blob: 03cd7c10150885ef4d0ef92b8473545c46e9f489 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Justin Bognerc2bf63d2016-04-26 23:39:29 +000023#include "llvm/Transforms/Scalar/Reassociate.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000024#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/APInt.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000026#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/PostOrderIterator.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include "llvm/ADT/SetVector.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000029#include "llvm/ADT/SmallPtrSet.h"
Fiona Glaserb8a330c2017-12-12 19:18:02 +000030#include "llvm/ADT/SmallSet.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000031#include "llvm/ADT/SmallVector.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000032#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000033#include "llvm/Analysis/GlobalsModRef.h"
David Blaikie31b98d22018-06-04 21:23:21 +000034#include "llvm/Transforms/Utils/Local.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000035#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000036#include "llvm/IR/Argument.h"
37#include "llvm/IR/BasicBlock.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000038#include "llvm/IR/CFG.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000039#include "llvm/IR/Constant.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Constants.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000041#include "llvm/IR/Function.h"
42#include "llvm/IR/IRBuilder.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000043#include "llvm/IR/InstrTypes.h"
44#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000045#include "llvm/IR/Instructions.h"
Bjorn Petterssonbec2a7c2018-04-25 09:23:56 +000046#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000047#include "llvm/IR/Operator.h"
48#include "llvm/IR/PassManager.h"
Craig Toppercbac691c2017-06-21 16:07:09 +000049#include "llvm/IR/PatternMatch.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000050#include "llvm/IR/Type.h"
51#include "llvm/IR/User.h"
52#include "llvm/IR/Value.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000053#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000054#include "llvm/Pass.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000055#include "llvm/Support/Casting.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000056#include "llvm/Support/Debug.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000057#include "llvm/Support/ErrorHandling.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000058#include "llvm/Support/raw_ostream.h"
Justin Bognerc2bf63d2016-04-26 23:39:29 +000059#include "llvm/Transforms/Scalar.h"
Chris Lattner1e506502005-05-07 21:59:39 +000060#include <algorithm>
Eugene Zelenko306d2992017-10-18 21:46:47 +000061#include <cassert>
62#include <utility>
63
Chris Lattner49525f82004-01-09 06:02:20 +000064using namespace llvm;
Justin Bognerc2bf63d2016-04-26 23:39:29 +000065using namespace reassociate;
Brian Gaeke960707c2003-11-11 22:41:34 +000066
Chandler Carruth964daaa2014-04-22 02:55:47 +000067#define DEBUG_TYPE "reassociate"
68
Chris Lattner79a42ac2006-12-19 21:40:18 +000069STATISTIC(NumChanged, "Number of insts reassociated");
70STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000072
Devang Patel702f45d2008-11-21 21:00:20 +000073#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000074/// Print out the expression identified in the Ops list.
Chris Lattner38abecb2009-12-31 18:40:32 +000075static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000076 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000077 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000078 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000079 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000080 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000081 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000082 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000083 }
Chris Lattner4c065092006-03-04 09:31:13 +000084}
Devang Patelcb181bb2008-11-21 20:00:59 +000085#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000086
Justin Bognerc2bf63d2016-04-26 23:39:29 +000087/// Utility class representing a non-constant Xor-operand. We classify
88/// non-constant Xor-Operands into two categories:
89/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
90/// C2)
91/// C2.1) The operand is in the form of "X | C", where C is a non-zero
92/// constant.
93/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94/// operand as "E | 0"
95class llvm::reassociate::XorOpnd {
96public:
97 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000098
Justin Bognerc2bf63d2016-04-26 23:39:29 +000099 bool isInvalid() const { return SymbolicPart == nullptr; }
100 bool isOrExpr() const { return isOr; }
101 Value *getValue() const { return OrigVal; }
102 Value *getSymbolicPart() const { return SymbolicPart; }
103 unsigned getSymbolicRank() const { return SymbolicRank; }
104 const APInt &getConstPart() const { return ConstPart; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000105
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000106 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000108
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000109private:
110 Value *OrigVal;
111 Value *SymbolicPart;
112 APInt ConstPart;
113 unsigned SymbolicRank;
114 bool isOr;
115};
Chris Lattnerc0f58002002-05-08 22:19:27 +0000116
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000117XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000118 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000119 OrigVal = V;
120 Instruction *I = dyn_cast<Instruction>(V);
121 SymbolicRank = 0;
122
123 if (I && (I->getOpcode() == Instruction::Or ||
124 I->getOpcode() == Instruction::And)) {
125 Value *V0 = I->getOperand(0);
126 Value *V1 = I->getOperand(1);
Craig Toppercbac691c2017-06-21 16:07:09 +0000127 const APInt *C;
128 if (match(V0, PatternMatch::m_APInt(C)))
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000129 std::swap(V0, V1);
130
Craig Toppercbac691c2017-06-21 16:07:09 +0000131 if (match(V1, PatternMatch::m_APInt(C))) {
132 ConstPart = *C;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000133 SymbolicPart = V0;
134 isOr = (I->getOpcode() == Instruction::Or);
135 return;
136 }
137 }
138
139 // view the operand as "V | 0"
140 SymbolicPart = V;
Craig Toppercbac691c2017-06-21 16:07:09 +0000141 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000142 isOr = true;
143}
144
Sanjay Patelc96ee082015-04-22 18:04:46 +0000145/// Return true if V is an instruction of the specified opcode and if it
146/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000147static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Sanjay Patel64fd3332017-11-14 23:03:56 +0000148 auto *I = dyn_cast<Instruction>(V);
149 if (I && I->hasOneUse() && I->getOpcode() == Opcode)
150 if (!isa<FPMathOperator>(I) || I->isFast())
151 return cast<BinaryOperator>(I);
Craig Topperf40110f2014-04-25 05:29:35 +0000152 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000153}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000154
Chad Rosier11ab9412014-08-14 15:23:01 +0000155static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
156 unsigned Opcode2) {
Sanjay Patel64fd3332017-11-14 23:03:56 +0000157 auto *I = dyn_cast<Instruction>(V);
158 if (I && I->hasOneUse() &&
159 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
160 if (!isa<FPMathOperator>(I) || I->isFast())
161 return cast<BinaryOperator>(I);
Chad Rosier11ab9412014-08-14 15:23:01 +0000162 return nullptr;
163}
164
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000165void ReassociatePass::BuildRankMap(Function &F,
166 ReversePostOrderTraversal<Function*> &RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000167 unsigned Rank = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000168
Chad Rosierf59e5482014-11-14 15:01:38 +0000169 // Assign distinct ranks to function arguments.
Davide Italianob53b0752017-08-07 01:57:21 +0000170 for (auto &Arg : F.args()) {
171 ValueRankMap[&Arg] = ++Rank;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000172 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
173 << "\n");
Chad Rosierf59e5482014-11-14 15:01:38 +0000174 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000175
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000176 // Traverse basic blocks in ReversePostOrder
Benjamin Kramer135f7352016-06-26 12:28:59 +0000177 for (BasicBlock *BB : RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000178 unsigned BBRank = RankMap[BB] = ++Rank << 16;
Chris Lattner9f284e02005-05-08 20:57:04 +0000179
180 // Walk the basic block, adding precomputed ranks for any instructions that
181 // we cannot move. This ensures that the ranks for these instructions are
182 // all different in the block.
Benjamin Kramer135f7352016-06-26 12:28:59 +0000183 for (Instruction &I : *BB)
184 if (mayBeMemoryDependent(I))
185 ValueRankMap[&I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000186 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000187}
188
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000189unsigned ReassociatePass::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000190 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000191 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000192 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
193 return 0; // Otherwise it's a global or constant, rank 0.
194 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000195
Chris Lattner17229a72010-01-01 00:01:34 +0000196 if (unsigned Rank = ValueRankMap[I])
197 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000198
Chris Lattnerf43e9742005-05-07 04:08:02 +0000199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200 // we can reassociate expressions for code motion! Since we do not recurse
201 // for PHI nodes, we cannot have infinite recursion here, because there
202 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000203 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
Sanjay Patela2017872018-04-19 17:56:36 +0000204 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
Chris Lattnerf43e9742005-05-07 04:08:02 +0000205 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000206
Chris Lattner6e2086d2005-05-08 00:08:33 +0000207 // If this is a not or neg instruction, do not count it for rank. This
208 // assures us that X and ~X will have the same rank.
Sanjay Patela2017872018-04-19 17:56:36 +0000209 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
210 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000211 ++Rank;
212
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000213 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
214 << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000215
Chris Lattner17229a72010-01-01 00:01:34 +0000216 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000217}
218
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000219// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000220void ReassociatePass::canonicalizeOperands(Instruction *I) {
Chad Rosierf8b55f12014-11-14 17:05:59 +0000221 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
222 assert(I->isCommutative() && "Expected commutative operator.");
223
224 Value *LHS = I->getOperand(0);
225 Value *RHS = I->getOperand(1);
Davide Italianoa5cdc222017-08-07 01:49:09 +0000226 if (LHS == RHS || isa<Constant>(RHS))
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000227 return;
Davide Italianoa5cdc222017-08-07 01:49:09 +0000228 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
Chad Rosierf8b55f12014-11-14 17:05:59 +0000229 cast<BinaryOperator>(I)->swapOperands();
230}
231
Chad Rosier11ab9412014-08-14 15:23:01 +0000232static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
233 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000234 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000235 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
236 else {
237 BinaryOperator *Res =
238 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
239 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
240 return Res;
241 }
242}
243
244static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
245 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000246 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000247 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
248 else {
249 BinaryOperator *Res =
250 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
251 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
252 return Res;
253 }
254}
255
256static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
257 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000258 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000259 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
260 else {
261 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
262 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
263 return Res;
264 }
265}
266
Sanjay Patelc96ee082015-04-22 18:04:46 +0000267/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000268static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000269 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000270 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
271 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000272
Chad Rosier11ab9412014-08-14 15:23:01 +0000273 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
274 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000275 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000276 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000277 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000278 return Res;
279}
280
Sanjay Patelc96ee082015-04-22 18:04:46 +0000281/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
282/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000283/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
284/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
285/// even x in Bitwidth-bit arithmetic.
286static unsigned CarmichaelShift(unsigned Bitwidth) {
287 if (Bitwidth < 3)
288 return Bitwidth - 1;
289 return Bitwidth - 2;
290}
291
Sanjay Patelc96ee082015-04-22 18:04:46 +0000292/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000293/// reducing the combined weight using any special properties of the operation.
294/// The existing weight LHS represents the computation X op X op ... op X where
295/// X occurs LHS times. The combined weight represents X op X op ... op X with
296/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
297/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
298/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
299static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
300 // If we were working with infinite precision arithmetic then the combined
301 // weight would be LHS + RHS. But we are using finite precision arithmetic,
302 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
303 // for nilpotent operations and addition, but not for idempotent operations
304 // and multiplication), so it is important to correctly reduce the combined
305 // weight back into range if wrapping would be wrong.
306
307 // If RHS is zero then the weight didn't change.
308 if (RHS.isMinValue())
309 return;
310 // If LHS is zero then the combined weight is RHS.
311 if (LHS.isMinValue()) {
312 LHS = RHS;
313 return;
314 }
315 // From this point on we know that neither LHS nor RHS is zero.
316
317 if (Instruction::isIdempotent(Opcode)) {
318 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
319 // weight of 1. Keeping weights at zero or one also means that wrapping is
320 // not a problem.
321 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
322 return; // Return a weight of 1.
323 }
324 if (Instruction::isNilpotent(Opcode)) {
325 // Nilpotent means X op X === 0, so reduce weights modulo 2.
326 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
327 LHS = 0; // 1 + 1 === 0 modulo 2.
328 return;
329 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000330 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000331 // TODO: Reduce the weight by exploiting nsw/nuw?
332 LHS += RHS;
333 return;
334 }
335
Chad Rosier11ab9412014-08-14 15:23:01 +0000336 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
337 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000338 unsigned Bitwidth = LHS.getBitWidth();
339 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
340 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
341 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
342 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
343 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
344 // which by a happy accident means that they can always be represented using
345 // Bitwidth bits.
346 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
347 // the Carmichael number).
348 if (Bitwidth > 3) {
349 /// CM - The value of Carmichael's lambda function.
350 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
351 // Any weight W >= Threshold can be replaced with W - CM.
352 APInt Threshold = CM + Bitwidth;
353 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
354 // For Bitwidth 4 or more the following sum does not overflow.
355 LHS += RHS;
356 while (LHS.uge(Threshold))
357 LHS -= CM;
358 } else {
359 // To avoid problems with overflow do everything the same as above but using
360 // a larger type.
361 unsigned CM = 1U << CarmichaelShift(Bitwidth);
362 unsigned Threshold = CM + Bitwidth;
363 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
364 "Weights not reduced!");
365 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
366 while (Total >= Threshold)
367 Total -= CM;
368 LHS = Total;
369 }
370}
371
Eugene Zelenko306d2992017-10-18 21:46:47 +0000372using RepeatedValue = std::pair<Value*, APInt>;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000373
Sanjay Patelc96ee082015-04-22 18:04:46 +0000374/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000375/// nodes in Ops along with their weights (how many times the leaf occurs). The
376/// original expression is the same as
377/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000378/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000379/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
380/// op
381/// ...
382/// op
383/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
384///
Duncan Sandsac852c72012-11-15 09:58:38 +0000385/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000386///
387/// This routine may modify the function, in which case it returns 'true'. The
388/// changes it makes may well be destructive, changing the value computed by 'I'
389/// to something completely different. Thus if the routine returns 'true' then
390/// you MUST either replace I with a new expression computed from the Ops array,
391/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000392///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000393/// A leaf node is either not a binary operation of the same kind as the root
394/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
395/// opcode), or is the same kind of binary operator but has a use which either
396/// does not belong to the expression, or does belong to the expression but is
397/// a leaf node. Every leaf node has at least one use that is a non-leaf node
398/// of the expression, while for non-leaf nodes (except for the root 'I') every
399/// use is a non-leaf node of the expression.
400///
401/// For example:
402/// expression graph node names
403///
404/// + | I
405/// / \ |
406/// + + | A, B
407/// / \ / \ |
408/// * + * | C, D, E
409/// / \ / \ / \ |
410/// + * | F, G
411///
412/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000413/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000414///
415/// The expression is maximal: if some instruction is a binary operator of the
416/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
417/// then the instruction also belongs to the expression, is not a leaf node of
418/// it, and its operands also belong to the expression (but may be leaf nodes).
419///
420/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
421/// order to ensure that every non-root node in the expression has *exactly one*
422/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000423/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000424/// RewriteExprTree to put the values back in if the routine indicates that it
425/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000426///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000427/// In the above example either the right operand of A or the left operand of B
428/// will be replaced by undef. If it is B's operand then this gives:
429///
430/// + | I
431/// / \ |
432/// + + | A, B - operand of B replaced with undef
433/// / \ \ |
434/// * + * | C, D, E
435/// / \ / \ / \ |
436/// + * | F, G
437///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000438/// Note that such undef operands can only be reached by passing through 'I'.
439/// For example, if you visit operands recursively starting from a leaf node
440/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000441/// which requires passing through a phi node.
442///
443/// Note that this routine may also mutate binary operators of the wrong type
444/// that have all uses inside the expression (i.e. only used by non-leaf nodes
445/// of the expression) if it can turn them into binary operators of the right
446/// type and thus make the expression bigger.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000447static bool LinearizeExprTree(BinaryOperator *I,
448 SmallVectorImpl<RepeatedValue> &Ops) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000449 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000450 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
451 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000452 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000453 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000454
455 // Visit all operands of the expression, keeping track of their weight (the
456 // number of paths from the expression root to the operand, or if you like
457 // the number of times that operand occurs in the linearized expression).
458 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
459 // while A has weight two.
460
461 // Worklist of non-leaf nodes (their operands are in the expression too) along
462 // with their weights, representing a certain number of paths to the operator.
463 // If an operator occurs in the worklist multiple times then we found multiple
464 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000465 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
466 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000467 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000468
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000469 // Leaves of the expression are values that either aren't the right kind of
470 // operation (eg: a constant, or a multiply in an add tree), or are, but have
471 // some uses that are not inside the expression. For example, in I = X + X,
472 // X = A + B, the value X has two uses (by I) that are in the expression. If
473 // X has any other uses, for example in a return instruction, then we consider
474 // X to be a leaf, and won't analyze it further. When we first visit a value,
475 // if it has more than one use then at first we conservatively consider it to
476 // be a leaf. Later, as the expression is explored, we may discover some more
477 // uses of the value from inside the expression. If all uses turn out to be
478 // from within the expression (and the value is a binary operator of the right
479 // kind) then the value is no longer considered to be a leaf, and its operands
480 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000481
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000482 // Leaves - Keeps track of the set of putative leaves as well as the number of
483 // paths to each leaf seen so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000484 using LeafMap = DenseMap<Value *, APInt>;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000485 LeafMap Leaves; // Leaf -> Total weight so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000486 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000487
488#ifndef NDEBUG
Eugene Zelenko306d2992017-10-18 21:46:47 +0000489 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000490#endif
491 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000492 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000493 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000494
495 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
496 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000497 APInt Weight = P.second; // Number of paths to this operand.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000498 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000499 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
500
501 // If this is a binary operation of the right kind with only one use then
502 // add its operands to the expression.
503 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000504 assert(Visited.insert(Op).second && "Not first visit!");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000505 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000506 Worklist.push_back(std::make_pair(BO, Weight));
507 continue;
508 }
509
510 // Appears to be a leaf. Is the operand already in the set of leaves?
511 LeafMap::iterator It = Leaves.find(Op);
512 if (It == Leaves.end()) {
513 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000514 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000515 if (!Op->hasOneUse()) {
516 // This value has uses not accounted for by the expression, so it is
517 // not safe to modify. Mark it as being a leaf.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000518 LLVM_DEBUG(dbgs()
519 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000520 LeafOrder.push_back(Op);
521 Leaves[Op] = Weight;
522 continue;
523 }
524 // No uses outside the expression, try morphing it.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000525 } else {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000526 // Already in the leaf map.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000527 assert(It != Leaves.end() && Visited.count(Op) &&
528 "In leaf map but not visited!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000529
530 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000531 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000532
Duncan Sands56514522012-07-26 09:26:40 +0000533#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000534 // The leaf already has one use from inside the expression. As we want
535 // exactly one such use, drop this new use of the leaf.
536 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
537 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000538 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000539
540 // If the leaf is a binary operation of the right kind and we now see
541 // that its multiple original uses were in fact all by nodes belonging
542 // to the expression, then no longer consider it to be a leaf and add
543 // its operands to the expression.
544 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000545 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000546 Worklist.push_back(std::make_pair(BO, It->second));
547 Leaves.erase(It);
548 continue;
549 }
Duncan Sands56514522012-07-26 09:26:40 +0000550#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000551
552 // If we still have uses that are not accounted for by the expression
553 // then it is not safe to modify the value.
554 if (!Op->hasOneUse())
555 continue;
556
557 // No uses outside the expression, try morphing it.
558 Weight = It->second;
559 Leaves.erase(It); // Since the value may be morphed below.
560 }
561
562 // At this point we have a value which, first of all, is not a binary
563 // expression of the right kind, and secondly, is only used inside the
564 // expression. This means that it can safely be modified. See if we
565 // can usefully morph it into an expression of the right kind.
566 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000567 cast<Instruction>(Op)->getOpcode() != Opcode
568 || (isa<FPMathOperator>(Op) &&
Sanjay Patel629c4112017-11-06 16:27:15 +0000569 !cast<Instruction>(Op)->isFast())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000570 "Should have been handled above!");
571 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
572
573 // If this is a multiply expression, turn any internal negations into
574 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000575 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
576 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
577 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000578 LLVM_DEBUG(dbgs()
579 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
Chad Rosier11ab9412014-08-14 15:23:01 +0000580 BO = LowerNegateToMultiply(BO);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000581 LLVM_DEBUG(dbgs() << *BO << '\n');
Chad Rosier11ab9412014-08-14 15:23:01 +0000582 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000583 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000584 continue;
585 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000586
587 // Failed to morph into an expression of the right type. This really is
588 // a leaf.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000589 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000590 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
591 LeafOrder.push_back(Op);
592 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000593 }
594 }
595
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000596 // The leaves, repeated according to their weights, represent the linearized
597 // form of the expression.
598 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
599 Value *V = LeafOrder[i];
600 LeafMap::iterator It = Leaves.find(V);
601 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000602 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000603 continue;
604 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000605 APInt Weight = It->second;
606 if (Weight.isMinValue())
607 // Leaf already output or weight reduction eliminated it.
608 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000609 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000610 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000611 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000612 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000613
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000614 // For nilpotent operations or addition there may be no operands, for example
615 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
616 // in both cases the weight reduces to 0 causing the value to be skipped.
617 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000618 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000619 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000620 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000621 }
622
Chad Rosiere53e8c82014-11-18 20:21:54 +0000623 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000624}
625
Sanjay Patelc96ee082015-04-22 18:04:46 +0000626/// Now that the operands for this expression tree are
627/// linearized and optimized, emit them in-order.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000628void ReassociatePass::RewriteExprTree(BinaryOperator *I,
629 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000630 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000631
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000632 // Since our optimizations should never increase the number of operations, the
633 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000634 // from the original expression tree, without creating any new instructions,
635 // though the rewritten expression may have a completely different topology.
636 // We take care to not change anything if the new expression will be the same
637 // as the original. If more than trivial changes (like commuting operands)
638 // were made then we are obliged to clear out any optional subclass data like
639 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000640
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000641 /// NodesToRewrite - Nodes from the original expression available for writing
642 /// the new expression into.
643 SmallVector<BinaryOperator*, 8> NodesToRewrite;
644 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000645 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000646
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000647 /// NotRewritable - The operands being written will be the leaves of the new
648 /// expression and must not be used as inner nodes (via NodesToRewrite) by
649 /// mistake. Inner nodes are always reassociable, and usually leaves are not
650 /// (if they were they would have been incorporated into the expression and so
651 /// would not be leaves), so most of the time there is no danger of this. But
652 /// in rare cases a leaf may become reassociable if an optimization kills uses
653 /// of it, or it may momentarily become reassociable during rewriting (below)
654 /// due it being removed as an operand of one of its uses. Ensure that misuse
655 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
656 /// leaves and refusing to reuse any of them as inner nodes.
657 SmallPtrSet<Value*, 8> NotRewritable;
658 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
659 NotRewritable.insert(Ops[i].Op);
660
Duncan Sands3c05cd32012-05-26 16:42:52 +0000661 // ExpressionChanged - Non-null if the rewritten expression differs from the
662 // original in some non-trivial way, requiring the clearing of optional flags.
663 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000664 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000665 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000666 // The last operation (which comes earliest in the IR) is special as both
667 // operands will come from Ops, rather than just one with the other being
668 // a subexpression.
669 if (i+2 == Ops.size()) {
670 Value *NewLHS = Ops[i].Op;
671 Value *NewRHS = Ops[i+1].Op;
672 Value *OldLHS = Op->getOperand(0);
673 Value *OldRHS = Op->getOperand(1);
674
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000675 if (NewLHS == OldLHS && NewRHS == OldRHS)
676 // Nothing changed, leave it alone.
677 break;
678
679 if (NewLHS == OldRHS && NewRHS == OldLHS) {
680 // The order of the operands was reversed. Swap them.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000681 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000682 Op->swapOperands();
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000683 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000684 MadeChange = true;
685 ++NumChanged;
686 break;
687 }
688
689 // The new operation differs non-trivially from the original. Overwrite
690 // the old operands with the new ones.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000691 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000692 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000693 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
694 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000695 NodesToRewrite.push_back(BO);
696 Op->setOperand(0, NewLHS);
697 }
698 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000699 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
700 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000701 NodesToRewrite.push_back(BO);
702 Op->setOperand(1, NewRHS);
703 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000704 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000705
Duncan Sands3c05cd32012-05-26 16:42:52 +0000706 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000707 MadeChange = true;
708 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000709
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000710 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000711 }
Chris Lattner1e506502005-05-07 21:59:39 +0000712
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000713 // Not the last operation. The left-hand side will be a sub-expression
714 // while the right-hand side will be the current element of Ops.
715 Value *NewRHS = Ops[i].Op;
716 if (NewRHS != Op->getOperand(1)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000717 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000718 if (NewRHS == Op->getOperand(0)) {
719 // The new right-hand side was already present as the left operand. If
720 // we are lucky then swapping the operands will sort out both of them.
721 Op->swapOperands();
722 } else {
723 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000724 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
725 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000726 NodesToRewrite.push_back(BO);
727 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000728 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000729 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000730 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000731 MadeChange = true;
732 ++NumChanged;
733 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000734
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000735 // Now deal with the left-hand side. If this is already an operation node
736 // from the original expression then just rewrite the rest of the expression
737 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000738 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
739 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000740 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000741 continue;
742 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000743
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000744 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000745 // the left-hand side. If there are no nodes left then the optimizers made
746 // an expression with more nodes than the original! This usually means that
747 // they did something stupid but it might mean that the problem was just too
748 // hard (finding the mimimal number of multiplications needed to realize a
749 // multiplication expression is NP-complete). Whatever the reason, smart or
750 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000751 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000752 if (NodesToRewrite.empty()) {
753 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000754 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
755 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000756 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000757 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000758 } else {
759 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000760 }
761
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000762 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000763 Op->setOperand(0, NewOp);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000764 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000765 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000766 MadeChange = true;
767 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000768 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000769 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000770
Duncan Sands3c05cd32012-05-26 16:42:52 +0000771 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000772 // starting from the operator specified in ExpressionChanged, and compactify
773 // the operators to just before the expression root to guarantee that the
774 // expression tree is dominated by all of Ops.
775 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000776 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000777 // Preserve FastMathFlags.
778 if (isa<FPMathOperator>(I)) {
779 FastMathFlags Flags = I->getFastMathFlags();
780 ExpressionChanged->clearSubclassOptionalData();
781 ExpressionChanged->setFastMathFlags(Flags);
782 } else
783 ExpressionChanged->clearSubclassOptionalData();
784
Duncan Sands3c05cd32012-05-26 16:42:52 +0000785 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000786 break;
Bjorn Petterssonbec2a7c2018-04-25 09:23:56 +0000787
788 // Discard any debug info related to the expressions that has changed (we
789 // can leave debug infor related to the root, since the result of the
790 // expression tree should be the same even after reassociation).
Hsiangkai Wangef72e482018-08-06 03:59:47 +0000791 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
Bjorn Petterssonbec2a7c2018-04-25 09:23:56 +0000792 findDbgUsers(DbgUsers, ExpressionChanged);
793 for (auto *DII : DbgUsers) {
794 Value *Undef = UndefValue::get(ExpressionChanged->getType());
795 DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
796 ValueAsMetadata::get(Undef)));
797 }
798
Duncan Sands514db112012-06-27 14:19:00 +0000799 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000800 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Eugene Zelenko306d2992017-10-18 21:46:47 +0000801 } while (true);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000802
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000803 // Throw away any left over nodes from the original expression.
804 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000805 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000806}
807
Sanjay Patelc96ee082015-04-22 18:04:46 +0000808/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000809/// that computes the negative version of the value specified. The negative
810/// version of the value is returned, and BI is left pointing at the instruction
811/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000812/// Also add intermediate instructions to the redo list that are modified while
813/// pushing the negates through adds. These will be revisited to see if
814/// additional opportunities have been exposed.
815static Value *NegateValue(Value *V, Instruction *BI,
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +0000816 ReassociatePass::OrderedSet &ToRedo) {
Sanjay Pateld1becd02017-11-15 16:19:17 +0000817 if (auto *C = dyn_cast<Constant>(V))
818 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
819 ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000820
Chris Lattner7bc532d2002-05-16 04:37:07 +0000821 // We are trying to expose opportunity for reassociation. One of the things
822 // that we want to do to achieve this is to push a negation as deep into an
823 // expression chain as possible, to expose the add instructions. In practice,
824 // this means that we turn this:
825 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
826 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
827 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000828 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000829 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000830 if (BinaryOperator *I =
831 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000832 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000833 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
834 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000835 if (I->getOpcode() == Instruction::Add) {
836 I->setHasNoUnsignedWrap(false);
837 I->setHasNoSignedWrap(false);
838 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000839
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000840 // We must move the add instruction here, because the neg instructions do
841 // not dominate the old add instruction in general. By moving it, we are
842 // assured that the neg instructions we just inserted dominate the
843 // instruction we are about to insert after them.
844 //
845 I->moveBefore(BI);
846 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000847
848 // Add the intermediate negates to the redo list as processing them later
849 // could expose more reassociating opportunities.
850 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000851 return I;
852 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000853
Chris Lattnerfed33972009-12-31 20:34:32 +0000854 // Okay, we need to materialize a negated version of V with an instruction.
855 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000856 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000857 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
858 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000859
860 // We found one! Now we have to make sure that the definition dominates
861 // this use. We do this by moving it to the entry block (if it is a
862 // non-instruction value) or right after the definition. These negates will
863 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000864 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000865
866 // Verify that the negate is in this function, V might be a constant expr.
867 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
868 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000869
Chris Lattnerfed33972009-12-31 20:34:32 +0000870 BasicBlock::iterator InsertPt;
871 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
872 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
873 InsertPt = II->getNormalDest()->begin();
874 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000875 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000876 }
877 while (isa<PHINode>(InsertPt)) ++InsertPt;
878 } else {
879 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
880 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000881 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000882 if (TheNeg->getOpcode() == Instruction::Sub) {
883 TheNeg->setHasNoUnsignedWrap(false);
884 TheNeg->setHasNoSignedWrap(false);
885 } else {
886 TheNeg->andIRFlags(BI);
887 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000888 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000889 return TheNeg;
890 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000891
892 // Insert a 'neg' instruction that subtracts the value from zero to get the
893 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000894 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
895 ToRedo.insert(NewNeg);
896 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000897}
898
Sanjay Patelc96ee082015-04-22 18:04:46 +0000899/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000900static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000901 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000902 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000903 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000904
Chad Rosierbd64d462014-10-09 20:06:29 +0000905 // Don't breakup X - undef.
906 if (isa<UndefValue>(Sub->getOperand(1)))
907 return false;
908
Chris Lattner902537c2008-02-17 20:44:51 +0000909 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000910 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000911 Value *V0 = Sub->getOperand(0);
912 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
913 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000914 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000915 Value *V1 = Sub->getOperand(1);
916 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
917 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000918 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000919 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000920 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000921 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
922 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000923 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000924
Chris Lattner902537c2008-02-17 20:44:51 +0000925 return false;
926}
927
Sanjay Patelc96ee082015-04-22 18:04:46 +0000928/// If we have (X-Y), and if either X is an add, or if this is only used by an
929/// add, transform this into (X+(0-Y)) to promote better reassociation.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +0000930static BinaryOperator *BreakUpSubtract(Instruction *Sub,
931 ReassociatePass::OrderedSet &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000932 // Convert a subtract into an add and a neg instruction. This allows sub
933 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000934 //
Chris Lattnera5526832010-01-01 00:04:26 +0000935 // Calculate the negative value of Operand 1 of the sub instruction,
936 // and set it as the RHS of the add instruction we just made.
Owen Anderson2de9f542015-11-16 18:07:30 +0000937 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +0000938 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000939 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
940 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000941 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000942
943 // Everyone now refers to the add instruction.
944 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000945 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000946
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000947 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000948 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000949}
950
Sanjay Patelc96ee082015-04-22 18:04:46 +0000951/// If this is a shift of a reassociable multiply or is used by one, change
952/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000953static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
954 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
955 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000956
Duncan Sands3293f462012-06-08 20:15:33 +0000957 BinaryOperator *Mul =
958 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
959 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
960 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +0000961
962 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +0000963 Shl->replaceAllUsesWith(Mul);
964 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +0000965
966 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
967 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
968 // handling.
969 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
970 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
971 if (NSW && NUW)
972 Mul->setHasNoSignedWrap(true);
973 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +0000974 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000975}
976
Sanjay Patelc96ee082015-04-22 18:04:46 +0000977/// Scan backwards and forwards among values with the same rank as element i
978/// to see if X exists. If X does not exist, return i. This is useful when
979/// scanning for 'x' when we see '-x' because they both get the same rank.
Craig Topper99a2e892017-06-21 19:39:33 +0000980static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
981 unsigned i, Value *X) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000982 unsigned XRank = Ops[i].Rank;
983 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +0000984 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000985 if (Ops[j].Op == X)
986 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000987 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
988 if (Instruction *I2 = dyn_cast<Instruction>(X))
989 if (I1->isIdenticalTo(I2))
990 return j;
991 }
Chris Lattner0c59ac32010-01-01 01:13:15 +0000992 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +0000993 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000994 if (Ops[j].Op == X)
995 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000996 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
997 if (Instruction *I2 = dyn_cast<Instruction>(X))
998 if (I1->isIdenticalTo(I2))
999 return j;
1000 }
Chris Lattner5847e5e2005-05-08 18:59:37 +00001001 return i;
1002}
1003
Sanjay Patelc96ee082015-04-22 18:04:46 +00001004/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +00001005/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001006static Value *EmitAddTreeOfValues(Instruction *I,
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001007 SmallVectorImpl<WeakTrackingVH> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +00001008 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001009
Chris Lattner4c065092006-03-04 09:31:13 +00001010 Value *V1 = Ops.back();
1011 Ops.pop_back();
1012 Value *V2 = EmitAddTreeOfValues(I, Ops);
Sanjay Patel0d660102017-11-09 18:14:24 +00001013 return CreateAdd(V2, V1, "reass.add", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001014}
1015
Sanjay Patelc96ee082015-04-22 18:04:46 +00001016/// If V is an expression tree that is a multiplication sequence,
1017/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +00001018/// remove Factor from the tree and return the new tree.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001019Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001020 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1021 if (!BO)
1022 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001023
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001024 SmallVector<RepeatedValue, 8> Tree;
1025 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001026 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001027 Factors.reserve(Tree.size());
1028 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1029 RepeatedValue E = Tree[i];
1030 Factors.append(E.second.getZExtValue(),
1031 ValueEntry(getRank(E.first), E.first));
1032 }
Chris Lattner4c065092006-03-04 09:31:13 +00001033
1034 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001035 bool NeedsNegate = false;
1036 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001037 if (Factors[i].Op == Factor) {
1038 FoundFactor = true;
1039 Factors.erase(Factors.begin()+i);
1040 break;
1041 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001042
Chris Lattner0c59ac32010-01-01 01:13:15 +00001043 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001044 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001045 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1046 if (FC1->getValue() == -FC2->getValue()) {
1047 FoundFactor = NeedsNegate = true;
1048 Factors.erase(Factors.begin()+i);
1049 break;
1050 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001051 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1052 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001053 const APFloat &F1 = FC1->getValueAPF();
Chad Rosier11ab9412014-08-14 15:23:01 +00001054 APFloat F2(FC2->getValueAPF());
1055 F2.changeSign();
1056 if (F1.compare(F2) == APFloat::cmpEqual) {
1057 FoundFactor = NeedsNegate = true;
1058 Factors.erase(Factors.begin() + i);
1059 break;
1060 }
1061 }
1062 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001063 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001064
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001065 if (!FoundFactor) {
1066 // Make sure to restore the operands to the expression tree.
1067 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001068 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001069 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001070
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001071 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001072
Chris Lattner1d897942009-12-31 19:34:45 +00001073 // If this was just a single multiply, remove the multiply and return the only
1074 // remaining operand.
1075 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001076 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001077 V = Factors[0].Op;
1078 } else {
1079 RewriteExprTree(BO, Factors);
1080 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001081 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001082
Chris Lattner0c59ac32010-01-01 01:13:15 +00001083 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001084 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001085
Chris Lattner0c59ac32010-01-01 01:13:15 +00001086 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001087}
1088
Sanjay Patelc96ee082015-04-22 18:04:46 +00001089/// If V is a single-use multiply, recursively add its operands as factors,
1090/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001091///
1092/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001093static void FindSingleUseMultiplyFactors(Value *V,
Chad Rosiere22c9922017-02-08 17:45:27 +00001094 SmallVectorImpl<Value*> &Factors) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001095 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001096 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001097 Factors.push_back(V);
1098 return;
1099 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001100
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001101 // Otherwise, add the LHS and RHS to the list of factors.
Chad Rosiere22c9922017-02-08 17:45:27 +00001102 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1103 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001104}
1105
Sanjay Patelc96ee082015-04-22 18:04:46 +00001106/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1107/// This optimizes based on identities. If it can be reduced to a single Value,
1108/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001109static Value *OptimizeAndOrXor(unsigned Opcode,
1110 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001111 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1112 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1113 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1114 // First, check for X and ~X in the operand list.
1115 assert(i < Ops.size());
1116 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1117 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1118 unsigned FoundX = FindInOperandList(Ops, i, X);
1119 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001120 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001121 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001122
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001123 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001124 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001125 }
1126 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001127
Chris Lattner5f8a0052009-12-31 07:59:34 +00001128 // Next, check for duplicate pairs of values, which we assume are next to
1129 // each other, due to our sorting criteria.
1130 assert(i < Ops.size());
1131 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1132 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001133 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001134 Ops.erase(Ops.begin()+i);
1135 --i; --e;
1136 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001137 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001138 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001139
Chris Lattner60c2ca72009-12-31 19:49:01 +00001140 // Drop pairs of values for Xor.
1141 assert(Opcode == Instruction::Xor);
1142 if (e == 2)
1143 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001144
Chris Lattnera5526832010-01-01 00:04:26 +00001145 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001146 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1147 i -= 1; e -= 2;
1148 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001149 }
1150 }
Craig Topperf40110f2014-04-25 05:29:35 +00001151 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001152}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001153
Eric Christopherbfba5722015-12-16 23:10:53 +00001154/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001155/// instruction with the given two operands, and return the resulting
1156/// instruction. There are two special cases: 1) if the constant operand is 0,
1157/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1158/// be returned.
Craig Topper34caf532017-06-21 19:39:35 +00001159static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001160 const APInt &ConstOpnd) {
Craig Topper34caf532017-06-21 19:39:35 +00001161 if (ConstOpnd.isNullValue())
1162 return nullptr;
1163
1164 if (ConstOpnd.isAllOnesValue())
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001165 return Opnd;
Craig Topper34caf532017-06-21 19:39:35 +00001166
1167 Instruction *I = BinaryOperator::CreateAnd(
1168 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1169 InsertBefore);
1170 I->setDebugLoc(InsertBefore->getDebugLoc());
1171 return I;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001172}
1173
1174// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1175// into "R ^ C", where C would be 0, and R is a symbolic value.
1176//
1177// If it was successful, true is returned, and the "R" and "C" is returned
1178// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1179// and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001180bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1181 APInt &ConstOpnd, Value *&Res) {
Fangrui Songf78650a2018-07-30 19:41:25 +00001182 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001183 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1184 // = (x & ~c1) ^ (c1 ^ c2)
1185 // It is useful only when c1 == c2.
Craig Topper34caf532017-06-21 19:39:35 +00001186 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1187 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001188
Craig Topper34caf532017-06-21 19:39:35 +00001189 if (!Opnd1->getValue()->hasOneUse())
1190 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001191
Craig Topper34caf532017-06-21 19:39:35 +00001192 const APInt &C1 = Opnd1->getConstPart();
1193 if (C1 != ConstOpnd)
1194 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001195
Craig Topper34caf532017-06-21 19:39:35 +00001196 Value *X = Opnd1->getSymbolicPart();
1197 Res = createAndInstr(I, X, ~C1);
1198 // ConstOpnd was C2, now C1 ^ C2.
1199 ConstOpnd ^= C1;
1200
1201 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1202 RedoInsts.insert(T);
1203 return true;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001204}
Fangrui Songf78650a2018-07-30 19:41:25 +00001205
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001206// Helper function of OptimizeXor(). It tries to simplify
1207// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
Fangrui Songf78650a2018-07-30 19:41:25 +00001208// symbolic value.
1209//
1210// If it was successful, true is returned, and the "R" and "C" is returned
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001211// via "Res" and "ConstOpnd", respectively (If the entire expression is
1212// evaluated to a constant, the Res is set to NULL); otherwise, false is
1213// returned, and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001214bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1215 XorOpnd *Opnd2, APInt &ConstOpnd,
1216 Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001217 Value *X = Opnd1->getSymbolicPart();
1218 if (X != Opnd2->getSymbolicPart())
1219 return false;
1220
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001221 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1222 int DeadInstNum = 1;
1223 if (Opnd1->getValue()->hasOneUse())
1224 DeadInstNum++;
1225 if (Opnd2->getValue()->hasOneUse())
1226 DeadInstNum++;
1227
1228 // Xor-Rule 2:
1229 // (x | c1) ^ (x & c2)
1230 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1231 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1232 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1233 //
1234 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1235 if (Opnd2->isOrExpr())
1236 std::swap(Opnd1, Opnd2);
1237
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001238 const APInt &C1 = Opnd1->getConstPart();
1239 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001240 APInt C3((~C1) ^ C2);
1241
1242 // Do not increase code size!
Craig Topperd96177c2017-06-18 18:15:38 +00001243 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1244 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001245 if (NewInstNum > DeadInstNum)
1246 return false;
1247 }
1248
1249 Res = createAndInstr(I, X, C3);
1250 ConstOpnd ^= C1;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001251 } else if (Opnd1->isOrExpr()) {
1252 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1253 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001254 const APInt &C1 = Opnd1->getConstPart();
1255 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001256 APInt C3 = C1 ^ C2;
Fangrui Songf78650a2018-07-30 19:41:25 +00001257
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001258 // Do not increase code size
Craig Topperd96177c2017-06-18 18:15:38 +00001259 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1260 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001261 if (NewInstNum > DeadInstNum)
1262 return false;
1263 }
1264
1265 Res = createAndInstr(I, X, C3);
1266 ConstOpnd ^= C3;
1267 } else {
1268 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1269 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001270 const APInt &C1 = Opnd1->getConstPart();
1271 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001272 APInt C3 = C1 ^ C2;
1273 Res = createAndInstr(I, X, C3);
1274 }
1275
1276 // Put the original operands in the Redo list; hope they will be deleted
1277 // as dead code.
1278 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1279 RedoInsts.insert(T);
1280 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1281 RedoInsts.insert(T);
1282
1283 return true;
1284}
1285
1286/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1287/// to a single Value, it is returned, otherwise the Ops list is mutated as
1288/// necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001289Value *ReassociatePass::OptimizeXor(Instruction *I,
1290 SmallVectorImpl<ValueEntry> &Ops) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001291 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1292 return V;
Fangrui Songf78650a2018-07-30 19:41:25 +00001293
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001294 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001295 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001296
1297 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001298 SmallVector<XorOpnd*, 8> OpndPtrs;
Craig Toppercbac691c2017-06-21 16:07:09 +00001299 Type *Ty = Ops[0].Op->getType();
1300 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001301
1302 // Step 1: Convert ValueEntry to XorOpnd
1303 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1304 Value *V = Ops[i].Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001305 const APInt *C;
1306 // TODO: Support non-splat vectors.
1307 if (match(V, PatternMatch::m_APInt(C))) {
1308 ConstOpnd ^= *C;
1309 } else {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001310 XorOpnd O(V);
1311 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1312 Opnds.push_back(O);
Craig Toppercbac691c2017-06-21 16:07:09 +00001313 }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001314 }
1315
Shuxin Yang331f01d2013-04-08 22:00:43 +00001316 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1317 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1318 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1319 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1320 // when new elements are added to the vector.
1321 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1322 OpndPtrs.push_back(&Opnds[i]);
1323
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001324 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1325 // the same symbolic value cluster together. For instance, the input operand
1326 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1327 // ("x | 123", "x & 789", "y & 456").
Justin Bognercb8a21c2016-04-26 23:32:00 +00001328 //
1329 // The purpose is twofold:
1330 // 1) Cluster together the operands sharing the same symbolic-value.
1331 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1332 // could potentially shorten crital path, and expose more loop-invariants.
1333 // Note that values' rank are basically defined in RPO order (FIXME).
1334 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1335 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1336 // "z" in the order of X-Y-Z is better than any other orders.
1337 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1338 [](XorOpnd *LHS, XorOpnd *RHS) {
1339 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1340 });
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001341
1342 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001343 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001344 bool Changed = false;
1345 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001346 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001347 // The combined value
1348 Value *CV;
1349
1350 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
Craig Topperd96177c2017-06-18 18:15:38 +00001351 if (!ConstOpnd.isNullValue() &&
1352 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001353 Changed = true;
1354 if (CV)
1355 *CurrOpnd = XorOpnd(CV);
1356 else {
1357 CurrOpnd->Invalidate();
1358 continue;
1359 }
1360 }
1361
1362 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1363 PrevOpnd = CurrOpnd;
1364 continue;
1365 }
1366
1367 // step 3.2: When previous and current operands share the same symbolic
Fangrui Songf78650a2018-07-30 19:41:25 +00001368 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001369 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1370 // Remove previous operand
1371 PrevOpnd->Invalidate();
1372 if (CV) {
1373 *CurrOpnd = XorOpnd(CV);
1374 PrevOpnd = CurrOpnd;
1375 } else {
1376 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001377 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001378 }
1379 Changed = true;
1380 }
1381 }
1382
1383 // Step 4: Reassemble the Ops
1384 if (Changed) {
1385 Ops.clear();
1386 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1387 XorOpnd &O = Opnds[i];
1388 if (O.isInvalid())
1389 continue;
1390 ValueEntry VE(getRank(O.getValue()), O.getValue());
1391 Ops.push_back(VE);
1392 }
Craig Topperd96177c2017-06-18 18:15:38 +00001393 if (!ConstOpnd.isNullValue()) {
Craig Toppercbac691c2017-06-21 16:07:09 +00001394 Value *C = ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001395 ValueEntry VE(getRank(C), C);
1396 Ops.push_back(VE);
1397 }
Craig Toppercbac691c2017-06-21 16:07:09 +00001398 unsigned Sz = Ops.size();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001399 if (Sz == 1)
1400 return Ops.back().Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001401 if (Sz == 0) {
1402 assert(ConstOpnd.isNullValue());
1403 return ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001404 }
1405 }
1406
Craig Topperf40110f2014-04-25 05:29:35 +00001407 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001408}
1409
Sanjay Patelc96ee082015-04-22 18:04:46 +00001410/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001411/// optimizes based on identities. If it can be reduced to a single Value, it
1412/// is returned, otherwise the Ops list is mutated as necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001413Value *ReassociatePass::OptimizeAdd(Instruction *I,
1414 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001415 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001416 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1417 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001418 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001419
Chris Lattner5f8a0052009-12-31 07:59:34 +00001420 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001421 Value *TheOp = Ops[i].Op;
1422 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001423 // instances of the operand together. Due to our sorting criteria, we know
1424 // that these need to be next to each other in the vector.
1425 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1426 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001427 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001428 do {
1429 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001430 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001431 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001432
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001433 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1434 << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001435 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001436
Chris Lattner60b71b52009-12-31 19:24:52 +00001437 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001438 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001439 Constant *C = Ty->isIntOrIntVectorTy() ?
1440 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001441 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001442
Chris Lattner60b71b52009-12-31 19:24:52 +00001443 // Now that we have inserted a multiply, optimize it. This allows us to
1444 // handle cases that require multiple factoring steps, such as this:
1445 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001446 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001447
Chris Lattner60b71b52009-12-31 19:24:52 +00001448 // If every add operand was a duplicate, return the multiply.
1449 if (Ops.empty())
1450 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001451
Chris Lattner60b71b52009-12-31 19:24:52 +00001452 // Otherwise, we had some input that didn't have the dupe, such as
1453 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1454 // things being added by this operation.
1455 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001456
Chris Lattner60c2ca72009-12-31 19:49:01 +00001457 --i;
1458 e = Ops.size();
1459 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001460 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001461
Benjamin Kramer49689442014-05-31 15:01:54 +00001462 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001463 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1464 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001465 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001466
Benjamin Kramer49689442014-05-31 15:01:54 +00001467 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001468 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001469 X = BinaryOperator::getNegArgument(TheOp);
1470 else if (BinaryOperator::isNot(TheOp))
1471 X = BinaryOperator::getNotArgument(TheOp);
1472
Chris Lattner5f8a0052009-12-31 07:59:34 +00001473 unsigned FoundX = FindInOperandList(Ops, i, X);
1474 if (FoundX == i)
1475 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001476
Chris Lattner5f8a0052009-12-31 07:59:34 +00001477 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001478 if (Ops.size() == 2 &&
1479 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001480 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001481
Benjamin Kramer49689442014-05-31 15:01:54 +00001482 // Remove X and ~X from the operand list.
1483 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1484 return Constant::getAllOnesValue(X->getType());
1485
Chris Lattner5f8a0052009-12-31 07:59:34 +00001486 Ops.erase(Ops.begin()+i);
1487 if (i < FoundX)
1488 --FoundX;
1489 else
1490 --i; // Need to back up an extra one.
1491 Ops.erase(Ops.begin()+FoundX);
1492 ++NumAnnihil;
1493 --i; // Revisit element.
1494 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001495
1496 // if X and ~X we append -1 to the operand list.
1497 if (BinaryOperator::isNot(TheOp)) {
1498 Value *V = Constant::getAllOnesValue(X->getType());
1499 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1500 e += 1;
1501 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001502 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001503
Chris Lattner177140a2009-12-31 18:17:13 +00001504 // Scan the operand list, checking to see if there are any common factors
1505 // between operands. Consider something like A*A+A*B*C+D. We would like to
1506 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1507 // To efficiently find this, we count the number of times a factor occurs
1508 // for any ADD operands that are MULs.
1509 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001510
Chris Lattner177140a2009-12-31 18:17:13 +00001511 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1512 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001513 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001514 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001515 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001516 BinaryOperator *BOp =
1517 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001518 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001519 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001520
Chris Lattner177140a2009-12-31 18:17:13 +00001521 // Compute all of the factors of this added value.
1522 SmallVector<Value*, 8> Factors;
Chad Rosiere22c9922017-02-08 17:45:27 +00001523 FindSingleUseMultiplyFactors(BOp, Factors);
Chris Lattner177140a2009-12-31 18:17:13 +00001524 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001525
Chris Lattner177140a2009-12-31 18:17:13 +00001526 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001527 SmallPtrSet<Value*, 8> Duplicates;
1528 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1529 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001530 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001531 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001532
Chris Lattner0c59ac32010-01-01 01:13:15 +00001533 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001534 if (Occ > MaxOcc) {
1535 MaxOcc = Occ;
1536 MaxOccVal = Factor;
1537 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001538
Chris Lattner0c59ac32010-01-01 01:13:15 +00001539 // If Factor is a negative constant, add the negated value as a factor
1540 // because we can percolate the negate out. Watch for minint, which
1541 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001542 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001543 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001544 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
Chad Rosier95abfa32017-02-23 18:49:03 +00001545 if (!Duplicates.insert(Factor).second)
1546 continue;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001547 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001548 if (Occ > MaxOcc) {
1549 MaxOcc = Occ;
1550 MaxOccVal = Factor;
1551 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001552 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001553 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1554 if (CF->isNegative()) {
1555 APFloat F(CF->getValueAPF());
1556 F.changeSign();
1557 Factor = ConstantFP::get(CF->getContext(), F);
Chad Rosier95abfa32017-02-23 18:49:03 +00001558 if (!Duplicates.insert(Factor).second)
1559 continue;
Chad Rosier11ab9412014-08-14 15:23:01 +00001560 unsigned Occ = ++FactorOccurrences[Factor];
1561 if (Occ > MaxOcc) {
1562 MaxOcc = Occ;
1563 MaxOccVal = Factor;
1564 }
1565 }
1566 }
Chris Lattner177140a2009-12-31 18:17:13 +00001567 }
1568 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001569
Chris Lattner177140a2009-12-31 18:17:13 +00001570 // If any factor occurred more than one time, we can pull it out.
1571 if (MaxOcc > 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001572 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1573 << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001574 ++NumFactor;
1575
1576 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1577 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001578 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001579 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001580 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001581 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001582 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1583 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1584
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001585 SmallVector<WeakTrackingVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001586 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001587 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001588 BinaryOperator *BOp =
1589 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001590 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001591 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001592
Chris Lattner177140a2009-12-31 18:17:13 +00001593 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001594 // The factorized operand may occur several times. Convert them all in
1595 // one fell swoop.
1596 for (unsigned j = Ops.size(); j != i;) {
1597 --j;
1598 if (Ops[j].Op == Ops[i].Op) {
1599 NewMulOps.push_back(V);
1600 Ops.erase(Ops.begin()+j);
1601 }
1602 }
1603 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001604 }
1605 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001606
Chris Lattner177140a2009-12-31 18:17:13 +00001607 // No need for extra uses anymore.
Reid Kleckner96ab8722017-05-18 17:24:10 +00001608 DummyInst->deleteValue();
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001609
Chris Lattner177140a2009-12-31 18:17:13 +00001610 unsigned NumAddedValues = NewMulOps.size();
1611 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001612
Chris Lattner60b71b52009-12-31 19:24:52 +00001613 // Now that we have inserted the add tree, optimize it. This allows us to
1614 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001615 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001616 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001617 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001618 if (Instruction *VI = dyn_cast<Instruction>(V))
1619 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001620
1621 // Create the multiply.
Sanjay Patel0d660102017-11-09 18:14:24 +00001622 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001623
Chris Lattner60c2ca72009-12-31 19:49:01 +00001624 // Rerun associate on the multiply in case the inner expression turned into
1625 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001626 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001627
Chris Lattner177140a2009-12-31 18:17:13 +00001628 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1629 // entire result expression is just the multiply "A*(B+C)".
1630 if (Ops.empty())
1631 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001632
Chris Lattnerac615502009-12-31 18:18:46 +00001633 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001634 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001635 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001636 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1637 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001638
Craig Topperf40110f2014-04-25 05:29:35 +00001639 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001640}
Chris Lattner4c065092006-03-04 09:31:13 +00001641
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001642/// Build up a vector of value/power pairs factoring a product.
Chandler Carruth739ef802012-04-26 05:30:30 +00001643///
1644/// Given a series of multiplication operands, build a vector of factors and
1645/// the powers each is raised to when forming the final product. Sort them in
1646/// the order of descending power.
1647///
1648/// (x*x) -> [(x, 2)]
1649/// ((x*x)*x) -> [(x, 3)]
1650/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1651///
1652/// \returns Whether any factors have a power greater than one.
Craig Topper43507342017-06-19 16:23:43 +00001653static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1654 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001655 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1656 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001657 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001658 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1659 Value *Op = Ops[Idx-1].Op;
1660
1661 // Count the number of occurrences of this value.
1662 unsigned Count = 1;
1663 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1664 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001665 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001666 if (Count > 1)
1667 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001668 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001669
Chandler Carruth739ef802012-04-26 05:30:30 +00001670 // We can only simplify factors if the sum of the powers of our simplifiable
1671 // factors is 4 or higher. When that is the case, we will *always* have
1672 // a simplification. This is an important invariant to prevent cyclicly
1673 // trying to simplify already minimal formations.
1674 if (FactorPowerSum < 4)
1675 return false;
1676
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001677 // Now gather the simplifiable factors, removing them from Ops.
1678 FactorPowerSum = 0;
1679 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1680 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001681
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001682 // Count the number of occurrences of this value.
1683 unsigned Count = 1;
1684 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1685 ++Count;
1686 if (Count == 1)
1687 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001688 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001689 Count &= ~1U;
1690 Idx -= Count;
1691 FactorPowerSum += Count;
1692 Factors.push_back(Factor(Op, Count));
1693 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001694 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001695
Chandler Carruth739ef802012-04-26 05:30:30 +00001696 // None of the adjustments above should have reduced the sum of factor powers
1697 // below our mininum of '4'.
1698 assert(FactorPowerSum >= 4);
1699
Justin Bogner90744d22016-04-26 22:22:18 +00001700 std::stable_sort(Factors.begin(), Factors.end(),
1701 [](const Factor &LHS, const Factor &RHS) {
1702 return LHS.Power > RHS.Power;
1703 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001704 return true;
1705}
1706
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001707/// Build a tree of multiplies, computing the product of Ops.
Chandler Carruth739ef802012-04-26 05:30:30 +00001708static Value *buildMultiplyTree(IRBuilder<> &Builder,
1709 SmallVectorImpl<Value*> &Ops) {
1710 if (Ops.size() == 1)
1711 return Ops.back();
1712
1713 Value *LHS = Ops.pop_back_val();
1714 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001715 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001716 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1717 else
1718 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001719 } while (!Ops.empty());
1720
1721 return LHS;
1722}
1723
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001724/// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
Chandler Carruth739ef802012-04-26 05:30:30 +00001725///
1726/// Given a vector of values raised to various powers, where no two values are
1727/// equal and the powers are sorted in decreasing order, compute the minimal
1728/// DAG of multiplies to compute the final product, and return that product
1729/// value.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001730Value *
1731ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1732 SmallVectorImpl<Factor> &Factors) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001733 assert(Factors[0].Power);
1734 SmallVector<Value *, 4> OuterProduct;
1735 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1736 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1737 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1738 LastIdx = Idx;
1739 continue;
1740 }
1741
1742 // We want to multiply across all the factors with the same power so that
1743 // we can raise them to that power as a single entity. Build a mini tree
1744 // for that.
1745 SmallVector<Value *, 4> InnerProduct;
1746 InnerProduct.push_back(Factors[LastIdx].Base);
1747 do {
1748 InnerProduct.push_back(Factors[Idx].Base);
1749 ++Idx;
1750 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1751
1752 // Reset the base value of the first factor to the new expression tree.
1753 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001754 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1755 if (Instruction *MI = dyn_cast<Instruction>(M))
1756 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001757
1758 LastIdx = Idx;
1759 }
1760 // Unique factors with equal powers -- we've folded them into the first one's
1761 // base.
1762 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001763 [](const Factor &LHS, const Factor &RHS) {
1764 return LHS.Power == RHS.Power;
1765 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001766 Factors.end());
1767
1768 // Iteratively collect the base of each factor with an add power into the
1769 // outer product, and halve each power in preparation for squaring the
1770 // expression.
1771 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1772 if (Factors[Idx].Power & 1)
1773 OuterProduct.push_back(Factors[Idx].Base);
1774 Factors[Idx].Power >>= 1;
1775 }
1776 if (Factors[0].Power) {
1777 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1778 OuterProduct.push_back(SquareRoot);
1779 OuterProduct.push_back(SquareRoot);
1780 }
1781 if (OuterProduct.size() == 1)
1782 return OuterProduct.front();
1783
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001784 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001785 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001786}
1787
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001788Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1789 SmallVectorImpl<ValueEntry> &Ops) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001790 // We can only optimize the multiplies when there is a chain of more than
1791 // three, such that a balanced tree might require fewer total multiplies.
1792 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001793 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001794
1795 // Try to turn linear trees of multiplies without other uses of the
1796 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1797 // re-use.
1798 SmallVector<Factor, 4> Factors;
1799 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001800 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001801
1802 IRBuilder<> Builder(I);
Vyacheslav Klochkov68a677a2016-11-22 20:23:04 +00001803 // The reassociate transformation for FP operations is performed only
1804 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1805 // to the newly generated operations.
1806 if (auto FPI = dyn_cast<FPMathOperator>(I))
1807 Builder.setFastMathFlags(FPI->getFastMathFlags());
1808
Chandler Carruth739ef802012-04-26 05:30:30 +00001809 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1810 if (Ops.empty())
1811 return V;
1812
1813 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1814 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001815 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001816}
1817
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001818Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1819 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001820 // Now that we have the linearized expression tree, try to optimize it.
1821 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001822 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001823 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001824 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1825 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1826 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1827 }
1828 // If there was nothing but constants then we are done.
1829 if (Ops.empty())
1830 return Cst;
1831
1832 // Put the combined constant back at the end of the operand list, except if
1833 // there is no point. For example, an add of 0 gets dropped here, while a
1834 // multiplication by zero turns the whole expression into zero.
1835 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1836 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1837 return Cst;
1838 Ops.push_back(ValueEntry(0, Cst));
1839 }
1840
1841 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001842
Chris Lattner9039ff82009-12-31 07:33:14 +00001843 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001844 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001845 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001846 switch (Opcode) {
1847 default: break;
1848 case Instruction::And:
1849 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001850 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1851 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001852 break;
1853
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001854 case Instruction::Xor:
1855 if (Value *Result = OptimizeXor(I, Ops))
1856 return Result;
1857 break;
1858
Chandler Carruth739ef802012-04-26 05:30:30 +00001859 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001860 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001861 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001862 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001863 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001864
1865 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001866 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001867 if (Value *Result = OptimizeMul(I, Ops))
1868 return Result;
1869 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001870 }
1871
Duncan Sands3293f462012-06-08 20:15:33 +00001872 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001873 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001874 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001875}
1876
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001877// Remove dead instructions and if any operands are trivially dead add them to
1878// Insts so they will be removed as well.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00001879void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1880 OrderedSet &Insts) {
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001881 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1882 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1883 ValueRankMap.erase(I);
1884 Insts.remove(I);
1885 RedoInsts.remove(I);
1886 I->eraseFromParent();
1887 for (auto Op : Ops)
1888 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1889 if (OpInst->use_empty())
1890 Insts.insert(OpInst);
1891}
1892
Sanjay Patelc96ee082015-04-22 18:04:46 +00001893/// Zap the given instruction, adding interesting operands to the work list.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001894void ReassociatePass::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001895 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001896 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
Chad Rosier27ac0d82016-08-30 13:58:35 +00001897
Duncan Sands3293f462012-06-08 20:15:33 +00001898 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1899 // Erase the dead instruction.
1900 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001901 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001902 I->eraseFromParent();
1903 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001904 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001905 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1906 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1907 // If this is a node in an expression tree, climb to the expression root
1908 // and add that since that's where optimization actually happens.
1909 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001910 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001911 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001912 Op = Op->user_back();
Davide Italiano6e1f7bf2018-05-11 15:45:36 +00001913
1914 // The instruction we're going to push may be coming from a
1915 // dead block, and Reassociate skips the processing of unreachable
1916 // blocks because it's a waste of time and also because it can
1917 // lead to infinite loop due to LLVM's non-standard definition
1918 // of dominance.
1919 if (ValueRankMap.find(Op) != ValueRankMap.end())
1920 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001921 }
Mikael Holmen37b51202017-06-27 05:32:13 +00001922
1923 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001924}
1925
Chad Rosier094ac772014-11-11 22:58:35 +00001926// Canonicalize expressions of the following form:
1927// x + (-Constant * y) -> x - (Constant * y)
1928// x - (-Constant * y) -> x + (Constant * y)
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001929Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
Chad Rosier094ac772014-11-11 22:58:35 +00001930 if (!I->hasOneUse() || I->getType()->isVectorTy())
1931 return nullptr;
1932
David Majnemer587336d2015-05-28 06:16:39 +00001933 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001934 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001935 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001936 return nullptr;
1937
David Majnemer587336d2015-05-28 06:16:39 +00001938 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1939 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1940
1941 // Both operands are constant, let it get constant folded away.
1942 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001943 return nullptr;
1944
David Majnemer587336d2015-05-28 06:16:39 +00001945 ConstantFP *CF = C0 ? C0 : C1;
1946
1947 // Must have one constant operand.
1948 if (!CF)
1949 return nullptr;
1950
1951 // Must be a negative ConstantFP.
1952 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001953 return nullptr;
1954
1955 // User must be a binary operator with one or more uses.
1956 Instruction *User = I->user_back();
Davide Italiano79eb3b02017-05-16 22:38:40 +00001957 if (!isa<BinaryOperator>(User) || User->use_empty())
Chad Rosier094ac772014-11-11 22:58:35 +00001958 return nullptr;
1959
1960 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001961 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001962 return nullptr;
1963
1964 // Subtraction is not commutative. Explicitly, the following transform is
1965 // not valid: (-Constant * y) - x -> x + (Constant * y)
1966 if (!User->isCommutative() && User->getOperand(1) != I)
1967 return nullptr;
1968
Chad Rosier8db41e92017-08-23 14:10:06 +00001969 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1970 // resulting subtract will be broken up later. This can get us into an
1971 // infinite loop during reassociation.
1972 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1973 return nullptr;
1974
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001975 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001976 APFloat Val = CF->getValueAPF();
1977 Val.changeSign();
1978 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001979
Chad Rosier094ac772014-11-11 22:58:35 +00001980 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1981 // ((-Const*y) + x) -> (x + (-Const*y)).
1982 if (User->getOperand(0) == I && User->isCommutative())
1983 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001984
Chad Rosier094ac772014-11-11 22:58:35 +00001985 Value *Op0 = User->getOperand(0);
1986 Value *Op1 = User->getOperand(1);
1987 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00001988 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00001989 default:
1990 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00001991 case Instruction::FAdd:
1992 NI = BinaryOperator::CreateFSub(Op0, Op1);
1993 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1994 break;
1995 case Instruction::FSub:
1996 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1997 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1998 break;
1999 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002000
Chad Rosier094ac772014-11-11 22:58:35 +00002001 NI->insertBefore(User);
2002 NI->setName(User->getName());
2003 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002004 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00002005 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002006 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00002007 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002008}
2009
Sanjay Patelc96ee082015-04-22 18:04:46 +00002010/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00002011/// instructions is not allowed.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002012void ReassociatePass::OptimizeInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00002013 // Only consider operations that we understand.
2014 if (!isa<BinaryOperator>(I))
2015 return;
2016
Chad Rosier11ab9412014-08-14 15:23:01 +00002017 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002018 // If an operand of this shift is a reassociable multiply, or if the shift
2019 // is used by a reassociable multiply or add, turn into a multiply.
2020 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2021 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002022 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2023 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002024 Instruction *NI = ConvertShiftToMul(I);
2025 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002026 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002027 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002028 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002029
Chad Rosier094ac772014-11-11 22:58:35 +00002030 // Canonicalize negative constants out of expressions.
2031 if (Instruction *Res = canonicalizeNegConstExpr(I))
2032 I = Res;
2033
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002034 // Commute binary operators, to canonicalize the order of their operands.
2035 // This can potentially expose more CSE opportunities, and makes writing other
2036 // transformations simpler.
2037 if (I->isCommutative())
2038 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002039
Sanjay Patel629c4112017-11-06 16:27:15 +00002040 // Don't optimize floating-point instructions unless they are 'fast'.
2041 if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002042 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002043
Dan Gohman1c6c3482011-04-12 00:11:56 +00002044 // Do not reassociate boolean (i1) expressions. We want to preserve the
2045 // original order of evaluation for short-circuited comparisons that
2046 // SimplifyCFG has folded to AND/OR expressions. If the expression
2047 // is not further optimized, it is likely to be transformed back to a
2048 // short-circuited form for code gen, and the source order may have been
2049 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002050 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002051 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002052
Dan Gohman1c6c3482011-04-12 00:11:56 +00002053 // If this is a subtract instruction which is not already in negate form,
2054 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002055 if (I->getOpcode() == Instruction::Sub) {
2056 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002057 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002058 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002059 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002060 I = NI;
2061 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002062 // Otherwise, this is a negation. See if the operand is a multiply tree
2063 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002064 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2065 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002066 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002067 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002068 // If the negate was simplified, revisit the users to see if we can
2069 // reassociate further.
2070 for (User *U : NI->users()) {
2071 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2072 RedoInsts.insert(Tmp);
2073 }
Duncan Sands3293f462012-06-08 20:15:33 +00002074 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002075 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002076 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002077 }
2078 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002079 } else if (I->getOpcode() == Instruction::FSub) {
2080 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002081 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002082 RedoInsts.insert(I);
2083 MadeChange = true;
2084 I = NI;
2085 } else if (BinaryOperator::isFNeg(I)) {
2086 // Otherwise, this is a negation. See if the operand is a multiply tree
2087 // and if this is not an inner node of a multiply tree.
2088 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2089 (!I->hasOneUse() ||
2090 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002091 // If the negate was simplified, revisit the users to see if we can
2092 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002093 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002094 for (User *U : NI->users()) {
2095 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2096 RedoInsts.insert(Tmp);
2097 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002098 RedoInsts.insert(I);
2099 MadeChange = true;
2100 I = NI;
2101 }
2102 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002103 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002104
Duncan Sands3293f462012-06-08 20:15:33 +00002105 // If this instruction is an associative binary operator, process it.
2106 if (!I->isAssociative()) return;
2107 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002108
2109 // If this is an interior node of a reassociable tree, ignore it until we
2110 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002111 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002112 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2113 // During the initial run we will get to the root of the tree.
2114 // But if we get here while we are redoing instructions, there is no
2115 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002116 if (BO->user_back() != BO &&
2117 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002118 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002119 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002120 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002121
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002122 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002123 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002124 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002125 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002126 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002127 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2128 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2129 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002130
Duncan Sands3293f462012-06-08 20:15:33 +00002131 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002132}
Chris Lattner1e506502005-05-07 21:59:39 +00002133
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002134void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002135 // First, walk the expression tree, linearizing the tree, collecting the
2136 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002137 SmallVector<RepeatedValue, 8> Tree;
2138 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002139 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002140 Ops.reserve(Tree.size());
2141 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2142 RepeatedValue E = Tree[i];
2143 Ops.append(E.second.getZExtValue(),
2144 ValueEntry(getRank(E.first), E.first));
2145 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002146
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002147 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002148
Chris Lattner2fc319d2006-03-14 07:11:11 +00002149 // Now that we have linearized the tree to a list and have gathered all of
2150 // the operands and their ranks, sort the operands by their rank. Use a
2151 // stable_sort so that values with equal ranks will have their relative
2152 // positions maintained (and so the compiler is deterministic). Note that
2153 // this sorts so that the highest ranking values end up at the beginning of
2154 // the vector.
2155 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002156
Sanjay Patelc96ee082015-04-22 18:04:46 +00002157 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002158 // sorted form, optimize it globally if possible.
2159 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002160 if (V == I)
2161 // Self-referential expression in unreachable code.
2162 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002163 // This expression tree simplified to something that isn't a tree,
2164 // eliminate it.
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002165 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002166 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002167 if (Instruction *VI = dyn_cast<Instruction>(V))
Mikael Holmen7a99e332017-08-24 09:05:00 +00002168 if (I->getDebugLoc())
2169 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002170 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002171 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002172 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002173 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002174
Chris Lattner2fc319d2006-03-14 07:11:11 +00002175 // We want to sink immediates as deeply as possible except in the case where
2176 // this is a multiply tree used only by an add, and the immediate is a -1.
2177 // In this case we reassociate to put the negation on the outside so that we
2178 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002179 if (I->hasOneUse()) {
2180 if (I->getOpcode() == Instruction::Mul &&
2181 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2182 isa<ConstantInt>(Ops.back().Op) &&
Craig Topper79ab6432017-07-06 18:39:47 +00002183 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002184 ValueEntry Tmp = Ops.pop_back_val();
2185 Ops.insert(Ops.begin(), Tmp);
2186 } else if (I->getOpcode() == Instruction::FMul &&
2187 cast<Instruction>(I->user_back())->getOpcode() ==
2188 Instruction::FAdd &&
2189 isa<ConstantFP>(Ops.back().Op) &&
2190 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2191 ValueEntry Tmp = Ops.pop_back_val();
2192 Ops.insert(Ops.begin(), Tmp);
2193 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002194 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002195
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002196 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002197
Chris Lattner2fc319d2006-03-14 07:11:11 +00002198 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002199 if (Ops[0].Op == I)
2200 // Self-referential expression in unreachable code.
2201 return;
2202
Chris Lattner2fc319d2006-03-14 07:11:11 +00002203 // This expression tree simplified to something that isn't a tree,
2204 // eliminate it.
2205 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002206 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2207 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002208 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002209 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002210 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002211
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002212 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2213 // Find the pair with the highest count in the pairmap and move it to the
2214 // back of the list so that it can later be CSE'd.
2215 // example:
2216 // a*b*c*d*e
2217 // if c*e is the most "popular" pair, we can express this as
2218 // (((c*e)*d)*b)*a
2219 unsigned Max = 1;
2220 unsigned BestRank = 0;
2221 std::pair<unsigned, unsigned> BestPair;
2222 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2223 for (unsigned i = 0; i < Ops.size() - 1; ++i)
2224 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2225 unsigned Score = 0;
2226 Value *Op0 = Ops[i].Op;
2227 Value *Op1 = Ops[j].Op;
2228 if (std::less<Value *>()(Op1, Op0))
2229 std::swap(Op0, Op1);
2230 auto it = PairMap[Idx].find({Op0, Op1});
2231 if (it != PairMap[Idx].end())
2232 Score += it->second;
2233
2234 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2235 if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2236 BestPair = {i, j};
2237 Max = Score;
2238 BestRank = MaxRank;
2239 }
2240 }
2241 if (Max > 1) {
2242 auto Op0 = Ops[BestPair.first];
2243 auto Op1 = Ops[BestPair.second];
2244 Ops.erase(&Ops[BestPair.second]);
2245 Ops.erase(&Ops[BestPair.first]);
2246 Ops.push_back(Op0);
2247 Ops.push_back(Op1);
2248 }
2249 }
Chris Lattner60b71b52009-12-31 19:24:52 +00002250 // Now that we ordered and optimized the expressions, splat them back into
2251 // the expression tree, removing any unneeded nodes.
2252 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002253}
2254
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002255void
2256ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2257 // Make a "pairmap" of how often each operand pair occurs.
2258 for (BasicBlock *BI : RPOT) {
2259 for (Instruction &I : *BI) {
2260 if (!I.isAssociative())
2261 continue;
2262
2263 // Ignore nodes that aren't at the root of trees.
2264 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2265 continue;
2266
2267 // Collect all operands in a single reassociable expression.
2268 // Since Reassociate has already been run once, we can assume things
2269 // are already canonical according to Reassociation's regime.
2270 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2271 SmallVector<Value *, 8> Ops;
2272 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2273 Value *Op = Worklist.pop_back_val();
2274 Instruction *OpI = dyn_cast<Instruction>(Op);
2275 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2276 Ops.push_back(Op);
2277 continue;
2278 }
2279 // Be paranoid about self-referencing expressions in unreachable code.
2280 if (OpI->getOperand(0) != OpI)
2281 Worklist.push_back(OpI->getOperand(0));
2282 if (OpI->getOperand(1) != OpI)
2283 Worklist.push_back(OpI->getOperand(1));
2284 }
2285 // Skip extremely long expressions.
2286 if (Ops.size() > GlobalReassociateLimit)
2287 continue;
2288
2289 // Add all pairwise combinations of operands to the pair map.
2290 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2291 SmallSet<std::pair<Value *, Value*>, 32> Visited;
2292 for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2293 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2294 // Canonicalize operand orderings.
2295 Value *Op0 = Ops[i];
2296 Value *Op1 = Ops[j];
2297 if (std::less<Value *>()(Op1, Op0))
2298 std::swap(Op0, Op1);
2299 if (!Visited.insert({Op0, Op1}).second)
2300 continue;
2301 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1});
2302 if (!res.second)
2303 ++res.first->second;
2304 }
2305 }
2306 }
2307 }
2308}
2309
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002310PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002311 // Get the functions basic blocks in Reverse Post Order. This order is used by
2312 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2313 // blocks (it has been seen that the analysis in this pass could hang when
2314 // analysing dead basic blocks).
2315 ReversePostOrderTraversal<Function *> RPOT(&F);
2316
Chad Rosierea7e4642016-08-17 15:54:39 +00002317 // Calculate the rank map for F.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002318 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002319
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002320 // Build the pair map before running reassociate.
2321 // Technically this would be more accurate if we did it after one round
2322 // of reassociation, but in practice it doesn't seem to help much on
2323 // real-world code, so don't waste the compile time running reassociate
2324 // twice.
2325 // If a user wants, they could expicitly run reassociate twice in their
2326 // pass pipeline for further potential gains.
2327 // It might also be possible to update the pair map during runtime, but the
2328 // overhead of that may be large if there's many reassociable chains.
2329 BuildPairMap(RPOT);
2330
Chris Lattner1e506502005-05-07 21:59:39 +00002331 MadeChange = false;
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002332
2333 // Traverse the same blocks that were analysed by BuildRankMap.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002334 for (BasicBlock *BI : RPOT) {
2335 assert(RankMap.count(&*BI) && "BB should be ranked.");
Duncan Sands3293f462012-06-08 20:15:33 +00002336 // Optimize every instruction in the basic block.
Chad Rosierea7e4642016-08-17 15:54:39 +00002337 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002338 if (isInstructionTriviallyDead(&*II)) {
2339 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002340 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002341 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002342 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002343 ++II;
2344 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002345
Chad Rosierea7e4642016-08-17 15:54:39 +00002346 // Make a copy of all the instructions to be redone so we can remove dead
2347 // instructions.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00002348 OrderedSet ToRedo(RedoInsts);
Chad Rosierea7e4642016-08-17 15:54:39 +00002349 // Iterate over all instructions to be reevaluated and remove trivially dead
2350 // instructions. If any operand of the trivially dead instruction becomes
2351 // dead mark it for deletion as well. Continue this process until all
2352 // trivially dead instructions have been removed.
2353 while (!ToRedo.empty()) {
2354 Instruction *I = ToRedo.pop_back_val();
Davide Italiano631cd272016-10-28 02:47:09 +00002355 if (isInstructionTriviallyDead(I)) {
Chad Rosierea7e4642016-08-17 15:54:39 +00002356 RecursivelyEraseDeadInsts(I, ToRedo);
Davide Italiano631cd272016-10-28 02:47:09 +00002357 MadeChange = true;
2358 }
Chad Rosierea7e4642016-08-17 15:54:39 +00002359 }
2360
2361 // Now that we have removed dead instructions, we can reoptimize the
2362 // remaining instructions.
2363 while (!RedoInsts.empty()) {
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00002364 Instruction *I = RedoInsts.front();
2365 RedoInsts.erase(RedoInsts.begin());
Chad Rosierea7e4642016-08-17 15:54:39 +00002366 if (isInstructionTriviallyDead(I))
2367 EraseInst(I);
2368 else
2369 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002370 }
Duncan Sands3293f462012-06-08 20:15:33 +00002371 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002372
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002373 // We are done with the rank map and pair map.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002374 RankMap.clear();
2375 ValueRankMap.clear();
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002376 for (auto &Entry : PairMap)
2377 Entry.clear();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002378
Davide Italiano39893bd2016-05-29 00:41:17 +00002379 if (MadeChange) {
Chandler Carruthca68a3e2017-01-15 06:32:49 +00002380 PreservedAnalyses PA;
2381 PA.preserveSet<CFGAnalyses>();
Davide Italiano39893bd2016-05-29 00:41:17 +00002382 PA.preserve<GlobalsAA>();
2383 return PA;
2384 }
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002385
2386 return PreservedAnalyses::all();
2387}
2388
2389namespace {
Eugene Zelenko306d2992017-10-18 21:46:47 +00002390
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002391 class ReassociateLegacyPass : public FunctionPass {
2392 ReassociatePass Impl;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002393
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002394 public:
2395 static char ID; // Pass identification, replacement for typeid
Eugene Zelenko306d2992017-10-18 21:46:47 +00002396
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002397 ReassociateLegacyPass() : FunctionPass(ID) {
2398 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2399 }
2400
2401 bool runOnFunction(Function &F) override {
2402 if (skipFunction(F))
2403 return false;
2404
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002405 FunctionAnalysisManager DummyFAM;
2406 auto PA = Impl.run(F, DummyFAM);
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002407 return !PA.areAllPreserved();
2408 }
2409
2410 void getAnalysisUsage(AnalysisUsage &AU) const override {
2411 AU.setPreservesCFG();
2412 AU.addPreserved<GlobalsAAWrapperPass>();
2413 }
2414 };
Eugene Zelenko306d2992017-10-18 21:46:47 +00002415
2416} // end anonymous namespace
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002417
2418char ReassociateLegacyPass::ID = 0;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002419
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002420INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2421 "Reassociate expressions", false, false)
2422
2423// Public interface to the Reassociate pass
2424FunctionPass *llvm::createReassociatePass() {
2425 return new ReassociateLegacyPass();
Chris Lattnerc0f58002002-05-08 22:19:27 +00002426}