blob: 0d1d57d648686bd75a131eedd895d2ef79081174 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Justin Bognerc2bf63d2016-04-26 23:39:29 +000023#include "llvm/Transforms/Scalar/Reassociate.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000024#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/APInt.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000026#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/PostOrderIterator.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include "llvm/ADT/SetVector.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000029#include "llvm/ADT/SmallPtrSet.h"
Fiona Glaserb8a330c2017-12-12 19:18:02 +000030#include "llvm/ADT/SmallSet.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000031#include "llvm/ADT/SmallVector.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000032#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000033#include "llvm/Analysis/GlobalsModRef.h"
David Blaikie2be39222018-03-21 22:34:23 +000034#include "llvm/Analysis/Utils/Local.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000035#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000036#include "llvm/IR/Argument.h"
37#include "llvm/IR/BasicBlock.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000038#include "llvm/IR/CFG.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000039#include "llvm/IR/Constant.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000041#include "llvm/IR/Function.h"
42#include "llvm/IR/IRBuilder.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000043#include "llvm/IR/InstrTypes.h"
44#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000045#include "llvm/IR/Instructions.h"
Bjorn Petterssonbec2a7c2018-04-25 09:23:56 +000046#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000047#include "llvm/IR/Operator.h"
48#include "llvm/IR/PassManager.h"
Craig Toppercbac691c2017-06-21 16:07:09 +000049#include "llvm/IR/PatternMatch.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000050#include "llvm/IR/Type.h"
51#include "llvm/IR/User.h"
52#include "llvm/IR/Value.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000053#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000054#include "llvm/Pass.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000055#include "llvm/Support/Casting.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000056#include "llvm/Support/Debug.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000057#include "llvm/Support/ErrorHandling.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000058#include "llvm/Support/raw_ostream.h"
Justin Bognerc2bf63d2016-04-26 23:39:29 +000059#include "llvm/Transforms/Scalar.h"
Chris Lattner1e506502005-05-07 21:59:39 +000060#include <algorithm>
Eugene Zelenko306d2992017-10-18 21:46:47 +000061#include <cassert>
62#include <utility>
63
Chris Lattner49525f82004-01-09 06:02:20 +000064using namespace llvm;
Justin Bognerc2bf63d2016-04-26 23:39:29 +000065using namespace reassociate;
Brian Gaeke960707c2003-11-11 22:41:34 +000066
Chandler Carruth964daaa2014-04-22 02:55:47 +000067#define DEBUG_TYPE "reassociate"
68
Chris Lattner79a42ac2006-12-19 21:40:18 +000069STATISTIC(NumChanged, "Number of insts reassociated");
70STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000072
Devang Patel702f45d2008-11-21 21:00:20 +000073#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000074/// Print out the expression identified in the Ops list.
Chris Lattner38abecb2009-12-31 18:40:32 +000075static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000076 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000077 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000078 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000079 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000080 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000081 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000082 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000083 }
Chris Lattner4c065092006-03-04 09:31:13 +000084}
Devang Patelcb181bb2008-11-21 20:00:59 +000085#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000086
Justin Bognerc2bf63d2016-04-26 23:39:29 +000087/// Utility class representing a non-constant Xor-operand. We classify
88/// non-constant Xor-Operands into two categories:
89/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
90/// C2)
91/// C2.1) The operand is in the form of "X | C", where C is a non-zero
92/// constant.
93/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94/// operand as "E | 0"
95class llvm::reassociate::XorOpnd {
96public:
97 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000098
Justin Bognerc2bf63d2016-04-26 23:39:29 +000099 bool isInvalid() const { return SymbolicPart == nullptr; }
100 bool isOrExpr() const { return isOr; }
101 Value *getValue() const { return OrigVal; }
102 Value *getSymbolicPart() const { return SymbolicPart; }
103 unsigned getSymbolicRank() const { return SymbolicRank; }
104 const APInt &getConstPart() const { return ConstPart; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000105
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000106 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000108
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000109private:
110 Value *OrigVal;
111 Value *SymbolicPart;
112 APInt ConstPart;
113 unsigned SymbolicRank;
114 bool isOr;
115};
Chris Lattnerc0f58002002-05-08 22:19:27 +0000116
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000117XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000118 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000119 OrigVal = V;
120 Instruction *I = dyn_cast<Instruction>(V);
121 SymbolicRank = 0;
122
123 if (I && (I->getOpcode() == Instruction::Or ||
124 I->getOpcode() == Instruction::And)) {
125 Value *V0 = I->getOperand(0);
126 Value *V1 = I->getOperand(1);
Craig Toppercbac691c2017-06-21 16:07:09 +0000127 const APInt *C;
128 if (match(V0, PatternMatch::m_APInt(C)))
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000129 std::swap(V0, V1);
130
Craig Toppercbac691c2017-06-21 16:07:09 +0000131 if (match(V1, PatternMatch::m_APInt(C))) {
132 ConstPart = *C;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000133 SymbolicPart = V0;
134 isOr = (I->getOpcode() == Instruction::Or);
135 return;
136 }
137 }
138
139 // view the operand as "V | 0"
140 SymbolicPart = V;
Craig Toppercbac691c2017-06-21 16:07:09 +0000141 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000142 isOr = true;
143}
144
Sanjay Patelc96ee082015-04-22 18:04:46 +0000145/// Return true if V is an instruction of the specified opcode and if it
146/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000147static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Sanjay Patel64fd3332017-11-14 23:03:56 +0000148 auto *I = dyn_cast<Instruction>(V);
149 if (I && I->hasOneUse() && I->getOpcode() == Opcode)
150 if (!isa<FPMathOperator>(I) || I->isFast())
151 return cast<BinaryOperator>(I);
Craig Topperf40110f2014-04-25 05:29:35 +0000152 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000153}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000154
Chad Rosier11ab9412014-08-14 15:23:01 +0000155static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
156 unsigned Opcode2) {
Sanjay Patel64fd3332017-11-14 23:03:56 +0000157 auto *I = dyn_cast<Instruction>(V);
158 if (I && I->hasOneUse() &&
159 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
160 if (!isa<FPMathOperator>(I) || I->isFast())
161 return cast<BinaryOperator>(I);
Chad Rosier11ab9412014-08-14 15:23:01 +0000162 return nullptr;
163}
164
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000165void ReassociatePass::BuildRankMap(Function &F,
166 ReversePostOrderTraversal<Function*> &RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000167 unsigned Rank = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000168
Chad Rosierf59e5482014-11-14 15:01:38 +0000169 // Assign distinct ranks to function arguments.
Davide Italianob53b0752017-08-07 01:57:21 +0000170 for (auto &Arg : F.args()) {
171 ValueRankMap[&Arg] = ++Rank;
172 DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
173 << "\n");
Chad Rosierf59e5482014-11-14 15:01:38 +0000174 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000175
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000176 // Traverse basic blocks in ReversePostOrder
Benjamin Kramer135f7352016-06-26 12:28:59 +0000177 for (BasicBlock *BB : RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000178 unsigned BBRank = RankMap[BB] = ++Rank << 16;
Chris Lattner9f284e02005-05-08 20:57:04 +0000179
180 // Walk the basic block, adding precomputed ranks for any instructions that
181 // we cannot move. This ensures that the ranks for these instructions are
182 // all different in the block.
Benjamin Kramer135f7352016-06-26 12:28:59 +0000183 for (Instruction &I : *BB)
184 if (mayBeMemoryDependent(I))
185 ValueRankMap[&I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000186 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000187}
188
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000189unsigned ReassociatePass::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000190 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000191 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000192 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
193 return 0; // Otherwise it's a global or constant, rank 0.
194 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000195
Chris Lattner17229a72010-01-01 00:01:34 +0000196 if (unsigned Rank = ValueRankMap[I])
197 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000198
Chris Lattnerf43e9742005-05-07 04:08:02 +0000199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200 // we can reassociate expressions for code motion! Since we do not recurse
201 // for PHI nodes, we cannot have infinite recursion here, because there
202 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000203 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
Sanjay Patela2017872018-04-19 17:56:36 +0000204 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
Chris Lattnerf43e9742005-05-07 04:08:02 +0000205 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000206
Chris Lattner6e2086d2005-05-08 00:08:33 +0000207 // If this is a not or neg instruction, do not count it for rank. This
208 // assures us that X and ~X will have the same rank.
Sanjay Patela2017872018-04-19 17:56:36 +0000209 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
210 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000211 ++Rank;
212
Chad Rosierf59e5482014-11-14 15:01:38 +0000213 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000214
Chris Lattner17229a72010-01-01 00:01:34 +0000215 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000216}
217
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000218// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000219void ReassociatePass::canonicalizeOperands(Instruction *I) {
Chad Rosierf8b55f12014-11-14 17:05:59 +0000220 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
221 assert(I->isCommutative() && "Expected commutative operator.");
222
223 Value *LHS = I->getOperand(0);
224 Value *RHS = I->getOperand(1);
Davide Italianoa5cdc222017-08-07 01:49:09 +0000225 if (LHS == RHS || isa<Constant>(RHS))
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000226 return;
Davide Italianoa5cdc222017-08-07 01:49:09 +0000227 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
Chad Rosierf8b55f12014-11-14 17:05:59 +0000228 cast<BinaryOperator>(I)->swapOperands();
229}
230
Chad Rosier11ab9412014-08-14 15:23:01 +0000231static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
232 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000233 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000234 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
235 else {
236 BinaryOperator *Res =
237 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
238 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
239 return Res;
240 }
241}
242
243static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
244 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000245 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000246 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
247 else {
248 BinaryOperator *Res =
249 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
250 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
251 return Res;
252 }
253}
254
255static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
256 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000257 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000258 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
259 else {
260 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
261 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
262 return Res;
263 }
264}
265
Sanjay Patelc96ee082015-04-22 18:04:46 +0000266/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000267static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000268 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000269 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
270 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000271
Chad Rosier11ab9412014-08-14 15:23:01 +0000272 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
273 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000274 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000275 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000276 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000277 return Res;
278}
279
Sanjay Patelc96ee082015-04-22 18:04:46 +0000280/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
281/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000282/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
283/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
284/// even x in Bitwidth-bit arithmetic.
285static unsigned CarmichaelShift(unsigned Bitwidth) {
286 if (Bitwidth < 3)
287 return Bitwidth - 1;
288 return Bitwidth - 2;
289}
290
Sanjay Patelc96ee082015-04-22 18:04:46 +0000291/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000292/// reducing the combined weight using any special properties of the operation.
293/// The existing weight LHS represents the computation X op X op ... op X where
294/// X occurs LHS times. The combined weight represents X op X op ... op X with
295/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
296/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
297/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
298static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
299 // If we were working with infinite precision arithmetic then the combined
300 // weight would be LHS + RHS. But we are using finite precision arithmetic,
301 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
302 // for nilpotent operations and addition, but not for idempotent operations
303 // and multiplication), so it is important to correctly reduce the combined
304 // weight back into range if wrapping would be wrong.
305
306 // If RHS is zero then the weight didn't change.
307 if (RHS.isMinValue())
308 return;
309 // If LHS is zero then the combined weight is RHS.
310 if (LHS.isMinValue()) {
311 LHS = RHS;
312 return;
313 }
314 // From this point on we know that neither LHS nor RHS is zero.
315
316 if (Instruction::isIdempotent(Opcode)) {
317 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
318 // weight of 1. Keeping weights at zero or one also means that wrapping is
319 // not a problem.
320 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
321 return; // Return a weight of 1.
322 }
323 if (Instruction::isNilpotent(Opcode)) {
324 // Nilpotent means X op X === 0, so reduce weights modulo 2.
325 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
326 LHS = 0; // 1 + 1 === 0 modulo 2.
327 return;
328 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000329 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000330 // TODO: Reduce the weight by exploiting nsw/nuw?
331 LHS += RHS;
332 return;
333 }
334
Chad Rosier11ab9412014-08-14 15:23:01 +0000335 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
336 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000337 unsigned Bitwidth = LHS.getBitWidth();
338 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
339 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
340 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
341 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
342 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
343 // which by a happy accident means that they can always be represented using
344 // Bitwidth bits.
345 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
346 // the Carmichael number).
347 if (Bitwidth > 3) {
348 /// CM - The value of Carmichael's lambda function.
349 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
350 // Any weight W >= Threshold can be replaced with W - CM.
351 APInt Threshold = CM + Bitwidth;
352 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
353 // For Bitwidth 4 or more the following sum does not overflow.
354 LHS += RHS;
355 while (LHS.uge(Threshold))
356 LHS -= CM;
357 } else {
358 // To avoid problems with overflow do everything the same as above but using
359 // a larger type.
360 unsigned CM = 1U << CarmichaelShift(Bitwidth);
361 unsigned Threshold = CM + Bitwidth;
362 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
363 "Weights not reduced!");
364 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
365 while (Total >= Threshold)
366 Total -= CM;
367 LHS = Total;
368 }
369}
370
Eugene Zelenko306d2992017-10-18 21:46:47 +0000371using RepeatedValue = std::pair<Value*, APInt>;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000372
Sanjay Patelc96ee082015-04-22 18:04:46 +0000373/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000374/// nodes in Ops along with their weights (how many times the leaf occurs). The
375/// original expression is the same as
376/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000377/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000378/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
379/// op
380/// ...
381/// op
382/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
383///
Duncan Sandsac852c72012-11-15 09:58:38 +0000384/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000385///
386/// This routine may modify the function, in which case it returns 'true'. The
387/// changes it makes may well be destructive, changing the value computed by 'I'
388/// to something completely different. Thus if the routine returns 'true' then
389/// you MUST either replace I with a new expression computed from the Ops array,
390/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000391///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000392/// A leaf node is either not a binary operation of the same kind as the root
393/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
394/// opcode), or is the same kind of binary operator but has a use which either
395/// does not belong to the expression, or does belong to the expression but is
396/// a leaf node. Every leaf node has at least one use that is a non-leaf node
397/// of the expression, while for non-leaf nodes (except for the root 'I') every
398/// use is a non-leaf node of the expression.
399///
400/// For example:
401/// expression graph node names
402///
403/// + | I
404/// / \ |
405/// + + | A, B
406/// / \ / \ |
407/// * + * | C, D, E
408/// / \ / \ / \ |
409/// + * | F, G
410///
411/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000412/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000413///
414/// The expression is maximal: if some instruction is a binary operator of the
415/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
416/// then the instruction also belongs to the expression, is not a leaf node of
417/// it, and its operands also belong to the expression (but may be leaf nodes).
418///
419/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
420/// order to ensure that every non-root node in the expression has *exactly one*
421/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000422/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000423/// RewriteExprTree to put the values back in if the routine indicates that it
424/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000425///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000426/// In the above example either the right operand of A or the left operand of B
427/// will be replaced by undef. If it is B's operand then this gives:
428///
429/// + | I
430/// / \ |
431/// + + | A, B - operand of B replaced with undef
432/// / \ \ |
433/// * + * | C, D, E
434/// / \ / \ / \ |
435/// + * | F, G
436///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000437/// Note that such undef operands can only be reached by passing through 'I'.
438/// For example, if you visit operands recursively starting from a leaf node
439/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000440/// which requires passing through a phi node.
441///
442/// Note that this routine may also mutate binary operators of the wrong type
443/// that have all uses inside the expression (i.e. only used by non-leaf nodes
444/// of the expression) if it can turn them into binary operators of the right
445/// type and thus make the expression bigger.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000446static bool LinearizeExprTree(BinaryOperator *I,
447 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000448 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000449 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
450 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000451 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000452 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000453
454 // Visit all operands of the expression, keeping track of their weight (the
455 // number of paths from the expression root to the operand, or if you like
456 // the number of times that operand occurs in the linearized expression).
457 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
458 // while A has weight two.
459
460 // Worklist of non-leaf nodes (their operands are in the expression too) along
461 // with their weights, representing a certain number of paths to the operator.
462 // If an operator occurs in the worklist multiple times then we found multiple
463 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000464 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
465 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000466 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000467
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000468 // Leaves of the expression are values that either aren't the right kind of
469 // operation (eg: a constant, or a multiply in an add tree), or are, but have
470 // some uses that are not inside the expression. For example, in I = X + X,
471 // X = A + B, the value X has two uses (by I) that are in the expression. If
472 // X has any other uses, for example in a return instruction, then we consider
473 // X to be a leaf, and won't analyze it further. When we first visit a value,
474 // if it has more than one use then at first we conservatively consider it to
475 // be a leaf. Later, as the expression is explored, we may discover some more
476 // uses of the value from inside the expression. If all uses turn out to be
477 // from within the expression (and the value is a binary operator of the right
478 // kind) then the value is no longer considered to be a leaf, and its operands
479 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000480
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000481 // Leaves - Keeps track of the set of putative leaves as well as the number of
482 // paths to each leaf seen so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000483 using LeafMap = DenseMap<Value *, APInt>;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000484 LeafMap Leaves; // Leaf -> Total weight so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000485 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000486
487#ifndef NDEBUG
Eugene Zelenko306d2992017-10-18 21:46:47 +0000488 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000489#endif
490 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000491 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000492 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000493
494 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
495 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000496 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000497 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
498 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
499
500 // If this is a binary operation of the right kind with only one use then
501 // add its operands to the expression.
502 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000503 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000504 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
505 Worklist.push_back(std::make_pair(BO, Weight));
506 continue;
507 }
508
509 // Appears to be a leaf. Is the operand already in the set of leaves?
510 LeafMap::iterator It = Leaves.find(Op);
511 if (It == Leaves.end()) {
512 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000513 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000514 if (!Op->hasOneUse()) {
515 // This value has uses not accounted for by the expression, so it is
516 // not safe to modify. Mark it as being a leaf.
517 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
518 LeafOrder.push_back(Op);
519 Leaves[Op] = Weight;
520 continue;
521 }
522 // No uses outside the expression, try morphing it.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000523 } else {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000524 // Already in the leaf map.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000525 assert(It != Leaves.end() && Visited.count(Op) &&
526 "In leaf map but not visited!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000527
528 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000529 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000530
Duncan Sands56514522012-07-26 09:26:40 +0000531#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000532 // The leaf already has one use from inside the expression. As we want
533 // exactly one such use, drop this new use of the leaf.
534 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
535 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000536 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000537
538 // If the leaf is a binary operation of the right kind and we now see
539 // that its multiple original uses were in fact all by nodes belonging
540 // to the expression, then no longer consider it to be a leaf and add
541 // its operands to the expression.
542 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
543 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
544 Worklist.push_back(std::make_pair(BO, It->second));
545 Leaves.erase(It);
546 continue;
547 }
Duncan Sands56514522012-07-26 09:26:40 +0000548#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000549
550 // If we still have uses that are not accounted for by the expression
551 // then it is not safe to modify the value.
552 if (!Op->hasOneUse())
553 continue;
554
555 // No uses outside the expression, try morphing it.
556 Weight = It->second;
557 Leaves.erase(It); // Since the value may be morphed below.
558 }
559
560 // At this point we have a value which, first of all, is not a binary
561 // expression of the right kind, and secondly, is only used inside the
562 // expression. This means that it can safely be modified. See if we
563 // can usefully morph it into an expression of the right kind.
564 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000565 cast<Instruction>(Op)->getOpcode() != Opcode
566 || (isa<FPMathOperator>(Op) &&
Sanjay Patel629c4112017-11-06 16:27:15 +0000567 !cast<Instruction>(Op)->isFast())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000568 "Should have been handled above!");
569 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
570
571 // If this is a multiply expression, turn any internal negations into
572 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000573 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
574 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
575 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
576 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
577 BO = LowerNegateToMultiply(BO);
578 DEBUG(dbgs() << *BO << '\n');
579 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000580 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000581 continue;
582 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000583
584 // Failed to morph into an expression of the right type. This really is
585 // a leaf.
586 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
587 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
588 LeafOrder.push_back(Op);
589 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000590 }
591 }
592
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000593 // The leaves, repeated according to their weights, represent the linearized
594 // form of the expression.
595 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
596 Value *V = LeafOrder[i];
597 LeafMap::iterator It = Leaves.find(V);
598 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000599 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000600 continue;
601 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000602 APInt Weight = It->second;
603 if (Weight.isMinValue())
604 // Leaf already output or weight reduction eliminated it.
605 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000606 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000607 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000608 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000609 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000610
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000611 // For nilpotent operations or addition there may be no operands, for example
612 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
613 // in both cases the weight reduces to 0 causing the value to be skipped.
614 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000615 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000616 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000617 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000618 }
619
Chad Rosiere53e8c82014-11-18 20:21:54 +0000620 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000621}
622
Sanjay Patelc96ee082015-04-22 18:04:46 +0000623/// Now that the operands for this expression tree are
624/// linearized and optimized, emit them in-order.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000625void ReassociatePass::RewriteExprTree(BinaryOperator *I,
626 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000627 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000628
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000629 // Since our optimizations should never increase the number of operations, the
630 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000631 // from the original expression tree, without creating any new instructions,
632 // though the rewritten expression may have a completely different topology.
633 // We take care to not change anything if the new expression will be the same
634 // as the original. If more than trivial changes (like commuting operands)
635 // were made then we are obliged to clear out any optional subclass data like
636 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000637
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000638 /// NodesToRewrite - Nodes from the original expression available for writing
639 /// the new expression into.
640 SmallVector<BinaryOperator*, 8> NodesToRewrite;
641 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000642 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000643
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000644 /// NotRewritable - The operands being written will be the leaves of the new
645 /// expression and must not be used as inner nodes (via NodesToRewrite) by
646 /// mistake. Inner nodes are always reassociable, and usually leaves are not
647 /// (if they were they would have been incorporated into the expression and so
648 /// would not be leaves), so most of the time there is no danger of this. But
649 /// in rare cases a leaf may become reassociable if an optimization kills uses
650 /// of it, or it may momentarily become reassociable during rewriting (below)
651 /// due it being removed as an operand of one of its uses. Ensure that misuse
652 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
653 /// leaves and refusing to reuse any of them as inner nodes.
654 SmallPtrSet<Value*, 8> NotRewritable;
655 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
656 NotRewritable.insert(Ops[i].Op);
657
Duncan Sands3c05cd32012-05-26 16:42:52 +0000658 // ExpressionChanged - Non-null if the rewritten expression differs from the
659 // original in some non-trivial way, requiring the clearing of optional flags.
660 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000661 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000662 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000663 // The last operation (which comes earliest in the IR) is special as both
664 // operands will come from Ops, rather than just one with the other being
665 // a subexpression.
666 if (i+2 == Ops.size()) {
667 Value *NewLHS = Ops[i].Op;
668 Value *NewRHS = Ops[i+1].Op;
669 Value *OldLHS = Op->getOperand(0);
670 Value *OldRHS = Op->getOperand(1);
671
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000672 if (NewLHS == OldLHS && NewRHS == OldRHS)
673 // Nothing changed, leave it alone.
674 break;
675
676 if (NewLHS == OldRHS && NewRHS == OldLHS) {
677 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000678 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000679 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000680 DEBUG(dbgs() << "TO: " << *Op << '\n');
681 MadeChange = true;
682 ++NumChanged;
683 break;
684 }
685
686 // The new operation differs non-trivially from the original. Overwrite
687 // the old operands with the new ones.
688 DEBUG(dbgs() << "RA: " << *Op << '\n');
689 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000690 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
691 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000692 NodesToRewrite.push_back(BO);
693 Op->setOperand(0, NewLHS);
694 }
695 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000696 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
697 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000698 NodesToRewrite.push_back(BO);
699 Op->setOperand(1, NewRHS);
700 }
701 DEBUG(dbgs() << "TO: " << *Op << '\n');
702
Duncan Sands3c05cd32012-05-26 16:42:52 +0000703 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000704 MadeChange = true;
705 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000706
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000707 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000708 }
Chris Lattner1e506502005-05-07 21:59:39 +0000709
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000710 // Not the last operation. The left-hand side will be a sub-expression
711 // while the right-hand side will be the current element of Ops.
712 Value *NewRHS = Ops[i].Op;
713 if (NewRHS != Op->getOperand(1)) {
714 DEBUG(dbgs() << "RA: " << *Op << '\n');
715 if (NewRHS == Op->getOperand(0)) {
716 // The new right-hand side was already present as the left operand. If
717 // we are lucky then swapping the operands will sort out both of them.
718 Op->swapOperands();
719 } else {
720 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000721 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
722 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000723 NodesToRewrite.push_back(BO);
724 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000725 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000726 }
727 DEBUG(dbgs() << "TO: " << *Op << '\n');
728 MadeChange = true;
729 ++NumChanged;
730 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000731
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000732 // Now deal with the left-hand side. If this is already an operation node
733 // from the original expression then just rewrite the rest of the expression
734 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000735 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
736 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000737 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000738 continue;
739 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000740
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000741 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000742 // the left-hand side. If there are no nodes left then the optimizers made
743 // an expression with more nodes than the original! This usually means that
744 // they did something stupid but it might mean that the problem was just too
745 // hard (finding the mimimal number of multiplications needed to realize a
746 // multiplication expression is NP-complete). Whatever the reason, smart or
747 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000748 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000749 if (NodesToRewrite.empty()) {
750 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000751 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
752 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000753 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000754 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000755 } else {
756 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000757 }
758
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000759 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000760 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000761 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000762 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000763 MadeChange = true;
764 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000765 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000766 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000767
Duncan Sands3c05cd32012-05-26 16:42:52 +0000768 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000769 // starting from the operator specified in ExpressionChanged, and compactify
770 // the operators to just before the expression root to guarantee that the
771 // expression tree is dominated by all of Ops.
772 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000773 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000774 // Preserve FastMathFlags.
775 if (isa<FPMathOperator>(I)) {
776 FastMathFlags Flags = I->getFastMathFlags();
777 ExpressionChanged->clearSubclassOptionalData();
778 ExpressionChanged->setFastMathFlags(Flags);
779 } else
780 ExpressionChanged->clearSubclassOptionalData();
781
Duncan Sands3c05cd32012-05-26 16:42:52 +0000782 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000783 break;
Bjorn Petterssonbec2a7c2018-04-25 09:23:56 +0000784
785 // Discard any debug info related to the expressions that has changed (we
786 // can leave debug infor related to the root, since the result of the
787 // expression tree should be the same even after reassociation).
788 SmallVector<DbgInfoIntrinsic *, 1> DbgUsers;
789 findDbgUsers(DbgUsers, ExpressionChanged);
790 for (auto *DII : DbgUsers) {
791 Value *Undef = UndefValue::get(ExpressionChanged->getType());
792 DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
793 ValueAsMetadata::get(Undef)));
794 }
795
Duncan Sands514db112012-06-27 14:19:00 +0000796 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000797 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Eugene Zelenko306d2992017-10-18 21:46:47 +0000798 } while (true);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000799
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000800 // Throw away any left over nodes from the original expression.
801 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000802 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000803}
804
Sanjay Patelc96ee082015-04-22 18:04:46 +0000805/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000806/// that computes the negative version of the value specified. The negative
807/// version of the value is returned, and BI is left pointing at the instruction
808/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000809/// Also add intermediate instructions to the redo list that are modified while
810/// pushing the negates through adds. These will be revisited to see if
811/// additional opportunities have been exposed.
812static Value *NegateValue(Value *V, Instruction *BI,
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +0000813 ReassociatePass::OrderedSet &ToRedo) {
Sanjay Pateld1becd02017-11-15 16:19:17 +0000814 if (auto *C = dyn_cast<Constant>(V))
815 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
816 ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000817
Chris Lattner7bc532d2002-05-16 04:37:07 +0000818 // We are trying to expose opportunity for reassociation. One of the things
819 // that we want to do to achieve this is to push a negation as deep into an
820 // expression chain as possible, to expose the add instructions. In practice,
821 // this means that we turn this:
822 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
823 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
824 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000825 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000826 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000827 if (BinaryOperator *I =
828 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000829 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000830 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
831 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000832 if (I->getOpcode() == Instruction::Add) {
833 I->setHasNoUnsignedWrap(false);
834 I->setHasNoSignedWrap(false);
835 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000836
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000837 // We must move the add instruction here, because the neg instructions do
838 // not dominate the old add instruction in general. By moving it, we are
839 // assured that the neg instructions we just inserted dominate the
840 // instruction we are about to insert after them.
841 //
842 I->moveBefore(BI);
843 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000844
845 // Add the intermediate negates to the redo list as processing them later
846 // could expose more reassociating opportunities.
847 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000848 return I;
849 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000850
Chris Lattnerfed33972009-12-31 20:34:32 +0000851 // Okay, we need to materialize a negated version of V with an instruction.
852 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000853 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000854 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
855 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000856
857 // We found one! Now we have to make sure that the definition dominates
858 // this use. We do this by moving it to the entry block (if it is a
859 // non-instruction value) or right after the definition. These negates will
860 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000861 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000862
863 // Verify that the negate is in this function, V might be a constant expr.
864 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
865 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000866
Chris Lattnerfed33972009-12-31 20:34:32 +0000867 BasicBlock::iterator InsertPt;
868 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
869 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
870 InsertPt = II->getNormalDest()->begin();
871 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000872 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000873 }
874 while (isa<PHINode>(InsertPt)) ++InsertPt;
875 } else {
876 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
877 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000878 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000879 if (TheNeg->getOpcode() == Instruction::Sub) {
880 TheNeg->setHasNoUnsignedWrap(false);
881 TheNeg->setHasNoSignedWrap(false);
882 } else {
883 TheNeg->andIRFlags(BI);
884 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000885 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000886 return TheNeg;
887 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000888
889 // Insert a 'neg' instruction that subtracts the value from zero to get the
890 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000891 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
892 ToRedo.insert(NewNeg);
893 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000894}
895
Sanjay Patelc96ee082015-04-22 18:04:46 +0000896/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000897static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000898 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000899 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000900 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000901
Chad Rosierbd64d462014-10-09 20:06:29 +0000902 // Don't breakup X - undef.
903 if (isa<UndefValue>(Sub->getOperand(1)))
904 return false;
905
Chris Lattner902537c2008-02-17 20:44:51 +0000906 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000907 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000908 Value *V0 = Sub->getOperand(0);
909 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
910 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000911 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000912 Value *V1 = Sub->getOperand(1);
913 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
914 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000915 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000916 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000917 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000918 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
919 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000920 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000921
Chris Lattner902537c2008-02-17 20:44:51 +0000922 return false;
923}
924
Sanjay Patelc96ee082015-04-22 18:04:46 +0000925/// If we have (X-Y), and if either X is an add, or if this is only used by an
926/// add, transform this into (X+(0-Y)) to promote better reassociation.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +0000927static BinaryOperator *BreakUpSubtract(Instruction *Sub,
928 ReassociatePass::OrderedSet &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000929 // Convert a subtract into an add and a neg instruction. This allows sub
930 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000931 //
Chris Lattnera5526832010-01-01 00:04:26 +0000932 // Calculate the negative value of Operand 1 of the sub instruction,
933 // and set it as the RHS of the add instruction we just made.
Owen Anderson2de9f542015-11-16 18:07:30 +0000934 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +0000935 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000936 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
937 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000938 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000939
940 // Everyone now refers to the add instruction.
941 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000942 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000943
David Greened17c3912010-01-05 01:27:24 +0000944 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000945 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000946}
947
Sanjay Patelc96ee082015-04-22 18:04:46 +0000948/// If this is a shift of a reassociable multiply or is used by one, change
949/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000950static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
951 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
952 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000953
Duncan Sands3293f462012-06-08 20:15:33 +0000954 BinaryOperator *Mul =
955 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
956 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
957 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +0000958
959 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +0000960 Shl->replaceAllUsesWith(Mul);
961 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +0000962
963 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
964 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
965 // handling.
966 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
967 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
968 if (NSW && NUW)
969 Mul->setHasNoSignedWrap(true);
970 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +0000971 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000972}
973
Sanjay Patelc96ee082015-04-22 18:04:46 +0000974/// Scan backwards and forwards among values with the same rank as element i
975/// to see if X exists. If X does not exist, return i. This is useful when
976/// scanning for 'x' when we see '-x' because they both get the same rank.
Craig Topper99a2e892017-06-21 19:39:33 +0000977static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
978 unsigned i, Value *X) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000979 unsigned XRank = Ops[i].Rank;
980 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +0000981 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000982 if (Ops[j].Op == X)
983 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000984 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
985 if (Instruction *I2 = dyn_cast<Instruction>(X))
986 if (I1->isIdenticalTo(I2))
987 return j;
988 }
Chris Lattner0c59ac32010-01-01 01:13:15 +0000989 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +0000990 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000991 if (Ops[j].Op == X)
992 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000993 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
994 if (Instruction *I2 = dyn_cast<Instruction>(X))
995 if (I1->isIdenticalTo(I2))
996 return j;
997 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000998 return i;
999}
1000
Sanjay Patelc96ee082015-04-22 18:04:46 +00001001/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +00001002/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001003static Value *EmitAddTreeOfValues(Instruction *I,
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001004 SmallVectorImpl<WeakTrackingVH> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +00001005 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001006
Chris Lattner4c065092006-03-04 09:31:13 +00001007 Value *V1 = Ops.back();
1008 Ops.pop_back();
1009 Value *V2 = EmitAddTreeOfValues(I, Ops);
Sanjay Patel0d660102017-11-09 18:14:24 +00001010 return CreateAdd(V2, V1, "reass.add", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001011}
1012
Sanjay Patelc96ee082015-04-22 18:04:46 +00001013/// If V is an expression tree that is a multiplication sequence,
1014/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +00001015/// remove Factor from the tree and return the new tree.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001016Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001017 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1018 if (!BO)
1019 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001020
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001021 SmallVector<RepeatedValue, 8> Tree;
1022 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001023 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001024 Factors.reserve(Tree.size());
1025 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1026 RepeatedValue E = Tree[i];
1027 Factors.append(E.second.getZExtValue(),
1028 ValueEntry(getRank(E.first), E.first));
1029 }
Chris Lattner4c065092006-03-04 09:31:13 +00001030
1031 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001032 bool NeedsNegate = false;
1033 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001034 if (Factors[i].Op == Factor) {
1035 FoundFactor = true;
1036 Factors.erase(Factors.begin()+i);
1037 break;
1038 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001039
Chris Lattner0c59ac32010-01-01 01:13:15 +00001040 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001041 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001042 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1043 if (FC1->getValue() == -FC2->getValue()) {
1044 FoundFactor = NeedsNegate = true;
1045 Factors.erase(Factors.begin()+i);
1046 break;
1047 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001048 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1049 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001050 const APFloat &F1 = FC1->getValueAPF();
Chad Rosier11ab9412014-08-14 15:23:01 +00001051 APFloat F2(FC2->getValueAPF());
1052 F2.changeSign();
1053 if (F1.compare(F2) == APFloat::cmpEqual) {
1054 FoundFactor = NeedsNegate = true;
1055 Factors.erase(Factors.begin() + i);
1056 break;
1057 }
1058 }
1059 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001060 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001061
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001062 if (!FoundFactor) {
1063 // Make sure to restore the operands to the expression tree.
1064 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001065 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001066 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001067
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001068 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001069
Chris Lattner1d897942009-12-31 19:34:45 +00001070 // If this was just a single multiply, remove the multiply and return the only
1071 // remaining operand.
1072 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001073 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001074 V = Factors[0].Op;
1075 } else {
1076 RewriteExprTree(BO, Factors);
1077 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001078 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001079
Chris Lattner0c59ac32010-01-01 01:13:15 +00001080 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001081 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001082
Chris Lattner0c59ac32010-01-01 01:13:15 +00001083 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001084}
1085
Sanjay Patelc96ee082015-04-22 18:04:46 +00001086/// If V is a single-use multiply, recursively add its operands as factors,
1087/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001088///
1089/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001090static void FindSingleUseMultiplyFactors(Value *V,
Chad Rosiere22c9922017-02-08 17:45:27 +00001091 SmallVectorImpl<Value*> &Factors) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001092 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001093 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001094 Factors.push_back(V);
1095 return;
1096 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001097
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001098 // Otherwise, add the LHS and RHS to the list of factors.
Chad Rosiere22c9922017-02-08 17:45:27 +00001099 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1100 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001101}
1102
Sanjay Patelc96ee082015-04-22 18:04:46 +00001103/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1104/// This optimizes based on identities. If it can be reduced to a single Value,
1105/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001106static Value *OptimizeAndOrXor(unsigned Opcode,
1107 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001108 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1109 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1110 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1111 // First, check for X and ~X in the operand list.
1112 assert(i < Ops.size());
1113 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1114 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1115 unsigned FoundX = FindInOperandList(Ops, i, X);
1116 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001117 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001118 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001119
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001120 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001121 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001122 }
1123 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001124
Chris Lattner5f8a0052009-12-31 07:59:34 +00001125 // Next, check for duplicate pairs of values, which we assume are next to
1126 // each other, due to our sorting criteria.
1127 assert(i < Ops.size());
1128 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1129 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001130 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001131 Ops.erase(Ops.begin()+i);
1132 --i; --e;
1133 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001134 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001135 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001136
Chris Lattner60c2ca72009-12-31 19:49:01 +00001137 // Drop pairs of values for Xor.
1138 assert(Opcode == Instruction::Xor);
1139 if (e == 2)
1140 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001141
Chris Lattnera5526832010-01-01 00:04:26 +00001142 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001143 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1144 i -= 1; e -= 2;
1145 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001146 }
1147 }
Craig Topperf40110f2014-04-25 05:29:35 +00001148 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001149}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001150
Eric Christopherbfba5722015-12-16 23:10:53 +00001151/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001152/// instruction with the given two operands, and return the resulting
1153/// instruction. There are two special cases: 1) if the constant operand is 0,
1154/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1155/// be returned.
Craig Topper34caf532017-06-21 19:39:35 +00001156static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001157 const APInt &ConstOpnd) {
Craig Topper34caf532017-06-21 19:39:35 +00001158 if (ConstOpnd.isNullValue())
1159 return nullptr;
1160
1161 if (ConstOpnd.isAllOnesValue())
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001162 return Opnd;
Craig Topper34caf532017-06-21 19:39:35 +00001163
1164 Instruction *I = BinaryOperator::CreateAnd(
1165 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1166 InsertBefore);
1167 I->setDebugLoc(InsertBefore->getDebugLoc());
1168 return I;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001169}
1170
1171// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1172// into "R ^ C", where C would be 0, and R is a symbolic value.
1173//
1174// If it was successful, true is returned, and the "R" and "C" is returned
1175// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1176// and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001177bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1178 APInt &ConstOpnd, Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001179 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1180 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1181 // = (x & ~c1) ^ (c1 ^ c2)
1182 // It is useful only when c1 == c2.
Craig Topper34caf532017-06-21 19:39:35 +00001183 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1184 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001185
Craig Topper34caf532017-06-21 19:39:35 +00001186 if (!Opnd1->getValue()->hasOneUse())
1187 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001188
Craig Topper34caf532017-06-21 19:39:35 +00001189 const APInt &C1 = Opnd1->getConstPart();
1190 if (C1 != ConstOpnd)
1191 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001192
Craig Topper34caf532017-06-21 19:39:35 +00001193 Value *X = Opnd1->getSymbolicPart();
1194 Res = createAndInstr(I, X, ~C1);
1195 // ConstOpnd was C2, now C1 ^ C2.
1196 ConstOpnd ^= C1;
1197
1198 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1199 RedoInsts.insert(T);
1200 return true;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001201}
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001202
1203// Helper function of OptimizeXor(). It tries to simplify
1204// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1205// symbolic value.
1206//
1207// If it was successful, true is returned, and the "R" and "C" is returned
1208// via "Res" and "ConstOpnd", respectively (If the entire expression is
1209// evaluated to a constant, the Res is set to NULL); otherwise, false is
1210// returned, and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001211bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1212 XorOpnd *Opnd2, APInt &ConstOpnd,
1213 Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001214 Value *X = Opnd1->getSymbolicPart();
1215 if (X != Opnd2->getSymbolicPart())
1216 return false;
1217
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001218 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1219 int DeadInstNum = 1;
1220 if (Opnd1->getValue()->hasOneUse())
1221 DeadInstNum++;
1222 if (Opnd2->getValue()->hasOneUse())
1223 DeadInstNum++;
1224
1225 // Xor-Rule 2:
1226 // (x | c1) ^ (x & c2)
1227 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1228 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1229 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1230 //
1231 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1232 if (Opnd2->isOrExpr())
1233 std::swap(Opnd1, Opnd2);
1234
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001235 const APInt &C1 = Opnd1->getConstPart();
1236 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001237 APInt C3((~C1) ^ C2);
1238
1239 // Do not increase code size!
Craig Topperd96177c2017-06-18 18:15:38 +00001240 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1241 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001242 if (NewInstNum > DeadInstNum)
1243 return false;
1244 }
1245
1246 Res = createAndInstr(I, X, C3);
1247 ConstOpnd ^= C1;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001248 } else if (Opnd1->isOrExpr()) {
1249 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1250 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001251 const APInt &C1 = Opnd1->getConstPart();
1252 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001253 APInt C3 = C1 ^ C2;
1254
1255 // Do not increase code size
Craig Topperd96177c2017-06-18 18:15:38 +00001256 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1257 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001258 if (NewInstNum > DeadInstNum)
1259 return false;
1260 }
1261
1262 Res = createAndInstr(I, X, C3);
1263 ConstOpnd ^= C3;
1264 } else {
1265 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1266 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001267 const APInt &C1 = Opnd1->getConstPart();
1268 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001269 APInt C3 = C1 ^ C2;
1270 Res = createAndInstr(I, X, C3);
1271 }
1272
1273 // Put the original operands in the Redo list; hope they will be deleted
1274 // as dead code.
1275 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1276 RedoInsts.insert(T);
1277 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1278 RedoInsts.insert(T);
1279
1280 return true;
1281}
1282
1283/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1284/// to a single Value, it is returned, otherwise the Ops list is mutated as
1285/// necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001286Value *ReassociatePass::OptimizeXor(Instruction *I,
1287 SmallVectorImpl<ValueEntry> &Ops) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001288 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1289 return V;
1290
1291 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001292 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001293
1294 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001295 SmallVector<XorOpnd*, 8> OpndPtrs;
Craig Toppercbac691c2017-06-21 16:07:09 +00001296 Type *Ty = Ops[0].Op->getType();
1297 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001298
1299 // Step 1: Convert ValueEntry to XorOpnd
1300 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1301 Value *V = Ops[i].Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001302 const APInt *C;
1303 // TODO: Support non-splat vectors.
1304 if (match(V, PatternMatch::m_APInt(C))) {
1305 ConstOpnd ^= *C;
1306 } else {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001307 XorOpnd O(V);
1308 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1309 Opnds.push_back(O);
Craig Toppercbac691c2017-06-21 16:07:09 +00001310 }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001311 }
1312
Shuxin Yang331f01d2013-04-08 22:00:43 +00001313 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1314 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1315 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1316 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1317 // when new elements are added to the vector.
1318 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1319 OpndPtrs.push_back(&Opnds[i]);
1320
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001321 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1322 // the same symbolic value cluster together. For instance, the input operand
1323 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1324 // ("x | 123", "x & 789", "y & 456").
Justin Bognercb8a21c2016-04-26 23:32:00 +00001325 //
1326 // The purpose is twofold:
1327 // 1) Cluster together the operands sharing the same symbolic-value.
1328 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1329 // could potentially shorten crital path, and expose more loop-invariants.
1330 // Note that values' rank are basically defined in RPO order (FIXME).
1331 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1332 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1333 // "z" in the order of X-Y-Z is better than any other orders.
1334 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1335 [](XorOpnd *LHS, XorOpnd *RHS) {
1336 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1337 });
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001338
1339 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001340 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001341 bool Changed = false;
1342 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001343 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001344 // The combined value
1345 Value *CV;
1346
1347 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
Craig Topperd96177c2017-06-18 18:15:38 +00001348 if (!ConstOpnd.isNullValue() &&
1349 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001350 Changed = true;
1351 if (CV)
1352 *CurrOpnd = XorOpnd(CV);
1353 else {
1354 CurrOpnd->Invalidate();
1355 continue;
1356 }
1357 }
1358
1359 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1360 PrevOpnd = CurrOpnd;
1361 continue;
1362 }
1363
1364 // step 3.2: When previous and current operands share the same symbolic
1365 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001366 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1367 // Remove previous operand
1368 PrevOpnd->Invalidate();
1369 if (CV) {
1370 *CurrOpnd = XorOpnd(CV);
1371 PrevOpnd = CurrOpnd;
1372 } else {
1373 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001374 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001375 }
1376 Changed = true;
1377 }
1378 }
1379
1380 // Step 4: Reassemble the Ops
1381 if (Changed) {
1382 Ops.clear();
1383 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1384 XorOpnd &O = Opnds[i];
1385 if (O.isInvalid())
1386 continue;
1387 ValueEntry VE(getRank(O.getValue()), O.getValue());
1388 Ops.push_back(VE);
1389 }
Craig Topperd96177c2017-06-18 18:15:38 +00001390 if (!ConstOpnd.isNullValue()) {
Craig Toppercbac691c2017-06-21 16:07:09 +00001391 Value *C = ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001392 ValueEntry VE(getRank(C), C);
1393 Ops.push_back(VE);
1394 }
Craig Toppercbac691c2017-06-21 16:07:09 +00001395 unsigned Sz = Ops.size();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001396 if (Sz == 1)
1397 return Ops.back().Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001398 if (Sz == 0) {
1399 assert(ConstOpnd.isNullValue());
1400 return ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001401 }
1402 }
1403
Craig Topperf40110f2014-04-25 05:29:35 +00001404 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001405}
1406
Sanjay Patelc96ee082015-04-22 18:04:46 +00001407/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001408/// optimizes based on identities. If it can be reduced to a single Value, it
1409/// is returned, otherwise the Ops list is mutated as necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001410Value *ReassociatePass::OptimizeAdd(Instruction *I,
1411 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001412 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001413 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1414 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001415 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001416
Chris Lattner5f8a0052009-12-31 07:59:34 +00001417 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001418 Value *TheOp = Ops[i].Op;
1419 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001420 // instances of the operand together. Due to our sorting criteria, we know
1421 // that these need to be next to each other in the vector.
1422 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1423 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001424 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001425 do {
1426 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001427 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001428 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001429
Chad Rosier78943bc2014-12-12 14:44:12 +00001430 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001431 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001432
Chris Lattner60b71b52009-12-31 19:24:52 +00001433 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001434 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001435 Constant *C = Ty->isIntOrIntVectorTy() ?
1436 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001437 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001438
Chris Lattner60b71b52009-12-31 19:24:52 +00001439 // Now that we have inserted a multiply, optimize it. This allows us to
1440 // handle cases that require multiple factoring steps, such as this:
1441 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001442 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001443
Chris Lattner60b71b52009-12-31 19:24:52 +00001444 // If every add operand was a duplicate, return the multiply.
1445 if (Ops.empty())
1446 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001447
Chris Lattner60b71b52009-12-31 19:24:52 +00001448 // Otherwise, we had some input that didn't have the dupe, such as
1449 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1450 // things being added by this operation.
1451 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001452
Chris Lattner60c2ca72009-12-31 19:49:01 +00001453 --i;
1454 e = Ops.size();
1455 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001456 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001457
Benjamin Kramer49689442014-05-31 15:01:54 +00001458 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001459 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1460 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001461 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001462
Benjamin Kramer49689442014-05-31 15:01:54 +00001463 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001464 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001465 X = BinaryOperator::getNegArgument(TheOp);
1466 else if (BinaryOperator::isNot(TheOp))
1467 X = BinaryOperator::getNotArgument(TheOp);
1468
Chris Lattner5f8a0052009-12-31 07:59:34 +00001469 unsigned FoundX = FindInOperandList(Ops, i, X);
1470 if (FoundX == i)
1471 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001472
Chris Lattner5f8a0052009-12-31 07:59:34 +00001473 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001474 if (Ops.size() == 2 &&
1475 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001476 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001477
Benjamin Kramer49689442014-05-31 15:01:54 +00001478 // Remove X and ~X from the operand list.
1479 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1480 return Constant::getAllOnesValue(X->getType());
1481
Chris Lattner5f8a0052009-12-31 07:59:34 +00001482 Ops.erase(Ops.begin()+i);
1483 if (i < FoundX)
1484 --FoundX;
1485 else
1486 --i; // Need to back up an extra one.
1487 Ops.erase(Ops.begin()+FoundX);
1488 ++NumAnnihil;
1489 --i; // Revisit element.
1490 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001491
1492 // if X and ~X we append -1 to the operand list.
1493 if (BinaryOperator::isNot(TheOp)) {
1494 Value *V = Constant::getAllOnesValue(X->getType());
1495 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1496 e += 1;
1497 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001498 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001499
Chris Lattner177140a2009-12-31 18:17:13 +00001500 // Scan the operand list, checking to see if there are any common factors
1501 // between operands. Consider something like A*A+A*B*C+D. We would like to
1502 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1503 // To efficiently find this, we count the number of times a factor occurs
1504 // for any ADD operands that are MULs.
1505 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001506
Chris Lattner177140a2009-12-31 18:17:13 +00001507 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1508 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001509 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001510 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001511 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001512 BinaryOperator *BOp =
1513 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001514 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001515 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001516
Chris Lattner177140a2009-12-31 18:17:13 +00001517 // Compute all of the factors of this added value.
1518 SmallVector<Value*, 8> Factors;
Chad Rosiere22c9922017-02-08 17:45:27 +00001519 FindSingleUseMultiplyFactors(BOp, Factors);
Chris Lattner177140a2009-12-31 18:17:13 +00001520 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001521
Chris Lattner177140a2009-12-31 18:17:13 +00001522 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001523 SmallPtrSet<Value*, 8> Duplicates;
1524 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1525 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001526 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001527 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001528
Chris Lattner0c59ac32010-01-01 01:13:15 +00001529 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001530 if (Occ > MaxOcc) {
1531 MaxOcc = Occ;
1532 MaxOccVal = Factor;
1533 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001534
Chris Lattner0c59ac32010-01-01 01:13:15 +00001535 // If Factor is a negative constant, add the negated value as a factor
1536 // because we can percolate the negate out. Watch for minint, which
1537 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001538 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001539 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001540 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
Chad Rosier95abfa32017-02-23 18:49:03 +00001541 if (!Duplicates.insert(Factor).second)
1542 continue;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001543 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001544 if (Occ > MaxOcc) {
1545 MaxOcc = Occ;
1546 MaxOccVal = Factor;
1547 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001548 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001549 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1550 if (CF->isNegative()) {
1551 APFloat F(CF->getValueAPF());
1552 F.changeSign();
1553 Factor = ConstantFP::get(CF->getContext(), F);
Chad Rosier95abfa32017-02-23 18:49:03 +00001554 if (!Duplicates.insert(Factor).second)
1555 continue;
Chad Rosier11ab9412014-08-14 15:23:01 +00001556 unsigned Occ = ++FactorOccurrences[Factor];
1557 if (Occ > MaxOcc) {
1558 MaxOcc = Occ;
1559 MaxOccVal = Factor;
1560 }
1561 }
1562 }
Chris Lattner177140a2009-12-31 18:17:13 +00001563 }
1564 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001565
Chris Lattner177140a2009-12-31 18:17:13 +00001566 // If any factor occurred more than one time, we can pull it out.
1567 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001568 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001569 ++NumFactor;
1570
1571 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1572 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001573 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001574 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001575 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001576 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001577 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1578 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1579
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001580 SmallVector<WeakTrackingVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001581 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001582 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001583 BinaryOperator *BOp =
1584 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001585 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001586 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001587
Chris Lattner177140a2009-12-31 18:17:13 +00001588 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001589 // The factorized operand may occur several times. Convert them all in
1590 // one fell swoop.
1591 for (unsigned j = Ops.size(); j != i;) {
1592 --j;
1593 if (Ops[j].Op == Ops[i].Op) {
1594 NewMulOps.push_back(V);
1595 Ops.erase(Ops.begin()+j);
1596 }
1597 }
1598 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001599 }
1600 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001601
Chris Lattner177140a2009-12-31 18:17:13 +00001602 // No need for extra uses anymore.
Reid Kleckner96ab8722017-05-18 17:24:10 +00001603 DummyInst->deleteValue();
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001604
Chris Lattner177140a2009-12-31 18:17:13 +00001605 unsigned NumAddedValues = NewMulOps.size();
1606 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001607
Chris Lattner60b71b52009-12-31 19:24:52 +00001608 // Now that we have inserted the add tree, optimize it. This allows us to
1609 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001610 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001611 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001612 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001613 if (Instruction *VI = dyn_cast<Instruction>(V))
1614 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001615
1616 // Create the multiply.
Sanjay Patel0d660102017-11-09 18:14:24 +00001617 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001618
Chris Lattner60c2ca72009-12-31 19:49:01 +00001619 // Rerun associate on the multiply in case the inner expression turned into
1620 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001621 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001622
Chris Lattner177140a2009-12-31 18:17:13 +00001623 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1624 // entire result expression is just the multiply "A*(B+C)".
1625 if (Ops.empty())
1626 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001627
Chris Lattnerac615502009-12-31 18:18:46 +00001628 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001629 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001630 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001631 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1632 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001633
Craig Topperf40110f2014-04-25 05:29:35 +00001634 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001635}
Chris Lattner4c065092006-03-04 09:31:13 +00001636
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001637/// Build up a vector of value/power pairs factoring a product.
Chandler Carruth739ef802012-04-26 05:30:30 +00001638///
1639/// Given a series of multiplication operands, build a vector of factors and
1640/// the powers each is raised to when forming the final product. Sort them in
1641/// the order of descending power.
1642///
1643/// (x*x) -> [(x, 2)]
1644/// ((x*x)*x) -> [(x, 3)]
1645/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1646///
1647/// \returns Whether any factors have a power greater than one.
Craig Topper43507342017-06-19 16:23:43 +00001648static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1649 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001650 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1651 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001652 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001653 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1654 Value *Op = Ops[Idx-1].Op;
1655
1656 // Count the number of occurrences of this value.
1657 unsigned Count = 1;
1658 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1659 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001660 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001661 if (Count > 1)
1662 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001663 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001664
Chandler Carruth739ef802012-04-26 05:30:30 +00001665 // We can only simplify factors if the sum of the powers of our simplifiable
1666 // factors is 4 or higher. When that is the case, we will *always* have
1667 // a simplification. This is an important invariant to prevent cyclicly
1668 // trying to simplify already minimal formations.
1669 if (FactorPowerSum < 4)
1670 return false;
1671
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001672 // Now gather the simplifiable factors, removing them from Ops.
1673 FactorPowerSum = 0;
1674 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1675 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001676
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001677 // Count the number of occurrences of this value.
1678 unsigned Count = 1;
1679 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1680 ++Count;
1681 if (Count == 1)
1682 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001683 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001684 Count &= ~1U;
1685 Idx -= Count;
1686 FactorPowerSum += Count;
1687 Factors.push_back(Factor(Op, Count));
1688 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001689 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001690
Chandler Carruth739ef802012-04-26 05:30:30 +00001691 // None of the adjustments above should have reduced the sum of factor powers
1692 // below our mininum of '4'.
1693 assert(FactorPowerSum >= 4);
1694
Justin Bogner90744d22016-04-26 22:22:18 +00001695 std::stable_sort(Factors.begin(), Factors.end(),
1696 [](const Factor &LHS, const Factor &RHS) {
1697 return LHS.Power > RHS.Power;
1698 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001699 return true;
1700}
1701
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001702/// Build a tree of multiplies, computing the product of Ops.
Chandler Carruth739ef802012-04-26 05:30:30 +00001703static Value *buildMultiplyTree(IRBuilder<> &Builder,
1704 SmallVectorImpl<Value*> &Ops) {
1705 if (Ops.size() == 1)
1706 return Ops.back();
1707
1708 Value *LHS = Ops.pop_back_val();
1709 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001710 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001711 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1712 else
1713 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001714 } while (!Ops.empty());
1715
1716 return LHS;
1717}
1718
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001719/// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
Chandler Carruth739ef802012-04-26 05:30:30 +00001720///
1721/// Given a vector of values raised to various powers, where no two values are
1722/// equal and the powers are sorted in decreasing order, compute the minimal
1723/// DAG of multiplies to compute the final product, and return that product
1724/// value.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001725Value *
1726ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1727 SmallVectorImpl<Factor> &Factors) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001728 assert(Factors[0].Power);
1729 SmallVector<Value *, 4> OuterProduct;
1730 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1731 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1732 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1733 LastIdx = Idx;
1734 continue;
1735 }
1736
1737 // We want to multiply across all the factors with the same power so that
1738 // we can raise them to that power as a single entity. Build a mini tree
1739 // for that.
1740 SmallVector<Value *, 4> InnerProduct;
1741 InnerProduct.push_back(Factors[LastIdx].Base);
1742 do {
1743 InnerProduct.push_back(Factors[Idx].Base);
1744 ++Idx;
1745 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1746
1747 // Reset the base value of the first factor to the new expression tree.
1748 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001749 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1750 if (Instruction *MI = dyn_cast<Instruction>(M))
1751 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001752
1753 LastIdx = Idx;
1754 }
1755 // Unique factors with equal powers -- we've folded them into the first one's
1756 // base.
1757 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001758 [](const Factor &LHS, const Factor &RHS) {
1759 return LHS.Power == RHS.Power;
1760 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001761 Factors.end());
1762
1763 // Iteratively collect the base of each factor with an add power into the
1764 // outer product, and halve each power in preparation for squaring the
1765 // expression.
1766 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1767 if (Factors[Idx].Power & 1)
1768 OuterProduct.push_back(Factors[Idx].Base);
1769 Factors[Idx].Power >>= 1;
1770 }
1771 if (Factors[0].Power) {
1772 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1773 OuterProduct.push_back(SquareRoot);
1774 OuterProduct.push_back(SquareRoot);
1775 }
1776 if (OuterProduct.size() == 1)
1777 return OuterProduct.front();
1778
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001779 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001780 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001781}
1782
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001783Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1784 SmallVectorImpl<ValueEntry> &Ops) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001785 // We can only optimize the multiplies when there is a chain of more than
1786 // three, such that a balanced tree might require fewer total multiplies.
1787 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001788 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001789
1790 // Try to turn linear trees of multiplies without other uses of the
1791 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1792 // re-use.
1793 SmallVector<Factor, 4> Factors;
1794 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001795 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001796
1797 IRBuilder<> Builder(I);
Vyacheslav Klochkov68a677a2016-11-22 20:23:04 +00001798 // The reassociate transformation for FP operations is performed only
1799 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1800 // to the newly generated operations.
1801 if (auto FPI = dyn_cast<FPMathOperator>(I))
1802 Builder.setFastMathFlags(FPI->getFastMathFlags());
1803
Chandler Carruth739ef802012-04-26 05:30:30 +00001804 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1805 if (Ops.empty())
1806 return V;
1807
1808 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1809 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001810 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001811}
1812
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001813Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1814 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001815 // Now that we have the linearized expression tree, try to optimize it.
1816 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001817 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001818 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001819 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1820 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1821 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1822 }
1823 // If there was nothing but constants then we are done.
1824 if (Ops.empty())
1825 return Cst;
1826
1827 // Put the combined constant back at the end of the operand list, except if
1828 // there is no point. For example, an add of 0 gets dropped here, while a
1829 // multiplication by zero turns the whole expression into zero.
1830 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1831 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1832 return Cst;
1833 Ops.push_back(ValueEntry(0, Cst));
1834 }
1835
1836 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001837
Chris Lattner9039ff82009-12-31 07:33:14 +00001838 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001839 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001840 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001841 switch (Opcode) {
1842 default: break;
1843 case Instruction::And:
1844 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001845 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1846 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001847 break;
1848
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001849 case Instruction::Xor:
1850 if (Value *Result = OptimizeXor(I, Ops))
1851 return Result;
1852 break;
1853
Chandler Carruth739ef802012-04-26 05:30:30 +00001854 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001855 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001856 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001857 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001858 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001859
1860 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001861 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001862 if (Value *Result = OptimizeMul(I, Ops))
1863 return Result;
1864 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001865 }
1866
Duncan Sands3293f462012-06-08 20:15:33 +00001867 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001868 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001869 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001870}
1871
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001872// Remove dead instructions and if any operands are trivially dead add them to
1873// Insts so they will be removed as well.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00001874void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1875 OrderedSet &Insts) {
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001876 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1877 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1878 ValueRankMap.erase(I);
1879 Insts.remove(I);
1880 RedoInsts.remove(I);
1881 I->eraseFromParent();
1882 for (auto Op : Ops)
1883 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1884 if (OpInst->use_empty())
1885 Insts.insert(OpInst);
1886}
1887
Sanjay Patelc96ee082015-04-22 18:04:46 +00001888/// Zap the given instruction, adding interesting operands to the work list.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001889void ReassociatePass::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001890 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
Chad Rosier27ac0d82016-08-30 13:58:35 +00001891 DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1892
Duncan Sands3293f462012-06-08 20:15:33 +00001893 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1894 // Erase the dead instruction.
1895 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001896 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001897 I->eraseFromParent();
1898 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001899 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001900 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1901 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1902 // If this is a node in an expression tree, climb to the expression root
1903 // and add that since that's where optimization actually happens.
1904 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001905 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001906 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001907 Op = Op->user_back();
Davide Italiano6e1f7bf2018-05-11 15:45:36 +00001908
1909 // The instruction we're going to push may be coming from a
1910 // dead block, and Reassociate skips the processing of unreachable
1911 // blocks because it's a waste of time and also because it can
1912 // lead to infinite loop due to LLVM's non-standard definition
1913 // of dominance.
1914 if (ValueRankMap.find(Op) != ValueRankMap.end())
1915 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001916 }
Mikael Holmen37b51202017-06-27 05:32:13 +00001917
1918 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001919}
1920
Chad Rosier094ac772014-11-11 22:58:35 +00001921// Canonicalize expressions of the following form:
1922// x + (-Constant * y) -> x - (Constant * y)
1923// x - (-Constant * y) -> x + (Constant * y)
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001924Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
Chad Rosier094ac772014-11-11 22:58:35 +00001925 if (!I->hasOneUse() || I->getType()->isVectorTy())
1926 return nullptr;
1927
David Majnemer587336d2015-05-28 06:16:39 +00001928 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001929 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001930 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001931 return nullptr;
1932
David Majnemer587336d2015-05-28 06:16:39 +00001933 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1934 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1935
1936 // Both operands are constant, let it get constant folded away.
1937 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001938 return nullptr;
1939
David Majnemer587336d2015-05-28 06:16:39 +00001940 ConstantFP *CF = C0 ? C0 : C1;
1941
1942 // Must have one constant operand.
1943 if (!CF)
1944 return nullptr;
1945
1946 // Must be a negative ConstantFP.
1947 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001948 return nullptr;
1949
1950 // User must be a binary operator with one or more uses.
1951 Instruction *User = I->user_back();
Davide Italiano79eb3b02017-05-16 22:38:40 +00001952 if (!isa<BinaryOperator>(User) || User->use_empty())
Chad Rosier094ac772014-11-11 22:58:35 +00001953 return nullptr;
1954
1955 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001956 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001957 return nullptr;
1958
1959 // Subtraction is not commutative. Explicitly, the following transform is
1960 // not valid: (-Constant * y) - x -> x + (Constant * y)
1961 if (!User->isCommutative() && User->getOperand(1) != I)
1962 return nullptr;
1963
Chad Rosier8db41e92017-08-23 14:10:06 +00001964 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1965 // resulting subtract will be broken up later. This can get us into an
1966 // infinite loop during reassociation.
1967 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1968 return nullptr;
1969
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001970 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001971 APFloat Val = CF->getValueAPF();
1972 Val.changeSign();
1973 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001974
Chad Rosier094ac772014-11-11 22:58:35 +00001975 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1976 // ((-Const*y) + x) -> (x + (-Const*y)).
1977 if (User->getOperand(0) == I && User->isCommutative())
1978 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001979
Chad Rosier094ac772014-11-11 22:58:35 +00001980 Value *Op0 = User->getOperand(0);
1981 Value *Op1 = User->getOperand(1);
1982 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00001983 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00001984 default:
1985 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00001986 case Instruction::FAdd:
1987 NI = BinaryOperator::CreateFSub(Op0, Op1);
1988 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1989 break;
1990 case Instruction::FSub:
1991 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1992 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1993 break;
1994 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001995
Chad Rosier094ac772014-11-11 22:58:35 +00001996 NI->insertBefore(User);
1997 NI->setName(User->getName());
1998 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001999 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00002000 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002001 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00002002 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002003}
2004
Sanjay Patelc96ee082015-04-22 18:04:46 +00002005/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00002006/// instructions is not allowed.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002007void ReassociatePass::OptimizeInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00002008 // Only consider operations that we understand.
2009 if (!isa<BinaryOperator>(I))
2010 return;
2011
Chad Rosier11ab9412014-08-14 15:23:01 +00002012 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002013 // If an operand of this shift is a reassociable multiply, or if the shift
2014 // is used by a reassociable multiply or add, turn into a multiply.
2015 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2016 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002017 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2018 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002019 Instruction *NI = ConvertShiftToMul(I);
2020 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002021 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002022 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002023 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002024
Chad Rosier094ac772014-11-11 22:58:35 +00002025 // Canonicalize negative constants out of expressions.
2026 if (Instruction *Res = canonicalizeNegConstExpr(I))
2027 I = Res;
2028
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002029 // Commute binary operators, to canonicalize the order of their operands.
2030 // This can potentially expose more CSE opportunities, and makes writing other
2031 // transformations simpler.
2032 if (I->isCommutative())
2033 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002034
Sanjay Patel629c4112017-11-06 16:27:15 +00002035 // Don't optimize floating-point instructions unless they are 'fast'.
2036 if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002037 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002038
Dan Gohman1c6c3482011-04-12 00:11:56 +00002039 // Do not reassociate boolean (i1) expressions. We want to preserve the
2040 // original order of evaluation for short-circuited comparisons that
2041 // SimplifyCFG has folded to AND/OR expressions. If the expression
2042 // is not further optimized, it is likely to be transformed back to a
2043 // short-circuited form for code gen, and the source order may have been
2044 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002045 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002046 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002047
Dan Gohman1c6c3482011-04-12 00:11:56 +00002048 // If this is a subtract instruction which is not already in negate form,
2049 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002050 if (I->getOpcode() == Instruction::Sub) {
2051 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002052 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002053 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002054 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002055 I = NI;
2056 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002057 // Otherwise, this is a negation. See if the operand is a multiply tree
2058 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002059 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2060 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002061 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002062 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002063 // If the negate was simplified, revisit the users to see if we can
2064 // reassociate further.
2065 for (User *U : NI->users()) {
2066 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2067 RedoInsts.insert(Tmp);
2068 }
Duncan Sands3293f462012-06-08 20:15:33 +00002069 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002070 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002071 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002072 }
2073 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002074 } else if (I->getOpcode() == Instruction::FSub) {
2075 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002076 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002077 RedoInsts.insert(I);
2078 MadeChange = true;
2079 I = NI;
2080 } else if (BinaryOperator::isFNeg(I)) {
2081 // Otherwise, this is a negation. See if the operand is a multiply tree
2082 // and if this is not an inner node of a multiply tree.
2083 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2084 (!I->hasOneUse() ||
2085 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002086 // If the negate was simplified, revisit the users to see if we can
2087 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002088 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002089 for (User *U : NI->users()) {
2090 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2091 RedoInsts.insert(Tmp);
2092 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002093 RedoInsts.insert(I);
2094 MadeChange = true;
2095 I = NI;
2096 }
2097 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002098 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002099
Duncan Sands3293f462012-06-08 20:15:33 +00002100 // If this instruction is an associative binary operator, process it.
2101 if (!I->isAssociative()) return;
2102 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002103
2104 // If this is an interior node of a reassociable tree, ignore it until we
2105 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002106 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002107 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2108 // During the initial run we will get to the root of the tree.
2109 // But if we get here while we are redoing instructions, there is no
2110 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002111 if (BO->user_back() != BO &&
2112 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002113 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002114 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002115 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002116
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002117 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002118 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002119 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002120 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002121 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002122 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2123 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2124 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002125
Duncan Sands3293f462012-06-08 20:15:33 +00002126 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002127}
Chris Lattner1e506502005-05-07 21:59:39 +00002128
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002129void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002130 // First, walk the expression tree, linearizing the tree, collecting the
2131 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002132 SmallVector<RepeatedValue, 8> Tree;
2133 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002134 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002135 Ops.reserve(Tree.size());
2136 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2137 RepeatedValue E = Tree[i];
2138 Ops.append(E.second.getZExtValue(),
2139 ValueEntry(getRank(E.first), E.first));
2140 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002141
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002142 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2143
Chris Lattner2fc319d2006-03-14 07:11:11 +00002144 // Now that we have linearized the tree to a list and have gathered all of
2145 // the operands and their ranks, sort the operands by their rank. Use a
2146 // stable_sort so that values with equal ranks will have their relative
2147 // positions maintained (and so the compiler is deterministic). Note that
2148 // this sorts so that the highest ranking values end up at the beginning of
2149 // the vector.
2150 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002151
Sanjay Patelc96ee082015-04-22 18:04:46 +00002152 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002153 // sorted form, optimize it globally if possible.
2154 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002155 if (V == I)
2156 // Self-referential expression in unreachable code.
2157 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002158 // This expression tree simplified to something that isn't a tree,
2159 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002160 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002161 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002162 if (Instruction *VI = dyn_cast<Instruction>(V))
Mikael Holmen7a99e332017-08-24 09:05:00 +00002163 if (I->getDebugLoc())
2164 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002165 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002166 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002167 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002168 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002169
Chris Lattner2fc319d2006-03-14 07:11:11 +00002170 // We want to sink immediates as deeply as possible except in the case where
2171 // this is a multiply tree used only by an add, and the immediate is a -1.
2172 // In this case we reassociate to put the negation on the outside so that we
2173 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002174 if (I->hasOneUse()) {
2175 if (I->getOpcode() == Instruction::Mul &&
2176 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2177 isa<ConstantInt>(Ops.back().Op) &&
Craig Topper79ab6432017-07-06 18:39:47 +00002178 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002179 ValueEntry Tmp = Ops.pop_back_val();
2180 Ops.insert(Ops.begin(), Tmp);
2181 } else if (I->getOpcode() == Instruction::FMul &&
2182 cast<Instruction>(I->user_back())->getOpcode() ==
2183 Instruction::FAdd &&
2184 isa<ConstantFP>(Ops.back().Op) &&
2185 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2186 ValueEntry Tmp = Ops.pop_back_val();
2187 Ops.insert(Ops.begin(), Tmp);
2188 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002189 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002190
David Greened17c3912010-01-05 01:27:24 +00002191 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002192
Chris Lattner2fc319d2006-03-14 07:11:11 +00002193 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002194 if (Ops[0].Op == I)
2195 // Self-referential expression in unreachable code.
2196 return;
2197
Chris Lattner2fc319d2006-03-14 07:11:11 +00002198 // This expression tree simplified to something that isn't a tree,
2199 // eliminate it.
2200 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002201 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2202 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002203 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002204 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002205 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002206
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002207 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2208 // Find the pair with the highest count in the pairmap and move it to the
2209 // back of the list so that it can later be CSE'd.
2210 // example:
2211 // a*b*c*d*e
2212 // if c*e is the most "popular" pair, we can express this as
2213 // (((c*e)*d)*b)*a
2214 unsigned Max = 1;
2215 unsigned BestRank = 0;
2216 std::pair<unsigned, unsigned> BestPair;
2217 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2218 for (unsigned i = 0; i < Ops.size() - 1; ++i)
2219 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2220 unsigned Score = 0;
2221 Value *Op0 = Ops[i].Op;
2222 Value *Op1 = Ops[j].Op;
2223 if (std::less<Value *>()(Op1, Op0))
2224 std::swap(Op0, Op1);
2225 auto it = PairMap[Idx].find({Op0, Op1});
2226 if (it != PairMap[Idx].end())
2227 Score += it->second;
2228
2229 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2230 if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2231 BestPair = {i, j};
2232 Max = Score;
2233 BestRank = MaxRank;
2234 }
2235 }
2236 if (Max > 1) {
2237 auto Op0 = Ops[BestPair.first];
2238 auto Op1 = Ops[BestPair.second];
2239 Ops.erase(&Ops[BestPair.second]);
2240 Ops.erase(&Ops[BestPair.first]);
2241 Ops.push_back(Op0);
2242 Ops.push_back(Op1);
2243 }
2244 }
Chris Lattner60b71b52009-12-31 19:24:52 +00002245 // Now that we ordered and optimized the expressions, splat them back into
2246 // the expression tree, removing any unneeded nodes.
2247 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002248}
2249
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002250void
2251ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2252 // Make a "pairmap" of how often each operand pair occurs.
2253 for (BasicBlock *BI : RPOT) {
2254 for (Instruction &I : *BI) {
2255 if (!I.isAssociative())
2256 continue;
2257
2258 // Ignore nodes that aren't at the root of trees.
2259 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2260 continue;
2261
2262 // Collect all operands in a single reassociable expression.
2263 // Since Reassociate has already been run once, we can assume things
2264 // are already canonical according to Reassociation's regime.
2265 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2266 SmallVector<Value *, 8> Ops;
2267 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2268 Value *Op = Worklist.pop_back_val();
2269 Instruction *OpI = dyn_cast<Instruction>(Op);
2270 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2271 Ops.push_back(Op);
2272 continue;
2273 }
2274 // Be paranoid about self-referencing expressions in unreachable code.
2275 if (OpI->getOperand(0) != OpI)
2276 Worklist.push_back(OpI->getOperand(0));
2277 if (OpI->getOperand(1) != OpI)
2278 Worklist.push_back(OpI->getOperand(1));
2279 }
2280 // Skip extremely long expressions.
2281 if (Ops.size() > GlobalReassociateLimit)
2282 continue;
2283
2284 // Add all pairwise combinations of operands to the pair map.
2285 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2286 SmallSet<std::pair<Value *, Value*>, 32> Visited;
2287 for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2288 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2289 // Canonicalize operand orderings.
2290 Value *Op0 = Ops[i];
2291 Value *Op1 = Ops[j];
2292 if (std::less<Value *>()(Op1, Op0))
2293 std::swap(Op0, Op1);
2294 if (!Visited.insert({Op0, Op1}).second)
2295 continue;
2296 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1});
2297 if (!res.second)
2298 ++res.first->second;
2299 }
2300 }
2301 }
2302 }
2303}
2304
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002305PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002306 // Get the functions basic blocks in Reverse Post Order. This order is used by
2307 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2308 // blocks (it has been seen that the analysis in this pass could hang when
2309 // analysing dead basic blocks).
2310 ReversePostOrderTraversal<Function *> RPOT(&F);
2311
Chad Rosierea7e4642016-08-17 15:54:39 +00002312 // Calculate the rank map for F.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002313 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002314
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002315 // Build the pair map before running reassociate.
2316 // Technically this would be more accurate if we did it after one round
2317 // of reassociation, but in practice it doesn't seem to help much on
2318 // real-world code, so don't waste the compile time running reassociate
2319 // twice.
2320 // If a user wants, they could expicitly run reassociate twice in their
2321 // pass pipeline for further potential gains.
2322 // It might also be possible to update the pair map during runtime, but the
2323 // overhead of that may be large if there's many reassociable chains.
2324 BuildPairMap(RPOT);
2325
Chris Lattner1e506502005-05-07 21:59:39 +00002326 MadeChange = false;
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002327
2328 // Traverse the same blocks that were analysed by BuildRankMap.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002329 for (BasicBlock *BI : RPOT) {
2330 assert(RankMap.count(&*BI) && "BB should be ranked.");
Duncan Sands3293f462012-06-08 20:15:33 +00002331 // Optimize every instruction in the basic block.
Chad Rosierea7e4642016-08-17 15:54:39 +00002332 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002333 if (isInstructionTriviallyDead(&*II)) {
2334 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002335 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002336 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002337 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002338 ++II;
2339 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002340
Chad Rosierea7e4642016-08-17 15:54:39 +00002341 // Make a copy of all the instructions to be redone so we can remove dead
2342 // instructions.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00002343 OrderedSet ToRedo(RedoInsts);
Chad Rosierea7e4642016-08-17 15:54:39 +00002344 // Iterate over all instructions to be reevaluated and remove trivially dead
2345 // instructions. If any operand of the trivially dead instruction becomes
2346 // dead mark it for deletion as well. Continue this process until all
2347 // trivially dead instructions have been removed.
2348 while (!ToRedo.empty()) {
2349 Instruction *I = ToRedo.pop_back_val();
Davide Italiano631cd272016-10-28 02:47:09 +00002350 if (isInstructionTriviallyDead(I)) {
Chad Rosierea7e4642016-08-17 15:54:39 +00002351 RecursivelyEraseDeadInsts(I, ToRedo);
Davide Italiano631cd272016-10-28 02:47:09 +00002352 MadeChange = true;
2353 }
Chad Rosierea7e4642016-08-17 15:54:39 +00002354 }
2355
2356 // Now that we have removed dead instructions, we can reoptimize the
2357 // remaining instructions.
2358 while (!RedoInsts.empty()) {
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00002359 Instruction *I = RedoInsts.front();
2360 RedoInsts.erase(RedoInsts.begin());
Chad Rosierea7e4642016-08-17 15:54:39 +00002361 if (isInstructionTriviallyDead(I))
2362 EraseInst(I);
2363 else
2364 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002365 }
Duncan Sands3293f462012-06-08 20:15:33 +00002366 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002367
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002368 // We are done with the rank map and pair map.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002369 RankMap.clear();
2370 ValueRankMap.clear();
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002371 for (auto &Entry : PairMap)
2372 Entry.clear();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002373
Davide Italiano39893bd2016-05-29 00:41:17 +00002374 if (MadeChange) {
Chandler Carruthca68a3e2017-01-15 06:32:49 +00002375 PreservedAnalyses PA;
2376 PA.preserveSet<CFGAnalyses>();
Davide Italiano39893bd2016-05-29 00:41:17 +00002377 PA.preserve<GlobalsAA>();
2378 return PA;
2379 }
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002380
2381 return PreservedAnalyses::all();
2382}
2383
2384namespace {
Eugene Zelenko306d2992017-10-18 21:46:47 +00002385
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002386 class ReassociateLegacyPass : public FunctionPass {
2387 ReassociatePass Impl;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002388
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002389 public:
2390 static char ID; // Pass identification, replacement for typeid
Eugene Zelenko306d2992017-10-18 21:46:47 +00002391
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002392 ReassociateLegacyPass() : FunctionPass(ID) {
2393 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2394 }
2395
2396 bool runOnFunction(Function &F) override {
2397 if (skipFunction(F))
2398 return false;
2399
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002400 FunctionAnalysisManager DummyFAM;
2401 auto PA = Impl.run(F, DummyFAM);
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002402 return !PA.areAllPreserved();
2403 }
2404
2405 void getAnalysisUsage(AnalysisUsage &AU) const override {
2406 AU.setPreservesCFG();
2407 AU.addPreserved<GlobalsAAWrapperPass>();
2408 }
2409 };
Eugene Zelenko306d2992017-10-18 21:46:47 +00002410
2411} // end anonymous namespace
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002412
2413char ReassociateLegacyPass::ID = 0;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002414
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002415INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2416 "Reassociate expressions", false, false)
2417
2418// Public interface to the Reassociate pass
2419FunctionPass *llvm::createReassociatePass() {
2420 return new ReassociateLegacyPass();
Chris Lattnerc0f58002002-05-08 22:19:27 +00002421}