Mul)
2623 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002624 }
2625 }
2626 }
2627
2628 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2629 if (Mul->getOperand(i) == RHS) {
2630 SmallVector<const SCEV *, 2> Operands;
2631 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2632 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2633 return getMulExpr(Operands);
2634 }
2635 }
2636
2637 return getUDivExpr(LHS, RHS);
2638}
Chris Lattnerd934c702004-04-02 20:23:17 +00002639
Dan Gohman4d5435d2009-05-24 23:45:28 +00002640/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2641/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002642const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2643 const Loop *L,
2644 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002645 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002646 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002647 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002648 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002649 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002650 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002651 }
2652
2653 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002654 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002655}
2656
Dan Gohman4d5435d2009-05-24 23:45:28 +00002657/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2658/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002659const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002660ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002661 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002662 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002663#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002664 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002665 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002666 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002667 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002668 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002669 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002670 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002671#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002672
Dan Gohmanbe928e32008-06-18 16:23:07 +00002673 if (Operands.back()->isZero()) {
2674 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002675 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002676 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002677
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002678 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2679 // use that information to infer NUW and NSW flags. However, computing a
2680 // BE count requires calling getAddRecExpr, so we may not yet have a
2681 // meaningful BE count at this point (and if we don't, we'd be stuck
2682 // with a SCEVCouldNotCompute as the cached BE count).
2683
Sanjoy Das81401d42015-01-10 23:41:24 +00002684 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002685
Dan Gohman223a5d22008-08-08 18:33:12 +00002686 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002687 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002688 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002689 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002690 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002691 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002692 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002693 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002694 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002695 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002696 // AddRecs require their operands be loop-invariant with respect to their
2697 // loops. Don't perform this transformation if it would break this
2698 // requirement.
2699 bool AllInvariant = true;
2700 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002701 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002702 AllInvariant = false;
2703 break;
2704 }
2705 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002706 // Create a recurrence for the outer loop with the same step size.
2707 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002708 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2709 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002710 SCEV::NoWrapFlags OuterFlags =
2711 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002712
2713 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002714 AllInvariant = true;
2715 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002716 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002717 AllInvariant = false;
2718 break;
2719 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002720 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002721 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002722 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002723 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2724 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002725 SCEV::NoWrapFlags InnerFlags =
2726 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002727 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2728 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002729 }
2730 // Reset Operands to its original state.
2731 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002732 }
2733 }
2734
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002735 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2736 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002737 FoldingSetNodeID ID;
2738 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002739 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2740 ID.AddPointer(Operands[i]);
2741 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002742 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002743 SCEVAddRecExpr *S =
2744 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2745 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002746 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2747 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002748 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2749 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002750 UniqueSCEVs.InsertNode(S, IP);
2751 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002752 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002753 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002754}
2755
Dan Gohmanabd17092009-06-24 14:49:00 +00002756const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2757 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002758 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002759 Ops.push_back(LHS);
2760 Ops.push_back(RHS);
2761 return getSMaxExpr(Ops);
2762}
2763
Dan Gohmanaf752342009-07-07 17:06:11 +00002764const SCEV *
2765ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002766 assert(!Ops.empty() && "Cannot get empty smax!");
2767 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002768#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002769 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002770 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002771 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002772 "SCEVSMaxExpr operand types don't match!");
2773#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002774
2775 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002776 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002777
2778 // If there are any constants, fold them together.
2779 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002780 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002781 ++Idx;
2782 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002783 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002784 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002785 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002786 APIntOps::smax(LHSC->getValue()->getValue(),
2787 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002788 Ops[0] = getConstant(Fold);
2789 Ops.erase(Ops.begin()+1); // Erase the folded element
2790 if (Ops.size() == 1) return Ops[0];
2791 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002792 }
2793
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002794 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002795 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2796 Ops.erase(Ops.begin());
2797 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002798 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2799 // If we have an smax with a constant maximum-int, it will always be
2800 // maximum-int.
2801 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002802 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002803
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002804 if (Ops.size() == 1) return Ops[0];
2805 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002806
2807 // Find the first SMax
2808 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2809 ++Idx;
2810
2811 // Check to see if one of the operands is an SMax. If so, expand its operands
2812 // onto our operand list, and recurse to simplify.
2813 if (Idx < Ops.size()) {
2814 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002815 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002816 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002817 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002818 DeletedSMax = true;
2819 }
2820
2821 if (DeletedSMax)
2822 return getSMaxExpr(Ops);
2823 }
2824
2825 // Okay, check to see if the same value occurs in the operand list twice. If
2826 // so, delete one. Since we sorted the list, these values are required to
2827 // be adjacent.
2828 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002829 // X smax Y smax Y --> X smax Y
2830 // X smax Y --> X, if X is always greater than Y
2831 if (Ops[i] == Ops[i+1] ||
2832 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2833 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2834 --i; --e;
2835 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002836 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2837 --i; --e;
2838 }
2839
2840 if (Ops.size() == 1) return Ops[0];
2841
2842 assert(!Ops.empty() && "Reduced smax down to nothing!");
2843
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002844 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002845 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002846 FoldingSetNodeID ID;
2847 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002848 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2849 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002850 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002851 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002852 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2853 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002854 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2855 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002856 UniqueSCEVs.InsertNode(S, IP);
2857 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002858}
2859
Dan Gohmanabd17092009-06-24 14:49:00 +00002860const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2861 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002862 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002863 Ops.push_back(LHS);
2864 Ops.push_back(RHS);
2865 return getUMaxExpr(Ops);
2866}
2867
Dan Gohmanaf752342009-07-07 17:06:11 +00002868const SCEV *
2869ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002870 assert(!Ops.empty() && "Cannot get empty umax!");
2871 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002872#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002873 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002874 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002875 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002876 "SCEVUMaxExpr operand types don't match!");
2877#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002878
2879 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002880 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002881
2882 // If there are any constants, fold them together.
2883 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002884 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002885 ++Idx;
2886 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002887 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002888 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002889 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002890 APIntOps::umax(LHSC->getValue()->getValue(),
2891 RHSC->getValue()->getValue()));
2892 Ops[0] = getConstant(Fold);
2893 Ops.erase(Ops.begin()+1); // Erase the folded element
2894 if (Ops.size() == 1) return Ops[0];
2895 LHSC = cast<SCEVConstant>(Ops[0]);
2896 }
2897
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002898 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002899 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2900 Ops.erase(Ops.begin());
2901 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002902 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2903 // If we have an umax with a constant maximum-int, it will always be
2904 // maximum-int.
2905 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002906 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002907
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002908 if (Ops.size() == 1) return Ops[0];
2909 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002910
2911 // Find the first UMax
2912 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2913 ++Idx;
2914
2915 // Check to see if one of the operands is a UMax. If so, expand its operands
2916 // onto our operand list, and recurse to simplify.
2917 if (Idx < Ops.size()) {
2918 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002919 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002920 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002921 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002922 DeletedUMax = true;
2923 }
2924
2925 if (DeletedUMax)
2926 return getUMaxExpr(Ops);
2927 }
2928
2929 // Okay, check to see if the same value occurs in the operand list twice. If
2930 // so, delete one. Since we sorted the list, these values are required to
2931 // be adjacent.
2932 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002933 // X umax Y umax Y --> X umax Y
2934 // X umax Y --> X, if X is always greater than Y
2935 if (Ops[i] == Ops[i+1] ||
2936 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2937 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2938 --i; --e;
2939 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002940 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2941 --i; --e;
2942 }
2943
2944 if (Ops.size() == 1) return Ops[0];
2945
2946 assert(!Ops.empty() && "Reduced umax down to nothing!");
2947
2948 // Okay, it looks like we really DO need a umax expr. Check to see if we
2949 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002950 FoldingSetNodeID ID;
2951 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002952 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2953 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002954 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002955 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002956 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2957 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002958 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2959 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002960 UniqueSCEVs.InsertNode(S, IP);
2961 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002962}
2963
Dan Gohmanabd17092009-06-24 14:49:00 +00002964const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2965 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002966 // ~smax(~x, ~y) == smin(x, y).
2967 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2968}
2969
Dan Gohmanabd17092009-06-24 14:49:00 +00002970const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2971 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002972 // ~umax(~x, ~y) == umin(x, y)
2973 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2974}
2975
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002976const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002977 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002978 // constant expression and then folding it back into a ConstantInt.
2979 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002980 if (DL)
2981 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00002982
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002983 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2984 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002985 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002986 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00002987 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002988 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002989 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2990}
2991
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002992const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2993 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002994 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002995 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002996 // constant expression and then folding it back into a ConstantInt.
2997 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002998 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002999 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003000 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003001 }
Dan Gohman11862a62010-04-12 23:03:26 +00003002
Dan Gohmancf913832010-01-28 02:15:55 +00003003 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
3004 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003005 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00003006 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003007
Matt Arsenault4ed49b52013-10-21 18:08:09 +00003008 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00003009 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003010}
3011
Dan Gohmanaf752342009-07-07 17:06:11 +00003012const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003013 // Don't attempt to do anything other than create a SCEVUnknown object
3014 // here. createSCEV only calls getUnknown after checking for all other
3015 // interesting possibilities, and any other code that calls getUnknown
3016 // is doing so in order to hide a value from SCEV canonicalization.
3017
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003018 FoldingSetNodeID ID;
3019 ID.AddInteger(scUnknown);
3020 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003021 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003022 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3023 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3024 "Stale SCEVUnknown in uniquing map!");
3025 return S;
3026 }
3027 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3028 FirstUnknown);
3029 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003030 UniqueSCEVs.InsertNode(S, IP);
3031 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003032}
3033
Chris Lattnerd934c702004-04-02 20:23:17 +00003034//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003035// Basic SCEV Analysis and PHI Idiom Recognition Code
3036//
3037
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003038/// isSCEVable - Test if values of the given type are analyzable within
3039/// the SCEV framework. This primarily includes integer types, and it
3040/// can optionally include pointer types if the ScalarEvolution class
3041/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003042bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003043 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003044 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003045}
3046
3047/// getTypeSizeInBits - Return the size in bits of the specified type,
3048/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003049uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003050 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3051
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003052 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003053 if (DL)
3054 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003055
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003056 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00003057 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003058 return Ty->getPrimitiveSizeInBits();
3059
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003060 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003061 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00003062 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003063 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003064}
3065
3066/// getEffectiveSCEVType - Return a type with the same bitwidth as
3067/// the given type and which represents how SCEV will treat the given
3068/// type, for which isSCEVable must return true. For pointer types,
3069/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003070Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003071 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3072
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003073 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003074 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003075 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003076
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003077 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003078 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003079
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003080 if (DL)
3081 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003082
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003083 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003084 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00003085}
Chris Lattnerd934c702004-04-02 20:23:17 +00003086
Dan Gohmanaf752342009-07-07 17:06:11 +00003087const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003088 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003089}
3090
Shuxin Yangefc4c012013-07-08 17:33:13 +00003091namespace {
3092 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3093 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3094 // is set iff if find such SCEVUnknown.
3095 //
3096 struct FindInvalidSCEVUnknown {
3097 bool FindOne;
3098 FindInvalidSCEVUnknown() { FindOne = false; }
3099 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003100 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003101 case scConstant:
3102 return false;
3103 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003104 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003105 FindOne = true;
3106 return false;
3107 default:
3108 return true;
3109 }
3110 }
3111 bool isDone() const { return FindOne; }
3112 };
3113}
3114
3115bool ScalarEvolution::checkValidity(const SCEV *S) const {
3116 FindInvalidSCEVUnknown F;
3117 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3118 ST.visitAll(S);
3119
3120 return !F.FindOne;
3121}
3122
Chris Lattnerd934c702004-04-02 20:23:17 +00003123/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3124/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003125const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003126 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003127
Shuxin Yangefc4c012013-07-08 17:33:13 +00003128 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3129 if (I != ValueExprMap.end()) {
3130 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003131 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003132 return S;
3133 else
3134 ValueExprMap.erase(I);
3135 }
Dan Gohmanaf752342009-07-07 17:06:11 +00003136 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00003137
3138 // The process of creating a SCEV for V may have caused other SCEVs
3139 // to have been created, so it's necessary to insert the new entry
3140 // from scratch, rather than trying to remember the insert position
3141 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003142 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00003143 return S;
3144}
3145
Dan Gohman0a40ad92009-04-16 03:18:22 +00003146/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3147///
Dan Gohmanaf752342009-07-07 17:06:11 +00003148const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003149 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003150 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003151 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003152
Chris Lattner229907c2011-07-18 04:54:35 +00003153 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003154 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003155 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003156 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003157}
3158
3159/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003160const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003161 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003162 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003163 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003164
Chris Lattner229907c2011-07-18 04:54:35 +00003165 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003166 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003167 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003168 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003169 return getMinusSCEV(AllOnes, V);
3170}
3171
Andrew Trick8b55b732011-03-14 16:50:06 +00003172/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003173const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003174 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003175 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3176
Dan Gohman46f00a22010-07-20 16:53:00 +00003177 // Fast path: X - X --> 0.
3178 if (LHS == RHS)
3179 return getConstant(LHS->getType(), 0);
3180
Sanjoy Dascb473662015-01-22 00:48:47 +00003181 // X - Y --> X + -Y.
3182 // X -(nsw || nuw) Y --> X + -Y.
3183 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003184}
3185
3186/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3187/// input value to the specified type. If the type must be extended, it is zero
3188/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003189const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003190ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3191 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003192 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3193 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003194 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003195 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003196 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003197 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003198 return getTruncateExpr(V, Ty);
3199 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003200}
3201
3202/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3203/// input value to the specified type. If the type must be extended, it is sign
3204/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003205const SCEV *
3206ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003207 Type *Ty) {
3208 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003209 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3210 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003211 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003212 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003213 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003214 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003215 return getTruncateExpr(V, Ty);
3216 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003217}
3218
Dan Gohmane712a2f2009-05-13 03:46:30 +00003219/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3220/// input value to the specified type. If the type must be extended, it is zero
3221/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003222const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003223ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3224 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003225 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3226 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003227 "Cannot noop or zero extend with non-integer arguments!");
3228 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3229 "getNoopOrZeroExtend cannot truncate!");
3230 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3231 return V; // No conversion
3232 return getZeroExtendExpr(V, Ty);
3233}
3234
3235/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3236/// input value to the specified type. If the type must be extended, it is sign
3237/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003238const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003239ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3240 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003241 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3242 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003243 "Cannot noop or sign extend with non-integer arguments!");
3244 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3245 "getNoopOrSignExtend cannot truncate!");
3246 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3247 return V; // No conversion
3248 return getSignExtendExpr(V, Ty);
3249}
3250
Dan Gohman8db2edc2009-06-13 15:56:47 +00003251/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3252/// the input value to the specified type. If the type must be extended,
3253/// it is extended with unspecified bits. The conversion must not be
3254/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003255const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003256ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3257 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003258 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3259 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003260 "Cannot noop or any extend with non-integer arguments!");
3261 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3262 "getNoopOrAnyExtend cannot truncate!");
3263 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3264 return V; // No conversion
3265 return getAnyExtendExpr(V, Ty);
3266}
3267
Dan Gohmane712a2f2009-05-13 03:46:30 +00003268/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3269/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003270const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003271ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3272 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003273 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3274 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003275 "Cannot truncate or noop with non-integer arguments!");
3276 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3277 "getTruncateOrNoop cannot extend!");
3278 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3279 return V; // No conversion
3280 return getTruncateExpr(V, Ty);
3281}
3282
Dan Gohman96212b62009-06-22 00:31:57 +00003283/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3284/// the types using zero-extension, and then perform a umax operation
3285/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003286const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3287 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003288 const SCEV *PromotedLHS = LHS;
3289 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003290
3291 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3292 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3293 else
3294 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3295
3296 return getUMaxExpr(PromotedLHS, PromotedRHS);
3297}
3298
Dan Gohman2bc22302009-06-22 15:03:27 +00003299/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3300/// the types using zero-extension, and then perform a umin operation
3301/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003302const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3303 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003304 const SCEV *PromotedLHS = LHS;
3305 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003306
3307 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3308 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3309 else
3310 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3311
3312 return getUMinExpr(PromotedLHS, PromotedRHS);
3313}
3314
Andrew Trick87716c92011-03-17 23:51:11 +00003315/// getPointerBase - Transitively follow the chain of pointer-type operands
3316/// until reaching a SCEV that does not have a single pointer operand. This
3317/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3318/// but corner cases do exist.
3319const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3320 // A pointer operand may evaluate to a nonpointer expression, such as null.
3321 if (!V->getType()->isPointerTy())
3322 return V;
3323
3324 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3325 return getPointerBase(Cast->getOperand());
3326 }
3327 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003328 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003329 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3330 I != E; ++I) {
3331 if ((*I)->getType()->isPointerTy()) {
3332 // Cannot find the base of an expression with multiple pointer operands.
3333 if (PtrOp)
3334 return V;
3335 PtrOp = *I;
3336 }
3337 }
3338 if (!PtrOp)
3339 return V;
3340 return getPointerBase(PtrOp);
3341 }
3342 return V;
3343}
3344
Dan Gohman0b89dff2009-07-25 01:13:03 +00003345/// PushDefUseChildren - Push users of the given Instruction
3346/// onto the given Worklist.
3347static void
3348PushDefUseChildren(Instruction *I,
3349 SmallVectorImpl<Instruction *> &Worklist) {
3350 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003351 for (User *U : I->users())
3352 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003353}
3354
3355/// ForgetSymbolicValue - This looks up computed SCEV values for all
3356/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003357/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003358/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003359void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003360ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003361 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003362 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003363
Dan Gohman0b89dff2009-07-25 01:13:03 +00003364 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003365 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003366 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003367 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003368 if (!Visited.insert(I).second)
3369 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003370
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003371 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003372 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003373 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003374 const SCEV *Old = It->second;
3375
Dan Gohman0b89dff2009-07-25 01:13:03 +00003376 // Short-circuit the def-use traversal if the symbolic name
3377 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003378 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003379 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003380
Dan Gohman0b89dff2009-07-25 01:13:03 +00003381 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003382 // structure, it's a PHI that's in the progress of being computed
3383 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3384 // additional loop trip count information isn't going to change anything.
3385 // In the second case, createNodeForPHI will perform the necessary
3386 // updates on its own when it gets to that point. In the third, we do
3387 // want to forget the SCEVUnknown.
3388 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003389 !isa<SCEVUnknown>(Old) ||
3390 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003391 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003392 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003393 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003394 }
3395
3396 PushDefUseChildren(I, Worklist);
3397 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003398}
Chris Lattnerd934c702004-04-02 20:23:17 +00003399
3400/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3401/// a loop header, making it a potential recurrence, or it doesn't.
3402///
Dan Gohmanaf752342009-07-07 17:06:11 +00003403const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003404 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3405 if (L->getHeader() == PN->getParent()) {
3406 // The loop may have multiple entrances or multiple exits; we can analyze
3407 // this phi as an addrec if it has a unique entry value and a unique
3408 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003409 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003410 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3411 Value *V = PN->getIncomingValue(i);
3412 if (L->contains(PN->getIncomingBlock(i))) {
3413 if (!BEValueV) {
3414 BEValueV = V;
3415 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003416 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003417 break;
3418 }
3419 } else if (!StartValueV) {
3420 StartValueV = V;
3421 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003422 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003423 break;
3424 }
3425 }
3426 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003427 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003428 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003429 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003430 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003431 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003432
3433 // Using this symbolic name for the PHI, analyze the value coming around
3434 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003435 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003436
3437 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3438 // has a special value for the first iteration of the loop.
3439
3440 // If the value coming around the backedge is an add with the symbolic
3441 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003442 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003443 // If there is a single occurrence of the symbolic value, replace it
3444 // with a recurrence.
3445 unsigned FoundIndex = Add->getNumOperands();
3446 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3447 if (Add->getOperand(i) == SymbolicName)
3448 if (FoundIndex == e) {
3449 FoundIndex = i;
3450 break;
3451 }
3452
3453 if (FoundIndex != Add->getNumOperands()) {
3454 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003455 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003456 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3457 if (i != FoundIndex)
3458 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003459 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003460
3461 // This is not a valid addrec if the step amount is varying each
3462 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003463 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003464 (isa<SCEVAddRecExpr>(Accum) &&
3465 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003466 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003467
3468 // If the increment doesn't overflow, then neither the addrec nor
3469 // the post-increment will overflow.
3470 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3471 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003472 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003473 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003474 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003475 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003476 // If the increment is an inbounds GEP, then we know the address
3477 // space cannot be wrapped around. We cannot make any guarantee
3478 // about signed or unsigned overflow because pointers are
3479 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003480 // pointer. We can guarantee that no unsigned wrap occurs if the
3481 // indices form a positive value.
3482 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003483 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003484
3485 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3486 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3487 Flags = setFlags(Flags, SCEV::FlagNUW);
3488 }
Sanjoy Dascb473662015-01-22 00:48:47 +00003489
3490 // We cannot transfer nuw and nsw flags from subtraction
3491 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3492 // for instance.
Dan Gohman51ad99d2010-01-21 02:09:26 +00003493 }
3494
Dan Gohman6635bb22010-04-12 07:49:36 +00003495 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003496 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003497
Dan Gohman51ad99d2010-01-21 02:09:26 +00003498 // Since the no-wrap flags are on the increment, they apply to the
3499 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003500 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003501 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003502 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003503
3504 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003505 // to be symbolic. We now need to go back and purge all of the
3506 // entries for the scalars that use the symbolic expression.
3507 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003508 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003509 return PHISCEV;
3510 }
3511 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003512 } else if (const SCEVAddRecExpr *AddRec =
3513 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003514 // Otherwise, this could be a loop like this:
3515 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3516 // In this case, j = {1,+,1} and BEValue is j.
3517 // Because the other in-value of i (0) fits the evolution of BEValue
3518 // i really is an addrec evolution.
3519 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003520 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003521
3522 // If StartVal = j.start - j.stride, we can use StartVal as the
3523 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003524 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003525 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003526 // FIXME: For constant StartVal, we should be able to infer
3527 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003528 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003529 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3530 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003531
3532 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003533 // to be symbolic. We now need to go back and purge all of the
3534 // entries for the scalars that use the symbolic expression.
3535 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003536 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003537 return PHISCEV;
3538 }
3539 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003540 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003541 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003542 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003543
Dan Gohmana9c205c2010-02-25 06:57:05 +00003544 // If the PHI has a single incoming value, follow that value, unless the
3545 // PHI's incoming blocks are in a different loop, in which case doing so
3546 // risks breaking LCSSA form. Instcombine would normally zap these, but
3547 // it doesn't have DominatorTree information, so it may miss cases.
Chandler Carruth66b31302015-01-04 12:03:27 +00003548 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AC))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003549 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003550 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003551
Chris Lattnerd934c702004-04-02 20:23:17 +00003552 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003553 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003554}
3555
Dan Gohmanee750d12009-05-08 20:26:55 +00003556/// createNodeForGEP - Expand GEP instructions into add and multiply
3557/// operations. This allows them to be analyzed by regular SCEV code.
3558///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003559const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003560 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003561 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003562 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003563 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003564 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003565
3566 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3567 // Add expression, because the Instruction may be guarded by control flow
3568 // and the no-overflow bits may not be valid for the expression in any
3569 // context.
3570 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3571
Dan Gohman1d2ded72010-05-03 22:09:21 +00003572 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003573 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003574 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003575 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003576 I != E; ++I) {
3577 Value *Index = *I;
3578 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003579 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003580 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003581 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003582 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003583
Dan Gohman16206132010-06-30 07:16:37 +00003584 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003585 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003586 } else {
3587 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003588 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003589 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003590 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003591 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3592
Dan Gohman16206132010-06-30 07:16:37 +00003593 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003594 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003595
3596 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003597 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003598 }
3599 }
Dan Gohman16206132010-06-30 07:16:37 +00003600
3601 // Get the SCEV for the GEP base.
3602 const SCEV *BaseS = getSCEV(Base);
3603
Dan Gohman16206132010-06-30 07:16:37 +00003604 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003605 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003606}
3607
Nick Lewycky3783b462007-11-22 07:59:40 +00003608/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3609/// guaranteed to end in (at every loop iteration). It is, at the same time,
3610/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3611/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003612uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003613ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003614 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003615 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003616
Dan Gohmana30370b2009-05-04 22:02:23 +00003617 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003618 return std::min(GetMinTrailingZeros(T->getOperand()),
3619 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003620
Dan Gohmana30370b2009-05-04 22:02:23 +00003621 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003622 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3623 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3624 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003625 }
3626
Dan Gohmana30370b2009-05-04 22:02:23 +00003627 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003628 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3629 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3630 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003631 }
3632
Dan Gohmana30370b2009-05-04 22:02:23 +00003633 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003634 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003635 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003636 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003637 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003638 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003639 }
3640
Dan Gohmana30370b2009-05-04 22:02:23 +00003641 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003642 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003643 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3644 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003645 for (unsigned i = 1, e = M->getNumOperands();
3646 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003647 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003648 BitWidth);
3649 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003650 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003651
Dan Gohmana30370b2009-05-04 22:02:23 +00003652 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003653 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003654 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003655 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003656 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003657 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003658 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003659
Dan Gohmana30370b2009-05-04 22:02:23 +00003660 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003661 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003662 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003663 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003664 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003665 return MinOpRes;
3666 }
3667
Dan Gohmana30370b2009-05-04 22:02:23 +00003668 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003669 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003670 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003671 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003672 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003673 return MinOpRes;
3674 }
3675
Dan Gohmanc702fc02009-06-19 23:29:04 +00003676 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3677 // For a SCEVUnknown, ask ValueTracking.
3678 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003679 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003680 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003681 return Zeros.countTrailingOnes();
3682 }
3683
3684 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003685 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003686}
Chris Lattnerd934c702004-04-02 20:23:17 +00003687
Sanjoy Das1f05c512014-10-10 21:22:34 +00003688/// GetRangeFromMetadata - Helper method to assign a range to V from
3689/// metadata present in the IR.
3690static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3691 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003692 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003693 ConstantRange TotalRange(
3694 cast<IntegerType>(I->getType())->getBitWidth(), false);
3695
3696 unsigned NumRanges = MD->getNumOperands() / 2;
3697 assert(NumRanges >= 1);
3698
3699 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00003700 ConstantInt *Lower =
3701 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3702 ConstantInt *Upper =
3703 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00003704 ConstantRange Range(Lower->getValue(), Upper->getValue());
3705 TotalRange = TotalRange.unionWith(Range);
3706 }
3707
3708 return TotalRange;
3709 }
3710 }
3711
3712 return None;
3713}
3714
Dan Gohmane65c9172009-07-13 21:35:55 +00003715/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3716///
3717ConstantRange
3718ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003719 // See if we've computed this range already.
3720 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3721 if (I != UnsignedRanges.end())
3722 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003723
3724 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003725 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003726
Dan Gohman85be4332010-01-26 19:19:05 +00003727 unsigned BitWidth = getTypeSizeInBits(S->getType());
3728 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3729
3730 // If the value has known zeros, the maximum unsigned value will have those
3731 // known zeros as well.
3732 uint32_t TZ = GetMinTrailingZeros(S);
3733 if (TZ != 0)
3734 ConservativeResult =
3735 ConstantRange(APInt::getMinValue(BitWidth),
3736 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3737
Dan Gohmane65c9172009-07-13 21:35:55 +00003738 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3739 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3740 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3741 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003742 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003743 }
3744
3745 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3746 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3747 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3748 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003749 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003750 }
3751
3752 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3753 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3754 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3755 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003756 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003757 }
3758
3759 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3760 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3761 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3762 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003763 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003764 }
3765
3766 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3767 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3768 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003769 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003770 }
3771
3772 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3773 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003774 return setUnsignedRange(ZExt,
3775 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003776 }
3777
3778 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3779 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003780 return setUnsignedRange(SExt,
3781 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003782 }
3783
3784 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3785 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003786 return setUnsignedRange(Trunc,
3787 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003788 }
3789
Dan Gohmane65c9172009-07-13 21:35:55 +00003790 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003791 // If there's no unsigned wrap, the value will never be less than its
3792 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003793 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003794 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003795 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003796 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003797 ConservativeResult.intersectWith(
3798 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003799
3800 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003801 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003802 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003803 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003804 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3805 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003806 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3807
3808 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003809 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003810
3811 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003812 ConstantRange StepRange = getSignedRange(Step);
3813 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3814 ConstantRange EndRange =
3815 StartRange.add(MaxBECountRange.multiply(StepRange));
3816
3817 // Check for overflow. This must be done with ConstantRange arithmetic
3818 // because we could be called from within the ScalarEvolution overflow
3819 // checking code.
3820 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3821 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3822 ConstantRange ExtMaxBECountRange =
3823 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3824 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3825 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3826 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003827 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003828
Dan Gohmane65c9172009-07-13 21:35:55 +00003829 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3830 EndRange.getUnsignedMin());
3831 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3832 EndRange.getUnsignedMax());
3833 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003834 return setUnsignedRange(AddRec, ConservativeResult);
3835 return setUnsignedRange(AddRec,
3836 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003837 }
3838 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003839
Dan Gohmaned756312010-11-17 20:23:08 +00003840 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003841 }
3842
3843 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003844 // Check if the IR explicitly contains !range metadata.
3845 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3846 if (MDRange.hasValue())
3847 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3848
Dan Gohmanc702fc02009-06-19 23:29:04 +00003849 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003850 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003851 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003852 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003853 return setUnsignedRange(U, ConservativeResult);
3854 return setUnsignedRange(U,
3855 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003856 }
3857
Dan Gohmaned756312010-11-17 20:23:08 +00003858 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003859}
3860
Dan Gohmane65c9172009-07-13 21:35:55 +00003861/// getSignedRange - Determine the signed range for a particular SCEV.
3862///
3863ConstantRange
3864ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003865 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003866 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3867 if (I != SignedRanges.end())
3868 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003869
Dan Gohmane65c9172009-07-13 21:35:55 +00003870 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003871 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003872
Dan Gohman51aaf022010-01-26 04:40:18 +00003873 unsigned BitWidth = getTypeSizeInBits(S->getType());
3874 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3875
3876 // If the value has known zeros, the maximum signed value will have those
3877 // known zeros as well.
3878 uint32_t TZ = GetMinTrailingZeros(S);
3879 if (TZ != 0)
3880 ConservativeResult =
3881 ConstantRange(APInt::getSignedMinValue(BitWidth),
3882 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3883
Dan Gohmane65c9172009-07-13 21:35:55 +00003884 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3885 ConstantRange X = getSignedRange(Add->getOperand(0));
3886 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3887 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003888 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003889 }
3890
Dan Gohmane65c9172009-07-13 21:35:55 +00003891 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3892 ConstantRange X = getSignedRange(Mul->getOperand(0));
3893 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3894 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003895 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003896 }
3897
Dan Gohmane65c9172009-07-13 21:35:55 +00003898 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3899 ConstantRange X = getSignedRange(SMax->getOperand(0));
3900 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3901 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003902 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003903 }
Dan Gohmand261d272009-06-24 01:05:09 +00003904
Dan Gohmane65c9172009-07-13 21:35:55 +00003905 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3906 ConstantRange X = getSignedRange(UMax->getOperand(0));
3907 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3908 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003909 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003910 }
Dan Gohmand261d272009-06-24 01:05:09 +00003911
Dan Gohmane65c9172009-07-13 21:35:55 +00003912 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3913 ConstantRange X = getSignedRange(UDiv->getLHS());
3914 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003915 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003916 }
Dan Gohmand261d272009-06-24 01:05:09 +00003917
Dan Gohmane65c9172009-07-13 21:35:55 +00003918 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3919 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003920 return setSignedRange(ZExt,
3921 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003922 }
3923
3924 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3925 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003926 return setSignedRange(SExt,
3927 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003928 }
3929
3930 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3931 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003932 return setSignedRange(Trunc,
3933 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003934 }
3935
Dan Gohmane65c9172009-07-13 21:35:55 +00003936 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003937 // If there's no signed wrap, and all the operands have the same sign or
3938 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003939 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003940 bool AllNonNeg = true;
3941 bool AllNonPos = true;
3942 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3943 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3944 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3945 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003946 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003947 ConservativeResult = ConservativeResult.intersectWith(
3948 ConstantRange(APInt(BitWidth, 0),
3949 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003950 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003951 ConservativeResult = ConservativeResult.intersectWith(
3952 ConstantRange(APInt::getSignedMinValue(BitWidth),
3953 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003954 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003955
3956 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003957 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003958 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003959 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003960 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3961 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003962 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3963
3964 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003965 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003966
3967 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003968 ConstantRange StepRange = getSignedRange(Step);
3969 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3970 ConstantRange EndRange =
3971 StartRange.add(MaxBECountRange.multiply(StepRange));
3972
3973 // Check for overflow. This must be done with ConstantRange arithmetic
3974 // because we could be called from within the ScalarEvolution overflow
3975 // checking code.
3976 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3977 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3978 ConstantRange ExtMaxBECountRange =
3979 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3980 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3981 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3982 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003983 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003984
Dan Gohmane65c9172009-07-13 21:35:55 +00003985 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3986 EndRange.getSignedMin());
3987 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3988 EndRange.getSignedMax());
3989 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003990 return setSignedRange(AddRec, ConservativeResult);
3991 return setSignedRange(AddRec,
3992 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00003993 }
Dan Gohmand261d272009-06-24 01:05:09 +00003994 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003995
Dan Gohmaned756312010-11-17 20:23:08 +00003996 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00003997 }
3998
Dan Gohmanc702fc02009-06-19 23:29:04 +00003999 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004000 // Check if the IR explicitly contains !range metadata.
4001 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4002 if (MDRange.hasValue())
4003 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4004
Dan Gohmanc702fc02009-06-19 23:29:04 +00004005 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004006 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00004007 return setSignedRange(U, ConservativeResult);
Chandler Carruth66b31302015-01-04 12:03:27 +00004008 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
Hal Finkelff666bd2013-07-09 18:16:16 +00004009 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00004010 return setSignedRange(U, ConservativeResult);
4011 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00004012 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00004013 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004014 }
4015
Dan Gohmaned756312010-11-17 20:23:08 +00004016 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004017}
4018
Chris Lattnerd934c702004-04-02 20:23:17 +00004019/// createSCEV - We know that there is no SCEV for the specified value.
4020/// Analyze the expression.
4021///
Dan Gohmanaf752342009-07-07 17:06:11 +00004022const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004023 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004024 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004025
Dan Gohman05e89732008-06-22 19:56:46 +00004026 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004027 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004028 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004029
4030 // Don't attempt to analyze instructions in blocks that aren't
4031 // reachable. Such instructions don't matter, and they aren't required
4032 // to obey basic rules for definitions dominating uses which this
4033 // analysis depends on.
4034 if (!DT->isReachableFromEntry(I->getParent()))
4035 return getUnknown(V);
4036 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004037 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004038 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4039 return getConstant(CI);
4040 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004041 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004042 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4043 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004044 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004045 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004046
Dan Gohman80ca01c2009-07-17 20:47:02 +00004047 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004048 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004049 case Instruction::Add: {
4050 // The simple thing to do would be to just call getSCEV on both operands
4051 // and call getAddExpr with the result. However if we're looking at a
4052 // bunch of things all added together, this can be quite inefficient,
4053 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4054 // Instead, gather up all the operands and make a single getAddExpr call.
4055 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00004056 //
4057 // Don't apply this instruction's NSW or NUW flags to the new
4058 // expression. The instruction may be guarded by control flow that the
4059 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4060 // mapped to the same SCEV expression, and it would be incorrect to transfer
4061 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004062 SmallVector<const SCEV *, 4> AddOps;
4063 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00004064 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4065 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4066 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4067 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004068 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00004069 const SCEV *Op1 = getSCEV(U->getOperand(1));
4070 if (Opcode == Instruction::Sub)
4071 AddOps.push_back(getNegativeSCEV(Op1));
4072 else
4073 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004074 }
4075 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00004076 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004077 }
4078 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00004079 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004080 SmallVector<const SCEV *, 4> MulOps;
4081 MulOps.push_back(getSCEV(U->getOperand(1)));
4082 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004083 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004084 Op = U->getOperand(0)) {
4085 U = cast<Operator>(Op);
4086 MulOps.push_back(getSCEV(U->getOperand(1)));
4087 }
4088 MulOps.push_back(getSCEV(U->getOperand(0)));
4089 return getMulExpr(MulOps);
4090 }
Dan Gohman05e89732008-06-22 19:56:46 +00004091 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004092 return getUDivExpr(getSCEV(U->getOperand(0)),
4093 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004094 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004095 return getMinusSCEV(getSCEV(U->getOperand(0)),
4096 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004097 case Instruction::And:
4098 // For an expression like x&255 that merely masks off the high bits,
4099 // use zext(trunc(x)) as the SCEV expression.
4100 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004101 if (CI->isNullValue())
4102 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004103 if (CI->isAllOnesValue())
4104 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004105 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004106
4107 // Instcombine's ShrinkDemandedConstant may strip bits out of
4108 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004109 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004110 // knew about to reconstruct a low-bits mask value.
4111 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004112 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004113 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004114 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00004115 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 0, AC,
4116 nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004117
Nick Lewycky31eaca52014-01-27 10:04:03 +00004118 APInt EffectiveMask =
4119 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4120 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4121 const SCEV *MulCount = getConstant(
4122 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4123 return getMulExpr(
4124 getZeroExtendExpr(
4125 getTruncateExpr(
4126 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4127 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4128 U->getType()),
4129 MulCount);
4130 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004131 }
4132 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004133
Dan Gohman05e89732008-06-22 19:56:46 +00004134 case Instruction::Or:
4135 // If the RHS of the Or is a constant, we may have something like:
4136 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4137 // optimizations will transparently handle this case.
4138 //
4139 // In order for this transformation to be safe, the LHS must be of the
4140 // form X*(2^n) and the Or constant must be less than 2^n.
4141 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004142 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004143 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004144 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004145 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4146 // Build a plain add SCEV.
4147 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4148 // If the LHS of the add was an addrec and it has no-wrap flags,
4149 // transfer the no-wrap flags, since an or won't introduce a wrap.
4150 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4151 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004152 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4153 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004154 }
4155 return S;
4156 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004157 }
Dan Gohman05e89732008-06-22 19:56:46 +00004158 break;
4159 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004160 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004161 // If the RHS of the xor is a signbit, then this is just an add.
4162 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004163 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004164 return getAddExpr(getSCEV(U->getOperand(0)),
4165 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004166
4167 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004168 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004169 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004170
4171 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4172 // This is a variant of the check for xor with -1, and it handles
4173 // the case where instcombine has trimmed non-demanded bits out
4174 // of an xor with -1.
4175 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4176 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4177 if (BO->getOpcode() == Instruction::And &&
4178 LCI->getValue() == CI->getValue())
4179 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004180 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004181 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004182 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004183 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004184 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4185
Dan Gohman8b0a4192010-03-01 17:49:51 +00004186 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004187 // mask off the high bits. Complement the operand and
4188 // re-apply the zext.
4189 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4190 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4191
4192 // If C is a single bit, it may be in the sign-bit position
4193 // before the zero-extend. In this case, represent the xor
4194 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004195 APInt Trunc = CI->getValue().trunc(Z0TySize);
4196 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004197 Trunc.isSignBit())
4198 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4199 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004200 }
Dan Gohman05e89732008-06-22 19:56:46 +00004201 }
4202 break;
4203
4204 case Instruction::Shl:
4205 // Turn shift left of a constant amount into a multiply.
4206 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004207 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004208
4209 // If the shift count is not less than the bitwidth, the result of
4210 // the shift is undefined. Don't try to analyze it, because the
4211 // resolution chosen here may differ from the resolution chosen in
4212 // other parts of the compiler.
4213 if (SA->getValue().uge(BitWidth))
4214 break;
4215
Owen Andersonedb4a702009-07-24 23:12:02 +00004216 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004217 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004218 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004219 }
4220 break;
4221
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004222 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004223 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004224 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004225 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004226
4227 // If the shift count is not less than the bitwidth, the result of
4228 // the shift is undefined. Don't try to analyze it, because the
4229 // resolution chosen here may differ from the resolution chosen in
4230 // other parts of the compiler.
4231 if (SA->getValue().uge(BitWidth))
4232 break;
4233
Owen Andersonedb4a702009-07-24 23:12:02 +00004234 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004235 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004236 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004237 }
4238 break;
4239
Dan Gohman0ec05372009-04-21 02:26:00 +00004240 case Instruction::AShr:
4241 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4242 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004243 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004244 if (L->getOpcode() == Instruction::Shl &&
4245 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004246 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4247
4248 // If the shift count is not less than the bitwidth, the result of
4249 // the shift is undefined. Don't try to analyze it, because the
4250 // resolution chosen here may differ from the resolution chosen in
4251 // other parts of the compiler.
4252 if (CI->getValue().uge(BitWidth))
4253 break;
4254
Dan Gohmandf199482009-04-25 17:05:40 +00004255 uint64_t Amt = BitWidth - CI->getZExtValue();
4256 if (Amt == BitWidth)
4257 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004258 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004259 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004260 IntegerType::get(getContext(),
4261 Amt)),
4262 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004263 }
4264 break;
4265
Dan Gohman05e89732008-06-22 19:56:46 +00004266 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004267 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004268
4269 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004270 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004271
4272 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004273 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004274
4275 case Instruction::BitCast:
4276 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004277 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004278 return getSCEV(U->getOperand(0));
4279 break;
4280
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004281 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4282 // lead to pointer expressions which cannot safely be expanded to GEPs,
4283 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4284 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004285
Dan Gohmanee750d12009-05-08 20:26:55 +00004286 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004287 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004288
Dan Gohman05e89732008-06-22 19:56:46 +00004289 case Instruction::PHI:
4290 return createNodeForPHI(cast<PHINode>(U));
4291
4292 case Instruction::Select:
4293 // This could be a smax or umax that was lowered earlier.
4294 // Try to recover it.
4295 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4296 Value *LHS = ICI->getOperand(0);
4297 Value *RHS = ICI->getOperand(1);
4298 switch (ICI->getPredicate()) {
4299 case ICmpInst::ICMP_SLT:
4300 case ICmpInst::ICMP_SLE:
4301 std::swap(LHS, RHS);
4302 // fall through
4303 case ICmpInst::ICMP_SGT:
4304 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004305 // a >s b ? a+x : b+x -> smax(a, b)+x
4306 // a >s b ? b+x : a+x -> smin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004307 if (getTypeSizeInBits(LHS->getType()) <=
4308 getTypeSizeInBits(U->getType())) {
4309 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
4310 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004311 const SCEV *LA = getSCEV(U->getOperand(1));
4312 const SCEV *RA = getSCEV(U->getOperand(2));
4313 const SCEV *LDiff = getMinusSCEV(LA, LS);
4314 const SCEV *RDiff = getMinusSCEV(RA, RS);
4315 if (LDiff == RDiff)
4316 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4317 LDiff = getMinusSCEV(LA, RS);
4318 RDiff = getMinusSCEV(RA, LS);
4319 if (LDiff == RDiff)
4320 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4321 }
Dan Gohman05e89732008-06-22 19:56:46 +00004322 break;
4323 case ICmpInst::ICMP_ULT:
4324 case ICmpInst::ICMP_ULE:
4325 std::swap(LHS, RHS);
4326 // fall through
4327 case ICmpInst::ICMP_UGT:
4328 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004329 // a >u b ? a+x : b+x -> umax(a, b)+x
4330 // a >u b ? b+x : a+x -> umin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004331 if (getTypeSizeInBits(LHS->getType()) <=
4332 getTypeSizeInBits(U->getType())) {
4333 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4334 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004335 const SCEV *LA = getSCEV(U->getOperand(1));
4336 const SCEV *RA = getSCEV(U->getOperand(2));
4337 const SCEV *LDiff = getMinusSCEV(LA, LS);
4338 const SCEV *RDiff = getMinusSCEV(RA, RS);
4339 if (LDiff == RDiff)
4340 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4341 LDiff = getMinusSCEV(LA, RS);
4342 RDiff = getMinusSCEV(RA, LS);
4343 if (LDiff == RDiff)
4344 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4345 }
Dan Gohman05e89732008-06-22 19:56:46 +00004346 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004347 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004348 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004349 if (getTypeSizeInBits(LHS->getType()) <=
4350 getTypeSizeInBits(U->getType()) &&
4351 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4352 const SCEV *One = getConstant(U->getType(), 1);
4353 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004354 const SCEV *LA = getSCEV(U->getOperand(1));
4355 const SCEV *RA = getSCEV(U->getOperand(2));
4356 const SCEV *LDiff = getMinusSCEV(LA, LS);
4357 const SCEV *RDiff = getMinusSCEV(RA, One);
4358 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004359 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004360 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004361 break;
4362 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004363 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004364 if (getTypeSizeInBits(LHS->getType()) <=
4365 getTypeSizeInBits(U->getType()) &&
4366 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4367 const SCEV *One = getConstant(U->getType(), 1);
4368 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004369 const SCEV *LA = getSCEV(U->getOperand(1));
4370 const SCEV *RA = getSCEV(U->getOperand(2));
4371 const SCEV *LDiff = getMinusSCEV(LA, One);
4372 const SCEV *RDiff = getMinusSCEV(RA, LS);
4373 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004374 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004375 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004376 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004377 default:
4378 break;
4379 }
4380 }
4381
4382 default: // We cannot analyze this expression.
4383 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004384 }
4385
Dan Gohmanc8e23622009-04-21 23:15:49 +00004386 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004387}
4388
4389
4390
4391//===----------------------------------------------------------------------===//
4392// Iteration Count Computation Code
4393//
4394
Chandler Carruth6666c272014-10-11 00:12:11 +00004395unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4396 if (BasicBlock *ExitingBB = L->getExitingBlock())
4397 return getSmallConstantTripCount(L, ExitingBB);
4398
4399 // No trip count information for multiple exits.
4400 return 0;
4401}
4402
Andrew Trick2b6860f2011-08-11 23:36:16 +00004403/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004404/// normal unsigned value. Returns 0 if the trip count is unknown or not
4405/// constant. Will also return 0 if the maximum trip count is very large (>=
4406/// 2^32).
4407///
4408/// This "trip count" assumes that control exits via ExitingBlock. More
4409/// precisely, it is the number of times that control may reach ExitingBlock
4410/// before taking the branch. For loops with multiple exits, it may not be the
4411/// number times that the loop header executes because the loop may exit
4412/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004413unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4414 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004415 assert(ExitingBlock && "Must pass a non-null exiting block!");
4416 assert(L->isLoopExiting(ExitingBlock) &&
4417 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004418 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004419 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004420 if (!ExitCount)
4421 return 0;
4422
4423 ConstantInt *ExitConst = ExitCount->getValue();
4424
4425 // Guard against huge trip counts.
4426 if (ExitConst->getValue().getActiveBits() > 32)
4427 return 0;
4428
4429 // In case of integer overflow, this returns 0, which is correct.
4430 return ((unsigned)ExitConst->getZExtValue()) + 1;
4431}
4432
Chandler Carruth6666c272014-10-11 00:12:11 +00004433unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4434 if (BasicBlock *ExitingBB = L->getExitingBlock())
4435 return getSmallConstantTripMultiple(L, ExitingBB);
4436
4437 // No trip multiple information for multiple exits.
4438 return 0;
4439}
4440
Andrew Trick2b6860f2011-08-11 23:36:16 +00004441/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4442/// trip count of this loop as a normal unsigned value, if possible. This
4443/// means that the actual trip count is always a multiple of the returned
4444/// value (don't forget the trip count could very well be zero as well!).
4445///
4446/// Returns 1 if the trip count is unknown or not guaranteed to be the
4447/// multiple of a constant (which is also the case if the trip count is simply
4448/// constant, use getSmallConstantTripCount for that case), Will also return 1
4449/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004450///
4451/// As explained in the comments for getSmallConstantTripCount, this assumes
4452/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004453unsigned
4454ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4455 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004456 assert(ExitingBlock && "Must pass a non-null exiting block!");
4457 assert(L->isLoopExiting(ExitingBlock) &&
4458 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004459 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004460 if (ExitCount == getCouldNotCompute())
4461 return 1;
4462
4463 // Get the trip count from the BE count by adding 1.
4464 const SCEV *TCMul = getAddExpr(ExitCount,
4465 getConstant(ExitCount->getType(), 1));
4466 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4467 // to factor simple cases.
4468 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4469 TCMul = Mul->getOperand(0);
4470
4471 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4472 if (!MulC)
4473 return 1;
4474
4475 ConstantInt *Result = MulC->getValue();
4476
Hal Finkel30bd9342012-10-24 19:46:44 +00004477 // Guard against huge trip counts (this requires checking
4478 // for zero to handle the case where the trip count == -1 and the
4479 // addition wraps).
4480 if (!Result || Result->getValue().getActiveBits() > 32 ||
4481 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004482 return 1;
4483
4484 return (unsigned)Result->getZExtValue();
4485}
4486
Andrew Trick3ca3f982011-07-26 17:19:55 +00004487// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004488// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004489// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004490const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4491 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004492}
4493
Dan Gohman0bddac12009-02-24 18:55:53 +00004494/// getBackedgeTakenCount - If the specified loop has a predictable
4495/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4496/// object. The backedge-taken count is the number of times the loop header
4497/// will be branched to from within the loop. This is one less than the
4498/// trip count of the loop, since it doesn't count the first iteration,
4499/// when the header is branched to from outside the loop.
4500///
4501/// Note that it is not valid to call this method on a loop without a
4502/// loop-invariant backedge-taken count (see
4503/// hasLoopInvariantBackedgeTakenCount).
4504///
Dan Gohmanaf752342009-07-07 17:06:11 +00004505const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004506 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004507}
4508
4509/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4510/// return the least SCEV value that is known never to be less than the
4511/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004512const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004513 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004514}
4515
Dan Gohmandc191042009-07-08 19:23:34 +00004516/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4517/// onto the given Worklist.
4518static void
4519PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4520 BasicBlock *Header = L->getHeader();
4521
4522 // Push all Loop-header PHIs onto the Worklist stack.
4523 for (BasicBlock::iterator I = Header->begin();
4524 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4525 Worklist.push_back(PN);
4526}
4527
Dan Gohman2b8da352009-04-30 20:47:05 +00004528const ScalarEvolution::BackedgeTakenInfo &
4529ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004530 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004531 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004532 // update the value. The temporary CouldNotCompute value tells SCEV
4533 // code elsewhere that it shouldn't attempt to request a new
4534 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004535 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004536 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004537 if (!Pair.second)
4538 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004539
Andrew Trick3ca3f982011-07-26 17:19:55 +00004540 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4541 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4542 // must be cleared in this scope.
4543 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4544
4545 if (Result.getExact(this) != getCouldNotCompute()) {
4546 assert(isLoopInvariant(Result.getExact(this), L) &&
4547 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004548 "Computed backedge-taken count isn't loop invariant for loop!");
4549 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004550 }
4551 else if (Result.getMax(this) == getCouldNotCompute() &&
4552 isa<PHINode>(L->getHeader()->begin())) {
4553 // Only count loops that have phi nodes as not being computable.
4554 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004555 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004556
Chris Lattnera337f5e2011-01-09 02:16:18 +00004557 // Now that we know more about the trip count for this loop, forget any
4558 // existing SCEV values for PHI nodes in this loop since they are only
4559 // conservative estimates made without the benefit of trip count
4560 // information. This is similar to the code in forgetLoop, except that
4561 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004562 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004563 SmallVector<Instruction *, 16> Worklist;
4564 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004565
Chris Lattnera337f5e2011-01-09 02:16:18 +00004566 SmallPtrSet<Instruction *, 8> Visited;
4567 while (!Worklist.empty()) {
4568 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004569 if (!Visited.insert(I).second)
4570 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004571
Chris Lattnera337f5e2011-01-09 02:16:18 +00004572 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004573 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004574 if (It != ValueExprMap.end()) {
4575 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004576
Chris Lattnera337f5e2011-01-09 02:16:18 +00004577 // SCEVUnknown for a PHI either means that it has an unrecognized
4578 // structure, or it's a PHI that's in the progress of being computed
4579 // by createNodeForPHI. In the former case, additional loop trip
4580 // count information isn't going to change anything. In the later
4581 // case, createNodeForPHI will perform the necessary updates on its
4582 // own when it gets to that point.
4583 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4584 forgetMemoizedResults(Old);
4585 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004586 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004587 if (PHINode *PN = dyn_cast<PHINode>(I))
4588 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004589 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004590
4591 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004592 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004593 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004594
4595 // Re-lookup the insert position, since the call to
4596 // ComputeBackedgeTakenCount above could result in a
4597 // recusive call to getBackedgeTakenInfo (on a different
4598 // loop), which would invalidate the iterator computed
4599 // earlier.
4600 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004601}
4602
Dan Gohman880c92a2009-10-31 15:04:55 +00004603/// forgetLoop - This method should be called by the client when it has
4604/// changed a loop in a way that may effect ScalarEvolution's ability to
4605/// compute a trip count, or if the loop is deleted.
4606void ScalarEvolution::forgetLoop(const Loop *L) {
4607 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004608 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4609 BackedgeTakenCounts.find(L);
4610 if (BTCPos != BackedgeTakenCounts.end()) {
4611 BTCPos->second.clear();
4612 BackedgeTakenCounts.erase(BTCPos);
4613 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004614
Dan Gohman880c92a2009-10-31 15:04:55 +00004615 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004616 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004617 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004618
Dan Gohmandc191042009-07-08 19:23:34 +00004619 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004620 while (!Worklist.empty()) {
4621 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004622 if (!Visited.insert(I).second)
4623 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004624
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004625 ValueExprMapType::iterator It =
4626 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004627 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004628 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004629 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004630 if (PHINode *PN = dyn_cast<PHINode>(I))
4631 ConstantEvolutionLoopExitValue.erase(PN);
4632 }
4633
4634 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004635 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004636
4637 // Forget all contained loops too, to avoid dangling entries in the
4638 // ValuesAtScopes map.
4639 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4640 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004641}
4642
Eric Christopheref6d5932010-07-29 01:25:38 +00004643/// forgetValue - This method should be called by the client when it has
4644/// changed a value in a way that may effect its value, or which may
4645/// disconnect it from a def-use chain linking it to a loop.
4646void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004647 Instruction *I = dyn_cast<Instruction>(V);
4648 if (!I) return;
4649
4650 // Drop information about expressions based on loop-header PHIs.
4651 SmallVector<Instruction *, 16> Worklist;
4652 Worklist.push_back(I);
4653
4654 SmallPtrSet<Instruction *, 8> Visited;
4655 while (!Worklist.empty()) {
4656 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004657 if (!Visited.insert(I).second)
4658 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004659
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004660 ValueExprMapType::iterator It =
4661 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004662 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004663 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004664 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004665 if (PHINode *PN = dyn_cast<PHINode>(I))
4666 ConstantEvolutionLoopExitValue.erase(PN);
4667 }
4668
4669 PushDefUseChildren(I, Worklist);
4670 }
4671}
4672
Andrew Trick3ca3f982011-07-26 17:19:55 +00004673/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004674/// exits. A computable result can only be return for loops with a single exit.
4675/// Returning the minimum taken count among all exits is incorrect because one
4676/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4677/// the limit of each loop test is never skipped. This is a valid assumption as
4678/// long as the loop exits via that test. For precise results, it is the
4679/// caller's responsibility to specify the relevant loop exit using
4680/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004681const SCEV *
4682ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4683 // If any exits were not computable, the loop is not computable.
4684 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4685
Andrew Trick90c7a102011-11-16 00:52:40 +00004686 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004687 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004688 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4689
Craig Topper9f008862014-04-15 04:59:12 +00004690 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004691 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004692 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004693
4694 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4695
4696 if (!BECount)
4697 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004698 else if (BECount != ENT->ExactNotTaken)
4699 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004700 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004701 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004702 return BECount;
4703}
4704
4705/// getExact - Get the exact not taken count for this loop exit.
4706const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004707ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004708 ScalarEvolution *SE) const {
4709 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004710 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004711
Andrew Trick77c55422011-08-02 04:23:35 +00004712 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004713 return ENT->ExactNotTaken;
4714 }
4715 return SE->getCouldNotCompute();
4716}
4717
4718/// getMax - Get the max backedge taken count for the loop.
4719const SCEV *
4720ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4721 return Max ? Max : SE->getCouldNotCompute();
4722}
4723
Andrew Trick9093e152013-03-26 03:14:53 +00004724bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4725 ScalarEvolution *SE) const {
4726 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4727 return true;
4728
4729 if (!ExitNotTaken.ExitingBlock)
4730 return false;
4731
4732 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004733 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004734
4735 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4736 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4737 return true;
4738 }
4739 }
4740 return false;
4741}
4742
Andrew Trick3ca3f982011-07-26 17:19:55 +00004743/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4744/// computable exit into a persistent ExitNotTakenInfo array.
4745ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4746 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4747 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4748
4749 if (!Complete)
4750 ExitNotTaken.setIncomplete();
4751
4752 unsigned NumExits = ExitCounts.size();
4753 if (NumExits == 0) return;
4754
Andrew Trick77c55422011-08-02 04:23:35 +00004755 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004756 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4757 if (NumExits == 1) return;
4758
4759 // Handle the rare case of multiple computable exits.
4760 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4761
4762 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4763 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4764 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004765 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004766 ENT->ExactNotTaken = ExitCounts[i].second;
4767 }
4768}
4769
4770/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4771void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004772 ExitNotTaken.ExitingBlock = nullptr;
4773 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004774 delete[] ExitNotTaken.getNextExit();
4775}
4776
Dan Gohman0bddac12009-02-24 18:55:53 +00004777/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4778/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004779ScalarEvolution::BackedgeTakenInfo
4780ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004781 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004782 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004783
Andrew Trick839e30b2014-05-23 19:47:13 +00004784 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004785 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004786 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004787 const SCEV *MustExitMaxBECount = nullptr;
4788 const SCEV *MayExitMaxBECount = nullptr;
4789
4790 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4791 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004792 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004793 BasicBlock *ExitBB = ExitingBlocks[i];
4794 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4795
4796 // 1. For each exit that can be computed, add an entry to ExitCounts.
4797 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004798 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004799 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004800 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004801 CouldComputeBECount = false;
4802 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004803 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004804
Andrew Trick839e30b2014-05-23 19:47:13 +00004805 // 2. Derive the loop's MaxBECount from each exit's max number of
4806 // non-exiting iterations. Partition the loop exits into two kinds:
4807 // LoopMustExits and LoopMayExits.
4808 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004809 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4810 // is a LoopMayExit. If any computable LoopMustExit is found, then
4811 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4812 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4813 // considered greater than any computable EL.Max.
4814 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004815 DT->dominates(ExitBB, Latch)) {
4816 if (!MustExitMaxBECount)
4817 MustExitMaxBECount = EL.Max;
4818 else {
4819 MustExitMaxBECount =
4820 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004821 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004822 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4823 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4824 MayExitMaxBECount = EL.Max;
4825 else {
4826 MayExitMaxBECount =
4827 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4828 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004829 }
Dan Gohman96212b62009-06-22 00:31:57 +00004830 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004831 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4832 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004833 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004834}
4835
Andrew Trick3ca3f982011-07-26 17:19:55 +00004836/// ComputeExitLimit - Compute the number of times the backedge of the specified
4837/// loop will execute if it exits via the specified block.
4838ScalarEvolution::ExitLimit
4839ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004840
4841 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004842 // exit at this block and remember the exit block and whether all other targets
4843 // lead to the loop header.
4844 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004845 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004846 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4847 SI != SE; ++SI)
4848 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004849 if (Exit) // Multiple exit successors.
4850 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004851 Exit = *SI;
4852 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004853 MustExecuteLoopHeader = false;
4854 }
Dan Gohmance973df2009-06-24 04:48:43 +00004855
Chris Lattner18954852007-01-07 02:24:26 +00004856 // At this point, we know we have a conditional branch that determines whether
4857 // the loop is exited. However, we don't know if the branch is executed each
4858 // time through the loop. If not, then the execution count of the branch will
4859 // not be equal to the trip count of the loop.
4860 //
4861 // Currently we check for this by checking to see if the Exit branch goes to
4862 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004863 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004864 // loop header. This is common for un-rotated loops.
4865 //
4866 // If both of those tests fail, walk up the unique predecessor chain to the
4867 // header, stopping if there is an edge that doesn't exit the loop. If the
4868 // header is reached, the execution count of the branch will be equal to the
4869 // trip count of the loop.
4870 //
4871 // More extensive analysis could be done to handle more cases here.
4872 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004873 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004874 // The simple checks failed, try climbing the unique predecessor chain
4875 // up to the header.
4876 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004877 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004878 BasicBlock *Pred = BB->getUniquePredecessor();
4879 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004880 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004881 TerminatorInst *PredTerm = Pred->getTerminator();
4882 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4883 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4884 if (PredSucc == BB)
4885 continue;
4886 // If the predecessor has a successor that isn't BB and isn't
4887 // outside the loop, assume the worst.
4888 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004889 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004890 }
4891 if (Pred == L->getHeader()) {
4892 Ok = true;
4893 break;
4894 }
4895 BB = Pred;
4896 }
4897 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004898 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004899 }
4900
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004901 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004902 TerminatorInst *Term = ExitingBlock->getTerminator();
4903 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4904 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4905 // Proceed to the next level to examine the exit condition expression.
4906 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4907 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004908 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004909 }
4910
4911 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4912 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004913 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004914
4915 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004916}
4917
Andrew Trick3ca3f982011-07-26 17:19:55 +00004918/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004919/// backedge of the specified loop will execute if its exit condition
4920/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004921///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004922/// @param ControlsExit is true if ExitCond directly controls the exit
4923/// branch. In this case, we can assume that the loop exits only if the
4924/// condition is true and can infer that failing to meet the condition prior to
4925/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004926ScalarEvolution::ExitLimit
4927ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4928 Value *ExitCond,
4929 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004930 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004931 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004932 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004933 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4934 if (BO->getOpcode() == Instruction::And) {
4935 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004936 bool EitherMayExit = L->contains(TBB);
4937 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004938 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004939 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004940 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004941 const SCEV *BECount = getCouldNotCompute();
4942 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004943 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004944 // Both conditions must be true for the loop to continue executing.
4945 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004946 if (EL0.Exact == getCouldNotCompute() ||
4947 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004948 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004949 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004950 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4951 if (EL0.Max == getCouldNotCompute())
4952 MaxBECount = EL1.Max;
4953 else if (EL1.Max == getCouldNotCompute())
4954 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004955 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004956 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004957 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004958 // Both conditions must be true at the same time for the loop to exit.
4959 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004960 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004961 if (EL0.Max == EL1.Max)
4962 MaxBECount = EL0.Max;
4963 if (EL0.Exact == EL1.Exact)
4964 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00004965 }
4966
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004967 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004968 }
4969 if (BO->getOpcode() == Instruction::Or) {
4970 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004971 bool EitherMayExit = L->contains(FBB);
4972 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004973 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004974 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004975 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004976 const SCEV *BECount = getCouldNotCompute();
4977 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004978 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004979 // Both conditions must be false for the loop to continue executing.
4980 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004981 if (EL0.Exact == getCouldNotCompute() ||
4982 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004983 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004984 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004985 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4986 if (EL0.Max == getCouldNotCompute())
4987 MaxBECount = EL1.Max;
4988 else if (EL1.Max == getCouldNotCompute())
4989 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004990 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004991 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004992 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004993 // Both conditions must be false at the same time for the loop to exit.
4994 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004995 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004996 if (EL0.Max == EL1.Max)
4997 MaxBECount = EL0.Max;
4998 if (EL0.Exact == EL1.Exact)
4999 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005000 }
5001
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005002 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005003 }
5004 }
5005
5006 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005007 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005008 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005009 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005010
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005011 // Check for a constant condition. These are normally stripped out by
5012 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5013 // preserve the CFG and is temporarily leaving constant conditions
5014 // in place.
5015 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5016 if (L->contains(FBB) == !CI->getZExtValue())
5017 // The backedge is always taken.
5018 return getCouldNotCompute();
5019 else
5020 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00005021 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005022 }
5023
Eli Friedmanebf98b02009-05-09 12:32:42 +00005024 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005025 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005026}
5027
Andrew Trick3ca3f982011-07-26 17:19:55 +00005028/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005029/// backedge of the specified loop will execute if its exit condition
5030/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005031ScalarEvolution::ExitLimit
5032ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5033 ICmpInst *ExitCond,
5034 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005035 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005036 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005037
Reid Spencer266e42b2006-12-23 06:05:41 +00005038 // If the condition was exit on true, convert the condition to exit on false
5039 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005040 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005041 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005042 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005043 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005044
5045 // Handle common loops like: for (X = "string"; *X; ++X)
5046 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5047 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005048 ExitLimit ItCnt =
5049 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005050 if (ItCnt.hasAnyInfo())
5051 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005052 }
5053
Dan Gohmanaf752342009-07-07 17:06:11 +00005054 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5055 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005056
5057 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005058 LHS = getSCEVAtScope(LHS, L);
5059 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005060
Dan Gohmance973df2009-06-24 04:48:43 +00005061 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005062 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005063 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005064 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005065 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005066 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005067 }
5068
Dan Gohman81585c12010-05-03 16:35:17 +00005069 // Simplify the operands before analyzing them.
5070 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5071
Chris Lattnerd934c702004-04-02 20:23:17 +00005072 // If we have a comparison of a chrec against a constant, try to use value
5073 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005074 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5075 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005076 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005077 // Form the constant range.
5078 ConstantRange CompRange(
5079 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005080
Dan Gohmanaf752342009-07-07 17:06:11 +00005081 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005082 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005083 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005084
Chris Lattnerd934c702004-04-02 20:23:17 +00005085 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005086 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005087 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005088 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005089 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005090 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005091 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005092 case ICmpInst::ICMP_EQ: { // while (X == Y)
5093 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005094 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5095 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005096 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005097 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005098 case ICmpInst::ICMP_SLT:
5099 case ICmpInst::ICMP_ULT: { // while (X < Y)
5100 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005101 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005102 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005103 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005104 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005105 case ICmpInst::ICMP_SGT:
5106 case ICmpInst::ICMP_UGT: { // while (X > Y)
5107 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005108 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005109 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005110 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005111 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005112 default:
Chris Lattner09169212004-04-02 20:26:46 +00005113#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005114 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005115 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005116 dbgs() << "[unsigned] ";
5117 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005118 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005119 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005120#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005121 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005122 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005123 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005124}
5125
Benjamin Kramer5a188542014-02-11 15:44:32 +00005126ScalarEvolution::ExitLimit
5127ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5128 SwitchInst *Switch,
5129 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005130 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005131 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5132
5133 // Give up if the exit is the default dest of a switch.
5134 if (Switch->getDefaultDest() == ExitingBlock)
5135 return getCouldNotCompute();
5136
5137 assert(L->contains(Switch->getDefaultDest()) &&
5138 "Default case must not exit the loop!");
5139 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5140 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5141
5142 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005143 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005144 if (EL.hasAnyInfo())
5145 return EL;
5146
5147 return getCouldNotCompute();
5148}
5149
Chris Lattnerec901cc2004-10-12 01:49:27 +00005150static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005151EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5152 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005153 const SCEV *InVal = SE.getConstant(C);
5154 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005155 assert(isa<SCEVConstant>(Val) &&
5156 "Evaluation of SCEV at constant didn't fold correctly?");
5157 return cast<SCEVConstant>(Val)->getValue();
5158}
5159
Andrew Trick3ca3f982011-07-26 17:19:55 +00005160/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005161/// 'icmp op load X, cst', try to see if we can compute the backedge
5162/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005163ScalarEvolution::ExitLimit
5164ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5165 LoadInst *LI,
5166 Constant *RHS,
5167 const Loop *L,
5168 ICmpInst::Predicate predicate) {
5169
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005170 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005171
5172 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005173 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005174 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005175 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005176
5177 // Make sure that it is really a constant global we are gepping, with an
5178 // initializer, and make sure the first IDX is really 0.
5179 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005180 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005181 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5182 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005183 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005184
5185 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005186 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005187 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005188 unsigned VarIdxNum = 0;
5189 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5190 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5191 Indexes.push_back(CI);
5192 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005193 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005194 VarIdx = GEP->getOperand(i);
5195 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005196 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005197 }
5198
Andrew Trick7004e4b2012-03-26 22:33:59 +00005199 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5200 if (!VarIdx)
5201 return getCouldNotCompute();
5202
Chris Lattnerec901cc2004-10-12 01:49:27 +00005203 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5204 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005205 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005206 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005207
5208 // We can only recognize very limited forms of loop index expressions, in
5209 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005210 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005211 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005212 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5213 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005214 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005215
5216 unsigned MaxSteps = MaxBruteForceIterations;
5217 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005218 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005219 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005220 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005221
5222 // Form the GEP offset.
5223 Indexes[VarIdxNum] = Val;
5224
Chris Lattnere166a852012-01-24 05:49:24 +00005225 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5226 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005227 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005228
5229 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005230 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005231 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005232 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005233#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005234 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005235 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5236 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005237#endif
5238 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005239 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005240 }
5241 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005242 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005243}
5244
5245
Chris Lattnerdd730472004-04-17 22:58:41 +00005246/// CanConstantFold - Return true if we can constant fold an instruction of the
5247/// specified type, assuming that all operands were constants.
5248static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005249 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005250 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5251 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005252 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005253
Chris Lattnerdd730472004-04-17 22:58:41 +00005254 if (const CallInst *CI = dyn_cast<CallInst>(I))
5255 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005256 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005257 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005258}
5259
Andrew Trick3a86ba72011-10-05 03:25:31 +00005260/// Determine whether this instruction can constant evolve within this loop
5261/// assuming its operands can all constant evolve.
5262static bool canConstantEvolve(Instruction *I, const Loop *L) {
5263 // An instruction outside of the loop can't be derived from a loop PHI.
5264 if (!L->contains(I)) return false;
5265
5266 if (isa<PHINode>(I)) {
5267 if (L->getHeader() == I->getParent())
5268 return true;
5269 else
5270 // We don't currently keep track of the control flow needed to evaluate
5271 // PHIs, so we cannot handle PHIs inside of loops.
5272 return false;
5273 }
5274
5275 // If we won't be able to constant fold this expression even if the operands
5276 // are constants, bail early.
5277 return CanConstantFold(I);
5278}
5279
5280/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5281/// recursing through each instruction operand until reaching a loop header phi.
5282static PHINode *
5283getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005284 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005285
5286 // Otherwise, we can evaluate this instruction if all of its operands are
5287 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005288 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005289 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5290 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5291
5292 if (isa<Constant>(*OpI)) continue;
5293
5294 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005295 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005296
5297 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005298 if (!P)
5299 // If this operand is already visited, reuse the prior result.
5300 // We may have P != PHI if this is the deepest point at which the
5301 // inconsistent paths meet.
5302 P = PHIMap.lookup(OpInst);
5303 if (!P) {
5304 // Recurse and memoize the results, whether a phi is found or not.
5305 // This recursive call invalidates pointers into PHIMap.
5306 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5307 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005308 }
Craig Topper9f008862014-04-15 04:59:12 +00005309 if (!P)
5310 return nullptr; // Not evolving from PHI
5311 if (PHI && PHI != P)
5312 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005313 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005314 }
5315 // This is a expression evolving from a constant PHI!
5316 return PHI;
5317}
5318
Chris Lattnerdd730472004-04-17 22:58:41 +00005319/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5320/// in the loop that V is derived from. We allow arbitrary operations along the
5321/// way, but the operands of an operation must either be constants or a value
5322/// derived from a constant PHI. If this expression does not fit with these
5323/// constraints, return null.
5324static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005325 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005326 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005327
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005328 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005329 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005330 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005331
Andrew Trick3a86ba72011-10-05 03:25:31 +00005332 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005333 DenseMap<Instruction *, PHINode *> PHIMap;
5334 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005335}
5336
5337/// EvaluateExpression - Given an expression that passes the
5338/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5339/// in the loop has the value PHIVal. If we can't fold this expression for some
5340/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005341static Constant *EvaluateExpression(Value *V, const Loop *L,
5342 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005343 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005344 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005345 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005346 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005347 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005348 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005349
Andrew Trick3a86ba72011-10-05 03:25:31 +00005350 if (Constant *C = Vals.lookup(I)) return C;
5351
Nick Lewyckya6674c72011-10-22 19:58:20 +00005352 // An instruction inside the loop depends on a value outside the loop that we
5353 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005354 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005355
5356 // An unmapped PHI can be due to a branch or another loop inside this loop,
5357 // or due to this not being the initial iteration through a loop where we
5358 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005359 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005360
Dan Gohmanf820bd32010-06-22 13:15:46 +00005361 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005362
5363 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005364 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5365 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005366 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005367 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005368 continue;
5369 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005370 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005371 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005372 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005373 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005374 }
5375
Nick Lewyckya6674c72011-10-22 19:58:20 +00005376 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005377 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005378 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005379 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5380 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005381 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005382 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005383 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005384 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005385}
5386
5387/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5388/// in the header of its containing loop, we know the loop executes a
5389/// constant number of times, and the PHI node is just a recurrence
5390/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005391Constant *
5392ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005393 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005394 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005395 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005396 ConstantEvolutionLoopExitValue.find(PN);
5397 if (I != ConstantEvolutionLoopExitValue.end())
5398 return I->second;
5399
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005400 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005401 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005402
5403 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5404
Andrew Trick3a86ba72011-10-05 03:25:31 +00005405 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005406 BasicBlock *Header = L->getHeader();
5407 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005408
Chris Lattnerdd730472004-04-17 22:58:41 +00005409 // Since the loop is canonicalized, the PHI node must have two entries. One
5410 // entry must be a constant (coming in from outside of the loop), and the
5411 // second must be derived from the same PHI.
5412 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005413 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005414 for (BasicBlock::iterator I = Header->begin();
5415 (PHI = dyn_cast<PHINode>(I)); ++I) {
5416 Constant *StartCST =
5417 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005418 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005419 CurrentIterVals[PHI] = StartCST;
5420 }
5421 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005422 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005423
5424 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005425
5426 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005427 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005428 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005429
Dan Gohman0bddac12009-02-24 18:55:53 +00005430 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005431 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005432 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005433 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005434 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005435
Nick Lewyckya6674c72011-10-22 19:58:20 +00005436 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005437 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005438 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005439 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005440 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005441 if (!NextPHI)
5442 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005443 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005444
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005445 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5446
Nick Lewyckya6674c72011-10-22 19:58:20 +00005447 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5448 // cease to be able to evaluate one of them or if they stop evolving,
5449 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005450 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005451 for (DenseMap<Instruction *, Constant *>::const_iterator
5452 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5453 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005454 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005455 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5456 }
5457 // We use two distinct loops because EvaluateExpression may invalidate any
5458 // iterators into CurrentIterVals.
5459 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5460 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5461 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005462 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005463 if (!NextPHI) { // Not already computed.
5464 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005465 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005466 }
5467 if (NextPHI != I->second)
5468 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005469 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005470
5471 // If all entries in CurrentIterVals == NextIterVals then we can stop
5472 // iterating, the loop can't continue to change.
5473 if (StoppedEvolving)
5474 return RetVal = CurrentIterVals[PN];
5475
Andrew Trick3a86ba72011-10-05 03:25:31 +00005476 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005477 }
5478}
5479
Andrew Trick3ca3f982011-07-26 17:19:55 +00005480/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005481/// constant number of times (the condition evolves only from constants),
5482/// try to evaluate a few iterations of the loop until we get the exit
5483/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005484/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005485const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5486 Value *Cond,
5487 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005488 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005489 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005490
Dan Gohman866971e2010-06-19 14:17:24 +00005491 // If the loop is canonicalized, the PHI will have exactly two entries.
5492 // That's the only form we support here.
5493 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5494
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005495 DenseMap<Instruction *, Constant *> CurrentIterVals;
5496 BasicBlock *Header = L->getHeader();
5497 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5498
Dan Gohman866971e2010-06-19 14:17:24 +00005499 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005500 // second must be derived from the same PHI.
5501 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005502 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005503 for (BasicBlock::iterator I = Header->begin();
5504 (PHI = dyn_cast<PHINode>(I)); ++I) {
5505 Constant *StartCST =
5506 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005507 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005508 CurrentIterVals[PHI] = StartCST;
5509 }
5510 if (!CurrentIterVals.count(PN))
5511 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005512
5513 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5514 // the loop symbolically to determine when the condition gets a value of
5515 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005516
Andrew Trick90c7a102011-11-16 00:52:40 +00005517 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005518 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005519 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005520 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005521 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005522
Zhou Sheng75b871f2007-01-11 12:24:14 +00005523 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005524 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005525
Reid Spencer983e3b32007-03-01 07:25:48 +00005526 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005527 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005528 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005529 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005530
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005531 // Update all the PHI nodes for the next iteration.
5532 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005533
5534 // Create a list of which PHIs we need to compute. We want to do this before
5535 // calling EvaluateExpression on them because that may invalidate iterators
5536 // into CurrentIterVals.
5537 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005538 for (DenseMap<Instruction *, Constant *>::const_iterator
5539 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5540 PHINode *PHI = dyn_cast<PHINode>(I->first);
5541 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005542 PHIsToCompute.push_back(PHI);
5543 }
5544 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5545 E = PHIsToCompute.end(); I != E; ++I) {
5546 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005547 Constant *&NextPHI = NextIterVals[PHI];
5548 if (NextPHI) continue; // Already computed!
5549
5550 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005551 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005552 }
5553 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005554 }
5555
5556 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005557 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005558}
5559
Dan Gohman237d9e52009-09-03 15:00:26 +00005560/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005561/// at the specified scope in the program. The L value specifies a loop
5562/// nest to evaluate the expression at, where null is the top-level or a
5563/// specified loop is immediately inside of the loop.
5564///
5565/// This method can be used to compute the exit value for a variable defined
5566/// in a loop by querying what the value will hold in the parent loop.
5567///
Dan Gohman8ca08852009-05-24 23:25:42 +00005568/// In the case that a relevant loop exit value cannot be computed, the
5569/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005570const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005571 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005572 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5573 for (unsigned u = 0; u < Values.size(); u++) {
5574 if (Values[u].first == L)
5575 return Values[u].second ? Values[u].second : V;
5576 }
Craig Topper9f008862014-04-15 04:59:12 +00005577 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005578 // Otherwise compute it.
5579 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005580 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5581 for (unsigned u = Values2.size(); u > 0; u--) {
5582 if (Values2[u - 1].first == L) {
5583 Values2[u - 1].second = C;
5584 break;
5585 }
5586 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005587 return C;
5588}
5589
Nick Lewyckya6674c72011-10-22 19:58:20 +00005590/// This builds up a Constant using the ConstantExpr interface. That way, we
5591/// will return Constants for objects which aren't represented by a
5592/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5593/// Returns NULL if the SCEV isn't representable as a Constant.
5594static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005595 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005596 case scCouldNotCompute:
5597 case scAddRecExpr:
5598 break;
5599 case scConstant:
5600 return cast<SCEVConstant>(V)->getValue();
5601 case scUnknown:
5602 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5603 case scSignExtend: {
5604 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5605 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5606 return ConstantExpr::getSExt(CastOp, SS->getType());
5607 break;
5608 }
5609 case scZeroExtend: {
5610 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5611 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5612 return ConstantExpr::getZExt(CastOp, SZ->getType());
5613 break;
5614 }
5615 case scTruncate: {
5616 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5617 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5618 return ConstantExpr::getTrunc(CastOp, ST->getType());
5619 break;
5620 }
5621 case scAddExpr: {
5622 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5623 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005624 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5625 unsigned AS = PTy->getAddressSpace();
5626 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5627 C = ConstantExpr::getBitCast(C, DestPtrTy);
5628 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005629 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5630 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005631 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005632
5633 // First pointer!
5634 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005635 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005636 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005637 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005638 // The offsets have been converted to bytes. We can add bytes to an
5639 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005640 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005641 }
5642
5643 // Don't bother trying to sum two pointers. We probably can't
5644 // statically compute a load that results from it anyway.
5645 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005646 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005647
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005648 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5649 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005650 C2 = ConstantExpr::getIntegerCast(
5651 C2, Type::getInt32Ty(C->getContext()), true);
5652 C = ConstantExpr::getGetElementPtr(C, C2);
5653 } else
5654 C = ConstantExpr::getAdd(C, C2);
5655 }
5656 return C;
5657 }
5658 break;
5659 }
5660 case scMulExpr: {
5661 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5662 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5663 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005664 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005665 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5666 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005667 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005668 C = ConstantExpr::getMul(C, C2);
5669 }
5670 return C;
5671 }
5672 break;
5673 }
5674 case scUDivExpr: {
5675 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5676 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5677 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5678 if (LHS->getType() == RHS->getType())
5679 return ConstantExpr::getUDiv(LHS, RHS);
5680 break;
5681 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005682 case scSMaxExpr:
5683 case scUMaxExpr:
5684 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005685 }
Craig Topper9f008862014-04-15 04:59:12 +00005686 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005687}
5688
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005689const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005690 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005691
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005692 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005693 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005694 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005695 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005696 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005697 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5698 if (PHINode *PN = dyn_cast<PHINode>(I))
5699 if (PN->getParent() == LI->getHeader()) {
5700 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005701 // to see if the loop that contains it has a known backedge-taken
5702 // count. If so, we may be able to force computation of the exit
5703 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005704 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005705 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005706 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005707 // Okay, we know how many times the containing loop executes. If
5708 // this is a constant evolving PHI node, get the final value at
5709 // the specified iteration number.
5710 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005711 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005712 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005713 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005714 }
5715 }
5716
Reid Spencere6328ca2006-12-04 21:33:23 +00005717 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005718 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005719 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005720 // result. This is particularly useful for computing loop exit values.
5721 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005722 SmallVector<Constant *, 4> Operands;
5723 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005724 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5725 Value *Op = I->getOperand(i);
5726 if (Constant *C = dyn_cast<Constant>(Op)) {
5727 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005728 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005729 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005730
5731 // If any of the operands is non-constant and if they are
5732 // non-integer and non-pointer, don't even try to analyze them
5733 // with scev techniques.
5734 if (!isSCEVable(Op->getType()))
5735 return V;
5736
5737 const SCEV *OrigV = getSCEV(Op);
5738 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5739 MadeImprovement |= OrigV != OpV;
5740
Nick Lewyckya6674c72011-10-22 19:58:20 +00005741 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005742 if (!C) return V;
5743 if (C->getType() != Op->getType())
5744 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5745 Op->getType(),
5746 false),
5747 C, Op->getType());
5748 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005749 }
Dan Gohmance973df2009-06-24 04:48:43 +00005750
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005751 // Check to see if getSCEVAtScope actually made an improvement.
5752 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005753 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005754 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5755 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005756 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005757 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005758 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5759 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005760 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005761 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005762 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005763 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005764 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005765 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005766 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005767 }
5768 }
5769
5770 // This is some other type of SCEVUnknown, just return it.
5771 return V;
5772 }
5773
Dan Gohmana30370b2009-05-04 22:02:23 +00005774 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005775 // Avoid performing the look-up in the common case where the specified
5776 // expression has no loop-variant portions.
5777 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005778 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005779 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005780 // Okay, at least one of these operands is loop variant but might be
5781 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005782 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5783 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005784 NewOps.push_back(OpAtScope);
5785
5786 for (++i; i != e; ++i) {
5787 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005788 NewOps.push_back(OpAtScope);
5789 }
5790 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005791 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005792 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005793 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005794 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005795 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005796 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005797 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005798 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005799 }
5800 }
5801 // If we got here, all operands are loop invariant.
5802 return Comm;
5803 }
5804
Dan Gohmana30370b2009-05-04 22:02:23 +00005805 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005806 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5807 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005808 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5809 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005810 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005811 }
5812
5813 // If this is a loop recurrence for a loop that does not contain L, then we
5814 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005815 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005816 // First, attempt to evaluate each operand.
5817 // Avoid performing the look-up in the common case where the specified
5818 // expression has no loop-variant portions.
5819 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5820 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5821 if (OpAtScope == AddRec->getOperand(i))
5822 continue;
5823
5824 // Okay, at least one of these operands is loop variant but might be
5825 // foldable. Build a new instance of the folded commutative expression.
5826 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5827 AddRec->op_begin()+i);
5828 NewOps.push_back(OpAtScope);
5829 for (++i; i != e; ++i)
5830 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5831
Andrew Trick759ba082011-04-27 01:21:25 +00005832 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005833 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005834 AddRec->getNoWrapFlags(SCEV::FlagNW));
5835 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005836 // The addrec may be folded to a nonrecurrence, for example, if the
5837 // induction variable is multiplied by zero after constant folding. Go
5838 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005839 if (!AddRec)
5840 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005841 break;
5842 }
5843
5844 // If the scope is outside the addrec's loop, evaluate it by using the
5845 // loop exit value of the addrec.
5846 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005847 // To evaluate this recurrence, we need to know how many times the AddRec
5848 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005849 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005850 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005851
Eli Friedman61f67622008-08-04 23:49:06 +00005852 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005853 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005854 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005855
Dan Gohman8ca08852009-05-24 23:25:42 +00005856 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005857 }
5858
Dan Gohmana30370b2009-05-04 22:02:23 +00005859 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005860 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005861 if (Op == Cast->getOperand())
5862 return Cast; // must be loop invariant
5863 return getZeroExtendExpr(Op, Cast->getType());
5864 }
5865
Dan Gohmana30370b2009-05-04 22:02:23 +00005866 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005867 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005868 if (Op == Cast->getOperand())
5869 return Cast; // must be loop invariant
5870 return getSignExtendExpr(Op, Cast->getType());
5871 }
5872
Dan Gohmana30370b2009-05-04 22:02:23 +00005873 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005874 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005875 if (Op == Cast->getOperand())
5876 return Cast; // must be loop invariant
5877 return getTruncateExpr(Op, Cast->getType());
5878 }
5879
Torok Edwinfbcc6632009-07-14 16:55:14 +00005880 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005881}
5882
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005883/// getSCEVAtScope - This is a convenience function which does
5884/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005885const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005886 return getSCEVAtScope(getSCEV(V), L);
5887}
5888
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005889/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5890/// following equation:
5891///
5892/// A * X = B (mod N)
5893///
5894/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5895/// A and B isn't important.
5896///
5897/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005898static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005899 ScalarEvolution &SE) {
5900 uint32_t BW = A.getBitWidth();
5901 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5902 assert(A != 0 && "A must be non-zero.");
5903
5904 // 1. D = gcd(A, N)
5905 //
5906 // The gcd of A and N may have only one prime factor: 2. The number of
5907 // trailing zeros in A is its multiplicity
5908 uint32_t Mult2 = A.countTrailingZeros();
5909 // D = 2^Mult2
5910
5911 // 2. Check if B is divisible by D.
5912 //
5913 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5914 // is not less than multiplicity of this prime factor for D.
5915 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005916 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005917
5918 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5919 // modulo (N / D).
5920 //
5921 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5922 // bit width during computations.
5923 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5924 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005925 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005926 APInt I = AD.multiplicativeInverse(Mod);
5927
5928 // 4. Compute the minimum unsigned root of the equation:
5929 // I * (B / D) mod (N / D)
5930 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5931
5932 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5933 // bits.
5934 return SE.getConstant(Result.trunc(BW));
5935}
Chris Lattnerd934c702004-04-02 20:23:17 +00005936
5937/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5938/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5939/// might be the same) or two SCEVCouldNotCompute objects.
5940///
Dan Gohmanaf752342009-07-07 17:06:11 +00005941static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005942SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005943 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005944 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5945 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5946 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005947
Chris Lattnerd934c702004-04-02 20:23:17 +00005948 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005949 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005950 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005951 return std::make_pair(CNC, CNC);
5952 }
5953
Reid Spencer983e3b32007-03-01 07:25:48 +00005954 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005955 const APInt &L = LC->getValue()->getValue();
5956 const APInt &M = MC->getValue()->getValue();
5957 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005958 APInt Two(BitWidth, 2);
5959 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005960
Dan Gohmance973df2009-06-24 04:48:43 +00005961 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005962 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005963 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005964 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5965 // The B coefficient is M-N/2
5966 APInt B(M);
5967 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005968
Reid Spencer983e3b32007-03-01 07:25:48 +00005969 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005970 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005971
Reid Spencer983e3b32007-03-01 07:25:48 +00005972 // Compute the B^2-4ac term.
5973 APInt SqrtTerm(B);
5974 SqrtTerm *= B;
5975 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005976
Nick Lewyckyfb780832012-08-01 09:14:36 +00005977 if (SqrtTerm.isNegative()) {
5978 // The loop is provably infinite.
5979 const SCEV *CNC = SE.getCouldNotCompute();
5980 return std::make_pair(CNC, CNC);
5981 }
5982
Reid Spencer983e3b32007-03-01 07:25:48 +00005983 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5984 // integer value or else APInt::sqrt() will assert.
5985 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00005986
Dan Gohmance973df2009-06-24 04:48:43 +00005987 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00005988 // The divisions must be performed as signed divisions.
5989 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00005990 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00005991 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00005992 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00005993 return std::make_pair(CNC, CNC);
5994 }
5995
Owen Anderson47db9412009-07-22 00:24:57 +00005996 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00005997
5998 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005999 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006000 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006001 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006002
Dan Gohmance973df2009-06-24 04:48:43 +00006003 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006004 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006005 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006006}
6007
6008/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006009/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006010///
6011/// This is only used for loops with a "x != y" exit test. The exit condition is
6012/// now expressed as a single expression, V = x-y. So the exit test is
6013/// effectively V != 0. We know and take advantage of the fact that this
6014/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006015ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006016ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006017 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006018 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006019 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006020 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006021 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006022 }
6023
Dan Gohman48f82222009-05-04 22:30:44 +00006024 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006025 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006026 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006027
Chris Lattnerdff679f2011-01-09 22:39:48 +00006028 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6029 // the quadratic equation to solve it.
6030 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6031 std::pair<const SCEV *,const SCEV *> Roots =
6032 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006033 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6034 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006035 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006036#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006037 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006038 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006039#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006040 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006041 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006042 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6043 R1->getValue(),
6044 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006045 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006046 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006047
Chris Lattnerd934c702004-04-02 20:23:17 +00006048 // We can only use this value if the chrec ends up with an exact zero
6049 // value at this index. When solving for "X*X != 5", for example, we
6050 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006051 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006052 if (Val->isZero())
6053 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006054 }
6055 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006056 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006057 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006058
Chris Lattnerdff679f2011-01-09 22:39:48 +00006059 // Otherwise we can only handle this if it is affine.
6060 if (!AddRec->isAffine())
6061 return getCouldNotCompute();
6062
6063 // If this is an affine expression, the execution count of this branch is
6064 // the minimum unsigned root of the following equation:
6065 //
6066 // Start + Step*N = 0 (mod 2^BW)
6067 //
6068 // equivalent to:
6069 //
6070 // Step*N = -Start (mod 2^BW)
6071 //
6072 // where BW is the common bit width of Start and Step.
6073
6074 // Get the initial value for the loop.
6075 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6076 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6077
6078 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006079 //
6080 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6081 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6082 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6083 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006084 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006085 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006086 return getCouldNotCompute();
6087
Andrew Trick8b55b732011-03-14 16:50:06 +00006088 // For positive steps (counting up until unsigned overflow):
6089 // N = -Start/Step (as unsigned)
6090 // For negative steps (counting down to zero):
6091 // N = Start/-Step
6092 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006093 bool CountDown = StepC->getValue()->getValue().isNegative();
6094 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006095
6096 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006097 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6098 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006099 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6100 ConstantRange CR = getUnsignedRange(Start);
6101 const SCEV *MaxBECount;
6102 if (!CountDown && CR.getUnsignedMin().isMinValue())
6103 // When counting up, the worst starting value is 1, not 0.
6104 MaxBECount = CR.getUnsignedMax().isMinValue()
6105 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6106 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6107 else
6108 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6109 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006110 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006111 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006112
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006113 // As a special case, handle the instance where Step is a positive power of
6114 // two. In this case, determining whether Step divides Distance evenly can be
6115 // done by counting and comparing the number of trailing zeros of Step and
6116 // Distance.
6117 if (!CountDown) {
6118 const APInt &StepV = StepC->getValue()->getValue();
6119 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6120 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6121 // case is not handled as this code is guarded by !CountDown.
6122 if (StepV.isPowerOf2() &&
6123 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6124 return getUDivExactExpr(Distance, Step);
6125 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006126
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006127 // If the condition controls loop exit (the loop exits only if the expression
6128 // is true) and the addition is no-wrap we can use unsigned divide to
6129 // compute the backedge count. In this case, the step may not divide the
6130 // distance, but we don't care because if the condition is "missed" the loop
6131 // will have undefined behavior due to wrapping.
6132 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6133 const SCEV *Exact =
6134 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6135 return ExitLimit(Exact, Exact);
6136 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006137
Chris Lattnerdff679f2011-01-09 22:39:48 +00006138 // Then, try to solve the above equation provided that Start is constant.
6139 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6140 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6141 -StartC->getValue()->getValue(),
6142 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006143 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006144}
6145
6146/// HowFarToNonZero - Return the number of times a backedge checking the
6147/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006148/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006149ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006150ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006151 // Loops that look like: while (X == 0) are very strange indeed. We don't
6152 // handle them yet except for the trivial case. This could be expanded in the
6153 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006154
Chris Lattnerd934c702004-04-02 20:23:17 +00006155 // If the value is a constant, check to see if it is known to be non-zero
6156 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006157 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006158 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006159 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006160 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006161 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006162
Chris Lattnerd934c702004-04-02 20:23:17 +00006163 // We could implement others, but I really doubt anyone writes loops like
6164 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006165 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006166}
6167
Dan Gohmanf9081a22008-09-15 22:18:04 +00006168/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6169/// (which may not be an immediate predecessor) which has exactly one
6170/// successor from which BB is reachable, or null if no such block is
6171/// found.
6172///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006173std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006174ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006175 // If the block has a unique predecessor, then there is no path from the
6176 // predecessor to the block that does not go through the direct edge
6177 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006178 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006179 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006180
6181 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006182 // If the header has a unique predecessor outside the loop, it must be
6183 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006184 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006185 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006186
Dan Gohman4e3c1132010-04-15 16:19:08 +00006187 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006188}
6189
Dan Gohman450f4e02009-06-20 00:35:32 +00006190/// HasSameValue - SCEV structural equivalence is usually sufficient for
6191/// testing whether two expressions are equal, however for the purposes of
6192/// looking for a condition guarding a loop, it can be useful to be a little
6193/// more general, since a front-end may have replicated the controlling
6194/// expression.
6195///
Dan Gohmanaf752342009-07-07 17:06:11 +00006196static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006197 // Quick check to see if they are the same SCEV.
6198 if (A == B) return true;
6199
6200 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6201 // two different instructions with the same value. Check for this case.
6202 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6203 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6204 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6205 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006206 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006207 return true;
6208
6209 // Otherwise assume they may have a different value.
6210 return false;
6211}
6212
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006213/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006214/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006215///
6216bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006217 const SCEV *&LHS, const SCEV *&RHS,
6218 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006219 bool Changed = false;
6220
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006221 // If we hit the max recursion limit bail out.
6222 if (Depth >= 3)
6223 return false;
6224
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006225 // Canonicalize a constant to the right side.
6226 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6227 // Check for both operands constant.
6228 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6229 if (ConstantExpr::getICmp(Pred,
6230 LHSC->getValue(),
6231 RHSC->getValue())->isNullValue())
6232 goto trivially_false;
6233 else
6234 goto trivially_true;
6235 }
6236 // Otherwise swap the operands to put the constant on the right.
6237 std::swap(LHS, RHS);
6238 Pred = ICmpInst::getSwappedPredicate(Pred);
6239 Changed = true;
6240 }
6241
6242 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006243 // addrec's loop, put the addrec on the left. Also make a dominance check,
6244 // as both operands could be addrecs loop-invariant in each other's loop.
6245 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6246 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006247 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006248 std::swap(LHS, RHS);
6249 Pred = ICmpInst::getSwappedPredicate(Pred);
6250 Changed = true;
6251 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006252 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006253
6254 // If there's a constant operand, canonicalize comparisons with boundary
6255 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6256 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6257 const APInt &RA = RC->getValue()->getValue();
6258 switch (Pred) {
6259 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6260 case ICmpInst::ICMP_EQ:
6261 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006262 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6263 if (!RA)
6264 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6265 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006266 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6267 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006268 RHS = AE->getOperand(1);
6269 LHS = ME->getOperand(1);
6270 Changed = true;
6271 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006272 break;
6273 case ICmpInst::ICMP_UGE:
6274 if ((RA - 1).isMinValue()) {
6275 Pred = ICmpInst::ICMP_NE;
6276 RHS = getConstant(RA - 1);
6277 Changed = true;
6278 break;
6279 }
6280 if (RA.isMaxValue()) {
6281 Pred = ICmpInst::ICMP_EQ;
6282 Changed = true;
6283 break;
6284 }
6285 if (RA.isMinValue()) goto trivially_true;
6286
6287 Pred = ICmpInst::ICMP_UGT;
6288 RHS = getConstant(RA - 1);
6289 Changed = true;
6290 break;
6291 case ICmpInst::ICMP_ULE:
6292 if ((RA + 1).isMaxValue()) {
6293 Pred = ICmpInst::ICMP_NE;
6294 RHS = getConstant(RA + 1);
6295 Changed = true;
6296 break;
6297 }
6298 if (RA.isMinValue()) {
6299 Pred = ICmpInst::ICMP_EQ;
6300 Changed = true;
6301 break;
6302 }
6303 if (RA.isMaxValue()) goto trivially_true;
6304
6305 Pred = ICmpInst::ICMP_ULT;
6306 RHS = getConstant(RA + 1);
6307 Changed = true;
6308 break;
6309 case ICmpInst::ICMP_SGE:
6310 if ((RA - 1).isMinSignedValue()) {
6311 Pred = ICmpInst::ICMP_NE;
6312 RHS = getConstant(RA - 1);
6313 Changed = true;
6314 break;
6315 }
6316 if (RA.isMaxSignedValue()) {
6317 Pred = ICmpInst::ICMP_EQ;
6318 Changed = true;
6319 break;
6320 }
6321 if (RA.isMinSignedValue()) goto trivially_true;
6322
6323 Pred = ICmpInst::ICMP_SGT;
6324 RHS = getConstant(RA - 1);
6325 Changed = true;
6326 break;
6327 case ICmpInst::ICMP_SLE:
6328 if ((RA + 1).isMaxSignedValue()) {
6329 Pred = ICmpInst::ICMP_NE;
6330 RHS = getConstant(RA + 1);
6331 Changed = true;
6332 break;
6333 }
6334 if (RA.isMinSignedValue()) {
6335 Pred = ICmpInst::ICMP_EQ;
6336 Changed = true;
6337 break;
6338 }
6339 if (RA.isMaxSignedValue()) goto trivially_true;
6340
6341 Pred = ICmpInst::ICMP_SLT;
6342 RHS = getConstant(RA + 1);
6343 Changed = true;
6344 break;
6345 case ICmpInst::ICMP_UGT:
6346 if (RA.isMinValue()) {
6347 Pred = ICmpInst::ICMP_NE;
6348 Changed = true;
6349 break;
6350 }
6351 if ((RA + 1).isMaxValue()) {
6352 Pred = ICmpInst::ICMP_EQ;
6353 RHS = getConstant(RA + 1);
6354 Changed = true;
6355 break;
6356 }
6357 if (RA.isMaxValue()) goto trivially_false;
6358 break;
6359 case ICmpInst::ICMP_ULT:
6360 if (RA.isMaxValue()) {
6361 Pred = ICmpInst::ICMP_NE;
6362 Changed = true;
6363 break;
6364 }
6365 if ((RA - 1).isMinValue()) {
6366 Pred = ICmpInst::ICMP_EQ;
6367 RHS = getConstant(RA - 1);
6368 Changed = true;
6369 break;
6370 }
6371 if (RA.isMinValue()) goto trivially_false;
6372 break;
6373 case ICmpInst::ICMP_SGT:
6374 if (RA.isMinSignedValue()) {
6375 Pred = ICmpInst::ICMP_NE;
6376 Changed = true;
6377 break;
6378 }
6379 if ((RA + 1).isMaxSignedValue()) {
6380 Pred = ICmpInst::ICMP_EQ;
6381 RHS = getConstant(RA + 1);
6382 Changed = true;
6383 break;
6384 }
6385 if (RA.isMaxSignedValue()) goto trivially_false;
6386 break;
6387 case ICmpInst::ICMP_SLT:
6388 if (RA.isMaxSignedValue()) {
6389 Pred = ICmpInst::ICMP_NE;
6390 Changed = true;
6391 break;
6392 }
6393 if ((RA - 1).isMinSignedValue()) {
6394 Pred = ICmpInst::ICMP_EQ;
6395 RHS = getConstant(RA - 1);
6396 Changed = true;
6397 break;
6398 }
6399 if (RA.isMinSignedValue()) goto trivially_false;
6400 break;
6401 }
6402 }
6403
6404 // Check for obvious equality.
6405 if (HasSameValue(LHS, RHS)) {
6406 if (ICmpInst::isTrueWhenEqual(Pred))
6407 goto trivially_true;
6408 if (ICmpInst::isFalseWhenEqual(Pred))
6409 goto trivially_false;
6410 }
6411
Dan Gohman81585c12010-05-03 16:35:17 +00006412 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6413 // adding or subtracting 1 from one of the operands.
6414 switch (Pred) {
6415 case ICmpInst::ICMP_SLE:
6416 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6417 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006418 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006419 Pred = ICmpInst::ICMP_SLT;
6420 Changed = true;
6421 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006422 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006423 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006424 Pred = ICmpInst::ICMP_SLT;
6425 Changed = true;
6426 }
6427 break;
6428 case ICmpInst::ICMP_SGE:
6429 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006430 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006431 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006432 Pred = ICmpInst::ICMP_SGT;
6433 Changed = true;
6434 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6435 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006436 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006437 Pred = ICmpInst::ICMP_SGT;
6438 Changed = true;
6439 }
6440 break;
6441 case ICmpInst::ICMP_ULE:
6442 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006443 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006444 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006445 Pred = ICmpInst::ICMP_ULT;
6446 Changed = true;
6447 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006448 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006449 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006450 Pred = ICmpInst::ICMP_ULT;
6451 Changed = true;
6452 }
6453 break;
6454 case ICmpInst::ICMP_UGE:
6455 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006456 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006457 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006458 Pred = ICmpInst::ICMP_UGT;
6459 Changed = true;
6460 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006461 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006462 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006463 Pred = ICmpInst::ICMP_UGT;
6464 Changed = true;
6465 }
6466 break;
6467 default:
6468 break;
6469 }
6470
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006471 // TODO: More simplifications are possible here.
6472
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006473 // Recursively simplify until we either hit a recursion limit or nothing
6474 // changes.
6475 if (Changed)
6476 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6477
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006478 return Changed;
6479
6480trivially_true:
6481 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006482 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006483 Pred = ICmpInst::ICMP_EQ;
6484 return true;
6485
6486trivially_false:
6487 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006488 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006489 Pred = ICmpInst::ICMP_NE;
6490 return true;
6491}
6492
Dan Gohmane65c9172009-07-13 21:35:55 +00006493bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6494 return getSignedRange(S).getSignedMax().isNegative();
6495}
6496
6497bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6498 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6499}
6500
6501bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6502 return !getSignedRange(S).getSignedMin().isNegative();
6503}
6504
6505bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6506 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6507}
6508
6509bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6510 return isKnownNegative(S) || isKnownPositive(S);
6511}
6512
6513bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6514 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006515 // Canonicalize the inputs first.
6516 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6517
Dan Gohman07591692010-04-11 22:16:48 +00006518 // If LHS or RHS is an addrec, check to see if the condition is true in
6519 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006520 // If LHS and RHS are both addrec, both conditions must be true in
6521 // every iteration of the loop.
6522 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6523 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6524 bool LeftGuarded = false;
6525 bool RightGuarded = false;
6526 if (LAR) {
6527 const Loop *L = LAR->getLoop();
6528 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6529 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6530 if (!RAR) return true;
6531 LeftGuarded = true;
6532 }
6533 }
6534 if (RAR) {
6535 const Loop *L = RAR->getLoop();
6536 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6537 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6538 if (!LAR) return true;
6539 RightGuarded = true;
6540 }
6541 }
6542 if (LeftGuarded && RightGuarded)
6543 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006544
Dan Gohman07591692010-04-11 22:16:48 +00006545 // Otherwise see what can be done with known constant ranges.
6546 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6547}
6548
6549bool
6550ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6551 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006552 if (HasSameValue(LHS, RHS))
6553 return ICmpInst::isTrueWhenEqual(Pred);
6554
Dan Gohman07591692010-04-11 22:16:48 +00006555 // This code is split out from isKnownPredicate because it is called from
6556 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006557 switch (Pred) {
6558 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006559 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006560 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006561 std::swap(LHS, RHS);
6562 case ICmpInst::ICMP_SLT: {
6563 ConstantRange LHSRange = getSignedRange(LHS);
6564 ConstantRange RHSRange = getSignedRange(RHS);
6565 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6566 return true;
6567 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6568 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006569 break;
6570 }
6571 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006572 std::swap(LHS, RHS);
6573 case ICmpInst::ICMP_SLE: {
6574 ConstantRange LHSRange = getSignedRange(LHS);
6575 ConstantRange RHSRange = getSignedRange(RHS);
6576 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6577 return true;
6578 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6579 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006580 break;
6581 }
6582 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006583 std::swap(LHS, RHS);
6584 case ICmpInst::ICMP_ULT: {
6585 ConstantRange LHSRange = getUnsignedRange(LHS);
6586 ConstantRange RHSRange = getUnsignedRange(RHS);
6587 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6588 return true;
6589 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6590 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006591 break;
6592 }
6593 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006594 std::swap(LHS, RHS);
6595 case ICmpInst::ICMP_ULE: {
6596 ConstantRange LHSRange = getUnsignedRange(LHS);
6597 ConstantRange RHSRange = getUnsignedRange(RHS);
6598 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6599 return true;
6600 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6601 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006602 break;
6603 }
6604 case ICmpInst::ICMP_NE: {
6605 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6606 return true;
6607 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6608 return true;
6609
6610 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6611 if (isKnownNonZero(Diff))
6612 return true;
6613 break;
6614 }
6615 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006616 // The check at the top of the function catches the case where
6617 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006618 break;
6619 }
6620 return false;
6621}
6622
6623/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6624/// protected by a conditional between LHS and RHS. This is used to
6625/// to eliminate casts.
6626bool
6627ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6628 ICmpInst::Predicate Pred,
6629 const SCEV *LHS, const SCEV *RHS) {
6630 // Interpret a null as meaning no loop, where there is obviously no guard
6631 // (interprocedural conditions notwithstanding).
6632 if (!L) return true;
6633
Sanjoy Das1f05c512014-10-10 21:22:34 +00006634 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6635
Dan Gohmane65c9172009-07-13 21:35:55 +00006636 BasicBlock *Latch = L->getLoopLatch();
6637 if (!Latch)
6638 return false;
6639
6640 BranchInst *LoopContinuePredicate =
6641 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006642 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6643 isImpliedCond(Pred, LHS, RHS,
6644 LoopContinuePredicate->getCondition(),
6645 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6646 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006647
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006648 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006649 for (auto &AssumeVH : AC->assumptions()) {
6650 if (!AssumeVH)
6651 continue;
6652 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006653 if (!DT->dominates(CI, Latch->getTerminator()))
6654 continue;
6655
6656 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6657 return true;
6658 }
6659
6660 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006661}
6662
Dan Gohmanb50349a2010-04-11 19:27:13 +00006663/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006664/// by a conditional between LHS and RHS. This is used to help avoid max
6665/// expressions in loop trip counts, and to eliminate casts.
6666bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006667ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6668 ICmpInst::Predicate Pred,
6669 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006670 // Interpret a null as meaning no loop, where there is obviously no guard
6671 // (interprocedural conditions notwithstanding).
6672 if (!L) return false;
6673
Sanjoy Das1f05c512014-10-10 21:22:34 +00006674 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6675
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006676 // Starting at the loop predecessor, climb up the predecessor chain, as long
6677 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006678 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006679 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006680 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006681 Pair.first;
6682 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006683
6684 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006685 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006686 if (!LoopEntryPredicate ||
6687 LoopEntryPredicate->isUnconditional())
6688 continue;
6689
Dan Gohmane18c2d62010-08-10 23:46:30 +00006690 if (isImpliedCond(Pred, LHS, RHS,
6691 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006692 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006693 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006694 }
6695
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006696 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006697 for (auto &AssumeVH : AC->assumptions()) {
6698 if (!AssumeVH)
6699 continue;
6700 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006701 if (!DT->dominates(CI, L->getHeader()))
6702 continue;
6703
6704 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6705 return true;
6706 }
6707
Dan Gohman2a62fd92008-08-12 20:17:31 +00006708 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006709}
6710
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006711/// RAII wrapper to prevent recursive application of isImpliedCond.
6712/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6713/// currently evaluating isImpliedCond.
6714struct MarkPendingLoopPredicate {
6715 Value *Cond;
6716 DenseSet<Value*> &LoopPreds;
6717 bool Pending;
6718
6719 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6720 : Cond(C), LoopPreds(LP) {
6721 Pending = !LoopPreds.insert(Cond).second;
6722 }
6723 ~MarkPendingLoopPredicate() {
6724 if (!Pending)
6725 LoopPreds.erase(Cond);
6726 }
6727};
6728
Dan Gohman430f0cc2009-07-21 23:03:19 +00006729/// isImpliedCond - Test whether the condition described by Pred, LHS,
6730/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006731bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006732 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006733 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006734 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006735 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6736 if (Mark.Pending)
6737 return false;
6738
Dan Gohman8b0a4192010-03-01 17:49:51 +00006739 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006740 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006741 if (BO->getOpcode() == Instruction::And) {
6742 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006743 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6744 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006745 } else if (BO->getOpcode() == Instruction::Or) {
6746 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006747 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6748 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006749 }
6750 }
6751
Dan Gohmane18c2d62010-08-10 23:46:30 +00006752 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006753 if (!ICI) return false;
6754
Dan Gohmane65c9172009-07-13 21:35:55 +00006755 // Bail if the ICmp's operands' types are wider than the needed type
6756 // before attempting to call getSCEV on them. This avoids infinite
6757 // recursion, since the analysis of widening casts can require loop
6758 // exit condition information for overflow checking, which would
6759 // lead back here.
6760 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006761 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006762 return false;
6763
Andrew Trickfa594032012-11-29 18:35:13 +00006764 // Now that we found a conditional branch that dominates the loop or controls
6765 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006766 ICmpInst::Predicate FoundPred;
6767 if (Inverse)
6768 FoundPred = ICI->getInversePredicate();
6769 else
6770 FoundPred = ICI->getPredicate();
6771
6772 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6773 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006774
6775 // Balance the types. The case where FoundLHS' type is wider than
6776 // LHS' type is checked for above.
6777 if (getTypeSizeInBits(LHS->getType()) >
6778 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006779 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006780 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6781 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6782 } else {
6783 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6784 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6785 }
6786 }
6787
Dan Gohman430f0cc2009-07-21 23:03:19 +00006788 // Canonicalize the query to match the way instcombine will have
6789 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006790 if (SimplifyICmpOperands(Pred, LHS, RHS))
6791 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006792 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006793 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6794 if (FoundLHS == FoundRHS)
6795 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006796
6797 // Check to see if we can make the LHS or RHS match.
6798 if (LHS == FoundRHS || RHS == FoundLHS) {
6799 if (isa<SCEVConstant>(RHS)) {
6800 std::swap(FoundLHS, FoundRHS);
6801 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6802 } else {
6803 std::swap(LHS, RHS);
6804 Pred = ICmpInst::getSwappedPredicate(Pred);
6805 }
6806 }
6807
6808 // Check whether the found predicate is the same as the desired predicate.
6809 if (FoundPred == Pred)
6810 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6811
6812 // Check whether swapping the found predicate makes it the same as the
6813 // desired predicate.
6814 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6815 if (isa<SCEVConstant>(RHS))
6816 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6817 else
6818 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6819 RHS, LHS, FoundLHS, FoundRHS);
6820 }
6821
Sanjoy Dasc5676df2014-11-13 00:00:58 +00006822 // Check if we can make progress by sharpening ranges.
6823 if (FoundPred == ICmpInst::ICMP_NE &&
6824 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6825
6826 const SCEVConstant *C = nullptr;
6827 const SCEV *V = nullptr;
6828
6829 if (isa<SCEVConstant>(FoundLHS)) {
6830 C = cast<SCEVConstant>(FoundLHS);
6831 V = FoundRHS;
6832 } else {
6833 C = cast<SCEVConstant>(FoundRHS);
6834 V = FoundLHS;
6835 }
6836
6837 // The guarding predicate tells us that C != V. If the known range
6838 // of V is [C, t), we can sharpen the range to [C + 1, t). The
6839 // range we consider has to correspond to same signedness as the
6840 // predicate we're interested in folding.
6841
6842 APInt Min = ICmpInst::isSigned(Pred) ?
6843 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6844
6845 if (Min == C->getValue()->getValue()) {
6846 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6847 // This is true even if (Min + 1) wraps around -- in case of
6848 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6849
6850 APInt SharperMin = Min + 1;
6851
6852 switch (Pred) {
6853 case ICmpInst::ICMP_SGE:
6854 case ICmpInst::ICMP_UGE:
6855 // We know V `Pred` SharperMin. If this implies LHS `Pred`
6856 // RHS, we're done.
6857 if (isImpliedCondOperands(Pred, LHS, RHS, V,
6858 getConstant(SharperMin)))
6859 return true;
6860
6861 case ICmpInst::ICMP_SGT:
6862 case ICmpInst::ICMP_UGT:
6863 // We know from the range information that (V `Pred` Min ||
6864 // V == Min). We know from the guarding condition that !(V
6865 // == Min). This gives us
6866 //
6867 // V `Pred` Min || V == Min && !(V == Min)
6868 // => V `Pred` Min
6869 //
6870 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6871
6872 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6873 return true;
6874
6875 default:
6876 // No change
6877 break;
6878 }
6879 }
6880 }
6881
Dan Gohman430f0cc2009-07-21 23:03:19 +00006882 // Check whether the actual condition is beyond sufficient.
6883 if (FoundPred == ICmpInst::ICMP_EQ)
6884 if (ICmpInst::isTrueWhenEqual(Pred))
6885 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6886 return true;
6887 if (Pred == ICmpInst::ICMP_NE)
6888 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6889 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6890 return true;
6891
6892 // Otherwise assume the worst.
6893 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006894}
6895
Dan Gohman430f0cc2009-07-21 23:03:19 +00006896/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006897/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006898/// and FoundRHS is true.
6899bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6900 const SCEV *LHS, const SCEV *RHS,
6901 const SCEV *FoundLHS,
6902 const SCEV *FoundRHS) {
6903 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6904 FoundLHS, FoundRHS) ||
6905 // ~x < ~y --> x > y
6906 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6907 getNotSCEV(FoundRHS),
6908 getNotSCEV(FoundLHS));
6909}
6910
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006911
6912/// If Expr computes ~A, return A else return nullptr
6913static const SCEV *MatchNotExpr(const SCEV *Expr) {
6914 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
6915 if (!Add || Add->getNumOperands() != 2) return nullptr;
6916
6917 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
6918 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
6919 return nullptr;
6920
6921 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
6922 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
6923
6924 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
6925 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
6926 return nullptr;
6927
6928 return AddRHS->getOperand(1);
6929}
6930
6931
6932/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
6933template<typename MaxExprType>
6934static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
6935 const SCEV *Candidate) {
6936 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
6937 if (!MaxExpr) return false;
6938
6939 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
6940 return It != MaxExpr->op_end();
6941}
6942
6943
6944/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
6945template<typename MaxExprType>
6946static bool IsMinConsistingOf(ScalarEvolution &SE,
6947 const SCEV *MaybeMinExpr,
6948 const SCEV *Candidate) {
6949 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
6950 if (!MaybeMaxExpr)
6951 return false;
6952
6953 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
6954}
6955
6956
6957/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
6958/// expression?
6959static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
6960 ICmpInst::Predicate Pred,
6961 const SCEV *LHS, const SCEV *RHS) {
6962 switch (Pred) {
6963 default:
6964 return false;
6965
6966 case ICmpInst::ICMP_SGE:
6967 std::swap(LHS, RHS);
6968 // fall through
6969 case ICmpInst::ICMP_SLE:
6970 return
6971 // min(A, ...) <= A
6972 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
6973 // A <= max(A, ...)
6974 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
6975
6976 case ICmpInst::ICMP_UGE:
6977 std::swap(LHS, RHS);
6978 // fall through
6979 case ICmpInst::ICMP_ULE:
6980 return
6981 // min(A, ...) <= A
6982 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
6983 // A <= max(A, ...)
6984 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
6985 }
6986
6987 llvm_unreachable("covered switch fell through?!");
6988}
6989
Dan Gohman430f0cc2009-07-21 23:03:19 +00006990/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006991/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006992/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006993bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006994ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6995 const SCEV *LHS, const SCEV *RHS,
6996 const SCEV *FoundLHS,
6997 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006998 auto IsKnownPredicateFull =
6999 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7000 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
7001 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
7002 };
7003
Dan Gohmane65c9172009-07-13 21:35:55 +00007004 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00007005 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7006 case ICmpInst::ICMP_EQ:
7007 case ICmpInst::ICMP_NE:
7008 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7009 return true;
7010 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007011 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007012 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007013 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7014 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007015 return true;
7016 break;
7017 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007018 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007019 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7020 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007021 return true;
7022 break;
7023 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007024 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007025 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7026 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007027 return true;
7028 break;
7029 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007030 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007031 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7032 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007033 return true;
7034 break;
7035 }
7036
7037 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007038}
7039
Johannes Doerfert2683e562015-02-09 12:34:23 +00007040// Verify if an linear IV with positive stride can overflow when in a
7041// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007042// stride and the knowledge of NSW/NUW flags on the recurrence.
7043bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7044 bool IsSigned, bool NoWrap) {
7045 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007046
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007047 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7048 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00007049
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007050 if (IsSigned) {
7051 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7052 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7053 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7054 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007055
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007056 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7057 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007058 }
Dan Gohman01048422009-06-21 23:46:38 +00007059
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007060 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7061 APInt MaxValue = APInt::getMaxValue(BitWidth);
7062 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7063 .getUnsignedMax();
7064
7065 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7066 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7067}
7068
Johannes Doerfert2683e562015-02-09 12:34:23 +00007069// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007070// greater-than comparison, knowing the invariant term of the comparison,
7071// the stride and the knowledge of NSW/NUW flags on the recurrence.
7072bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7073 bool IsSigned, bool NoWrap) {
7074 if (NoWrap) return false;
7075
7076 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7077 const SCEV *One = getConstant(Stride->getType(), 1);
7078
7079 if (IsSigned) {
7080 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7081 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7082 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7083 .getSignedMax();
7084
7085 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7086 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7087 }
7088
7089 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7090 APInt MinValue = APInt::getMinValue(BitWidth);
7091 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7092 .getUnsignedMax();
7093
7094 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7095 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7096}
7097
7098// Compute the backedge taken count knowing the interval difference, the
7099// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00007100const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007101 bool Equality) {
7102 const SCEV *One = getConstant(Step->getType(), 1);
7103 Delta = Equality ? getAddExpr(Delta, Step)
7104 : getAddExpr(Delta, getMinusSCEV(Step, One));
7105 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007106}
7107
Chris Lattner587a75b2005-08-15 23:33:51 +00007108/// HowManyLessThans - Return the number of times a backedge containing the
7109/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007110/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007111///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007112/// @param ControlsExit is true when the LHS < RHS condition directly controls
7113/// the branch (loops exits only if condition is true). In this case, we can use
7114/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007115ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007116ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007117 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007118 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007119 // We handle only IV < Invariant
7120 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007121 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007122
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007123 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007124
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007125 // Avoid weird loops
7126 if (!IV || IV->getLoop() != L || !IV->isAffine())
7127 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007128
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007129 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007130 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007131
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007132 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007133
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007134 // Avoid negative or zero stride values
7135 if (!isKnownPositive(Stride))
7136 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007137
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007138 // Avoid proven overflow cases: this will ensure that the backedge taken count
7139 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007140 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007141 // behaviors like the case of C language.
7142 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7143 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007144
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007145 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7146 : ICmpInst::ICMP_ULT;
7147 const SCEV *Start = IV->getStart();
7148 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007149 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7150 const SCEV *Diff = getMinusSCEV(RHS, Start);
7151 // If we have NoWrap set, then we can assume that the increment won't
7152 // overflow, in which case if RHS - Start is a constant, we don't need to
7153 // do a max operation since we can just figure it out statically
7154 if (NoWrap && isa<SCEVConstant>(Diff)) {
7155 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7156 if (D.isNegative())
7157 End = Start;
7158 } else
7159 End = IsSigned ? getSMaxExpr(RHS, Start)
7160 : getUMaxExpr(RHS, Start);
7161 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007162
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007163 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007164
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007165 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7166 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007167
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007168 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7169 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007170
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007171 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7172 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7173 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007174
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007175 // Although End can be a MAX expression we estimate MaxEnd considering only
7176 // the case End = RHS. This is safe because in the other case (End - Start)
7177 // is zero, leading to a zero maximum backedge taken count.
7178 APInt MaxEnd =
7179 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7180 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7181
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007182 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007183 if (isa<SCEVConstant>(BECount))
7184 MaxBECount = BECount;
7185 else
7186 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7187 getConstant(MinStride), false);
7188
7189 if (isa<SCEVCouldNotCompute>(MaxBECount))
7190 MaxBECount = BECount;
7191
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007192 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007193}
7194
7195ScalarEvolution::ExitLimit
7196ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7197 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007198 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007199 // We handle only IV > Invariant
7200 if (!isLoopInvariant(RHS, L))
7201 return getCouldNotCompute();
7202
7203 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7204
7205 // Avoid weird loops
7206 if (!IV || IV->getLoop() != L || !IV->isAffine())
7207 return getCouldNotCompute();
7208
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007209 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007210 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7211
7212 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7213
7214 // Avoid negative or zero stride values
7215 if (!isKnownPositive(Stride))
7216 return getCouldNotCompute();
7217
7218 // Avoid proven overflow cases: this will ensure that the backedge taken count
7219 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007220 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007221 // behaviors like the case of C language.
7222 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7223 return getCouldNotCompute();
7224
7225 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7226 : ICmpInst::ICMP_UGT;
7227
7228 const SCEV *Start = IV->getStart();
7229 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007230 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7231 const SCEV *Diff = getMinusSCEV(RHS, Start);
7232 // If we have NoWrap set, then we can assume that the increment won't
7233 // overflow, in which case if RHS - Start is a constant, we don't need to
7234 // do a max operation since we can just figure it out statically
7235 if (NoWrap && isa<SCEVConstant>(Diff)) {
7236 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7237 if (!D.isNegative())
7238 End = Start;
7239 } else
7240 End = IsSigned ? getSMinExpr(RHS, Start)
7241 : getUMinExpr(RHS, Start);
7242 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007243
7244 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7245
7246 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7247 : getUnsignedRange(Start).getUnsignedMax();
7248
7249 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7250 : getUnsignedRange(Stride).getUnsignedMin();
7251
7252 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7253 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7254 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7255
7256 // Although End can be a MIN expression we estimate MinEnd considering only
7257 // the case End = RHS. This is safe because in the other case (Start - End)
7258 // is zero, leading to a zero maximum backedge taken count.
7259 APInt MinEnd =
7260 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7261 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7262
7263
7264 const SCEV *MaxBECount = getCouldNotCompute();
7265 if (isa<SCEVConstant>(BECount))
7266 MaxBECount = BECount;
7267 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00007268 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007269 getConstant(MinStride), false);
7270
7271 if (isa<SCEVCouldNotCompute>(MaxBECount))
7272 MaxBECount = BECount;
7273
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007274 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007275}
7276
Chris Lattnerd934c702004-04-02 20:23:17 +00007277/// getNumIterationsInRange - Return the number of iterations of this loop that
7278/// produce values in the specified constant range. Another way of looking at
7279/// this is that it returns the first iteration number where the value is not in
7280/// the condition, thus computing the exit count. If the iteration count can't
7281/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007282const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007283 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007284 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007285 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007286
7287 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007288 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007289 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007290 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007291 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007292 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007293 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007294 if (const SCEVAddRecExpr *ShiftedAddRec =
7295 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007296 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007297 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007298 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007299 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007300 }
7301
7302 // The only time we can solve this is when we have all constant indices.
7303 // Otherwise, we cannot determine the overflow conditions.
7304 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7305 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007306 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007307
7308
7309 // Okay at this point we know that all elements of the chrec are constants and
7310 // that the start element is zero.
7311
7312 // First check to see if the range contains zero. If not, the first
7313 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007314 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007315 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007316 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007317
Chris Lattnerd934c702004-04-02 20:23:17 +00007318 if (isAffine()) {
7319 // If this is an affine expression then we have this situation:
7320 // Solve {0,+,A} in Range === Ax in Range
7321
Nick Lewycky52460262007-07-16 02:08:00 +00007322 // We know that zero is in the range. If A is positive then we know that
7323 // the upper value of the range must be the first possible exit value.
7324 // If A is negative then the lower of the range is the last possible loop
7325 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007326 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007327 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7328 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007329
Nick Lewycky52460262007-07-16 02:08:00 +00007330 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007331 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007332 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007333
7334 // Evaluate at the exit value. If we really did fall out of the valid
7335 // range, then we computed our trip count, otherwise wrap around or other
7336 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007337 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007338 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007339 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007340
7341 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007342 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007343 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007344 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007345 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007346 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007347 } else if (isQuadratic()) {
7348 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7349 // quadratic equation to solve it. To do this, we must frame our problem in
7350 // terms of figuring out when zero is crossed, instead of when
7351 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007352 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007353 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007354 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7355 // getNoWrapFlags(FlagNW)
7356 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007357
7358 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007359 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007360 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007361 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7362 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007363 if (R1) {
7364 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007365 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007366 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007367 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007368 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00007369 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007370
Chris Lattnerd934c702004-04-02 20:23:17 +00007371 // Make sure the root is not off by one. The returned iteration should
7372 // not be in the range, but the previous one should be. When solving
7373 // for "X*X < 5", for example, we should not return a root of 2.
7374 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007375 R1->getValue(),
7376 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007377 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007378 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007379 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007380 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007381
Dan Gohmana37eaf22007-10-22 18:31:58 +00007382 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007383 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007384 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007385 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007386 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007387
Chris Lattnerd934c702004-04-02 20:23:17 +00007388 // If R1 was not in the range, then it is a good return value. Make
7389 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007390 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007391 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007392 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007393 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007394 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007395 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007396 }
7397 }
7398 }
7399
Dan Gohman31efa302009-04-18 17:58:19 +00007400 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007401}
7402
Sebastian Pop448712b2014-05-07 18:01:20 +00007403namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007404struct FindUndefs {
7405 bool Found;
7406 FindUndefs() : Found(false) {}
7407
7408 bool follow(const SCEV *S) {
7409 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7410 if (isa<UndefValue>(C->getValue()))
7411 Found = true;
7412 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7413 if (isa<UndefValue>(C->getValue()))
7414 Found = true;
7415 }
7416
7417 // Keep looking if we haven't found it yet.
7418 return !Found;
7419 }
7420 bool isDone() const {
7421 // Stop recursion if we have found an undef.
7422 return Found;
7423 }
7424};
7425}
7426
7427// Return true when S contains at least an undef value.
7428static inline bool
7429containsUndefs(const SCEV *S) {
7430 FindUndefs F;
7431 SCEVTraversal<FindUndefs> ST(F);
7432 ST.visitAll(S);
7433
7434 return F.Found;
7435}
7436
7437namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007438// Collect all steps of SCEV expressions.
7439struct SCEVCollectStrides {
7440 ScalarEvolution &SE;
7441 SmallVectorImpl<const SCEV *> &Strides;
7442
7443 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7444 : SE(SE), Strides(S) {}
7445
7446 bool follow(const SCEV *S) {
7447 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7448 Strides.push_back(AR->getStepRecurrence(SE));
7449 return true;
7450 }
7451 bool isDone() const { return false; }
7452};
7453
7454// Collect all SCEVUnknown and SCEVMulExpr expressions.
7455struct SCEVCollectTerms {
7456 SmallVectorImpl<const SCEV *> &Terms;
7457
7458 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7459 : Terms(T) {}
7460
7461 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007462 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007463 if (!containsUndefs(S))
7464 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007465
7466 // Stop recursion: once we collected a term, do not walk its operands.
7467 return false;
7468 }
7469
7470 // Keep looking.
7471 return true;
7472 }
7473 bool isDone() const { return false; }
7474};
7475}
7476
7477/// Find parametric terms in this SCEVAddRecExpr.
7478void SCEVAddRecExpr::collectParametricTerms(
7479 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7480 SmallVector<const SCEV *, 4> Strides;
7481 SCEVCollectStrides StrideCollector(SE, Strides);
7482 visitAll(this, StrideCollector);
7483
7484 DEBUG({
7485 dbgs() << "Strides:\n";
7486 for (const SCEV *S : Strides)
7487 dbgs() << *S << "\n";
7488 });
7489
7490 for (const SCEV *S : Strides) {
7491 SCEVCollectTerms TermCollector(Terms);
7492 visitAll(S, TermCollector);
7493 }
7494
7495 DEBUG({
7496 dbgs() << "Terms:\n";
7497 for (const SCEV *T : Terms)
7498 dbgs() << *T << "\n";
7499 });
7500}
7501
Sebastian Popb1a548f2014-05-12 19:01:53 +00007502static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007503 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007504 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007505 int Last = Terms.size() - 1;
7506 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007507
Sebastian Pop448712b2014-05-07 18:01:20 +00007508 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007509 if (Last == 0) {
7510 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007511 SmallVector<const SCEV *, 2> Qs;
7512 for (const SCEV *Op : M->operands())
7513 if (!isa<SCEVConstant>(Op))
7514 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007515
Sebastian Pope30bd352014-05-27 22:41:56 +00007516 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007517 }
7518
Sebastian Pope30bd352014-05-27 22:41:56 +00007519 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007520 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007521 }
7522
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007523 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007524 // Normalize the terms before the next call to findArrayDimensionsRec.
7525 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007526 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007527
7528 // Bail out when GCD does not evenly divide one of the terms.
7529 if (!R->isZero())
7530 return false;
7531
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007532 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007533 }
7534
Tobias Grosser3080cf12014-05-08 07:55:34 +00007535 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007536 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7537 return isa<SCEVConstant>(E);
7538 }),
7539 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007540
Sebastian Pop448712b2014-05-07 18:01:20 +00007541 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007542 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7543 return false;
7544
Sebastian Pope30bd352014-05-27 22:41:56 +00007545 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007546 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007547}
Sebastian Popc62c6792013-11-12 22:47:20 +00007548
Sebastian Pop448712b2014-05-07 18:01:20 +00007549namespace {
7550struct FindParameter {
7551 bool FoundParameter;
7552 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007553
Sebastian Pop448712b2014-05-07 18:01:20 +00007554 bool follow(const SCEV *S) {
7555 if (isa<SCEVUnknown>(S)) {
7556 FoundParameter = true;
7557 // Stop recursion: we found a parameter.
7558 return false;
7559 }
7560 // Keep looking.
7561 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007562 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007563 bool isDone() const {
7564 // Stop recursion if we have found a parameter.
7565 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007566 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007567};
7568}
7569
Sebastian Pop448712b2014-05-07 18:01:20 +00007570// Returns true when S contains at least a SCEVUnknown parameter.
7571static inline bool
7572containsParameters(const SCEV *S) {
7573 FindParameter F;
7574 SCEVTraversal<FindParameter> ST(F);
7575 ST.visitAll(S);
7576
7577 return F.FoundParameter;
7578}
7579
7580// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7581static inline bool
7582containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7583 for (const SCEV *T : Terms)
7584 if (containsParameters(T))
7585 return true;
7586 return false;
7587}
7588
7589// Return the number of product terms in S.
7590static inline int numberOfTerms(const SCEV *S) {
7591 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7592 return Expr->getNumOperands();
7593 return 1;
7594}
7595
Sebastian Popa6e58602014-05-27 22:41:45 +00007596static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7597 if (isa<SCEVConstant>(T))
7598 return nullptr;
7599
7600 if (isa<SCEVUnknown>(T))
7601 return T;
7602
7603 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7604 SmallVector<const SCEV *, 2> Factors;
7605 for (const SCEV *Op : M->operands())
7606 if (!isa<SCEVConstant>(Op))
7607 Factors.push_back(Op);
7608
7609 return SE.getMulExpr(Factors);
7610 }
7611
7612 return T;
7613}
7614
7615/// Return the size of an element read or written by Inst.
7616const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7617 Type *Ty;
7618 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7619 Ty = Store->getValueOperand()->getType();
7620 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007621 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007622 else
7623 return nullptr;
7624
7625 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7626 return getSizeOfExpr(ETy, Ty);
7627}
7628
Sebastian Pop448712b2014-05-07 18:01:20 +00007629/// Second step of delinearization: compute the array dimensions Sizes from the
7630/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007631void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7632 SmallVectorImpl<const SCEV *> &Sizes,
7633 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007634
Sebastian Pop53524082014-05-29 19:44:05 +00007635 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007636 return;
7637
7638 // Early return when Terms do not contain parameters: we do not delinearize
7639 // non parametric SCEVs.
7640 if (!containsParameters(Terms))
7641 return;
7642
7643 DEBUG({
7644 dbgs() << "Terms:\n";
7645 for (const SCEV *T : Terms)
7646 dbgs() << *T << "\n";
7647 });
7648
7649 // Remove duplicates.
7650 std::sort(Terms.begin(), Terms.end());
7651 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7652
7653 // Put larger terms first.
7654 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7655 return numberOfTerms(LHS) > numberOfTerms(RHS);
7656 });
7657
Sebastian Popa6e58602014-05-27 22:41:45 +00007658 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7659
7660 // Divide all terms by the element size.
7661 for (const SCEV *&Term : Terms) {
7662 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007663 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00007664 Term = Q;
7665 }
7666
7667 SmallVector<const SCEV *, 4> NewTerms;
7668
7669 // Remove constant factors.
7670 for (const SCEV *T : Terms)
7671 if (const SCEV *NewT = removeConstantFactors(SE, T))
7672 NewTerms.push_back(NewT);
7673
Sebastian Pop448712b2014-05-07 18:01:20 +00007674 DEBUG({
7675 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007676 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007677 dbgs() << *T << "\n";
7678 });
7679
Sebastian Popa6e58602014-05-27 22:41:45 +00007680 if (NewTerms.empty() ||
7681 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007682 Sizes.clear();
7683 return;
7684 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007685
Sebastian Popa6e58602014-05-27 22:41:45 +00007686 // The last element to be pushed into Sizes is the size of an element.
7687 Sizes.push_back(ElementSize);
7688
Sebastian Pop448712b2014-05-07 18:01:20 +00007689 DEBUG({
7690 dbgs() << "Sizes:\n";
7691 for (const SCEV *S : Sizes)
7692 dbgs() << *S << "\n";
7693 });
7694}
7695
7696/// Third step of delinearization: compute the access functions for the
7697/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007698void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007699 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7700 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007701
Sebastian Popb1a548f2014-05-12 19:01:53 +00007702 // Early exit in case this SCEV is not an affine multivariate function.
7703 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007704 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007705
Sebastian Pop28e6b972014-05-27 22:41:51 +00007706 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007707 int Last = Sizes.size() - 1;
7708 for (int i = Last; i >= 0; i--) {
7709 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007710 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00007711
7712 DEBUG({
7713 dbgs() << "Res: " << *Res << "\n";
7714 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7715 dbgs() << "Res divided by Sizes[i]:\n";
7716 dbgs() << "Quotient: " << *Q << "\n";
7717 dbgs() << "Remainder: " << *R << "\n";
7718 });
7719
7720 Res = Q;
7721
Sebastian Popa6e58602014-05-27 22:41:45 +00007722 // Do not record the last subscript corresponding to the size of elements in
7723 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007724 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007725
7726 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007727 if (isa<SCEVAddRecExpr>(R)) {
7728 Subscripts.clear();
7729 Sizes.clear();
7730 return;
7731 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007732
Sebastian Pop448712b2014-05-07 18:01:20 +00007733 continue;
7734 }
7735
7736 // Record the access function for the current subscript.
7737 Subscripts.push_back(R);
7738 }
7739
7740 // Also push in last position the remainder of the last division: it will be
7741 // the access function of the innermost dimension.
7742 Subscripts.push_back(Res);
7743
7744 std::reverse(Subscripts.begin(), Subscripts.end());
7745
7746 DEBUG({
7747 dbgs() << "Subscripts:\n";
7748 for (const SCEV *S : Subscripts)
7749 dbgs() << *S << "\n";
7750 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007751}
7752
Sebastian Popc62c6792013-11-12 22:47:20 +00007753/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7754/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007755/// is the offset start of the array. The SCEV->delinearize algorithm computes
7756/// the multiples of SCEV coefficients: that is a pattern matching of sub
7757/// expressions in the stride and base of a SCEV corresponding to the
7758/// computation of a GCD (greatest common divisor) of base and stride. When
7759/// SCEV->delinearize fails, it returns the SCEV unchanged.
7760///
7761/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7762///
7763/// void foo(long n, long m, long o, double A[n][m][o]) {
7764///
7765/// for (long i = 0; i < n; i++)
7766/// for (long j = 0; j < m; j++)
7767/// for (long k = 0; k < o; k++)
7768/// A[i][j][k] = 1.0;
7769/// }
7770///
7771/// the delinearization input is the following AddRec SCEV:
7772///
7773/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7774///
7775/// From this SCEV, we are able to say that the base offset of the access is %A
7776/// because it appears as an offset that does not divide any of the strides in
7777/// the loops:
7778///
7779/// CHECK: Base offset: %A
7780///
7781/// and then SCEV->delinearize determines the size of some of the dimensions of
7782/// the array as these are the multiples by which the strides are happening:
7783///
7784/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7785///
7786/// Note that the outermost dimension remains of UnknownSize because there are
7787/// no strides that would help identifying the size of the last dimension: when
7788/// the array has been statically allocated, one could compute the size of that
7789/// dimension by dividing the overall size of the array by the size of the known
7790/// dimensions: %m * %o * 8.
7791///
7792/// Finally delinearize provides the access functions for the array reference
7793/// that does correspond to A[i][j][k] of the above C testcase:
7794///
7795/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7796///
7797/// The testcases are checking the output of a function pass:
7798/// DelinearizationPass that walks through all loads and stores of a function
7799/// asking for the SCEV of the memory access with respect to all enclosing
7800/// loops, calling SCEV->delinearize on that and printing the results.
7801
Sebastian Pop28e6b972014-05-27 22:41:51 +00007802void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7803 SmallVectorImpl<const SCEV *> &Subscripts,
7804 SmallVectorImpl<const SCEV *> &Sizes,
7805 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007806 // First step: collect parametric terms.
7807 SmallVector<const SCEV *, 4> Terms;
7808 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007809
Sebastian Popb1a548f2014-05-12 19:01:53 +00007810 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007811 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007812
Sebastian Pop448712b2014-05-07 18:01:20 +00007813 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007814 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007815
Sebastian Popb1a548f2014-05-12 19:01:53 +00007816 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007817 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007818
Sebastian Pop448712b2014-05-07 18:01:20 +00007819 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007820 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007821
Sebastian Pop28e6b972014-05-27 22:41:51 +00007822 if (Subscripts.empty())
7823 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007824
Sebastian Pop448712b2014-05-07 18:01:20 +00007825 DEBUG({
7826 dbgs() << "succeeded to delinearize " << *this << "\n";
7827 dbgs() << "ArrayDecl[UnknownSize]";
7828 for (const SCEV *S : Sizes)
7829 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007830
Sebastian Pop444621a2014-05-09 22:45:02 +00007831 dbgs() << "\nArrayRef";
7832 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007833 dbgs() << "[" << *S << "]";
7834 dbgs() << "\n";
7835 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007836}
Chris Lattnerd934c702004-04-02 20:23:17 +00007837
7838//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007839// SCEVCallbackVH Class Implementation
7840//===----------------------------------------------------------------------===//
7841
Dan Gohmand33a0902009-05-19 19:22:47 +00007842void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007843 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007844 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7845 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007846 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007847 // this now dangles!
7848}
7849
Dan Gohman7a066722010-07-28 01:09:07 +00007850void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007851 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007852
Dan Gohman48f82222009-05-04 22:30:44 +00007853 // Forget all the expressions associated with users of the old value,
7854 // so that future queries will recompute the expressions using the new
7855 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007856 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007857 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007858 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007859 while (!Worklist.empty()) {
7860 User *U = Worklist.pop_back_val();
7861 // Deleting the Old value will cause this to dangle. Postpone
7862 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007863 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007864 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00007865 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00007866 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007867 if (PHINode *PN = dyn_cast<PHINode>(U))
7868 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007869 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007870 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007871 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007872 // Delete the Old value.
7873 if (PHINode *PN = dyn_cast<PHINode>(Old))
7874 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007875 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007876 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007877}
7878
Dan Gohmand33a0902009-05-19 19:22:47 +00007879ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007880 : CallbackVH(V), SE(se) {}
7881
7882//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007883// ScalarEvolution Class Implementation
7884//===----------------------------------------------------------------------===//
7885
Dan Gohmanc8e23622009-04-21 23:15:49 +00007886ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007887 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7888 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007889 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007890}
7891
Chris Lattnerd934c702004-04-02 20:23:17 +00007892bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007893 this->F = &F;
Chandler Carruth66b31302015-01-04 12:03:27 +00007894 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth4f8f3072015-01-17 14:16:18 +00007895 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Rafael Espindola93512512014-02-25 17:30:31 +00007896 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007897 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chandler Carruthb98f63d2015-01-15 10:41:28 +00007898 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
Chandler Carruth73523022014-01-13 13:07:17 +00007899 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007900 return false;
7901}
7902
7903void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007904 // Iterate through all the SCEVUnknown instances and call their
7905 // destructors, so that they release their references to their values.
7906 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7907 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007908 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007909
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007910 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007911
7912 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7913 // that a loop had multiple computable exits.
7914 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7915 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7916 I != E; ++I) {
7917 I->second.clear();
7918 }
7919
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007920 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7921
Dan Gohmanc8e23622009-04-21 23:15:49 +00007922 BackedgeTakenCounts.clear();
7923 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007924 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007925 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007926 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007927 UnsignedRanges.clear();
7928 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007929 UniqueSCEVs.clear();
7930 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007931}
7932
7933void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7934 AU.setPreservesAll();
Chandler Carruth66b31302015-01-04 12:03:27 +00007935 AU.addRequired<AssumptionCacheTracker>();
Chandler Carruth4f8f3072015-01-17 14:16:18 +00007936 AU.addRequiredTransitive<LoopInfoWrapperPass>();
Chandler Carruth73523022014-01-13 13:07:17 +00007937 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chandler Carruthb98f63d2015-01-15 10:41:28 +00007938 AU.addRequired<TargetLibraryInfoWrapperPass>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007939}
7940
Dan Gohmanc8e23622009-04-21 23:15:49 +00007941bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007942 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007943}
7944
Dan Gohmanc8e23622009-04-21 23:15:49 +00007945static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007946 const Loop *L) {
7947 // Print all inner loops first
7948 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7949 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007950
Dan Gohmanbc694912010-01-09 18:17:45 +00007951 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007952 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007953 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007954
Dan Gohmancb0efec2009-12-18 01:14:11 +00007955 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007956 L->getExitBlocks(ExitBlocks);
7957 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007958 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007959
Dan Gohman0bddac12009-02-24 18:55:53 +00007960 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7961 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007962 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007963 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007964 }
7965
Dan Gohmanbc694912010-01-09 18:17:45 +00007966 OS << "\n"
7967 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007968 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007969 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007970
7971 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7972 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7973 } else {
7974 OS << "Unpredictable max backedge-taken count. ";
7975 }
7976
7977 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007978}
7979
Dan Gohmancb0efec2009-12-18 01:14:11 +00007980void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007981 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007982 // out SCEV values of all instructions that are interesting. Doing
7983 // this potentially causes it to create new SCEV objects though,
7984 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007985 // observable from outside the class though, so casting away the
7986 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007987 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007988
Dan Gohmanbc694912010-01-09 18:17:45 +00007989 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007990 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007991 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007992 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007993 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007994 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007995 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007996 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007997 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007998
Dan Gohmanb9063a82009-06-19 17:49:54 +00007999 const Loop *L = LI->getLoopFor((*I).getParent());
8000
Dan Gohmanaf752342009-07-07 17:06:11 +00008001 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00008002 if (AtUse != SV) {
8003 OS << " --> ";
8004 AtUse->print(OS);
8005 }
8006
8007 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00008008 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008009 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00008010 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008011 OS << "<<Unknown>>";
8012 } else {
8013 OS << *ExitValue;
8014 }
8015 }
8016
Chris Lattnerd934c702004-04-02 20:23:17 +00008017 OS << "\n";
8018 }
8019
Dan Gohmanbc694912010-01-09 18:17:45 +00008020 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008021 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008022 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00008023 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
8024 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008025}
Dan Gohmane20f8242009-04-21 00:47:46 +00008026
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008027ScalarEvolution::LoopDisposition
8028ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008029 auto &Values = LoopDispositions[S];
8030 for (auto &V : Values) {
8031 if (V.getPointer() == L)
8032 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008033 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008034 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008035 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008036 auto &Values2 = LoopDispositions[S];
8037 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8038 if (V.getPointer() == L) {
8039 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008040 break;
8041 }
8042 }
8043 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008044}
8045
8046ScalarEvolution::LoopDisposition
8047ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008048 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008049 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008050 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008051 case scTruncate:
8052 case scZeroExtend:
8053 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008054 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008055 case scAddRecExpr: {
8056 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8057
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008058 // If L is the addrec's loop, it's computable.
8059 if (AR->getLoop() == L)
8060 return LoopComputable;
8061
Dan Gohmanafd6db92010-11-17 21:23:15 +00008062 // Add recurrences are never invariant in the function-body (null loop).
8063 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008064 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008065
8066 // This recurrence is variant w.r.t. L if L contains AR's loop.
8067 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008068 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008069
8070 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8071 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008072 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008073
8074 // This recurrence is variant w.r.t. L if any of its operands
8075 // are variant.
8076 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8077 I != E; ++I)
8078 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008079 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008080
8081 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008082 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008083 }
8084 case scAddExpr:
8085 case scMulExpr:
8086 case scUMaxExpr:
8087 case scSMaxExpr: {
8088 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008089 bool HasVarying = false;
8090 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8091 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008092 LoopDisposition D = getLoopDisposition(*I, L);
8093 if (D == LoopVariant)
8094 return LoopVariant;
8095 if (D == LoopComputable)
8096 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008097 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008098 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008099 }
8100 case scUDivExpr: {
8101 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008102 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8103 if (LD == LoopVariant)
8104 return LoopVariant;
8105 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8106 if (RD == LoopVariant)
8107 return LoopVariant;
8108 return (LD == LoopInvariant && RD == LoopInvariant) ?
8109 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008110 }
8111 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008112 // All non-instruction values are loop invariant. All instructions are loop
8113 // invariant if they are not contained in the specified loop.
8114 // Instructions are never considered invariant in the function body
8115 // (null loop) because they are defined within the "loop".
8116 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8117 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8118 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008119 case scCouldNotCompute:
8120 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008121 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008122 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008123}
8124
8125bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8126 return getLoopDisposition(S, L) == LoopInvariant;
8127}
8128
8129bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8130 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008131}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008132
Dan Gohman8ea83d82010-11-18 00:34:22 +00008133ScalarEvolution::BlockDisposition
8134ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008135 auto &Values = BlockDispositions[S];
8136 for (auto &V : Values) {
8137 if (V.getPointer() == BB)
8138 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008139 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008140 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008141 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008142 auto &Values2 = BlockDispositions[S];
8143 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8144 if (V.getPointer() == BB) {
8145 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008146 break;
8147 }
8148 }
8149 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008150}
8151
Dan Gohman8ea83d82010-11-18 00:34:22 +00008152ScalarEvolution::BlockDisposition
8153ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008154 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008155 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008156 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008157 case scTruncate:
8158 case scZeroExtend:
8159 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008160 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008161 case scAddRecExpr: {
8162 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008163 // to test for proper dominance too, because the instruction which
8164 // produces the addrec's value is a PHI, and a PHI effectively properly
8165 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008166 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8167 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008168 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008169 }
8170 // FALL THROUGH into SCEVNAryExpr handling.
8171 case scAddExpr:
8172 case scMulExpr:
8173 case scUMaxExpr:
8174 case scSMaxExpr: {
8175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008176 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008177 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008178 I != E; ++I) {
8179 BlockDisposition D = getBlockDisposition(*I, BB);
8180 if (D == DoesNotDominateBlock)
8181 return DoesNotDominateBlock;
8182 if (D == DominatesBlock)
8183 Proper = false;
8184 }
8185 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008186 }
8187 case scUDivExpr: {
8188 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008189 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8190 BlockDisposition LD = getBlockDisposition(LHS, BB);
8191 if (LD == DoesNotDominateBlock)
8192 return DoesNotDominateBlock;
8193 BlockDisposition RD = getBlockDisposition(RHS, BB);
8194 if (RD == DoesNotDominateBlock)
8195 return DoesNotDominateBlock;
8196 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8197 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008198 }
8199 case scUnknown:
8200 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008201 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8202 if (I->getParent() == BB)
8203 return DominatesBlock;
8204 if (DT->properlyDominates(I->getParent(), BB))
8205 return ProperlyDominatesBlock;
8206 return DoesNotDominateBlock;
8207 }
8208 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008209 case scCouldNotCompute:
8210 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008211 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008212 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008213}
8214
8215bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8216 return getBlockDisposition(S, BB) >= DominatesBlock;
8217}
8218
8219bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8220 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008221}
Dan Gohman534749b2010-11-17 22:27:42 +00008222
Andrew Trick365e31c2012-07-13 23:33:03 +00008223namespace {
8224// Search for a SCEV expression node within an expression tree.
8225// Implements SCEVTraversal::Visitor.
8226struct SCEVSearch {
8227 const SCEV *Node;
8228 bool IsFound;
8229
8230 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8231
8232 bool follow(const SCEV *S) {
8233 IsFound |= (S == Node);
8234 return !IsFound;
8235 }
8236 bool isDone() const { return IsFound; }
8237};
8238}
8239
Dan Gohman534749b2010-11-17 22:27:42 +00008240bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008241 SCEVSearch Search(Op);
8242 visitAll(S, Search);
8243 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008244}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008245
8246void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8247 ValuesAtScopes.erase(S);
8248 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008249 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008250 UnsignedRanges.erase(S);
8251 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008252
8253 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8254 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8255 BackedgeTakenInfo &BEInfo = I->second;
8256 if (BEInfo.hasOperand(S, this)) {
8257 BEInfo.clear();
8258 BackedgeTakenCounts.erase(I++);
8259 }
8260 else
8261 ++I;
8262 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008263}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008264
8265typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008266
Alp Tokercb402912014-01-24 17:20:08 +00008267/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008268static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8269 size_t Pos = 0;
8270 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8271 Str.replace(Pos, From.size(), To.data(), To.size());
8272 Pos += To.size();
8273 }
8274}
8275
Benjamin Kramer214935e2012-10-26 17:31:32 +00008276/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8277static void
8278getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8279 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8280 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8281
8282 std::string &S = Map[L];
8283 if (S.empty()) {
8284 raw_string_ostream OS(S);
8285 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008286
8287 // false and 0 are semantically equivalent. This can happen in dead loops.
8288 replaceSubString(OS.str(), "false", "0");
8289 // Remove wrap flags, their use in SCEV is highly fragile.
8290 // FIXME: Remove this when SCEV gets smarter about them.
8291 replaceSubString(OS.str(), "<nw>", "");
8292 replaceSubString(OS.str(), "<nsw>", "");
8293 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008294 }
8295 }
8296}
8297
8298void ScalarEvolution::verifyAnalysis() const {
8299 if (!VerifySCEV)
8300 return;
8301
8302 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8303
8304 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8305 // FIXME: It would be much better to store actual values instead of strings,
8306 // but SCEV pointers will change if we drop the caches.
8307 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8308 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8309 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8310
8311 // Gather stringified backedge taken counts for all loops without using
8312 // SCEV's caches.
8313 SE.releaseMemory();
8314 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8315 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8316
8317 // Now compare whether they're the same with and without caches. This allows
8318 // verifying that no pass changed the cache.
8319 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8320 "New loops suddenly appeared!");
8321
8322 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8323 OldE = BackedgeDumpsOld.end(),
8324 NewI = BackedgeDumpsNew.begin();
8325 OldI != OldE; ++OldI, ++NewI) {
8326 assert(OldI->first == NewI->first && "Loop order changed!");
8327
8328 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8329 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008330 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008331 // means that a pass is buggy or SCEV has to learn a new pattern but is
8332 // usually not harmful.
8333 if (OldI->second != NewI->second &&
8334 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008335 NewI->second.find("undef") == std::string::npos &&
8336 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008337 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008338 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008339 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008340 << "' changed from '" << OldI->second
8341 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008342 std::abort();
8343 }
8344 }
8345
8346 // TODO: Verify more things.
8347}