blob: ac0d7b8f1dd2c1748edfa3437ceefab3207f960b [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Justin Bognerc2bf63d2016-04-26 23:39:29 +000023#include "llvm/Transforms/Scalar/Reassociate.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000029#include "llvm/Analysis/GlobalsModRef.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000030#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000031#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/Constants.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000038#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000039#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000040#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000041#include "llvm/Support/raw_ostream.h"
Justin Bognerc2bf63d2016-04-26 23:39:29 +000042#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000043#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000044#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000045using namespace llvm;
Justin Bognerc2bf63d2016-04-26 23:39:29 +000046using namespace reassociate;
Brian Gaeke960707c2003-11-11 22:41:34 +000047
Chandler Carruth964daaa2014-04-22 02:55:47 +000048#define DEBUG_TYPE "reassociate"
49
Chris Lattner79a42ac2006-12-19 21:40:18 +000050STATISTIC(NumChanged, "Number of insts reassociated");
51STATISTIC(NumAnnihil, "Number of expr tree annihilated");
52STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000053
Devang Patel702f45d2008-11-21 21:00:20 +000054#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000055/// Print out the expression identified in the Ops list.
Chris Lattner4c065092006-03-04 09:31:13 +000056///
Chris Lattner38abecb2009-12-31 18:40:32 +000057static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000058 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000059 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000060 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000061 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000062 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000063 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000064 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000065 }
Chris Lattner4c065092006-03-04 09:31:13 +000066}
Devang Patelcb181bb2008-11-21 20:00:59 +000067#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000068
Justin Bognerc2bf63d2016-04-26 23:39:29 +000069/// Utility class representing a non-constant Xor-operand. We classify
70/// non-constant Xor-Operands into two categories:
71/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
72/// C2)
73/// C2.1) The operand is in the form of "X | C", where C is a non-zero
74/// constant.
75/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
76/// operand as "E | 0"
77class llvm::reassociate::XorOpnd {
78public:
79 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000080
Justin Bognerc2bf63d2016-04-26 23:39:29 +000081 bool isInvalid() const { return SymbolicPart == nullptr; }
82 bool isOrExpr() const { return isOr; }
83 Value *getValue() const { return OrigVal; }
84 Value *getSymbolicPart() const { return SymbolicPart; }
85 unsigned getSymbolicRank() const { return SymbolicRank; }
86 const APInt &getConstPart() const { return ConstPart; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000087
Justin Bognerc2bf63d2016-04-26 23:39:29 +000088 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
89 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000090
Justin Bognerc2bf63d2016-04-26 23:39:29 +000091private:
92 Value *OrigVal;
93 Value *SymbolicPart;
94 APInt ConstPart;
95 unsigned SymbolicRank;
96 bool isOr;
97};
Chris Lattnerc0f58002002-05-08 22:19:27 +000098
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000099XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000100 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000101 OrigVal = V;
102 Instruction *I = dyn_cast<Instruction>(V);
103 SymbolicRank = 0;
104
105 if (I && (I->getOpcode() == Instruction::Or ||
106 I->getOpcode() == Instruction::And)) {
107 Value *V0 = I->getOperand(0);
108 Value *V1 = I->getOperand(1);
109 if (isa<ConstantInt>(V0))
110 std::swap(V0, V1);
111
112 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
113 ConstPart = C->getValue();
114 SymbolicPart = V0;
115 isOr = (I->getOpcode() == Instruction::Or);
116 return;
117 }
118 }
119
120 // view the operand as "V | 0"
121 SymbolicPart = V;
122 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
123 isOr = true;
124}
125
Sanjay Patelc96ee082015-04-22 18:04:46 +0000126/// Return true if V is an instruction of the specified opcode and if it
127/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000128static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
129 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000130 cast<Instruction>(V)->getOpcode() == Opcode &&
131 (!isa<FPMathOperator>(V) ||
132 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000133 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000134 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000135}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000136
Chad Rosier11ab9412014-08-14 15:23:01 +0000137static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
138 unsigned Opcode2) {
139 if (V->hasOneUse() && isa<Instruction>(V) &&
140 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000141 cast<Instruction>(V)->getOpcode() == Opcode2) &&
142 (!isa<FPMathOperator>(V) ||
143 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000144 return cast<BinaryOperator>(V);
145 return nullptr;
146}
147
Chad Rosierea7e4642016-08-17 15:54:39 +0000148void ReassociatePass::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000149 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000150
Chad Rosierf59e5482014-11-14 15:01:38 +0000151 // Assign distinct ranks to function arguments.
152 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000153 ValueRankMap[&*I] = ++i;
Chad Rosierf59e5482014-11-14 15:01:38 +0000154 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
155 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000156
Chad Rosierea7e4642016-08-17 15:54:39 +0000157 ReversePostOrderTraversal<Function *> RPOT(&F);
Benjamin Kramer135f7352016-06-26 12:28:59 +0000158 for (BasicBlock *BB : RPOT) {
Chris Lattner9f284e02005-05-08 20:57:04 +0000159 unsigned BBRank = RankMap[BB] = ++i << 16;
160
161 // Walk the basic block, adding precomputed ranks for any instructions that
162 // we cannot move. This ensures that the ranks for these instructions are
163 // all different in the block.
Benjamin Kramer135f7352016-06-26 12:28:59 +0000164 for (Instruction &I : *BB)
165 if (mayBeMemoryDependent(I))
166 ValueRankMap[&I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000167 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000168}
169
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000170unsigned ReassociatePass::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000171 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000172 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000173 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
174 return 0; // Otherwise it's a global or constant, rank 0.
175 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000176
Chris Lattner17229a72010-01-01 00:01:34 +0000177 if (unsigned Rank = ValueRankMap[I])
178 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000179
Chris Lattnerf43e9742005-05-07 04:08:02 +0000180 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
181 // we can reassociate expressions for code motion! Since we do not recurse
182 // for PHI nodes, we cannot have infinite recursion here, because there
183 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000184 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
185 for (unsigned i = 0, e = I->getNumOperands();
186 i != e && Rank != MaxRank; ++i)
187 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000188
Chris Lattner6e2086d2005-05-08 00:08:33 +0000189 // If this is a not or neg instruction, do not count it for rank. This
190 // assures us that X and ~X will have the same rank.
Robert Lougher1858ba72015-03-13 20:53:01 +0000191 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
192 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000193 ++Rank;
194
Chad Rosierf59e5482014-11-14 15:01:38 +0000195 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000196
Chris Lattner17229a72010-01-01 00:01:34 +0000197 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000198}
199
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000200// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000201void ReassociatePass::canonicalizeOperands(Instruction *I) {
Chad Rosierf8b55f12014-11-14 17:05:59 +0000202 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
203 assert(I->isCommutative() && "Expected commutative operator.");
204
205 Value *LHS = I->getOperand(0);
206 Value *RHS = I->getOperand(1);
207 unsigned LHSRank = getRank(LHS);
208 unsigned RHSRank = getRank(RHS);
209
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000210 if (isa<Constant>(RHS))
211 return;
212
Chad Rosierf8b55f12014-11-14 17:05:59 +0000213 if (isa<Constant>(LHS) || RHSRank < LHSRank)
214 cast<BinaryOperator>(I)->swapOperands();
215}
216
Chad Rosier11ab9412014-08-14 15:23:01 +0000217static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
218 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000219 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000220 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
221 else {
222 BinaryOperator *Res =
223 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
224 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
225 return Res;
226 }
227}
228
229static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
230 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000231 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000232 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
233 else {
234 BinaryOperator *Res =
235 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
236 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
237 return Res;
238 }
239}
240
241static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
242 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000243 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000244 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
245 else {
246 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
247 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
248 return Res;
249 }
250}
251
Sanjay Patelc96ee082015-04-22 18:04:46 +0000252/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000253static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000254 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000255 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
256 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000257
Chad Rosier11ab9412014-08-14 15:23:01 +0000258 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
259 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000260 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000261 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000262 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000263 return Res;
264}
265
Sanjay Patelc96ee082015-04-22 18:04:46 +0000266/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
267/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000268/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
269/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
270/// even x in Bitwidth-bit arithmetic.
271static unsigned CarmichaelShift(unsigned Bitwidth) {
272 if (Bitwidth < 3)
273 return Bitwidth - 1;
274 return Bitwidth - 2;
275}
276
Sanjay Patelc96ee082015-04-22 18:04:46 +0000277/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000278/// reducing the combined weight using any special properties of the operation.
279/// The existing weight LHS represents the computation X op X op ... op X where
280/// X occurs LHS times. The combined weight represents X op X op ... op X with
281/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
282/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
283/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
284static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
285 // If we were working with infinite precision arithmetic then the combined
286 // weight would be LHS + RHS. But we are using finite precision arithmetic,
287 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
288 // for nilpotent operations and addition, but not for idempotent operations
289 // and multiplication), so it is important to correctly reduce the combined
290 // weight back into range if wrapping would be wrong.
291
292 // If RHS is zero then the weight didn't change.
293 if (RHS.isMinValue())
294 return;
295 // If LHS is zero then the combined weight is RHS.
296 if (LHS.isMinValue()) {
297 LHS = RHS;
298 return;
299 }
300 // From this point on we know that neither LHS nor RHS is zero.
301
302 if (Instruction::isIdempotent(Opcode)) {
303 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
304 // weight of 1. Keeping weights at zero or one also means that wrapping is
305 // not a problem.
306 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
307 return; // Return a weight of 1.
308 }
309 if (Instruction::isNilpotent(Opcode)) {
310 // Nilpotent means X op X === 0, so reduce weights modulo 2.
311 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
312 LHS = 0; // 1 + 1 === 0 modulo 2.
313 return;
314 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000315 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000316 // TODO: Reduce the weight by exploiting nsw/nuw?
317 LHS += RHS;
318 return;
319 }
320
Chad Rosier11ab9412014-08-14 15:23:01 +0000321 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
322 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000323 unsigned Bitwidth = LHS.getBitWidth();
324 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
325 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
326 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
327 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
328 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
329 // which by a happy accident means that they can always be represented using
330 // Bitwidth bits.
331 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
332 // the Carmichael number).
333 if (Bitwidth > 3) {
334 /// CM - The value of Carmichael's lambda function.
335 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
336 // Any weight W >= Threshold can be replaced with W - CM.
337 APInt Threshold = CM + Bitwidth;
338 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
339 // For Bitwidth 4 or more the following sum does not overflow.
340 LHS += RHS;
341 while (LHS.uge(Threshold))
342 LHS -= CM;
343 } else {
344 // To avoid problems with overflow do everything the same as above but using
345 // a larger type.
346 unsigned CM = 1U << CarmichaelShift(Bitwidth);
347 unsigned Threshold = CM + Bitwidth;
348 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
349 "Weights not reduced!");
350 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
351 while (Total >= Threshold)
352 Total -= CM;
353 LHS = Total;
354 }
355}
356
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000357typedef std::pair<Value*, APInt> RepeatedValue;
358
Sanjay Patelc96ee082015-04-22 18:04:46 +0000359/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000360/// nodes in Ops along with their weights (how many times the leaf occurs). The
361/// original expression is the same as
362/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000363/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000364/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
365/// op
366/// ...
367/// op
368/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
369///
Duncan Sandsac852c72012-11-15 09:58:38 +0000370/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000371///
372/// This routine may modify the function, in which case it returns 'true'. The
373/// changes it makes may well be destructive, changing the value computed by 'I'
374/// to something completely different. Thus if the routine returns 'true' then
375/// you MUST either replace I with a new expression computed from the Ops array,
376/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000377///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000378/// A leaf node is either not a binary operation of the same kind as the root
379/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
380/// opcode), or is the same kind of binary operator but has a use which either
381/// does not belong to the expression, or does belong to the expression but is
382/// a leaf node. Every leaf node has at least one use that is a non-leaf node
383/// of the expression, while for non-leaf nodes (except for the root 'I') every
384/// use is a non-leaf node of the expression.
385///
386/// For example:
387/// expression graph node names
388///
389/// + | I
390/// / \ |
391/// + + | A, B
392/// / \ / \ |
393/// * + * | C, D, E
394/// / \ / \ / \ |
395/// + * | F, G
396///
397/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000398/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000399///
400/// The expression is maximal: if some instruction is a binary operator of the
401/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
402/// then the instruction also belongs to the expression, is not a leaf node of
403/// it, and its operands also belong to the expression (but may be leaf nodes).
404///
405/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
406/// order to ensure that every non-root node in the expression has *exactly one*
407/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000408/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000409/// RewriteExprTree to put the values back in if the routine indicates that it
410/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000411///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000412/// In the above example either the right operand of A or the left operand of B
413/// will be replaced by undef. If it is B's operand then this gives:
414///
415/// + | I
416/// / \ |
417/// + + | A, B - operand of B replaced with undef
418/// / \ \ |
419/// * + * | C, D, E
420/// / \ / \ / \ |
421/// + * | F, G
422///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000423/// Note that such undef operands can only be reached by passing through 'I'.
424/// For example, if you visit operands recursively starting from a leaf node
425/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000426/// which requires passing through a phi node.
427///
428/// Note that this routine may also mutate binary operators of the wrong type
429/// that have all uses inside the expression (i.e. only used by non-leaf nodes
430/// of the expression) if it can turn them into binary operators of the right
431/// type and thus make the expression bigger.
432
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000433static bool LinearizeExprTree(BinaryOperator *I,
434 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000435 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000436 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
437 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000438 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000439 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000440
441 // Visit all operands of the expression, keeping track of their weight (the
442 // number of paths from the expression root to the operand, or if you like
443 // the number of times that operand occurs in the linearized expression).
444 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
445 // while A has weight two.
446
447 // Worklist of non-leaf nodes (their operands are in the expression too) along
448 // with their weights, representing a certain number of paths to the operator.
449 // If an operator occurs in the worklist multiple times then we found multiple
450 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000451 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
452 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000453 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000454
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000455 // Leaves of the expression are values that either aren't the right kind of
456 // operation (eg: a constant, or a multiply in an add tree), or are, but have
457 // some uses that are not inside the expression. For example, in I = X + X,
458 // X = A + B, the value X has two uses (by I) that are in the expression. If
459 // X has any other uses, for example in a return instruction, then we consider
460 // X to be a leaf, and won't analyze it further. When we first visit a value,
461 // if it has more than one use then at first we conservatively consider it to
462 // be a leaf. Later, as the expression is explored, we may discover some more
463 // uses of the value from inside the expression. If all uses turn out to be
464 // from within the expression (and the value is a binary operator of the right
465 // kind) then the value is no longer considered to be a leaf, and its operands
466 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000467
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000468 // Leaves - Keeps track of the set of putative leaves as well as the number of
469 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000470 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000471 LeafMap Leaves; // Leaf -> Total weight so far.
472 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
473
474#ifndef NDEBUG
475 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
476#endif
477 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000478 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000479 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000480
481 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
482 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000483 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000484 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
485 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
486
487 // If this is a binary operation of the right kind with only one use then
488 // add its operands to the expression.
489 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000490 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000491 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
492 Worklist.push_back(std::make_pair(BO, Weight));
493 continue;
494 }
495
496 // Appears to be a leaf. Is the operand already in the set of leaves?
497 LeafMap::iterator It = Leaves.find(Op);
498 if (It == Leaves.end()) {
499 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000500 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000501 if (!Op->hasOneUse()) {
502 // This value has uses not accounted for by the expression, so it is
503 // not safe to modify. Mark it as being a leaf.
504 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
505 LeafOrder.push_back(Op);
506 Leaves[Op] = Weight;
507 continue;
508 }
509 // No uses outside the expression, try morphing it.
510 } else if (It != Leaves.end()) {
511 // Already in the leaf map.
512 assert(Visited.count(Op) && "In leaf map but not visited!");
513
514 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000515 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000516
Duncan Sands56514522012-07-26 09:26:40 +0000517#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000518 // The leaf already has one use from inside the expression. As we want
519 // exactly one such use, drop this new use of the leaf.
520 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
521 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000522 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000523
524 // If the leaf is a binary operation of the right kind and we now see
525 // that its multiple original uses were in fact all by nodes belonging
526 // to the expression, then no longer consider it to be a leaf and add
527 // its operands to the expression.
528 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
529 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
530 Worklist.push_back(std::make_pair(BO, It->second));
531 Leaves.erase(It);
532 continue;
533 }
Duncan Sands56514522012-07-26 09:26:40 +0000534#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000535
536 // If we still have uses that are not accounted for by the expression
537 // then it is not safe to modify the value.
538 if (!Op->hasOneUse())
539 continue;
540
541 // No uses outside the expression, try morphing it.
542 Weight = It->second;
543 Leaves.erase(It); // Since the value may be morphed below.
544 }
545
546 // At this point we have a value which, first of all, is not a binary
547 // expression of the right kind, and secondly, is only used inside the
548 // expression. This means that it can safely be modified. See if we
549 // can usefully morph it into an expression of the right kind.
550 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000551 cast<Instruction>(Op)->getOpcode() != Opcode
552 || (isa<FPMathOperator>(Op) &&
553 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000554 "Should have been handled above!");
555 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
556
557 // If this is a multiply expression, turn any internal negations into
558 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000559 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
560 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
561 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
562 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
563 BO = LowerNegateToMultiply(BO);
564 DEBUG(dbgs() << *BO << '\n');
565 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000566 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000567 continue;
568 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000569
570 // Failed to morph into an expression of the right type. This really is
571 // a leaf.
572 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
573 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
574 LeafOrder.push_back(Op);
575 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000576 }
577 }
578
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000579 // The leaves, repeated according to their weights, represent the linearized
580 // form of the expression.
581 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
582 Value *V = LeafOrder[i];
583 LeafMap::iterator It = Leaves.find(V);
584 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000585 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000586 continue;
587 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000588 APInt Weight = It->second;
589 if (Weight.isMinValue())
590 // Leaf already output or weight reduction eliminated it.
591 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000592 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000593 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000594 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000595 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000596
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000597 // For nilpotent operations or addition there may be no operands, for example
598 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
599 // in both cases the weight reduces to 0 causing the value to be skipped.
600 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000601 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000602 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000603 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000604 }
605
Chad Rosiere53e8c82014-11-18 20:21:54 +0000606 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000607}
608
Sanjay Patelc96ee082015-04-22 18:04:46 +0000609/// Now that the operands for this expression tree are
610/// linearized and optimized, emit them in-order.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000611void ReassociatePass::RewriteExprTree(BinaryOperator *I,
612 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000613 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000614
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000615 // Since our optimizations should never increase the number of operations, the
616 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000617 // from the original expression tree, without creating any new instructions,
618 // though the rewritten expression may have a completely different topology.
619 // We take care to not change anything if the new expression will be the same
620 // as the original. If more than trivial changes (like commuting operands)
621 // were made then we are obliged to clear out any optional subclass data like
622 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000623
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000624 /// NodesToRewrite - Nodes from the original expression available for writing
625 /// the new expression into.
626 SmallVector<BinaryOperator*, 8> NodesToRewrite;
627 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000628 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000629
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000630 /// NotRewritable - The operands being written will be the leaves of the new
631 /// expression and must not be used as inner nodes (via NodesToRewrite) by
632 /// mistake. Inner nodes are always reassociable, and usually leaves are not
633 /// (if they were they would have been incorporated into the expression and so
634 /// would not be leaves), so most of the time there is no danger of this. But
635 /// in rare cases a leaf may become reassociable if an optimization kills uses
636 /// of it, or it may momentarily become reassociable during rewriting (below)
637 /// due it being removed as an operand of one of its uses. Ensure that misuse
638 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
639 /// leaves and refusing to reuse any of them as inner nodes.
640 SmallPtrSet<Value*, 8> NotRewritable;
641 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
642 NotRewritable.insert(Ops[i].Op);
643
Duncan Sands3c05cd32012-05-26 16:42:52 +0000644 // ExpressionChanged - Non-null if the rewritten expression differs from the
645 // original in some non-trivial way, requiring the clearing of optional flags.
646 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000647 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000648 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000649 // The last operation (which comes earliest in the IR) is special as both
650 // operands will come from Ops, rather than just one with the other being
651 // a subexpression.
652 if (i+2 == Ops.size()) {
653 Value *NewLHS = Ops[i].Op;
654 Value *NewRHS = Ops[i+1].Op;
655 Value *OldLHS = Op->getOperand(0);
656 Value *OldRHS = Op->getOperand(1);
657
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000658 if (NewLHS == OldLHS && NewRHS == OldRHS)
659 // Nothing changed, leave it alone.
660 break;
661
662 if (NewLHS == OldRHS && NewRHS == OldLHS) {
663 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000664 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000665 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000666 DEBUG(dbgs() << "TO: " << *Op << '\n');
667 MadeChange = true;
668 ++NumChanged;
669 break;
670 }
671
672 // The new operation differs non-trivially from the original. Overwrite
673 // the old operands with the new ones.
674 DEBUG(dbgs() << "RA: " << *Op << '\n');
675 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000676 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
677 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000678 NodesToRewrite.push_back(BO);
679 Op->setOperand(0, NewLHS);
680 }
681 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000682 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
683 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000684 NodesToRewrite.push_back(BO);
685 Op->setOperand(1, NewRHS);
686 }
687 DEBUG(dbgs() << "TO: " << *Op << '\n');
688
Duncan Sands3c05cd32012-05-26 16:42:52 +0000689 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000690 MadeChange = true;
691 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000692
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000693 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000694 }
Chris Lattner1e506502005-05-07 21:59:39 +0000695
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000696 // Not the last operation. The left-hand side will be a sub-expression
697 // while the right-hand side will be the current element of Ops.
698 Value *NewRHS = Ops[i].Op;
699 if (NewRHS != Op->getOperand(1)) {
700 DEBUG(dbgs() << "RA: " << *Op << '\n');
701 if (NewRHS == Op->getOperand(0)) {
702 // The new right-hand side was already present as the left operand. If
703 // we are lucky then swapping the operands will sort out both of them.
704 Op->swapOperands();
705 } else {
706 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000707 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
708 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000709 NodesToRewrite.push_back(BO);
710 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000711 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000712 }
713 DEBUG(dbgs() << "TO: " << *Op << '\n');
714 MadeChange = true;
715 ++NumChanged;
716 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000717
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000718 // Now deal with the left-hand side. If this is already an operation node
719 // from the original expression then just rewrite the rest of the expression
720 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000721 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
722 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000723 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000724 continue;
725 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000726
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000727 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000728 // the left-hand side. If there are no nodes left then the optimizers made
729 // an expression with more nodes than the original! This usually means that
730 // they did something stupid but it might mean that the problem was just too
731 // hard (finding the mimimal number of multiplications needed to realize a
732 // multiplication expression is NP-complete). Whatever the reason, smart or
733 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000734 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000735 if (NodesToRewrite.empty()) {
736 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000737 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
738 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000739 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000740 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000741 } else {
742 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000743 }
744
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000745 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000746 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000747 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000748 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000749 MadeChange = true;
750 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000751 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000752 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000753
Duncan Sands3c05cd32012-05-26 16:42:52 +0000754 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000755 // starting from the operator specified in ExpressionChanged, and compactify
756 // the operators to just before the expression root to guarantee that the
757 // expression tree is dominated by all of Ops.
758 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000759 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000760 // Preserve FastMathFlags.
761 if (isa<FPMathOperator>(I)) {
762 FastMathFlags Flags = I->getFastMathFlags();
763 ExpressionChanged->clearSubclassOptionalData();
764 ExpressionChanged->setFastMathFlags(Flags);
765 } else
766 ExpressionChanged->clearSubclassOptionalData();
767
Duncan Sands3c05cd32012-05-26 16:42:52 +0000768 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000769 break;
Duncan Sands514db112012-06-27 14:19:00 +0000770 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000771 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000772 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000773
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000774 // Throw away any left over nodes from the original expression.
775 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000776 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000777}
778
Sanjay Patelc96ee082015-04-22 18:04:46 +0000779/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000780/// that computes the negative version of the value specified. The negative
781/// version of the value is returned, and BI is left pointing at the instruction
782/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000783/// Also add intermediate instructions to the redo list that are modified while
784/// pushing the negates through adds. These will be revisited to see if
785/// additional opportunities have been exposed.
786static Value *NegateValue(Value *V, Instruction *BI,
787 SetVector<AssertingVH<Instruction>> &ToRedo) {
Mehdi Amini590a2702015-01-16 03:00:58 +0000788 if (Constant *C = dyn_cast<Constant>(V)) {
789 if (C->getType()->isFPOrFPVectorTy()) {
790 return ConstantExpr::getFNeg(C);
791 }
Chris Lattnerfed33972009-12-31 20:34:32 +0000792 return ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000793 }
794
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000795
Chris Lattner7bc532d2002-05-16 04:37:07 +0000796 // We are trying to expose opportunity for reassociation. One of the things
797 // that we want to do to achieve this is to push a negation as deep into an
798 // expression chain as possible, to expose the add instructions. In practice,
799 // this means that we turn this:
800 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
801 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
802 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000803 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000804 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000805 if (BinaryOperator *I =
806 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000807 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000808 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
809 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000810 if (I->getOpcode() == Instruction::Add) {
811 I->setHasNoUnsignedWrap(false);
812 I->setHasNoSignedWrap(false);
813 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000814
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000815 // We must move the add instruction here, because the neg instructions do
816 // not dominate the old add instruction in general. By moving it, we are
817 // assured that the neg instructions we just inserted dominate the
818 // instruction we are about to insert after them.
819 //
820 I->moveBefore(BI);
821 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000822
823 // Add the intermediate negates to the redo list as processing them later
824 // could expose more reassociating opportunities.
825 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000826 return I;
827 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000828
Chris Lattnerfed33972009-12-31 20:34:32 +0000829 // Okay, we need to materialize a negated version of V with an instruction.
830 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000831 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000832 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
833 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000834
835 // We found one! Now we have to make sure that the definition dominates
836 // this use. We do this by moving it to the entry block (if it is a
837 // non-instruction value) or right after the definition. These negates will
838 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000839 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000840
841 // Verify that the negate is in this function, V might be a constant expr.
842 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
843 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000844
Chris Lattnerfed33972009-12-31 20:34:32 +0000845 BasicBlock::iterator InsertPt;
846 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
847 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
848 InsertPt = II->getNormalDest()->begin();
849 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000850 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000851 }
852 while (isa<PHINode>(InsertPt)) ++InsertPt;
853 } else {
854 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
855 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000856 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000857 if (TheNeg->getOpcode() == Instruction::Sub) {
858 TheNeg->setHasNoUnsignedWrap(false);
859 TheNeg->setHasNoSignedWrap(false);
860 } else {
861 TheNeg->andIRFlags(BI);
862 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000863 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000864 return TheNeg;
865 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000866
867 // Insert a 'neg' instruction that subtracts the value from zero to get the
868 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000869 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
870 ToRedo.insert(NewNeg);
871 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000872}
873
Sanjay Patelc96ee082015-04-22 18:04:46 +0000874/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000875static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000876 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000877 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000878 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000879
Chad Rosierbd64d462014-10-09 20:06:29 +0000880 // Don't breakup X - undef.
881 if (isa<UndefValue>(Sub->getOperand(1)))
882 return false;
883
Chris Lattner902537c2008-02-17 20:44:51 +0000884 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000885 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000886 Value *V0 = Sub->getOperand(0);
887 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
888 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000889 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000890 Value *V1 = Sub->getOperand(1);
891 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
892 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000893 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000894 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000895 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000896 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
897 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000898 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000899
Chris Lattner902537c2008-02-17 20:44:51 +0000900 return false;
901}
902
Sanjay Patelc96ee082015-04-22 18:04:46 +0000903/// If we have (X-Y), and if either X is an add, or if this is only used by an
904/// add, transform this into (X+(0-Y)) to promote better reassociation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000905static BinaryOperator *
906BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000907 // Convert a subtract into an add and a neg instruction. This allows sub
908 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000909 //
Chris Lattnera5526832010-01-01 00:04:26 +0000910 // Calculate the negative value of Operand 1 of the sub instruction,
911 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000912 //
Owen Anderson2de9f542015-11-16 18:07:30 +0000913 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +0000914 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000915 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
916 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000917 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000918
919 // Everyone now refers to the add instruction.
920 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000921 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000922
David Greened17c3912010-01-05 01:27:24 +0000923 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000924 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000925}
926
Sanjay Patelc96ee082015-04-22 18:04:46 +0000927/// If this is a shift of a reassociable multiply or is used by one, change
928/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000929static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
930 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
931 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000932
Duncan Sands3293f462012-06-08 20:15:33 +0000933 BinaryOperator *Mul =
934 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
935 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
936 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +0000937
938 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +0000939 Shl->replaceAllUsesWith(Mul);
940 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +0000941
942 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
943 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
944 // handling.
945 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
946 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
947 if (NSW && NUW)
948 Mul->setHasNoSignedWrap(true);
949 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +0000950 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000951}
952
Sanjay Patelc96ee082015-04-22 18:04:46 +0000953/// Scan backwards and forwards among values with the same rank as element i
954/// to see if X exists. If X does not exist, return i. This is useful when
955/// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +0000956static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +0000957 Value *X) {
958 unsigned XRank = Ops[i].Rank;
959 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +0000960 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000961 if (Ops[j].Op == X)
962 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000963 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
964 if (Instruction *I2 = dyn_cast<Instruction>(X))
965 if (I1->isIdenticalTo(I2))
966 return j;
967 }
Chris Lattner0c59ac32010-01-01 01:13:15 +0000968 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +0000969 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000970 if (Ops[j].Op == X)
971 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000972 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
973 if (Instruction *I2 = dyn_cast<Instruction>(X))
974 if (I1->isIdenticalTo(I2))
975 return j;
976 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000977 return i;
978}
979
Sanjay Patelc96ee082015-04-22 18:04:46 +0000980/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +0000981/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +0000982static Value *EmitAddTreeOfValues(Instruction *I,
983 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +0000984 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000985
Chris Lattner4c065092006-03-04 09:31:13 +0000986 Value *V1 = Ops.back();
987 Ops.pop_back();
988 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +0000989 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +0000990}
991
Sanjay Patelc96ee082015-04-22 18:04:46 +0000992/// If V is an expression tree that is a multiplication sequence,
993/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +0000994/// remove Factor from the tree and return the new tree.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000995Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000996 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
997 if (!BO)
998 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000999
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001000 SmallVector<RepeatedValue, 8> Tree;
1001 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001002 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001003 Factors.reserve(Tree.size());
1004 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1005 RepeatedValue E = Tree[i];
1006 Factors.append(E.second.getZExtValue(),
1007 ValueEntry(getRank(E.first), E.first));
1008 }
Chris Lattner4c065092006-03-04 09:31:13 +00001009
1010 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001011 bool NeedsNegate = false;
1012 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001013 if (Factors[i].Op == Factor) {
1014 FoundFactor = true;
1015 Factors.erase(Factors.begin()+i);
1016 break;
1017 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001018
Chris Lattner0c59ac32010-01-01 01:13:15 +00001019 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001020 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001021 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1022 if (FC1->getValue() == -FC2->getValue()) {
1023 FoundFactor = NeedsNegate = true;
1024 Factors.erase(Factors.begin()+i);
1025 break;
1026 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001027 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1028 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001029 const APFloat &F1 = FC1->getValueAPF();
Chad Rosier11ab9412014-08-14 15:23:01 +00001030 APFloat F2(FC2->getValueAPF());
1031 F2.changeSign();
1032 if (F1.compare(F2) == APFloat::cmpEqual) {
1033 FoundFactor = NeedsNegate = true;
1034 Factors.erase(Factors.begin() + i);
1035 break;
1036 }
1037 }
1038 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001039 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001040
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001041 if (!FoundFactor) {
1042 // Make sure to restore the operands to the expression tree.
1043 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001044 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001045 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001046
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001047 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001048
Chris Lattner1d897942009-12-31 19:34:45 +00001049 // If this was just a single multiply, remove the multiply and return the only
1050 // remaining operand.
1051 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001052 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001053 V = Factors[0].Op;
1054 } else {
1055 RewriteExprTree(BO, Factors);
1056 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001057 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001058
Chris Lattner0c59ac32010-01-01 01:13:15 +00001059 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001060 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001061
Chris Lattner0c59ac32010-01-01 01:13:15 +00001062 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001063}
1064
Sanjay Patelc96ee082015-04-22 18:04:46 +00001065/// If V is a single-use multiply, recursively add its operands as factors,
1066/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001067///
1068/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001069static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001070 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001071 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001072 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001073 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001074 Factors.push_back(V);
1075 return;
1076 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001077
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001078 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001079 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1080 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001081}
1082
Sanjay Patelc96ee082015-04-22 18:04:46 +00001083/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1084/// This optimizes based on identities. If it can be reduced to a single Value,
1085/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001086static Value *OptimizeAndOrXor(unsigned Opcode,
1087 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001088 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1089 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1090 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1091 // First, check for X and ~X in the operand list.
1092 assert(i < Ops.size());
1093 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1094 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1095 unsigned FoundX = FindInOperandList(Ops, i, X);
1096 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001097 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001098 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001099
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001100 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001101 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001102 }
1103 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001104
Chris Lattner5f8a0052009-12-31 07:59:34 +00001105 // Next, check for duplicate pairs of values, which we assume are next to
1106 // each other, due to our sorting criteria.
1107 assert(i < Ops.size());
1108 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1109 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001110 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001111 Ops.erase(Ops.begin()+i);
1112 --i; --e;
1113 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001114 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001115 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001116
Chris Lattner60c2ca72009-12-31 19:49:01 +00001117 // Drop pairs of values for Xor.
1118 assert(Opcode == Instruction::Xor);
1119 if (e == 2)
1120 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001121
Chris Lattnera5526832010-01-01 00:04:26 +00001122 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001123 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1124 i -= 1; e -= 2;
1125 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001126 }
1127 }
Craig Topperf40110f2014-04-25 05:29:35 +00001128 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001129}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001130
Eric Christopherbfba5722015-12-16 23:10:53 +00001131/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001132/// instruction with the given two operands, and return the resulting
1133/// instruction. There are two special cases: 1) if the constant operand is 0,
1134/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1135/// be returned.
1136static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1137 const APInt &ConstOpnd) {
1138 if (ConstOpnd != 0) {
1139 if (!ConstOpnd.isAllOnesValue()) {
1140 LLVMContext &Ctx = Opnd->getType()->getContext();
1141 Instruction *I;
1142 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1143 "and.ra", InsertBefore);
1144 I->setDebugLoc(InsertBefore->getDebugLoc());
1145 return I;
1146 }
1147 return Opnd;
1148 }
Craig Topperf40110f2014-04-25 05:29:35 +00001149 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001150}
1151
1152// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1153// into "R ^ C", where C would be 0, and R is a symbolic value.
1154//
1155// If it was successful, true is returned, and the "R" and "C" is returned
1156// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1157// and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001158//
1159bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1160 APInt &ConstOpnd, Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001161 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1162 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1163 // = (x & ~c1) ^ (c1 ^ c2)
1164 // It is useful only when c1 == c2.
1165 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1166 if (!Opnd1->getValue()->hasOneUse())
1167 return false;
1168
1169 const APInt &C1 = Opnd1->getConstPart();
1170 if (C1 != ConstOpnd)
1171 return false;
1172
1173 Value *X = Opnd1->getSymbolicPart();
1174 Res = createAndInstr(I, X, ~C1);
1175 // ConstOpnd was C2, now C1 ^ C2.
1176 ConstOpnd ^= C1;
1177
1178 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1179 RedoInsts.insert(T);
1180 return true;
1181 }
1182 return false;
1183}
1184
1185
1186// Helper function of OptimizeXor(). It tries to simplify
1187// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1188// symbolic value.
1189//
1190// If it was successful, true is returned, and the "R" and "C" is returned
1191// via "Res" and "ConstOpnd", respectively (If the entire expression is
1192// evaluated to a constant, the Res is set to NULL); otherwise, false is
1193// returned, and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001194bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1195 XorOpnd *Opnd2, APInt &ConstOpnd,
1196 Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001197 Value *X = Opnd1->getSymbolicPart();
1198 if (X != Opnd2->getSymbolicPart())
1199 return false;
1200
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001201 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1202 int DeadInstNum = 1;
1203 if (Opnd1->getValue()->hasOneUse())
1204 DeadInstNum++;
1205 if (Opnd2->getValue()->hasOneUse())
1206 DeadInstNum++;
1207
1208 // Xor-Rule 2:
1209 // (x | c1) ^ (x & c2)
1210 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1211 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1212 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1213 //
1214 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1215 if (Opnd2->isOrExpr())
1216 std::swap(Opnd1, Opnd2);
1217
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001218 const APInt &C1 = Opnd1->getConstPart();
1219 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001220 APInt C3((~C1) ^ C2);
1221
1222 // Do not increase code size!
1223 if (C3 != 0 && !C3.isAllOnesValue()) {
1224 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1225 if (NewInstNum > DeadInstNum)
1226 return false;
1227 }
1228
1229 Res = createAndInstr(I, X, C3);
1230 ConstOpnd ^= C1;
1231
1232 } else if (Opnd1->isOrExpr()) {
1233 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1234 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001235 const APInt &C1 = Opnd1->getConstPart();
1236 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001237 APInt C3 = C1 ^ C2;
1238
1239 // Do not increase code size
1240 if (C3 != 0 && !C3.isAllOnesValue()) {
1241 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1242 if (NewInstNum > DeadInstNum)
1243 return false;
1244 }
1245
1246 Res = createAndInstr(I, X, C3);
1247 ConstOpnd ^= C3;
1248 } else {
1249 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1250 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001251 const APInt &C1 = Opnd1->getConstPart();
1252 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001253 APInt C3 = C1 ^ C2;
1254 Res = createAndInstr(I, X, C3);
1255 }
1256
1257 // Put the original operands in the Redo list; hope they will be deleted
1258 // as dead code.
1259 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1260 RedoInsts.insert(T);
1261 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1262 RedoInsts.insert(T);
1263
1264 return true;
1265}
1266
1267/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1268/// to a single Value, it is returned, otherwise the Ops list is mutated as
1269/// necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001270Value *ReassociatePass::OptimizeXor(Instruction *I,
1271 SmallVectorImpl<ValueEntry> &Ops) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001272 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1273 return V;
1274
1275 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001276 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001277
1278 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001279 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001280 Type *Ty = Ops[0].Op->getType();
1281 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1282
1283 // Step 1: Convert ValueEntry to XorOpnd
1284 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1285 Value *V = Ops[i].Op;
1286 if (!isa<ConstantInt>(V)) {
1287 XorOpnd O(V);
1288 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1289 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001290 } else
1291 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1292 }
1293
Shuxin Yang331f01d2013-04-08 22:00:43 +00001294 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1295 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1296 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1297 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1298 // when new elements are added to the vector.
1299 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1300 OpndPtrs.push_back(&Opnds[i]);
1301
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001302 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1303 // the same symbolic value cluster together. For instance, the input operand
1304 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1305 // ("x | 123", "x & 789", "y & 456").
Justin Bognercb8a21c2016-04-26 23:32:00 +00001306 //
1307 // The purpose is twofold:
1308 // 1) Cluster together the operands sharing the same symbolic-value.
1309 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1310 // could potentially shorten crital path, and expose more loop-invariants.
1311 // Note that values' rank are basically defined in RPO order (FIXME).
1312 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1313 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1314 // "z" in the order of X-Y-Z is better than any other orders.
1315 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1316 [](XorOpnd *LHS, XorOpnd *RHS) {
1317 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1318 });
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001319
1320 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001321 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001322 bool Changed = false;
1323 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001324 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001325 // The combined value
1326 Value *CV;
1327
1328 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1329 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1330 Changed = true;
1331 if (CV)
1332 *CurrOpnd = XorOpnd(CV);
1333 else {
1334 CurrOpnd->Invalidate();
1335 continue;
1336 }
1337 }
1338
1339 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1340 PrevOpnd = CurrOpnd;
1341 continue;
1342 }
1343
1344 // step 3.2: When previous and current operands share the same symbolic
1345 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1346 //
1347 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1348 // Remove previous operand
1349 PrevOpnd->Invalidate();
1350 if (CV) {
1351 *CurrOpnd = XorOpnd(CV);
1352 PrevOpnd = CurrOpnd;
1353 } else {
1354 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001355 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001356 }
1357 Changed = true;
1358 }
1359 }
1360
1361 // Step 4: Reassemble the Ops
1362 if (Changed) {
1363 Ops.clear();
1364 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1365 XorOpnd &O = Opnds[i];
1366 if (O.isInvalid())
1367 continue;
1368 ValueEntry VE(getRank(O.getValue()), O.getValue());
1369 Ops.push_back(VE);
1370 }
1371 if (ConstOpnd != 0) {
1372 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1373 ValueEntry VE(getRank(C), C);
1374 Ops.push_back(VE);
1375 }
1376 int Sz = Ops.size();
1377 if (Sz == 1)
1378 return Ops.back().Op;
1379 else if (Sz == 0) {
1380 assert(ConstOpnd == 0);
1381 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1382 }
1383 }
1384
Craig Topperf40110f2014-04-25 05:29:35 +00001385 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001386}
1387
Sanjay Patelc96ee082015-04-22 18:04:46 +00001388/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001389/// optimizes based on identities. If it can be reduced to a single Value, it
1390/// is returned, otherwise the Ops list is mutated as necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001391Value *ReassociatePass::OptimizeAdd(Instruction *I,
1392 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001393 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001394 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1395 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001396 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001397
Chris Lattner5f8a0052009-12-31 07:59:34 +00001398 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001399 Value *TheOp = Ops[i].Op;
1400 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001401 // instances of the operand together. Due to our sorting criteria, we know
1402 // that these need to be next to each other in the vector.
1403 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1404 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001405 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001406 do {
1407 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001408 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001409 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001410
Chad Rosier78943bc2014-12-12 14:44:12 +00001411 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001412 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001413
Chris Lattner60b71b52009-12-31 19:24:52 +00001414 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001415 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001416 Constant *C = Ty->isIntOrIntVectorTy() ?
1417 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001418 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001419
Chris Lattner60b71b52009-12-31 19:24:52 +00001420 // Now that we have inserted a multiply, optimize it. This allows us to
1421 // handle cases that require multiple factoring steps, such as this:
1422 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001423 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001424
Chris Lattner60b71b52009-12-31 19:24:52 +00001425 // If every add operand was a duplicate, return the multiply.
1426 if (Ops.empty())
1427 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001428
Chris Lattner60b71b52009-12-31 19:24:52 +00001429 // Otherwise, we had some input that didn't have the dupe, such as
1430 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1431 // things being added by this operation.
1432 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001433
Chris Lattner60c2ca72009-12-31 19:49:01 +00001434 --i;
1435 e = Ops.size();
1436 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001437 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001438
Benjamin Kramer49689442014-05-31 15:01:54 +00001439 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001440 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1441 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001442 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001443
Benjamin Kramer49689442014-05-31 15:01:54 +00001444 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001445 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001446 X = BinaryOperator::getNegArgument(TheOp);
1447 else if (BinaryOperator::isNot(TheOp))
1448 X = BinaryOperator::getNotArgument(TheOp);
1449
Chris Lattner5f8a0052009-12-31 07:59:34 +00001450 unsigned FoundX = FindInOperandList(Ops, i, X);
1451 if (FoundX == i)
1452 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001453
Chris Lattner5f8a0052009-12-31 07:59:34 +00001454 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001455 if (Ops.size() == 2 &&
1456 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001457 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001458
Benjamin Kramer49689442014-05-31 15:01:54 +00001459 // Remove X and ~X from the operand list.
1460 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1461 return Constant::getAllOnesValue(X->getType());
1462
Chris Lattner5f8a0052009-12-31 07:59:34 +00001463 Ops.erase(Ops.begin()+i);
1464 if (i < FoundX)
1465 --FoundX;
1466 else
1467 --i; // Need to back up an extra one.
1468 Ops.erase(Ops.begin()+FoundX);
1469 ++NumAnnihil;
1470 --i; // Revisit element.
1471 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001472
1473 // if X and ~X we append -1 to the operand list.
1474 if (BinaryOperator::isNot(TheOp)) {
1475 Value *V = Constant::getAllOnesValue(X->getType());
1476 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1477 e += 1;
1478 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001479 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001480
Chris Lattner177140a2009-12-31 18:17:13 +00001481 // Scan the operand list, checking to see if there are any common factors
1482 // between operands. Consider something like A*A+A*B*C+D. We would like to
1483 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1484 // To efficiently find this, we count the number of times a factor occurs
1485 // for any ADD operands that are MULs.
1486 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001487
Chris Lattner177140a2009-12-31 18:17:13 +00001488 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1489 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001490 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001491 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001492 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001493 BinaryOperator *BOp =
1494 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001495 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001496 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001497
Chris Lattner177140a2009-12-31 18:17:13 +00001498 // Compute all of the factors of this added value.
1499 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001500 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001501 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001502
Chris Lattner177140a2009-12-31 18:17:13 +00001503 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001504 SmallPtrSet<Value*, 8> Duplicates;
1505 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1506 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001507 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001508 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001509
Chris Lattner0c59ac32010-01-01 01:13:15 +00001510 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001511 if (Occ > MaxOcc) {
1512 MaxOcc = Occ;
1513 MaxOccVal = Factor;
1514 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001515
Chris Lattner0c59ac32010-01-01 01:13:15 +00001516 // If Factor is a negative constant, add the negated value as a factor
1517 // because we can percolate the negate out. Watch for minint, which
1518 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001519 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001520 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001521 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1522 assert(!Duplicates.count(Factor) &&
1523 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001524 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001525 if (Occ > MaxOcc) {
1526 MaxOcc = Occ;
1527 MaxOccVal = Factor;
1528 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001529 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001530 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1531 if (CF->isNegative()) {
1532 APFloat F(CF->getValueAPF());
1533 F.changeSign();
1534 Factor = ConstantFP::get(CF->getContext(), F);
1535 assert(!Duplicates.count(Factor) &&
1536 "Shouldn't have two constant factors, missed a canonicalize");
1537 unsigned Occ = ++FactorOccurrences[Factor];
1538 if (Occ > MaxOcc) {
1539 MaxOcc = Occ;
1540 MaxOccVal = Factor;
1541 }
1542 }
1543 }
Chris Lattner177140a2009-12-31 18:17:13 +00001544 }
1545 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001546
Chris Lattner177140a2009-12-31 18:17:13 +00001547 // If any factor occurred more than one time, we can pull it out.
1548 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001549 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001550 ++NumFactor;
1551
1552 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1553 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001554 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001555 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001556 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001557 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001558 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1559 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1560
Bill Wendling274ba892012-05-02 09:59:45 +00001561 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001562 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001563 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001564 BinaryOperator *BOp =
1565 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001566 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001567 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001568
Chris Lattner177140a2009-12-31 18:17:13 +00001569 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001570 // The factorized operand may occur several times. Convert them all in
1571 // one fell swoop.
1572 for (unsigned j = Ops.size(); j != i;) {
1573 --j;
1574 if (Ops[j].Op == Ops[i].Op) {
1575 NewMulOps.push_back(V);
1576 Ops.erase(Ops.begin()+j);
1577 }
1578 }
1579 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001580 }
1581 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001582
Chris Lattner177140a2009-12-31 18:17:13 +00001583 // No need for extra uses anymore.
1584 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001585
Chris Lattner177140a2009-12-31 18:17:13 +00001586 unsigned NumAddedValues = NewMulOps.size();
1587 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001588
Chris Lattner60b71b52009-12-31 19:24:52 +00001589 // Now that we have inserted the add tree, optimize it. This allows us to
1590 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001591 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001592 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001593 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001594 if (Instruction *VI = dyn_cast<Instruction>(V))
1595 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001596
1597 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001598 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001599
Chris Lattner60c2ca72009-12-31 19:49:01 +00001600 // Rerun associate on the multiply in case the inner expression turned into
1601 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001602 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001603
Chris Lattner177140a2009-12-31 18:17:13 +00001604 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1605 // entire result expression is just the multiply "A*(B+C)".
1606 if (Ops.empty())
1607 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001608
Chris Lattnerac615502009-12-31 18:18:46 +00001609 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001610 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001611 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001612 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1613 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001614
Craig Topperf40110f2014-04-25 05:29:35 +00001615 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001616}
Chris Lattner4c065092006-03-04 09:31:13 +00001617
Chandler Carruth739ef802012-04-26 05:30:30 +00001618/// \brief Build up a vector of value/power pairs factoring a product.
1619///
1620/// Given a series of multiplication operands, build a vector of factors and
1621/// the powers each is raised to when forming the final product. Sort them in
1622/// the order of descending power.
1623///
1624/// (x*x) -> [(x, 2)]
1625/// ((x*x)*x) -> [(x, 3)]
1626/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1627///
1628/// \returns Whether any factors have a power greater than one.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001629bool ReassociatePass::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1630 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001631 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1632 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001633 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001634 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1635 Value *Op = Ops[Idx-1].Op;
1636
1637 // Count the number of occurrences of this value.
1638 unsigned Count = 1;
1639 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1640 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001641 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001642 if (Count > 1)
1643 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001644 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001645
Chandler Carruth739ef802012-04-26 05:30:30 +00001646 // We can only simplify factors if the sum of the powers of our simplifiable
1647 // factors is 4 or higher. When that is the case, we will *always* have
1648 // a simplification. This is an important invariant to prevent cyclicly
1649 // trying to simplify already minimal formations.
1650 if (FactorPowerSum < 4)
1651 return false;
1652
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001653 // Now gather the simplifiable factors, removing them from Ops.
1654 FactorPowerSum = 0;
1655 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1656 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001657
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001658 // Count the number of occurrences of this value.
1659 unsigned Count = 1;
1660 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1661 ++Count;
1662 if (Count == 1)
1663 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001664 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001665 Count &= ~1U;
1666 Idx -= Count;
1667 FactorPowerSum += Count;
1668 Factors.push_back(Factor(Op, Count));
1669 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001670 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001671
Chandler Carruth739ef802012-04-26 05:30:30 +00001672 // None of the adjustments above should have reduced the sum of factor powers
1673 // below our mininum of '4'.
1674 assert(FactorPowerSum >= 4);
1675
Justin Bogner90744d22016-04-26 22:22:18 +00001676 std::stable_sort(Factors.begin(), Factors.end(),
1677 [](const Factor &LHS, const Factor &RHS) {
1678 return LHS.Power > RHS.Power;
1679 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001680 return true;
1681}
1682
1683/// \brief Build a tree of multiplies, computing the product of Ops.
1684static Value *buildMultiplyTree(IRBuilder<> &Builder,
1685 SmallVectorImpl<Value*> &Ops) {
1686 if (Ops.size() == 1)
1687 return Ops.back();
1688
1689 Value *LHS = Ops.pop_back_val();
1690 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001691 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001692 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1693 else
1694 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001695 } while (!Ops.empty());
1696
1697 return LHS;
1698}
1699
1700/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1701///
1702/// Given a vector of values raised to various powers, where no two values are
1703/// equal and the powers are sorted in decreasing order, compute the minimal
1704/// DAG of multiplies to compute the final product, and return that product
1705/// value.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001706Value *
1707ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1708 SmallVectorImpl<Factor> &Factors) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001709 assert(Factors[0].Power);
1710 SmallVector<Value *, 4> OuterProduct;
1711 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1712 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1713 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1714 LastIdx = Idx;
1715 continue;
1716 }
1717
1718 // We want to multiply across all the factors with the same power so that
1719 // we can raise them to that power as a single entity. Build a mini tree
1720 // for that.
1721 SmallVector<Value *, 4> InnerProduct;
1722 InnerProduct.push_back(Factors[LastIdx].Base);
1723 do {
1724 InnerProduct.push_back(Factors[Idx].Base);
1725 ++Idx;
1726 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1727
1728 // Reset the base value of the first factor to the new expression tree.
1729 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001730 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1731 if (Instruction *MI = dyn_cast<Instruction>(M))
1732 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001733
1734 LastIdx = Idx;
1735 }
1736 // Unique factors with equal powers -- we've folded them into the first one's
1737 // base.
1738 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001739 [](const Factor &LHS, const Factor &RHS) {
1740 return LHS.Power == RHS.Power;
1741 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001742 Factors.end());
1743
1744 // Iteratively collect the base of each factor with an add power into the
1745 // outer product, and halve each power in preparation for squaring the
1746 // expression.
1747 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1748 if (Factors[Idx].Power & 1)
1749 OuterProduct.push_back(Factors[Idx].Base);
1750 Factors[Idx].Power >>= 1;
1751 }
1752 if (Factors[0].Power) {
1753 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1754 OuterProduct.push_back(SquareRoot);
1755 OuterProduct.push_back(SquareRoot);
1756 }
1757 if (OuterProduct.size() == 1)
1758 return OuterProduct.front();
1759
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001760 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001761 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001762}
1763
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001764Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1765 SmallVectorImpl<ValueEntry> &Ops) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001766 // We can only optimize the multiplies when there is a chain of more than
1767 // three, such that a balanced tree might require fewer total multiplies.
1768 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001769 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001770
1771 // Try to turn linear trees of multiplies without other uses of the
1772 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1773 // re-use.
1774 SmallVector<Factor, 4> Factors;
1775 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001776 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001777
1778 IRBuilder<> Builder(I);
1779 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1780 if (Ops.empty())
1781 return V;
1782
1783 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1784 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001785 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001786}
1787
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001788Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1789 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001790 // Now that we have the linearized expression tree, try to optimize it.
1791 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001792 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001793 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001794 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1795 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1796 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1797 }
1798 // If there was nothing but constants then we are done.
1799 if (Ops.empty())
1800 return Cst;
1801
1802 // Put the combined constant back at the end of the operand list, except if
1803 // there is no point. For example, an add of 0 gets dropped here, while a
1804 // multiplication by zero turns the whole expression into zero.
1805 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1806 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1807 return Cst;
1808 Ops.push_back(ValueEntry(0, Cst));
1809 }
1810
1811 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001812
Chris Lattner9039ff82009-12-31 07:33:14 +00001813 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001814 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001815 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001816 switch (Opcode) {
1817 default: break;
1818 case Instruction::And:
1819 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001820 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1821 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001822 break;
1823
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001824 case Instruction::Xor:
1825 if (Value *Result = OptimizeXor(I, Ops))
1826 return Result;
1827 break;
1828
Chandler Carruth739ef802012-04-26 05:30:30 +00001829 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001830 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001831 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001832 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001833 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001834
1835 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001836 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001837 if (Value *Result = OptimizeMul(I, Ops))
1838 return Result;
1839 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001840 }
1841
Duncan Sands3293f462012-06-08 20:15:33 +00001842 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001843 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001844 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001845}
1846
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001847// Remove dead instructions and if any operands are trivially dead add them to
1848// Insts so they will be removed as well.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001849void ReassociatePass::RecursivelyEraseDeadInsts(
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001850 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1851 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1852 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1853 ValueRankMap.erase(I);
1854 Insts.remove(I);
1855 RedoInsts.remove(I);
1856 I->eraseFromParent();
1857 for (auto Op : Ops)
1858 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1859 if (OpInst->use_empty())
1860 Insts.insert(OpInst);
1861}
1862
Sanjay Patelc96ee082015-04-22 18:04:46 +00001863/// Zap the given instruction, adding interesting operands to the work list.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001864void ReassociatePass::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001865 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
Chad Rosier27ac0d82016-08-30 13:58:35 +00001866 DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1867
Duncan Sands3293f462012-06-08 20:15:33 +00001868 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1869 // Erase the dead instruction.
1870 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001871 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001872 I->eraseFromParent();
1873 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001874 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001875 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1876 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1877 // If this is a node in an expression tree, climb to the expression root
1878 // and add that since that's where optimization actually happens.
1879 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001880 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001881 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001882 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001883 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001884 }
1885}
1886
Chad Rosier094ac772014-11-11 22:58:35 +00001887// Canonicalize expressions of the following form:
1888// x + (-Constant * y) -> x - (Constant * y)
1889// x - (-Constant * y) -> x + (Constant * y)
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001890Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
Chad Rosier094ac772014-11-11 22:58:35 +00001891 if (!I->hasOneUse() || I->getType()->isVectorTy())
1892 return nullptr;
1893
David Majnemer587336d2015-05-28 06:16:39 +00001894 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001895 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001896 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001897 return nullptr;
1898
David Majnemer587336d2015-05-28 06:16:39 +00001899 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1900 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1901
1902 // Both operands are constant, let it get constant folded away.
1903 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001904 return nullptr;
1905
David Majnemer587336d2015-05-28 06:16:39 +00001906 ConstantFP *CF = C0 ? C0 : C1;
1907
1908 // Must have one constant operand.
1909 if (!CF)
1910 return nullptr;
1911
1912 // Must be a negative ConstantFP.
1913 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001914 return nullptr;
1915
1916 // User must be a binary operator with one or more uses.
1917 Instruction *User = I->user_back();
David Majnemer587336d2015-05-28 06:16:39 +00001918 if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
Chad Rosier094ac772014-11-11 22:58:35 +00001919 return nullptr;
1920
1921 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001922 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001923 return nullptr;
1924
1925 // Subtraction is not commutative. Explicitly, the following transform is
1926 // not valid: (-Constant * y) - x -> x + (Constant * y)
1927 if (!User->isCommutative() && User->getOperand(1) != I)
1928 return nullptr;
1929
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001930 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001931 APFloat Val = CF->getValueAPF();
1932 Val.changeSign();
1933 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001934
Chad Rosier094ac772014-11-11 22:58:35 +00001935 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1936 // ((-Const*y) + x) -> (x + (-Const*y)).
1937 if (User->getOperand(0) == I && User->isCommutative())
1938 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001939
Chad Rosier094ac772014-11-11 22:58:35 +00001940 Value *Op0 = User->getOperand(0);
1941 Value *Op1 = User->getOperand(1);
1942 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00001943 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00001944 default:
1945 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00001946 case Instruction::FAdd:
1947 NI = BinaryOperator::CreateFSub(Op0, Op1);
1948 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1949 break;
1950 case Instruction::FSub:
1951 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1952 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1953 break;
1954 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001955
Chad Rosier094ac772014-11-11 22:58:35 +00001956 NI->insertBefore(User);
1957 NI->setName(User->getName());
1958 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001959 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00001960 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001961 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00001962 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001963}
1964
Sanjay Patelc96ee082015-04-22 18:04:46 +00001965/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00001966/// instructions is not allowed.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001967void ReassociatePass::OptimizeInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001968 // Only consider operations that we understand.
1969 if (!isa<BinaryOperator>(I))
1970 return;
1971
Chad Rosier11ab9412014-08-14 15:23:01 +00001972 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00001973 // If an operand of this shift is a reassociable multiply, or if the shift
1974 // is used by a reassociable multiply or add, turn into a multiply.
1975 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1976 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00001977 (isReassociableOp(I->user_back(), Instruction::Mul) ||
1978 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00001979 Instruction *NI = ConvertShiftToMul(I);
1980 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001981 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001982 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00001983 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00001984
Chad Rosier094ac772014-11-11 22:58:35 +00001985 // Canonicalize negative constants out of expressions.
1986 if (Instruction *Res = canonicalizeNegConstExpr(I))
1987 I = Res;
1988
Chad Rosierdf8f2a22014-11-14 17:09:19 +00001989 // Commute binary operators, to canonicalize the order of their operands.
1990 // This can potentially expose more CSE opportunities, and makes writing other
1991 // transformations simpler.
1992 if (I->isCommutative())
1993 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00001994
Robert Lougher1858ba72015-03-13 20:53:01 +00001995 // TODO: We should optimize vector Xor instructions, but they are
1996 // currently unsupported.
1997 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
Chad Rosierdf8f2a22014-11-14 17:09:19 +00001998 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00001999
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002000 // Don't optimize floating point instructions that don't have unsafe algebra.
Owen Anderson630077e2015-11-20 08:16:13 +00002001 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002002 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002003
Dan Gohman1c6c3482011-04-12 00:11:56 +00002004 // Do not reassociate boolean (i1) expressions. We want to preserve the
2005 // original order of evaluation for short-circuited comparisons that
2006 // SimplifyCFG has folded to AND/OR expressions. If the expression
2007 // is not further optimized, it is likely to be transformed back to a
2008 // short-circuited form for code gen, and the source order may have been
2009 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002010 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002011 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002012
Dan Gohman1c6c3482011-04-12 00:11:56 +00002013 // If this is a subtract instruction which is not already in negate form,
2014 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002015 if (I->getOpcode() == Instruction::Sub) {
2016 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002017 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002018 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002019 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002020 I = NI;
2021 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002022 // Otherwise, this is a negation. See if the operand is a multiply tree
2023 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002024 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2025 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002026 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002027 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002028 // If the negate was simplified, revisit the users to see if we can
2029 // reassociate further.
2030 for (User *U : NI->users()) {
2031 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2032 RedoInsts.insert(Tmp);
2033 }
Duncan Sands3293f462012-06-08 20:15:33 +00002034 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002035 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002036 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002037 }
2038 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002039 } else if (I->getOpcode() == Instruction::FSub) {
2040 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002041 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002042 RedoInsts.insert(I);
2043 MadeChange = true;
2044 I = NI;
2045 } else if (BinaryOperator::isFNeg(I)) {
2046 // Otherwise, this is a negation. See if the operand is a multiply tree
2047 // and if this is not an inner node of a multiply tree.
2048 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2049 (!I->hasOneUse() ||
2050 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002051 // If the negate was simplified, revisit the users to see if we can
2052 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002053 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002054 for (User *U : NI->users()) {
2055 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2056 RedoInsts.insert(Tmp);
2057 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002058 RedoInsts.insert(I);
2059 MadeChange = true;
2060 I = NI;
2061 }
2062 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002063 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002064
Duncan Sands3293f462012-06-08 20:15:33 +00002065 // If this instruction is an associative binary operator, process it.
2066 if (!I->isAssociative()) return;
2067 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002068
2069 // If this is an interior node of a reassociable tree, ignore it until we
2070 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002071 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002072 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2073 // During the initial run we will get to the root of the tree.
2074 // But if we get here while we are redoing instructions, there is no
2075 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002076 if (BO->user_back() != BO &&
2077 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002078 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002079 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002080 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002081
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002082 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002083 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002084 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002085 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002086 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002087 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2088 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2089 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002090
Duncan Sands3293f462012-06-08 20:15:33 +00002091 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002092}
Chris Lattner1e506502005-05-07 21:59:39 +00002093
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002094void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002095 // First, walk the expression tree, linearizing the tree, collecting the
2096 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002097 SmallVector<RepeatedValue, 8> Tree;
2098 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002099 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002100 Ops.reserve(Tree.size());
2101 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2102 RepeatedValue E = Tree[i];
2103 Ops.append(E.second.getZExtValue(),
2104 ValueEntry(getRank(E.first), E.first));
2105 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002106
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002107 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2108
Chris Lattner2fc319d2006-03-14 07:11:11 +00002109 // Now that we have linearized the tree to a list and have gathered all of
2110 // the operands and their ranks, sort the operands by their rank. Use a
2111 // stable_sort so that values with equal ranks will have their relative
2112 // positions maintained (and so the compiler is deterministic). Note that
2113 // this sorts so that the highest ranking values end up at the beginning of
2114 // the vector.
2115 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002116
Sanjay Patelc96ee082015-04-22 18:04:46 +00002117 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002118 // sorted form, optimize it globally if possible.
2119 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002120 if (V == I)
2121 // Self-referential expression in unreachable code.
2122 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002123 // This expression tree simplified to something that isn't a tree,
2124 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002125 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002126 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002127 if (Instruction *VI = dyn_cast<Instruction>(V))
2128 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002129 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002130 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002131 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002132 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002133
Chris Lattner2fc319d2006-03-14 07:11:11 +00002134 // We want to sink immediates as deeply as possible except in the case where
2135 // this is a multiply tree used only by an add, and the immediate is a -1.
2136 // In this case we reassociate to put the negation on the outside so that we
2137 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002138 if (I->hasOneUse()) {
2139 if (I->getOpcode() == Instruction::Mul &&
2140 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2141 isa<ConstantInt>(Ops.back().Op) &&
2142 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2143 ValueEntry Tmp = Ops.pop_back_val();
2144 Ops.insert(Ops.begin(), Tmp);
2145 } else if (I->getOpcode() == Instruction::FMul &&
2146 cast<Instruction>(I->user_back())->getOpcode() ==
2147 Instruction::FAdd &&
2148 isa<ConstantFP>(Ops.back().Op) &&
2149 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2150 ValueEntry Tmp = Ops.pop_back_val();
2151 Ops.insert(Ops.begin(), Tmp);
2152 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002153 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002154
David Greened17c3912010-01-05 01:27:24 +00002155 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002156
Chris Lattner2fc319d2006-03-14 07:11:11 +00002157 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002158 if (Ops[0].Op == I)
2159 // Self-referential expression in unreachable code.
2160 return;
2161
Chris Lattner2fc319d2006-03-14 07:11:11 +00002162 // This expression tree simplified to something that isn't a tree,
2163 // eliminate it.
2164 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002165 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2166 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002167 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002168 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002169 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002170
Chris Lattner60b71b52009-12-31 19:24:52 +00002171 // Now that we ordered and optimized the expressions, splat them back into
2172 // the expression tree, removing any unneeded nodes.
2173 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002174}
2175
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002176PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
Chad Rosierea7e4642016-08-17 15:54:39 +00002177 // Calculate the rank map for F.
2178 BuildRankMap(F);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002179
Chris Lattner1e506502005-05-07 21:59:39 +00002180 MadeChange = false;
Chad Rosierea7e4642016-08-17 15:54:39 +00002181 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
Duncan Sands3293f462012-06-08 20:15:33 +00002182 // Optimize every instruction in the basic block.
Chad Rosierea7e4642016-08-17 15:54:39 +00002183 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002184 if (isInstructionTriviallyDead(&*II)) {
2185 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002186 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002187 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002188 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002189 ++II;
2190 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002191
Chad Rosierea7e4642016-08-17 15:54:39 +00002192 // Make a copy of all the instructions to be redone so we can remove dead
2193 // instructions.
2194 SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2195 // Iterate over all instructions to be reevaluated and remove trivially dead
2196 // instructions. If any operand of the trivially dead instruction becomes
2197 // dead mark it for deletion as well. Continue this process until all
2198 // trivially dead instructions have been removed.
2199 while (!ToRedo.empty()) {
2200 Instruction *I = ToRedo.pop_back_val();
Davide Italiano631cd272016-10-28 02:47:09 +00002201 if (isInstructionTriviallyDead(I)) {
Chad Rosierea7e4642016-08-17 15:54:39 +00002202 RecursivelyEraseDeadInsts(I, ToRedo);
Davide Italiano631cd272016-10-28 02:47:09 +00002203 MadeChange = true;
2204 }
Chad Rosierea7e4642016-08-17 15:54:39 +00002205 }
2206
2207 // Now that we have removed dead instructions, we can reoptimize the
2208 // remaining instructions.
2209 while (!RedoInsts.empty()) {
2210 Instruction *I = RedoInsts.pop_back_val();
2211 if (isInstructionTriviallyDead(I))
2212 EraseInst(I);
2213 else
2214 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002215 }
Duncan Sands3293f462012-06-08 20:15:33 +00002216 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002217
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002218 // We are done with the rank map.
2219 RankMap.clear();
2220 ValueRankMap.clear();
2221
Davide Italiano39893bd2016-05-29 00:41:17 +00002222 if (MadeChange) {
Michael Kuperstein835facd2016-06-28 00:54:12 +00002223 // FIXME: This should also 'preserve the CFG'.
Davide Italiano39893bd2016-05-29 00:41:17 +00002224 auto PA = PreservedAnalyses();
2225 PA.preserve<GlobalsAA>();
2226 return PA;
2227 }
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002228
2229 return PreservedAnalyses::all();
2230}
2231
2232namespace {
2233 class ReassociateLegacyPass : public FunctionPass {
2234 ReassociatePass Impl;
2235 public:
2236 static char ID; // Pass identification, replacement for typeid
2237 ReassociateLegacyPass() : FunctionPass(ID) {
2238 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2239 }
2240
2241 bool runOnFunction(Function &F) override {
2242 if (skipFunction(F))
2243 return false;
2244
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002245 FunctionAnalysisManager DummyFAM;
2246 auto PA = Impl.run(F, DummyFAM);
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002247 return !PA.areAllPreserved();
2248 }
2249
2250 void getAnalysisUsage(AnalysisUsage &AU) const override {
2251 AU.setPreservesCFG();
2252 AU.addPreserved<GlobalsAAWrapperPass>();
2253 }
2254 };
2255}
2256
2257char ReassociateLegacyPass::ID = 0;
2258INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2259 "Reassociate expressions", false, false)
2260
2261// Public interface to the Reassociate pass
2262FunctionPass *llvm::createReassociatePass() {
2263 return new ReassociateLegacyPass();
Chris Lattnerc0f58002002-05-08 22:19:27 +00002264}