blob: feddbafa0d52b3d1fa2cfadf0fccc355112aae3f [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Sanjay Patelaee84212014-11-04 16:27:42 +000054/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000056static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000057 if (unsigned BitWidth = Ty->getScalarSizeInBits())
58 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000061}
Chris Lattner965c7692008-06-02 01:18:21 +000062
Benjamin Kramercfd8d902014-09-12 08:56:53 +000063namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000064// Simplifying using an assume can only be done in a particular control-flow
65// context (the context instruction provides that context). If an assume and
66// the context instruction are not in the same block then the DT helps in
67// figuring out if we can use it.
68struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000069 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000070 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000071 const Instruction *CxtI;
72 const DominatorTree *DT;
73
Matthias Braun37e5d792016-01-28 06:29:33 +000074 /// Set of assumptions that should be excluded from further queries.
75 /// This is because of the potential for mutual recursion to cause
76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77 /// classic case of this is assume(x = y), which will attempt to determine
78 /// bits in x from bits in y, which will attempt to determine bits in y from
79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82 /// on.
83 std::array<const Value*, MaxDepth> Excluded;
84 unsigned NumExcluded;
85
Matthias Braunfeb81bc2016-01-15 22:22:04 +000086 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000088 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000089
90 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000091 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92 Excluded = Q.Excluded;
93 Excluded[NumExcluded++] = NewExcl;
94 assert(NumExcluded <= Excluded.size());
95 }
96
97 bool isExcluded(const Value *Value) const {
98 if (NumExcluded == 0)
99 return false;
100 auto End = Excluded.begin() + NumExcluded;
101 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000102 }
103};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000104} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000105
Sanjay Patel547e9752014-11-04 16:09:50 +0000106// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000107// the preferred context instruction (if any).
108static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120}
121
122static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000123 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000124
125void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000126 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
Jingyue Wuca321902015-05-14 23:53:19 +0000133bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134 AssumptionCache *AC, const Instruction *CxtI,
135 const DominatorTree *DT) {
136 assert(LHS->getType() == RHS->getType() &&
137 "LHS and RHS should have the same type");
138 assert(LHS->getType()->isIntOrIntVectorTy() &&
139 "LHS and RHS should be integers");
140 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146}
147
Hal Finkel60db0582014-09-07 18:57:58 +0000148static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000149 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000150
151void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000152 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000153 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000154 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000155 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000157}
158
159static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000160 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000161
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000162bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000163 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000164 const Instruction *CxtI,
165 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000166 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000168}
169
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000170static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171
172bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173 AssumptionCache *AC, const Instruction *CxtI,
174 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000175 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Jingyue Wu10fcea52015-08-20 18:27:04 +0000178bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179 AssumptionCache *AC, const Instruction *CxtI,
180 const DominatorTree *DT) {
181 bool NonNegative, Negative;
182 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183 return NonNegative;
184}
185
Philip Reames8f12eba2016-03-09 21:31:47 +0000186bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 if (auto *CI = dyn_cast<ConstantInt>(V))
190 return CI->getValue().isStrictlyPositive();
191
192 // TODO: We'd doing two recursive queries here. We should factor this such
193 // that only a single query is needed.
194 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196}
197
Nick Lewycky762f8a82016-04-21 00:53:14 +0000198bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199 AssumptionCache *AC, const Instruction *CxtI,
200 const DominatorTree *DT) {
201 bool NonNegative, Negative;
202 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203 return Negative;
204}
205
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000206static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000207
208bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209 AssumptionCache *AC, const Instruction *CxtI,
210 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000211 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212 safeCxtI(V1, safeCxtI(V2, CxtI)),
213 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000214}
215
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000216static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000218
219bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220 unsigned Depth, AssumptionCache *AC,
221 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000222 return ::MaskedValueIsZero(V, Mask, Depth,
223 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000224}
225
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000226static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000227
228unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229 unsigned Depth, AssumptionCache *AC,
230 const Instruction *CxtI,
231 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000232 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000233}
234
Jay Foada0653a32014-05-14 21:14:37 +0000235static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236 APInt &KnownZero, APInt &KnownOne,
237 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000238 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000239 if (!Add) {
240 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241 // We know that the top bits of C-X are clear if X contains less bits
242 // than C (i.e. no wrap-around can happen). For example, 20-X is
243 // positive if we can prove that X is >= 0 and < 16.
244 if (!CLHS->getValue().isNegative()) {
245 unsigned BitWidth = KnownZero.getBitWidth();
246 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247 // NLZ can't be BitWidth with no sign bit
248 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000249 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000250
251 // If all of the MaskV bits are known to be zero, then we know the
252 // output top bits are zero, because we now know that the output is
253 // from [0-C].
254 if ((KnownZero2 & MaskV) == MaskV) {
255 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256 // Top bits known zero.
257 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258 }
259 }
260 }
261 }
262
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000263 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000264
David Majnemer97ddca32014-08-22 00:40:43 +0000265 // If an initial sequence of bits in the result is not needed, the
266 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000267 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000270
David Majnemer97ddca32014-08-22 00:40:43 +0000271 // Carry in a 1 for a subtract, rather than a 0.
272 APInt CarryIn(BitWidth, 0);
273 if (!Add) {
274 // Sum = LHS + ~RHS + 1
275 std::swap(KnownZero2, KnownOne2);
276 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277 }
278
David Majnemer97ddca32014-08-22 00:40:43 +0000279 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281
282 // Compute known bits of the carry.
283 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285
286 // Compute set of known bits (where all three relevant bits are known).
287 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288 APInt RHSKnown = KnownZero2 | KnownOne2;
289 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290 APInt Known = LHSKnown & RHSKnown & CarryKnown;
291
292 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293 "known bits of sum differ");
294
295 // Compute known bits of the result.
296 KnownZero = ~PossibleSumOne & Known;
297 KnownOne = PossibleSumOne & Known;
298
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000299 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000300 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000301 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000302 // Adding two non-negative numbers, or subtracting a negative number from
303 // a non-negative one, can't wrap into negative.
304 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305 KnownZero |= APInt::getSignBit(BitWidth);
306 // Adding two negative numbers, or subtracting a non-negative number from
307 // a negative one, can't wrap into non-negative.
308 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000310 }
311 }
312}
313
Jay Foada0653a32014-05-14 21:14:37 +0000314static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315 APInt &KnownZero, APInt &KnownOne,
316 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000317 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000318 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000319 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321
322 bool isKnownNegative = false;
323 bool isKnownNonNegative = false;
324 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 if (Op0 == Op1) {
327 // The product of a number with itself is non-negative.
328 isKnownNonNegative = true;
329 } else {
330 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332 bool isKnownNegativeOp1 = KnownOne.isNegative();
333 bool isKnownNegativeOp0 = KnownOne2.isNegative();
334 // The product of two numbers with the same sign is non-negative.
335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337 // The product of a negative number and a non-negative number is either
338 // negative or zero.
339 if (!isKnownNonNegative)
340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000343 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 }
345 }
346
347 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000348 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000349 // More trickiness is possible, but this is sufficient for the
350 // interesting case of alignment computation.
351 KnownOne.clearAllBits();
352 unsigned TrailZ = KnownZero.countTrailingOnes() +
353 KnownZero2.countTrailingOnes();
354 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
355 KnownZero2.countLeadingOnes(),
356 BitWidth) - BitWidth;
357
358 TrailZ = std::min(TrailZ, BitWidth);
359 LeadZ = std::min(LeadZ, BitWidth);
360 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362
363 // Only make use of no-wrap flags if we failed to compute the sign bit
364 // directly. This matters if the multiplication always overflows, in
365 // which case we prefer to follow the result of the direct computation,
366 // though as the program is invoking undefined behaviour we can choose
367 // whatever we like here.
368 if (isKnownNonNegative && !KnownOne.isNegative())
369 KnownZero.setBit(BitWidth - 1);
370 else if (isKnownNegative && !KnownZero.isNegative())
371 KnownOne.setBit(BitWidth - 1);
372}
373
Jingyue Wu37fcb592014-06-19 16:50:16 +0000374void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000375 APInt &KnownZero,
376 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000377 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000378 unsigned NumRanges = Ranges.getNumOperands() / 2;
379 assert(NumRanges >= 1);
380
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000381 KnownZero.setAllBits();
382 KnownOne.setAllBits();
383
Rafael Espindola53190532012-03-30 15:52:11 +0000384 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000385 ConstantInt *Lower =
386 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387 ConstantInt *Upper =
388 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000389 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000390
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000391 // The first CommonPrefixBits of all values in Range are equal.
392 unsigned CommonPrefixBits =
393 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394
395 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396 KnownOne &= Range.getUnsignedMax() & Mask;
397 KnownZero &= ~Range.getUnsignedMax() & Mask;
398 }
Rafael Espindola53190532012-03-30 15:52:11 +0000399}
Jay Foad5a29c362014-05-15 12:12:55 +0000400
Hal Finkel60db0582014-09-07 18:57:58 +0000401static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402 SmallVector<const Value *, 16> WorkSet(1, I);
403 SmallPtrSet<const Value *, 32> Visited;
404 SmallPtrSet<const Value *, 16> EphValues;
405
Hal Finkelf2199b22015-10-23 20:37:08 +0000406 // The instruction defining an assumption's condition itself is always
407 // considered ephemeral to that assumption (even if it has other
408 // non-ephemeral users). See r246696's test case for an example.
409 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
410 return true;
411
Hal Finkel60db0582014-09-07 18:57:58 +0000412 while (!WorkSet.empty()) {
413 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000414 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000415 continue;
416
417 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000418 if (std::all_of(V->user_begin(), V->user_end(),
419 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000420 if (V == E)
421 return true;
422
423 EphValues.insert(V);
424 if (const User *U = dyn_cast<User>(V))
425 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
426 J != JE; ++J) {
427 if (isSafeToSpeculativelyExecute(*J))
428 WorkSet.push_back(*J);
429 }
430 }
431 }
432
433 return false;
434}
435
436// Is this an intrinsic that cannot be speculated but also cannot trap?
437static bool isAssumeLikeIntrinsic(const Instruction *I) {
438 if (const CallInst *CI = dyn_cast<CallInst>(I))
439 if (Function *F = CI->getCalledFunction())
440 switch (F->getIntrinsicID()) {
441 default: break;
442 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
443 case Intrinsic::assume:
444 case Intrinsic::dbg_declare:
445 case Intrinsic::dbg_value:
446 case Intrinsic::invariant_start:
447 case Intrinsic::invariant_end:
448 case Intrinsic::lifetime_start:
449 case Intrinsic::lifetime_end:
450 case Intrinsic::objectsize:
451 case Intrinsic::ptr_annotation:
452 case Intrinsic::var_annotation:
453 return true;
454 }
455
456 return false;
457}
458
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000459static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
460 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000461 Instruction *Inv = cast<Instruction>(V);
462
463 // There are two restrictions on the use of an assume:
464 // 1. The assume must dominate the context (or the control flow must
465 // reach the assume whenever it reaches the context).
466 // 2. The context must not be in the assume's set of ephemeral values
467 // (otherwise we will use the assume to prove that the condition
468 // feeding the assume is trivially true, thus causing the removal of
469 // the assume).
470
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000471 if (DT) {
472 if (DT->dominates(Inv, CxtI)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000473 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000474 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000475 // The context comes first, but they're both in the same block. Make sure
476 // there is nothing in between that might interrupt the control flow.
477 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000478 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000479 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000480 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000481 return false;
482
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000484 }
485
486 return false;
487 }
488
489 // When we don't have a DT, we do a limited search...
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000490 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000491 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000492 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000493 // Search forward from the assume until we reach the context (or the end
494 // of the block); the common case is that the assume will come first.
495 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
496 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000497 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000498 return true;
499
500 // The context must come first...
501 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000502 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000503 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000504 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000505 return false;
506
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000507 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000508 }
509
510 return false;
511}
512
513bool llvm::isValidAssumeForContext(const Instruction *I,
514 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000515 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000516 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
Hal Finkel60db0582014-09-07 18:57:58 +0000517}
518
Hal Finkel60db0582014-09-07 18:57:58 +0000519static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000520 APInt &KnownOne, unsigned Depth,
521 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000522 // Use of assumptions is context-sensitive. If we don't have a context, we
523 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000524 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000525 return;
526
527 unsigned BitWidth = KnownZero.getBitWidth();
528
Chandler Carruth66b31302015-01-04 12:03:27 +0000529 for (auto &AssumeVH : Q.AC->assumptions()) {
530 if (!AssumeVH)
531 continue;
532 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000533 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000534 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000535 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000536 continue;
537
Philip Reames00d3b272014-11-24 23:44:28 +0000538 // Warning: This loop can end up being somewhat performance sensetive.
539 // We're running this loop for once for each value queried resulting in a
540 // runtime of ~O(#assumes * #values).
541
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000542 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000543 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000544
Philip Reames00d3b272014-11-24 23:44:28 +0000545 Value *Arg = I->getArgOperand(0);
546
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000547 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000548 assert(BitWidth == 1 && "assume operand is not i1?");
549 KnownZero.clearAllBits();
550 KnownOne.setAllBits();
551 return;
552 }
553
David Majnemer9b609752014-12-12 23:59:29 +0000554 // The remaining tests are all recursive, so bail out if we hit the limit.
555 if (Depth == MaxDepth)
556 continue;
557
Hal Finkel60db0582014-09-07 18:57:58 +0000558 Value *A, *B;
559 auto m_V = m_CombineOr(m_Specific(V),
560 m_CombineOr(m_PtrToInt(m_Specific(V)),
561 m_BitCast(m_Specific(V))));
562
563 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000564 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000565 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000566 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000567 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000568 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000569 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000570 KnownZero |= RHSKnownZero;
571 KnownOne |= RHSKnownOne;
572 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000573 } else if (match(Arg,
574 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000575 Pred == ICmpInst::ICMP_EQ &&
576 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000577 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000578 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000579 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000580 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000581
582 // For those bits in the mask that are known to be one, we can propagate
583 // known bits from the RHS to V.
584 KnownZero |= RHSKnownZero & MaskKnownOne;
585 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000586 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000587 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000589 Pred == ICmpInst::ICMP_EQ &&
590 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000591 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000592 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000593 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000594 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000595
596 // For those bits in the mask that are known to be one, we can propagate
597 // inverted known bits from the RHS to V.
598 KnownZero |= RHSKnownOne & MaskKnownOne;
599 KnownOne |= RHSKnownZero & MaskKnownOne;
600 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000601 } else if (match(Arg,
602 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000603 Pred == ICmpInst::ICMP_EQ &&
604 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000608 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000609
610 // For those bits in B that are known to be zero, we can propagate known
611 // bits from the RHS to V.
612 KnownZero |= RHSKnownZero & BKnownZero;
613 KnownOne |= RHSKnownOne & BKnownZero;
614 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000615 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000617 Pred == ICmpInst::ICMP_EQ &&
618 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000619 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000620 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000621 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000622 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000623
624 // For those bits in B that are known to be zero, we can propagate
625 // inverted known bits from the RHS to V.
626 KnownZero |= RHSKnownOne & BKnownZero;
627 KnownOne |= RHSKnownZero & BKnownZero;
628 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000629 } else if (match(Arg,
630 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000631 Pred == ICmpInst::ICMP_EQ &&
632 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000635 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000636 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637
638 // For those bits in B that are known to be zero, we can propagate known
639 // bits from the RHS to V. For those bits in B that are known to be one,
640 // we can propagate inverted known bits from the RHS to V.
641 KnownZero |= RHSKnownZero & BKnownZero;
642 KnownOne |= RHSKnownOne & BKnownZero;
643 KnownZero |= RHSKnownOne & BKnownOne;
644 KnownOne |= RHSKnownZero & BKnownOne;
645 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000646 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000648 Pred == ICmpInst::ICMP_EQ &&
649 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000650 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000651 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000652 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000653 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654
655 // For those bits in B that are known to be zero, we can propagate
656 // inverted known bits from the RHS to V. For those bits in B that are
657 // known to be one, we can propagate known bits from the RHS to V.
658 KnownZero |= RHSKnownOne & BKnownZero;
659 KnownOne |= RHSKnownZero & BKnownZero;
660 KnownZero |= RHSKnownZero & BKnownOne;
661 KnownOne |= RHSKnownOne & BKnownOne;
662 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000663 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000665 Pred == ICmpInst::ICMP_EQ &&
666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000668 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000669 // For those bits in RHS that are known, we can propagate them to known
670 // bits in V shifted to the right by C.
671 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
673 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000674 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000676 Pred == ICmpInst::ICMP_EQ &&
677 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // For those bits in RHS that are known, we can propagate them inverted
681 // to known bits in V shifted to the right by C.
682 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
684 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000685 } else if (match(Arg,
686 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000687 m_AShr(m_V, m_ConstantInt(C))),
688 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000689 Pred == ICmpInst::ICMP_EQ &&
690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000693 // For those bits in RHS that are known, we can propagate them to known
694 // bits in V shifted to the right by C.
695 KnownZero |= RHSKnownZero << C->getZExtValue();
696 KnownOne |= RHSKnownOne << C->getZExtValue();
697 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000698 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000699 m_LShr(m_V, m_ConstantInt(C)),
700 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000701 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000702 Pred == ICmpInst::ICMP_EQ &&
703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000704 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706 // For those bits in RHS that are known, we can propagate them inverted
707 // to known bits in V shifted to the right by C.
708 KnownZero |= RHSKnownOne << C->getZExtValue();
709 KnownOne |= RHSKnownZero << C->getZExtValue();
710 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 Pred == ICmpInst::ICMP_SGE &&
713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716
717 if (RHSKnownZero.isNegative()) {
718 // We know that the sign bit is zero.
719 KnownZero |= APInt::getSignBit(BitWidth);
720 }
721 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000723 Pred == ICmpInst::ICMP_SGT &&
724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000725 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000726 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000727
728 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729 // We know that the sign bit is zero.
730 KnownZero |= APInt::getSignBit(BitWidth);
731 }
732 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000734 Pred == ICmpInst::ICMP_SLE &&
735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000737 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000738
739 if (RHSKnownOne.isNegative()) {
740 // We know that the sign bit is one.
741 KnownOne |= APInt::getSignBit(BitWidth);
742 }
743 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000745 Pred == ICmpInst::ICMP_SLT &&
746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000748 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000749
750 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751 // We know that the sign bit is one.
752 KnownOne |= APInt::getSignBit(BitWidth);
753 }
754 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000756 Pred == ICmpInst::ICMP_ULE &&
757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000758 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000759 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760
761 // Whatever high bits in c are zero are known to be zero.
762 KnownZero |=
763 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000766 Pred == ICmpInst::ICMP_ULT &&
767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000770
771 // Whatever high bits in c are zero are known to be zero (if c is a power
772 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000773 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 KnownZero |=
775 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776 else
777 KnownZero |=
778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000779 }
780 }
781}
782
Hal Finkelf2199b22015-10-23 20:37:08 +0000783// Compute known bits from a shift operator, including those with a
784// non-constant shift amount. KnownZero and KnownOne are the outputs of this
785// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787// functors that, given the known-zero or known-one bits respectively, and a
788// shift amount, compute the implied known-zero or known-one bits of the shift
789// operator's result respectively for that shift amount. The results from calling
790// KZF and KOF are conservatively combined for all permitted shift amounts.
791template <typename KZFunctor, typename KOFunctor>
792static void computeKnownBitsFromShiftOperator(Operator *I,
793 APInt &KnownZero, APInt &KnownOne,
794 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000795 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000796 unsigned BitWidth = KnownZero.getBitWidth();
797
798 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000801 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000802 KnownZero = KZF(KnownZero, ShiftAmt);
803 KnownOne = KOF(KnownOne, ShiftAmt);
804 return;
805 }
806
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000807 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000808
809 // Note: We cannot use KnownZero.getLimitedValue() here, because if
810 // BitWidth > 64 and any upper bits are known, we'll end up returning the
811 // limit value (which implies all bits are known).
812 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
813 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
814
815 // It would be more-clearly correct to use the two temporaries for this
816 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000817 KnownZero.clearAllBits();
818 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000819
James Molloy493e57d2015-10-26 14:10:46 +0000820 // If we know the shifter operand is nonzero, we can sometimes infer more
821 // known bits. However this is expensive to compute, so be lazy about it and
822 // only compute it when absolutely necessary.
823 Optional<bool> ShifterOperandIsNonZero;
824
Hal Finkelf2199b22015-10-23 20:37:08 +0000825 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000826 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
827 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000828 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000829 if (!*ShifterOperandIsNonZero)
830 return;
831 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000832
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000833 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000834
835 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
836 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
837 // Combine the shifted known input bits only for those shift amounts
838 // compatible with its known constraints.
839 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
840 continue;
841 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
842 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000843 // If we know the shifter is nonzero, we may be able to infer more known
844 // bits. This check is sunk down as far as possible to avoid the expensive
845 // call to isKnownNonZero if the cheaper checks above fail.
846 if (ShiftAmt == 0) {
847 if (!ShifterOperandIsNonZero.hasValue())
848 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000849 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000850 if (*ShifterOperandIsNonZero)
851 continue;
852 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000853
854 KnownZero &= KZF(KnownZero2, ShiftAmt);
855 KnownOne &= KOF(KnownOne2, ShiftAmt);
856 }
857
858 // If there are no compatible shift amounts, then we've proven that the shift
859 // amount must be >= the BitWidth, and the result is undefined. We could
860 // return anything we'd like, but we need to make sure the sets of known bits
861 // stay disjoint (it should be better for some other code to actually
862 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000863 if ((KnownZero & KnownOne) != 0) {
864 KnownZero.clearAllBits();
865 KnownOne.clearAllBits();
866 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000867}
868
Jingyue Wu12b0c282015-06-15 05:46:29 +0000869static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000870 APInt &KnownOne, unsigned Depth,
871 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000872 unsigned BitWidth = KnownZero.getBitWidth();
873
Chris Lattner965c7692008-06-02 01:18:21 +0000874 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000875 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000876 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000877 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000878 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000879 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000880 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000881 case Instruction::And: {
882 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000883 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
884 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000885
Chris Lattner965c7692008-06-02 01:18:21 +0000886 // Output known-1 bits are only known if set in both the LHS & RHS.
887 KnownOne &= KnownOne2;
888 // Output known-0 are known to be clear if zero in either the LHS | RHS.
889 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000890
891 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
892 // here we handle the more general case of adding any odd number by
893 // matching the form add(x, add(x, y)) where y is odd.
894 // TODO: This could be generalized to clearing any bit set in y where the
895 // following bit is known to be unset in y.
896 Value *Y = nullptr;
897 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
898 m_Value(Y))) ||
899 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
900 m_Value(Y)))) {
901 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000902 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000903 if (KnownOne3.countTrailingOnes() > 0)
904 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
905 }
Jay Foad5a29c362014-05-15 12:12:55 +0000906 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000907 }
908 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000909 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
910 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000911
Chris Lattner965c7692008-06-02 01:18:21 +0000912 // Output known-0 bits are only known if clear in both the LHS & RHS.
913 KnownZero &= KnownZero2;
914 // Output known-1 are known to be set if set in either the LHS | RHS.
915 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000916 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000917 }
918 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000919 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
920 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000921
Chris Lattner965c7692008-06-02 01:18:21 +0000922 // Output known-0 bits are known if clear or set in both the LHS & RHS.
923 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
924 // Output known-1 are known to be set if set in only one of the LHS, RHS.
925 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
926 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000927 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000928 }
929 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000930 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000931 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000932 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000933 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000934 }
935 case Instruction::UDiv: {
936 // For the purposes of computing leading zeros we can conservatively
937 // treat a udiv as a logical right shift by the power of 2 known to
938 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000939 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000940 unsigned LeadZ = KnownZero2.countLeadingOnes();
941
Jay Foad25a5e4c2010-12-01 08:53:58 +0000942 KnownOne2.clearAllBits();
943 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000944 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000945 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
946 if (RHSUnknownLeadingOnes != BitWidth)
947 LeadZ = std::min(BitWidth,
948 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
949
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000950 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000951 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000952 }
James Molloyc5eded52016-01-14 15:49:32 +0000953 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000954 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
955 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000956
957 // Only known if known in both the LHS and RHS.
958 KnownOne &= KnownOne2;
959 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000960 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000961 case Instruction::FPTrunc:
962 case Instruction::FPExt:
963 case Instruction::FPToUI:
964 case Instruction::FPToSI:
965 case Instruction::SIToFP:
966 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000967 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000968 case Instruction::PtrToInt:
969 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000970 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000971 // FALL THROUGH and handle them the same as zext/trunc.
972 case Instruction::ZExt:
973 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000974 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000975
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000976 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000977 // Note that we handle pointer operands here because of inttoptr/ptrtoint
978 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000979 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +0000980
981 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000982 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
983 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000984 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000985 KnownZero = KnownZero.zextOrTrunc(BitWidth);
986 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000987 // Any top bits are known to be zero.
988 if (BitWidth > SrcBitWidth)
989 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000990 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000991 }
992 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000993 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Patel9115cf82015-10-08 16:56:55 +0000994 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
995 SrcTy->isFloatingPointTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000996 // TODO: For now, not handling conversions like:
997 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000998 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000999 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001000 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001001 }
1002 break;
1003 }
1004 case Instruction::SExt: {
1005 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001006 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001007
Jay Foad583abbc2010-12-07 08:25:19 +00001008 KnownZero = KnownZero.trunc(SrcBitWidth);
1009 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001010 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001011 KnownZero = KnownZero.zext(BitWidth);
1012 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001013
1014 // If the sign bit of the input is known set or clear, then we know the
1015 // top bits of the result.
1016 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1017 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1018 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1019 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001020 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001021 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001022 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001023 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001024 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1025 return (KnownZero << ShiftAmt) |
1026 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1027 };
1028
1029 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1030 return KnownOne << ShiftAmt;
1031 };
1032
1033 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001034 KnownZero2, KnownOne2, Depth, Q, KZF,
1035 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001036 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001037 }
1038 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001039 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001040 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1041 return APIntOps::lshr(KnownZero, ShiftAmt) |
1042 // High bits known zero.
1043 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1044 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001045
Hal Finkelf2199b22015-10-23 20:37:08 +00001046 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1047 return APIntOps::lshr(KnownOne, ShiftAmt);
1048 };
1049
1050 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001051 KnownZero2, KnownOne2, Depth, Q, KZF,
1052 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001053 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001054 }
1055 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001056 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001057 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1058 return APIntOps::ashr(KnownZero, ShiftAmt);
1059 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001060
Hal Finkelf2199b22015-10-23 20:37:08 +00001061 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1062 return APIntOps::ashr(KnownOne, ShiftAmt);
1063 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001064
Hal Finkelf2199b22015-10-23 20:37:08 +00001065 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001066 KnownZero2, KnownOne2, Depth, Q, KZF,
1067 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001068 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001069 }
Chris Lattner965c7692008-06-02 01:18:21 +00001070 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001071 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001072 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001073 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1074 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001075 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001076 }
Chris Lattner965c7692008-06-02 01:18:21 +00001077 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001078 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001079 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001080 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1081 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001082 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001083 }
1084 case Instruction::SRem:
1085 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001086 APInt RA = Rem->getValue().abs();
1087 if (RA.isPowerOf2()) {
1088 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001089 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001090 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001091
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001092 // The low bits of the first operand are unchanged by the srem.
1093 KnownZero = KnownZero2 & LowBits;
1094 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001095
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001096 // If the first operand is non-negative or has all low bits zero, then
1097 // the upper bits are all zero.
1098 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1099 KnownZero |= ~LowBits;
1100
1101 // If the first operand is negative and not all low bits are zero, then
1102 // the upper bits are all one.
1103 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1104 KnownOne |= ~LowBits;
1105
Craig Topper1bef2c82012-12-22 19:15:35 +00001106 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001107 }
1108 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001109
1110 // The sign bit is the LHS's sign bit, except when the result of the
1111 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001112 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001113 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001114 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1115 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001116 // If it's known zero, our sign bit is also zero.
1117 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001118 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001119 }
1120
Chris Lattner965c7692008-06-02 01:18:21 +00001121 break;
1122 case Instruction::URem: {
1123 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1124 APInt RA = Rem->getValue();
1125 if (RA.isPowerOf2()) {
1126 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001127 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001128 KnownZero |= ~LowBits;
1129 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001130 break;
1131 }
1132 }
1133
1134 // Since the result is less than or equal to either operand, any leading
1135 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001136 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1137 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001138
Chris Lattner4612ae12009-01-20 18:22:57 +00001139 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001140 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001141 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001142 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001143 break;
1144 }
1145
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001146 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001147 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001148 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001149 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001150 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001151
Chris Lattner965c7692008-06-02 01:18:21 +00001152 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001153 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001154 break;
1155 }
1156 case Instruction::GetElementPtr: {
1157 // Analyze all of the subscripts of this getelementptr instruction
1158 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001159 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001160 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1161 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001162 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1163
1164 gep_type_iterator GTI = gep_type_begin(I);
1165 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1166 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001167 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001168 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001169
1170 // Handle case when index is vector zeroinitializer
1171 Constant *CIndex = cast<Constant>(Index);
1172 if (CIndex->isZeroValue())
1173 continue;
1174
1175 if (CIndex->getType()->isVectorTy())
1176 Index = CIndex->getSplatValue();
1177
Chris Lattner965c7692008-06-02 01:18:21 +00001178 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001179 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001180 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001181 TrailZ = std::min<unsigned>(TrailZ,
1182 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001183 } else {
1184 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001185 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001186 if (!IndexedTy->isSized()) {
1187 TrailZ = 0;
1188 break;
1189 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001190 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001191 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001192 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001193 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001194 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001195 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001196 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001197 }
1198 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001199
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001200 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001201 break;
1202 }
1203 case Instruction::PHI: {
1204 PHINode *P = cast<PHINode>(I);
1205 // Handle the case of a simple two-predecessor recurrence PHI.
1206 // There's a lot more that could theoretically be done here, but
1207 // this is sufficient to catch some interesting cases.
1208 if (P->getNumIncomingValues() == 2) {
1209 for (unsigned i = 0; i != 2; ++i) {
1210 Value *L = P->getIncomingValue(i);
1211 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001212 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001213 if (!LU)
1214 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001215 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001216 // Check for operations that have the property that if
1217 // both their operands have low zero bits, the result
1218 // will have low zero bits.
1219 if (Opcode == Instruction::Add ||
1220 Opcode == Instruction::Sub ||
1221 Opcode == Instruction::And ||
1222 Opcode == Instruction::Or ||
1223 Opcode == Instruction::Mul) {
1224 Value *LL = LU->getOperand(0);
1225 Value *LR = LU->getOperand(1);
1226 // Find a recurrence.
1227 if (LL == I)
1228 L = LR;
1229 else if (LR == I)
1230 L = LL;
1231 else
1232 break;
1233 // Ok, we have a PHI of the form L op= R. Check for low
1234 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001235 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001236
1237 // We need to take the minimum number of known bits
1238 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001239 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001240
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001241 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001242 std::min(KnownZero2.countTrailingOnes(),
1243 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001244 break;
1245 }
1246 }
1247 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001248
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001249 // Unreachable blocks may have zero-operand PHI nodes.
1250 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001251 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001252
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001253 // Otherwise take the unions of the known bit sets of the operands,
1254 // taking conservative care to avoid excessive recursion.
1255 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001256 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001257 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001258 break;
1259
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001260 KnownZero = APInt::getAllOnesValue(BitWidth);
1261 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001262 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001263 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001264 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001265
1266 KnownZero2 = APInt(BitWidth, 0);
1267 KnownOne2 = APInt(BitWidth, 0);
1268 // Recurse, but cap the recursion to one level, because we don't
1269 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001270 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001271 KnownZero &= KnownZero2;
1272 KnownOne &= KnownOne2;
1273 // If all bits have been ruled out, there's no need to check
1274 // more operands.
1275 if (!KnownZero && !KnownOne)
1276 break;
1277 }
1278 }
Chris Lattner965c7692008-06-02 01:18:21 +00001279 break;
1280 }
1281 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001282 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001283 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001284 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jingyue Wu37fcb592014-06-19 16:50:16 +00001285 // If a range metadata is attached to this IntrinsicInst, intersect the
1286 // explicit range specified by the metadata and the implicit range of
1287 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001288 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1289 switch (II->getIntrinsicID()) {
1290 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001291 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001292 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001293 KnownZero |= KnownZero2.byteSwap();
1294 KnownOne |= KnownOne2.byteSwap();
1295 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001296 case Intrinsic::ctlz:
1297 case Intrinsic::cttz: {
1298 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001299 // If this call is undefined for 0, the result will be less than 2^n.
1300 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1301 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001302 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001303 break;
1304 }
1305 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001306 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001307 // We can bound the space the count needs. Also, bits known to be zero
1308 // can't contribute to the population.
1309 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1310 unsigned LeadingZeros =
1311 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001312 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001313 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1314 KnownOne &= ~KnownZero;
1315 // TODO: we could bound KnownOne using the lower bound on the number
1316 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001317 break;
1318 }
Sanjay Patel9115cf82015-10-08 16:56:55 +00001319 case Intrinsic::fabs: {
1320 Type *Ty = II->getType();
1321 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1322 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1323 break;
1324 }
Chad Rosierb3628842011-05-26 23:13:19 +00001325 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001326 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001327 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001328 }
1329 }
1330 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001331 case Instruction::ExtractValue:
1332 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1333 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1334 if (EVI->getNumIndices() != 1) break;
1335 if (EVI->getIndices()[0] == 0) {
1336 switch (II->getIntrinsicID()) {
1337 default: break;
1338 case Intrinsic::uadd_with_overflow:
1339 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001340 computeKnownBitsAddSub(true, II->getArgOperand(0),
1341 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001342 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001343 break;
1344 case Intrinsic::usub_with_overflow:
1345 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001346 computeKnownBitsAddSub(false, II->getArgOperand(0),
1347 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001348 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001349 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001350 case Intrinsic::umul_with_overflow:
1351 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001352 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001353 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1354 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001355 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001356 }
1357 }
1358 }
Chris Lattner965c7692008-06-02 01:18:21 +00001359 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001360}
1361
1362/// Determine which bits of V are known to be either zero or one and return
1363/// them in the KnownZero/KnownOne bit sets.
1364///
1365/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1366/// we cannot optimize based on the assumption that it is zero without changing
1367/// it to be an explicit zero. If we don't change it to zero, other code could
1368/// optimized based on the contradictory assumption that it is non-zero.
1369/// Because instcombine aggressively folds operations with undef args anyway,
1370/// this won't lose us code quality.
1371///
1372/// This function is defined on values with integer type, values with pointer
1373/// type, and vectors of integers. In the case
1374/// where V is a vector, known zero, and known one values are the
1375/// same width as the vector element, and the bit is set only if it is true
1376/// for all of the elements in the vector.
1377void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001378 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001379 assert(V && "No Value?");
1380 assert(Depth <= MaxDepth && "Limit Search Depth");
1381 unsigned BitWidth = KnownZero.getBitWidth();
1382
1383 assert((V->getType()->isIntOrIntVectorTy() ||
Sanjay Patel9115cf82015-10-08 16:56:55 +00001384 V->getType()->isFPOrFPVectorTy() ||
Jingyue Wu12b0c282015-06-15 05:46:29 +00001385 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Patel9115cf82015-10-08 16:56:55 +00001386 "Not integer, floating point, or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001387 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001388 (!V->getType()->isIntOrIntVectorTy() ||
1389 V->getType()->getScalarSizeInBits() == BitWidth) &&
1390 KnownZero.getBitWidth() == BitWidth &&
1391 KnownOne.getBitWidth() == BitWidth &&
1392 "V, KnownOne and KnownZero should have same BitWidth");
1393
1394 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1395 // We know all of the bits for a constant!
1396 KnownOne = CI->getValue();
1397 KnownZero = ~KnownOne;
1398 return;
1399 }
1400 // Null and aggregate-zero are all-zeros.
1401 if (isa<ConstantPointerNull>(V) ||
1402 isa<ConstantAggregateZero>(V)) {
1403 KnownOne.clearAllBits();
1404 KnownZero = APInt::getAllOnesValue(BitWidth);
1405 return;
1406 }
1407 // Handle a constant vector by taking the intersection of the known bits of
1408 // each element. There is no real need to handle ConstantVector here, because
1409 // we don't handle undef in any particularly useful way.
1410 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1411 // We know that CDS must be a vector of integers. Take the intersection of
1412 // each element.
1413 KnownZero.setAllBits(); KnownOne.setAllBits();
1414 APInt Elt(KnownZero.getBitWidth(), 0);
1415 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1416 Elt = CDS->getElementAsInteger(i);
1417 KnownZero &= ~Elt;
1418 KnownOne &= Elt;
1419 }
1420 return;
1421 }
1422
Jingyue Wu12b0c282015-06-15 05:46:29 +00001423 // Start out not knowing anything.
1424 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1425
1426 // Limit search depth.
1427 // All recursive calls that increase depth must come after this.
1428 if (Depth == MaxDepth)
1429 return;
1430
1431 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1432 // the bits of its aliasee.
1433 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001434 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001435 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001436 return;
1437 }
1438
1439 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001440 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001441
Artur Pilipenko029d8532015-09-30 11:55:45 +00001442 // Aligned pointers have trailing zeros - refine KnownZero set
1443 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001444 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001445 if (Align)
1446 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1447 }
1448
Philip Reames146307e2016-03-03 19:44:06 +00001449 // computeKnownBitsFromAssume strictly refines KnownZero and
1450 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001451
1452 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001453 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001454
Jay Foad5a29c362014-05-15 12:12:55 +00001455 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001456}
1457
Sanjay Patelaee84212014-11-04 16:27:42 +00001458/// Determine whether the sign bit is known to be zero or one.
1459/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001460void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001461 unsigned Depth, const Query &Q) {
1462 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001463 if (!BitWidth) {
1464 KnownZero = false;
1465 KnownOne = false;
1466 return;
1467 }
1468 APInt ZeroBits(BitWidth, 0);
1469 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001470 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001471 KnownOne = OneBits[BitWidth - 1];
1472 KnownZero = ZeroBits[BitWidth - 1];
1473}
1474
Sanjay Patelaee84212014-11-04 16:27:42 +00001475/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001476/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001477/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001478/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001479bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001480 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001481 if (Constant *C = dyn_cast<Constant>(V)) {
1482 if (C->isNullValue())
1483 return OrZero;
1484 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1485 return CI->getValue().isPowerOf2();
1486 // TODO: Handle vector constants.
1487 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001488
1489 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1490 // it is shifted off the end then the result is undefined.
1491 if (match(V, m_Shl(m_One(), m_Value())))
1492 return true;
1493
1494 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1495 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001496 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001497 return true;
1498
1499 // The remaining tests are all recursive, so bail out if we hit the limit.
1500 if (Depth++ == MaxDepth)
1501 return false;
1502
Craig Topper9f008862014-04-15 04:59:12 +00001503 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001504 // A shift left or a logical shift right of a power of two is a power of two
1505 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001506 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001507 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001508 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001509
Duncan Sandsd3951082011-01-25 09:38:29 +00001510 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001511 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001512
1513 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001514 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1515 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001516
Duncan Sandsba286d72011-10-26 20:55:21 +00001517 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1518 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001519 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1520 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001521 return true;
1522 // X & (-X) is always a power of two or zero.
1523 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1524 return true;
1525 return false;
1526 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001527
David Majnemerb7d54092013-07-30 21:01:36 +00001528 // Adding a power-of-two or zero to the same power-of-two or zero yields
1529 // either the original power-of-two, a larger power-of-two or zero.
1530 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1531 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1532 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1533 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1534 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001535 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001536 return true;
1537 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1538 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001539 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001540 return true;
1541
1542 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1543 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001544 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001545
1546 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001547 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001548 // If i8 V is a power of two or zero:
1549 // ZeroBits: 1 1 1 0 1 1 1 1
1550 // ~ZeroBits: 0 0 0 1 0 0 0 0
1551 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1552 // If OrZero isn't set, we cannot give back a zero result.
1553 // Make sure either the LHS or RHS has a bit set.
1554 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1555 return true;
1556 }
1557 }
David Majnemerbeab5672013-05-18 19:30:37 +00001558
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001559 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001560 // is a power of two only if the first operand is a power of two and not
1561 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001562 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1563 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001564 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001565 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001566 }
1567
Duncan Sandsd3951082011-01-25 09:38:29 +00001568 return false;
1569}
1570
Chandler Carruth80d3e562012-12-07 02:08:58 +00001571/// \brief Test whether a GEP's result is known to be non-null.
1572///
1573/// Uses properties inherent in a GEP to try to determine whether it is known
1574/// to be non-null.
1575///
1576/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001577static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1578 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001579 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1580 return false;
1581
1582 // FIXME: Support vector-GEPs.
1583 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1584
1585 // If the base pointer is non-null, we cannot walk to a null address with an
1586 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001587 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001588 return true;
1589
Chandler Carruth80d3e562012-12-07 02:08:58 +00001590 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1591 // If so, then the GEP cannot produce a null pointer, as doing so would
1592 // inherently violate the inbounds contract within address space zero.
1593 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1594 GTI != GTE; ++GTI) {
1595 // Struct types are easy -- they must always be indexed by a constant.
1596 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1597 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1598 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001599 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001600 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1601 if (ElementOffset > 0)
1602 return true;
1603 continue;
1604 }
1605
1606 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001607 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001608 continue;
1609
1610 // Fast path the constant operand case both for efficiency and so we don't
1611 // increment Depth when just zipping down an all-constant GEP.
1612 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1613 if (!OpC->isZero())
1614 return true;
1615 continue;
1616 }
1617
1618 // We post-increment Depth here because while isKnownNonZero increments it
1619 // as well, when we pop back up that increment won't persist. We don't want
1620 // to recurse 10k times just because we have 10k GEP operands. We don't
1621 // bail completely out because we want to handle constant GEPs regardless
1622 // of depth.
1623 if (Depth++ >= MaxDepth)
1624 continue;
1625
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001626 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001627 return true;
1628 }
1629
1630 return false;
1631}
1632
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001633/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1634/// ensure that the value it's attached to is never Value? 'RangeType' is
1635/// is the type of the value described by the range.
1636static bool rangeMetadataExcludesValue(MDNode* Ranges,
1637 const APInt& Value) {
1638 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1639 assert(NumRanges >= 1);
1640 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001641 ConstantInt *Lower =
1642 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1643 ConstantInt *Upper =
1644 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001645 ConstantRange Range(Lower->getValue(), Upper->getValue());
1646 if (Range.contains(Value))
1647 return false;
1648 }
1649 return true;
1650}
1651
Sanjay Patelaee84212014-11-04 16:27:42 +00001652/// Return true if the given value is known to be non-zero when defined.
1653/// For vectors return true if every element is known to be non-zero when
1654/// defined. Supports values with integer or pointer type and vectors of
1655/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001656bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001657 if (Constant *C = dyn_cast<Constant>(V)) {
1658 if (C->isNullValue())
1659 return false;
1660 if (isa<ConstantInt>(C))
1661 // Must be non-zero due to null test above.
1662 return true;
1663 // TODO: Handle vectors
1664 return false;
1665 }
1666
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001667 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001668 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001669 // If the possible ranges don't contain zero, then the value is
1670 // definitely non-zero.
1671 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1672 const APInt ZeroValue(Ty->getBitWidth(), 0);
1673 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1674 return true;
1675 }
1676 }
1677 }
1678
Duncan Sandsd3951082011-01-25 09:38:29 +00001679 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001680 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001681 return false;
1682
Chandler Carruth80d3e562012-12-07 02:08:58 +00001683 // Check for pointer simplifications.
1684 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001685 if (isKnownNonNull(V))
1686 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001687 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001688 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001689 return true;
1690 }
1691
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001692 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001693
1694 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001695 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001696 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001697 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001698
1699 // ext X != 0 if X != 0.
1700 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001701 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001702
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001703 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001704 // if the lowest bit is shifted off the end.
1705 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001706 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001707 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001708 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001709 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001710
Duncan Sandsd3951082011-01-25 09:38:29 +00001711 APInt KnownZero(BitWidth, 0);
1712 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001713 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001714 if (KnownOne[0])
1715 return true;
1716 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001717 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001718 // defined if the sign bit is shifted off the end.
1719 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001720 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001721 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001722 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001723 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001724
Duncan Sandsd3951082011-01-25 09:38:29 +00001725 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001726 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001727 if (XKnownNegative)
1728 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001729
1730 // If the shifter operand is a constant, and all of the bits shifted
1731 // out are known to be zero, and X is known non-zero then at least one
1732 // non-zero bit must remain.
1733 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1734 APInt KnownZero(BitWidth, 0);
1735 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001736 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001737
1738 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1739 // Is there a known one in the portion not shifted out?
1740 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1741 return true;
1742 // Are all the bits to be shifted out known zero?
1743 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001744 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001745 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001746 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001747 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001748 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001749 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001750 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001751 // X + Y.
1752 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1753 bool XKnownNonNegative, XKnownNegative;
1754 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001755 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1756 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001757
1758 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001759 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001760 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001761 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001762 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001763
1764 // If X and Y are both negative (as signed values) then their sum is not
1765 // zero unless both X and Y equal INT_MIN.
1766 if (BitWidth && XKnownNegative && YKnownNegative) {
1767 APInt KnownZero(BitWidth, 0);
1768 APInt KnownOne(BitWidth, 0);
1769 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1770 // The sign bit of X is set. If some other bit is set then X is not equal
1771 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001772 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001773 if ((KnownOne & Mask) != 0)
1774 return true;
1775 // The sign bit of Y is set. If some other bit is set then Y is not equal
1776 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001777 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001778 if ((KnownOne & Mask) != 0)
1779 return true;
1780 }
1781
1782 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001783 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001784 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001785 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001786 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001787 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001788 return true;
1789 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001790 // X * Y.
1791 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1792 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1793 // If X and Y are non-zero then so is X * Y as long as the multiplication
1794 // does not overflow.
1795 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001796 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001797 return true;
1798 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001799 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1800 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001801 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1802 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001803 return true;
1804 }
James Molloy897048b2015-09-29 14:08:45 +00001805 // PHI
1806 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1807 // Try and detect a recurrence that monotonically increases from a
1808 // starting value, as these are common as induction variables.
1809 if (PN->getNumIncomingValues() == 2) {
1810 Value *Start = PN->getIncomingValue(0);
1811 Value *Induction = PN->getIncomingValue(1);
1812 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1813 std::swap(Start, Induction);
1814 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1815 if (!C->isZero() && !C->isNegative()) {
1816 ConstantInt *X;
1817 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1818 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1819 !X->isNegative())
1820 return true;
1821 }
1822 }
1823 }
Jun Bum Limca832662016-02-01 17:03:07 +00001824 // Check if all incoming values are non-zero constant.
1825 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1826 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1827 });
1828 if (AllNonZeroConstants)
1829 return true;
James Molloy897048b2015-09-29 14:08:45 +00001830 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001831
1832 if (!BitWidth) return false;
1833 APInt KnownZero(BitWidth, 0);
1834 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001835 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001836 return KnownOne != 0;
1837}
1838
James Molloy1d88d6f2015-10-22 13:18:42 +00001839/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001840static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001841 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1842 if (!BO || BO->getOpcode() != Instruction::Add)
1843 return false;
1844 Value *Op = nullptr;
1845 if (V2 == BO->getOperand(0))
1846 Op = BO->getOperand(1);
1847 else if (V2 == BO->getOperand(1))
1848 Op = BO->getOperand(0);
1849 else
1850 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001851 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001852}
1853
1854/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001855static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001856 if (V1->getType()->isVectorTy() || V1 == V2)
1857 return false;
1858 if (V1->getType() != V2->getType())
1859 // We can't look through casts yet.
1860 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001861 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001862 return true;
1863
1864 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1865 // Are any known bits in V1 contradictory to known bits in V2? If V1
1866 // has a known zero where V2 has a known one, they must not be equal.
1867 auto BitWidth = Ty->getBitWidth();
1868 APInt KnownZero1(BitWidth, 0);
1869 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001870 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001871 APInt KnownZero2(BitWidth, 0);
1872 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001873 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001874
1875 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1876 if (OppositeBits.getBoolValue())
1877 return true;
1878 }
1879 return false;
1880}
1881
Sanjay Patelaee84212014-11-04 16:27:42 +00001882/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1883/// simplify operations downstream. Mask is known to be zero for bits that V
1884/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001885///
1886/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001887/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001888/// where V is a vector, the mask, known zero, and known one values are the
1889/// same width as the vector element, and the bit is set only if it is true
1890/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001891bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1892 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001893 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001894 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001895 return (KnownZero & Mask) == Mask;
1896}
1897
1898
1899
Sanjay Patelaee84212014-11-04 16:27:42 +00001900/// Return the number of times the sign bit of the register is replicated into
1901/// the other bits. We know that at least 1 bit is always equal to the sign bit
1902/// (itself), but other cases can give us information. For example, immediately
1903/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1904/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001905///
1906/// 'Op' must have a scalar integer type.
1907///
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001908unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1909 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00001910 unsigned Tmp, Tmp2;
1911 unsigned FirstAnswer = 1;
1912
Jay Foada0653a32014-05-14 21:14:37 +00001913 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001914 // below.
1915
Chris Lattner965c7692008-06-02 01:18:21 +00001916 if (Depth == 6)
1917 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001918
Dan Gohman80ca01c2009-07-17 20:47:02 +00001919 Operator *U = dyn_cast<Operator>(V);
1920 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001921 default: break;
1922 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001923 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001924 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001925
Nadav Rotemc99a3872015-03-06 00:23:58 +00001926 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00001927 const APInt *Denominator;
1928 // sdiv X, C -> adds log(C) sign bits.
1929 if (match(U->getOperand(1), m_APInt(Denominator))) {
1930
1931 // Ignore non-positive denominator.
1932 if (!Denominator->isStrictlyPositive())
1933 break;
1934
1935 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001936 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00001937
1938 // Add floor(log(C)) bits to the numerator bits.
1939 return std::min(TyBits, NumBits + Denominator->logBase2());
1940 }
1941 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00001942 }
1943
1944 case Instruction::SRem: {
1945 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00001946 // srem X, C -> we know that the result is within [-C+1,C) when C is a
1947 // positive constant. This let us put a lower bound on the number of sign
1948 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001949 if (match(U->getOperand(1), m_APInt(Denominator))) {
1950
1951 // Ignore non-positive denominator.
1952 if (!Denominator->isStrictlyPositive())
1953 break;
1954
1955 // Calculate the incoming numerator bits. SRem by a positive constant
1956 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001957 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001958 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00001959
1960 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00001961 // denominator. Given that the denominator is positive, there are two
1962 // cases:
1963 //
1964 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
1965 // (1 << ceilLogBase2(C)).
1966 //
1967 // 2. the numerator is negative. Then the result range is (-C,0] and
1968 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
1969 //
1970 // Thus a lower bound on the number of sign bits is `TyBits -
1971 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001972
Sanjoy Dase561fee2015-03-25 22:33:53 +00001973 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00001974 return std::max(NumrBits, ResBits);
1975 }
1976 break;
1977 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00001978
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001979 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001980 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001981 // ashr X, C -> adds C sign bits. Vectors too.
1982 const APInt *ShAmt;
1983 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1984 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001985 if (Tmp > TyBits) Tmp = TyBits;
1986 }
1987 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001988 }
1989 case Instruction::Shl: {
1990 const APInt *ShAmt;
1991 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00001992 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001993 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001994 Tmp2 = ShAmt->getZExtValue();
1995 if (Tmp2 >= TyBits || // Bad shift.
1996 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1997 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00001998 }
1999 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002000 }
Chris Lattner965c7692008-06-02 01:18:21 +00002001 case Instruction::And:
2002 case Instruction::Or:
2003 case Instruction::Xor: // NOT is handled here.
2004 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002005 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002006 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002007 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002008 FirstAnswer = std::min(Tmp, Tmp2);
2009 // We computed what we know about the sign bits as our first
2010 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002011 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002012 }
2013 break;
2014
2015 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002016 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002017 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002018 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002019 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002020
Chris Lattner965c7692008-06-02 01:18:21 +00002021 case Instruction::Add:
2022 // Add can have at most one carry bit. Thus we know that the output
2023 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002024 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002025 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002026
Chris Lattner965c7692008-06-02 01:18:21 +00002027 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002028 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002029 if (CRHS->isAllOnesValue()) {
2030 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002031 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002032
Chris Lattner965c7692008-06-02 01:18:21 +00002033 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2034 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002035 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002036 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002037
Chris Lattner965c7692008-06-02 01:18:21 +00002038 // If we are subtracting one from a positive number, there is no carry
2039 // out of the result.
2040 if (KnownZero.isNegative())
2041 return Tmp;
2042 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002043
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002044 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002045 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002046 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002047
Chris Lattner965c7692008-06-02 01:18:21 +00002048 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002049 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002050 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002051
Chris Lattner965c7692008-06-02 01:18:21 +00002052 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002053 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002054 if (CLHS->isNullValue()) {
2055 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002056 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002057 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2058 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002059 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002060 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002061
Chris Lattner965c7692008-06-02 01:18:21 +00002062 // If the input is known to be positive (the sign bit is known clear),
2063 // the output of the NEG has the same number of sign bits as the input.
2064 if (KnownZero.isNegative())
2065 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002066
Chris Lattner965c7692008-06-02 01:18:21 +00002067 // Otherwise, we treat this like a SUB.
2068 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002069
Chris Lattner965c7692008-06-02 01:18:21 +00002070 // Sub can have at most one carry bit. Thus we know that the output
2071 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002072 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002073 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002074 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002075
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002076 case Instruction::PHI: {
2077 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002078 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002079 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002080 if (NumIncomingValues > 4) break;
2081 // Unreachable blocks may have zero-operand PHI nodes.
2082 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002083
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002084 // Take the minimum of all incoming values. This can't infinitely loop
2085 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002086 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002087 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002088 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002089 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002090 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002091 }
2092 return Tmp;
2093 }
2094
Chris Lattner965c7692008-06-02 01:18:21 +00002095 case Instruction::Trunc:
2096 // FIXME: it's tricky to do anything useful for this, but it is an important
2097 // case for targets like X86.
2098 break;
2099 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002100
Chris Lattner965c7692008-06-02 01:18:21 +00002101 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2102 // use this information.
2103 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002104 APInt Mask;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002105 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002106
Chris Lattner965c7692008-06-02 01:18:21 +00002107 if (KnownZero.isNegative()) { // sign bit is 0
2108 Mask = KnownZero;
2109 } else if (KnownOne.isNegative()) { // sign bit is 1;
2110 Mask = KnownOne;
2111 } else {
2112 // Nothing known.
2113 return FirstAnswer;
2114 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002115
Chris Lattner965c7692008-06-02 01:18:21 +00002116 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2117 // the number of identical bits in the top of the input value.
2118 Mask = ~Mask;
2119 Mask <<= Mask.getBitWidth()-TyBits;
2120 // Return # leading zeros. We use 'min' here in case Val was zero before
2121 // shifting. We don't want to return '64' as for an i32 "0".
2122 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2123}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002124
Sanjay Patelaee84212014-11-04 16:27:42 +00002125/// This function computes the integer multiple of Base that equals V.
2126/// If successful, it returns true and returns the multiple in
2127/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002128/// through SExt instructions only if LookThroughSExt is true.
2129bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002130 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002131 const unsigned MaxDepth = 6;
2132
Dan Gohman6a976bb2009-11-18 00:58:27 +00002133 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002134 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002135 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002136
Chris Lattner229907c2011-07-18 04:54:35 +00002137 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002138
Dan Gohman6a976bb2009-11-18 00:58:27 +00002139 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002140
2141 if (Base == 0)
2142 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002143
Victor Hernandez47444882009-11-10 08:28:35 +00002144 if (Base == 1) {
2145 Multiple = V;
2146 return true;
2147 }
2148
2149 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2150 Constant *BaseVal = ConstantInt::get(T, Base);
2151 if (CO && CO == BaseVal) {
2152 // Multiple is 1.
2153 Multiple = ConstantInt::get(T, 1);
2154 return true;
2155 }
2156
2157 if (CI && CI->getZExtValue() % Base == 0) {
2158 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002159 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002160 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002161
Victor Hernandez47444882009-11-10 08:28:35 +00002162 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002163
Victor Hernandez47444882009-11-10 08:28:35 +00002164 Operator *I = dyn_cast<Operator>(V);
2165 if (!I) return false;
2166
2167 switch (I->getOpcode()) {
2168 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002169 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002170 if (!LookThroughSExt) return false;
2171 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002172 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002173 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2174 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002175 case Instruction::Shl:
2176 case Instruction::Mul: {
2177 Value *Op0 = I->getOperand(0);
2178 Value *Op1 = I->getOperand(1);
2179
2180 if (I->getOpcode() == Instruction::Shl) {
2181 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2182 if (!Op1CI) return false;
2183 // Turn Op0 << Op1 into Op0 * 2^Op1
2184 APInt Op1Int = Op1CI->getValue();
2185 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002186 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002187 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002188 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002189 }
2190
Craig Topper9f008862014-04-15 04:59:12 +00002191 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002192 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2193 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2194 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002195 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002196 MulC->getType()->getPrimitiveSizeInBits())
2197 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002198 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002199 MulC->getType()->getPrimitiveSizeInBits())
2200 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002201
Chris Lattner72d283c2010-09-05 17:20:46 +00002202 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2203 Multiple = ConstantExpr::getMul(MulC, Op1C);
2204 return true;
2205 }
Victor Hernandez47444882009-11-10 08:28:35 +00002206
2207 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2208 if (Mul0CI->getValue() == 1) {
2209 // V == Base * Op1, so return Op1
2210 Multiple = Op1;
2211 return true;
2212 }
2213 }
2214
Craig Topper9f008862014-04-15 04:59:12 +00002215 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002216 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2217 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2218 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002219 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002220 MulC->getType()->getPrimitiveSizeInBits())
2221 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002222 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002223 MulC->getType()->getPrimitiveSizeInBits())
2224 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002225
Chris Lattner72d283c2010-09-05 17:20:46 +00002226 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2227 Multiple = ConstantExpr::getMul(MulC, Op0C);
2228 return true;
2229 }
Victor Hernandez47444882009-11-10 08:28:35 +00002230
2231 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2232 if (Mul1CI->getValue() == 1) {
2233 // V == Base * Op0, so return Op0
2234 Multiple = Op0;
2235 return true;
2236 }
2237 }
Victor Hernandez47444882009-11-10 08:28:35 +00002238 }
2239 }
2240
2241 // We could not determine if V is a multiple of Base.
2242 return false;
2243}
2244
David Majnemerb4b27232016-04-19 19:10:21 +00002245Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2246 const TargetLibraryInfo *TLI) {
2247 const Function *F = ICS.getCalledFunction();
2248 if (!F)
2249 return Intrinsic::not_intrinsic;
2250
2251 if (F->isIntrinsic())
2252 return F->getIntrinsicID();
2253
2254 if (!TLI)
2255 return Intrinsic::not_intrinsic;
2256
2257 LibFunc::Func Func;
2258 // We're going to make assumptions on the semantics of the functions, check
2259 // that the target knows that it's available in this environment and it does
2260 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002261 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2262 return Intrinsic::not_intrinsic;
2263
2264 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002265 return Intrinsic::not_intrinsic;
2266
2267 // Otherwise check if we have a call to a function that can be turned into a
2268 // vector intrinsic.
2269 switch (Func) {
2270 default:
2271 break;
2272 case LibFunc::sin:
2273 case LibFunc::sinf:
2274 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002275 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002276 case LibFunc::cos:
2277 case LibFunc::cosf:
2278 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002279 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002280 case LibFunc::exp:
2281 case LibFunc::expf:
2282 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002283 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002284 case LibFunc::exp2:
2285 case LibFunc::exp2f:
2286 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002287 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002288 case LibFunc::log:
2289 case LibFunc::logf:
2290 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002291 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002292 case LibFunc::log10:
2293 case LibFunc::log10f:
2294 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002295 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002296 case LibFunc::log2:
2297 case LibFunc::log2f:
2298 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002299 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002300 case LibFunc::fabs:
2301 case LibFunc::fabsf:
2302 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002303 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002304 case LibFunc::fmin:
2305 case LibFunc::fminf:
2306 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002307 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002308 case LibFunc::fmax:
2309 case LibFunc::fmaxf:
2310 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002311 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002312 case LibFunc::copysign:
2313 case LibFunc::copysignf:
2314 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002315 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002316 case LibFunc::floor:
2317 case LibFunc::floorf:
2318 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002319 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002320 case LibFunc::ceil:
2321 case LibFunc::ceilf:
2322 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002323 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002324 case LibFunc::trunc:
2325 case LibFunc::truncf:
2326 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002327 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002328 case LibFunc::rint:
2329 case LibFunc::rintf:
2330 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002331 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002332 case LibFunc::nearbyint:
2333 case LibFunc::nearbyintf:
2334 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002335 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002336 case LibFunc::round:
2337 case LibFunc::roundf:
2338 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002339 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002340 case LibFunc::pow:
2341 case LibFunc::powf:
2342 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002343 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002344 case LibFunc::sqrt:
2345 case LibFunc::sqrtf:
2346 case LibFunc::sqrtl:
2347 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002348 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002349 return Intrinsic::not_intrinsic;
2350 }
2351
2352 return Intrinsic::not_intrinsic;
2353}
2354
Sanjay Patelaee84212014-11-04 16:27:42 +00002355/// Return true if we can prove that the specified FP value is never equal to
2356/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002357///
2358/// NOTE: this function will need to be revisited when we support non-default
2359/// rounding modes!
2360///
David Majnemer3ee5f342016-04-13 06:55:52 +00002361bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2362 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002363 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2364 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002365
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002366 // FIXME: Magic number! At the least, this should be given a name because it's
2367 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2368 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002369 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002370 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002371
Dan Gohman80ca01c2009-07-17 20:47:02 +00002372 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002373 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002374
2375 // Check if the nsz fast-math flag is set
2376 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2377 if (FPO->hasNoSignedZeros())
2378 return true;
2379
Chris Lattnera12a6de2008-06-02 01:29:46 +00002380 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002381 if (I->getOpcode() == Instruction::FAdd)
2382 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2383 if (CFP->isNullValue())
2384 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002385
Chris Lattnera12a6de2008-06-02 01:29:46 +00002386 // sitofp and uitofp turn into +0.0 for zero.
2387 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2388 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002389
David Majnemer3ee5f342016-04-13 06:55:52 +00002390 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002391 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002392 switch (IID) {
2393 default:
2394 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002395 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002396 case Intrinsic::sqrt:
2397 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2398 // fabs(x) != -0.0
2399 case Intrinsic::fabs:
2400 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002401 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002402 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002403
Chris Lattnera12a6de2008-06-02 01:29:46 +00002404 return false;
2405}
2406
David Majnemer3ee5f342016-04-13 06:55:52 +00002407bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2408 const TargetLibraryInfo *TLI,
2409 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002410 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2411 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2412
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002413 // FIXME: Magic number! At the least, this should be given a name because it's
2414 // used similarly in CannotBeNegativeZero(). A better fix may be to
2415 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002416 if (Depth == 6)
2417 return false; // Limit search depth.
2418
2419 const Operator *I = dyn_cast<Operator>(V);
2420 if (!I) return false;
2421
2422 switch (I->getOpcode()) {
2423 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002424 // Unsigned integers are always nonnegative.
2425 case Instruction::UIToFP:
2426 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002427 case Instruction::FMul:
2428 // x*x is always non-negative or a NaN.
2429 if (I->getOperand(0) == I->getOperand(1))
2430 return true;
2431 // Fall through
2432 case Instruction::FAdd:
2433 case Instruction::FDiv:
2434 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002435 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2436 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002437 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002438 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2439 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002440 case Instruction::FPExt:
2441 case Instruction::FPTrunc:
2442 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002443 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2444 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002445 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002446 switch (IID) {
2447 default:
2448 break;
2449 case Intrinsic::maxnum:
2450 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2451 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2452 case Intrinsic::minnum:
2453 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2454 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2455 case Intrinsic::exp:
2456 case Intrinsic::exp2:
2457 case Intrinsic::fabs:
2458 case Intrinsic::sqrt:
2459 return true;
2460 case Intrinsic::powi:
2461 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2462 // powi(x,n) is non-negative if n is even.
2463 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2464 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002465 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002466 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2467 case Intrinsic::fma:
2468 case Intrinsic::fmuladd:
2469 // x*x+y is non-negative if y is non-negative.
2470 return I->getOperand(0) == I->getOperand(1) &&
2471 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2472 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002473 break;
2474 }
2475 return false;
2476}
2477
Sanjay Patelaee84212014-11-04 16:27:42 +00002478/// If the specified value can be set by repeating the same byte in memory,
2479/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002480/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2481/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2482/// byte store (e.g. i16 0x1234), return null.
2483Value *llvm::isBytewiseValue(Value *V) {
2484 // All byte-wide stores are splatable, even of arbitrary variables.
2485 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002486
2487 // Handle 'null' ConstantArrayZero etc.
2488 if (Constant *C = dyn_cast<Constant>(V))
2489 if (C->isNullValue())
2490 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002491
Chris Lattner9cb10352010-12-26 20:15:01 +00002492 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002493 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002494 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2495 if (CFP->getType()->isFloatTy())
2496 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2497 if (CFP->getType()->isDoubleTy())
2498 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2499 // Don't handle long double formats, which have strange constraints.
2500 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002501
Benjamin Kramer17d90152015-02-07 19:29:02 +00002502 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002503 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002504 if (CI->getBitWidth() % 8 == 0) {
2505 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002506
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002507 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002508 return nullptr;
2509 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002510 }
2511 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002512
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002513 // A ConstantDataArray/Vector is splatable if all its members are equal and
2514 // also splatable.
2515 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2516 Value *Elt = CA->getElementAsConstant(0);
2517 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002518 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002519 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002520
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002521 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2522 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002523 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002524
Chris Lattner9cb10352010-12-26 20:15:01 +00002525 return Val;
2526 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002527
Chris Lattner9cb10352010-12-26 20:15:01 +00002528 // Conceptually, we could handle things like:
2529 // %a = zext i8 %X to i16
2530 // %b = shl i16 %a, 8
2531 // %c = or i16 %a, %b
2532 // but until there is an example that actually needs this, it doesn't seem
2533 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002534 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002535}
2536
2537
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002538// This is the recursive version of BuildSubAggregate. It takes a few different
2539// arguments. Idxs is the index within the nested struct From that we are
2540// looking at now (which is of type IndexedType). IdxSkip is the number of
2541// indices from Idxs that should be left out when inserting into the resulting
2542// struct. To is the result struct built so far, new insertvalue instructions
2543// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002544static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002545 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002546 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002547 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002548 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002549 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002550 // Save the original To argument so we can modify it
2551 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002552 // General case, the type indexed by Idxs is a struct
2553 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2554 // Process each struct element recursively
2555 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002556 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002557 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002558 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002559 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002560 if (!To) {
2561 // Couldn't find any inserted value for this index? Cleanup
2562 while (PrevTo != OrigTo) {
2563 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2564 PrevTo = Del->getAggregateOperand();
2565 Del->eraseFromParent();
2566 }
2567 // Stop processing elements
2568 break;
2569 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002570 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002571 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002572 if (To)
2573 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002574 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002575 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2576 // the struct's elements had a value that was inserted directly. In the latter
2577 // case, perhaps we can't determine each of the subelements individually, but
2578 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002579
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002580 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002581 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002582
2583 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002584 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002585
2586 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002587 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002588 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002589}
2590
2591// This helper takes a nested struct and extracts a part of it (which is again a
2592// struct) into a new value. For example, given the struct:
2593// { a, { b, { c, d }, e } }
2594// and the indices "1, 1" this returns
2595// { c, d }.
2596//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002597// It does this by inserting an insertvalue for each element in the resulting
2598// struct, as opposed to just inserting a single struct. This will only work if
2599// each of the elements of the substruct are known (ie, inserted into From by an
2600// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002601//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002602// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002603static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002604 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002605 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002606 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002607 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002608 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002609 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002610 unsigned IdxSkip = Idxs.size();
2611
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002612 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002613}
2614
Sanjay Patelaee84212014-11-04 16:27:42 +00002615/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002616/// the scalar value indexed is already around as a register, for example if it
2617/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002618///
2619/// If InsertBefore is not null, this function will duplicate (modified)
2620/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002621Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2622 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002623 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002624 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002625 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002626 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002627 // We have indices, so V should have an indexable type.
2628 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2629 "Not looking at a struct or array?");
2630 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2631 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002632
Chris Lattner67058832012-01-25 06:48:06 +00002633 if (Constant *C = dyn_cast<Constant>(V)) {
2634 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002635 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002636 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2637 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002638
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002639 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002640 // Loop the indices for the insertvalue instruction in parallel with the
2641 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002642 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002643 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2644 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002645 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002646 // We can't handle this without inserting insertvalues
2647 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002648 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002649
2650 // The requested index identifies a part of a nested aggregate. Handle
2651 // this specially. For example,
2652 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2653 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2654 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2655 // This can be changed into
2656 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2657 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2658 // which allows the unused 0,0 element from the nested struct to be
2659 // removed.
2660 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2661 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002662 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002663
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002664 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002665 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002666 // looking for, then.
2667 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002668 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002669 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002670 }
2671 // If we end up here, the indices of the insertvalue match with those
2672 // requested (though possibly only partially). Now we recursively look at
2673 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002674 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002675 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002676 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002677 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002678
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002679 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002680 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002681 // something else, we can extract from that something else directly instead.
2682 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002683
2684 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002685 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002686 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002687 SmallVector<unsigned, 5> Idxs;
2688 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002689 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002690 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002691
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002692 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002693 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002694
Craig Topper1bef2c82012-12-22 19:15:35 +00002695 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002696 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002697
Jay Foad57aa6362011-07-13 10:26:04 +00002698 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002699 }
2700 // Otherwise, we don't know (such as, extracting from a function return value
2701 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002702 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002703}
Evan Chengda3db112008-06-30 07:31:25 +00002704
Sanjay Patelaee84212014-11-04 16:27:42 +00002705/// Analyze the specified pointer to see if it can be expressed as a base
2706/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002707Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002708 const DataLayout &DL) {
2709 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002710 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002711
2712 // We walk up the defs but use a visited set to handle unreachable code. In
2713 // that case, we stop after accumulating the cycle once (not that it
2714 // matters).
2715 SmallPtrSet<Value *, 16> Visited;
2716 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002717 if (Ptr->getType()->isVectorTy())
2718 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002719
Nuno Lopes368c4d02012-12-31 20:48:35 +00002720 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002721 APInt GEPOffset(BitWidth, 0);
2722 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2723 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002724
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002725 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002726
Nuno Lopes368c4d02012-12-31 20:48:35 +00002727 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002728 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2729 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002730 Ptr = cast<Operator>(Ptr)->getOperand(0);
2731 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002732 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002733 break;
2734 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002735 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002736 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002737 }
2738 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002739 Offset = ByteOffset.getSExtValue();
2740 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002741}
2742
David L Kreitzer752c1442016-04-13 14:31:06 +00002743bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2744 // Make sure the GEP has exactly three arguments.
2745 if (GEP->getNumOperands() != 3)
2746 return false;
2747
2748 // Make sure the index-ee is a pointer to array of i8.
2749 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2750 if (!AT || !AT->getElementType()->isIntegerTy(8))
2751 return false;
2752
2753 // Check to make sure that the first operand of the GEP is an integer and
2754 // has value 0 so that we are sure we're indexing into the initializer.
2755 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2756 if (!FirstIdx || !FirstIdx->isZero())
2757 return false;
2758
2759 return true;
2760}
Chris Lattnere28618d2010-11-30 22:25:26 +00002761
Sanjay Patelaee84212014-11-04 16:27:42 +00002762/// This function computes the length of a null-terminated C string pointed to
2763/// by V. If successful, it returns true and returns the string in Str.
2764/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002765bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2766 uint64_t Offset, bool TrimAtNul) {
2767 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002768
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002769 // Look through bitcast instructions and geps.
2770 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002771
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002772 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002773 // offset.
2774 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002775 // The GEP operator should be based on a pointer to string constant, and is
2776 // indexing into the string constant.
2777 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002778 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002779
Evan Chengda3db112008-06-30 07:31:25 +00002780 // If the second index isn't a ConstantInt, then this is a variable index
2781 // into the array. If this occurs, we can't say anything meaningful about
2782 // the string.
2783 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002784 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002785 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002786 else
2787 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002788 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2789 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002790 }
Nick Lewycky46209882011-10-20 00:34:35 +00002791
Evan Chengda3db112008-06-30 07:31:25 +00002792 // The GEP instruction, constant or instruction, must reference a global
2793 // variable that is a constant and is initialized. The referenced constant
2794 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002795 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002796 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002797 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002798
Nick Lewycky46209882011-10-20 00:34:35 +00002799 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002800 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002801 // This is a degenerate case. The initializer is constant zero so the
2802 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002803 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002804 return true;
2805 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002806
Evan Chengda3db112008-06-30 07:31:25 +00002807 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002808 const ConstantDataArray *Array =
2809 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002810 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002811 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002812
Evan Chengda3db112008-06-30 07:31:25 +00002813 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002814 uint64_t NumElts = Array->getType()->getArrayNumElements();
2815
2816 // Start out with the entire array in the StringRef.
2817 Str = Array->getAsString();
2818
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002819 if (Offset > NumElts)
2820 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002821
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002822 // Skip over 'offset' bytes.
2823 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002824
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002825 if (TrimAtNul) {
2826 // Trim off the \0 and anything after it. If the array is not nul
2827 // terminated, we just return the whole end of string. The client may know
2828 // some other way that the string is length-bound.
2829 Str = Str.substr(0, Str.find('\0'));
2830 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002831 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002832}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002833
2834// These next two are very similar to the above, but also look through PHI
2835// nodes.
2836// TODO: See if we can integrate these two together.
2837
Sanjay Patelaee84212014-11-04 16:27:42 +00002838/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002839/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002840static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002841 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002842 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002843
2844 // If this is a PHI node, there are two cases: either we have already seen it
2845 // or we haven't.
2846 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002847 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002848 return ~0ULL; // already in the set.
2849
2850 // If it was new, see if all the input strings are the same length.
2851 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002852 for (Value *IncValue : PN->incoming_values()) {
2853 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002854 if (Len == 0) return 0; // Unknown length -> unknown.
2855
2856 if (Len == ~0ULL) continue;
2857
2858 if (Len != LenSoFar && LenSoFar != ~0ULL)
2859 return 0; // Disagree -> unknown.
2860 LenSoFar = Len;
2861 }
2862
2863 // Success, all agree.
2864 return LenSoFar;
2865 }
2866
2867 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2868 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2869 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2870 if (Len1 == 0) return 0;
2871 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2872 if (Len2 == 0) return 0;
2873 if (Len1 == ~0ULL) return Len2;
2874 if (Len2 == ~0ULL) return Len1;
2875 if (Len1 != Len2) return 0;
2876 return Len1;
2877 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002878
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002879 // Otherwise, see if we can read the string.
2880 StringRef StrData;
2881 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002882 return 0;
2883
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002884 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002885}
2886
Sanjay Patelaee84212014-11-04 16:27:42 +00002887/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002888/// the specified pointer, return 'len+1'. If we can't, return 0.
2889uint64_t llvm::GetStringLength(Value *V) {
2890 if (!V->getType()->isPointerTy()) return 0;
2891
2892 SmallPtrSet<PHINode*, 32> PHIs;
2893 uint64_t Len = GetStringLengthH(V, PHIs);
2894 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2895 // an empty string as a length.
2896 return Len == ~0ULL ? 1 : Len;
2897}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002898
Adam Nemete2b885c2015-04-23 20:09:20 +00002899/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2900/// previous iteration of the loop was referring to the same object as \p PN.
2901static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2902 // Find the loop-defined value.
2903 Loop *L = LI->getLoopFor(PN->getParent());
2904 if (PN->getNumIncomingValues() != 2)
2905 return true;
2906
2907 // Find the value from previous iteration.
2908 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2909 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2910 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2911 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2912 return true;
2913
2914 // If a new pointer is loaded in the loop, the pointer references a different
2915 // object in every iteration. E.g.:
2916 // for (i)
2917 // int *p = a[i];
2918 // ...
2919 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2920 if (!L->isLoopInvariant(Load->getPointerOperand()))
2921 return false;
2922 return true;
2923}
2924
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002925Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2926 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002927 if (!V->getType()->isPointerTy())
2928 return V;
2929 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2930 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2931 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002932 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2933 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002934 V = cast<Operator>(V)->getOperand(0);
2935 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002936 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00002937 return V;
2938 V = GA->getAliasee();
2939 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002940 // See if InstructionSimplify knows any relevant tricks.
2941 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002942 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002943 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002944 V = Simplified;
2945 continue;
2946 }
2947
Dan Gohmana4fcd242010-12-15 20:02:24 +00002948 return V;
2949 }
2950 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2951 }
2952 return V;
2953}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002954
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002955void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00002956 const DataLayout &DL, LoopInfo *LI,
2957 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002958 SmallPtrSet<Value *, 4> Visited;
2959 SmallVector<Value *, 4> Worklist;
2960 Worklist.push_back(V);
2961 do {
2962 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002963 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002964
David Blaikie70573dc2014-11-19 07:49:26 +00002965 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002966 continue;
2967
2968 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2969 Worklist.push_back(SI->getTrueValue());
2970 Worklist.push_back(SI->getFalseValue());
2971 continue;
2972 }
2973
2974 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00002975 // If this PHI changes the underlying object in every iteration of the
2976 // loop, don't look through it. Consider:
2977 // int **A;
2978 // for (i) {
2979 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
2980 // Curr = A[i];
2981 // *Prev, *Curr;
2982 //
2983 // Prev is tracking Curr one iteration behind so they refer to different
2984 // underlying objects.
2985 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
2986 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00002987 for (Value *IncValue : PN->incoming_values())
2988 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002989 continue;
2990 }
2991
2992 Objects.push_back(P);
2993 } while (!Worklist.empty());
2994}
2995
Sanjay Patelaee84212014-11-04 16:27:42 +00002996/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002997bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002998 for (const User *U : V->users()) {
2999 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003000 if (!II) return false;
3001
3002 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3003 II->getIntrinsicID() != Intrinsic::lifetime_end)
3004 return false;
3005 }
3006 return true;
3007}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003008
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003009bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3010 const Instruction *CtxI,
3011 const DominatorTree *DT,
3012 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003013 const Operator *Inst = dyn_cast<Operator>(V);
3014 if (!Inst)
3015 return false;
3016
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003017 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3018 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3019 if (C->canTrap())
3020 return false;
3021
3022 switch (Inst->getOpcode()) {
3023 default:
3024 return true;
3025 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003026 case Instruction::URem: {
3027 // x / y is undefined if y == 0.
3028 const APInt *V;
3029 if (match(Inst->getOperand(1), m_APInt(V)))
3030 return *V != 0;
3031 return false;
3032 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003033 case Instruction::SDiv:
3034 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003035 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003036 const APInt *Numerator, *Denominator;
3037 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3038 return false;
3039 // We cannot hoist this division if the denominator is 0.
3040 if (*Denominator == 0)
3041 return false;
3042 // It's safe to hoist if the denominator is not 0 or -1.
3043 if (*Denominator != -1)
3044 return true;
3045 // At this point we know that the denominator is -1. It is safe to hoist as
3046 // long we know that the numerator is not INT_MIN.
3047 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3048 return !Numerator->isMinSignedValue();
3049 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003050 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003051 }
3052 case Instruction::Load: {
3053 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003054 if (!LI->isUnordered() ||
3055 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003056 LI->getParent()->getParent()->hasFnAttribute(
3057 Attribute::SanitizeThread) ||
3058 // Speculative load may load data from dirty regions.
3059 LI->getParent()->getParent()->hasFnAttribute(
3060 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003061 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003062 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003063 return isDereferenceableAndAlignedPointer(
3064 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003065 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003066 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003067 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3068 switch (II->getIntrinsicID()) {
3069 // These synthetic intrinsics have no side-effects and just mark
3070 // information about their operands.
3071 // FIXME: There are other no-op synthetic instructions that potentially
3072 // should be considered at least *safe* to speculate...
3073 case Intrinsic::dbg_declare:
3074 case Intrinsic::dbg_value:
3075 return true;
3076
3077 case Intrinsic::bswap:
3078 case Intrinsic::ctlz:
3079 case Intrinsic::ctpop:
3080 case Intrinsic::cttz:
3081 case Intrinsic::objectsize:
3082 case Intrinsic::sadd_with_overflow:
3083 case Intrinsic::smul_with_overflow:
3084 case Intrinsic::ssub_with_overflow:
3085 case Intrinsic::uadd_with_overflow:
3086 case Intrinsic::umul_with_overflow:
3087 case Intrinsic::usub_with_overflow:
3088 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003089 // These intrinsics are defined to have the same behavior as libm
3090 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003091 case Intrinsic::sqrt:
3092 case Intrinsic::fma:
3093 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003094 return true;
3095 // These intrinsics are defined to have the same behavior as libm
3096 // functions, and the corresponding libm functions never set errno.
3097 case Intrinsic::trunc:
3098 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003099 case Intrinsic::fabs:
3100 case Intrinsic::minnum:
3101 case Intrinsic::maxnum:
3102 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003103 // These intrinsics are defined to have the same behavior as libm
3104 // functions, which never overflow when operating on the IEEE754 types
3105 // that we support, and never set errno otherwise.
3106 case Intrinsic::ceil:
3107 case Intrinsic::floor:
3108 case Intrinsic::nearbyint:
3109 case Intrinsic::rint:
3110 case Intrinsic::round:
3111 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003112 // TODO: are convert_{from,to}_fp16 safe?
3113 // TODO: can we list target-specific intrinsics here?
3114 default: break;
3115 }
3116 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003117 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003118 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003119 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003120 case Instruction::VAArg:
3121 case Instruction::Alloca:
3122 case Instruction::Invoke:
3123 case Instruction::PHI:
3124 case Instruction::Store:
3125 case Instruction::Ret:
3126 case Instruction::Br:
3127 case Instruction::IndirectBr:
3128 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003129 case Instruction::Unreachable:
3130 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003131 case Instruction::AtomicRMW:
3132 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003133 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003134 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003135 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003136 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003137 case Instruction::CatchRet:
3138 case Instruction::CleanupPad:
3139 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003140 return false; // Misc instructions which have effects
3141 }
3142}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003143
Quentin Colombet6443cce2015-08-06 18:44:34 +00003144bool llvm::mayBeMemoryDependent(const Instruction &I) {
3145 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3146}
3147
Sanjay Patelaee84212014-11-04 16:27:42 +00003148/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003149bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003150 assert(V->getType()->isPointerTy() && "V must be pointer type");
3151
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003152 // Alloca never returns null, malloc might.
3153 if (isa<AllocaInst>(V)) return true;
3154
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003155 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003156 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003157 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003158
Pete Cooper6b716212015-08-27 03:16:29 +00003159 // A global variable in address space 0 is non null unless extern weak.
3160 // Other address spaces may have null as a valid address for a global,
3161 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003162 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003163 return !GV->hasExternalWeakLinkage() &&
3164 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003165
Philip Reamescdb72f32014-10-20 22:40:55 +00003166 // A Load tagged w/nonnull metadata is never null.
3167 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003168 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003169
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003170 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003171 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003172 return true;
3173
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003174 return false;
3175}
David Majnemer491331a2015-01-02 07:29:43 +00003176
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003177static bool isKnownNonNullFromDominatingCondition(const Value *V,
3178 const Instruction *CtxI,
3179 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003180 assert(V->getType()->isPointerTy() && "V must be pointer type");
3181
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003182 unsigned NumUsesExplored = 0;
3183 for (auto U : V->users()) {
3184 // Avoid massive lists
3185 if (NumUsesExplored >= DomConditionsMaxUses)
3186 break;
3187 NumUsesExplored++;
3188 // Consider only compare instructions uniquely controlling a branch
3189 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3190 if (!Cmp)
3191 continue;
3192
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003193 for (auto *CmpU : Cmp->users()) {
3194 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3195 if (!BI)
3196 continue;
3197
3198 assert(BI->isConditional() && "uses a comparison!");
3199
3200 BasicBlock *NonNullSuccessor = nullptr;
3201 CmpInst::Predicate Pred;
3202
3203 if (match(const_cast<ICmpInst*>(Cmp),
3204 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3205 if (Pred == ICmpInst::ICMP_EQ)
3206 NonNullSuccessor = BI->getSuccessor(1);
3207 else if (Pred == ICmpInst::ICMP_NE)
3208 NonNullSuccessor = BI->getSuccessor(0);
3209 }
3210
3211 if (NonNullSuccessor) {
3212 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3213 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3214 return true;
3215 }
3216 }
3217 }
3218
3219 return false;
3220}
3221
3222bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3223 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3224 if (isKnownNonNull(V, TLI))
3225 return true;
3226
3227 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3228}
3229
David Majnemer491331a2015-01-02 07:29:43 +00003230OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003231 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003232 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003233 const Instruction *CxtI,
3234 const DominatorTree *DT) {
3235 // Multiplying n * m significant bits yields a result of n + m significant
3236 // bits. If the total number of significant bits does not exceed the
3237 // result bit width (minus 1), there is no overflow.
3238 // This means if we have enough leading zero bits in the operands
3239 // we can guarantee that the result does not overflow.
3240 // Ref: "Hacker's Delight" by Henry Warren
3241 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3242 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003243 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003244 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003245 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003246 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3247 DT);
3248 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3249 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003250 // Note that underestimating the number of zero bits gives a more
3251 // conservative answer.
3252 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3253 RHSKnownZero.countLeadingOnes();
3254 // First handle the easy case: if we have enough zero bits there's
3255 // definitely no overflow.
3256 if (ZeroBits >= BitWidth)
3257 return OverflowResult::NeverOverflows;
3258
3259 // Get the largest possible values for each operand.
3260 APInt LHSMax = ~LHSKnownZero;
3261 APInt RHSMax = ~RHSKnownZero;
3262
3263 // We know the multiply operation doesn't overflow if the maximum values for
3264 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003265 bool MaxOverflow;
3266 LHSMax.umul_ov(RHSMax, MaxOverflow);
3267 if (!MaxOverflow)
3268 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003269
David Majnemerc8a576b2015-01-02 07:29:47 +00003270 // We know it always overflows if multiplying the smallest possible values for
3271 // the operands also results in overflow.
3272 bool MinOverflow;
3273 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3274 if (MinOverflow)
3275 return OverflowResult::AlwaysOverflows;
3276
3277 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003278}
David Majnemer5310c1e2015-01-07 00:39:50 +00003279
3280OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003281 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003282 AssumptionCache *AC,
3283 const Instruction *CxtI,
3284 const DominatorTree *DT) {
3285 bool LHSKnownNonNegative, LHSKnownNegative;
3286 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3287 AC, CxtI, DT);
3288 if (LHSKnownNonNegative || LHSKnownNegative) {
3289 bool RHSKnownNonNegative, RHSKnownNegative;
3290 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3291 AC, CxtI, DT);
3292
3293 if (LHSKnownNegative && RHSKnownNegative) {
3294 // The sign bit is set in both cases: this MUST overflow.
3295 // Create a simple add instruction, and insert it into the struct.
3296 return OverflowResult::AlwaysOverflows;
3297 }
3298
3299 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3300 // The sign bit is clear in both cases: this CANNOT overflow.
3301 // Create a simple add instruction, and insert it into the struct.
3302 return OverflowResult::NeverOverflows;
3303 }
3304 }
3305
3306 return OverflowResult::MayOverflow;
3307}
James Molloy71b91c22015-05-11 14:42:20 +00003308
Jingyue Wu10fcea52015-08-20 18:27:04 +00003309static OverflowResult computeOverflowForSignedAdd(
3310 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3311 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3312 if (Add && Add->hasNoSignedWrap()) {
3313 return OverflowResult::NeverOverflows;
3314 }
3315
3316 bool LHSKnownNonNegative, LHSKnownNegative;
3317 bool RHSKnownNonNegative, RHSKnownNegative;
3318 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3319 AC, CxtI, DT);
3320 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3321 AC, CxtI, DT);
3322
3323 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3324 (LHSKnownNegative && RHSKnownNonNegative)) {
3325 // The sign bits are opposite: this CANNOT overflow.
3326 return OverflowResult::NeverOverflows;
3327 }
3328
3329 // The remaining code needs Add to be available. Early returns if not so.
3330 if (!Add)
3331 return OverflowResult::MayOverflow;
3332
3333 // If the sign of Add is the same as at least one of the operands, this add
3334 // CANNOT overflow. This is particularly useful when the sum is
3335 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3336 // operands.
3337 bool LHSOrRHSKnownNonNegative =
3338 (LHSKnownNonNegative || RHSKnownNonNegative);
3339 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3340 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3341 bool AddKnownNonNegative, AddKnownNegative;
3342 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3343 /*Depth=*/0, AC, CxtI, DT);
3344 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3345 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3346 return OverflowResult::NeverOverflows;
3347 }
3348 }
3349
3350 return OverflowResult::MayOverflow;
3351}
3352
3353OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3354 const DataLayout &DL,
3355 AssumptionCache *AC,
3356 const Instruction *CxtI,
3357 const DominatorTree *DT) {
3358 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3359 Add, DL, AC, CxtI, DT);
3360}
3361
3362OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3363 const DataLayout &DL,
3364 AssumptionCache *AC,
3365 const Instruction *CxtI,
3366 const DominatorTree *DT) {
3367 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3368}
3369
Jingyue Wu42f1d672015-07-28 18:22:40 +00003370bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3371 // FIXME: This conservative implementation can be relaxed. E.g. most
3372 // atomic operations are guaranteed to terminate on most platforms
3373 // and most functions terminate.
3374
3375 return !I->isAtomic() && // atomics may never succeed on some platforms
3376 !isa<CallInst>(I) && // could throw and might not terminate
3377 !isa<InvokeInst>(I) && // might not terminate and could throw to
3378 // non-successor (see bug 24185 for details).
3379 !isa<ResumeInst>(I) && // has no successors
3380 !isa<ReturnInst>(I); // has no successors
3381}
3382
3383bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3384 const Loop *L) {
3385 // The loop header is guaranteed to be executed for every iteration.
3386 //
3387 // FIXME: Relax this constraint to cover all basic blocks that are
3388 // guaranteed to be executed at every iteration.
3389 if (I->getParent() != L->getHeader()) return false;
3390
3391 for (const Instruction &LI : *L->getHeader()) {
3392 if (&LI == I) return true;
3393 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3394 }
3395 llvm_unreachable("Instruction not contained in its own parent basic block.");
3396}
3397
3398bool llvm::propagatesFullPoison(const Instruction *I) {
3399 switch (I->getOpcode()) {
3400 case Instruction::Add:
3401 case Instruction::Sub:
3402 case Instruction::Xor:
3403 case Instruction::Trunc:
3404 case Instruction::BitCast:
3405 case Instruction::AddrSpaceCast:
3406 // These operations all propagate poison unconditionally. Note that poison
3407 // is not any particular value, so xor or subtraction of poison with
3408 // itself still yields poison, not zero.
3409 return true;
3410
3411 case Instruction::AShr:
3412 case Instruction::SExt:
3413 // For these operations, one bit of the input is replicated across
3414 // multiple output bits. A replicated poison bit is still poison.
3415 return true;
3416
3417 case Instruction::Shl: {
3418 // Left shift *by* a poison value is poison. The number of
3419 // positions to shift is unsigned, so no negative values are
3420 // possible there. Left shift by zero places preserves poison. So
3421 // it only remains to consider left shift of poison by a positive
3422 // number of places.
3423 //
3424 // A left shift by a positive number of places leaves the lowest order bit
3425 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3426 // make the poison operand violate that flag, yielding a fresh full-poison
3427 // value.
3428 auto *OBO = cast<OverflowingBinaryOperator>(I);
3429 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3430 }
3431
3432 case Instruction::Mul: {
3433 // A multiplication by zero yields a non-poison zero result, so we need to
3434 // rule out zero as an operand. Conservatively, multiplication by a
3435 // non-zero constant is not multiplication by zero.
3436 //
3437 // Multiplication by a non-zero constant can leave some bits
3438 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3439 // order bit unpoisoned. So we need to consider that.
3440 //
3441 // Multiplication by 1 preserves poison. If the multiplication has a
3442 // no-wrap flag, then we can make the poison operand violate that flag
3443 // when multiplied by any integer other than 0 and 1.
3444 auto *OBO = cast<OverflowingBinaryOperator>(I);
3445 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3446 for (Value *V : OBO->operands()) {
3447 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3448 // A ConstantInt cannot yield poison, so we can assume that it is
3449 // the other operand that is poison.
3450 return !CI->isZero();
3451 }
3452 }
3453 }
3454 return false;
3455 }
3456
3457 case Instruction::GetElementPtr:
3458 // A GEP implicitly represents a sequence of additions, subtractions,
3459 // truncations, sign extensions and multiplications. The multiplications
3460 // are by the non-zero sizes of some set of types, so we do not have to be
3461 // concerned with multiplication by zero. If the GEP is in-bounds, then
3462 // these operations are implicitly no-signed-wrap so poison is propagated
3463 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3464 return cast<GEPOperator>(I)->isInBounds();
3465
3466 default:
3467 return false;
3468 }
3469}
3470
3471const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3472 switch (I->getOpcode()) {
3473 case Instruction::Store:
3474 return cast<StoreInst>(I)->getPointerOperand();
3475
3476 case Instruction::Load:
3477 return cast<LoadInst>(I)->getPointerOperand();
3478
3479 case Instruction::AtomicCmpXchg:
3480 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3481
3482 case Instruction::AtomicRMW:
3483 return cast<AtomicRMWInst>(I)->getPointerOperand();
3484
3485 case Instruction::UDiv:
3486 case Instruction::SDiv:
3487 case Instruction::URem:
3488 case Instruction::SRem:
3489 return I->getOperand(1);
3490
3491 default:
3492 return nullptr;
3493 }
3494}
3495
3496bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3497 // We currently only look for uses of poison values within the same basic
3498 // block, as that makes it easier to guarantee that the uses will be
3499 // executed given that PoisonI is executed.
3500 //
3501 // FIXME: Expand this to consider uses beyond the same basic block. To do
3502 // this, look out for the distinction between post-dominance and strong
3503 // post-dominance.
3504 const BasicBlock *BB = PoisonI->getParent();
3505
3506 // Set of instructions that we have proved will yield poison if PoisonI
3507 // does.
3508 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003509 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003510 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003511 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003512
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003513 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003514
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003515 unsigned Iter = 0;
3516 while (Iter++ < MaxDepth) {
3517 for (auto &I : make_range(Begin, End)) {
3518 if (&I != PoisonI) {
3519 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3520 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3521 return true;
3522 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3523 return false;
3524 }
3525
3526 // Mark poison that propagates from I through uses of I.
3527 if (YieldsPoison.count(&I)) {
3528 for (const User *User : I.users()) {
3529 const Instruction *UserI = cast<Instruction>(User);
3530 if (propagatesFullPoison(UserI))
3531 YieldsPoison.insert(User);
3532 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003533 }
3534 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003535
3536 if (auto *NextBB = BB->getSingleSuccessor()) {
3537 if (Visited.insert(NextBB).second) {
3538 BB = NextBB;
3539 Begin = BB->getFirstNonPHI()->getIterator();
3540 End = BB->end();
3541 continue;
3542 }
3543 }
3544
3545 break;
3546 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003547 return false;
3548}
3549
James Molloy134bec22015-08-11 09:12:57 +00003550static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3551 if (FMF.noNaNs())
3552 return true;
3553
3554 if (auto *C = dyn_cast<ConstantFP>(V))
3555 return !C->isNaN();
3556 return false;
3557}
3558
3559static bool isKnownNonZero(Value *V) {
3560 if (auto *C = dyn_cast<ConstantFP>(V))
3561 return !C->isZero();
3562 return false;
3563}
3564
3565static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3566 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003567 Value *CmpLHS, Value *CmpRHS,
3568 Value *TrueVal, Value *FalseVal,
3569 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003570 LHS = CmpLHS;
3571 RHS = CmpRHS;
3572
James Molloy134bec22015-08-11 09:12:57 +00003573 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3574 // return inconsistent results between implementations.
3575 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3576 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3577 // Therefore we behave conservatively and only proceed if at least one of the
3578 // operands is known to not be zero, or if we don't care about signed zeroes.
3579 switch (Pred) {
3580 default: break;
3581 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3582 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3583 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3584 !isKnownNonZero(CmpRHS))
3585 return {SPF_UNKNOWN, SPNB_NA, false};
3586 }
3587
3588 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3589 bool Ordered = false;
3590
3591 // When given one NaN and one non-NaN input:
3592 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3593 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3594 // ordered comparison fails), which could be NaN or non-NaN.
3595 // so here we discover exactly what NaN behavior is required/accepted.
3596 if (CmpInst::isFPPredicate(Pred)) {
3597 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3598 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3599
3600 if (LHSSafe && RHSSafe) {
3601 // Both operands are known non-NaN.
3602 NaNBehavior = SPNB_RETURNS_ANY;
3603 } else if (CmpInst::isOrdered(Pred)) {
3604 // An ordered comparison will return false when given a NaN, so it
3605 // returns the RHS.
3606 Ordered = true;
3607 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003608 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003609 NaNBehavior = SPNB_RETURNS_NAN;
3610 else if (RHSSafe)
3611 NaNBehavior = SPNB_RETURNS_OTHER;
3612 else
3613 // Completely unsafe.
3614 return {SPF_UNKNOWN, SPNB_NA, false};
3615 } else {
3616 Ordered = false;
3617 // An unordered comparison will return true when given a NaN, so it
3618 // returns the LHS.
3619 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003620 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003621 NaNBehavior = SPNB_RETURNS_OTHER;
3622 else if (RHSSafe)
3623 NaNBehavior = SPNB_RETURNS_NAN;
3624 else
3625 // Completely unsafe.
3626 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003627 }
3628 }
3629
James Molloy71b91c22015-05-11 14:42:20 +00003630 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003631 std::swap(CmpLHS, CmpRHS);
3632 Pred = CmpInst::getSwappedPredicate(Pred);
3633 if (NaNBehavior == SPNB_RETURNS_NAN)
3634 NaNBehavior = SPNB_RETURNS_OTHER;
3635 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3636 NaNBehavior = SPNB_RETURNS_NAN;
3637 Ordered = !Ordered;
3638 }
3639
3640 // ([if]cmp X, Y) ? X : Y
3641 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003642 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003643 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003644 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003645 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003646 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003647 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003648 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003649 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003650 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003651 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3652 case FCmpInst::FCMP_UGT:
3653 case FCmpInst::FCMP_UGE:
3654 case FCmpInst::FCMP_OGT:
3655 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3656 case FCmpInst::FCMP_ULT:
3657 case FCmpInst::FCMP_ULE:
3658 case FCmpInst::FCMP_OLT:
3659 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003660 }
3661 }
3662
3663 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3664 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3665 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3666
3667 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3668 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3669 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003670 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003671 }
3672
3673 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3674 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3675 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003676 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003677 }
3678 }
Sanjoy Dasc9d6d8b2016-03-31 05:14:29 +00003679
James Molloy71b91c22015-05-11 14:42:20 +00003680 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3681 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
Sanjoy Das56df0ec2016-03-31 05:14:34 +00003682 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3683 ~C1->getValue() == C2->getValue() &&
James Molloy71b91c22015-05-11 14:42:20 +00003684 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3685 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3686 LHS = TrueVal;
3687 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003688 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003689 }
3690 }
3691 }
3692
3693 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3694
James Molloy134bec22015-08-11 09:12:57 +00003695 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003696}
James Molloy270ef8c2015-05-15 16:04:50 +00003697
James Molloy569cea62015-09-02 17:25:25 +00003698static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3699 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003700 CastInst *CI = dyn_cast<CastInst>(V1);
3701 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003702 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003703 return nullptr;
3704 *CastOp = CI->getOpcode();
3705
David Majnemerd2a074b2016-04-29 18:40:34 +00003706 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00003707 // If V1 and V2 are both the same cast from the same type, we can look
3708 // through V1.
3709 if (CI2->getOpcode() == CI->getOpcode() &&
3710 CI2->getSrcTy() == CI->getSrcTy())
3711 return CI2->getOperand(0);
3712 return nullptr;
3713 } else if (!C) {
3714 return nullptr;
3715 }
3716
James Molloy2b21a7c2015-05-20 18:41:25 +00003717 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00003718 return ConstantExpr::getTrunc(C, CI->getSrcTy());
3719
3720 if (isa<TruncInst>(CI))
3721 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3722
James Molloy134bec22015-08-11 09:12:57 +00003723 if (isa<FPTruncInst>(CI))
3724 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3725
3726 if (isa<FPExtInst>(CI))
3727 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3728
David Majnemerd2a074b2016-04-29 18:40:34 +00003729 // Sophisticated constants can have values which we cannot easily reason
3730 // about. Skip them for the fp<->int case.
3731 if (isa<ConstantExpr>(C))
3732 return nullptr;
3733
3734 Constant *CastedTo = nullptr;
3735
3736 // This is only valid if the truncated value can be sign-extended
3737 // back to the original value.
3738 if (isa<SExtInst>(CI) && CmpI->isSigned())
3739 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3740
3741 if (isa<FPToUIInst>(CI))
3742 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3743
3744 if (isa<FPToSIInst>(CI))
3745 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3746
3747 if (isa<UIToFPInst>(CI))
3748 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3749
3750 if (isa<SIToFPInst>(CI))
3751 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3752
3753 if (!CastedTo)
3754 return nullptr;
3755
3756 Constant *CastedBack =
3757 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3758 // Make sure the cast doesn't lose any information.
3759 if (CastedBack != C)
3760 return nullptr;
3761
3762 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00003763}
3764
James Molloy134bec22015-08-11 09:12:57 +00003765SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00003766 Value *&LHS, Value *&RHS,
3767 Instruction::CastOps *CastOp) {
3768 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003769 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003770
James Molloy134bec22015-08-11 09:12:57 +00003771 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3772 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003773
James Molloy134bec22015-08-11 09:12:57 +00003774 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003775 Value *CmpLHS = CmpI->getOperand(0);
3776 Value *CmpRHS = CmpI->getOperand(1);
3777 Value *TrueVal = SI->getTrueValue();
3778 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003779 FastMathFlags FMF;
3780 if (isa<FPMathOperator>(CmpI))
3781 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003782
3783 // Bail out early.
3784 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003785 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003786
3787 // Deal with type mismatches.
3788 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003789 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003790 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003791 cast<CastInst>(TrueVal)->getOperand(0), C,
3792 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00003793 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003794 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003795 C, cast<CastInst>(FalseVal)->getOperand(0),
3796 LHS, RHS);
3797 }
James Molloy134bec22015-08-11 09:12:57 +00003798 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00003799 LHS, RHS);
3800}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00003801
3802ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3803 const unsigned NumRanges = Ranges.getNumOperands() / 2;
3804 assert(NumRanges >= 1 && "Must have at least one range!");
3805 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3806
3807 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3808 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3809
3810 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3811
3812 for (unsigned i = 1; i < NumRanges; ++i) {
3813 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3814 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3815
3816 // Note: unionWith will potentially create a range that contains values not
3817 // contained in any of the original N ranges.
3818 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3819 }
3820
3821 return CR;
3822}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003823
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003824/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003825static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3826 const DataLayout &DL, unsigned Depth,
3827 AssumptionCache *AC, const Instruction *CxtI,
3828 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003829 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003830 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3831 return true;
3832
3833 switch (Pred) {
3834 default:
3835 return false;
3836
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003837 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003838 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003839
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003840 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003841 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003842 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003843 return false;
3844 }
3845
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003846 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003847 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003848
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003849 // LHS u<= LHS +_{nuw} C for any C
3850 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00003851 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00003852
3853 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3854 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3855 const APInt *&CA, const APInt *&CB) {
3856 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3857 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3858 return true;
3859
3860 // If X & C == 0 then (X | C) == X +_{nuw} C
3861 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3862 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3863 unsigned BitWidth = CA->getBitWidth();
3864 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3865 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3866
3867 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3868 return true;
3869 }
3870
3871 return false;
3872 };
3873
3874 Value *X;
3875 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003876 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
3877 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00003878
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003879 return false;
3880 }
3881 }
3882}
3883
3884/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00003885/// ALHS ARHS" is true. Otherwise, return None.
3886static Optional<bool>
3887isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
3888 Value *BLHS, Value *BRHS, const DataLayout &DL,
3889 unsigned Depth, AssumptionCache *AC,
3890 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003891 switch (Pred) {
3892 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003893 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003894
3895 case CmpInst::ICMP_SLT:
3896 case CmpInst::ICMP_SLE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003897 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
3898 DT) &&
3899 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3900 return true;
3901 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003902
3903 case CmpInst::ICMP_ULT:
3904 case CmpInst::ICMP_ULE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003905 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
3906 DT) &&
3907 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3908 return true;
3909 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003910 }
3911}
3912
Chad Rosier41dd31f2016-04-20 19:15:26 +00003913/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
3914/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
3915/// BRHS" is false. Otherwise, return None if we can't infer anything.
3916static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
3917 Value *ALHS, Value *ARHS,
3918 CmpInst::Predicate BPred,
3919 Value *BLHS, Value *BRHS) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003920 // The operands of the two compares must match.
3921 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
3922 bool IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
3923 if (!IsMatchingOps && !IsSwappedOps)
Chad Rosier41dd31f2016-04-20 19:15:26 +00003924 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003925
3926 // Canonicalize the operands so they're matching.
3927 if (IsSwappedOps) {
3928 std::swap(BLHS, BRHS);
3929 BPred = ICmpInst::getSwappedPredicate(BPred);
3930 }
Chad Rosier99bc4802016-04-21 16:18:02 +00003931 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003932 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00003933 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00003934 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003935
Chad Rosier41dd31f2016-04-20 19:15:26 +00003936 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003937}
3938
Chad Rosier41dd31f2016-04-20 19:15:26 +00003939Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00003940 const DataLayout &DL, bool InvertAPred,
3941 unsigned Depth, AssumptionCache *AC,
Chad Rosier41dd31f2016-04-20 19:15:26 +00003942 const Instruction *CxtI,
3943 const DominatorTree *DT) {
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003944 assert(LHS->getType() == RHS->getType() && "mismatched type");
3945 Type *OpTy = LHS->getType();
3946 assert(OpTy->getScalarType()->isIntegerTy(1));
3947
3948 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00003949 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003950 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003951
3952 if (OpTy->isVectorTy())
3953 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00003954 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003955 assert(OpTy->isIntegerTy(1) && "implied by above");
3956
3957 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003958 Value *ALHS, *ARHS;
3959 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003960
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003961 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
3962 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00003963 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003964
Chad Rosiere2cbd132016-04-25 17:23:36 +00003965 if (InvertAPred)
3966 APred = CmpInst::getInversePredicate(APred);
3967
Chad Rosier41dd31f2016-04-20 19:15:26 +00003968 Optional<bool> Implication =
3969 isImpliedCondMatchingOperands(APred, ALHS, ARHS, BPred, BLHS, BRHS);
3970 if (Implication)
3971 return Implication;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003972
Chad Rosier41dd31f2016-04-20 19:15:26 +00003973 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003974 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
3975 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003976
Chad Rosier41dd31f2016-04-20 19:15:26 +00003977 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003978}