blob: e0ef8cfe46bf30f9a3848ea0e7ed115b7bcbbb74 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Justin Bognerc2bf63d2016-04-26 23:39:29 +000023#include "llvm/Transforms/Scalar/Reassociate.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000029#include "llvm/Analysis/GlobalsModRef.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000030#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000031#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/Constants.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
Craig Toppercbac691c2017-06-21 16:07:09 +000038#include "llvm/IR/PatternMatch.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000039#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000040#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000041#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000042#include "llvm/Support/raw_ostream.h"
Justin Bognerc2bf63d2016-04-26 23:39:29 +000043#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000044#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000045#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000046using namespace llvm;
Justin Bognerc2bf63d2016-04-26 23:39:29 +000047using namespace reassociate;
Brian Gaeke960707c2003-11-11 22:41:34 +000048
Chandler Carruth964daaa2014-04-22 02:55:47 +000049#define DEBUG_TYPE "reassociate"
50
Chris Lattner79a42ac2006-12-19 21:40:18 +000051STATISTIC(NumChanged, "Number of insts reassociated");
52STATISTIC(NumAnnihil, "Number of expr tree annihilated");
53STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000054
Devang Patel702f45d2008-11-21 21:00:20 +000055#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000056/// Print out the expression identified in the Ops list.
Chris Lattner4c065092006-03-04 09:31:13 +000057///
Chris Lattner38abecb2009-12-31 18:40:32 +000058static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000059 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000060 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000061 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000062 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000063 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000064 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000065 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000066 }
Chris Lattner4c065092006-03-04 09:31:13 +000067}
Devang Patelcb181bb2008-11-21 20:00:59 +000068#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000069
Justin Bognerc2bf63d2016-04-26 23:39:29 +000070/// Utility class representing a non-constant Xor-operand. We classify
71/// non-constant Xor-Operands into two categories:
72/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
73/// C2)
74/// C2.1) The operand is in the form of "X | C", where C is a non-zero
75/// constant.
76/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
77/// operand as "E | 0"
78class llvm::reassociate::XorOpnd {
79public:
80 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000081
Justin Bognerc2bf63d2016-04-26 23:39:29 +000082 bool isInvalid() const { return SymbolicPart == nullptr; }
83 bool isOrExpr() const { return isOr; }
84 Value *getValue() const { return OrigVal; }
85 Value *getSymbolicPart() const { return SymbolicPart; }
86 unsigned getSymbolicRank() const { return SymbolicRank; }
87 const APInt &getConstPart() const { return ConstPart; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000088
Justin Bognerc2bf63d2016-04-26 23:39:29 +000089 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
90 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000091
Justin Bognerc2bf63d2016-04-26 23:39:29 +000092private:
93 Value *OrigVal;
94 Value *SymbolicPart;
95 APInt ConstPart;
96 unsigned SymbolicRank;
97 bool isOr;
98};
Chris Lattnerc0f58002002-05-08 22:19:27 +000099
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000100XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000101 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000102 OrigVal = V;
103 Instruction *I = dyn_cast<Instruction>(V);
104 SymbolicRank = 0;
105
106 if (I && (I->getOpcode() == Instruction::Or ||
107 I->getOpcode() == Instruction::And)) {
108 Value *V0 = I->getOperand(0);
109 Value *V1 = I->getOperand(1);
Craig Toppercbac691c2017-06-21 16:07:09 +0000110 const APInt *C;
111 if (match(V0, PatternMatch::m_APInt(C)))
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000112 std::swap(V0, V1);
113
Craig Toppercbac691c2017-06-21 16:07:09 +0000114 if (match(V1, PatternMatch::m_APInt(C))) {
115 ConstPart = *C;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000116 SymbolicPart = V0;
117 isOr = (I->getOpcode() == Instruction::Or);
118 return;
119 }
120 }
121
122 // view the operand as "V | 0"
123 SymbolicPart = V;
Craig Toppercbac691c2017-06-21 16:07:09 +0000124 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000125 isOr = true;
126}
127
Sanjay Patelc96ee082015-04-22 18:04:46 +0000128/// Return true if V is an instruction of the specified opcode and if it
129/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000130static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
131 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000132 cast<Instruction>(V)->getOpcode() == Opcode &&
133 (!isa<FPMathOperator>(V) ||
134 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000135 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000136 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000137}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000138
Chad Rosier11ab9412014-08-14 15:23:01 +0000139static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
140 unsigned Opcode2) {
141 if (V->hasOneUse() && isa<Instruction>(V) &&
142 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000143 cast<Instruction>(V)->getOpcode() == Opcode2) &&
144 (!isa<FPMathOperator>(V) ||
145 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000146 return cast<BinaryOperator>(V);
147 return nullptr;
148}
149
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000150void ReassociatePass::BuildRankMap(Function &F,
151 ReversePostOrderTraversal<Function*> &RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000152 unsigned Rank = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000153
Chad Rosierf59e5482014-11-14 15:01:38 +0000154 // Assign distinct ranks to function arguments.
Davide Italianob53b0752017-08-07 01:57:21 +0000155 for (auto &Arg : F.args()) {
156 ValueRankMap[&Arg] = ++Rank;
157 DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
158 << "\n");
Chad Rosierf59e5482014-11-14 15:01:38 +0000159 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000160
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000161 // Traverse basic blocks in ReversePostOrder
Benjamin Kramer135f7352016-06-26 12:28:59 +0000162 for (BasicBlock *BB : RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000163 unsigned BBRank = RankMap[BB] = ++Rank << 16;
Chris Lattner9f284e02005-05-08 20:57:04 +0000164
165 // Walk the basic block, adding precomputed ranks for any instructions that
166 // we cannot move. This ensures that the ranks for these instructions are
167 // all different in the block.
Benjamin Kramer135f7352016-06-26 12:28:59 +0000168 for (Instruction &I : *BB)
169 if (mayBeMemoryDependent(I))
170 ValueRankMap[&I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000171 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000172}
173
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000174unsigned ReassociatePass::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000175 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000176 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000177 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
178 return 0; // Otherwise it's a global or constant, rank 0.
179 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000180
Chris Lattner17229a72010-01-01 00:01:34 +0000181 if (unsigned Rank = ValueRankMap[I])
182 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000183
Chris Lattnerf43e9742005-05-07 04:08:02 +0000184 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
185 // we can reassociate expressions for code motion! Since we do not recurse
186 // for PHI nodes, we cannot have infinite recursion here, because there
187 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000188 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
189 for (unsigned i = 0, e = I->getNumOperands();
190 i != e && Rank != MaxRank; ++i)
191 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000192
Chris Lattner6e2086d2005-05-08 00:08:33 +0000193 // If this is a not or neg instruction, do not count it for rank. This
194 // assures us that X and ~X will have the same rank.
Robert Lougher1858ba72015-03-13 20:53:01 +0000195 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
196 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000197 ++Rank;
198
Chad Rosierf59e5482014-11-14 15:01:38 +0000199 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000200
Chris Lattner17229a72010-01-01 00:01:34 +0000201 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000202}
203
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000204// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000205void ReassociatePass::canonicalizeOperands(Instruction *I) {
Chad Rosierf8b55f12014-11-14 17:05:59 +0000206 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
207 assert(I->isCommutative() && "Expected commutative operator.");
208
209 Value *LHS = I->getOperand(0);
210 Value *RHS = I->getOperand(1);
Davide Italianoa5cdc222017-08-07 01:49:09 +0000211 if (LHS == RHS || isa<Constant>(RHS))
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000212 return;
Davide Italianoa5cdc222017-08-07 01:49:09 +0000213 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
Chad Rosierf8b55f12014-11-14 17:05:59 +0000214 cast<BinaryOperator>(I)->swapOperands();
215}
216
Chad Rosier11ab9412014-08-14 15:23:01 +0000217static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
218 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000219 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000220 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
221 else {
222 BinaryOperator *Res =
223 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
224 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
225 return Res;
226 }
227}
228
229static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
230 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000231 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000232 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
233 else {
234 BinaryOperator *Res =
235 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
236 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
237 return Res;
238 }
239}
240
241static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
242 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000243 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000244 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
245 else {
246 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
247 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
248 return Res;
249 }
250}
251
Sanjay Patelc96ee082015-04-22 18:04:46 +0000252/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000253static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000254 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000255 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
256 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000257
Chad Rosier11ab9412014-08-14 15:23:01 +0000258 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
259 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000260 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000261 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000262 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000263 return Res;
264}
265
Sanjay Patelc96ee082015-04-22 18:04:46 +0000266/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
267/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000268/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
269/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
270/// even x in Bitwidth-bit arithmetic.
271static unsigned CarmichaelShift(unsigned Bitwidth) {
272 if (Bitwidth < 3)
273 return Bitwidth - 1;
274 return Bitwidth - 2;
275}
276
Sanjay Patelc96ee082015-04-22 18:04:46 +0000277/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000278/// reducing the combined weight using any special properties of the operation.
279/// The existing weight LHS represents the computation X op X op ... op X where
280/// X occurs LHS times. The combined weight represents X op X op ... op X with
281/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
282/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
283/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
284static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
285 // If we were working with infinite precision arithmetic then the combined
286 // weight would be LHS + RHS. But we are using finite precision arithmetic,
287 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
288 // for nilpotent operations and addition, but not for idempotent operations
289 // and multiplication), so it is important to correctly reduce the combined
290 // weight back into range if wrapping would be wrong.
291
292 // If RHS is zero then the weight didn't change.
293 if (RHS.isMinValue())
294 return;
295 // If LHS is zero then the combined weight is RHS.
296 if (LHS.isMinValue()) {
297 LHS = RHS;
298 return;
299 }
300 // From this point on we know that neither LHS nor RHS is zero.
301
302 if (Instruction::isIdempotent(Opcode)) {
303 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
304 // weight of 1. Keeping weights at zero or one also means that wrapping is
305 // not a problem.
306 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
307 return; // Return a weight of 1.
308 }
309 if (Instruction::isNilpotent(Opcode)) {
310 // Nilpotent means X op X === 0, so reduce weights modulo 2.
311 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
312 LHS = 0; // 1 + 1 === 0 modulo 2.
313 return;
314 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000315 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000316 // TODO: Reduce the weight by exploiting nsw/nuw?
317 LHS += RHS;
318 return;
319 }
320
Chad Rosier11ab9412014-08-14 15:23:01 +0000321 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
322 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000323 unsigned Bitwidth = LHS.getBitWidth();
324 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
325 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
326 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
327 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
328 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
329 // which by a happy accident means that they can always be represented using
330 // Bitwidth bits.
331 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
332 // the Carmichael number).
333 if (Bitwidth > 3) {
334 /// CM - The value of Carmichael's lambda function.
335 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
336 // Any weight W >= Threshold can be replaced with W - CM.
337 APInt Threshold = CM + Bitwidth;
338 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
339 // For Bitwidth 4 or more the following sum does not overflow.
340 LHS += RHS;
341 while (LHS.uge(Threshold))
342 LHS -= CM;
343 } else {
344 // To avoid problems with overflow do everything the same as above but using
345 // a larger type.
346 unsigned CM = 1U << CarmichaelShift(Bitwidth);
347 unsigned Threshold = CM + Bitwidth;
348 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
349 "Weights not reduced!");
350 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
351 while (Total >= Threshold)
352 Total -= CM;
353 LHS = Total;
354 }
355}
356
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000357typedef std::pair<Value*, APInt> RepeatedValue;
358
Sanjay Patelc96ee082015-04-22 18:04:46 +0000359/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000360/// nodes in Ops along with their weights (how many times the leaf occurs). The
361/// original expression is the same as
362/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000363/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000364/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
365/// op
366/// ...
367/// op
368/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
369///
Duncan Sandsac852c72012-11-15 09:58:38 +0000370/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000371///
372/// This routine may modify the function, in which case it returns 'true'. The
373/// changes it makes may well be destructive, changing the value computed by 'I'
374/// to something completely different. Thus if the routine returns 'true' then
375/// you MUST either replace I with a new expression computed from the Ops array,
376/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000377///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000378/// A leaf node is either not a binary operation of the same kind as the root
379/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
380/// opcode), or is the same kind of binary operator but has a use which either
381/// does not belong to the expression, or does belong to the expression but is
382/// a leaf node. Every leaf node has at least one use that is a non-leaf node
383/// of the expression, while for non-leaf nodes (except for the root 'I') every
384/// use is a non-leaf node of the expression.
385///
386/// For example:
387/// expression graph node names
388///
389/// + | I
390/// / \ |
391/// + + | A, B
392/// / \ / \ |
393/// * + * | C, D, E
394/// / \ / \ / \ |
395/// + * | F, G
396///
397/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000398/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000399///
400/// The expression is maximal: if some instruction is a binary operator of the
401/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
402/// then the instruction also belongs to the expression, is not a leaf node of
403/// it, and its operands also belong to the expression (but may be leaf nodes).
404///
405/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
406/// order to ensure that every non-root node in the expression has *exactly one*
407/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000408/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000409/// RewriteExprTree to put the values back in if the routine indicates that it
410/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000411///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000412/// In the above example either the right operand of A or the left operand of B
413/// will be replaced by undef. If it is B's operand then this gives:
414///
415/// + | I
416/// / \ |
417/// + + | A, B - operand of B replaced with undef
418/// / \ \ |
419/// * + * | C, D, E
420/// / \ / \ / \ |
421/// + * | F, G
422///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000423/// Note that such undef operands can only be reached by passing through 'I'.
424/// For example, if you visit operands recursively starting from a leaf node
425/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000426/// which requires passing through a phi node.
427///
428/// Note that this routine may also mutate binary operators of the wrong type
429/// that have all uses inside the expression (i.e. only used by non-leaf nodes
430/// of the expression) if it can turn them into binary operators of the right
431/// type and thus make the expression bigger.
432
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000433static bool LinearizeExprTree(BinaryOperator *I,
434 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000435 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000436 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
437 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000438 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000439 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000440
441 // Visit all operands of the expression, keeping track of their weight (the
442 // number of paths from the expression root to the operand, or if you like
443 // the number of times that operand occurs in the linearized expression).
444 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
445 // while A has weight two.
446
447 // Worklist of non-leaf nodes (their operands are in the expression too) along
448 // with their weights, representing a certain number of paths to the operator.
449 // If an operator occurs in the worklist multiple times then we found multiple
450 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000451 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
452 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000453 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000454
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000455 // Leaves of the expression are values that either aren't the right kind of
456 // operation (eg: a constant, or a multiply in an add tree), or are, but have
457 // some uses that are not inside the expression. For example, in I = X + X,
458 // X = A + B, the value X has two uses (by I) that are in the expression. If
459 // X has any other uses, for example in a return instruction, then we consider
460 // X to be a leaf, and won't analyze it further. When we first visit a value,
461 // if it has more than one use then at first we conservatively consider it to
462 // be a leaf. Later, as the expression is explored, we may discover some more
463 // uses of the value from inside the expression. If all uses turn out to be
464 // from within the expression (and the value is a binary operator of the right
465 // kind) then the value is no longer considered to be a leaf, and its operands
466 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000467
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000468 // Leaves - Keeps track of the set of putative leaves as well as the number of
469 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000470 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000471 LeafMap Leaves; // Leaf -> Total weight so far.
472 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
473
474#ifndef NDEBUG
475 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
476#endif
477 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000478 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000479 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000480
481 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
482 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000483 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000484 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
485 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
486
487 // If this is a binary operation of the right kind with only one use then
488 // add its operands to the expression.
489 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000490 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000491 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
492 Worklist.push_back(std::make_pair(BO, Weight));
493 continue;
494 }
495
496 // Appears to be a leaf. Is the operand already in the set of leaves?
497 LeafMap::iterator It = Leaves.find(Op);
498 if (It == Leaves.end()) {
499 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000500 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000501 if (!Op->hasOneUse()) {
502 // This value has uses not accounted for by the expression, so it is
503 // not safe to modify. Mark it as being a leaf.
504 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
505 LeafOrder.push_back(Op);
506 Leaves[Op] = Weight;
507 continue;
508 }
509 // No uses outside the expression, try morphing it.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000510 } else {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000511 // Already in the leaf map.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000512 assert(It != Leaves.end() && Visited.count(Op) &&
513 "In leaf map but not visited!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000514
515 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000516 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000517
Duncan Sands56514522012-07-26 09:26:40 +0000518#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000519 // The leaf already has one use from inside the expression. As we want
520 // exactly one such use, drop this new use of the leaf.
521 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
522 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000523 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000524
525 // If the leaf is a binary operation of the right kind and we now see
526 // that its multiple original uses were in fact all by nodes belonging
527 // to the expression, then no longer consider it to be a leaf and add
528 // its operands to the expression.
529 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
530 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
531 Worklist.push_back(std::make_pair(BO, It->second));
532 Leaves.erase(It);
533 continue;
534 }
Duncan Sands56514522012-07-26 09:26:40 +0000535#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000536
537 // If we still have uses that are not accounted for by the expression
538 // then it is not safe to modify the value.
539 if (!Op->hasOneUse())
540 continue;
541
542 // No uses outside the expression, try morphing it.
543 Weight = It->second;
544 Leaves.erase(It); // Since the value may be morphed below.
545 }
546
547 // At this point we have a value which, first of all, is not a binary
548 // expression of the right kind, and secondly, is only used inside the
549 // expression. This means that it can safely be modified. See if we
550 // can usefully morph it into an expression of the right kind.
551 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000552 cast<Instruction>(Op)->getOpcode() != Opcode
553 || (isa<FPMathOperator>(Op) &&
554 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000555 "Should have been handled above!");
556 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
557
558 // If this is a multiply expression, turn any internal negations into
559 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000560 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
561 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
562 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
563 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
564 BO = LowerNegateToMultiply(BO);
565 DEBUG(dbgs() << *BO << '\n');
566 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000567 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000568 continue;
569 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000570
571 // Failed to morph into an expression of the right type. This really is
572 // a leaf.
573 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
574 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
575 LeafOrder.push_back(Op);
576 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000577 }
578 }
579
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000580 // The leaves, repeated according to their weights, represent the linearized
581 // form of the expression.
582 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
583 Value *V = LeafOrder[i];
584 LeafMap::iterator It = Leaves.find(V);
585 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000586 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000587 continue;
588 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000589 APInt Weight = It->second;
590 if (Weight.isMinValue())
591 // Leaf already output or weight reduction eliminated it.
592 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000593 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000594 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000595 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000596 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000597
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000598 // For nilpotent operations or addition there may be no operands, for example
599 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
600 // in both cases the weight reduces to 0 causing the value to be skipped.
601 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000602 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000603 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000604 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000605 }
606
Chad Rosiere53e8c82014-11-18 20:21:54 +0000607 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000608}
609
Sanjay Patelc96ee082015-04-22 18:04:46 +0000610/// Now that the operands for this expression tree are
611/// linearized and optimized, emit them in-order.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000612void ReassociatePass::RewriteExprTree(BinaryOperator *I,
613 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000614 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000615
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000616 // Since our optimizations should never increase the number of operations, the
617 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000618 // from the original expression tree, without creating any new instructions,
619 // though the rewritten expression may have a completely different topology.
620 // We take care to not change anything if the new expression will be the same
621 // as the original. If more than trivial changes (like commuting operands)
622 // were made then we are obliged to clear out any optional subclass data like
623 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000624
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000625 /// NodesToRewrite - Nodes from the original expression available for writing
626 /// the new expression into.
627 SmallVector<BinaryOperator*, 8> NodesToRewrite;
628 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000629 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000630
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000631 /// NotRewritable - The operands being written will be the leaves of the new
632 /// expression and must not be used as inner nodes (via NodesToRewrite) by
633 /// mistake. Inner nodes are always reassociable, and usually leaves are not
634 /// (if they were they would have been incorporated into the expression and so
635 /// would not be leaves), so most of the time there is no danger of this. But
636 /// in rare cases a leaf may become reassociable if an optimization kills uses
637 /// of it, or it may momentarily become reassociable during rewriting (below)
638 /// due it being removed as an operand of one of its uses. Ensure that misuse
639 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
640 /// leaves and refusing to reuse any of them as inner nodes.
641 SmallPtrSet<Value*, 8> NotRewritable;
642 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
643 NotRewritable.insert(Ops[i].Op);
644
Duncan Sands3c05cd32012-05-26 16:42:52 +0000645 // ExpressionChanged - Non-null if the rewritten expression differs from the
646 // original in some non-trivial way, requiring the clearing of optional flags.
647 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000648 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000649 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000650 // The last operation (which comes earliest in the IR) is special as both
651 // operands will come from Ops, rather than just one with the other being
652 // a subexpression.
653 if (i+2 == Ops.size()) {
654 Value *NewLHS = Ops[i].Op;
655 Value *NewRHS = Ops[i+1].Op;
656 Value *OldLHS = Op->getOperand(0);
657 Value *OldRHS = Op->getOperand(1);
658
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000659 if (NewLHS == OldLHS && NewRHS == OldRHS)
660 // Nothing changed, leave it alone.
661 break;
662
663 if (NewLHS == OldRHS && NewRHS == OldLHS) {
664 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000665 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000666 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000667 DEBUG(dbgs() << "TO: " << *Op << '\n');
668 MadeChange = true;
669 ++NumChanged;
670 break;
671 }
672
673 // The new operation differs non-trivially from the original. Overwrite
674 // the old operands with the new ones.
675 DEBUG(dbgs() << "RA: " << *Op << '\n');
676 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000677 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
678 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000679 NodesToRewrite.push_back(BO);
680 Op->setOperand(0, NewLHS);
681 }
682 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000683 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
684 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000685 NodesToRewrite.push_back(BO);
686 Op->setOperand(1, NewRHS);
687 }
688 DEBUG(dbgs() << "TO: " << *Op << '\n');
689
Duncan Sands3c05cd32012-05-26 16:42:52 +0000690 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000691 MadeChange = true;
692 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000693
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000694 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000695 }
Chris Lattner1e506502005-05-07 21:59:39 +0000696
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000697 // Not the last operation. The left-hand side will be a sub-expression
698 // while the right-hand side will be the current element of Ops.
699 Value *NewRHS = Ops[i].Op;
700 if (NewRHS != Op->getOperand(1)) {
701 DEBUG(dbgs() << "RA: " << *Op << '\n');
702 if (NewRHS == Op->getOperand(0)) {
703 // The new right-hand side was already present as the left operand. If
704 // we are lucky then swapping the operands will sort out both of them.
705 Op->swapOperands();
706 } else {
707 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000708 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
709 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000710 NodesToRewrite.push_back(BO);
711 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000712 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000713 }
714 DEBUG(dbgs() << "TO: " << *Op << '\n');
715 MadeChange = true;
716 ++NumChanged;
717 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000718
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000719 // Now deal with the left-hand side. If this is already an operation node
720 // from the original expression then just rewrite the rest of the expression
721 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000722 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
723 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000724 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000725 continue;
726 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000727
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000728 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000729 // the left-hand side. If there are no nodes left then the optimizers made
730 // an expression with more nodes than the original! This usually means that
731 // they did something stupid but it might mean that the problem was just too
732 // hard (finding the mimimal number of multiplications needed to realize a
733 // multiplication expression is NP-complete). Whatever the reason, smart or
734 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000735 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000736 if (NodesToRewrite.empty()) {
737 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000738 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
739 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000740 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000741 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000742 } else {
743 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000744 }
745
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000746 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000747 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000748 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000749 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000750 MadeChange = true;
751 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000752 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000753 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000754
Duncan Sands3c05cd32012-05-26 16:42:52 +0000755 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000756 // starting from the operator specified in ExpressionChanged, and compactify
757 // the operators to just before the expression root to guarantee that the
758 // expression tree is dominated by all of Ops.
759 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000760 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000761 // Preserve FastMathFlags.
762 if (isa<FPMathOperator>(I)) {
763 FastMathFlags Flags = I->getFastMathFlags();
764 ExpressionChanged->clearSubclassOptionalData();
765 ExpressionChanged->setFastMathFlags(Flags);
766 } else
767 ExpressionChanged->clearSubclassOptionalData();
768
Duncan Sands3c05cd32012-05-26 16:42:52 +0000769 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000770 break;
Duncan Sands514db112012-06-27 14:19:00 +0000771 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000772 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000773 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000774
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000775 // Throw away any left over nodes from the original expression.
776 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000777 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000778}
779
Sanjay Patelc96ee082015-04-22 18:04:46 +0000780/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000781/// that computes the negative version of the value specified. The negative
782/// version of the value is returned, and BI is left pointing at the instruction
783/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000784/// Also add intermediate instructions to the redo list that are modified while
785/// pushing the negates through adds. These will be revisited to see if
786/// additional opportunities have been exposed.
787static Value *NegateValue(Value *V, Instruction *BI,
788 SetVector<AssertingVH<Instruction>> &ToRedo) {
Mehdi Amini590a2702015-01-16 03:00:58 +0000789 if (Constant *C = dyn_cast<Constant>(V)) {
790 if (C->getType()->isFPOrFPVectorTy()) {
791 return ConstantExpr::getFNeg(C);
792 }
Chris Lattnerfed33972009-12-31 20:34:32 +0000793 return ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000794 }
795
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000796
Chris Lattner7bc532d2002-05-16 04:37:07 +0000797 // We are trying to expose opportunity for reassociation. One of the things
798 // that we want to do to achieve this is to push a negation as deep into an
799 // expression chain as possible, to expose the add instructions. In practice,
800 // this means that we turn this:
801 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
802 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
803 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000804 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000805 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000806 if (BinaryOperator *I =
807 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000808 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000809 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
810 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000811 if (I->getOpcode() == Instruction::Add) {
812 I->setHasNoUnsignedWrap(false);
813 I->setHasNoSignedWrap(false);
814 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000815
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000816 // We must move the add instruction here, because the neg instructions do
817 // not dominate the old add instruction in general. By moving it, we are
818 // assured that the neg instructions we just inserted dominate the
819 // instruction we are about to insert after them.
820 //
821 I->moveBefore(BI);
822 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000823
824 // Add the intermediate negates to the redo list as processing them later
825 // could expose more reassociating opportunities.
826 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000827 return I;
828 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000829
Chris Lattnerfed33972009-12-31 20:34:32 +0000830 // Okay, we need to materialize a negated version of V with an instruction.
831 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000832 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000833 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
834 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000835
836 // We found one! Now we have to make sure that the definition dominates
837 // this use. We do this by moving it to the entry block (if it is a
838 // non-instruction value) or right after the definition. These negates will
839 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000840 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000841
842 // Verify that the negate is in this function, V might be a constant expr.
843 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
844 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000845
Chris Lattnerfed33972009-12-31 20:34:32 +0000846 BasicBlock::iterator InsertPt;
847 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
848 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
849 InsertPt = II->getNormalDest()->begin();
850 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000851 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000852 }
853 while (isa<PHINode>(InsertPt)) ++InsertPt;
854 } else {
855 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
856 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000857 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000858 if (TheNeg->getOpcode() == Instruction::Sub) {
859 TheNeg->setHasNoUnsignedWrap(false);
860 TheNeg->setHasNoSignedWrap(false);
861 } else {
862 TheNeg->andIRFlags(BI);
863 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000864 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000865 return TheNeg;
866 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000867
868 // Insert a 'neg' instruction that subtracts the value from zero to get the
869 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000870 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
871 ToRedo.insert(NewNeg);
872 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000873}
874
Sanjay Patelc96ee082015-04-22 18:04:46 +0000875/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000876static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000877 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000878 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000879 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000880
Chad Rosierbd64d462014-10-09 20:06:29 +0000881 // Don't breakup X - undef.
882 if (isa<UndefValue>(Sub->getOperand(1)))
883 return false;
884
Chris Lattner902537c2008-02-17 20:44:51 +0000885 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000886 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000887 Value *V0 = Sub->getOperand(0);
888 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
889 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000890 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000891 Value *V1 = Sub->getOperand(1);
892 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
893 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000894 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000895 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000896 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000897 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
898 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000899 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000900
Chris Lattner902537c2008-02-17 20:44:51 +0000901 return false;
902}
903
Sanjay Patelc96ee082015-04-22 18:04:46 +0000904/// If we have (X-Y), and if either X is an add, or if this is only used by an
905/// add, transform this into (X+(0-Y)) to promote better reassociation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000906static BinaryOperator *
907BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000908 // Convert a subtract into an add and a neg instruction. This allows sub
909 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000910 //
Chris Lattnera5526832010-01-01 00:04:26 +0000911 // Calculate the negative value of Operand 1 of the sub instruction,
912 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000913 //
Owen Anderson2de9f542015-11-16 18:07:30 +0000914 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +0000915 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000916 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
917 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000918 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000919
920 // Everyone now refers to the add instruction.
921 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000922 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000923
David Greened17c3912010-01-05 01:27:24 +0000924 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000925 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000926}
927
Sanjay Patelc96ee082015-04-22 18:04:46 +0000928/// If this is a shift of a reassociable multiply or is used by one, change
929/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000930static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
931 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
932 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000933
Duncan Sands3293f462012-06-08 20:15:33 +0000934 BinaryOperator *Mul =
935 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
936 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
937 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +0000938
939 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +0000940 Shl->replaceAllUsesWith(Mul);
941 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +0000942
943 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
944 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
945 // handling.
946 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
947 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
948 if (NSW && NUW)
949 Mul->setHasNoSignedWrap(true);
950 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +0000951 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000952}
953
Sanjay Patelc96ee082015-04-22 18:04:46 +0000954/// Scan backwards and forwards among values with the same rank as element i
955/// to see if X exists. If X does not exist, return i. This is useful when
956/// scanning for 'x' when we see '-x' because they both get the same rank.
Craig Topper99a2e892017-06-21 19:39:33 +0000957static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
958 unsigned i, Value *X) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000959 unsigned XRank = Ops[i].Rank;
960 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +0000961 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000962 if (Ops[j].Op == X)
963 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000964 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
965 if (Instruction *I2 = dyn_cast<Instruction>(X))
966 if (I1->isIdenticalTo(I2))
967 return j;
968 }
Chris Lattner0c59ac32010-01-01 01:13:15 +0000969 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +0000970 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000971 if (Ops[j].Op == X)
972 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000973 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
974 if (Instruction *I2 = dyn_cast<Instruction>(X))
975 if (I1->isIdenticalTo(I2))
976 return j;
977 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000978 return i;
979}
980
Sanjay Patelc96ee082015-04-22 18:04:46 +0000981/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +0000982/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +0000983static Value *EmitAddTreeOfValues(Instruction *I,
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000984 SmallVectorImpl<WeakTrackingVH> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +0000985 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000986
Chris Lattner4c065092006-03-04 09:31:13 +0000987 Value *V1 = Ops.back();
988 Ops.pop_back();
989 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +0000990 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +0000991}
992
Sanjay Patelc96ee082015-04-22 18:04:46 +0000993/// If V is an expression tree that is a multiplication sequence,
994/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +0000995/// remove Factor from the tree and return the new tree.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000996Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000997 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
998 if (!BO)
999 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001000
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001001 SmallVector<RepeatedValue, 8> Tree;
1002 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001003 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001004 Factors.reserve(Tree.size());
1005 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1006 RepeatedValue E = Tree[i];
1007 Factors.append(E.second.getZExtValue(),
1008 ValueEntry(getRank(E.first), E.first));
1009 }
Chris Lattner4c065092006-03-04 09:31:13 +00001010
1011 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001012 bool NeedsNegate = false;
1013 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001014 if (Factors[i].Op == Factor) {
1015 FoundFactor = true;
1016 Factors.erase(Factors.begin()+i);
1017 break;
1018 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001019
Chris Lattner0c59ac32010-01-01 01:13:15 +00001020 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001021 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001022 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1023 if (FC1->getValue() == -FC2->getValue()) {
1024 FoundFactor = NeedsNegate = true;
1025 Factors.erase(Factors.begin()+i);
1026 break;
1027 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001028 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1029 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001030 const APFloat &F1 = FC1->getValueAPF();
Chad Rosier11ab9412014-08-14 15:23:01 +00001031 APFloat F2(FC2->getValueAPF());
1032 F2.changeSign();
1033 if (F1.compare(F2) == APFloat::cmpEqual) {
1034 FoundFactor = NeedsNegate = true;
1035 Factors.erase(Factors.begin() + i);
1036 break;
1037 }
1038 }
1039 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001040 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001041
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001042 if (!FoundFactor) {
1043 // Make sure to restore the operands to the expression tree.
1044 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001045 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001046 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001047
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001048 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001049
Chris Lattner1d897942009-12-31 19:34:45 +00001050 // If this was just a single multiply, remove the multiply and return the only
1051 // remaining operand.
1052 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001053 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001054 V = Factors[0].Op;
1055 } else {
1056 RewriteExprTree(BO, Factors);
1057 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001058 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001059
Chris Lattner0c59ac32010-01-01 01:13:15 +00001060 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001061 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001062
Chris Lattner0c59ac32010-01-01 01:13:15 +00001063 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001064}
1065
Sanjay Patelc96ee082015-04-22 18:04:46 +00001066/// If V is a single-use multiply, recursively add its operands as factors,
1067/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001068///
1069/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001070static void FindSingleUseMultiplyFactors(Value *V,
Chad Rosiere22c9922017-02-08 17:45:27 +00001071 SmallVectorImpl<Value*> &Factors) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001072 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001073 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001074 Factors.push_back(V);
1075 return;
1076 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001077
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001078 // Otherwise, add the LHS and RHS to the list of factors.
Chad Rosiere22c9922017-02-08 17:45:27 +00001079 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1080 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001081}
1082
Sanjay Patelc96ee082015-04-22 18:04:46 +00001083/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1084/// This optimizes based on identities. If it can be reduced to a single Value,
1085/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001086static Value *OptimizeAndOrXor(unsigned Opcode,
1087 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001088 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1089 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1090 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1091 // First, check for X and ~X in the operand list.
1092 assert(i < Ops.size());
1093 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1094 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1095 unsigned FoundX = FindInOperandList(Ops, i, X);
1096 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001097 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001098 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001099
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001100 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001101 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001102 }
1103 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001104
Chris Lattner5f8a0052009-12-31 07:59:34 +00001105 // Next, check for duplicate pairs of values, which we assume are next to
1106 // each other, due to our sorting criteria.
1107 assert(i < Ops.size());
1108 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1109 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001110 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001111 Ops.erase(Ops.begin()+i);
1112 --i; --e;
1113 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001114 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001115 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001116
Chris Lattner60c2ca72009-12-31 19:49:01 +00001117 // Drop pairs of values for Xor.
1118 assert(Opcode == Instruction::Xor);
1119 if (e == 2)
1120 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001121
Chris Lattnera5526832010-01-01 00:04:26 +00001122 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001123 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1124 i -= 1; e -= 2;
1125 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001126 }
1127 }
Craig Topperf40110f2014-04-25 05:29:35 +00001128 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001129}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001130
Eric Christopherbfba5722015-12-16 23:10:53 +00001131/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001132/// instruction with the given two operands, and return the resulting
1133/// instruction. There are two special cases: 1) if the constant operand is 0,
1134/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1135/// be returned.
Craig Topper34caf532017-06-21 19:39:35 +00001136static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001137 const APInt &ConstOpnd) {
Craig Topper34caf532017-06-21 19:39:35 +00001138 if (ConstOpnd.isNullValue())
1139 return nullptr;
1140
1141 if (ConstOpnd.isAllOnesValue())
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001142 return Opnd;
Craig Topper34caf532017-06-21 19:39:35 +00001143
1144 Instruction *I = BinaryOperator::CreateAnd(
1145 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1146 InsertBefore);
1147 I->setDebugLoc(InsertBefore->getDebugLoc());
1148 return I;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001149}
1150
1151// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1152// into "R ^ C", where C would be 0, and R is a symbolic value.
1153//
1154// If it was successful, true is returned, and the "R" and "C" is returned
1155// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1156// and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001157//
1158bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1159 APInt &ConstOpnd, Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001160 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1161 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1162 // = (x & ~c1) ^ (c1 ^ c2)
1163 // It is useful only when c1 == c2.
Craig Topper34caf532017-06-21 19:39:35 +00001164 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1165 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001166
Craig Topper34caf532017-06-21 19:39:35 +00001167 if (!Opnd1->getValue()->hasOneUse())
1168 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001169
Craig Topper34caf532017-06-21 19:39:35 +00001170 const APInt &C1 = Opnd1->getConstPart();
1171 if (C1 != ConstOpnd)
1172 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001173
Craig Topper34caf532017-06-21 19:39:35 +00001174 Value *X = Opnd1->getSymbolicPart();
1175 Res = createAndInstr(I, X, ~C1);
1176 // ConstOpnd was C2, now C1 ^ C2.
1177 ConstOpnd ^= C1;
1178
1179 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1180 RedoInsts.insert(T);
1181 return true;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001182}
1183
1184
1185// Helper function of OptimizeXor(). It tries to simplify
1186// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1187// symbolic value.
1188//
1189// If it was successful, true is returned, and the "R" and "C" is returned
1190// via "Res" and "ConstOpnd", respectively (If the entire expression is
1191// evaluated to a constant, the Res is set to NULL); otherwise, false is
1192// returned, and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001193bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1194 XorOpnd *Opnd2, APInt &ConstOpnd,
1195 Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001196 Value *X = Opnd1->getSymbolicPart();
1197 if (X != Opnd2->getSymbolicPart())
1198 return false;
1199
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001200 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1201 int DeadInstNum = 1;
1202 if (Opnd1->getValue()->hasOneUse())
1203 DeadInstNum++;
1204 if (Opnd2->getValue()->hasOneUse())
1205 DeadInstNum++;
1206
1207 // Xor-Rule 2:
1208 // (x | c1) ^ (x & c2)
1209 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1210 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1211 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1212 //
1213 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1214 if (Opnd2->isOrExpr())
1215 std::swap(Opnd1, Opnd2);
1216
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001217 const APInt &C1 = Opnd1->getConstPart();
1218 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001219 APInt C3((~C1) ^ C2);
1220
1221 // Do not increase code size!
Craig Topperd96177c2017-06-18 18:15:38 +00001222 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1223 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001224 if (NewInstNum > DeadInstNum)
1225 return false;
1226 }
1227
1228 Res = createAndInstr(I, X, C3);
1229 ConstOpnd ^= C1;
1230
1231 } else if (Opnd1->isOrExpr()) {
1232 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1233 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001234 const APInt &C1 = Opnd1->getConstPart();
1235 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001236 APInt C3 = C1 ^ C2;
1237
1238 // Do not increase code size
Craig Topperd96177c2017-06-18 18:15:38 +00001239 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1240 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001241 if (NewInstNum > DeadInstNum)
1242 return false;
1243 }
1244
1245 Res = createAndInstr(I, X, C3);
1246 ConstOpnd ^= C3;
1247 } else {
1248 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1249 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001250 const APInt &C1 = Opnd1->getConstPart();
1251 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001252 APInt C3 = C1 ^ C2;
1253 Res = createAndInstr(I, X, C3);
1254 }
1255
1256 // Put the original operands in the Redo list; hope they will be deleted
1257 // as dead code.
1258 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1259 RedoInsts.insert(T);
1260 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1261 RedoInsts.insert(T);
1262
1263 return true;
1264}
1265
1266/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1267/// to a single Value, it is returned, otherwise the Ops list is mutated as
1268/// necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001269Value *ReassociatePass::OptimizeXor(Instruction *I,
1270 SmallVectorImpl<ValueEntry> &Ops) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001271 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1272 return V;
1273
1274 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001275 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001276
1277 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001278 SmallVector<XorOpnd*, 8> OpndPtrs;
Craig Toppercbac691c2017-06-21 16:07:09 +00001279 Type *Ty = Ops[0].Op->getType();
1280 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001281
1282 // Step 1: Convert ValueEntry to XorOpnd
1283 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1284 Value *V = Ops[i].Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001285 const APInt *C;
1286 // TODO: Support non-splat vectors.
1287 if (match(V, PatternMatch::m_APInt(C))) {
1288 ConstOpnd ^= *C;
1289 } else {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001290 XorOpnd O(V);
1291 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1292 Opnds.push_back(O);
Craig Toppercbac691c2017-06-21 16:07:09 +00001293 }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001294 }
1295
Shuxin Yang331f01d2013-04-08 22:00:43 +00001296 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1297 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1298 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1299 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1300 // when new elements are added to the vector.
1301 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1302 OpndPtrs.push_back(&Opnds[i]);
1303
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001304 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1305 // the same symbolic value cluster together. For instance, the input operand
1306 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1307 // ("x | 123", "x & 789", "y & 456").
Justin Bognercb8a21c2016-04-26 23:32:00 +00001308 //
1309 // The purpose is twofold:
1310 // 1) Cluster together the operands sharing the same symbolic-value.
1311 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1312 // could potentially shorten crital path, and expose more loop-invariants.
1313 // Note that values' rank are basically defined in RPO order (FIXME).
1314 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1315 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1316 // "z" in the order of X-Y-Z is better than any other orders.
1317 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1318 [](XorOpnd *LHS, XorOpnd *RHS) {
1319 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1320 });
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001321
1322 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001323 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001324 bool Changed = false;
1325 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001326 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001327 // The combined value
1328 Value *CV;
1329
1330 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
Craig Topperd96177c2017-06-18 18:15:38 +00001331 if (!ConstOpnd.isNullValue() &&
1332 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001333 Changed = true;
1334 if (CV)
1335 *CurrOpnd = XorOpnd(CV);
1336 else {
1337 CurrOpnd->Invalidate();
1338 continue;
1339 }
1340 }
1341
1342 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1343 PrevOpnd = CurrOpnd;
1344 continue;
1345 }
1346
1347 // step 3.2: When previous and current operands share the same symbolic
1348 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1349 //
1350 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1351 // Remove previous operand
1352 PrevOpnd->Invalidate();
1353 if (CV) {
1354 *CurrOpnd = XorOpnd(CV);
1355 PrevOpnd = CurrOpnd;
1356 } else {
1357 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001358 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001359 }
1360 Changed = true;
1361 }
1362 }
1363
1364 // Step 4: Reassemble the Ops
1365 if (Changed) {
1366 Ops.clear();
1367 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1368 XorOpnd &O = Opnds[i];
1369 if (O.isInvalid())
1370 continue;
1371 ValueEntry VE(getRank(O.getValue()), O.getValue());
1372 Ops.push_back(VE);
1373 }
Craig Topperd96177c2017-06-18 18:15:38 +00001374 if (!ConstOpnd.isNullValue()) {
Craig Toppercbac691c2017-06-21 16:07:09 +00001375 Value *C = ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001376 ValueEntry VE(getRank(C), C);
1377 Ops.push_back(VE);
1378 }
Craig Toppercbac691c2017-06-21 16:07:09 +00001379 unsigned Sz = Ops.size();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001380 if (Sz == 1)
1381 return Ops.back().Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001382 if (Sz == 0) {
1383 assert(ConstOpnd.isNullValue());
1384 return ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001385 }
1386 }
1387
Craig Topperf40110f2014-04-25 05:29:35 +00001388 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001389}
1390
Sanjay Patelc96ee082015-04-22 18:04:46 +00001391/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001392/// optimizes based on identities. If it can be reduced to a single Value, it
1393/// is returned, otherwise the Ops list is mutated as necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001394Value *ReassociatePass::OptimizeAdd(Instruction *I,
1395 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001396 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001397 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1398 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001399 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001400
Chris Lattner5f8a0052009-12-31 07:59:34 +00001401 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001402 Value *TheOp = Ops[i].Op;
1403 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001404 // instances of the operand together. Due to our sorting criteria, we know
1405 // that these need to be next to each other in the vector.
1406 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1407 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001408 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001409 do {
1410 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001411 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001412 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001413
Chad Rosier78943bc2014-12-12 14:44:12 +00001414 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001415 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001416
Chris Lattner60b71b52009-12-31 19:24:52 +00001417 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001418 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001419 Constant *C = Ty->isIntOrIntVectorTy() ?
1420 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001421 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001422
Chris Lattner60b71b52009-12-31 19:24:52 +00001423 // Now that we have inserted a multiply, optimize it. This allows us to
1424 // handle cases that require multiple factoring steps, such as this:
1425 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001426 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001427
Chris Lattner60b71b52009-12-31 19:24:52 +00001428 // If every add operand was a duplicate, return the multiply.
1429 if (Ops.empty())
1430 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001431
Chris Lattner60b71b52009-12-31 19:24:52 +00001432 // Otherwise, we had some input that didn't have the dupe, such as
1433 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1434 // things being added by this operation.
1435 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001436
Chris Lattner60c2ca72009-12-31 19:49:01 +00001437 --i;
1438 e = Ops.size();
1439 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001440 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001441
Benjamin Kramer49689442014-05-31 15:01:54 +00001442 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001443 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1444 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001445 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001446
Benjamin Kramer49689442014-05-31 15:01:54 +00001447 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001448 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001449 X = BinaryOperator::getNegArgument(TheOp);
1450 else if (BinaryOperator::isNot(TheOp))
1451 X = BinaryOperator::getNotArgument(TheOp);
1452
Chris Lattner5f8a0052009-12-31 07:59:34 +00001453 unsigned FoundX = FindInOperandList(Ops, i, X);
1454 if (FoundX == i)
1455 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001456
Chris Lattner5f8a0052009-12-31 07:59:34 +00001457 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001458 if (Ops.size() == 2 &&
1459 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001460 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001461
Benjamin Kramer49689442014-05-31 15:01:54 +00001462 // Remove X and ~X from the operand list.
1463 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1464 return Constant::getAllOnesValue(X->getType());
1465
Chris Lattner5f8a0052009-12-31 07:59:34 +00001466 Ops.erase(Ops.begin()+i);
1467 if (i < FoundX)
1468 --FoundX;
1469 else
1470 --i; // Need to back up an extra one.
1471 Ops.erase(Ops.begin()+FoundX);
1472 ++NumAnnihil;
1473 --i; // Revisit element.
1474 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001475
1476 // if X and ~X we append -1 to the operand list.
1477 if (BinaryOperator::isNot(TheOp)) {
1478 Value *V = Constant::getAllOnesValue(X->getType());
1479 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1480 e += 1;
1481 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001482 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001483
Chris Lattner177140a2009-12-31 18:17:13 +00001484 // Scan the operand list, checking to see if there are any common factors
1485 // between operands. Consider something like A*A+A*B*C+D. We would like to
1486 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1487 // To efficiently find this, we count the number of times a factor occurs
1488 // for any ADD operands that are MULs.
1489 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001490
Chris Lattner177140a2009-12-31 18:17:13 +00001491 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1492 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001493 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001494 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001495 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001496 BinaryOperator *BOp =
1497 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001498 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001499 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001500
Chris Lattner177140a2009-12-31 18:17:13 +00001501 // Compute all of the factors of this added value.
1502 SmallVector<Value*, 8> Factors;
Chad Rosiere22c9922017-02-08 17:45:27 +00001503 FindSingleUseMultiplyFactors(BOp, Factors);
Chris Lattner177140a2009-12-31 18:17:13 +00001504 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001505
Chris Lattner177140a2009-12-31 18:17:13 +00001506 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001507 SmallPtrSet<Value*, 8> Duplicates;
1508 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1509 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001510 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001511 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001512
Chris Lattner0c59ac32010-01-01 01:13:15 +00001513 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001514 if (Occ > MaxOcc) {
1515 MaxOcc = Occ;
1516 MaxOccVal = Factor;
1517 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001518
Chris Lattner0c59ac32010-01-01 01:13:15 +00001519 // If Factor is a negative constant, add the negated value as a factor
1520 // because we can percolate the negate out. Watch for minint, which
1521 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001522 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001523 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001524 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
Chad Rosier95abfa32017-02-23 18:49:03 +00001525 if (!Duplicates.insert(Factor).second)
1526 continue;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001527 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001528 if (Occ > MaxOcc) {
1529 MaxOcc = Occ;
1530 MaxOccVal = Factor;
1531 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001532 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001533 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1534 if (CF->isNegative()) {
1535 APFloat F(CF->getValueAPF());
1536 F.changeSign();
1537 Factor = ConstantFP::get(CF->getContext(), F);
Chad Rosier95abfa32017-02-23 18:49:03 +00001538 if (!Duplicates.insert(Factor).second)
1539 continue;
Chad Rosier11ab9412014-08-14 15:23:01 +00001540 unsigned Occ = ++FactorOccurrences[Factor];
1541 if (Occ > MaxOcc) {
1542 MaxOcc = Occ;
1543 MaxOccVal = Factor;
1544 }
1545 }
1546 }
Chris Lattner177140a2009-12-31 18:17:13 +00001547 }
1548 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001549
Chris Lattner177140a2009-12-31 18:17:13 +00001550 // If any factor occurred more than one time, we can pull it out.
1551 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001552 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001553 ++NumFactor;
1554
1555 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1556 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001557 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001558 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001559 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001560 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001561 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1562 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1563
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001564 SmallVector<WeakTrackingVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001565 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001566 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001567 BinaryOperator *BOp =
1568 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001569 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001570 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001571
Chris Lattner177140a2009-12-31 18:17:13 +00001572 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001573 // The factorized operand may occur several times. Convert them all in
1574 // one fell swoop.
1575 for (unsigned j = Ops.size(); j != i;) {
1576 --j;
1577 if (Ops[j].Op == Ops[i].Op) {
1578 NewMulOps.push_back(V);
1579 Ops.erase(Ops.begin()+j);
1580 }
1581 }
1582 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001583 }
1584 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001585
Chris Lattner177140a2009-12-31 18:17:13 +00001586 // No need for extra uses anymore.
Reid Kleckner96ab8722017-05-18 17:24:10 +00001587 DummyInst->deleteValue();
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001588
Chris Lattner177140a2009-12-31 18:17:13 +00001589 unsigned NumAddedValues = NewMulOps.size();
1590 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001591
Chris Lattner60b71b52009-12-31 19:24:52 +00001592 // Now that we have inserted the add tree, optimize it. This allows us to
1593 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001594 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001595 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001596 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001597 if (Instruction *VI = dyn_cast<Instruction>(V))
1598 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001599
1600 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001601 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001602
Chris Lattner60c2ca72009-12-31 19:49:01 +00001603 // Rerun associate on the multiply in case the inner expression turned into
1604 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001605 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001606
Chris Lattner177140a2009-12-31 18:17:13 +00001607 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1608 // entire result expression is just the multiply "A*(B+C)".
1609 if (Ops.empty())
1610 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001611
Chris Lattnerac615502009-12-31 18:18:46 +00001612 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001613 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001614 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001615 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1616 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001617
Craig Topperf40110f2014-04-25 05:29:35 +00001618 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001619}
Chris Lattner4c065092006-03-04 09:31:13 +00001620
Chandler Carruth739ef802012-04-26 05:30:30 +00001621/// \brief Build up a vector of value/power pairs factoring a product.
1622///
1623/// Given a series of multiplication operands, build a vector of factors and
1624/// the powers each is raised to when forming the final product. Sort them in
1625/// the order of descending power.
1626///
1627/// (x*x) -> [(x, 2)]
1628/// ((x*x)*x) -> [(x, 3)]
1629/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1630///
1631/// \returns Whether any factors have a power greater than one.
Craig Topper43507342017-06-19 16:23:43 +00001632static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1633 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001634 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1635 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001636 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001637 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1638 Value *Op = Ops[Idx-1].Op;
1639
1640 // Count the number of occurrences of this value.
1641 unsigned Count = 1;
1642 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1643 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001644 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001645 if (Count > 1)
1646 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001647 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001648
Chandler Carruth739ef802012-04-26 05:30:30 +00001649 // We can only simplify factors if the sum of the powers of our simplifiable
1650 // factors is 4 or higher. When that is the case, we will *always* have
1651 // a simplification. This is an important invariant to prevent cyclicly
1652 // trying to simplify already minimal formations.
1653 if (FactorPowerSum < 4)
1654 return false;
1655
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001656 // Now gather the simplifiable factors, removing them from Ops.
1657 FactorPowerSum = 0;
1658 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1659 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001660
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001661 // Count the number of occurrences of this value.
1662 unsigned Count = 1;
1663 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1664 ++Count;
1665 if (Count == 1)
1666 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001667 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001668 Count &= ~1U;
1669 Idx -= Count;
1670 FactorPowerSum += Count;
1671 Factors.push_back(Factor(Op, Count));
1672 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001673 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001674
Chandler Carruth739ef802012-04-26 05:30:30 +00001675 // None of the adjustments above should have reduced the sum of factor powers
1676 // below our mininum of '4'.
1677 assert(FactorPowerSum >= 4);
1678
Justin Bogner90744d22016-04-26 22:22:18 +00001679 std::stable_sort(Factors.begin(), Factors.end(),
1680 [](const Factor &LHS, const Factor &RHS) {
1681 return LHS.Power > RHS.Power;
1682 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001683 return true;
1684}
1685
1686/// \brief Build a tree of multiplies, computing the product of Ops.
1687static Value *buildMultiplyTree(IRBuilder<> &Builder,
1688 SmallVectorImpl<Value*> &Ops) {
1689 if (Ops.size() == 1)
1690 return Ops.back();
1691
1692 Value *LHS = Ops.pop_back_val();
1693 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001694 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001695 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1696 else
1697 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001698 } while (!Ops.empty());
1699
1700 return LHS;
1701}
1702
1703/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1704///
1705/// Given a vector of values raised to various powers, where no two values are
1706/// equal and the powers are sorted in decreasing order, compute the minimal
1707/// DAG of multiplies to compute the final product, and return that product
1708/// value.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001709Value *
1710ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1711 SmallVectorImpl<Factor> &Factors) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001712 assert(Factors[0].Power);
1713 SmallVector<Value *, 4> OuterProduct;
1714 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1715 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1716 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1717 LastIdx = Idx;
1718 continue;
1719 }
1720
1721 // We want to multiply across all the factors with the same power so that
1722 // we can raise them to that power as a single entity. Build a mini tree
1723 // for that.
1724 SmallVector<Value *, 4> InnerProduct;
1725 InnerProduct.push_back(Factors[LastIdx].Base);
1726 do {
1727 InnerProduct.push_back(Factors[Idx].Base);
1728 ++Idx;
1729 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1730
1731 // Reset the base value of the first factor to the new expression tree.
1732 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001733 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1734 if (Instruction *MI = dyn_cast<Instruction>(M))
1735 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001736
1737 LastIdx = Idx;
1738 }
1739 // Unique factors with equal powers -- we've folded them into the first one's
1740 // base.
1741 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001742 [](const Factor &LHS, const Factor &RHS) {
1743 return LHS.Power == RHS.Power;
1744 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001745 Factors.end());
1746
1747 // Iteratively collect the base of each factor with an add power into the
1748 // outer product, and halve each power in preparation for squaring the
1749 // expression.
1750 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1751 if (Factors[Idx].Power & 1)
1752 OuterProduct.push_back(Factors[Idx].Base);
1753 Factors[Idx].Power >>= 1;
1754 }
1755 if (Factors[0].Power) {
1756 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1757 OuterProduct.push_back(SquareRoot);
1758 OuterProduct.push_back(SquareRoot);
1759 }
1760 if (OuterProduct.size() == 1)
1761 return OuterProduct.front();
1762
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001763 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001764 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001765}
1766
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001767Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1768 SmallVectorImpl<ValueEntry> &Ops) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001769 // We can only optimize the multiplies when there is a chain of more than
1770 // three, such that a balanced tree might require fewer total multiplies.
1771 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001772 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001773
1774 // Try to turn linear trees of multiplies without other uses of the
1775 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1776 // re-use.
1777 SmallVector<Factor, 4> Factors;
1778 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001779 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001780
1781 IRBuilder<> Builder(I);
Vyacheslav Klochkov68a677a2016-11-22 20:23:04 +00001782 // The reassociate transformation for FP operations is performed only
1783 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1784 // to the newly generated operations.
1785 if (auto FPI = dyn_cast<FPMathOperator>(I))
1786 Builder.setFastMathFlags(FPI->getFastMathFlags());
1787
Chandler Carruth739ef802012-04-26 05:30:30 +00001788 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1789 if (Ops.empty())
1790 return V;
1791
1792 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1793 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001794 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001795}
1796
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001797Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1798 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001799 // Now that we have the linearized expression tree, try to optimize it.
1800 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001801 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001802 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001803 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1804 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1805 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1806 }
1807 // If there was nothing but constants then we are done.
1808 if (Ops.empty())
1809 return Cst;
1810
1811 // Put the combined constant back at the end of the operand list, except if
1812 // there is no point. For example, an add of 0 gets dropped here, while a
1813 // multiplication by zero turns the whole expression into zero.
1814 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1815 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1816 return Cst;
1817 Ops.push_back(ValueEntry(0, Cst));
1818 }
1819
1820 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001821
Chris Lattner9039ff82009-12-31 07:33:14 +00001822 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001823 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001824 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001825 switch (Opcode) {
1826 default: break;
1827 case Instruction::And:
1828 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001829 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1830 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001831 break;
1832
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001833 case Instruction::Xor:
1834 if (Value *Result = OptimizeXor(I, Ops))
1835 return Result;
1836 break;
1837
Chandler Carruth739ef802012-04-26 05:30:30 +00001838 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001839 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001840 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001841 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001842 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001843
1844 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001845 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001846 if (Value *Result = OptimizeMul(I, Ops))
1847 return Result;
1848 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001849 }
1850
Duncan Sands3293f462012-06-08 20:15:33 +00001851 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001852 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001853 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001854}
1855
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001856// Remove dead instructions and if any operands are trivially dead add them to
1857// Insts so they will be removed as well.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001858void ReassociatePass::RecursivelyEraseDeadInsts(
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001859 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1860 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1861 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1862 ValueRankMap.erase(I);
1863 Insts.remove(I);
1864 RedoInsts.remove(I);
1865 I->eraseFromParent();
1866 for (auto Op : Ops)
1867 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1868 if (OpInst->use_empty())
1869 Insts.insert(OpInst);
1870}
1871
Sanjay Patelc96ee082015-04-22 18:04:46 +00001872/// Zap the given instruction, adding interesting operands to the work list.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001873void ReassociatePass::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001874 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
Chad Rosier27ac0d82016-08-30 13:58:35 +00001875 DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1876
Duncan Sands3293f462012-06-08 20:15:33 +00001877 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1878 // Erase the dead instruction.
1879 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001880 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001881 I->eraseFromParent();
1882 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001883 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001884 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1885 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1886 // If this is a node in an expression tree, climb to the expression root
1887 // and add that since that's where optimization actually happens.
1888 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001889 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001890 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001891 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001892 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001893 }
Mikael Holmen37b51202017-06-27 05:32:13 +00001894
1895 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001896}
1897
Chad Rosier094ac772014-11-11 22:58:35 +00001898// Canonicalize expressions of the following form:
1899// x + (-Constant * y) -> x - (Constant * y)
1900// x - (-Constant * y) -> x + (Constant * y)
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001901Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
Chad Rosier094ac772014-11-11 22:58:35 +00001902 if (!I->hasOneUse() || I->getType()->isVectorTy())
1903 return nullptr;
1904
David Majnemer587336d2015-05-28 06:16:39 +00001905 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001906 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001907 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001908 return nullptr;
1909
David Majnemer587336d2015-05-28 06:16:39 +00001910 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1911 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1912
1913 // Both operands are constant, let it get constant folded away.
1914 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001915 return nullptr;
1916
David Majnemer587336d2015-05-28 06:16:39 +00001917 ConstantFP *CF = C0 ? C0 : C1;
1918
1919 // Must have one constant operand.
1920 if (!CF)
1921 return nullptr;
1922
1923 // Must be a negative ConstantFP.
1924 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001925 return nullptr;
1926
1927 // User must be a binary operator with one or more uses.
1928 Instruction *User = I->user_back();
Davide Italiano79eb3b02017-05-16 22:38:40 +00001929 if (!isa<BinaryOperator>(User) || User->use_empty())
Chad Rosier094ac772014-11-11 22:58:35 +00001930 return nullptr;
1931
1932 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001933 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001934 return nullptr;
1935
1936 // Subtraction is not commutative. Explicitly, the following transform is
1937 // not valid: (-Constant * y) - x -> x + (Constant * y)
1938 if (!User->isCommutative() && User->getOperand(1) != I)
1939 return nullptr;
1940
Chad Rosier8db41e92017-08-23 14:10:06 +00001941 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1942 // resulting subtract will be broken up later. This can get us into an
1943 // infinite loop during reassociation.
1944 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1945 return nullptr;
1946
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001947 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001948 APFloat Val = CF->getValueAPF();
1949 Val.changeSign();
1950 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001951
Chad Rosier094ac772014-11-11 22:58:35 +00001952 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1953 // ((-Const*y) + x) -> (x + (-Const*y)).
1954 if (User->getOperand(0) == I && User->isCommutative())
1955 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001956
Chad Rosier094ac772014-11-11 22:58:35 +00001957 Value *Op0 = User->getOperand(0);
1958 Value *Op1 = User->getOperand(1);
1959 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00001960 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00001961 default:
1962 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00001963 case Instruction::FAdd:
1964 NI = BinaryOperator::CreateFSub(Op0, Op1);
1965 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1966 break;
1967 case Instruction::FSub:
1968 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1969 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1970 break;
1971 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001972
Chad Rosier094ac772014-11-11 22:58:35 +00001973 NI->insertBefore(User);
1974 NI->setName(User->getName());
1975 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001976 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00001977 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001978 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00001979 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001980}
1981
Sanjay Patelc96ee082015-04-22 18:04:46 +00001982/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00001983/// instructions is not allowed.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001984void ReassociatePass::OptimizeInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001985 // Only consider operations that we understand.
1986 if (!isa<BinaryOperator>(I))
1987 return;
1988
Chad Rosier11ab9412014-08-14 15:23:01 +00001989 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00001990 // If an operand of this shift is a reassociable multiply, or if the shift
1991 // is used by a reassociable multiply or add, turn into a multiply.
1992 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1993 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00001994 (isReassociableOp(I->user_back(), Instruction::Mul) ||
1995 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00001996 Instruction *NI = ConvertShiftToMul(I);
1997 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001998 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001999 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002000 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002001
Chad Rosier094ac772014-11-11 22:58:35 +00002002 // Canonicalize negative constants out of expressions.
2003 if (Instruction *Res = canonicalizeNegConstExpr(I))
2004 I = Res;
2005
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002006 // Commute binary operators, to canonicalize the order of their operands.
2007 // This can potentially expose more CSE opportunities, and makes writing other
2008 // transformations simpler.
2009 if (I->isCommutative())
2010 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002011
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002012 // Don't optimize floating point instructions that don't have unsafe algebra.
Owen Anderson630077e2015-11-20 08:16:13 +00002013 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002014 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002015
Dan Gohman1c6c3482011-04-12 00:11:56 +00002016 // Do not reassociate boolean (i1) expressions. We want to preserve the
2017 // original order of evaluation for short-circuited comparisons that
2018 // SimplifyCFG has folded to AND/OR expressions. If the expression
2019 // is not further optimized, it is likely to be transformed back to a
2020 // short-circuited form for code gen, and the source order may have been
2021 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002022 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002023 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002024
Dan Gohman1c6c3482011-04-12 00:11:56 +00002025 // If this is a subtract instruction which is not already in negate form,
2026 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002027 if (I->getOpcode() == Instruction::Sub) {
2028 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002029 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002030 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002031 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002032 I = NI;
2033 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002034 // Otherwise, this is a negation. See if the operand is a multiply tree
2035 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002036 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2037 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002038 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002039 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002040 // If the negate was simplified, revisit the users to see if we can
2041 // reassociate further.
2042 for (User *U : NI->users()) {
2043 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2044 RedoInsts.insert(Tmp);
2045 }
Duncan Sands3293f462012-06-08 20:15:33 +00002046 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002047 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002048 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002049 }
2050 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002051 } else if (I->getOpcode() == Instruction::FSub) {
2052 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002053 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002054 RedoInsts.insert(I);
2055 MadeChange = true;
2056 I = NI;
2057 } else if (BinaryOperator::isFNeg(I)) {
2058 // Otherwise, this is a negation. See if the operand is a multiply tree
2059 // and if this is not an inner node of a multiply tree.
2060 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2061 (!I->hasOneUse() ||
2062 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002063 // If the negate was simplified, revisit the users to see if we can
2064 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002065 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002066 for (User *U : NI->users()) {
2067 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2068 RedoInsts.insert(Tmp);
2069 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002070 RedoInsts.insert(I);
2071 MadeChange = true;
2072 I = NI;
2073 }
2074 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002075 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002076
Duncan Sands3293f462012-06-08 20:15:33 +00002077 // If this instruction is an associative binary operator, process it.
2078 if (!I->isAssociative()) return;
2079 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002080
2081 // If this is an interior node of a reassociable tree, ignore it until we
2082 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002083 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002084 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2085 // During the initial run we will get to the root of the tree.
2086 // But if we get here while we are redoing instructions, there is no
2087 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002088 if (BO->user_back() != BO &&
2089 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002090 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002091 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002092 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002093
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002094 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002095 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002096 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002097 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002098 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002099 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2100 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2101 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002102
Duncan Sands3293f462012-06-08 20:15:33 +00002103 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002104}
Chris Lattner1e506502005-05-07 21:59:39 +00002105
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002106void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002107 // First, walk the expression tree, linearizing the tree, collecting the
2108 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002109 SmallVector<RepeatedValue, 8> Tree;
2110 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002111 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002112 Ops.reserve(Tree.size());
2113 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2114 RepeatedValue E = Tree[i];
2115 Ops.append(E.second.getZExtValue(),
2116 ValueEntry(getRank(E.first), E.first));
2117 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002118
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002119 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2120
Chris Lattner2fc319d2006-03-14 07:11:11 +00002121 // Now that we have linearized the tree to a list and have gathered all of
2122 // the operands and their ranks, sort the operands by their rank. Use a
2123 // stable_sort so that values with equal ranks will have their relative
2124 // positions maintained (and so the compiler is deterministic). Note that
2125 // this sorts so that the highest ranking values end up at the beginning of
2126 // the vector.
2127 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002128
Sanjay Patelc96ee082015-04-22 18:04:46 +00002129 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002130 // sorted form, optimize it globally if possible.
2131 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002132 if (V == I)
2133 // Self-referential expression in unreachable code.
2134 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002135 // This expression tree simplified to something that isn't a tree,
2136 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002137 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002138 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002139 if (Instruction *VI = dyn_cast<Instruction>(V))
2140 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002141 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002142 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002143 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002144 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002145
Chris Lattner2fc319d2006-03-14 07:11:11 +00002146 // We want to sink immediates as deeply as possible except in the case where
2147 // this is a multiply tree used only by an add, and the immediate is a -1.
2148 // In this case we reassociate to put the negation on the outside so that we
2149 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002150 if (I->hasOneUse()) {
2151 if (I->getOpcode() == Instruction::Mul &&
2152 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2153 isa<ConstantInt>(Ops.back().Op) &&
Craig Topper79ab6432017-07-06 18:39:47 +00002154 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002155 ValueEntry Tmp = Ops.pop_back_val();
2156 Ops.insert(Ops.begin(), Tmp);
2157 } else if (I->getOpcode() == Instruction::FMul &&
2158 cast<Instruction>(I->user_back())->getOpcode() ==
2159 Instruction::FAdd &&
2160 isa<ConstantFP>(Ops.back().Op) &&
2161 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2162 ValueEntry Tmp = Ops.pop_back_val();
2163 Ops.insert(Ops.begin(), Tmp);
2164 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002165 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002166
David Greened17c3912010-01-05 01:27:24 +00002167 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002168
Chris Lattner2fc319d2006-03-14 07:11:11 +00002169 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002170 if (Ops[0].Op == I)
2171 // Self-referential expression in unreachable code.
2172 return;
2173
Chris Lattner2fc319d2006-03-14 07:11:11 +00002174 // This expression tree simplified to something that isn't a tree,
2175 // eliminate it.
2176 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002177 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2178 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002179 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002180 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002181 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002182
Chris Lattner60b71b52009-12-31 19:24:52 +00002183 // Now that we ordered and optimized the expressions, splat them back into
2184 // the expression tree, removing any unneeded nodes.
2185 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002186}
2187
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002188PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002189 // Get the functions basic blocks in Reverse Post Order. This order is used by
2190 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2191 // blocks (it has been seen that the analysis in this pass could hang when
2192 // analysing dead basic blocks).
2193 ReversePostOrderTraversal<Function *> RPOT(&F);
2194
Chad Rosierea7e4642016-08-17 15:54:39 +00002195 // Calculate the rank map for F.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002196 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002197
Chris Lattner1e506502005-05-07 21:59:39 +00002198 MadeChange = false;
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002199 // Traverse the same blocks that was analysed by BuildRankMap.
2200 for (BasicBlock *BI : RPOT) {
2201 assert(RankMap.count(&*BI) && "BB should be ranked.");
Duncan Sands3293f462012-06-08 20:15:33 +00002202 // Optimize every instruction in the basic block.
Chad Rosierea7e4642016-08-17 15:54:39 +00002203 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002204 if (isInstructionTriviallyDead(&*II)) {
2205 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002206 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002207 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002208 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002209 ++II;
2210 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002211
Chad Rosierea7e4642016-08-17 15:54:39 +00002212 // Make a copy of all the instructions to be redone so we can remove dead
2213 // instructions.
2214 SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2215 // Iterate over all instructions to be reevaluated and remove trivially dead
2216 // instructions. If any operand of the trivially dead instruction becomes
2217 // dead mark it for deletion as well. Continue this process until all
2218 // trivially dead instructions have been removed.
2219 while (!ToRedo.empty()) {
2220 Instruction *I = ToRedo.pop_back_val();
Davide Italiano631cd272016-10-28 02:47:09 +00002221 if (isInstructionTriviallyDead(I)) {
Chad Rosierea7e4642016-08-17 15:54:39 +00002222 RecursivelyEraseDeadInsts(I, ToRedo);
Davide Italiano631cd272016-10-28 02:47:09 +00002223 MadeChange = true;
2224 }
Chad Rosierea7e4642016-08-17 15:54:39 +00002225 }
2226
2227 // Now that we have removed dead instructions, we can reoptimize the
2228 // remaining instructions.
2229 while (!RedoInsts.empty()) {
2230 Instruction *I = RedoInsts.pop_back_val();
2231 if (isInstructionTriviallyDead(I))
2232 EraseInst(I);
2233 else
2234 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002235 }
Duncan Sands3293f462012-06-08 20:15:33 +00002236 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002237
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002238 // We are done with the rank map.
2239 RankMap.clear();
2240 ValueRankMap.clear();
2241
Davide Italiano39893bd2016-05-29 00:41:17 +00002242 if (MadeChange) {
Chandler Carruthca68a3e2017-01-15 06:32:49 +00002243 PreservedAnalyses PA;
2244 PA.preserveSet<CFGAnalyses>();
Davide Italiano39893bd2016-05-29 00:41:17 +00002245 PA.preserve<GlobalsAA>();
2246 return PA;
2247 }
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002248
2249 return PreservedAnalyses::all();
2250}
2251
2252namespace {
2253 class ReassociateLegacyPass : public FunctionPass {
2254 ReassociatePass Impl;
2255 public:
2256 static char ID; // Pass identification, replacement for typeid
2257 ReassociateLegacyPass() : FunctionPass(ID) {
2258 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2259 }
2260
2261 bool runOnFunction(Function &F) override {
2262 if (skipFunction(F))
2263 return false;
2264
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002265 FunctionAnalysisManager DummyFAM;
2266 auto PA = Impl.run(F, DummyFAM);
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002267 return !PA.areAllPreserved();
2268 }
2269
2270 void getAnalysisUsage(AnalysisUsage &AU) const override {
2271 AU.setPreservesCFG();
2272 AU.addPreserved<GlobalsAAWrapperPass>();
2273 }
2274 };
2275}
2276
2277char ReassociateLegacyPass::ID = 0;
2278INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2279 "Reassociate expressions", false, false)
2280
2281// Public interface to the Reassociate pass
2282FunctionPass *llvm::createReassociatePass() {
2283 return new ReassociateLegacyPass();
Chris Lattnerc0f58002002-05-08 22:19:27 +00002284}