blob: 39948f4b083ce9ac0820be3b10aca260b09b0d8f [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
Sean Silvab084af42012-12-07 10:36:55 +0000277It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000278other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000279
Sean Silvab084af42012-12-07 10:36:55 +0000280.. _callingconv:
281
282Calling Conventions
283-------------------
284
285LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
286:ref:`invokes <i_invoke>` can all have an optional calling convention
287specified for the call. The calling convention of any pair of dynamic
288caller/callee must match, or the behavior of the program is undefined.
289The following calling conventions are supported by LLVM, and more may be
290added in the future:
291
292"``ccc``" - The C calling convention
293 This calling convention (the default if no other calling convention
294 is specified) matches the target C calling conventions. This calling
295 convention supports varargs function calls and tolerates some
296 mismatch in the declared prototype and implemented declaration of
297 the function (as does normal C).
298"``fastcc``" - The fast calling convention
299 This calling convention attempts to make calls as fast as possible
300 (e.g. by passing things in registers). This calling convention
301 allows the target to use whatever tricks it wants to produce fast
302 code for the target, without having to conform to an externally
303 specified ABI (Application Binary Interface). `Tail calls can only
304 be optimized when this, the GHC or the HiPE convention is
305 used. <CodeGenerator.html#id80>`_ This calling convention does not
306 support varargs and requires the prototype of all callees to exactly
307 match the prototype of the function definition.
308"``coldcc``" - The cold calling convention
309 This calling convention attempts to make code in the caller as
310 efficient as possible under the assumption that the call is not
311 commonly executed. As such, these calls often preserve all registers
312 so that the call does not break any live ranges in the caller side.
313 This calling convention does not support varargs and requires the
314 prototype of all callees to exactly match the prototype of the
315 function definition.
316"``cc 10``" - GHC convention
317 This calling convention has been implemented specifically for use by
318 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
319 It passes everything in registers, going to extremes to achieve this
320 by disabling callee save registers. This calling convention should
321 not be used lightly but only for specific situations such as an
322 alternative to the *register pinning* performance technique often
323 used when implementing functional programming languages. At the
324 moment only X86 supports this convention and it has the following
325 limitations:
326
327 - On *X86-32* only supports up to 4 bit type parameters. No
328 floating point types are supported.
329 - On *X86-64* only supports up to 10 bit type parameters and 6
330 floating point parameters.
331
332 This calling convention supports `tail call
333 optimization <CodeGenerator.html#id80>`_ but requires both the
334 caller and callee are using it.
335"``cc 11``" - The HiPE calling convention
336 This calling convention has been implemented specifically for use by
337 the `High-Performance Erlang
338 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
339 native code compiler of the `Ericsson's Open Source Erlang/OTP
340 system <http://www.erlang.org/download.shtml>`_. It uses more
341 registers for argument passing than the ordinary C calling
342 convention and defines no callee-saved registers. The calling
343 convention properly supports `tail call
344 optimization <CodeGenerator.html#id80>`_ but requires that both the
345 caller and the callee use it. It uses a *register pinning*
346 mechanism, similar to GHC's convention, for keeping frequently
347 accessed runtime components pinned to specific hardware registers.
348 At the moment only X86 supports this convention (both 32 and 64
349 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000350"``webkit_jscc``" - WebKit's JavaScript calling convention
351 This calling convention has been implemented for `WebKit FTL JIT
352 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
353 stack right to left (as cdecl does), and returns a value in the
354 platform's customary return register.
355"``anyregcc``" - Dynamic calling convention for code patching
356 This is a special convention that supports patching an arbitrary code
357 sequence in place of a call site. This convention forces the call
358 arguments into registers but allows them to be dynamcially
359 allocated. This can currently only be used with calls to
360 llvm.experimental.patchpoint because only this intrinsic records
361 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362"``preserve_mostcc``" - The `PreserveMost` calling convention
363 This calling convention attempts to make the code in the caller as little
364 intrusive as possible. This calling convention behaves identical to the `C`
365 calling convention on how arguments and return values are passed, but it
366 uses a different set of caller/callee-saved registers. This alleviates the
367 burden of saving and recovering a large register set before and after the
368 call in the caller.
369
370 - On X86-64 the callee preserves all general purpose registers, except for
371 R11. R11 can be used as a scratch register. Floating-point registers
372 (XMMs/YMMs) are not preserved and need to be saved by the caller.
373
374 The idea behind this convention is to support calls to runtime functions
375 that have a hot path and a cold path. The hot path is usually a small piece
376 of code that doesn't many registers. The cold path might need to call out to
377 another function and therefore only needs to preserve the caller-saved
378 registers, which haven't already been saved by the caller.
379
380 This calling convention will be used by a future version of the ObjectiveC
381 runtime and should therefore still be considered experimental at this time.
382 Although this convention was created to optimize certain runtime calls to
383 the ObjectiveC runtime, it is not limited to this runtime and might be used
384 by other runtimes in the future too. The current implementation only
385 supports X86-64, but the intention is to support more architectures in the
386 future.
387"``preserve_allcc``" - The `PreserveAll` calling convention
388 This calling convention attempts to make the code in the caller even less
389 intrusive than the `PreserveMost` calling convention. This calling
390 convention also behaves identical to the `C` calling convention on how
391 arguments and return values are passed, but it uses a different set of
392 caller/callee-saved registers. This removes the burden of saving and
393 recovering a large register set before and after the call in the caller.
394
395 - On X86-64 the callee preserves all general purpose registers, except for
396 R11. R11 can be used as a scratch register. Furthermore it also preserves
397 all floating-point registers (XMMs/YMMs).
398
399 The idea behind this convention is to support calls to runtime functions
400 that don't need to call out to any other functions.
401
402 This calling convention, like the `PreserveMost` calling convention, will be
403 used by a future version of the ObjectiveC runtime and should be considered
404 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000405"``cc <n>``" - Numbered convention
406 Any calling convention may be specified by number, allowing
407 target-specific calling conventions to be used. Target specific
408 calling conventions start at 64.
409
410More calling conventions can be added/defined on an as-needed basis, to
411support Pascal conventions or any other well-known target-independent
412convention.
413
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000414.. _visibilitystyles:
415
Sean Silvab084af42012-12-07 10:36:55 +0000416Visibility Styles
417-----------------
418
419All Global Variables and Functions have one of the following visibility
420styles:
421
422"``default``" - Default style
423 On targets that use the ELF object file format, default visibility
424 means that the declaration is visible to other modules and, in
425 shared libraries, means that the declared entity may be overridden.
426 On Darwin, default visibility means that the declaration is visible
427 to other modules. Default visibility corresponds to "external
428 linkage" in the language.
429"``hidden``" - Hidden style
430 Two declarations of an object with hidden visibility refer to the
431 same object if they are in the same shared object. Usually, hidden
432 visibility indicates that the symbol will not be placed into the
433 dynamic symbol table, so no other module (executable or shared
434 library) can reference it directly.
435"``protected``" - Protected style
436 On ELF, protected visibility indicates that the symbol will be
437 placed in the dynamic symbol table, but that references within the
438 defining module will bind to the local symbol. That is, the symbol
439 cannot be overridden by another module.
440
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000441.. _namedtypes:
442
Nico Rieck7157bb72014-01-14 15:22:47 +0000443DLL Storage Classes
444-------------------
445
446All Global Variables, Functions and Aliases can have one of the following
447DLL storage class:
448
449``dllimport``
450 "``dllimport``" causes the compiler to reference a function or variable via
451 a global pointer to a pointer that is set up by the DLL exporting the
452 symbol. On Microsoft Windows targets, the pointer name is formed by
453 combining ``__imp_`` and the function or variable name.
454``dllexport``
455 "``dllexport``" causes the compiler to provide a global pointer to a pointer
456 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
457 Microsoft Windows targets, the pointer name is formed by combining
458 ``__imp_`` and the function or variable name. Since this storage class
459 exists for defining a dll interface, the compiler, assembler and linker know
460 it is externally referenced and must refrain from deleting the symbol.
461
Sean Silvab084af42012-12-07 10:36:55 +0000462Named Types
463-----------
464
465LLVM IR allows you to specify name aliases for certain types. This can
466make it easier to read the IR and make the IR more condensed
467(particularly when recursive types are involved). An example of a name
468specification is:
469
470.. code-block:: llvm
471
472 %mytype = type { %mytype*, i32 }
473
474You may give a name to any :ref:`type <typesystem>` except
475":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
476expected with the syntax "%mytype".
477
478Note that type names are aliases for the structural type that they
479indicate, and that you can therefore specify multiple names for the same
480type. This often leads to confusing behavior when dumping out a .ll
481file. Since LLVM IR uses structural typing, the name is not part of the
482type. When printing out LLVM IR, the printer will pick *one name* to
483render all types of a particular shape. This means that if you have code
484where two different source types end up having the same LLVM type, that
485the dumper will sometimes print the "wrong" or unexpected type. This is
486an important design point and isn't going to change.
487
488.. _globalvars:
489
490Global Variables
491----------------
492
493Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000494instead of run-time.
495
496Global variables definitions must be initialized, may have an explicit section
497to be placed in, and may have an optional explicit alignment specified.
498
499Global variables in other translation units can also be declared, in which
500case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000501
502A variable may be defined as ``thread_local``, which means that it will
503not be shared by threads (each thread will have a separated copy of the
504variable). Not all targets support thread-local variables. Optionally, a
505TLS model may be specified:
506
507``localdynamic``
508 For variables that are only used within the current shared library.
509``initialexec``
510 For variables in modules that will not be loaded dynamically.
511``localexec``
512 For variables defined in the executable and only used within it.
513
514The models correspond to the ELF TLS models; see `ELF Handling For
515Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
516more information on under which circumstances the different models may
517be used. The target may choose a different TLS model if the specified
518model is not supported, or if a better choice of model can be made.
519
Michael Gottesman006039c2013-01-31 05:48:48 +0000520A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000521the contents of the variable will **never** be modified (enabling better
522optimization, allowing the global data to be placed in the read-only
523section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000524initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000525variable.
526
527LLVM explicitly allows *declarations* of global variables to be marked
528constant, even if the final definition of the global is not. This
529capability can be used to enable slightly better optimization of the
530program, but requires the language definition to guarantee that
531optimizations based on the 'constantness' are valid for the translation
532units that do not include the definition.
533
534As SSA values, global variables define pointer values that are in scope
535(i.e. they dominate) all basic blocks in the program. Global variables
536always define a pointer to their "content" type because they describe a
537region of memory, and all memory objects in LLVM are accessed through
538pointers.
539
540Global variables can be marked with ``unnamed_addr`` which indicates
541that the address is not significant, only the content. Constants marked
542like this can be merged with other constants if they have the same
543initializer. Note that a constant with significant address *can* be
544merged with a ``unnamed_addr`` constant, the result being a constant
545whose address is significant.
546
547A global variable may be declared to reside in a target-specific
548numbered address space. For targets that support them, address spaces
549may affect how optimizations are performed and/or what target
550instructions are used to access the variable. The default address space
551is zero. The address space qualifier must precede any other attributes.
552
553LLVM allows an explicit section to be specified for globals. If the
554target supports it, it will emit globals to the section specified.
555
Michael Gottesmane743a302013-02-04 03:22:00 +0000556By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000557variables defined within the module are not modified from their
558initial values before the start of the global initializer. This is
559true even for variables potentially accessible from outside the
560module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000561``@llvm.used`` or dllexported variables. This assumption may be suppressed
562by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000563
Sean Silvab084af42012-12-07 10:36:55 +0000564An explicit alignment may be specified for a global, which must be a
565power of 2. If not present, or if the alignment is set to zero, the
566alignment of the global is set by the target to whatever it feels
567convenient. If an explicit alignment is specified, the global is forced
568to have exactly that alignment. Targets and optimizers are not allowed
569to over-align the global if the global has an assigned section. In this
570case, the extra alignment could be observable: for example, code could
571assume that the globals are densely packed in their section and try to
572iterate over them as an array, alignment padding would break this
573iteration.
574
Nico Rieck7157bb72014-01-14 15:22:47 +0000575Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
576
577Syntax::
578
579 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
580 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
581 <global | constant> <Type>
582 [, section "name"] [, align <Alignment>]
583
Sean Silvab084af42012-12-07 10:36:55 +0000584For example, the following defines a global in a numbered address space
585with an initializer, section, and alignment:
586
587.. code-block:: llvm
588
589 @G = addrspace(5) constant float 1.0, section "foo", align 4
590
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000591The following example just declares a global variable
592
593.. code-block:: llvm
594
595 @G = external global i32
596
Sean Silvab084af42012-12-07 10:36:55 +0000597The following example defines a thread-local global with the
598``initialexec`` TLS model:
599
600.. code-block:: llvm
601
602 @G = thread_local(initialexec) global i32 0, align 4
603
604.. _functionstructure:
605
606Functions
607---------
608
609LLVM function definitions consist of the "``define``" keyword, an
610optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000611style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
612an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000613an optional ``unnamed_addr`` attribute, a return type, an optional
614:ref:`parameter attribute <paramattrs>` for the return type, a function
615name, a (possibly empty) argument list (each with optional :ref:`parameter
616attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
617an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000618collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
619curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000620
621LLVM function declarations consist of the "``declare``" keyword, an
622optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000623style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
624an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000625an optional ``unnamed_addr`` attribute, a return type, an optional
626:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000627name, a possibly empty list of arguments, an optional alignment, an optional
628:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000629
Bill Wendling6822ecb2013-10-27 05:09:12 +0000630A function definition contains a list of basic blocks, forming the CFG (Control
631Flow Graph) for the function. Each basic block may optionally start with a label
632(giving the basic block a symbol table entry), contains a list of instructions,
633and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
634function return). If an explicit label is not provided, a block is assigned an
635implicit numbered label, using the next value from the same counter as used for
636unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
637entry block does not have an explicit label, it will be assigned label "%0",
638then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000639
640The first basic block in a function is special in two ways: it is
641immediately executed on entrance to the function, and it is not allowed
642to have predecessor basic blocks (i.e. there can not be any branches to
643the entry block of a function). Because the block can have no
644predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
645
646LLVM allows an explicit section to be specified for functions. If the
647target supports it, it will emit functions to the section specified.
648
649An explicit alignment may be specified for a function. If not present,
650or if the alignment is set to zero, the alignment of the function is set
651by the target to whatever it feels convenient. If an explicit alignment
652is specified, the function is forced to have at least that much
653alignment. All alignments must be a power of 2.
654
655If the ``unnamed_addr`` attribute is given, the address is know to not
656be significant and two identical functions can be merged.
657
658Syntax::
659
Nico Rieck7157bb72014-01-14 15:22:47 +0000660 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000661 [cconv] [ret attrs]
662 <ResultType> @<FunctionName> ([argument list])
663 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000664 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000665
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000666.. _langref_aliases:
667
Sean Silvab084af42012-12-07 10:36:55 +0000668Aliases
669-------
670
671Aliases act as "second name" for the aliasee value (which can be either
672function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000673Aliases may have an optional :ref:`linkage type <linkage>`, an optional
674:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
675<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000676
677Syntax::
678
Nico Rieck7157bb72014-01-14 15:22:47 +0000679 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000680
Rafael Espindola65785492013-10-07 13:57:59 +0000681The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000682``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000683``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000684might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000685alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000686
Sean Silvab084af42012-12-07 10:36:55 +0000687.. _namedmetadatastructure:
688
689Named Metadata
690--------------
691
692Named metadata is a collection of metadata. :ref:`Metadata
693nodes <metadata>` (but not metadata strings) are the only valid
694operands for a named metadata.
695
696Syntax::
697
698 ; Some unnamed metadata nodes, which are referenced by the named metadata.
699 !0 = metadata !{metadata !"zero"}
700 !1 = metadata !{metadata !"one"}
701 !2 = metadata !{metadata !"two"}
702 ; A named metadata.
703 !name = !{!0, !1, !2}
704
705.. _paramattrs:
706
707Parameter Attributes
708--------------------
709
710The return type and each parameter of a function type may have a set of
711*parameter attributes* associated with them. Parameter attributes are
712used to communicate additional information about the result or
713parameters of a function. Parameter attributes are considered to be part
714of the function, not of the function type, so functions with different
715parameter attributes can have the same function type.
716
717Parameter attributes are simple keywords that follow the type specified.
718If multiple parameter attributes are needed, they are space separated.
719For example:
720
721.. code-block:: llvm
722
723 declare i32 @printf(i8* noalias nocapture, ...)
724 declare i32 @atoi(i8 zeroext)
725 declare signext i8 @returns_signed_char()
726
727Note that any attributes for the function result (``nounwind``,
728``readonly``) come immediately after the argument list.
729
730Currently, only the following parameter attributes are defined:
731
732``zeroext``
733 This indicates to the code generator that the parameter or return
734 value should be zero-extended to the extent required by the target's
735 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
736 the caller (for a parameter) or the callee (for a return value).
737``signext``
738 This indicates to the code generator that the parameter or return
739 value should be sign-extended to the extent required by the target's
740 ABI (which is usually 32-bits) by the caller (for a parameter) or
741 the callee (for a return value).
742``inreg``
743 This indicates that this parameter or return value should be treated
744 in a special target-dependent fashion during while emitting code for
745 a function call or return (usually, by putting it in a register as
746 opposed to memory, though some targets use it to distinguish between
747 two different kinds of registers). Use of this attribute is
748 target-specific.
749``byval``
750 This indicates that the pointer parameter should really be passed by
751 value to the function. The attribute implies that a hidden copy of
752 the pointee is made between the caller and the callee, so the callee
753 is unable to modify the value in the caller. This attribute is only
754 valid on LLVM pointer arguments. It is generally used to pass
755 structs and arrays by value, but is also valid on pointers to
756 scalars. The copy is considered to belong to the caller not the
757 callee (for example, ``readonly`` functions should not write to
758 ``byval`` parameters). This is not a valid attribute for return
759 values.
760
761 The byval attribute also supports specifying an alignment with the
762 align attribute. It indicates the alignment of the stack slot to
763 form and the known alignment of the pointer specified to the call
764 site. If the alignment is not specified, then the code generator
765 makes a target-specific assumption.
766
Reid Klecknera534a382013-12-19 02:14:12 +0000767.. _attr_inalloca:
768
769``inalloca``
770
771.. Warning:: This feature is unstable and not fully implemented.
772
Reid Kleckner60d3a832014-01-16 22:59:24 +0000773 The ``inalloca`` argument attribute allows the caller to take the
774 address of all stack-allocated arguments to a ``call`` or ``invoke``
775 before it executes. It is similar to ``byval`` in that it is used
776 to pass arguments by value, but it guarantees that the argument will
777 not be copied.
Reid Klecknera534a382013-12-19 02:14:12 +0000778
Reid Kleckner60d3a832014-01-16 22:59:24 +0000779 To be :ref:`well formed <wellformed>`, an alloca may be used as an
780 ``inalloca`` argument at most once. The attribute can only be
781 applied to the last parameter, and it guarantees that they are
782 passed in memory. The ``inalloca`` attribute cannot be used in
783 conjunction with other attributes that affect argument storage, like
784 ``inreg``, ``nest``, ``sret``, or ``byval``. The ``inalloca`` stack
785 space is considered to be clobbered by any call that uses it, so any
Reid Klecknera534a382013-12-19 02:14:12 +0000786 ``inalloca`` parameters cannot be marked ``readonly``.
787
Reid Kleckner60d3a832014-01-16 22:59:24 +0000788 When the call site is reached, the argument allocation must have
789 been the most recent stack allocation that is still live, or the
790 results are undefined. It is possible to allocate additional stack
791 space after an argument allocation and before its call site, but it
792 must be cleared off with :ref:`llvm.stackrestore
793 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000794
795 See :doc:`InAlloca` for more information on how to use this
796 attribute.
797
Sean Silvab084af42012-12-07 10:36:55 +0000798``sret``
799 This indicates that the pointer parameter specifies the address of a
800 structure that is the return value of the function in the source
801 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000802 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000803 not to trap and to be properly aligned. This may only be applied to
804 the first parameter. This is not a valid attribute for return
805 values.
806``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000807 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000808 the argument or return value do not alias pointer values which are
809 not *based* on it, ignoring certain "irrelevant" dependencies. For a
810 call to the parent function, dependencies between memory references
811 from before or after the call and from those during the call are
812 "irrelevant" to the ``noalias`` keyword for the arguments and return
813 value used in that call. The caller shares the responsibility with
814 the callee for ensuring that these requirements are met. For further
815 details, please see the discussion of the NoAlias response in `alias
816 analysis <AliasAnalysis.html#MustMayNo>`_.
817
818 Note that this definition of ``noalias`` is intentionally similar
819 to the definition of ``restrict`` in C99 for function arguments,
820 though it is slightly weaker.
821
822 For function return values, C99's ``restrict`` is not meaningful,
823 while LLVM's ``noalias`` is.
824``nocapture``
825 This indicates that the callee does not make any copies of the
826 pointer that outlive the callee itself. This is not a valid
827 attribute for return values.
828
829.. _nest:
830
831``nest``
832 This indicates that the pointer parameter can be excised using the
833 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000834 attribute for return values and can only be applied to one parameter.
835
836``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000837 This indicates that the function always returns the argument as its return
838 value. This is an optimization hint to the code generator when generating
839 the caller, allowing tail call optimization and omission of register saves
840 and restores in some cases; it is not checked or enforced when generating
841 the callee. The parameter and the function return type must be valid
842 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
843 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000844
845.. _gc:
846
847Garbage Collector Names
848-----------------------
849
850Each function may specify a garbage collector name, which is simply a
851string:
852
853.. code-block:: llvm
854
855 define void @f() gc "name" { ... }
856
857The compiler declares the supported values of *name*. Specifying a
858collector which will cause the compiler to alter its output in order to
859support the named garbage collection algorithm.
860
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000861.. _prefixdata:
862
863Prefix Data
864-----------
865
866Prefix data is data associated with a function which the code generator
867will emit immediately before the function body. The purpose of this feature
868is to allow frontends to associate language-specific runtime metadata with
869specific functions and make it available through the function pointer while
870still allowing the function pointer to be called. To access the data for a
871given function, a program may bitcast the function pointer to a pointer to
872the constant's type. This implies that the IR symbol points to the start
873of the prefix data.
874
875To maintain the semantics of ordinary function calls, the prefix data must
876have a particular format. Specifically, it must begin with a sequence of
877bytes which decode to a sequence of machine instructions, valid for the
878module's target, which transfer control to the point immediately succeeding
879the prefix data, without performing any other visible action. This allows
880the inliner and other passes to reason about the semantics of the function
881definition without needing to reason about the prefix data. Obviously this
882makes the format of the prefix data highly target dependent.
883
Peter Collingbourne213358a2013-09-23 20:14:21 +0000884Prefix data is laid out as if it were an initializer for a global variable
885of the prefix data's type. No padding is automatically placed between the
886prefix data and the function body. If padding is required, it must be part
887of the prefix data.
888
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000889A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
890which encodes the ``nop`` instruction:
891
892.. code-block:: llvm
893
894 define void @f() prefix i8 144 { ... }
895
896Generally prefix data can be formed by encoding a relative branch instruction
897which skips the metadata, as in this example of valid prefix data for the
898x86_64 architecture, where the first two bytes encode ``jmp .+10``:
899
900.. code-block:: llvm
901
902 %0 = type <{ i8, i8, i8* }>
903
904 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
905
906A function may have prefix data but no body. This has similar semantics
907to the ``available_externally`` linkage in that the data may be used by the
908optimizers but will not be emitted in the object file.
909
Bill Wendling63b88192013-02-06 06:52:58 +0000910.. _attrgrp:
911
912Attribute Groups
913----------------
914
915Attribute groups are groups of attributes that are referenced by objects within
916the IR. They are important for keeping ``.ll`` files readable, because a lot of
917functions will use the same set of attributes. In the degenerative case of a
918``.ll`` file that corresponds to a single ``.c`` file, the single attribute
919group will capture the important command line flags used to build that file.
920
921An attribute group is a module-level object. To use an attribute group, an
922object references the attribute group's ID (e.g. ``#37``). An object may refer
923to more than one attribute group. In that situation, the attributes from the
924different groups are merged.
925
926Here is an example of attribute groups for a function that should always be
927inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
928
929.. code-block:: llvm
930
931 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000932 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000933
934 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000935 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000936
937 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
938 define void @f() #0 #1 { ... }
939
Sean Silvab084af42012-12-07 10:36:55 +0000940.. _fnattrs:
941
942Function Attributes
943-------------------
944
945Function attributes are set to communicate additional information about
946a function. Function attributes are considered to be part of the
947function, not of the function type, so functions with different function
948attributes can have the same function type.
949
950Function attributes are simple keywords that follow the type specified.
951If multiple attributes are needed, they are space separated. For
952example:
953
954.. code-block:: llvm
955
956 define void @f() noinline { ... }
957 define void @f() alwaysinline { ... }
958 define void @f() alwaysinline optsize { ... }
959 define void @f() optsize { ... }
960
Sean Silvab084af42012-12-07 10:36:55 +0000961``alignstack(<n>)``
962 This attribute indicates that, when emitting the prologue and
963 epilogue, the backend should forcibly align the stack pointer.
964 Specify the desired alignment, which must be a power of two, in
965 parentheses.
966``alwaysinline``
967 This attribute indicates that the inliner should attempt to inline
968 this function into callers whenever possible, ignoring any active
969 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000970``builtin``
971 This indicates that the callee function at a call site should be
972 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000973 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000974 direct calls to functions which are declared with the ``nobuiltin``
975 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000976``cold``
977 This attribute indicates that this function is rarely called. When
978 computing edge weights, basic blocks post-dominated by a cold
979 function call are also considered to be cold; and, thus, given low
980 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000981``inlinehint``
982 This attribute indicates that the source code contained a hint that
983 inlining this function is desirable (such as the "inline" keyword in
984 C/C++). It is just a hint; it imposes no requirements on the
985 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000986``minsize``
987 This attribute suggests that optimization passes and code generator
988 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000989 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000990 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000991``naked``
992 This attribute disables prologue / epilogue emission for the
993 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000994``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000995 This indicates that the callee function at a call site is not recognized as
996 a built-in function. LLVM will retain the original call and not replace it
997 with equivalent code based on the semantics of the built-in function, unless
998 the call site uses the ``builtin`` attribute. This is valid at call sites
999 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001000``noduplicate``
1001 This attribute indicates that calls to the function cannot be
1002 duplicated. A call to a ``noduplicate`` function may be moved
1003 within its parent function, but may not be duplicated within
1004 its parent function.
1005
1006 A function containing a ``noduplicate`` call may still
1007 be an inlining candidate, provided that the call is not
1008 duplicated by inlining. That implies that the function has
1009 internal linkage and only has one call site, so the original
1010 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001011``noimplicitfloat``
1012 This attributes disables implicit floating point instructions.
1013``noinline``
1014 This attribute indicates that the inliner should never inline this
1015 function in any situation. This attribute may not be used together
1016 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001017``nonlazybind``
1018 This attribute suppresses lazy symbol binding for the function. This
1019 may make calls to the function faster, at the cost of extra program
1020 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001021``noredzone``
1022 This attribute indicates that the code generator should not use a
1023 red zone, even if the target-specific ABI normally permits it.
1024``noreturn``
1025 This function attribute indicates that the function never returns
1026 normally. This produces undefined behavior at runtime if the
1027 function ever does dynamically return.
1028``nounwind``
1029 This function attribute indicates that the function never returns
1030 with an unwind or exceptional control flow. If the function does
1031 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001032``optnone``
1033 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001034 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001035 exception of interprocedural optimization passes.
1036 This attribute cannot be used together with the ``alwaysinline``
1037 attribute; this attribute is also incompatible
1038 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001039
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001040 This attribute requires the ``noinline`` attribute to be specified on
1041 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001042 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001043 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001044``optsize``
1045 This attribute suggests that optimization passes and code generator
1046 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001047 and otherwise do optimizations specifically to reduce code size as
1048 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001049``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001050 On a function, this attribute indicates that the function computes its
1051 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001052 without dereferencing any pointer arguments or otherwise accessing
1053 any mutable state (e.g. memory, control registers, etc) visible to
1054 caller functions. It does not write through any pointer arguments
1055 (including ``byval`` arguments) and never changes any state visible
1056 to callers. This means that it cannot unwind exceptions by calling
1057 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001058
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001059 On an argument, this attribute indicates that the function does not
1060 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001061 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001062``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001063 On a function, this attribute indicates that the function does not write
1064 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001065 modify any state (e.g. memory, control registers, etc) visible to
1066 caller functions. It may dereference pointer arguments and read
1067 state that may be set in the caller. A readonly function always
1068 returns the same value (or unwinds an exception identically) when
1069 called with the same set of arguments and global state. It cannot
1070 unwind an exception by calling the ``C++`` exception throwing
1071 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001072
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001073 On an argument, this attribute indicates that the function does not write
1074 through this pointer argument, even though it may write to the memory that
1075 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001076``returns_twice``
1077 This attribute indicates that this function can return twice. The C
1078 ``setjmp`` is an example of such a function. The compiler disables
1079 some optimizations (like tail calls) in the caller of these
1080 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001081``sanitize_address``
1082 This attribute indicates that AddressSanitizer checks
1083 (dynamic address safety analysis) are enabled for this function.
1084``sanitize_memory``
1085 This attribute indicates that MemorySanitizer checks (dynamic detection
1086 of accesses to uninitialized memory) are enabled for this function.
1087``sanitize_thread``
1088 This attribute indicates that ThreadSanitizer checks
1089 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001090``ssp``
1091 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001092 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001093 placed on the stack before the local variables that's checked upon
1094 return from the function to see if it has been overwritten. A
1095 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001096 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001097
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001098 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1099 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1100 - Calls to alloca() with variable sizes or constant sizes greater than
1101 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001102
1103 If a function that has an ``ssp`` attribute is inlined into a
1104 function that doesn't have an ``ssp`` attribute, then the resulting
1105 function will have an ``ssp`` attribute.
1106``sspreq``
1107 This attribute indicates that the function should *always* emit a
1108 stack smashing protector. This overrides the ``ssp`` function
1109 attribute.
1110
1111 If a function that has an ``sspreq`` attribute is inlined into a
1112 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001113 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1114 an ``sspreq`` attribute.
1115``sspstrong``
1116 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001117 protector. This attribute causes a strong heuristic to be used when
1118 determining if a function needs stack protectors. The strong heuristic
1119 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001120
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001121 - Arrays of any size and type
1122 - Aggregates containing an array of any size and type.
1123 - Calls to alloca().
1124 - Local variables that have had their address taken.
1125
1126 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001127
1128 If a function that has an ``sspstrong`` attribute is inlined into a
1129 function that doesn't have an ``sspstrong`` attribute, then the
1130 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001131``uwtable``
1132 This attribute indicates that the ABI being targeted requires that
1133 an unwind table entry be produce for this function even if we can
1134 show that no exceptions passes by it. This is normally the case for
1135 the ELF x86-64 abi, but it can be disabled for some compilation
1136 units.
Sean Silvab084af42012-12-07 10:36:55 +00001137
1138.. _moduleasm:
1139
1140Module-Level Inline Assembly
1141----------------------------
1142
1143Modules may contain "module-level inline asm" blocks, which corresponds
1144to the GCC "file scope inline asm" blocks. These blocks are internally
1145concatenated by LLVM and treated as a single unit, but may be separated
1146in the ``.ll`` file if desired. The syntax is very simple:
1147
1148.. code-block:: llvm
1149
1150 module asm "inline asm code goes here"
1151 module asm "more can go here"
1152
1153The strings can contain any character by escaping non-printable
1154characters. The escape sequence used is simply "\\xx" where "xx" is the
1155two digit hex code for the number.
1156
1157The inline asm code is simply printed to the machine code .s file when
1158assembly code is generated.
1159
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001160.. _langref_datalayout:
1161
Sean Silvab084af42012-12-07 10:36:55 +00001162Data Layout
1163-----------
1164
1165A module may specify a target specific data layout string that specifies
1166how data is to be laid out in memory. The syntax for the data layout is
1167simply:
1168
1169.. code-block:: llvm
1170
1171 target datalayout = "layout specification"
1172
1173The *layout specification* consists of a list of specifications
1174separated by the minus sign character ('-'). Each specification starts
1175with a letter and may include other information after the letter to
1176define some aspect of the data layout. The specifications accepted are
1177as follows:
1178
1179``E``
1180 Specifies that the target lays out data in big-endian form. That is,
1181 the bits with the most significance have the lowest address
1182 location.
1183``e``
1184 Specifies that the target lays out data in little-endian form. That
1185 is, the bits with the least significance have the lowest address
1186 location.
1187``S<size>``
1188 Specifies the natural alignment of the stack in bits. Alignment
1189 promotion of stack variables is limited to the natural stack
1190 alignment to avoid dynamic stack realignment. The stack alignment
1191 must be a multiple of 8-bits. If omitted, the natural stack
1192 alignment defaults to "unspecified", which does not prevent any
1193 alignment promotions.
1194``p[n]:<size>:<abi>:<pref>``
1195 This specifies the *size* of a pointer and its ``<abi>`` and
1196 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001197 bits. The address space, ``n`` is optional, and if not specified,
1198 denotes the default address space 0. The value of ``n`` must be
1199 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001200``i<size>:<abi>:<pref>``
1201 This specifies the alignment for an integer type of a given bit
1202 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1203``v<size>:<abi>:<pref>``
1204 This specifies the alignment for a vector type of a given bit
1205 ``<size>``.
1206``f<size>:<abi>:<pref>``
1207 This specifies the alignment for a floating point type of a given bit
1208 ``<size>``. Only values of ``<size>`` that are supported by the target
1209 will work. 32 (float) and 64 (double) are supported on all targets; 80
1210 or 128 (different flavors of long double) are also supported on some
1211 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001212``a:<abi>:<pref>``
1213 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001214``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001215 If present, specifies that llvm names are mangled in the output. The
1216 options are
1217
1218 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1219 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1220 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1221 symbols get a ``_`` prefix.
1222 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1223 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001224``n<size1>:<size2>:<size3>...``
1225 This specifies a set of native integer widths for the target CPU in
1226 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1227 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1228 this set are considered to support most general arithmetic operations
1229 efficiently.
1230
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001231On every specification that takes a ``<abi>:<pref>``, specifying the
1232``<pref>`` alignment is optional. If omitted, the preceding ``:``
1233should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1234
Sean Silvab084af42012-12-07 10:36:55 +00001235When constructing the data layout for a given target, LLVM starts with a
1236default set of specifications which are then (possibly) overridden by
1237the specifications in the ``datalayout`` keyword. The default
1238specifications are given in this list:
1239
1240- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001241- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1242- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1243 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001244- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001245- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1246- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1247- ``i16:16:16`` - i16 is 16-bit aligned
1248- ``i32:32:32`` - i32 is 32-bit aligned
1249- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1250 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001251- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001252- ``f32:32:32`` - float is 32-bit aligned
1253- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001254- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001255- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1256- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001257- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001258
1259When LLVM is determining the alignment for a given type, it uses the
1260following rules:
1261
1262#. If the type sought is an exact match for one of the specifications,
1263 that specification is used.
1264#. If no match is found, and the type sought is an integer type, then
1265 the smallest integer type that is larger than the bitwidth of the
1266 sought type is used. If none of the specifications are larger than
1267 the bitwidth then the largest integer type is used. For example,
1268 given the default specifications above, the i7 type will use the
1269 alignment of i8 (next largest) while both i65 and i256 will use the
1270 alignment of i64 (largest specified).
1271#. If no match is found, and the type sought is a vector type, then the
1272 largest vector type that is smaller than the sought vector type will
1273 be used as a fall back. This happens because <128 x double> can be
1274 implemented in terms of 64 <2 x double>, for example.
1275
1276The function of the data layout string may not be what you expect.
1277Notably, this is not a specification from the frontend of what alignment
1278the code generator should use.
1279
1280Instead, if specified, the target data layout is required to match what
1281the ultimate *code generator* expects. This string is used by the
1282mid-level optimizers to improve code, and this only works if it matches
1283what the ultimate code generator uses. If you would like to generate IR
1284that does not embed this target-specific detail into the IR, then you
1285don't have to specify the string. This will disable some optimizations
1286that require precise layout information, but this also prevents those
1287optimizations from introducing target specificity into the IR.
1288
Bill Wendling5cc90842013-10-18 23:41:25 +00001289.. _langref_triple:
1290
1291Target Triple
1292-------------
1293
1294A module may specify a target triple string that describes the target
1295host. The syntax for the target triple is simply:
1296
1297.. code-block:: llvm
1298
1299 target triple = "x86_64-apple-macosx10.7.0"
1300
1301The *target triple* string consists of a series of identifiers delimited
1302by the minus sign character ('-'). The canonical forms are:
1303
1304::
1305
1306 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1307 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1308
1309This information is passed along to the backend so that it generates
1310code for the proper architecture. It's possible to override this on the
1311command line with the ``-mtriple`` command line option.
1312
Sean Silvab084af42012-12-07 10:36:55 +00001313.. _pointeraliasing:
1314
1315Pointer Aliasing Rules
1316----------------------
1317
1318Any memory access must be done through a pointer value associated with
1319an address range of the memory access, otherwise the behavior is
1320undefined. Pointer values are associated with address ranges according
1321to the following rules:
1322
1323- A pointer value is associated with the addresses associated with any
1324 value it is *based* on.
1325- An address of a global variable is associated with the address range
1326 of the variable's storage.
1327- The result value of an allocation instruction is associated with the
1328 address range of the allocated storage.
1329- A null pointer in the default address-space is associated with no
1330 address.
1331- An integer constant other than zero or a pointer value returned from
1332 a function not defined within LLVM may be associated with address
1333 ranges allocated through mechanisms other than those provided by
1334 LLVM. Such ranges shall not overlap with any ranges of addresses
1335 allocated by mechanisms provided by LLVM.
1336
1337A pointer value is *based* on another pointer value according to the
1338following rules:
1339
1340- A pointer value formed from a ``getelementptr`` operation is *based*
1341 on the first operand of the ``getelementptr``.
1342- The result value of a ``bitcast`` is *based* on the operand of the
1343 ``bitcast``.
1344- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1345 values that contribute (directly or indirectly) to the computation of
1346 the pointer's value.
1347- The "*based* on" relationship is transitive.
1348
1349Note that this definition of *"based"* is intentionally similar to the
1350definition of *"based"* in C99, though it is slightly weaker.
1351
1352LLVM IR does not associate types with memory. The result type of a
1353``load`` merely indicates the size and alignment of the memory from
1354which to load, as well as the interpretation of the value. The first
1355operand type of a ``store`` similarly only indicates the size and
1356alignment of the store.
1357
1358Consequently, type-based alias analysis, aka TBAA, aka
1359``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1360:ref:`Metadata <metadata>` may be used to encode additional information
1361which specialized optimization passes may use to implement type-based
1362alias analysis.
1363
1364.. _volatile:
1365
1366Volatile Memory Accesses
1367------------------------
1368
1369Certain memory accesses, such as :ref:`load <i_load>`'s,
1370:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1371marked ``volatile``. The optimizers must not change the number of
1372volatile operations or change their order of execution relative to other
1373volatile operations. The optimizers *may* change the order of volatile
1374operations relative to non-volatile operations. This is not Java's
1375"volatile" and has no cross-thread synchronization behavior.
1376
Andrew Trick89fc5a62013-01-30 21:19:35 +00001377IR-level volatile loads and stores cannot safely be optimized into
1378llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1379flagged volatile. Likewise, the backend should never split or merge
1380target-legal volatile load/store instructions.
1381
Andrew Trick7e6f9282013-01-31 00:49:39 +00001382.. admonition:: Rationale
1383
1384 Platforms may rely on volatile loads and stores of natively supported
1385 data width to be executed as single instruction. For example, in C
1386 this holds for an l-value of volatile primitive type with native
1387 hardware support, but not necessarily for aggregate types. The
1388 frontend upholds these expectations, which are intentionally
1389 unspecified in the IR. The rules above ensure that IR transformation
1390 do not violate the frontend's contract with the language.
1391
Sean Silvab084af42012-12-07 10:36:55 +00001392.. _memmodel:
1393
1394Memory Model for Concurrent Operations
1395--------------------------------------
1396
1397The LLVM IR does not define any way to start parallel threads of
1398execution or to register signal handlers. Nonetheless, there are
1399platform-specific ways to create them, and we define LLVM IR's behavior
1400in their presence. This model is inspired by the C++0x memory model.
1401
1402For a more informal introduction to this model, see the :doc:`Atomics`.
1403
1404We define a *happens-before* partial order as the least partial order
1405that
1406
1407- Is a superset of single-thread program order, and
1408- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1409 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1410 techniques, like pthread locks, thread creation, thread joining,
1411 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1412 Constraints <ordering>`).
1413
1414Note that program order does not introduce *happens-before* edges
1415between a thread and signals executing inside that thread.
1416
1417Every (defined) read operation (load instructions, memcpy, atomic
1418loads/read-modify-writes, etc.) R reads a series of bytes written by
1419(defined) write operations (store instructions, atomic
1420stores/read-modify-writes, memcpy, etc.). For the purposes of this
1421section, initialized globals are considered to have a write of the
1422initializer which is atomic and happens before any other read or write
1423of the memory in question. For each byte of a read R, R\ :sub:`byte`
1424may see any write to the same byte, except:
1425
1426- If write\ :sub:`1` happens before write\ :sub:`2`, and
1427 write\ :sub:`2` happens before R\ :sub:`byte`, then
1428 R\ :sub:`byte` does not see write\ :sub:`1`.
1429- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1430 R\ :sub:`byte` does not see write\ :sub:`3`.
1431
1432Given that definition, R\ :sub:`byte` is defined as follows:
1433
1434- If R is volatile, the result is target-dependent. (Volatile is
1435 supposed to give guarantees which can support ``sig_atomic_t`` in
1436 C/C++, and may be used for accesses to addresses which do not behave
1437 like normal memory. It does not generally provide cross-thread
1438 synchronization.)
1439- Otherwise, if there is no write to the same byte that happens before
1440 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1441- Otherwise, if R\ :sub:`byte` may see exactly one write,
1442 R\ :sub:`byte` returns the value written by that write.
1443- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1444 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1445 Memory Ordering Constraints <ordering>` section for additional
1446 constraints on how the choice is made.
1447- Otherwise R\ :sub:`byte` returns ``undef``.
1448
1449R returns the value composed of the series of bytes it read. This
1450implies that some bytes within the value may be ``undef`` **without**
1451the entire value being ``undef``. Note that this only defines the
1452semantics of the operation; it doesn't mean that targets will emit more
1453than one instruction to read the series of bytes.
1454
1455Note that in cases where none of the atomic intrinsics are used, this
1456model places only one restriction on IR transformations on top of what
1457is required for single-threaded execution: introducing a store to a byte
1458which might not otherwise be stored is not allowed in general.
1459(Specifically, in the case where another thread might write to and read
1460from an address, introducing a store can change a load that may see
1461exactly one write into a load that may see multiple writes.)
1462
1463.. _ordering:
1464
1465Atomic Memory Ordering Constraints
1466----------------------------------
1467
1468Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1469:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1470:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1471an ordering parameter that determines which other atomic instructions on
1472the same address they *synchronize with*. These semantics are borrowed
1473from Java and C++0x, but are somewhat more colloquial. If these
1474descriptions aren't precise enough, check those specs (see spec
1475references in the :doc:`atomics guide <Atomics>`).
1476:ref:`fence <i_fence>` instructions treat these orderings somewhat
1477differently since they don't take an address. See that instruction's
1478documentation for details.
1479
1480For a simpler introduction to the ordering constraints, see the
1481:doc:`Atomics`.
1482
1483``unordered``
1484 The set of values that can be read is governed by the happens-before
1485 partial order. A value cannot be read unless some operation wrote
1486 it. This is intended to provide a guarantee strong enough to model
1487 Java's non-volatile shared variables. This ordering cannot be
1488 specified for read-modify-write operations; it is not strong enough
1489 to make them atomic in any interesting way.
1490``monotonic``
1491 In addition to the guarantees of ``unordered``, there is a single
1492 total order for modifications by ``monotonic`` operations on each
1493 address. All modification orders must be compatible with the
1494 happens-before order. There is no guarantee that the modification
1495 orders can be combined to a global total order for the whole program
1496 (and this often will not be possible). The read in an atomic
1497 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1498 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1499 order immediately before the value it writes. If one atomic read
1500 happens before another atomic read of the same address, the later
1501 read must see the same value or a later value in the address's
1502 modification order. This disallows reordering of ``monotonic`` (or
1503 stronger) operations on the same address. If an address is written
1504 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1505 read that address repeatedly, the other threads must eventually see
1506 the write. This corresponds to the C++0x/C1x
1507 ``memory_order_relaxed``.
1508``acquire``
1509 In addition to the guarantees of ``monotonic``, a
1510 *synchronizes-with* edge may be formed with a ``release`` operation.
1511 This is intended to model C++'s ``memory_order_acquire``.
1512``release``
1513 In addition to the guarantees of ``monotonic``, if this operation
1514 writes a value which is subsequently read by an ``acquire``
1515 operation, it *synchronizes-with* that operation. (This isn't a
1516 complete description; see the C++0x definition of a release
1517 sequence.) This corresponds to the C++0x/C1x
1518 ``memory_order_release``.
1519``acq_rel`` (acquire+release)
1520 Acts as both an ``acquire`` and ``release`` operation on its
1521 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1522``seq_cst`` (sequentially consistent)
1523 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1524 operation which only reads, ``release`` for an operation which only
1525 writes), there is a global total order on all
1526 sequentially-consistent operations on all addresses, which is
1527 consistent with the *happens-before* partial order and with the
1528 modification orders of all the affected addresses. Each
1529 sequentially-consistent read sees the last preceding write to the
1530 same address in this global order. This corresponds to the C++0x/C1x
1531 ``memory_order_seq_cst`` and Java volatile.
1532
1533.. _singlethread:
1534
1535If an atomic operation is marked ``singlethread``, it only *synchronizes
1536with* or participates in modification and seq\_cst total orderings with
1537other operations running in the same thread (for example, in signal
1538handlers).
1539
1540.. _fastmath:
1541
1542Fast-Math Flags
1543---------------
1544
1545LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1546:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1547:ref:`frem <i_frem>`) have the following flags that can set to enable
1548otherwise unsafe floating point operations
1549
1550``nnan``
1551 No NaNs - Allow optimizations to assume the arguments and result are not
1552 NaN. Such optimizations are required to retain defined behavior over
1553 NaNs, but the value of the result is undefined.
1554
1555``ninf``
1556 No Infs - Allow optimizations to assume the arguments and result are not
1557 +/-Inf. Such optimizations are required to retain defined behavior over
1558 +/-Inf, but the value of the result is undefined.
1559
1560``nsz``
1561 No Signed Zeros - Allow optimizations to treat the sign of a zero
1562 argument or result as insignificant.
1563
1564``arcp``
1565 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1566 argument rather than perform division.
1567
1568``fast``
1569 Fast - Allow algebraically equivalent transformations that may
1570 dramatically change results in floating point (e.g. reassociate). This
1571 flag implies all the others.
1572
1573.. _typesystem:
1574
1575Type System
1576===========
1577
1578The LLVM type system is one of the most important features of the
1579intermediate representation. Being typed enables a number of
1580optimizations to be performed on the intermediate representation
1581directly, without having to do extra analyses on the side before the
1582transformation. A strong type system makes it easier to read the
1583generated code and enables novel analyses and transformations that are
1584not feasible to perform on normal three address code representations.
1585
Rafael Espindola08013342013-12-07 19:34:20 +00001586.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001587
Rafael Espindola08013342013-12-07 19:34:20 +00001588Void Type
1589---------
Sean Silvab084af42012-12-07 10:36:55 +00001590
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001591:Overview:
1592
Rafael Espindola08013342013-12-07 19:34:20 +00001593
1594The void type does not represent any value and has no size.
1595
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001596:Syntax:
1597
Rafael Espindola08013342013-12-07 19:34:20 +00001598
1599::
1600
1601 void
Sean Silvab084af42012-12-07 10:36:55 +00001602
1603
Rafael Espindola08013342013-12-07 19:34:20 +00001604.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001605
Rafael Espindola08013342013-12-07 19:34:20 +00001606Function Type
1607-------------
Sean Silvab084af42012-12-07 10:36:55 +00001608
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001609:Overview:
1610
Sean Silvab084af42012-12-07 10:36:55 +00001611
Rafael Espindola08013342013-12-07 19:34:20 +00001612The function type can be thought of as a function signature. It consists of a
1613return type and a list of formal parameter types. The return type of a function
1614type is a void type or first class type --- except for :ref:`label <t_label>`
1615and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001616
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001617:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001618
Rafael Espindola08013342013-12-07 19:34:20 +00001619::
Sean Silvab084af42012-12-07 10:36:55 +00001620
Rafael Espindola08013342013-12-07 19:34:20 +00001621 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001622
Rafael Espindola08013342013-12-07 19:34:20 +00001623...where '``<parameter list>``' is a comma-separated list of type
1624specifiers. Optionally, the parameter list may include a type ``...``, which
1625indicates that the function takes a variable number of arguments. Variable
1626argument functions can access their arguments with the :ref:`variable argument
1627handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1628except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001629
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001630:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001631
Rafael Espindola08013342013-12-07 19:34:20 +00001632+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1633| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1634+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1635| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1636+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1637| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1638+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1639| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1640+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1641
1642.. _t_firstclass:
1643
1644First Class Types
1645-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001646
1647The :ref:`first class <t_firstclass>` types are perhaps the most important.
1648Values of these types are the only ones which can be produced by
1649instructions.
1650
Rafael Espindola08013342013-12-07 19:34:20 +00001651.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001652
Rafael Espindola08013342013-12-07 19:34:20 +00001653Single Value Types
1654^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001655
Rafael Espindola08013342013-12-07 19:34:20 +00001656These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001657
1658.. _t_integer:
1659
1660Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001661""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001662
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001663:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001664
1665The integer type is a very simple type that simply specifies an
1666arbitrary bit width for the integer type desired. Any bit width from 1
1667bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1668
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001669:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001670
1671::
1672
1673 iN
1674
1675The number of bits the integer will occupy is specified by the ``N``
1676value.
1677
1678Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001679*********
Sean Silvab084af42012-12-07 10:36:55 +00001680
1681+----------------+------------------------------------------------+
1682| ``i1`` | a single-bit integer. |
1683+----------------+------------------------------------------------+
1684| ``i32`` | a 32-bit integer. |
1685+----------------+------------------------------------------------+
1686| ``i1942652`` | a really big integer of over 1 million bits. |
1687+----------------+------------------------------------------------+
1688
1689.. _t_floating:
1690
1691Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001692""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001693
1694.. list-table::
1695 :header-rows: 1
1696
1697 * - Type
1698 - Description
1699
1700 * - ``half``
1701 - 16-bit floating point value
1702
1703 * - ``float``
1704 - 32-bit floating point value
1705
1706 * - ``double``
1707 - 64-bit floating point value
1708
1709 * - ``fp128``
1710 - 128-bit floating point value (112-bit mantissa)
1711
1712 * - ``x86_fp80``
1713 - 80-bit floating point value (X87)
1714
1715 * - ``ppc_fp128``
1716 - 128-bit floating point value (two 64-bits)
1717
1718.. _t_x86mmx:
1719
1720X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001721"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001722
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001723:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001724
1725The x86mmx type represents a value held in an MMX register on an x86
1726machine. The operations allowed on it are quite limited: parameters and
1727return values, load and store, and bitcast. User-specified MMX
1728instructions are represented as intrinsic or asm calls with arguments
1729and/or results of this type. There are no arrays, vectors or constants
1730of this type.
1731
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001732:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001733
1734::
1735
1736 x86mmx
1737
Sean Silvab084af42012-12-07 10:36:55 +00001738
Rafael Espindola08013342013-12-07 19:34:20 +00001739.. _t_pointer:
1740
1741Pointer Type
1742""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001743
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001744:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001745
Rafael Espindola08013342013-12-07 19:34:20 +00001746The pointer type is used to specify memory locations. Pointers are
1747commonly used to reference objects in memory.
1748
1749Pointer types may have an optional address space attribute defining the
1750numbered address space where the pointed-to object resides. The default
1751address space is number zero. The semantics of non-zero address spaces
1752are target-specific.
1753
1754Note that LLVM does not permit pointers to void (``void*``) nor does it
1755permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001756
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001757:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001758
1759::
1760
Rafael Espindola08013342013-12-07 19:34:20 +00001761 <type> *
1762
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001763:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001764
1765+-------------------------+--------------------------------------------------------------------------------------------------------------+
1766| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1767+-------------------------+--------------------------------------------------------------------------------------------------------------+
1768| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1769+-------------------------+--------------------------------------------------------------------------------------------------------------+
1770| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1771+-------------------------+--------------------------------------------------------------------------------------------------------------+
1772
1773.. _t_vector:
1774
1775Vector Type
1776"""""""""""
1777
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001778:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001779
1780A vector type is a simple derived type that represents a vector of
1781elements. Vector types are used when multiple primitive data are
1782operated in parallel using a single instruction (SIMD). A vector type
1783requires a size (number of elements) and an underlying primitive data
1784type. Vector types are considered :ref:`first class <t_firstclass>`.
1785
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001786:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001787
1788::
1789
1790 < <# elements> x <elementtype> >
1791
1792The number of elements is a constant integer value larger than 0;
1793elementtype may be any integer or floating point type, or a pointer to
1794these types. Vectors of size zero are not allowed.
1795
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001796:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001797
1798+-------------------+--------------------------------------------------+
1799| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1800+-------------------+--------------------------------------------------+
1801| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1802+-------------------+--------------------------------------------------+
1803| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1804+-------------------+--------------------------------------------------+
1805| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1806+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001807
1808.. _t_label:
1809
1810Label Type
1811^^^^^^^^^^
1812
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001813:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001814
1815The label type represents code labels.
1816
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001817:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001818
1819::
1820
1821 label
1822
1823.. _t_metadata:
1824
1825Metadata Type
1826^^^^^^^^^^^^^
1827
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001828:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001829
1830The metadata type represents embedded metadata. No derived types may be
1831created from metadata except for :ref:`function <t_function>` arguments.
1832
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001833:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001834
1835::
1836
1837 metadata
1838
Sean Silvab084af42012-12-07 10:36:55 +00001839.. _t_aggregate:
1840
1841Aggregate Types
1842^^^^^^^^^^^^^^^
1843
1844Aggregate Types are a subset of derived types that can contain multiple
1845member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1846aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1847aggregate types.
1848
1849.. _t_array:
1850
1851Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001852""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001853
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001854:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001855
1856The array type is a very simple derived type that arranges elements
1857sequentially in memory. The array type requires a size (number of
1858elements) and an underlying data type.
1859
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001860:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001861
1862::
1863
1864 [<# elements> x <elementtype>]
1865
1866The number of elements is a constant integer value; ``elementtype`` may
1867be any type with a size.
1868
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001869:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001870
1871+------------------+--------------------------------------+
1872| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1873+------------------+--------------------------------------+
1874| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1875+------------------+--------------------------------------+
1876| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1877+------------------+--------------------------------------+
1878
1879Here are some examples of multidimensional arrays:
1880
1881+-----------------------------+----------------------------------------------------------+
1882| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1883+-----------------------------+----------------------------------------------------------+
1884| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1885+-----------------------------+----------------------------------------------------------+
1886| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1887+-----------------------------+----------------------------------------------------------+
1888
1889There is no restriction on indexing beyond the end of the array implied
1890by a static type (though there are restrictions on indexing beyond the
1891bounds of an allocated object in some cases). This means that
1892single-dimension 'variable sized array' addressing can be implemented in
1893LLVM with a zero length array type. An implementation of 'pascal style
1894arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1895example.
1896
Sean Silvab084af42012-12-07 10:36:55 +00001897.. _t_struct:
1898
1899Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001900""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001901
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001902:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001903
1904The structure type is used to represent a collection of data members
1905together in memory. The elements of a structure may be any type that has
1906a size.
1907
1908Structures in memory are accessed using '``load``' and '``store``' by
1909getting a pointer to a field with the '``getelementptr``' instruction.
1910Structures in registers are accessed using the '``extractvalue``' and
1911'``insertvalue``' instructions.
1912
1913Structures may optionally be "packed" structures, which indicate that
1914the alignment of the struct is one byte, and that there is no padding
1915between the elements. In non-packed structs, padding between field types
1916is inserted as defined by the DataLayout string in the module, which is
1917required to match what the underlying code generator expects.
1918
1919Structures can either be "literal" or "identified". A literal structure
1920is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1921identified types are always defined at the top level with a name.
1922Literal types are uniqued by their contents and can never be recursive
1923or opaque since there is no way to write one. Identified types can be
1924recursive, can be opaqued, and are never uniqued.
1925
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001926:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001927
1928::
1929
1930 %T1 = type { <type list> } ; Identified normal struct type
1931 %T2 = type <{ <type list> }> ; Identified packed struct type
1932
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001933:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001934
1935+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1936| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1937+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001938| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001939+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1940| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1941+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1942
1943.. _t_opaque:
1944
1945Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001946""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001947
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001948:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001949
1950Opaque structure types are used to represent named structure types that
1951do not have a body specified. This corresponds (for example) to the C
1952notion of a forward declared structure.
1953
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001954:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001955
1956::
1957
1958 %X = type opaque
1959 %52 = type opaque
1960
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001961:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001962
1963+--------------+-------------------+
1964| ``opaque`` | An opaque type. |
1965+--------------+-------------------+
1966
Sean Silvab084af42012-12-07 10:36:55 +00001967Constants
1968=========
1969
1970LLVM has several different basic types of constants. This section
1971describes them all and their syntax.
1972
1973Simple Constants
1974----------------
1975
1976**Boolean constants**
1977 The two strings '``true``' and '``false``' are both valid constants
1978 of the ``i1`` type.
1979**Integer constants**
1980 Standard integers (such as '4') are constants of the
1981 :ref:`integer <t_integer>` type. Negative numbers may be used with
1982 integer types.
1983**Floating point constants**
1984 Floating point constants use standard decimal notation (e.g.
1985 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1986 hexadecimal notation (see below). The assembler requires the exact
1987 decimal value of a floating-point constant. For example, the
1988 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1989 decimal in binary. Floating point constants must have a :ref:`floating
1990 point <t_floating>` type.
1991**Null pointer constants**
1992 The identifier '``null``' is recognized as a null pointer constant
1993 and must be of :ref:`pointer type <t_pointer>`.
1994
1995The one non-intuitive notation for constants is the hexadecimal form of
1996floating point constants. For example, the form
1997'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1998than) '``double 4.5e+15``'. The only time hexadecimal floating point
1999constants are required (and the only time that they are generated by the
2000disassembler) is when a floating point constant must be emitted but it
2001cannot be represented as a decimal floating point number in a reasonable
2002number of digits. For example, NaN's, infinities, and other special
2003values are represented in their IEEE hexadecimal format so that assembly
2004and disassembly do not cause any bits to change in the constants.
2005
2006When using the hexadecimal form, constants of types half, float, and
2007double are represented using the 16-digit form shown above (which
2008matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002009must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002010precision, respectively. Hexadecimal format is always used for long
2011double, and there are three forms of long double. The 80-bit format used
2012by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2013128-bit format used by PowerPC (two adjacent doubles) is represented by
2014``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002015represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2016will only work if they match the long double format on your target.
2017The IEEE 16-bit format (half precision) is represented by ``0xH``
2018followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2019(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002020
2021There are no constants of type x86mmx.
2022
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002023.. _complexconstants:
2024
Sean Silvab084af42012-12-07 10:36:55 +00002025Complex Constants
2026-----------------
2027
2028Complex constants are a (potentially recursive) combination of simple
2029constants and smaller complex constants.
2030
2031**Structure constants**
2032 Structure constants are represented with notation similar to
2033 structure type definitions (a comma separated list of elements,
2034 surrounded by braces (``{}``)). For example:
2035 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2036 "``@G = external global i32``". Structure constants must have
2037 :ref:`structure type <t_struct>`, and the number and types of elements
2038 must match those specified by the type.
2039**Array constants**
2040 Array constants are represented with notation similar to array type
2041 definitions (a comma separated list of elements, surrounded by
2042 square brackets (``[]``)). For example:
2043 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2044 :ref:`array type <t_array>`, and the number and types of elements must
2045 match those specified by the type.
2046**Vector constants**
2047 Vector constants are represented with notation similar to vector
2048 type definitions (a comma separated list of elements, surrounded by
2049 less-than/greater-than's (``<>``)). For example:
2050 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2051 must have :ref:`vector type <t_vector>`, and the number and types of
2052 elements must match those specified by the type.
2053**Zero initialization**
2054 The string '``zeroinitializer``' can be used to zero initialize a
2055 value to zero of *any* type, including scalar and
2056 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2057 having to print large zero initializers (e.g. for large arrays) and
2058 is always exactly equivalent to using explicit zero initializers.
2059**Metadata node**
2060 A metadata node is a structure-like constant with :ref:`metadata
2061 type <t_metadata>`. For example:
2062 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2063 constants that are meant to be interpreted as part of the
2064 instruction stream, metadata is a place to attach additional
2065 information such as debug info.
2066
2067Global Variable and Function Addresses
2068--------------------------------------
2069
2070The addresses of :ref:`global variables <globalvars>` and
2071:ref:`functions <functionstructure>` are always implicitly valid
2072(link-time) constants. These constants are explicitly referenced when
2073the :ref:`identifier for the global <identifiers>` is used and always have
2074:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2075file:
2076
2077.. code-block:: llvm
2078
2079 @X = global i32 17
2080 @Y = global i32 42
2081 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2082
2083.. _undefvalues:
2084
2085Undefined Values
2086----------------
2087
2088The string '``undef``' can be used anywhere a constant is expected, and
2089indicates that the user of the value may receive an unspecified
2090bit-pattern. Undefined values may be of any type (other than '``label``'
2091or '``void``') and be used anywhere a constant is permitted.
2092
2093Undefined values are useful because they indicate to the compiler that
2094the program is well defined no matter what value is used. This gives the
2095compiler more freedom to optimize. Here are some examples of
2096(potentially surprising) transformations that are valid (in pseudo IR):
2097
2098.. code-block:: llvm
2099
2100 %A = add %X, undef
2101 %B = sub %X, undef
2102 %C = xor %X, undef
2103 Safe:
2104 %A = undef
2105 %B = undef
2106 %C = undef
2107
2108This is safe because all of the output bits are affected by the undef
2109bits. Any output bit can have a zero or one depending on the input bits.
2110
2111.. code-block:: llvm
2112
2113 %A = or %X, undef
2114 %B = and %X, undef
2115 Safe:
2116 %A = -1
2117 %B = 0
2118 Unsafe:
2119 %A = undef
2120 %B = undef
2121
2122These logical operations have bits that are not always affected by the
2123input. For example, if ``%X`` has a zero bit, then the output of the
2124'``and``' operation will always be a zero for that bit, no matter what
2125the corresponding bit from the '``undef``' is. As such, it is unsafe to
2126optimize or assume that the result of the '``and``' is '``undef``'.
2127However, it is safe to assume that all bits of the '``undef``' could be
21280, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2129all the bits of the '``undef``' operand to the '``or``' could be set,
2130allowing the '``or``' to be folded to -1.
2131
2132.. code-block:: llvm
2133
2134 %A = select undef, %X, %Y
2135 %B = select undef, 42, %Y
2136 %C = select %X, %Y, undef
2137 Safe:
2138 %A = %X (or %Y)
2139 %B = 42 (or %Y)
2140 %C = %Y
2141 Unsafe:
2142 %A = undef
2143 %B = undef
2144 %C = undef
2145
2146This set of examples shows that undefined '``select``' (and conditional
2147branch) conditions can go *either way*, but they have to come from one
2148of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2149both known to have a clear low bit, then ``%A`` would have to have a
2150cleared low bit. However, in the ``%C`` example, the optimizer is
2151allowed to assume that the '``undef``' operand could be the same as
2152``%Y``, allowing the whole '``select``' to be eliminated.
2153
2154.. code-block:: llvm
2155
2156 %A = xor undef, undef
2157
2158 %B = undef
2159 %C = xor %B, %B
2160
2161 %D = undef
2162 %E = icmp lt %D, 4
2163 %F = icmp gte %D, 4
2164
2165 Safe:
2166 %A = undef
2167 %B = undef
2168 %C = undef
2169 %D = undef
2170 %E = undef
2171 %F = undef
2172
2173This example points out that two '``undef``' operands are not
2174necessarily the same. This can be surprising to people (and also matches
2175C semantics) where they assume that "``X^X``" is always zero, even if
2176``X`` is undefined. This isn't true for a number of reasons, but the
2177short answer is that an '``undef``' "variable" can arbitrarily change
2178its value over its "live range". This is true because the variable
2179doesn't actually *have a live range*. Instead, the value is logically
2180read from arbitrary registers that happen to be around when needed, so
2181the value is not necessarily consistent over time. In fact, ``%A`` and
2182``%C`` need to have the same semantics or the core LLVM "replace all
2183uses with" concept would not hold.
2184
2185.. code-block:: llvm
2186
2187 %A = fdiv undef, %X
2188 %B = fdiv %X, undef
2189 Safe:
2190 %A = undef
2191 b: unreachable
2192
2193These examples show the crucial difference between an *undefined value*
2194and *undefined behavior*. An undefined value (like '``undef``') is
2195allowed to have an arbitrary bit-pattern. This means that the ``%A``
2196operation can be constant folded to '``undef``', because the '``undef``'
2197could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2198However, in the second example, we can make a more aggressive
2199assumption: because the ``undef`` is allowed to be an arbitrary value,
2200we are allowed to assume that it could be zero. Since a divide by zero
2201has *undefined behavior*, we are allowed to assume that the operation
2202does not execute at all. This allows us to delete the divide and all
2203code after it. Because the undefined operation "can't happen", the
2204optimizer can assume that it occurs in dead code.
2205
2206.. code-block:: llvm
2207
2208 a: store undef -> %X
2209 b: store %X -> undef
2210 Safe:
2211 a: <deleted>
2212 b: unreachable
2213
2214These examples reiterate the ``fdiv`` example: a store *of* an undefined
2215value can be assumed to not have any effect; we can assume that the
2216value is overwritten with bits that happen to match what was already
2217there. However, a store *to* an undefined location could clobber
2218arbitrary memory, therefore, it has undefined behavior.
2219
2220.. _poisonvalues:
2221
2222Poison Values
2223-------------
2224
2225Poison values are similar to :ref:`undef values <undefvalues>`, however
2226they also represent the fact that an instruction or constant expression
2227which cannot evoke side effects has nevertheless detected a condition
2228which results in undefined behavior.
2229
2230There is currently no way of representing a poison value in the IR; they
2231only exist when produced by operations such as :ref:`add <i_add>` with
2232the ``nsw`` flag.
2233
2234Poison value behavior is defined in terms of value *dependence*:
2235
2236- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2237- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2238 their dynamic predecessor basic block.
2239- Function arguments depend on the corresponding actual argument values
2240 in the dynamic callers of their functions.
2241- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2242 instructions that dynamically transfer control back to them.
2243- :ref:`Invoke <i_invoke>` instructions depend on the
2244 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2245 call instructions that dynamically transfer control back to them.
2246- Non-volatile loads and stores depend on the most recent stores to all
2247 of the referenced memory addresses, following the order in the IR
2248 (including loads and stores implied by intrinsics such as
2249 :ref:`@llvm.memcpy <int_memcpy>`.)
2250- An instruction with externally visible side effects depends on the
2251 most recent preceding instruction with externally visible side
2252 effects, following the order in the IR. (This includes :ref:`volatile
2253 operations <volatile>`.)
2254- An instruction *control-depends* on a :ref:`terminator
2255 instruction <terminators>` if the terminator instruction has
2256 multiple successors and the instruction is always executed when
2257 control transfers to one of the successors, and may not be executed
2258 when control is transferred to another.
2259- Additionally, an instruction also *control-depends* on a terminator
2260 instruction if the set of instructions it otherwise depends on would
2261 be different if the terminator had transferred control to a different
2262 successor.
2263- Dependence is transitive.
2264
2265Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2266with the additional affect that any instruction which has a *dependence*
2267on a poison value has undefined behavior.
2268
2269Here are some examples:
2270
2271.. code-block:: llvm
2272
2273 entry:
2274 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2275 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2276 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2277 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2278
2279 store i32 %poison, i32* @g ; Poison value stored to memory.
2280 %poison2 = load i32* @g ; Poison value loaded back from memory.
2281
2282 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2283
2284 %narrowaddr = bitcast i32* @g to i16*
2285 %wideaddr = bitcast i32* @g to i64*
2286 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2287 %poison4 = load i64* %wideaddr ; Returns a poison value.
2288
2289 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2290 br i1 %cmp, label %true, label %end ; Branch to either destination.
2291
2292 true:
2293 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2294 ; it has undefined behavior.
2295 br label %end
2296
2297 end:
2298 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2299 ; Both edges into this PHI are
2300 ; control-dependent on %cmp, so this
2301 ; always results in a poison value.
2302
2303 store volatile i32 0, i32* @g ; This would depend on the store in %true
2304 ; if %cmp is true, or the store in %entry
2305 ; otherwise, so this is undefined behavior.
2306
2307 br i1 %cmp, label %second_true, label %second_end
2308 ; The same branch again, but this time the
2309 ; true block doesn't have side effects.
2310
2311 second_true:
2312 ; No side effects!
2313 ret void
2314
2315 second_end:
2316 store volatile i32 0, i32* @g ; This time, the instruction always depends
2317 ; on the store in %end. Also, it is
2318 ; control-equivalent to %end, so this is
2319 ; well-defined (ignoring earlier undefined
2320 ; behavior in this example).
2321
2322.. _blockaddress:
2323
2324Addresses of Basic Blocks
2325-------------------------
2326
2327``blockaddress(@function, %block)``
2328
2329The '``blockaddress``' constant computes the address of the specified
2330basic block in the specified function, and always has an ``i8*`` type.
2331Taking the address of the entry block is illegal.
2332
2333This value only has defined behavior when used as an operand to the
2334':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2335against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002336undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002337no label is equal to the null pointer. This may be passed around as an
2338opaque pointer sized value as long as the bits are not inspected. This
2339allows ``ptrtoint`` and arithmetic to be performed on these values so
2340long as the original value is reconstituted before the ``indirectbr``
2341instruction.
2342
2343Finally, some targets may provide defined semantics when using the value
2344as the operand to an inline assembly, but that is target specific.
2345
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002346.. _constantexprs:
2347
Sean Silvab084af42012-12-07 10:36:55 +00002348Constant Expressions
2349--------------------
2350
2351Constant expressions are used to allow expressions involving other
2352constants to be used as constants. Constant expressions may be of any
2353:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2354that does not have side effects (e.g. load and call are not supported).
2355The following is the syntax for constant expressions:
2356
2357``trunc (CST to TYPE)``
2358 Truncate a constant to another type. The bit size of CST must be
2359 larger than the bit size of TYPE. Both types must be integers.
2360``zext (CST to TYPE)``
2361 Zero extend a constant to another type. The bit size of CST must be
2362 smaller than the bit size of TYPE. Both types must be integers.
2363``sext (CST to TYPE)``
2364 Sign extend a constant to another type. The bit size of CST must be
2365 smaller than the bit size of TYPE. Both types must be integers.
2366``fptrunc (CST to TYPE)``
2367 Truncate a floating point constant to another floating point type.
2368 The size of CST must be larger than the size of TYPE. Both types
2369 must be floating point.
2370``fpext (CST to TYPE)``
2371 Floating point extend a constant to another type. The size of CST
2372 must be smaller or equal to the size of TYPE. Both types must be
2373 floating point.
2374``fptoui (CST to TYPE)``
2375 Convert a floating point constant to the corresponding unsigned
2376 integer constant. TYPE must be a scalar or vector integer type. CST
2377 must be of scalar or vector floating point type. Both CST and TYPE
2378 must be scalars, or vectors of the same number of elements. If the
2379 value won't fit in the integer type, the results are undefined.
2380``fptosi (CST to TYPE)``
2381 Convert a floating point constant to the corresponding signed
2382 integer constant. TYPE must be a scalar or vector integer type. CST
2383 must be of scalar or vector floating point type. Both CST and TYPE
2384 must be scalars, or vectors of the same number of elements. If the
2385 value won't fit in the integer type, the results are undefined.
2386``uitofp (CST to TYPE)``
2387 Convert an unsigned integer constant to the corresponding floating
2388 point constant. TYPE must be a scalar or vector floating point type.
2389 CST must be of scalar or vector integer type. Both CST and TYPE must
2390 be scalars, or vectors of the same number of elements. If the value
2391 won't fit in the floating point type, the results are undefined.
2392``sitofp (CST to TYPE)``
2393 Convert a signed integer constant to the corresponding floating
2394 point constant. TYPE must be a scalar or vector floating point type.
2395 CST must be of scalar or vector integer type. Both CST and TYPE must
2396 be scalars, or vectors of the same number of elements. If the value
2397 won't fit in the floating point type, the results are undefined.
2398``ptrtoint (CST to TYPE)``
2399 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002400 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002401 pointer type. The ``CST`` value is zero extended, truncated, or
2402 unchanged to make it fit in ``TYPE``.
2403``inttoptr (CST to TYPE)``
2404 Convert an integer constant to a pointer constant. TYPE must be a
2405 pointer type. CST must be of integer type. The CST value is zero
2406 extended, truncated, or unchanged to make it fit in a pointer size.
2407 This one is *really* dangerous!
2408``bitcast (CST to TYPE)``
2409 Convert a constant, CST, to another TYPE. The constraints of the
2410 operands are the same as those for the :ref:`bitcast
2411 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002412``addrspacecast (CST to TYPE)``
2413 Convert a constant pointer or constant vector of pointer, CST, to another
2414 TYPE in a different address space. The constraints of the operands are the
2415 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002416``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2417 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2418 constants. As with the :ref:`getelementptr <i_getelementptr>`
2419 instruction, the index list may have zero or more indexes, which are
2420 required to make sense for the type of "CSTPTR".
2421``select (COND, VAL1, VAL2)``
2422 Perform the :ref:`select operation <i_select>` on constants.
2423``icmp COND (VAL1, VAL2)``
2424 Performs the :ref:`icmp operation <i_icmp>` on constants.
2425``fcmp COND (VAL1, VAL2)``
2426 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2427``extractelement (VAL, IDX)``
2428 Perform the :ref:`extractelement operation <i_extractelement>` on
2429 constants.
2430``insertelement (VAL, ELT, IDX)``
2431 Perform the :ref:`insertelement operation <i_insertelement>` on
2432 constants.
2433``shufflevector (VEC1, VEC2, IDXMASK)``
2434 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2435 constants.
2436``extractvalue (VAL, IDX0, IDX1, ...)``
2437 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2438 constants. The index list is interpreted in a similar manner as
2439 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2440 least one index value must be specified.
2441``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2442 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2443 The index list is interpreted in a similar manner as indices in a
2444 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2445 value must be specified.
2446``OPCODE (LHS, RHS)``
2447 Perform the specified operation of the LHS and RHS constants. OPCODE
2448 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2449 binary <bitwiseops>` operations. The constraints on operands are
2450 the same as those for the corresponding instruction (e.g. no bitwise
2451 operations on floating point values are allowed).
2452
2453Other Values
2454============
2455
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002456.. _inlineasmexprs:
2457
Sean Silvab084af42012-12-07 10:36:55 +00002458Inline Assembler Expressions
2459----------------------------
2460
2461LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2462Inline Assembly <moduleasm>`) through the use of a special value. This
2463value represents the inline assembler as a string (containing the
2464instructions to emit), a list of operand constraints (stored as a
2465string), a flag that indicates whether or not the inline asm expression
2466has side effects, and a flag indicating whether the function containing
2467the asm needs to align its stack conservatively. An example inline
2468assembler expression is:
2469
2470.. code-block:: llvm
2471
2472 i32 (i32) asm "bswap $0", "=r,r"
2473
2474Inline assembler expressions may **only** be used as the callee operand
2475of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2476Thus, typically we have:
2477
2478.. code-block:: llvm
2479
2480 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2481
2482Inline asms with side effects not visible in the constraint list must be
2483marked as having side effects. This is done through the use of the
2484'``sideeffect``' keyword, like so:
2485
2486.. code-block:: llvm
2487
2488 call void asm sideeffect "eieio", ""()
2489
2490In some cases inline asms will contain code that will not work unless
2491the stack is aligned in some way, such as calls or SSE instructions on
2492x86, yet will not contain code that does that alignment within the asm.
2493The compiler should make conservative assumptions about what the asm
2494might contain and should generate its usual stack alignment code in the
2495prologue if the '``alignstack``' keyword is present:
2496
2497.. code-block:: llvm
2498
2499 call void asm alignstack "eieio", ""()
2500
2501Inline asms also support using non-standard assembly dialects. The
2502assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2503the inline asm is using the Intel dialect. Currently, ATT and Intel are
2504the only supported dialects. An example is:
2505
2506.. code-block:: llvm
2507
2508 call void asm inteldialect "eieio", ""()
2509
2510If multiple keywords appear the '``sideeffect``' keyword must come
2511first, the '``alignstack``' keyword second and the '``inteldialect``'
2512keyword last.
2513
2514Inline Asm Metadata
2515^^^^^^^^^^^^^^^^^^^
2516
2517The call instructions that wrap inline asm nodes may have a
2518"``!srcloc``" MDNode attached to it that contains a list of constant
2519integers. If present, the code generator will use the integer as the
2520location cookie value when report errors through the ``LLVMContext``
2521error reporting mechanisms. This allows a front-end to correlate backend
2522errors that occur with inline asm back to the source code that produced
2523it. For example:
2524
2525.. code-block:: llvm
2526
2527 call void asm sideeffect "something bad", ""(), !srcloc !42
2528 ...
2529 !42 = !{ i32 1234567 }
2530
2531It is up to the front-end to make sense of the magic numbers it places
2532in the IR. If the MDNode contains multiple constants, the code generator
2533will use the one that corresponds to the line of the asm that the error
2534occurs on.
2535
2536.. _metadata:
2537
2538Metadata Nodes and Metadata Strings
2539-----------------------------------
2540
2541LLVM IR allows metadata to be attached to instructions in the program
2542that can convey extra information about the code to the optimizers and
2543code generator. One example application of metadata is source-level
2544debug information. There are two metadata primitives: strings and nodes.
2545All metadata has the ``metadata`` type and is identified in syntax by a
2546preceding exclamation point ('``!``').
2547
2548A metadata string is a string surrounded by double quotes. It can
2549contain any character by escaping non-printable characters with
2550"``\xx``" where "``xx``" is the two digit hex code. For example:
2551"``!"test\00"``".
2552
2553Metadata nodes are represented with notation similar to structure
2554constants (a comma separated list of elements, surrounded by braces and
2555preceded by an exclamation point). Metadata nodes can have any values as
2556their operand. For example:
2557
2558.. code-block:: llvm
2559
2560 !{ metadata !"test\00", i32 10}
2561
2562A :ref:`named metadata <namedmetadatastructure>` is a collection of
2563metadata nodes, which can be looked up in the module symbol table. For
2564example:
2565
2566.. code-block:: llvm
2567
2568 !foo = metadata !{!4, !3}
2569
2570Metadata can be used as function arguments. Here ``llvm.dbg.value``
2571function is using two metadata arguments:
2572
2573.. code-block:: llvm
2574
2575 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2576
2577Metadata can be attached with an instruction. Here metadata ``!21`` is
2578attached to the ``add`` instruction using the ``!dbg`` identifier:
2579
2580.. code-block:: llvm
2581
2582 %indvar.next = add i64 %indvar, 1, !dbg !21
2583
2584More information about specific metadata nodes recognized by the
2585optimizers and code generator is found below.
2586
2587'``tbaa``' Metadata
2588^^^^^^^^^^^^^^^^^^^
2589
2590In LLVM IR, memory does not have types, so LLVM's own type system is not
2591suitable for doing TBAA. Instead, metadata is added to the IR to
2592describe a type system of a higher level language. This can be used to
2593implement typical C/C++ TBAA, but it can also be used to implement
2594custom alias analysis behavior for other languages.
2595
2596The current metadata format is very simple. TBAA metadata nodes have up
2597to three fields, e.g.:
2598
2599.. code-block:: llvm
2600
2601 !0 = metadata !{ metadata !"an example type tree" }
2602 !1 = metadata !{ metadata !"int", metadata !0 }
2603 !2 = metadata !{ metadata !"float", metadata !0 }
2604 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2605
2606The first field is an identity field. It can be any value, usually a
2607metadata string, which uniquely identifies the type. The most important
2608name in the tree is the name of the root node. Two trees with different
2609root node names are entirely disjoint, even if they have leaves with
2610common names.
2611
2612The second field identifies the type's parent node in the tree, or is
2613null or omitted for a root node. A type is considered to alias all of
2614its descendants and all of its ancestors in the tree. Also, a type is
2615considered to alias all types in other trees, so that bitcode produced
2616from multiple front-ends is handled conservatively.
2617
2618If the third field is present, it's an integer which if equal to 1
2619indicates that the type is "constant" (meaning
2620``pointsToConstantMemory`` should return true; see `other useful
2621AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2622
2623'``tbaa.struct``' Metadata
2624^^^^^^^^^^^^^^^^^^^^^^^^^^
2625
2626The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2627aggregate assignment operations in C and similar languages, however it
2628is defined to copy a contiguous region of memory, which is more than
2629strictly necessary for aggregate types which contain holes due to
2630padding. Also, it doesn't contain any TBAA information about the fields
2631of the aggregate.
2632
2633``!tbaa.struct`` metadata can describe which memory subregions in a
2634memcpy are padding and what the TBAA tags of the struct are.
2635
2636The current metadata format is very simple. ``!tbaa.struct`` metadata
2637nodes are a list of operands which are in conceptual groups of three.
2638For each group of three, the first operand gives the byte offset of a
2639field in bytes, the second gives its size in bytes, and the third gives
2640its tbaa tag. e.g.:
2641
2642.. code-block:: llvm
2643
2644 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2645
2646This describes a struct with two fields. The first is at offset 0 bytes
2647with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2648and has size 4 bytes and has tbaa tag !2.
2649
2650Note that the fields need not be contiguous. In this example, there is a
26514 byte gap between the two fields. This gap represents padding which
2652does not carry useful data and need not be preserved.
2653
2654'``fpmath``' Metadata
2655^^^^^^^^^^^^^^^^^^^^^
2656
2657``fpmath`` metadata may be attached to any instruction of floating point
2658type. It can be used to express the maximum acceptable error in the
2659result of that instruction, in ULPs, thus potentially allowing the
2660compiler to use a more efficient but less accurate method of computing
2661it. ULP is defined as follows:
2662
2663 If ``x`` is a real number that lies between two finite consecutive
2664 floating-point numbers ``a`` and ``b``, without being equal to one
2665 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2666 distance between the two non-equal finite floating-point numbers
2667 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2668
2669The metadata node shall consist of a single positive floating point
2670number representing the maximum relative error, for example:
2671
2672.. code-block:: llvm
2673
2674 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2675
2676'``range``' Metadata
2677^^^^^^^^^^^^^^^^^^^^
2678
2679``range`` metadata may be attached only to loads of integer types. It
2680expresses the possible ranges the loaded value is in. The ranges are
2681represented with a flattened list of integers. The loaded value is known
2682to be in the union of the ranges defined by each consecutive pair. Each
2683pair has the following properties:
2684
2685- The type must match the type loaded by the instruction.
2686- The pair ``a,b`` represents the range ``[a,b)``.
2687- Both ``a`` and ``b`` are constants.
2688- The range is allowed to wrap.
2689- The range should not represent the full or empty set. That is,
2690 ``a!=b``.
2691
2692In addition, the pairs must be in signed order of the lower bound and
2693they must be non-contiguous.
2694
2695Examples:
2696
2697.. code-block:: llvm
2698
2699 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2700 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2701 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2702 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2703 ...
2704 !0 = metadata !{ i8 0, i8 2 }
2705 !1 = metadata !{ i8 255, i8 2 }
2706 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2707 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2708
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002709'``llvm.loop``'
2710^^^^^^^^^^^^^^^
2711
2712It is sometimes useful to attach information to loop constructs. Currently,
2713loop metadata is implemented as metadata attached to the branch instruction
2714in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002715guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002716specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002717
2718The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002719itself to avoid merging it with any other identifier metadata, e.g.,
2720during module linkage or function inlining. That is, each loop should refer
2721to their own identification metadata even if they reside in separate functions.
2722The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002723constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002724
2725.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002726
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002727 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002728 !1 = metadata !{ metadata !1 }
2729
Paul Redmond5fdf8362013-05-28 20:00:34 +00002730The loop identifier metadata can be used to specify additional per-loop
2731metadata. Any operands after the first operand can be treated as user-defined
2732metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2733by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002734
Paul Redmond5fdf8362013-05-28 20:00:34 +00002735.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002736
Paul Redmond5fdf8362013-05-28 20:00:34 +00002737 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2738 ...
2739 !0 = metadata !{ metadata !0, metadata !1 }
2740 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002741
2742'``llvm.mem``'
2743^^^^^^^^^^^^^^^
2744
2745Metadata types used to annotate memory accesses with information helpful
2746for optimizations are prefixed with ``llvm.mem``.
2747
2748'``llvm.mem.parallel_loop_access``' Metadata
2749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2750
2751For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002752the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002753also all of the memory accessing instructions in the loop body need to be
2754marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2755is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002756the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002757converted to sequential loops due to optimization passes that are unaware of
2758the parallel semantics and that insert new memory instructions to the loop
2759body.
2760
2761Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002762both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002763metadata types that refer to the same loop identifier metadata.
2764
2765.. code-block:: llvm
2766
2767 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002768 ...
2769 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2770 ...
2771 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2772 ...
2773 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002774
2775 for.end:
2776 ...
2777 !0 = metadata !{ metadata !0 }
2778
2779It is also possible to have nested parallel loops. In that case the
2780memory accesses refer to a list of loop identifier metadata nodes instead of
2781the loop identifier metadata node directly:
2782
2783.. code-block:: llvm
2784
2785 outer.for.body:
2786 ...
2787
2788 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002789 ...
2790 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2791 ...
2792 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2793 ...
2794 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002795
2796 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002797 ...
2798 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2799 ...
2800 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2801 ...
2802 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002803
2804 outer.for.end: ; preds = %for.body
2805 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002806 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2807 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2808 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002809
Paul Redmond5fdf8362013-05-28 20:00:34 +00002810'``llvm.vectorizer``'
2811^^^^^^^^^^^^^^^^^^^^^
2812
2813Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2814vectorization parameters such as vectorization factor and unroll factor.
2815
2816``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2817loop identification metadata.
2818
2819'``llvm.vectorizer.unroll``' Metadata
2820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2821
2822This metadata instructs the loop vectorizer to unroll the specified
2823loop exactly ``N`` times.
2824
2825The first operand is the string ``llvm.vectorizer.unroll`` and the second
2826operand is an integer specifying the unroll factor. For example:
2827
2828.. code-block:: llvm
2829
2830 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2831
2832Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2833loop.
2834
2835If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2836determined automatically.
2837
2838'``llvm.vectorizer.width``' Metadata
2839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2840
Paul Redmondeccbb322013-05-30 17:22:46 +00002841This metadata sets the target width of the vectorizer to ``N``. Without
2842this metadata, the vectorizer will choose a width automatically.
2843Regardless of this metadata, the vectorizer will only vectorize loops if
2844it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002845
2846The first operand is the string ``llvm.vectorizer.width`` and the second
2847operand is an integer specifying the width. For example:
2848
2849.. code-block:: llvm
2850
2851 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2852
2853Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2854loop.
2855
2856If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2857automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002858
Sean Silvab084af42012-12-07 10:36:55 +00002859Module Flags Metadata
2860=====================
2861
2862Information about the module as a whole is difficult to convey to LLVM's
2863subsystems. The LLVM IR isn't sufficient to transmit this information.
2864The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002865this. These flags are in the form of key / value pairs --- much like a
2866dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002867look it up.
2868
2869The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2870Each triplet has the following form:
2871
2872- The first element is a *behavior* flag, which specifies the behavior
2873 when two (or more) modules are merged together, and it encounters two
2874 (or more) metadata with the same ID. The supported behaviors are
2875 described below.
2876- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002877 metadata. Each module may only have one flag entry for each unique ID (not
2878 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002879- The third element is the value of the flag.
2880
2881When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002882``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2883each unique metadata ID string, there will be exactly one entry in the merged
2884modules ``llvm.module.flags`` metadata table, and the value for that entry will
2885be determined by the merge behavior flag, as described below. The only exception
2886is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002887
2888The following behaviors are supported:
2889
2890.. list-table::
2891 :header-rows: 1
2892 :widths: 10 90
2893
2894 * - Value
2895 - Behavior
2896
2897 * - 1
2898 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002899 Emits an error if two values disagree, otherwise the resulting value
2900 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002901
2902 * - 2
2903 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002904 Emits a warning if two values disagree. The result value will be the
2905 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002906
2907 * - 3
2908 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002909 Adds a requirement that another module flag be present and have a
2910 specified value after linking is performed. The value must be a
2911 metadata pair, where the first element of the pair is the ID of the
2912 module flag to be restricted, and the second element of the pair is
2913 the value the module flag should be restricted to. This behavior can
2914 be used to restrict the allowable results (via triggering of an
2915 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002916
2917 * - 4
2918 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002919 Uses the specified value, regardless of the behavior or value of the
2920 other module. If both modules specify **Override**, but the values
2921 differ, an error will be emitted.
2922
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002923 * - 5
2924 - **Append**
2925 Appends the two values, which are required to be metadata nodes.
2926
2927 * - 6
2928 - **AppendUnique**
2929 Appends the two values, which are required to be metadata
2930 nodes. However, duplicate entries in the second list are dropped
2931 during the append operation.
2932
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002933It is an error for a particular unique flag ID to have multiple behaviors,
2934except in the case of **Require** (which adds restrictions on another metadata
2935value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002936
2937An example of module flags:
2938
2939.. code-block:: llvm
2940
2941 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2942 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2943 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2944 !3 = metadata !{ i32 3, metadata !"qux",
2945 metadata !{
2946 metadata !"foo", i32 1
2947 }
2948 }
2949 !llvm.module.flags = !{ !0, !1, !2, !3 }
2950
2951- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2952 if two or more ``!"foo"`` flags are seen is to emit an error if their
2953 values are not equal.
2954
2955- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2956 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002957 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002958
2959- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2960 behavior if two or more ``!"qux"`` flags are seen is to emit a
2961 warning if their values are not equal.
2962
2963- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2964
2965 ::
2966
2967 metadata !{ metadata !"foo", i32 1 }
2968
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002969 The behavior is to emit an error if the ``llvm.module.flags`` does not
2970 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2971 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002972
2973Objective-C Garbage Collection Module Flags Metadata
2974----------------------------------------------------
2975
2976On the Mach-O platform, Objective-C stores metadata about garbage
2977collection in a special section called "image info". The metadata
2978consists of a version number and a bitmask specifying what types of
2979garbage collection are supported (if any) by the file. If two or more
2980modules are linked together their garbage collection metadata needs to
2981be merged rather than appended together.
2982
2983The Objective-C garbage collection module flags metadata consists of the
2984following key-value pairs:
2985
2986.. list-table::
2987 :header-rows: 1
2988 :widths: 30 70
2989
2990 * - Key
2991 - Value
2992
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002993 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002994 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002995
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002996 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002997 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002998 always 0.
2999
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003000 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003001 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003002 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3003 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3004 Objective-C ABI version 2.
3005
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003006 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003007 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003008 not. Valid values are 0, for no garbage collection, and 2, for garbage
3009 collection supported.
3010
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003011 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003012 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003013 If present, its value must be 6. This flag requires that the
3014 ``Objective-C Garbage Collection`` flag have the value 2.
3015
3016Some important flag interactions:
3017
3018- If a module with ``Objective-C Garbage Collection`` set to 0 is
3019 merged with a module with ``Objective-C Garbage Collection`` set to
3020 2, then the resulting module has the
3021 ``Objective-C Garbage Collection`` flag set to 0.
3022- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3023 merged with a module with ``Objective-C GC Only`` set to 6.
3024
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003025Automatic Linker Flags Module Flags Metadata
3026--------------------------------------------
3027
3028Some targets support embedding flags to the linker inside individual object
3029files. Typically this is used in conjunction with language extensions which
3030allow source files to explicitly declare the libraries they depend on, and have
3031these automatically be transmitted to the linker via object files.
3032
3033These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003034using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003035to be ``AppendUnique``, and the value for the key is expected to be a metadata
3036node which should be a list of other metadata nodes, each of which should be a
3037list of metadata strings defining linker options.
3038
3039For example, the following metadata section specifies two separate sets of
3040linker options, presumably to link against ``libz`` and the ``Cocoa``
3041framework::
3042
Michael Liaoa7699082013-03-06 18:24:34 +00003043 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003044 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003045 metadata !{ metadata !"-lz" },
3046 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003047 !llvm.module.flags = !{ !0 }
3048
3049The metadata encoding as lists of lists of options, as opposed to a collapsed
3050list of options, is chosen so that the IR encoding can use multiple option
3051strings to specify e.g., a single library, while still having that specifier be
3052preserved as an atomic element that can be recognized by a target specific
3053assembly writer or object file emitter.
3054
3055Each individual option is required to be either a valid option for the target's
3056linker, or an option that is reserved by the target specific assembly writer or
3057object file emitter. No other aspect of these options is defined by the IR.
3058
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003059.. _intrinsicglobalvariables:
3060
Sean Silvab084af42012-12-07 10:36:55 +00003061Intrinsic Global Variables
3062==========================
3063
3064LLVM has a number of "magic" global variables that contain data that
3065affect code generation or other IR semantics. These are documented here.
3066All globals of this sort should have a section specified as
3067"``llvm.metadata``". This section and all globals that start with
3068"``llvm.``" are reserved for use by LLVM.
3069
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003070.. _gv_llvmused:
3071
Sean Silvab084af42012-12-07 10:36:55 +00003072The '``llvm.used``' Global Variable
3073-----------------------------------
3074
Rafael Espindola74f2e462013-04-22 14:58:02 +00003075The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003076:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003077pointers to named global variables, functions and aliases which may optionally
3078have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003079use of it is:
3080
3081.. code-block:: llvm
3082
3083 @X = global i8 4
3084 @Y = global i32 123
3085
3086 @llvm.used = appending global [2 x i8*] [
3087 i8* @X,
3088 i8* bitcast (i32* @Y to i8*)
3089 ], section "llvm.metadata"
3090
Rafael Espindola74f2e462013-04-22 14:58:02 +00003091If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3092and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003093symbol that it cannot see (which is why they have to be named). For example, if
3094a variable has internal linkage and no references other than that from the
3095``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3096references from inline asms and other things the compiler cannot "see", and
3097corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003098
3099On some targets, the code generator must emit a directive to the
3100assembler or object file to prevent the assembler and linker from
3101molesting the symbol.
3102
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003103.. _gv_llvmcompilerused:
3104
Sean Silvab084af42012-12-07 10:36:55 +00003105The '``llvm.compiler.used``' Global Variable
3106--------------------------------------------
3107
3108The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3109directive, except that it only prevents the compiler from touching the
3110symbol. On targets that support it, this allows an intelligent linker to
3111optimize references to the symbol without being impeded as it would be
3112by ``@llvm.used``.
3113
3114This is a rare construct that should only be used in rare circumstances,
3115and should not be exposed to source languages.
3116
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003117.. _gv_llvmglobalctors:
3118
Sean Silvab084af42012-12-07 10:36:55 +00003119The '``llvm.global_ctors``' Global Variable
3120-------------------------------------------
3121
3122.. code-block:: llvm
3123
3124 %0 = type { i32, void ()* }
3125 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3126
3127The ``@llvm.global_ctors`` array contains a list of constructor
3128functions and associated priorities. The functions referenced by this
3129array will be called in ascending order of priority (i.e. lowest first)
3130when the module is loaded. The order of functions with the same priority
3131is not defined.
3132
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003133.. _llvmglobaldtors:
3134
Sean Silvab084af42012-12-07 10:36:55 +00003135The '``llvm.global_dtors``' Global Variable
3136-------------------------------------------
3137
3138.. code-block:: llvm
3139
3140 %0 = type { i32, void ()* }
3141 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3142
3143The ``@llvm.global_dtors`` array contains a list of destructor functions
3144and associated priorities. The functions referenced by this array will
3145be called in descending order of priority (i.e. highest first) when the
3146module is loaded. The order of functions with the same priority is not
3147defined.
3148
3149Instruction Reference
3150=====================
3151
3152The LLVM instruction set consists of several different classifications
3153of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3154instructions <binaryops>`, :ref:`bitwise binary
3155instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3156:ref:`other instructions <otherops>`.
3157
3158.. _terminators:
3159
3160Terminator Instructions
3161-----------------------
3162
3163As mentioned :ref:`previously <functionstructure>`, every basic block in a
3164program ends with a "Terminator" instruction, which indicates which
3165block should be executed after the current block is finished. These
3166terminator instructions typically yield a '``void``' value: they produce
3167control flow, not values (the one exception being the
3168':ref:`invoke <i_invoke>`' instruction).
3169
3170The terminator instructions are: ':ref:`ret <i_ret>`',
3171':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3172':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3173':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3174
3175.. _i_ret:
3176
3177'``ret``' Instruction
3178^^^^^^^^^^^^^^^^^^^^^
3179
3180Syntax:
3181"""""""
3182
3183::
3184
3185 ret <type> <value> ; Return a value from a non-void function
3186 ret void ; Return from void function
3187
3188Overview:
3189"""""""""
3190
3191The '``ret``' instruction is used to return control flow (and optionally
3192a value) from a function back to the caller.
3193
3194There are two forms of the '``ret``' instruction: one that returns a
3195value and then causes control flow, and one that just causes control
3196flow to occur.
3197
3198Arguments:
3199""""""""""
3200
3201The '``ret``' instruction optionally accepts a single argument, the
3202return value. The type of the return value must be a ':ref:`first
3203class <t_firstclass>`' type.
3204
3205A function is not :ref:`well formed <wellformed>` if it it has a non-void
3206return type and contains a '``ret``' instruction with no return value or
3207a return value with a type that does not match its type, or if it has a
3208void return type and contains a '``ret``' instruction with a return
3209value.
3210
3211Semantics:
3212""""""""""
3213
3214When the '``ret``' instruction is executed, control flow returns back to
3215the calling function's context. If the caller is a
3216":ref:`call <i_call>`" instruction, execution continues at the
3217instruction after the call. If the caller was an
3218":ref:`invoke <i_invoke>`" instruction, execution continues at the
3219beginning of the "normal" destination block. If the instruction returns
3220a value, that value shall set the call or invoke instruction's return
3221value.
3222
3223Example:
3224""""""""
3225
3226.. code-block:: llvm
3227
3228 ret i32 5 ; Return an integer value of 5
3229 ret void ; Return from a void function
3230 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3231
3232.. _i_br:
3233
3234'``br``' Instruction
3235^^^^^^^^^^^^^^^^^^^^
3236
3237Syntax:
3238"""""""
3239
3240::
3241
3242 br i1 <cond>, label <iftrue>, label <iffalse>
3243 br label <dest> ; Unconditional branch
3244
3245Overview:
3246"""""""""
3247
3248The '``br``' instruction is used to cause control flow to transfer to a
3249different basic block in the current function. There are two forms of
3250this instruction, corresponding to a conditional branch and an
3251unconditional branch.
3252
3253Arguments:
3254""""""""""
3255
3256The conditional branch form of the '``br``' instruction takes a single
3257'``i1``' value and two '``label``' values. The unconditional form of the
3258'``br``' instruction takes a single '``label``' value as a target.
3259
3260Semantics:
3261""""""""""
3262
3263Upon execution of a conditional '``br``' instruction, the '``i1``'
3264argument is evaluated. If the value is ``true``, control flows to the
3265'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3266to the '``iffalse``' ``label`` argument.
3267
3268Example:
3269""""""""
3270
3271.. code-block:: llvm
3272
3273 Test:
3274 %cond = icmp eq i32 %a, %b
3275 br i1 %cond, label %IfEqual, label %IfUnequal
3276 IfEqual:
3277 ret i32 1
3278 IfUnequal:
3279 ret i32 0
3280
3281.. _i_switch:
3282
3283'``switch``' Instruction
3284^^^^^^^^^^^^^^^^^^^^^^^^
3285
3286Syntax:
3287"""""""
3288
3289::
3290
3291 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3292
3293Overview:
3294"""""""""
3295
3296The '``switch``' instruction is used to transfer control flow to one of
3297several different places. It is a generalization of the '``br``'
3298instruction, allowing a branch to occur to one of many possible
3299destinations.
3300
3301Arguments:
3302""""""""""
3303
3304The '``switch``' instruction uses three parameters: an integer
3305comparison value '``value``', a default '``label``' destination, and an
3306array of pairs of comparison value constants and '``label``'s. The table
3307is not allowed to contain duplicate constant entries.
3308
3309Semantics:
3310""""""""""
3311
3312The ``switch`` instruction specifies a table of values and destinations.
3313When the '``switch``' instruction is executed, this table is searched
3314for the given value. If the value is found, control flow is transferred
3315to the corresponding destination; otherwise, control flow is transferred
3316to the default destination.
3317
3318Implementation:
3319"""""""""""""""
3320
3321Depending on properties of the target machine and the particular
3322``switch`` instruction, this instruction may be code generated in
3323different ways. For example, it could be generated as a series of
3324chained conditional branches or with a lookup table.
3325
3326Example:
3327""""""""
3328
3329.. code-block:: llvm
3330
3331 ; Emulate a conditional br instruction
3332 %Val = zext i1 %value to i32
3333 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3334
3335 ; Emulate an unconditional br instruction
3336 switch i32 0, label %dest [ ]
3337
3338 ; Implement a jump table:
3339 switch i32 %val, label %otherwise [ i32 0, label %onzero
3340 i32 1, label %onone
3341 i32 2, label %ontwo ]
3342
3343.. _i_indirectbr:
3344
3345'``indirectbr``' Instruction
3346^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3347
3348Syntax:
3349"""""""
3350
3351::
3352
3353 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3354
3355Overview:
3356"""""""""
3357
3358The '``indirectbr``' instruction implements an indirect branch to a
3359label within the current function, whose address is specified by
3360"``address``". Address must be derived from a
3361:ref:`blockaddress <blockaddress>` constant.
3362
3363Arguments:
3364""""""""""
3365
3366The '``address``' argument is the address of the label to jump to. The
3367rest of the arguments indicate the full set of possible destinations
3368that the address may point to. Blocks are allowed to occur multiple
3369times in the destination list, though this isn't particularly useful.
3370
3371This destination list is required so that dataflow analysis has an
3372accurate understanding of the CFG.
3373
3374Semantics:
3375""""""""""
3376
3377Control transfers to the block specified in the address argument. All
3378possible destination blocks must be listed in the label list, otherwise
3379this instruction has undefined behavior. This implies that jumps to
3380labels defined in other functions have undefined behavior as well.
3381
3382Implementation:
3383"""""""""""""""
3384
3385This is typically implemented with a jump through a register.
3386
3387Example:
3388""""""""
3389
3390.. code-block:: llvm
3391
3392 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3393
3394.. _i_invoke:
3395
3396'``invoke``' Instruction
3397^^^^^^^^^^^^^^^^^^^^^^^^
3398
3399Syntax:
3400"""""""
3401
3402::
3403
3404 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3405 to label <normal label> unwind label <exception label>
3406
3407Overview:
3408"""""""""
3409
3410The '``invoke``' instruction causes control to transfer to a specified
3411function, with the possibility of control flow transfer to either the
3412'``normal``' label or the '``exception``' label. If the callee function
3413returns with the "``ret``" instruction, control flow will return to the
3414"normal" label. If the callee (or any indirect callees) returns via the
3415":ref:`resume <i_resume>`" instruction or other exception handling
3416mechanism, control is interrupted and continued at the dynamically
3417nearest "exception" label.
3418
3419The '``exception``' label is a `landing
3420pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3421'``exception``' label is required to have the
3422":ref:`landingpad <i_landingpad>`" instruction, which contains the
3423information about the behavior of the program after unwinding happens,
3424as its first non-PHI instruction. The restrictions on the
3425"``landingpad``" instruction's tightly couples it to the "``invoke``"
3426instruction, so that the important information contained within the
3427"``landingpad``" instruction can't be lost through normal code motion.
3428
3429Arguments:
3430""""""""""
3431
3432This instruction requires several arguments:
3433
3434#. The optional "cconv" marker indicates which :ref:`calling
3435 convention <callingconv>` the call should use. If none is
3436 specified, the call defaults to using C calling conventions.
3437#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3438 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3439 are valid here.
3440#. '``ptr to function ty``': shall be the signature of the pointer to
3441 function value being invoked. In most cases, this is a direct
3442 function invocation, but indirect ``invoke``'s are just as possible,
3443 branching off an arbitrary pointer to function value.
3444#. '``function ptr val``': An LLVM value containing a pointer to a
3445 function to be invoked.
3446#. '``function args``': argument list whose types match the function
3447 signature argument types and parameter attributes. All arguments must
3448 be of :ref:`first class <t_firstclass>` type. If the function signature
3449 indicates the function accepts a variable number of arguments, the
3450 extra arguments can be specified.
3451#. '``normal label``': the label reached when the called function
3452 executes a '``ret``' instruction.
3453#. '``exception label``': the label reached when a callee returns via
3454 the :ref:`resume <i_resume>` instruction or other exception handling
3455 mechanism.
3456#. The optional :ref:`function attributes <fnattrs>` list. Only
3457 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3458 attributes are valid here.
3459
3460Semantics:
3461""""""""""
3462
3463This instruction is designed to operate as a standard '``call``'
3464instruction in most regards. The primary difference is that it
3465establishes an association with a label, which is used by the runtime
3466library to unwind the stack.
3467
3468This instruction is used in languages with destructors to ensure that
3469proper cleanup is performed in the case of either a ``longjmp`` or a
3470thrown exception. Additionally, this is important for implementation of
3471'``catch``' clauses in high-level languages that support them.
3472
3473For the purposes of the SSA form, the definition of the value returned
3474by the '``invoke``' instruction is deemed to occur on the edge from the
3475current block to the "normal" label. If the callee unwinds then no
3476return value is available.
3477
3478Example:
3479""""""""
3480
3481.. code-block:: llvm
3482
3483 %retval = invoke i32 @Test(i32 15) to label %Continue
3484 unwind label %TestCleanup ; {i32}:retval set
3485 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3486 unwind label %TestCleanup ; {i32}:retval set
3487
3488.. _i_resume:
3489
3490'``resume``' Instruction
3491^^^^^^^^^^^^^^^^^^^^^^^^
3492
3493Syntax:
3494"""""""
3495
3496::
3497
3498 resume <type> <value>
3499
3500Overview:
3501"""""""""
3502
3503The '``resume``' instruction is a terminator instruction that has no
3504successors.
3505
3506Arguments:
3507""""""""""
3508
3509The '``resume``' instruction requires one argument, which must have the
3510same type as the result of any '``landingpad``' instruction in the same
3511function.
3512
3513Semantics:
3514""""""""""
3515
3516The '``resume``' instruction resumes propagation of an existing
3517(in-flight) exception whose unwinding was interrupted with a
3518:ref:`landingpad <i_landingpad>` instruction.
3519
3520Example:
3521""""""""
3522
3523.. code-block:: llvm
3524
3525 resume { i8*, i32 } %exn
3526
3527.. _i_unreachable:
3528
3529'``unreachable``' Instruction
3530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3531
3532Syntax:
3533"""""""
3534
3535::
3536
3537 unreachable
3538
3539Overview:
3540"""""""""
3541
3542The '``unreachable``' instruction has no defined semantics. This
3543instruction is used to inform the optimizer that a particular portion of
3544the code is not reachable. This can be used to indicate that the code
3545after a no-return function cannot be reached, and other facts.
3546
3547Semantics:
3548""""""""""
3549
3550The '``unreachable``' instruction has no defined semantics.
3551
3552.. _binaryops:
3553
3554Binary Operations
3555-----------------
3556
3557Binary operators are used to do most of the computation in a program.
3558They require two operands of the same type, execute an operation on
3559them, and produce a single value. The operands might represent multiple
3560data, as is the case with the :ref:`vector <t_vector>` data type. The
3561result value has the same type as its operands.
3562
3563There are several different binary operators:
3564
3565.. _i_add:
3566
3567'``add``' Instruction
3568^^^^^^^^^^^^^^^^^^^^^
3569
3570Syntax:
3571"""""""
3572
3573::
3574
3575 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3576 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3577 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3578 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3579
3580Overview:
3581"""""""""
3582
3583The '``add``' instruction returns the sum of its two operands.
3584
3585Arguments:
3586""""""""""
3587
3588The two arguments to the '``add``' instruction must be
3589:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3590arguments must have identical types.
3591
3592Semantics:
3593""""""""""
3594
3595The value produced is the integer sum of the two operands.
3596
3597If the sum has unsigned overflow, the result returned is the
3598mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3599the result.
3600
3601Because LLVM integers use a two's complement representation, this
3602instruction is appropriate for both signed and unsigned integers.
3603
3604``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3605respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3606result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3607unsigned and/or signed overflow, respectively, occurs.
3608
3609Example:
3610""""""""
3611
3612.. code-block:: llvm
3613
3614 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3615
3616.. _i_fadd:
3617
3618'``fadd``' Instruction
3619^^^^^^^^^^^^^^^^^^^^^^
3620
3621Syntax:
3622"""""""
3623
3624::
3625
3626 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3627
3628Overview:
3629"""""""""
3630
3631The '``fadd``' instruction returns the sum of its two operands.
3632
3633Arguments:
3634""""""""""
3635
3636The two arguments to the '``fadd``' instruction must be :ref:`floating
3637point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3638Both arguments must have identical types.
3639
3640Semantics:
3641""""""""""
3642
3643The value produced is the floating point sum of the two operands. This
3644instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3645which are optimization hints to enable otherwise unsafe floating point
3646optimizations:
3647
3648Example:
3649""""""""
3650
3651.. code-block:: llvm
3652
3653 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3654
3655'``sub``' Instruction
3656^^^^^^^^^^^^^^^^^^^^^
3657
3658Syntax:
3659"""""""
3660
3661::
3662
3663 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3664 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3665 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3666 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3667
3668Overview:
3669"""""""""
3670
3671The '``sub``' instruction returns the difference of its two operands.
3672
3673Note that the '``sub``' instruction is used to represent the '``neg``'
3674instruction present in most other intermediate representations.
3675
3676Arguments:
3677""""""""""
3678
3679The two arguments to the '``sub``' instruction must be
3680:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3681arguments must have identical types.
3682
3683Semantics:
3684""""""""""
3685
3686The value produced is the integer difference of the two operands.
3687
3688If the difference has unsigned overflow, the result returned is the
3689mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3690the result.
3691
3692Because LLVM integers use a two's complement representation, this
3693instruction is appropriate for both signed and unsigned integers.
3694
3695``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3696respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3697result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3698unsigned and/or signed overflow, respectively, occurs.
3699
3700Example:
3701""""""""
3702
3703.. code-block:: llvm
3704
3705 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3706 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3707
3708.. _i_fsub:
3709
3710'``fsub``' Instruction
3711^^^^^^^^^^^^^^^^^^^^^^
3712
3713Syntax:
3714"""""""
3715
3716::
3717
3718 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3719
3720Overview:
3721"""""""""
3722
3723The '``fsub``' instruction returns the difference of its two operands.
3724
3725Note that the '``fsub``' instruction is used to represent the '``fneg``'
3726instruction present in most other intermediate representations.
3727
3728Arguments:
3729""""""""""
3730
3731The two arguments to the '``fsub``' instruction must be :ref:`floating
3732point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3733Both arguments must have identical types.
3734
3735Semantics:
3736""""""""""
3737
3738The value produced is the floating point difference of the two operands.
3739This instruction can also take any number of :ref:`fast-math
3740flags <fastmath>`, which are optimization hints to enable otherwise
3741unsafe floating point optimizations:
3742
3743Example:
3744""""""""
3745
3746.. code-block:: llvm
3747
3748 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3749 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3750
3751'``mul``' Instruction
3752^^^^^^^^^^^^^^^^^^^^^
3753
3754Syntax:
3755"""""""
3756
3757::
3758
3759 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3760 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3761 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3762 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3763
3764Overview:
3765"""""""""
3766
3767The '``mul``' instruction returns the product of its two operands.
3768
3769Arguments:
3770""""""""""
3771
3772The two arguments to the '``mul``' instruction must be
3773:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3774arguments must have identical types.
3775
3776Semantics:
3777""""""""""
3778
3779The value produced is the integer product of the two operands.
3780
3781If the result of the multiplication has unsigned overflow, the result
3782returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3783bit width of the result.
3784
3785Because LLVM integers use a two's complement representation, and the
3786result is the same width as the operands, this instruction returns the
3787correct result for both signed and unsigned integers. If a full product
3788(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3789sign-extended or zero-extended as appropriate to the width of the full
3790product.
3791
3792``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3793respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3794result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3795unsigned and/or signed overflow, respectively, occurs.
3796
3797Example:
3798""""""""
3799
3800.. code-block:: llvm
3801
3802 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3803
3804.. _i_fmul:
3805
3806'``fmul``' Instruction
3807^^^^^^^^^^^^^^^^^^^^^^
3808
3809Syntax:
3810"""""""
3811
3812::
3813
3814 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3815
3816Overview:
3817"""""""""
3818
3819The '``fmul``' instruction returns the product of its two operands.
3820
3821Arguments:
3822""""""""""
3823
3824The two arguments to the '``fmul``' instruction must be :ref:`floating
3825point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3826Both arguments must have identical types.
3827
3828Semantics:
3829""""""""""
3830
3831The value produced is the floating point product of the two operands.
3832This instruction can also take any number of :ref:`fast-math
3833flags <fastmath>`, which are optimization hints to enable otherwise
3834unsafe floating point optimizations:
3835
3836Example:
3837""""""""
3838
3839.. code-block:: llvm
3840
3841 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3842
3843'``udiv``' Instruction
3844^^^^^^^^^^^^^^^^^^^^^^
3845
3846Syntax:
3847"""""""
3848
3849::
3850
3851 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3852 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3853
3854Overview:
3855"""""""""
3856
3857The '``udiv``' instruction returns the quotient of its two operands.
3858
3859Arguments:
3860""""""""""
3861
3862The two arguments to the '``udiv``' instruction must be
3863:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3864arguments must have identical types.
3865
3866Semantics:
3867""""""""""
3868
3869The value produced is the unsigned integer quotient of the two operands.
3870
3871Note that unsigned integer division and signed integer division are
3872distinct operations; for signed integer division, use '``sdiv``'.
3873
3874Division by zero leads to undefined behavior.
3875
3876If the ``exact`` keyword is present, the result value of the ``udiv`` is
3877a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3878such, "((a udiv exact b) mul b) == a").
3879
3880Example:
3881""""""""
3882
3883.. code-block:: llvm
3884
3885 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3886
3887'``sdiv``' Instruction
3888^^^^^^^^^^^^^^^^^^^^^^
3889
3890Syntax:
3891"""""""
3892
3893::
3894
3895 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3896 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3897
3898Overview:
3899"""""""""
3900
3901The '``sdiv``' instruction returns the quotient of its two operands.
3902
3903Arguments:
3904""""""""""
3905
3906The two arguments to the '``sdiv``' instruction must be
3907:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3908arguments must have identical types.
3909
3910Semantics:
3911""""""""""
3912
3913The value produced is the signed integer quotient of the two operands
3914rounded towards zero.
3915
3916Note that signed integer division and unsigned integer division are
3917distinct operations; for unsigned integer division, use '``udiv``'.
3918
3919Division by zero leads to undefined behavior. Overflow also leads to
3920undefined behavior; this is a rare case, but can occur, for example, by
3921doing a 32-bit division of -2147483648 by -1.
3922
3923If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3924a :ref:`poison value <poisonvalues>` if the result would be rounded.
3925
3926Example:
3927""""""""
3928
3929.. code-block:: llvm
3930
3931 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3932
3933.. _i_fdiv:
3934
3935'``fdiv``' Instruction
3936^^^^^^^^^^^^^^^^^^^^^^
3937
3938Syntax:
3939"""""""
3940
3941::
3942
3943 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3944
3945Overview:
3946"""""""""
3947
3948The '``fdiv``' instruction returns the quotient of its two operands.
3949
3950Arguments:
3951""""""""""
3952
3953The two arguments to the '``fdiv``' instruction must be :ref:`floating
3954point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3955Both arguments must have identical types.
3956
3957Semantics:
3958""""""""""
3959
3960The value produced is the floating point quotient of the two operands.
3961This instruction can also take any number of :ref:`fast-math
3962flags <fastmath>`, which are optimization hints to enable otherwise
3963unsafe floating point optimizations:
3964
3965Example:
3966""""""""
3967
3968.. code-block:: llvm
3969
3970 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3971
3972'``urem``' Instruction
3973^^^^^^^^^^^^^^^^^^^^^^
3974
3975Syntax:
3976"""""""
3977
3978::
3979
3980 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3981
3982Overview:
3983"""""""""
3984
3985The '``urem``' instruction returns the remainder from the unsigned
3986division of its two arguments.
3987
3988Arguments:
3989""""""""""
3990
3991The two arguments to the '``urem``' instruction must be
3992:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3993arguments must have identical types.
3994
3995Semantics:
3996""""""""""
3997
3998This instruction returns the unsigned integer *remainder* of a division.
3999This instruction always performs an unsigned division to get the
4000remainder.
4001
4002Note that unsigned integer remainder and signed integer remainder are
4003distinct operations; for signed integer remainder, use '``srem``'.
4004
4005Taking the remainder of a division by zero leads to undefined behavior.
4006
4007Example:
4008""""""""
4009
4010.. code-block:: llvm
4011
4012 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4013
4014'``srem``' Instruction
4015^^^^^^^^^^^^^^^^^^^^^^
4016
4017Syntax:
4018"""""""
4019
4020::
4021
4022 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4023
4024Overview:
4025"""""""""
4026
4027The '``srem``' instruction returns the remainder from the signed
4028division of its two operands. This instruction can also take
4029:ref:`vector <t_vector>` versions of the values in which case the elements
4030must be integers.
4031
4032Arguments:
4033""""""""""
4034
4035The two arguments to the '``srem``' instruction must be
4036:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4037arguments must have identical types.
4038
4039Semantics:
4040""""""""""
4041
4042This instruction returns the *remainder* of a division (where the result
4043is either zero or has the same sign as the dividend, ``op1``), not the
4044*modulo* operator (where the result is either zero or has the same sign
4045as the divisor, ``op2``) of a value. For more information about the
4046difference, see `The Math
4047Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4048table of how this is implemented in various languages, please see
4049`Wikipedia: modulo
4050operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4051
4052Note that signed integer remainder and unsigned integer remainder are
4053distinct operations; for unsigned integer remainder, use '``urem``'.
4054
4055Taking the remainder of a division by zero leads to undefined behavior.
4056Overflow also leads to undefined behavior; this is a rare case, but can
4057occur, for example, by taking the remainder of a 32-bit division of
4058-2147483648 by -1. (The remainder doesn't actually overflow, but this
4059rule lets srem be implemented using instructions that return both the
4060result of the division and the remainder.)
4061
4062Example:
4063""""""""
4064
4065.. code-block:: llvm
4066
4067 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4068
4069.. _i_frem:
4070
4071'``frem``' Instruction
4072^^^^^^^^^^^^^^^^^^^^^^
4073
4074Syntax:
4075"""""""
4076
4077::
4078
4079 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4080
4081Overview:
4082"""""""""
4083
4084The '``frem``' instruction returns the remainder from the division of
4085its two operands.
4086
4087Arguments:
4088""""""""""
4089
4090The two arguments to the '``frem``' instruction must be :ref:`floating
4091point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4092Both arguments must have identical types.
4093
4094Semantics:
4095""""""""""
4096
4097This instruction returns the *remainder* of a division. The remainder
4098has the same sign as the dividend. This instruction can also take any
4099number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4100to enable otherwise unsafe floating point optimizations:
4101
4102Example:
4103""""""""
4104
4105.. code-block:: llvm
4106
4107 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4108
4109.. _bitwiseops:
4110
4111Bitwise Binary Operations
4112-------------------------
4113
4114Bitwise binary operators are used to do various forms of bit-twiddling
4115in a program. They are generally very efficient instructions and can
4116commonly be strength reduced from other instructions. They require two
4117operands of the same type, execute an operation on them, and produce a
4118single value. The resulting value is the same type as its operands.
4119
4120'``shl``' Instruction
4121^^^^^^^^^^^^^^^^^^^^^
4122
4123Syntax:
4124"""""""
4125
4126::
4127
4128 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4129 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4130 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4131 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4132
4133Overview:
4134"""""""""
4135
4136The '``shl``' instruction returns the first operand shifted to the left
4137a specified number of bits.
4138
4139Arguments:
4140""""""""""
4141
4142Both arguments to the '``shl``' instruction must be the same
4143:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4144'``op2``' is treated as an unsigned value.
4145
4146Semantics:
4147""""""""""
4148
4149The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4150where ``n`` is the width of the result. If ``op2`` is (statically or
4151dynamically) negative or equal to or larger than the number of bits in
4152``op1``, the result is undefined. If the arguments are vectors, each
4153vector element of ``op1`` is shifted by the corresponding shift amount
4154in ``op2``.
4155
4156If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4157value <poisonvalues>` if it shifts out any non-zero bits. If the
4158``nsw`` keyword is present, then the shift produces a :ref:`poison
4159value <poisonvalues>` if it shifts out any bits that disagree with the
4160resultant sign bit. As such, NUW/NSW have the same semantics as they
4161would if the shift were expressed as a mul instruction with the same
4162nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4163
4164Example:
4165""""""""
4166
4167.. code-block:: llvm
4168
4169 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4170 <result> = shl i32 4, 2 ; yields {i32}: 16
4171 <result> = shl i32 1, 10 ; yields {i32}: 1024
4172 <result> = shl i32 1, 32 ; undefined
4173 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4174
4175'``lshr``' Instruction
4176^^^^^^^^^^^^^^^^^^^^^^
4177
4178Syntax:
4179"""""""
4180
4181::
4182
4183 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4184 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4185
4186Overview:
4187"""""""""
4188
4189The '``lshr``' instruction (logical shift right) returns the first
4190operand shifted to the right a specified number of bits with zero fill.
4191
4192Arguments:
4193""""""""""
4194
4195Both arguments to the '``lshr``' instruction must be the same
4196:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4197'``op2``' is treated as an unsigned value.
4198
4199Semantics:
4200""""""""""
4201
4202This instruction always performs a logical shift right operation. The
4203most significant bits of the result will be filled with zero bits after
4204the shift. If ``op2`` is (statically or dynamically) equal to or larger
4205than the number of bits in ``op1``, the result is undefined. If the
4206arguments are vectors, each vector element of ``op1`` is shifted by the
4207corresponding shift amount in ``op2``.
4208
4209If the ``exact`` keyword is present, the result value of the ``lshr`` is
4210a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4211non-zero.
4212
4213Example:
4214""""""""
4215
4216.. code-block:: llvm
4217
4218 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4219 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4220 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004221 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004222 <result> = lshr i32 1, 32 ; undefined
4223 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4224
4225'``ashr``' Instruction
4226^^^^^^^^^^^^^^^^^^^^^^
4227
4228Syntax:
4229"""""""
4230
4231::
4232
4233 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4234 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4235
4236Overview:
4237"""""""""
4238
4239The '``ashr``' instruction (arithmetic shift right) returns the first
4240operand shifted to the right a specified number of bits with sign
4241extension.
4242
4243Arguments:
4244""""""""""
4245
4246Both arguments to the '``ashr``' instruction must be the same
4247:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4248'``op2``' is treated as an unsigned value.
4249
4250Semantics:
4251""""""""""
4252
4253This instruction always performs an arithmetic shift right operation,
4254The most significant bits of the result will be filled with the sign bit
4255of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4256than the number of bits in ``op1``, the result is undefined. If the
4257arguments are vectors, each vector element of ``op1`` is shifted by the
4258corresponding shift amount in ``op2``.
4259
4260If the ``exact`` keyword is present, the result value of the ``ashr`` is
4261a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4262non-zero.
4263
4264Example:
4265""""""""
4266
4267.. code-block:: llvm
4268
4269 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4270 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4271 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4272 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4273 <result> = ashr i32 1, 32 ; undefined
4274 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4275
4276'``and``' Instruction
4277^^^^^^^^^^^^^^^^^^^^^
4278
4279Syntax:
4280"""""""
4281
4282::
4283
4284 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4285
4286Overview:
4287"""""""""
4288
4289The '``and``' instruction returns the bitwise logical and of its two
4290operands.
4291
4292Arguments:
4293""""""""""
4294
4295The two arguments to the '``and``' instruction must be
4296:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4297arguments must have identical types.
4298
4299Semantics:
4300""""""""""
4301
4302The truth table used for the '``and``' instruction is:
4303
4304+-----+-----+-----+
4305| In0 | In1 | Out |
4306+-----+-----+-----+
4307| 0 | 0 | 0 |
4308+-----+-----+-----+
4309| 0 | 1 | 0 |
4310+-----+-----+-----+
4311| 1 | 0 | 0 |
4312+-----+-----+-----+
4313| 1 | 1 | 1 |
4314+-----+-----+-----+
4315
4316Example:
4317""""""""
4318
4319.. code-block:: llvm
4320
4321 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4322 <result> = and i32 15, 40 ; yields {i32}:result = 8
4323 <result> = and i32 4, 8 ; yields {i32}:result = 0
4324
4325'``or``' Instruction
4326^^^^^^^^^^^^^^^^^^^^
4327
4328Syntax:
4329"""""""
4330
4331::
4332
4333 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4334
4335Overview:
4336"""""""""
4337
4338The '``or``' instruction returns the bitwise logical inclusive or of its
4339two operands.
4340
4341Arguments:
4342""""""""""
4343
4344The two arguments to the '``or``' instruction must be
4345:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4346arguments must have identical types.
4347
4348Semantics:
4349""""""""""
4350
4351The truth table used for the '``or``' instruction is:
4352
4353+-----+-----+-----+
4354| In0 | In1 | Out |
4355+-----+-----+-----+
4356| 0 | 0 | 0 |
4357+-----+-----+-----+
4358| 0 | 1 | 1 |
4359+-----+-----+-----+
4360| 1 | 0 | 1 |
4361+-----+-----+-----+
4362| 1 | 1 | 1 |
4363+-----+-----+-----+
4364
4365Example:
4366""""""""
4367
4368::
4369
4370 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4371 <result> = or i32 15, 40 ; yields {i32}:result = 47
4372 <result> = or i32 4, 8 ; yields {i32}:result = 12
4373
4374'``xor``' Instruction
4375^^^^^^^^^^^^^^^^^^^^^
4376
4377Syntax:
4378"""""""
4379
4380::
4381
4382 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4383
4384Overview:
4385"""""""""
4386
4387The '``xor``' instruction returns the bitwise logical exclusive or of
4388its two operands. The ``xor`` is used to implement the "one's
4389complement" operation, which is the "~" operator in C.
4390
4391Arguments:
4392""""""""""
4393
4394The two arguments to the '``xor``' instruction must be
4395:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4396arguments must have identical types.
4397
4398Semantics:
4399""""""""""
4400
4401The truth table used for the '``xor``' instruction is:
4402
4403+-----+-----+-----+
4404| In0 | In1 | Out |
4405+-----+-----+-----+
4406| 0 | 0 | 0 |
4407+-----+-----+-----+
4408| 0 | 1 | 1 |
4409+-----+-----+-----+
4410| 1 | 0 | 1 |
4411+-----+-----+-----+
4412| 1 | 1 | 0 |
4413+-----+-----+-----+
4414
4415Example:
4416""""""""
4417
4418.. code-block:: llvm
4419
4420 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4421 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4422 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4423 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4424
4425Vector Operations
4426-----------------
4427
4428LLVM supports several instructions to represent vector operations in a
4429target-independent manner. These instructions cover the element-access
4430and vector-specific operations needed to process vectors effectively.
4431While LLVM does directly support these vector operations, many
4432sophisticated algorithms will want to use target-specific intrinsics to
4433take full advantage of a specific target.
4434
4435.. _i_extractelement:
4436
4437'``extractelement``' Instruction
4438^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4439
4440Syntax:
4441"""""""
4442
4443::
4444
4445 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4446
4447Overview:
4448"""""""""
4449
4450The '``extractelement``' instruction extracts a single scalar element
4451from a vector at a specified index.
4452
4453Arguments:
4454""""""""""
4455
4456The first operand of an '``extractelement``' instruction is a value of
4457:ref:`vector <t_vector>` type. The second operand is an index indicating
4458the position from which to extract the element. The index may be a
4459variable.
4460
4461Semantics:
4462""""""""""
4463
4464The result is a scalar of the same type as the element type of ``val``.
4465Its value is the value at position ``idx`` of ``val``. If ``idx``
4466exceeds the length of ``val``, the results are undefined.
4467
4468Example:
4469""""""""
4470
4471.. code-block:: llvm
4472
4473 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4474
4475.. _i_insertelement:
4476
4477'``insertelement``' Instruction
4478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4479
4480Syntax:
4481"""""""
4482
4483::
4484
4485 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4486
4487Overview:
4488"""""""""
4489
4490The '``insertelement``' instruction inserts a scalar element into a
4491vector at a specified index.
4492
4493Arguments:
4494""""""""""
4495
4496The first operand of an '``insertelement``' instruction is a value of
4497:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4498type must equal the element type of the first operand. The third operand
4499is an index indicating the position at which to insert the value. The
4500index may be a variable.
4501
4502Semantics:
4503""""""""""
4504
4505The result is a vector of the same type as ``val``. Its element values
4506are those of ``val`` except at position ``idx``, where it gets the value
4507``elt``. If ``idx`` exceeds the length of ``val``, the results are
4508undefined.
4509
4510Example:
4511""""""""
4512
4513.. code-block:: llvm
4514
4515 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4516
4517.. _i_shufflevector:
4518
4519'``shufflevector``' Instruction
4520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4521
4522Syntax:
4523"""""""
4524
4525::
4526
4527 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4528
4529Overview:
4530"""""""""
4531
4532The '``shufflevector``' instruction constructs a permutation of elements
4533from two input vectors, returning a vector with the same element type as
4534the input and length that is the same as the shuffle mask.
4535
4536Arguments:
4537""""""""""
4538
4539The first two operands of a '``shufflevector``' instruction are vectors
4540with the same type. The third argument is a shuffle mask whose element
4541type is always 'i32'. The result of the instruction is a vector whose
4542length is the same as the shuffle mask and whose element type is the
4543same as the element type of the first two operands.
4544
4545The shuffle mask operand is required to be a constant vector with either
4546constant integer or undef values.
4547
4548Semantics:
4549""""""""""
4550
4551The elements of the two input vectors are numbered from left to right
4552across both of the vectors. The shuffle mask operand specifies, for each
4553element of the result vector, which element of the two input vectors the
4554result element gets. The element selector may be undef (meaning "don't
4555care") and the second operand may be undef if performing a shuffle from
4556only one vector.
4557
4558Example:
4559""""""""
4560
4561.. code-block:: llvm
4562
4563 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4564 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4565 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4566 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4567 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4568 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4569 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4570 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4571
4572Aggregate Operations
4573--------------------
4574
4575LLVM supports several instructions for working with
4576:ref:`aggregate <t_aggregate>` values.
4577
4578.. _i_extractvalue:
4579
4580'``extractvalue``' Instruction
4581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4582
4583Syntax:
4584"""""""
4585
4586::
4587
4588 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4589
4590Overview:
4591"""""""""
4592
4593The '``extractvalue``' instruction extracts the value of a member field
4594from an :ref:`aggregate <t_aggregate>` value.
4595
4596Arguments:
4597""""""""""
4598
4599The first operand of an '``extractvalue``' instruction is a value of
4600:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4601constant indices to specify which value to extract in a similar manner
4602as indices in a '``getelementptr``' instruction.
4603
4604The major differences to ``getelementptr`` indexing are:
4605
4606- Since the value being indexed is not a pointer, the first index is
4607 omitted and assumed to be zero.
4608- At least one index must be specified.
4609- Not only struct indices but also array indices must be in bounds.
4610
4611Semantics:
4612""""""""""
4613
4614The result is the value at the position in the aggregate specified by
4615the index operands.
4616
4617Example:
4618""""""""
4619
4620.. code-block:: llvm
4621
4622 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4623
4624.. _i_insertvalue:
4625
4626'``insertvalue``' Instruction
4627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4628
4629Syntax:
4630"""""""
4631
4632::
4633
4634 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4635
4636Overview:
4637"""""""""
4638
4639The '``insertvalue``' instruction inserts a value into a member field in
4640an :ref:`aggregate <t_aggregate>` value.
4641
4642Arguments:
4643""""""""""
4644
4645The first operand of an '``insertvalue``' instruction is a value of
4646:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4647a first-class value to insert. The following operands are constant
4648indices indicating the position at which to insert the value in a
4649similar manner as indices in a '``extractvalue``' instruction. The value
4650to insert must have the same type as the value identified by the
4651indices.
4652
4653Semantics:
4654""""""""""
4655
4656The result is an aggregate of the same type as ``val``. Its value is
4657that of ``val`` except that the value at the position specified by the
4658indices is that of ``elt``.
4659
4660Example:
4661""""""""
4662
4663.. code-block:: llvm
4664
4665 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4666 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4667 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4668
4669.. _memoryops:
4670
4671Memory Access and Addressing Operations
4672---------------------------------------
4673
4674A key design point of an SSA-based representation is how it represents
4675memory. In LLVM, no memory locations are in SSA form, which makes things
4676very simple. This section describes how to read, write, and allocate
4677memory in LLVM.
4678
4679.. _i_alloca:
4680
4681'``alloca``' Instruction
4682^^^^^^^^^^^^^^^^^^^^^^^^
4683
4684Syntax:
4685"""""""
4686
4687::
4688
4689 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4690
4691Overview:
4692"""""""""
4693
4694The '``alloca``' instruction allocates memory on the stack frame of the
4695currently executing function, to be automatically released when this
4696function returns to its caller. The object is always allocated in the
4697generic address space (address space zero).
4698
4699Arguments:
4700""""""""""
4701
4702The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4703bytes of memory on the runtime stack, returning a pointer of the
4704appropriate type to the program. If "NumElements" is specified, it is
4705the number of elements allocated, otherwise "NumElements" is defaulted
4706to be one. If a constant alignment is specified, the value result of the
4707allocation is guaranteed to be aligned to at least that boundary. If not
4708specified, or if zero, the target can choose to align the allocation on
4709any convenient boundary compatible with the type.
4710
4711'``type``' may be any sized type.
4712
4713Semantics:
4714""""""""""
4715
4716Memory is allocated; a pointer is returned. The operation is undefined
4717if there is insufficient stack space for the allocation. '``alloca``'d
4718memory is automatically released when the function returns. The
4719'``alloca``' instruction is commonly used to represent automatic
4720variables that must have an address available. When the function returns
4721(either with the ``ret`` or ``resume`` instructions), the memory is
4722reclaimed. Allocating zero bytes is legal, but the result is undefined.
4723The order in which memory is allocated (ie., which way the stack grows)
4724is not specified.
4725
4726Example:
4727""""""""
4728
4729.. code-block:: llvm
4730
4731 %ptr = alloca i32 ; yields {i32*}:ptr
4732 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4733 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4734 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4735
4736.. _i_load:
4737
4738'``load``' Instruction
4739^^^^^^^^^^^^^^^^^^^^^^
4740
4741Syntax:
4742"""""""
4743
4744::
4745
4746 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4747 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4748 !<index> = !{ i32 1 }
4749
4750Overview:
4751"""""""""
4752
4753The '``load``' instruction is used to read from memory.
4754
4755Arguments:
4756""""""""""
4757
Eli Bendersky239a78b2013-04-17 20:17:08 +00004758The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004759from which to load. The pointer must point to a :ref:`first
4760class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4761then the optimizer is not allowed to modify the number or order of
4762execution of this ``load`` with other :ref:`volatile
4763operations <volatile>`.
4764
4765If the ``load`` is marked as ``atomic``, it takes an extra
4766:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4767``release`` and ``acq_rel`` orderings are not valid on ``load``
4768instructions. Atomic loads produce :ref:`defined <memmodel>` results
4769when they may see multiple atomic stores. The type of the pointee must
4770be an integer type whose bit width is a power of two greater than or
4771equal to eight and less than or equal to a target-specific size limit.
4772``align`` must be explicitly specified on atomic loads, and the load has
4773undefined behavior if the alignment is not set to a value which is at
4774least the size in bytes of the pointee. ``!nontemporal`` does not have
4775any defined semantics for atomic loads.
4776
4777The optional constant ``align`` argument specifies the alignment of the
4778operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004779or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004780alignment for the target. It is the responsibility of the code emitter
4781to ensure that the alignment information is correct. Overestimating the
4782alignment results in undefined behavior. Underestimating the alignment
4783may produce less efficient code. An alignment of 1 is always safe.
4784
4785The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004786metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004787``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004788metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004789that this load is not expected to be reused in the cache. The code
4790generator may select special instructions to save cache bandwidth, such
4791as the ``MOVNT`` instruction on x86.
4792
4793The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004794metadata name ``<index>`` corresponding to a metadata node with no
4795entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004796instruction tells the optimizer and code generator that this load
4797address points to memory which does not change value during program
4798execution. The optimizer may then move this load around, for example, by
4799hoisting it out of loops using loop invariant code motion.
4800
4801Semantics:
4802""""""""""
4803
4804The location of memory pointed to is loaded. If the value being loaded
4805is of scalar type then the number of bytes read does not exceed the
4806minimum number of bytes needed to hold all bits of the type. For
4807example, loading an ``i24`` reads at most three bytes. When loading a
4808value of a type like ``i20`` with a size that is not an integral number
4809of bytes, the result is undefined if the value was not originally
4810written using a store of the same type.
4811
4812Examples:
4813"""""""""
4814
4815.. code-block:: llvm
4816
4817 %ptr = alloca i32 ; yields {i32*}:ptr
4818 store i32 3, i32* %ptr ; yields {void}
4819 %val = load i32* %ptr ; yields {i32}:val = i32 3
4820
4821.. _i_store:
4822
4823'``store``' Instruction
4824^^^^^^^^^^^^^^^^^^^^^^^
4825
4826Syntax:
4827"""""""
4828
4829::
4830
4831 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4832 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4833
4834Overview:
4835"""""""""
4836
4837The '``store``' instruction is used to write to memory.
4838
4839Arguments:
4840""""""""""
4841
Eli Benderskyca380842013-04-17 17:17:20 +00004842There are two arguments to the ``store`` instruction: a value to store
4843and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004844operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004845the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004846then the optimizer is not allowed to modify the number or order of
4847execution of this ``store`` with other :ref:`volatile
4848operations <volatile>`.
4849
4850If the ``store`` is marked as ``atomic``, it takes an extra
4851:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4852``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4853instructions. Atomic loads produce :ref:`defined <memmodel>` results
4854when they may see multiple atomic stores. The type of the pointee must
4855be an integer type whose bit width is a power of two greater than or
4856equal to eight and less than or equal to a target-specific size limit.
4857``align`` must be explicitly specified on atomic stores, and the store
4858has undefined behavior if the alignment is not set to a value which is
4859at least the size in bytes of the pointee. ``!nontemporal`` does not
4860have any defined semantics for atomic stores.
4861
Eli Benderskyca380842013-04-17 17:17:20 +00004862The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004863operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004864or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004865alignment for the target. It is the responsibility of the code emitter
4866to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004867alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004868alignment may produce less efficient code. An alignment of 1 is always
4869safe.
4870
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004871The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004872name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004873value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004874tells the optimizer and code generator that this load is not expected to
4875be reused in the cache. The code generator may select special
4876instructions to save cache bandwidth, such as the MOVNT instruction on
4877x86.
4878
4879Semantics:
4880""""""""""
4881
Eli Benderskyca380842013-04-17 17:17:20 +00004882The contents of memory are updated to contain ``<value>`` at the
4883location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004884of scalar type then the number of bytes written does not exceed the
4885minimum number of bytes needed to hold all bits of the type. For
4886example, storing an ``i24`` writes at most three bytes. When writing a
4887value of a type like ``i20`` with a size that is not an integral number
4888of bytes, it is unspecified what happens to the extra bits that do not
4889belong to the type, but they will typically be overwritten.
4890
4891Example:
4892""""""""
4893
4894.. code-block:: llvm
4895
4896 %ptr = alloca i32 ; yields {i32*}:ptr
4897 store i32 3, i32* %ptr ; yields {void}
4898 %val = load i32* %ptr ; yields {i32}:val = i32 3
4899
4900.. _i_fence:
4901
4902'``fence``' Instruction
4903^^^^^^^^^^^^^^^^^^^^^^^
4904
4905Syntax:
4906"""""""
4907
4908::
4909
4910 fence [singlethread] <ordering> ; yields {void}
4911
4912Overview:
4913"""""""""
4914
4915The '``fence``' instruction is used to introduce happens-before edges
4916between operations.
4917
4918Arguments:
4919""""""""""
4920
4921'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4922defines what *synchronizes-with* edges they add. They can only be given
4923``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4924
4925Semantics:
4926""""""""""
4927
4928A fence A which has (at least) ``release`` ordering semantics
4929*synchronizes with* a fence B with (at least) ``acquire`` ordering
4930semantics if and only if there exist atomic operations X and Y, both
4931operating on some atomic object M, such that A is sequenced before X, X
4932modifies M (either directly or through some side effect of a sequence
4933headed by X), Y is sequenced before B, and Y observes M. This provides a
4934*happens-before* dependency between A and B. Rather than an explicit
4935``fence``, one (but not both) of the atomic operations X or Y might
4936provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4937still *synchronize-with* the explicit ``fence`` and establish the
4938*happens-before* edge.
4939
4940A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4941``acquire`` and ``release`` semantics specified above, participates in
4942the global program order of other ``seq_cst`` operations and/or fences.
4943
4944The optional ":ref:`singlethread <singlethread>`" argument specifies
4945that the fence only synchronizes with other fences in the same thread.
4946(This is useful for interacting with signal handlers.)
4947
4948Example:
4949""""""""
4950
4951.. code-block:: llvm
4952
4953 fence acquire ; yields {void}
4954 fence singlethread seq_cst ; yields {void}
4955
4956.. _i_cmpxchg:
4957
4958'``cmpxchg``' Instruction
4959^^^^^^^^^^^^^^^^^^^^^^^^^
4960
4961Syntax:
4962"""""""
4963
4964::
4965
4966 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4967
4968Overview:
4969"""""""""
4970
4971The '``cmpxchg``' instruction is used to atomically modify memory. It
4972loads a value in memory and compares it to a given value. If they are
4973equal, it stores a new value into the memory.
4974
4975Arguments:
4976""""""""""
4977
4978There are three arguments to the '``cmpxchg``' instruction: an address
4979to operate on, a value to compare to the value currently be at that
4980address, and a new value to place at that address if the compared values
4981are equal. The type of '<cmp>' must be an integer type whose bit width
4982is a power of two greater than or equal to eight and less than or equal
4983to a target-specific size limit. '<cmp>' and '<new>' must have the same
4984type, and the type of '<pointer>' must be a pointer to that type. If the
4985``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4986to modify the number or order of execution of this ``cmpxchg`` with
4987other :ref:`volatile operations <volatile>`.
4988
4989The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4990synchronizes with other atomic operations.
4991
4992The optional "``singlethread``" argument declares that the ``cmpxchg``
4993is only atomic with respect to code (usually signal handlers) running in
4994the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4995respect to all other code in the system.
4996
4997The pointer passed into cmpxchg must have alignment greater than or
4998equal to the size in memory of the operand.
4999
5000Semantics:
5001""""""""""
5002
5003The contents of memory at the location specified by the '``<pointer>``'
5004operand is read and compared to '``<cmp>``'; if the read value is the
5005equal, '``<new>``' is written. The original value at the location is
5006returned.
5007
5008A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
5009of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
5010atomic load with an ordering parameter determined by dropping any
5011``release`` part of the ``cmpxchg``'s ordering.
5012
5013Example:
5014""""""""
5015
5016.. code-block:: llvm
5017
5018 entry:
5019 %orig = atomic load i32* %ptr unordered ; yields {i32}
5020 br label %loop
5021
5022 loop:
5023 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5024 %squared = mul i32 %cmp, %cmp
5025 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
5026 %success = icmp eq i32 %cmp, %old
5027 br i1 %success, label %done, label %loop
5028
5029 done:
5030 ...
5031
5032.. _i_atomicrmw:
5033
5034'``atomicrmw``' Instruction
5035^^^^^^^^^^^^^^^^^^^^^^^^^^^
5036
5037Syntax:
5038"""""""
5039
5040::
5041
5042 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5043
5044Overview:
5045"""""""""
5046
5047The '``atomicrmw``' instruction is used to atomically modify memory.
5048
5049Arguments:
5050""""""""""
5051
5052There are three arguments to the '``atomicrmw``' instruction: an
5053operation to apply, an address whose value to modify, an argument to the
5054operation. The operation must be one of the following keywords:
5055
5056- xchg
5057- add
5058- sub
5059- and
5060- nand
5061- or
5062- xor
5063- max
5064- min
5065- umax
5066- umin
5067
5068The type of '<value>' must be an integer type whose bit width is a power
5069of two greater than or equal to eight and less than or equal to a
5070target-specific size limit. The type of the '``<pointer>``' operand must
5071be a pointer to that type. If the ``atomicrmw`` is marked as
5072``volatile``, then the optimizer is not allowed to modify the number or
5073order of execution of this ``atomicrmw`` with other :ref:`volatile
5074operations <volatile>`.
5075
5076Semantics:
5077""""""""""
5078
5079The contents of memory at the location specified by the '``<pointer>``'
5080operand are atomically read, modified, and written back. The original
5081value at the location is returned. The modification is specified by the
5082operation argument:
5083
5084- xchg: ``*ptr = val``
5085- add: ``*ptr = *ptr + val``
5086- sub: ``*ptr = *ptr - val``
5087- and: ``*ptr = *ptr & val``
5088- nand: ``*ptr = ~(*ptr & val)``
5089- or: ``*ptr = *ptr | val``
5090- xor: ``*ptr = *ptr ^ val``
5091- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5092- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5093- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5094 comparison)
5095- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5096 comparison)
5097
5098Example:
5099""""""""
5100
5101.. code-block:: llvm
5102
5103 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5104
5105.. _i_getelementptr:
5106
5107'``getelementptr``' Instruction
5108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5109
5110Syntax:
5111"""""""
5112
5113::
5114
5115 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5116 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5117 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5118
5119Overview:
5120"""""""""
5121
5122The '``getelementptr``' instruction is used to get the address of a
5123subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5124address calculation only and does not access memory.
5125
5126Arguments:
5127""""""""""
5128
5129The first argument is always a pointer or a vector of pointers, and
5130forms the basis of the calculation. The remaining arguments are indices
5131that indicate which of the elements of the aggregate object are indexed.
5132The interpretation of each index is dependent on the type being indexed
5133into. The first index always indexes the pointer value given as the
5134first argument, the second index indexes a value of the type pointed to
5135(not necessarily the value directly pointed to, since the first index
5136can be non-zero), etc. The first type indexed into must be a pointer
5137value, subsequent types can be arrays, vectors, and structs. Note that
5138subsequent types being indexed into can never be pointers, since that
5139would require loading the pointer before continuing calculation.
5140
5141The type of each index argument depends on the type it is indexing into.
5142When indexing into a (optionally packed) structure, only ``i32`` integer
5143**constants** are allowed (when using a vector of indices they must all
5144be the **same** ``i32`` integer constant). When indexing into an array,
5145pointer or vector, integers of any width are allowed, and they are not
5146required to be constant. These integers are treated as signed values
5147where relevant.
5148
5149For example, let's consider a C code fragment and how it gets compiled
5150to LLVM:
5151
5152.. code-block:: c
5153
5154 struct RT {
5155 char A;
5156 int B[10][20];
5157 char C;
5158 };
5159 struct ST {
5160 int X;
5161 double Y;
5162 struct RT Z;
5163 };
5164
5165 int *foo(struct ST *s) {
5166 return &s[1].Z.B[5][13];
5167 }
5168
5169The LLVM code generated by Clang is:
5170
5171.. code-block:: llvm
5172
5173 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5174 %struct.ST = type { i32, double, %struct.RT }
5175
5176 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5177 entry:
5178 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5179 ret i32* %arrayidx
5180 }
5181
5182Semantics:
5183""""""""""
5184
5185In the example above, the first index is indexing into the
5186'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5187= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5188indexes into the third element of the structure, yielding a
5189'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5190structure. The third index indexes into the second element of the
5191structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5192dimensions of the array are subscripted into, yielding an '``i32``'
5193type. The '``getelementptr``' instruction returns a pointer to this
5194element, thus computing a value of '``i32*``' type.
5195
5196Note that it is perfectly legal to index partially through a structure,
5197returning a pointer to an inner element. Because of this, the LLVM code
5198for the given testcase is equivalent to:
5199
5200.. code-block:: llvm
5201
5202 define i32* @foo(%struct.ST* %s) {
5203 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5204 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5205 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5206 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5207 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5208 ret i32* %t5
5209 }
5210
5211If the ``inbounds`` keyword is present, the result value of the
5212``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5213pointer is not an *in bounds* address of an allocated object, or if any
5214of the addresses that would be formed by successive addition of the
5215offsets implied by the indices to the base address with infinitely
5216precise signed arithmetic are not an *in bounds* address of that
5217allocated object. The *in bounds* addresses for an allocated object are
5218all the addresses that point into the object, plus the address one byte
5219past the end. In cases where the base is a vector of pointers the
5220``inbounds`` keyword applies to each of the computations element-wise.
5221
5222If the ``inbounds`` keyword is not present, the offsets are added to the
5223base address with silently-wrapping two's complement arithmetic. If the
5224offsets have a different width from the pointer, they are sign-extended
5225or truncated to the width of the pointer. The result value of the
5226``getelementptr`` may be outside the object pointed to by the base
5227pointer. The result value may not necessarily be used to access memory
5228though, even if it happens to point into allocated storage. See the
5229:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5230information.
5231
5232The getelementptr instruction is often confusing. For some more insight
5233into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5234
5235Example:
5236""""""""
5237
5238.. code-block:: llvm
5239
5240 ; yields [12 x i8]*:aptr
5241 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5242 ; yields i8*:vptr
5243 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5244 ; yields i8*:eptr
5245 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5246 ; yields i32*:iptr
5247 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5248
5249In cases where the pointer argument is a vector of pointers, each index
5250must be a vector with the same number of elements. For example:
5251
5252.. code-block:: llvm
5253
5254 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5255
5256Conversion Operations
5257---------------------
5258
5259The instructions in this category are the conversion instructions
5260(casting) which all take a single operand and a type. They perform
5261various bit conversions on the operand.
5262
5263'``trunc .. to``' Instruction
5264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5265
5266Syntax:
5267"""""""
5268
5269::
5270
5271 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5272
5273Overview:
5274"""""""""
5275
5276The '``trunc``' instruction truncates its operand to the type ``ty2``.
5277
5278Arguments:
5279""""""""""
5280
5281The '``trunc``' instruction takes a value to trunc, and a type to trunc
5282it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5283of the same number of integers. The bit size of the ``value`` must be
5284larger than the bit size of the destination type, ``ty2``. Equal sized
5285types are not allowed.
5286
5287Semantics:
5288""""""""""
5289
5290The '``trunc``' instruction truncates the high order bits in ``value``
5291and converts the remaining bits to ``ty2``. Since the source size must
5292be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5293It will always truncate bits.
5294
5295Example:
5296""""""""
5297
5298.. code-block:: llvm
5299
5300 %X = trunc i32 257 to i8 ; yields i8:1
5301 %Y = trunc i32 123 to i1 ; yields i1:true
5302 %Z = trunc i32 122 to i1 ; yields i1:false
5303 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5304
5305'``zext .. to``' Instruction
5306^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5307
5308Syntax:
5309"""""""
5310
5311::
5312
5313 <result> = zext <ty> <value> to <ty2> ; yields ty2
5314
5315Overview:
5316"""""""""
5317
5318The '``zext``' instruction zero extends its operand to type ``ty2``.
5319
5320Arguments:
5321""""""""""
5322
5323The '``zext``' instruction takes a value to cast, and a type to cast it
5324to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5325the same number of integers. The bit size of the ``value`` must be
5326smaller than the bit size of the destination type, ``ty2``.
5327
5328Semantics:
5329""""""""""
5330
5331The ``zext`` fills the high order bits of the ``value`` with zero bits
5332until it reaches the size of the destination type, ``ty2``.
5333
5334When zero extending from i1, the result will always be either 0 or 1.
5335
5336Example:
5337""""""""
5338
5339.. code-block:: llvm
5340
5341 %X = zext i32 257 to i64 ; yields i64:257
5342 %Y = zext i1 true to i32 ; yields i32:1
5343 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5344
5345'``sext .. to``' Instruction
5346^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5347
5348Syntax:
5349"""""""
5350
5351::
5352
5353 <result> = sext <ty> <value> to <ty2> ; yields ty2
5354
5355Overview:
5356"""""""""
5357
5358The '``sext``' sign extends ``value`` to the type ``ty2``.
5359
5360Arguments:
5361""""""""""
5362
5363The '``sext``' instruction takes a value to cast, and a type to cast it
5364to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5365the same number of integers. The bit size of the ``value`` must be
5366smaller than the bit size of the destination type, ``ty2``.
5367
5368Semantics:
5369""""""""""
5370
5371The '``sext``' instruction performs a sign extension by copying the sign
5372bit (highest order bit) of the ``value`` until it reaches the bit size
5373of the type ``ty2``.
5374
5375When sign extending from i1, the extension always results in -1 or 0.
5376
5377Example:
5378""""""""
5379
5380.. code-block:: llvm
5381
5382 %X = sext i8 -1 to i16 ; yields i16 :65535
5383 %Y = sext i1 true to i32 ; yields i32:-1
5384 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5385
5386'``fptrunc .. to``' Instruction
5387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5388
5389Syntax:
5390"""""""
5391
5392::
5393
5394 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5395
5396Overview:
5397"""""""""
5398
5399The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5400
5401Arguments:
5402""""""""""
5403
5404The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5405value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5406The size of ``value`` must be larger than the size of ``ty2``. This
5407implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5408
5409Semantics:
5410""""""""""
5411
5412The '``fptrunc``' instruction truncates a ``value`` from a larger
5413:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5414point <t_floating>` type. If the value cannot fit within the
5415destination type, ``ty2``, then the results are undefined.
5416
5417Example:
5418""""""""
5419
5420.. code-block:: llvm
5421
5422 %X = fptrunc double 123.0 to float ; yields float:123.0
5423 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5424
5425'``fpext .. to``' Instruction
5426^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5427
5428Syntax:
5429"""""""
5430
5431::
5432
5433 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5434
5435Overview:
5436"""""""""
5437
5438The '``fpext``' extends a floating point ``value`` to a larger floating
5439point value.
5440
5441Arguments:
5442""""""""""
5443
5444The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5445``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5446to. The source type must be smaller than the destination type.
5447
5448Semantics:
5449""""""""""
5450
5451The '``fpext``' instruction extends the ``value`` from a smaller
5452:ref:`floating point <t_floating>` type to a larger :ref:`floating
5453point <t_floating>` type. The ``fpext`` cannot be used to make a
5454*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5455*no-op cast* for a floating point cast.
5456
5457Example:
5458""""""""
5459
5460.. code-block:: llvm
5461
5462 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5463 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5464
5465'``fptoui .. to``' Instruction
5466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5467
5468Syntax:
5469"""""""
5470
5471::
5472
5473 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5474
5475Overview:
5476"""""""""
5477
5478The '``fptoui``' converts a floating point ``value`` to its unsigned
5479integer equivalent of type ``ty2``.
5480
5481Arguments:
5482""""""""""
5483
5484The '``fptoui``' instruction takes a value to cast, which must be a
5485scalar or vector :ref:`floating point <t_floating>` value, and a type to
5486cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5487``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5488type with the same number of elements as ``ty``
5489
5490Semantics:
5491""""""""""
5492
5493The '``fptoui``' instruction converts its :ref:`floating
5494point <t_floating>` operand into the nearest (rounding towards zero)
5495unsigned integer value. If the value cannot fit in ``ty2``, the results
5496are undefined.
5497
5498Example:
5499""""""""
5500
5501.. code-block:: llvm
5502
5503 %X = fptoui double 123.0 to i32 ; yields i32:123
5504 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5505 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5506
5507'``fptosi .. to``' Instruction
5508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5509
5510Syntax:
5511"""""""
5512
5513::
5514
5515 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5516
5517Overview:
5518"""""""""
5519
5520The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5521``value`` to type ``ty2``.
5522
5523Arguments:
5524""""""""""
5525
5526The '``fptosi``' instruction takes a value to cast, which must be a
5527scalar or vector :ref:`floating point <t_floating>` value, and a type to
5528cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5529``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5530type with the same number of elements as ``ty``
5531
5532Semantics:
5533""""""""""
5534
5535The '``fptosi``' instruction converts its :ref:`floating
5536point <t_floating>` operand into the nearest (rounding towards zero)
5537signed integer value. If the value cannot fit in ``ty2``, the results
5538are undefined.
5539
5540Example:
5541""""""""
5542
5543.. code-block:: llvm
5544
5545 %X = fptosi double -123.0 to i32 ; yields i32:-123
5546 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5547 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5548
5549'``uitofp .. to``' Instruction
5550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5551
5552Syntax:
5553"""""""
5554
5555::
5556
5557 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5558
5559Overview:
5560"""""""""
5561
5562The '``uitofp``' instruction regards ``value`` as an unsigned integer
5563and converts that value to the ``ty2`` type.
5564
5565Arguments:
5566""""""""""
5567
5568The '``uitofp``' instruction takes a value to cast, which must be a
5569scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5570``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5571``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5572type with the same number of elements as ``ty``
5573
5574Semantics:
5575""""""""""
5576
5577The '``uitofp``' instruction interprets its operand as an unsigned
5578integer quantity and converts it to the corresponding floating point
5579value. If the value cannot fit in the floating point value, the results
5580are undefined.
5581
5582Example:
5583""""""""
5584
5585.. code-block:: llvm
5586
5587 %X = uitofp i32 257 to float ; yields float:257.0
5588 %Y = uitofp i8 -1 to double ; yields double:255.0
5589
5590'``sitofp .. to``' Instruction
5591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5592
5593Syntax:
5594"""""""
5595
5596::
5597
5598 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5599
5600Overview:
5601"""""""""
5602
5603The '``sitofp``' instruction regards ``value`` as a signed integer and
5604converts that value to the ``ty2`` type.
5605
5606Arguments:
5607""""""""""
5608
5609The '``sitofp``' instruction takes a value to cast, which must be a
5610scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5611``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5612``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5613type with the same number of elements as ``ty``
5614
5615Semantics:
5616""""""""""
5617
5618The '``sitofp``' instruction interprets its operand as a signed integer
5619quantity and converts it to the corresponding floating point value. If
5620the value cannot fit in the floating point value, the results are
5621undefined.
5622
5623Example:
5624""""""""
5625
5626.. code-block:: llvm
5627
5628 %X = sitofp i32 257 to float ; yields float:257.0
5629 %Y = sitofp i8 -1 to double ; yields double:-1.0
5630
5631.. _i_ptrtoint:
5632
5633'``ptrtoint .. to``' Instruction
5634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5635
5636Syntax:
5637"""""""
5638
5639::
5640
5641 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5642
5643Overview:
5644"""""""""
5645
5646The '``ptrtoint``' instruction converts the pointer or a vector of
5647pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5648
5649Arguments:
5650""""""""""
5651
5652The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5653a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5654type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5655a vector of integers type.
5656
5657Semantics:
5658""""""""""
5659
5660The '``ptrtoint``' instruction converts ``value`` to integer type
5661``ty2`` by interpreting the pointer value as an integer and either
5662truncating or zero extending that value to the size of the integer type.
5663If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5664``value`` is larger than ``ty2`` then a truncation is done. If they are
5665the same size, then nothing is done (*no-op cast*) other than a type
5666change.
5667
5668Example:
5669""""""""
5670
5671.. code-block:: llvm
5672
5673 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5674 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5675 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5676
5677.. _i_inttoptr:
5678
5679'``inttoptr .. to``' Instruction
5680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5681
5682Syntax:
5683"""""""
5684
5685::
5686
5687 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5688
5689Overview:
5690"""""""""
5691
5692The '``inttoptr``' instruction converts an integer ``value`` to a
5693pointer type, ``ty2``.
5694
5695Arguments:
5696""""""""""
5697
5698The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5699cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5700type.
5701
5702Semantics:
5703""""""""""
5704
5705The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5706applying either a zero extension or a truncation depending on the size
5707of the integer ``value``. If ``value`` is larger than the size of a
5708pointer then a truncation is done. If ``value`` is smaller than the size
5709of a pointer then a zero extension is done. If they are the same size,
5710nothing is done (*no-op cast*).
5711
5712Example:
5713""""""""
5714
5715.. code-block:: llvm
5716
5717 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5718 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5719 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5720 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5721
5722.. _i_bitcast:
5723
5724'``bitcast .. to``' Instruction
5725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5726
5727Syntax:
5728"""""""
5729
5730::
5731
5732 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5733
5734Overview:
5735"""""""""
5736
5737The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5738changing any bits.
5739
5740Arguments:
5741""""""""""
5742
5743The '``bitcast``' instruction takes a value to cast, which must be a
5744non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005745also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5746bit sizes of ``value`` and the destination type, ``ty2``, must be
5747identical. If the source type is a pointer, the destination type must
5748also be a pointer of the same size. This instruction supports bitwise
5749conversion of vectors to integers and to vectors of other types (as
5750long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005751
5752Semantics:
5753""""""""""
5754
Matt Arsenault24b49c42013-07-31 17:49:08 +00005755The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5756is always a *no-op cast* because no bits change with this
5757conversion. The conversion is done as if the ``value`` had been stored
5758to memory and read back as type ``ty2``. Pointer (or vector of
5759pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005760pointers) types with the same address space through this instruction.
5761To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5762or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005763
5764Example:
5765""""""""
5766
5767.. code-block:: llvm
5768
5769 %X = bitcast i8 255 to i8 ; yields i8 :-1
5770 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5771 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5772 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5773
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005774.. _i_addrspacecast:
5775
5776'``addrspacecast .. to``' Instruction
5777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5778
5779Syntax:
5780"""""""
5781
5782::
5783
5784 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5785
5786Overview:
5787"""""""""
5788
5789The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5790address space ``n`` to type ``pty2`` in address space ``m``.
5791
5792Arguments:
5793""""""""""
5794
5795The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5796to cast and a pointer type to cast it to, which must have a different
5797address space.
5798
5799Semantics:
5800""""""""""
5801
5802The '``addrspacecast``' instruction converts the pointer value
5803``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005804value modification, depending on the target and the address space
5805pair. Pointer conversions within the same address space must be
5806performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005807conversion is legal then both result and operand refer to the same memory
5808location.
5809
5810Example:
5811""""""""
5812
5813.. code-block:: llvm
5814
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005815 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5816 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5817 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005818
Sean Silvab084af42012-12-07 10:36:55 +00005819.. _otherops:
5820
5821Other Operations
5822----------------
5823
5824The instructions in this category are the "miscellaneous" instructions,
5825which defy better classification.
5826
5827.. _i_icmp:
5828
5829'``icmp``' Instruction
5830^^^^^^^^^^^^^^^^^^^^^^
5831
5832Syntax:
5833"""""""
5834
5835::
5836
5837 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5838
5839Overview:
5840"""""""""
5841
5842The '``icmp``' instruction returns a boolean value or a vector of
5843boolean values based on comparison of its two integer, integer vector,
5844pointer, or pointer vector operands.
5845
5846Arguments:
5847""""""""""
5848
5849The '``icmp``' instruction takes three operands. The first operand is
5850the condition code indicating the kind of comparison to perform. It is
5851not a value, just a keyword. The possible condition code are:
5852
5853#. ``eq``: equal
5854#. ``ne``: not equal
5855#. ``ugt``: unsigned greater than
5856#. ``uge``: unsigned greater or equal
5857#. ``ult``: unsigned less than
5858#. ``ule``: unsigned less or equal
5859#. ``sgt``: signed greater than
5860#. ``sge``: signed greater or equal
5861#. ``slt``: signed less than
5862#. ``sle``: signed less or equal
5863
5864The remaining two arguments must be :ref:`integer <t_integer>` or
5865:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5866must also be identical types.
5867
5868Semantics:
5869""""""""""
5870
5871The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5872code given as ``cond``. The comparison performed always yields either an
5873:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5874
5875#. ``eq``: yields ``true`` if the operands are equal, ``false``
5876 otherwise. No sign interpretation is necessary or performed.
5877#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5878 otherwise. No sign interpretation is necessary or performed.
5879#. ``ugt``: interprets the operands as unsigned values and yields
5880 ``true`` if ``op1`` is greater than ``op2``.
5881#. ``uge``: interprets the operands as unsigned values and yields
5882 ``true`` if ``op1`` is greater than or equal to ``op2``.
5883#. ``ult``: interprets the operands as unsigned values and yields
5884 ``true`` if ``op1`` is less than ``op2``.
5885#. ``ule``: interprets the operands as unsigned values and yields
5886 ``true`` if ``op1`` is less than or equal to ``op2``.
5887#. ``sgt``: interprets the operands as signed values and yields ``true``
5888 if ``op1`` is greater than ``op2``.
5889#. ``sge``: interprets the operands as signed values and yields ``true``
5890 if ``op1`` is greater than or equal to ``op2``.
5891#. ``slt``: interprets the operands as signed values and yields ``true``
5892 if ``op1`` is less than ``op2``.
5893#. ``sle``: interprets the operands as signed values and yields ``true``
5894 if ``op1`` is less than or equal to ``op2``.
5895
5896If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5897are compared as if they were integers.
5898
5899If the operands are integer vectors, then they are compared element by
5900element. The result is an ``i1`` vector with the same number of elements
5901as the values being compared. Otherwise, the result is an ``i1``.
5902
5903Example:
5904""""""""
5905
5906.. code-block:: llvm
5907
5908 <result> = icmp eq i32 4, 5 ; yields: result=false
5909 <result> = icmp ne float* %X, %X ; yields: result=false
5910 <result> = icmp ult i16 4, 5 ; yields: result=true
5911 <result> = icmp sgt i16 4, 5 ; yields: result=false
5912 <result> = icmp ule i16 -4, 5 ; yields: result=false
5913 <result> = icmp sge i16 4, 5 ; yields: result=false
5914
5915Note that the code generator does not yet support vector types with the
5916``icmp`` instruction.
5917
5918.. _i_fcmp:
5919
5920'``fcmp``' Instruction
5921^^^^^^^^^^^^^^^^^^^^^^
5922
5923Syntax:
5924"""""""
5925
5926::
5927
5928 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5929
5930Overview:
5931"""""""""
5932
5933The '``fcmp``' instruction returns a boolean value or vector of boolean
5934values based on comparison of its operands.
5935
5936If the operands are floating point scalars, then the result type is a
5937boolean (:ref:`i1 <t_integer>`).
5938
5939If the operands are floating point vectors, then the result type is a
5940vector of boolean with the same number of elements as the operands being
5941compared.
5942
5943Arguments:
5944""""""""""
5945
5946The '``fcmp``' instruction takes three operands. The first operand is
5947the condition code indicating the kind of comparison to perform. It is
5948not a value, just a keyword. The possible condition code are:
5949
5950#. ``false``: no comparison, always returns false
5951#. ``oeq``: ordered and equal
5952#. ``ogt``: ordered and greater than
5953#. ``oge``: ordered and greater than or equal
5954#. ``olt``: ordered and less than
5955#. ``ole``: ordered and less than or equal
5956#. ``one``: ordered and not equal
5957#. ``ord``: ordered (no nans)
5958#. ``ueq``: unordered or equal
5959#. ``ugt``: unordered or greater than
5960#. ``uge``: unordered or greater than or equal
5961#. ``ult``: unordered or less than
5962#. ``ule``: unordered or less than or equal
5963#. ``une``: unordered or not equal
5964#. ``uno``: unordered (either nans)
5965#. ``true``: no comparison, always returns true
5966
5967*Ordered* means that neither operand is a QNAN while *unordered* means
5968that either operand may be a QNAN.
5969
5970Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5971point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5972type. They must have identical types.
5973
5974Semantics:
5975""""""""""
5976
5977The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5978condition code given as ``cond``. If the operands are vectors, then the
5979vectors are compared element by element. Each comparison performed
5980always yields an :ref:`i1 <t_integer>` result, as follows:
5981
5982#. ``false``: always yields ``false``, regardless of operands.
5983#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5984 is equal to ``op2``.
5985#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5986 is greater than ``op2``.
5987#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5988 is greater than or equal to ``op2``.
5989#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5990 is less than ``op2``.
5991#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5992 is less than or equal to ``op2``.
5993#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5994 is not equal to ``op2``.
5995#. ``ord``: yields ``true`` if both operands are not a QNAN.
5996#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5997 equal to ``op2``.
5998#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5999 greater than ``op2``.
6000#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6001 greater than or equal to ``op2``.
6002#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6003 less than ``op2``.
6004#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6005 less than or equal to ``op2``.
6006#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6007 not equal to ``op2``.
6008#. ``uno``: yields ``true`` if either operand is a QNAN.
6009#. ``true``: always yields ``true``, regardless of operands.
6010
6011Example:
6012""""""""
6013
6014.. code-block:: llvm
6015
6016 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6017 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6018 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6019 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6020
6021Note that the code generator does not yet support vector types with the
6022``fcmp`` instruction.
6023
6024.. _i_phi:
6025
6026'``phi``' Instruction
6027^^^^^^^^^^^^^^^^^^^^^
6028
6029Syntax:
6030"""""""
6031
6032::
6033
6034 <result> = phi <ty> [ <val0>, <label0>], ...
6035
6036Overview:
6037"""""""""
6038
6039The '``phi``' instruction is used to implement the φ node in the SSA
6040graph representing the function.
6041
6042Arguments:
6043""""""""""
6044
6045The type of the incoming values is specified with the first type field.
6046After this, the '``phi``' instruction takes a list of pairs as
6047arguments, with one pair for each predecessor basic block of the current
6048block. Only values of :ref:`first class <t_firstclass>` type may be used as
6049the value arguments to the PHI node. Only labels may be used as the
6050label arguments.
6051
6052There must be no non-phi instructions between the start of a basic block
6053and the PHI instructions: i.e. PHI instructions must be first in a basic
6054block.
6055
6056For the purposes of the SSA form, the use of each incoming value is
6057deemed to occur on the edge from the corresponding predecessor block to
6058the current block (but after any definition of an '``invoke``'
6059instruction's return value on the same edge).
6060
6061Semantics:
6062""""""""""
6063
6064At runtime, the '``phi``' instruction logically takes on the value
6065specified by the pair corresponding to the predecessor basic block that
6066executed just prior to the current block.
6067
6068Example:
6069""""""""
6070
6071.. code-block:: llvm
6072
6073 Loop: ; Infinite loop that counts from 0 on up...
6074 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6075 %nextindvar = add i32 %indvar, 1
6076 br label %Loop
6077
6078.. _i_select:
6079
6080'``select``' Instruction
6081^^^^^^^^^^^^^^^^^^^^^^^^
6082
6083Syntax:
6084"""""""
6085
6086::
6087
6088 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6089
6090 selty is either i1 or {<N x i1>}
6091
6092Overview:
6093"""""""""
6094
6095The '``select``' instruction is used to choose one value based on a
6096condition, without branching.
6097
6098Arguments:
6099""""""""""
6100
6101The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6102values indicating the condition, and two values of the same :ref:`first
6103class <t_firstclass>` type. If the val1/val2 are vectors and the
6104condition is a scalar, then entire vectors are selected, not individual
6105elements.
6106
6107Semantics:
6108""""""""""
6109
6110If the condition is an i1 and it evaluates to 1, the instruction returns
6111the first value argument; otherwise, it returns the second value
6112argument.
6113
6114If the condition is a vector of i1, then the value arguments must be
6115vectors of the same size, and the selection is done element by element.
6116
6117Example:
6118""""""""
6119
6120.. code-block:: llvm
6121
6122 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6123
6124.. _i_call:
6125
6126'``call``' Instruction
6127^^^^^^^^^^^^^^^^^^^^^^
6128
6129Syntax:
6130"""""""
6131
6132::
6133
6134 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6135
6136Overview:
6137"""""""""
6138
6139The '``call``' instruction represents a simple function call.
6140
6141Arguments:
6142""""""""""
6143
6144This instruction requires several arguments:
6145
6146#. The optional "tail" marker indicates that the callee function does
6147 not access any allocas or varargs in the caller. Note that calls may
6148 be marked "tail" even if they do not occur before a
6149 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6150 function call is eligible for tail call optimization, but `might not
6151 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6152 The code generator may optimize calls marked "tail" with either 1)
6153 automatic `sibling call
6154 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6155 callee have matching signatures, or 2) forced tail call optimization
6156 when the following extra requirements are met:
6157
6158 - Caller and callee both have the calling convention ``fastcc``.
6159 - The call is in tail position (ret immediately follows call and ret
6160 uses value of call or is void).
6161 - Option ``-tailcallopt`` is enabled, or
6162 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6163 - `Platform specific constraints are
6164 met. <CodeGenerator.html#tailcallopt>`_
6165
6166#. The optional "cconv" marker indicates which :ref:`calling
6167 convention <callingconv>` the call should use. If none is
6168 specified, the call defaults to using C calling conventions. The
6169 calling convention of the call must match the calling convention of
6170 the target function, or else the behavior is undefined.
6171#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6172 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6173 are valid here.
6174#. '``ty``': the type of the call instruction itself which is also the
6175 type of the return value. Functions that return no value are marked
6176 ``void``.
6177#. '``fnty``': shall be the signature of the pointer to function value
6178 being invoked. The argument types must match the types implied by
6179 this signature. This type can be omitted if the function is not
6180 varargs and if the function type does not return a pointer to a
6181 function.
6182#. '``fnptrval``': An LLVM value containing a pointer to a function to
6183 be invoked. In most cases, this is a direct function invocation, but
6184 indirect ``call``'s are just as possible, calling an arbitrary pointer
6185 to function value.
6186#. '``function args``': argument list whose types match the function
6187 signature argument types and parameter attributes. All arguments must
6188 be of :ref:`first class <t_firstclass>` type. If the function signature
6189 indicates the function accepts a variable number of arguments, the
6190 extra arguments can be specified.
6191#. The optional :ref:`function attributes <fnattrs>` list. Only
6192 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6193 attributes are valid here.
6194
6195Semantics:
6196""""""""""
6197
6198The '``call``' instruction is used to cause control flow to transfer to
6199a specified function, with its incoming arguments bound to the specified
6200values. Upon a '``ret``' instruction in the called function, control
6201flow continues with the instruction after the function call, and the
6202return value of the function is bound to the result argument.
6203
6204Example:
6205""""""""
6206
6207.. code-block:: llvm
6208
6209 %retval = call i32 @test(i32 %argc)
6210 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6211 %X = tail call i32 @foo() ; yields i32
6212 %Y = tail call fastcc i32 @foo() ; yields i32
6213 call void %foo(i8 97 signext)
6214
6215 %struct.A = type { i32, i8 }
6216 %r = call %struct.A @foo() ; yields { 32, i8 }
6217 %gr = extractvalue %struct.A %r, 0 ; yields i32
6218 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6219 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6220 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6221
6222llvm treats calls to some functions with names and arguments that match
6223the standard C99 library as being the C99 library functions, and may
6224perform optimizations or generate code for them under that assumption.
6225This is something we'd like to change in the future to provide better
6226support for freestanding environments and non-C-based languages.
6227
6228.. _i_va_arg:
6229
6230'``va_arg``' Instruction
6231^^^^^^^^^^^^^^^^^^^^^^^^
6232
6233Syntax:
6234"""""""
6235
6236::
6237
6238 <resultval> = va_arg <va_list*> <arglist>, <argty>
6239
6240Overview:
6241"""""""""
6242
6243The '``va_arg``' instruction is used to access arguments passed through
6244the "variable argument" area of a function call. It is used to implement
6245the ``va_arg`` macro in C.
6246
6247Arguments:
6248""""""""""
6249
6250This instruction takes a ``va_list*`` value and the type of the
6251argument. It returns a value of the specified argument type and
6252increments the ``va_list`` to point to the next argument. The actual
6253type of ``va_list`` is target specific.
6254
6255Semantics:
6256""""""""""
6257
6258The '``va_arg``' instruction loads an argument of the specified type
6259from the specified ``va_list`` and causes the ``va_list`` to point to
6260the next argument. For more information, see the variable argument
6261handling :ref:`Intrinsic Functions <int_varargs>`.
6262
6263It is legal for this instruction to be called in a function which does
6264not take a variable number of arguments, for example, the ``vfprintf``
6265function.
6266
6267``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6268function <intrinsics>` because it takes a type as an argument.
6269
6270Example:
6271""""""""
6272
6273See the :ref:`variable argument processing <int_varargs>` section.
6274
6275Note that the code generator does not yet fully support va\_arg on many
6276targets. Also, it does not currently support va\_arg with aggregate
6277types on any target.
6278
6279.. _i_landingpad:
6280
6281'``landingpad``' Instruction
6282^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6283
6284Syntax:
6285"""""""
6286
6287::
6288
6289 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6290 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6291
6292 <clause> := catch <type> <value>
6293 <clause> := filter <array constant type> <array constant>
6294
6295Overview:
6296"""""""""
6297
6298The '``landingpad``' instruction is used by `LLVM's exception handling
6299system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006300is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006301code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6302defines values supplied by the personality function (``pers_fn``) upon
6303re-entry to the function. The ``resultval`` has the type ``resultty``.
6304
6305Arguments:
6306""""""""""
6307
6308This instruction takes a ``pers_fn`` value. This is the personality
6309function associated with the unwinding mechanism. The optional
6310``cleanup`` flag indicates that the landing pad block is a cleanup.
6311
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006312A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006313contains the global variable representing the "type" that may be caught
6314or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6315clause takes an array constant as its argument. Use
6316"``[0 x i8**] undef``" for a filter which cannot throw. The
6317'``landingpad``' instruction must contain *at least* one ``clause`` or
6318the ``cleanup`` flag.
6319
6320Semantics:
6321""""""""""
6322
6323The '``landingpad``' instruction defines the values which are set by the
6324personality function (``pers_fn``) upon re-entry to the function, and
6325therefore the "result type" of the ``landingpad`` instruction. As with
6326calling conventions, how the personality function results are
6327represented in LLVM IR is target specific.
6328
6329The clauses are applied in order from top to bottom. If two
6330``landingpad`` instructions are merged together through inlining, the
6331clauses from the calling function are appended to the list of clauses.
6332When the call stack is being unwound due to an exception being thrown,
6333the exception is compared against each ``clause`` in turn. If it doesn't
6334match any of the clauses, and the ``cleanup`` flag is not set, then
6335unwinding continues further up the call stack.
6336
6337The ``landingpad`` instruction has several restrictions:
6338
6339- A landing pad block is a basic block which is the unwind destination
6340 of an '``invoke``' instruction.
6341- A landing pad block must have a '``landingpad``' instruction as its
6342 first non-PHI instruction.
6343- There can be only one '``landingpad``' instruction within the landing
6344 pad block.
6345- A basic block that is not a landing pad block may not include a
6346 '``landingpad``' instruction.
6347- All '``landingpad``' instructions in a function must have the same
6348 personality function.
6349
6350Example:
6351""""""""
6352
6353.. code-block:: llvm
6354
6355 ;; A landing pad which can catch an integer.
6356 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6357 catch i8** @_ZTIi
6358 ;; A landing pad that is a cleanup.
6359 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6360 cleanup
6361 ;; A landing pad which can catch an integer and can only throw a double.
6362 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6363 catch i8** @_ZTIi
6364 filter [1 x i8**] [@_ZTId]
6365
6366.. _intrinsics:
6367
6368Intrinsic Functions
6369===================
6370
6371LLVM supports the notion of an "intrinsic function". These functions
6372have well known names and semantics and are required to follow certain
6373restrictions. Overall, these intrinsics represent an extension mechanism
6374for the LLVM language that does not require changing all of the
6375transformations in LLVM when adding to the language (or the bitcode
6376reader/writer, the parser, etc...).
6377
6378Intrinsic function names must all start with an "``llvm.``" prefix. This
6379prefix is reserved in LLVM for intrinsic names; thus, function names may
6380not begin with this prefix. Intrinsic functions must always be external
6381functions: you cannot define the body of intrinsic functions. Intrinsic
6382functions may only be used in call or invoke instructions: it is illegal
6383to take the address of an intrinsic function. Additionally, because
6384intrinsic functions are part of the LLVM language, it is required if any
6385are added that they be documented here.
6386
6387Some intrinsic functions can be overloaded, i.e., the intrinsic
6388represents a family of functions that perform the same operation but on
6389different data types. Because LLVM can represent over 8 million
6390different integer types, overloading is used commonly to allow an
6391intrinsic function to operate on any integer type. One or more of the
6392argument types or the result type can be overloaded to accept any
6393integer type. Argument types may also be defined as exactly matching a
6394previous argument's type or the result type. This allows an intrinsic
6395function which accepts multiple arguments, but needs all of them to be
6396of the same type, to only be overloaded with respect to a single
6397argument or the result.
6398
6399Overloaded intrinsics will have the names of its overloaded argument
6400types encoded into its function name, each preceded by a period. Only
6401those types which are overloaded result in a name suffix. Arguments
6402whose type is matched against another type do not. For example, the
6403``llvm.ctpop`` function can take an integer of any width and returns an
6404integer of exactly the same integer width. This leads to a family of
6405functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6406``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6407overloaded, and only one type suffix is required. Because the argument's
6408type is matched against the return type, it does not require its own
6409name suffix.
6410
6411To learn how to add an intrinsic function, please see the `Extending
6412LLVM Guide <ExtendingLLVM.html>`_.
6413
6414.. _int_varargs:
6415
6416Variable Argument Handling Intrinsics
6417-------------------------------------
6418
6419Variable argument support is defined in LLVM with the
6420:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6421functions. These functions are related to the similarly named macros
6422defined in the ``<stdarg.h>`` header file.
6423
6424All of these functions operate on arguments that use a target-specific
6425value type "``va_list``". The LLVM assembly language reference manual
6426does not define what this type is, so all transformations should be
6427prepared to handle these functions regardless of the type used.
6428
6429This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6430variable argument handling intrinsic functions are used.
6431
6432.. code-block:: llvm
6433
6434 define i32 @test(i32 %X, ...) {
6435 ; Initialize variable argument processing
6436 %ap = alloca i8*
6437 %ap2 = bitcast i8** %ap to i8*
6438 call void @llvm.va_start(i8* %ap2)
6439
6440 ; Read a single integer argument
6441 %tmp = va_arg i8** %ap, i32
6442
6443 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6444 %aq = alloca i8*
6445 %aq2 = bitcast i8** %aq to i8*
6446 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6447 call void @llvm.va_end(i8* %aq2)
6448
6449 ; Stop processing of arguments.
6450 call void @llvm.va_end(i8* %ap2)
6451 ret i32 %tmp
6452 }
6453
6454 declare void @llvm.va_start(i8*)
6455 declare void @llvm.va_copy(i8*, i8*)
6456 declare void @llvm.va_end(i8*)
6457
6458.. _int_va_start:
6459
6460'``llvm.va_start``' Intrinsic
6461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6462
6463Syntax:
6464"""""""
6465
6466::
6467
Nick Lewycky04f6de02013-09-11 22:04:52 +00006468 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006469
6470Overview:
6471"""""""""
6472
6473The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6474subsequent use by ``va_arg``.
6475
6476Arguments:
6477""""""""""
6478
6479The argument is a pointer to a ``va_list`` element to initialize.
6480
6481Semantics:
6482""""""""""
6483
6484The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6485available in C. In a target-dependent way, it initializes the
6486``va_list`` element to which the argument points, so that the next call
6487to ``va_arg`` will produce the first variable argument passed to the
6488function. Unlike the C ``va_start`` macro, this intrinsic does not need
6489to know the last argument of the function as the compiler can figure
6490that out.
6491
6492'``llvm.va_end``' Intrinsic
6493^^^^^^^^^^^^^^^^^^^^^^^^^^^
6494
6495Syntax:
6496"""""""
6497
6498::
6499
6500 declare void @llvm.va_end(i8* <arglist>)
6501
6502Overview:
6503"""""""""
6504
6505The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6506initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6507
6508Arguments:
6509""""""""""
6510
6511The argument is a pointer to a ``va_list`` to destroy.
6512
6513Semantics:
6514""""""""""
6515
6516The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6517available in C. In a target-dependent way, it destroys the ``va_list``
6518element to which the argument points. Calls to
6519:ref:`llvm.va_start <int_va_start>` and
6520:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6521``llvm.va_end``.
6522
6523.. _int_va_copy:
6524
6525'``llvm.va_copy``' Intrinsic
6526^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6527
6528Syntax:
6529"""""""
6530
6531::
6532
6533 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6534
6535Overview:
6536"""""""""
6537
6538The '``llvm.va_copy``' intrinsic copies the current argument position
6539from the source argument list to the destination argument list.
6540
6541Arguments:
6542""""""""""
6543
6544The first argument is a pointer to a ``va_list`` element to initialize.
6545The second argument is a pointer to a ``va_list`` element to copy from.
6546
6547Semantics:
6548""""""""""
6549
6550The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6551available in C. In a target-dependent way, it copies the source
6552``va_list`` element into the destination ``va_list`` element. This
6553intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6554arbitrarily complex and require, for example, memory allocation.
6555
6556Accurate Garbage Collection Intrinsics
6557--------------------------------------
6558
6559LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6560(GC) requires the implementation and generation of these intrinsics.
6561These intrinsics allow identification of :ref:`GC roots on the
6562stack <int_gcroot>`, as well as garbage collector implementations that
6563require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6564Front-ends for type-safe garbage collected languages should generate
6565these intrinsics to make use of the LLVM garbage collectors. For more
6566details, see `Accurate Garbage Collection with
6567LLVM <GarbageCollection.html>`_.
6568
6569The garbage collection intrinsics only operate on objects in the generic
6570address space (address space zero).
6571
6572.. _int_gcroot:
6573
6574'``llvm.gcroot``' Intrinsic
6575^^^^^^^^^^^^^^^^^^^^^^^^^^^
6576
6577Syntax:
6578"""""""
6579
6580::
6581
6582 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6583
6584Overview:
6585"""""""""
6586
6587The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6588the code generator, and allows some metadata to be associated with it.
6589
6590Arguments:
6591""""""""""
6592
6593The first argument specifies the address of a stack object that contains
6594the root pointer. The second pointer (which must be either a constant or
6595a global value address) contains the meta-data to be associated with the
6596root.
6597
6598Semantics:
6599""""""""""
6600
6601At runtime, a call to this intrinsic stores a null pointer into the
6602"ptrloc" location. At compile-time, the code generator generates
6603information to allow the runtime to find the pointer at GC safe points.
6604The '``llvm.gcroot``' intrinsic may only be used in a function which
6605:ref:`specifies a GC algorithm <gc>`.
6606
6607.. _int_gcread:
6608
6609'``llvm.gcread``' Intrinsic
6610^^^^^^^^^^^^^^^^^^^^^^^^^^^
6611
6612Syntax:
6613"""""""
6614
6615::
6616
6617 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6618
6619Overview:
6620"""""""""
6621
6622The '``llvm.gcread``' intrinsic identifies reads of references from heap
6623locations, allowing garbage collector implementations that require read
6624barriers.
6625
6626Arguments:
6627""""""""""
6628
6629The second argument is the address to read from, which should be an
6630address allocated from the garbage collector. The first object is a
6631pointer to the start of the referenced object, if needed by the language
6632runtime (otherwise null).
6633
6634Semantics:
6635""""""""""
6636
6637The '``llvm.gcread``' intrinsic has the same semantics as a load
6638instruction, but may be replaced with substantially more complex code by
6639the garbage collector runtime, as needed. The '``llvm.gcread``'
6640intrinsic may only be used in a function which :ref:`specifies a GC
6641algorithm <gc>`.
6642
6643.. _int_gcwrite:
6644
6645'``llvm.gcwrite``' Intrinsic
6646^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6647
6648Syntax:
6649"""""""
6650
6651::
6652
6653 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6654
6655Overview:
6656"""""""""
6657
6658The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6659locations, allowing garbage collector implementations that require write
6660barriers (such as generational or reference counting collectors).
6661
6662Arguments:
6663""""""""""
6664
6665The first argument is the reference to store, the second is the start of
6666the object to store it to, and the third is the address of the field of
6667Obj to store to. If the runtime does not require a pointer to the
6668object, Obj may be null.
6669
6670Semantics:
6671""""""""""
6672
6673The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6674instruction, but may be replaced with substantially more complex code by
6675the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6676intrinsic may only be used in a function which :ref:`specifies a GC
6677algorithm <gc>`.
6678
6679Code Generator Intrinsics
6680-------------------------
6681
6682These intrinsics are provided by LLVM to expose special features that
6683may only be implemented with code generator support.
6684
6685'``llvm.returnaddress``' Intrinsic
6686^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6687
6688Syntax:
6689"""""""
6690
6691::
6692
6693 declare i8 *@llvm.returnaddress(i32 <level>)
6694
6695Overview:
6696"""""""""
6697
6698The '``llvm.returnaddress``' intrinsic attempts to compute a
6699target-specific value indicating the return address of the current
6700function or one of its callers.
6701
6702Arguments:
6703""""""""""
6704
6705The argument to this intrinsic indicates which function to return the
6706address for. Zero indicates the calling function, one indicates its
6707caller, etc. The argument is **required** to be a constant integer
6708value.
6709
6710Semantics:
6711""""""""""
6712
6713The '``llvm.returnaddress``' intrinsic either returns a pointer
6714indicating the return address of the specified call frame, or zero if it
6715cannot be identified. The value returned by this intrinsic is likely to
6716be incorrect or 0 for arguments other than zero, so it should only be
6717used for debugging purposes.
6718
6719Note that calling this intrinsic does not prevent function inlining or
6720other aggressive transformations, so the value returned may not be that
6721of the obvious source-language caller.
6722
6723'``llvm.frameaddress``' Intrinsic
6724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6725
6726Syntax:
6727"""""""
6728
6729::
6730
6731 declare i8* @llvm.frameaddress(i32 <level>)
6732
6733Overview:
6734"""""""""
6735
6736The '``llvm.frameaddress``' intrinsic attempts to return the
6737target-specific frame pointer value for the specified stack frame.
6738
6739Arguments:
6740""""""""""
6741
6742The argument to this intrinsic indicates which function to return the
6743frame pointer for. Zero indicates the calling function, one indicates
6744its caller, etc. The argument is **required** to be a constant integer
6745value.
6746
6747Semantics:
6748""""""""""
6749
6750The '``llvm.frameaddress``' intrinsic either returns a pointer
6751indicating the frame address of the specified call frame, or zero if it
6752cannot be identified. The value returned by this intrinsic is likely to
6753be incorrect or 0 for arguments other than zero, so it should only be
6754used for debugging purposes.
6755
6756Note that calling this intrinsic does not prevent function inlining or
6757other aggressive transformations, so the value returned may not be that
6758of the obvious source-language caller.
6759
6760.. _int_stacksave:
6761
6762'``llvm.stacksave``' Intrinsic
6763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6764
6765Syntax:
6766"""""""
6767
6768::
6769
6770 declare i8* @llvm.stacksave()
6771
6772Overview:
6773"""""""""
6774
6775The '``llvm.stacksave``' intrinsic is used to remember the current state
6776of the function stack, for use with
6777:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6778implementing language features like scoped automatic variable sized
6779arrays in C99.
6780
6781Semantics:
6782""""""""""
6783
6784This intrinsic returns a opaque pointer value that can be passed to
6785:ref:`llvm.stackrestore <int_stackrestore>`. When an
6786``llvm.stackrestore`` intrinsic is executed with a value saved from
6787``llvm.stacksave``, it effectively restores the state of the stack to
6788the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6789practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6790were allocated after the ``llvm.stacksave`` was executed.
6791
6792.. _int_stackrestore:
6793
6794'``llvm.stackrestore``' Intrinsic
6795^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6796
6797Syntax:
6798"""""""
6799
6800::
6801
6802 declare void @llvm.stackrestore(i8* %ptr)
6803
6804Overview:
6805"""""""""
6806
6807The '``llvm.stackrestore``' intrinsic is used to restore the state of
6808the function stack to the state it was in when the corresponding
6809:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6810useful for implementing language features like scoped automatic variable
6811sized arrays in C99.
6812
6813Semantics:
6814""""""""""
6815
6816See the description for :ref:`llvm.stacksave <int_stacksave>`.
6817
6818'``llvm.prefetch``' Intrinsic
6819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6820
6821Syntax:
6822"""""""
6823
6824::
6825
6826 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6827
6828Overview:
6829"""""""""
6830
6831The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6832insert a prefetch instruction if supported; otherwise, it is a noop.
6833Prefetches have no effect on the behavior of the program but can change
6834its performance characteristics.
6835
6836Arguments:
6837""""""""""
6838
6839``address`` is the address to be prefetched, ``rw`` is the specifier
6840determining if the fetch should be for a read (0) or write (1), and
6841``locality`` is a temporal locality specifier ranging from (0) - no
6842locality, to (3) - extremely local keep in cache. The ``cache type``
6843specifies whether the prefetch is performed on the data (1) or
6844instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6845arguments must be constant integers.
6846
6847Semantics:
6848""""""""""
6849
6850This intrinsic does not modify the behavior of the program. In
6851particular, prefetches cannot trap and do not produce a value. On
6852targets that support this intrinsic, the prefetch can provide hints to
6853the processor cache for better performance.
6854
6855'``llvm.pcmarker``' Intrinsic
6856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6857
6858Syntax:
6859"""""""
6860
6861::
6862
6863 declare void @llvm.pcmarker(i32 <id>)
6864
6865Overview:
6866"""""""""
6867
6868The '``llvm.pcmarker``' intrinsic is a method to export a Program
6869Counter (PC) in a region of code to simulators and other tools. The
6870method is target specific, but it is expected that the marker will use
6871exported symbols to transmit the PC of the marker. The marker makes no
6872guarantees that it will remain with any specific instruction after
6873optimizations. It is possible that the presence of a marker will inhibit
6874optimizations. The intended use is to be inserted after optimizations to
6875allow correlations of simulation runs.
6876
6877Arguments:
6878""""""""""
6879
6880``id`` is a numerical id identifying the marker.
6881
6882Semantics:
6883""""""""""
6884
6885This intrinsic does not modify the behavior of the program. Backends
6886that do not support this intrinsic may ignore it.
6887
6888'``llvm.readcyclecounter``' Intrinsic
6889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6890
6891Syntax:
6892"""""""
6893
6894::
6895
6896 declare i64 @llvm.readcyclecounter()
6897
6898Overview:
6899"""""""""
6900
6901The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6902counter register (or similar low latency, high accuracy clocks) on those
6903targets that support it. On X86, it should map to RDTSC. On Alpha, it
6904should map to RPCC. As the backing counters overflow quickly (on the
6905order of 9 seconds on alpha), this should only be used for small
6906timings.
6907
6908Semantics:
6909""""""""""
6910
6911When directly supported, reading the cycle counter should not modify any
6912memory. Implementations are allowed to either return a application
6913specific value or a system wide value. On backends without support, this
6914is lowered to a constant 0.
6915
Tim Northoverbc933082013-05-23 19:11:20 +00006916Note that runtime support may be conditional on the privilege-level code is
6917running at and the host platform.
6918
Sean Silvab084af42012-12-07 10:36:55 +00006919Standard C Library Intrinsics
6920-----------------------------
6921
6922LLVM provides intrinsics for a few important standard C library
6923functions. These intrinsics allow source-language front-ends to pass
6924information about the alignment of the pointer arguments to the code
6925generator, providing opportunity for more efficient code generation.
6926
6927.. _int_memcpy:
6928
6929'``llvm.memcpy``' Intrinsic
6930^^^^^^^^^^^^^^^^^^^^^^^^^^^
6931
6932Syntax:
6933"""""""
6934
6935This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6936integer bit width and for different address spaces. Not all targets
6937support all bit widths however.
6938
6939::
6940
6941 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6942 i32 <len>, i32 <align>, i1 <isvolatile>)
6943 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6944 i64 <len>, i32 <align>, i1 <isvolatile>)
6945
6946Overview:
6947"""""""""
6948
6949The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6950source location to the destination location.
6951
6952Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6953intrinsics do not return a value, takes extra alignment/isvolatile
6954arguments and the pointers can be in specified address spaces.
6955
6956Arguments:
6957""""""""""
6958
6959The first argument is a pointer to the destination, the second is a
6960pointer to the source. The third argument is an integer argument
6961specifying the number of bytes to copy, the fourth argument is the
6962alignment of the source and destination locations, and the fifth is a
6963boolean indicating a volatile access.
6964
6965If the call to this intrinsic has an alignment value that is not 0 or 1,
6966then the caller guarantees that both the source and destination pointers
6967are aligned to that boundary.
6968
6969If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6970a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6971very cleanly specified and it is unwise to depend on it.
6972
6973Semantics:
6974""""""""""
6975
6976The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6977source location to the destination location, which are not allowed to
6978overlap. It copies "len" bytes of memory over. If the argument is known
6979to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006980argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006981
6982'``llvm.memmove``' Intrinsic
6983^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6984
6985Syntax:
6986"""""""
6987
6988This is an overloaded intrinsic. You can use llvm.memmove on any integer
6989bit width and for different address space. Not all targets support all
6990bit widths however.
6991
6992::
6993
6994 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6995 i32 <len>, i32 <align>, i1 <isvolatile>)
6996 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6997 i64 <len>, i32 <align>, i1 <isvolatile>)
6998
6999Overview:
7000"""""""""
7001
7002The '``llvm.memmove.*``' intrinsics move a block of memory from the
7003source location to the destination location. It is similar to the
7004'``llvm.memcpy``' intrinsic but allows the two memory locations to
7005overlap.
7006
7007Note that, unlike the standard libc function, the ``llvm.memmove.*``
7008intrinsics do not return a value, takes extra alignment/isvolatile
7009arguments and the pointers can be in specified address spaces.
7010
7011Arguments:
7012""""""""""
7013
7014The first argument is a pointer to the destination, the second is a
7015pointer to the source. The third argument is an integer argument
7016specifying the number of bytes to copy, the fourth argument is the
7017alignment of the source and destination locations, and the fifth is a
7018boolean indicating a volatile access.
7019
7020If the call to this intrinsic has an alignment value that is not 0 or 1,
7021then the caller guarantees that the source and destination pointers are
7022aligned to that boundary.
7023
7024If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7025is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7026not very cleanly specified and it is unwise to depend on it.
7027
7028Semantics:
7029""""""""""
7030
7031The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7032source location to the destination location, which may overlap. It
7033copies "len" bytes of memory over. If the argument is known to be
7034aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007035otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007036
7037'``llvm.memset.*``' Intrinsics
7038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7039
7040Syntax:
7041"""""""
7042
7043This is an overloaded intrinsic. You can use llvm.memset on any integer
7044bit width and for different address spaces. However, not all targets
7045support all bit widths.
7046
7047::
7048
7049 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7050 i32 <len>, i32 <align>, i1 <isvolatile>)
7051 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7052 i64 <len>, i32 <align>, i1 <isvolatile>)
7053
7054Overview:
7055"""""""""
7056
7057The '``llvm.memset.*``' intrinsics fill a block of memory with a
7058particular byte value.
7059
7060Note that, unlike the standard libc function, the ``llvm.memset``
7061intrinsic does not return a value and takes extra alignment/volatile
7062arguments. Also, the destination can be in an arbitrary address space.
7063
7064Arguments:
7065""""""""""
7066
7067The first argument is a pointer to the destination to fill, the second
7068is the byte value with which to fill it, the third argument is an
7069integer argument specifying the number of bytes to fill, and the fourth
7070argument is the known alignment of the destination location.
7071
7072If the call to this intrinsic has an alignment value that is not 0 or 1,
7073then the caller guarantees that the destination pointer is aligned to
7074that boundary.
7075
7076If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7077a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7078very cleanly specified and it is unwise to depend on it.
7079
7080Semantics:
7081""""""""""
7082
7083The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7084at the destination location. If the argument is known to be aligned to
7085some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007086it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007087
7088'``llvm.sqrt.*``' Intrinsic
7089^^^^^^^^^^^^^^^^^^^^^^^^^^^
7090
7091Syntax:
7092"""""""
7093
7094This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7095floating point or vector of floating point type. Not all targets support
7096all types however.
7097
7098::
7099
7100 declare float @llvm.sqrt.f32(float %Val)
7101 declare double @llvm.sqrt.f64(double %Val)
7102 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7103 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7104 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7105
7106Overview:
7107"""""""""
7108
7109The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7110returning the same value as the libm '``sqrt``' functions would. Unlike
7111``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7112negative numbers other than -0.0 (which allows for better optimization,
7113because there is no need to worry about errno being set).
7114``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7115
7116Arguments:
7117""""""""""
7118
7119The argument and return value are floating point numbers of the same
7120type.
7121
7122Semantics:
7123""""""""""
7124
7125This function returns the sqrt of the specified operand if it is a
7126nonnegative floating point number.
7127
7128'``llvm.powi.*``' Intrinsic
7129^^^^^^^^^^^^^^^^^^^^^^^^^^^
7130
7131Syntax:
7132"""""""
7133
7134This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7135floating point or vector of floating point type. Not all targets support
7136all types however.
7137
7138::
7139
7140 declare float @llvm.powi.f32(float %Val, i32 %power)
7141 declare double @llvm.powi.f64(double %Val, i32 %power)
7142 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7143 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7144 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7145
7146Overview:
7147"""""""""
7148
7149The '``llvm.powi.*``' intrinsics return the first operand raised to the
7150specified (positive or negative) power. The order of evaluation of
7151multiplications is not defined. When a vector of floating point type is
7152used, the second argument remains a scalar integer value.
7153
7154Arguments:
7155""""""""""
7156
7157The second argument is an integer power, and the first is a value to
7158raise to that power.
7159
7160Semantics:
7161""""""""""
7162
7163This function returns the first value raised to the second power with an
7164unspecified sequence of rounding operations.
7165
7166'``llvm.sin.*``' Intrinsic
7167^^^^^^^^^^^^^^^^^^^^^^^^^^
7168
7169Syntax:
7170"""""""
7171
7172This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7173floating point or vector of floating point type. Not all targets support
7174all types however.
7175
7176::
7177
7178 declare float @llvm.sin.f32(float %Val)
7179 declare double @llvm.sin.f64(double %Val)
7180 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7181 declare fp128 @llvm.sin.f128(fp128 %Val)
7182 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7183
7184Overview:
7185"""""""""
7186
7187The '``llvm.sin.*``' intrinsics return the sine of the operand.
7188
7189Arguments:
7190""""""""""
7191
7192The argument and return value are floating point numbers of the same
7193type.
7194
7195Semantics:
7196""""""""""
7197
7198This function returns the sine of the specified operand, returning the
7199same values as the libm ``sin`` functions would, and handles error
7200conditions in the same way.
7201
7202'``llvm.cos.*``' Intrinsic
7203^^^^^^^^^^^^^^^^^^^^^^^^^^
7204
7205Syntax:
7206"""""""
7207
7208This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7209floating point or vector of floating point type. Not all targets support
7210all types however.
7211
7212::
7213
7214 declare float @llvm.cos.f32(float %Val)
7215 declare double @llvm.cos.f64(double %Val)
7216 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7217 declare fp128 @llvm.cos.f128(fp128 %Val)
7218 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7219
7220Overview:
7221"""""""""
7222
7223The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7224
7225Arguments:
7226""""""""""
7227
7228The argument and return value are floating point numbers of the same
7229type.
7230
7231Semantics:
7232""""""""""
7233
7234This function returns the cosine of the specified operand, returning the
7235same values as the libm ``cos`` functions would, and handles error
7236conditions in the same way.
7237
7238'``llvm.pow.*``' Intrinsic
7239^^^^^^^^^^^^^^^^^^^^^^^^^^
7240
7241Syntax:
7242"""""""
7243
7244This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7245floating point or vector of floating point type. Not all targets support
7246all types however.
7247
7248::
7249
7250 declare float @llvm.pow.f32(float %Val, float %Power)
7251 declare double @llvm.pow.f64(double %Val, double %Power)
7252 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7253 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7254 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7255
7256Overview:
7257"""""""""
7258
7259The '``llvm.pow.*``' intrinsics return the first operand raised to the
7260specified (positive or negative) power.
7261
7262Arguments:
7263""""""""""
7264
7265The second argument is a floating point power, and the first is a value
7266to raise to that power.
7267
7268Semantics:
7269""""""""""
7270
7271This function returns the first value raised to the second power,
7272returning the same values as the libm ``pow`` functions would, and
7273handles error conditions in the same way.
7274
7275'``llvm.exp.*``' Intrinsic
7276^^^^^^^^^^^^^^^^^^^^^^^^^^
7277
7278Syntax:
7279"""""""
7280
7281This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7282floating point or vector of floating point type. Not all targets support
7283all types however.
7284
7285::
7286
7287 declare float @llvm.exp.f32(float %Val)
7288 declare double @llvm.exp.f64(double %Val)
7289 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7290 declare fp128 @llvm.exp.f128(fp128 %Val)
7291 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7292
7293Overview:
7294"""""""""
7295
7296The '``llvm.exp.*``' intrinsics perform the exp function.
7297
7298Arguments:
7299""""""""""
7300
7301The argument and return value are floating point numbers of the same
7302type.
7303
7304Semantics:
7305""""""""""
7306
7307This function returns the same values as the libm ``exp`` functions
7308would, and handles error conditions in the same way.
7309
7310'``llvm.exp2.*``' Intrinsic
7311^^^^^^^^^^^^^^^^^^^^^^^^^^^
7312
7313Syntax:
7314"""""""
7315
7316This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7317floating point or vector of floating point type. Not all targets support
7318all types however.
7319
7320::
7321
7322 declare float @llvm.exp2.f32(float %Val)
7323 declare double @llvm.exp2.f64(double %Val)
7324 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7325 declare fp128 @llvm.exp2.f128(fp128 %Val)
7326 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7327
7328Overview:
7329"""""""""
7330
7331The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7332
7333Arguments:
7334""""""""""
7335
7336The argument and return value are floating point numbers of the same
7337type.
7338
7339Semantics:
7340""""""""""
7341
7342This function returns the same values as the libm ``exp2`` functions
7343would, and handles error conditions in the same way.
7344
7345'``llvm.log.*``' Intrinsic
7346^^^^^^^^^^^^^^^^^^^^^^^^^^
7347
7348Syntax:
7349"""""""
7350
7351This is an overloaded intrinsic. You can use ``llvm.log`` on any
7352floating point or vector of floating point type. Not all targets support
7353all types however.
7354
7355::
7356
7357 declare float @llvm.log.f32(float %Val)
7358 declare double @llvm.log.f64(double %Val)
7359 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7360 declare fp128 @llvm.log.f128(fp128 %Val)
7361 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7362
7363Overview:
7364"""""""""
7365
7366The '``llvm.log.*``' intrinsics perform the log function.
7367
7368Arguments:
7369""""""""""
7370
7371The argument and return value are floating point numbers of the same
7372type.
7373
7374Semantics:
7375""""""""""
7376
7377This function returns the same values as the libm ``log`` functions
7378would, and handles error conditions in the same way.
7379
7380'``llvm.log10.*``' Intrinsic
7381^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7382
7383Syntax:
7384"""""""
7385
7386This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7387floating point or vector of floating point type. Not all targets support
7388all types however.
7389
7390::
7391
7392 declare float @llvm.log10.f32(float %Val)
7393 declare double @llvm.log10.f64(double %Val)
7394 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7395 declare fp128 @llvm.log10.f128(fp128 %Val)
7396 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7397
7398Overview:
7399"""""""""
7400
7401The '``llvm.log10.*``' intrinsics perform the log10 function.
7402
7403Arguments:
7404""""""""""
7405
7406The argument and return value are floating point numbers of the same
7407type.
7408
7409Semantics:
7410""""""""""
7411
7412This function returns the same values as the libm ``log10`` functions
7413would, and handles error conditions in the same way.
7414
7415'``llvm.log2.*``' Intrinsic
7416^^^^^^^^^^^^^^^^^^^^^^^^^^^
7417
7418Syntax:
7419"""""""
7420
7421This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7422floating point or vector of floating point type. Not all targets support
7423all types however.
7424
7425::
7426
7427 declare float @llvm.log2.f32(float %Val)
7428 declare double @llvm.log2.f64(double %Val)
7429 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7430 declare fp128 @llvm.log2.f128(fp128 %Val)
7431 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7432
7433Overview:
7434"""""""""
7435
7436The '``llvm.log2.*``' intrinsics perform the log2 function.
7437
7438Arguments:
7439""""""""""
7440
7441The argument and return value are floating point numbers of the same
7442type.
7443
7444Semantics:
7445""""""""""
7446
7447This function returns the same values as the libm ``log2`` functions
7448would, and handles error conditions in the same way.
7449
7450'``llvm.fma.*``' Intrinsic
7451^^^^^^^^^^^^^^^^^^^^^^^^^^
7452
7453Syntax:
7454"""""""
7455
7456This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7457floating point or vector of floating point type. Not all targets support
7458all types however.
7459
7460::
7461
7462 declare float @llvm.fma.f32(float %a, float %b, float %c)
7463 declare double @llvm.fma.f64(double %a, double %b, double %c)
7464 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7465 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7466 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7467
7468Overview:
7469"""""""""
7470
7471The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7472operation.
7473
7474Arguments:
7475""""""""""
7476
7477The argument and return value are floating point numbers of the same
7478type.
7479
7480Semantics:
7481""""""""""
7482
7483This function returns the same values as the libm ``fma`` functions
7484would.
7485
7486'``llvm.fabs.*``' Intrinsic
7487^^^^^^^^^^^^^^^^^^^^^^^^^^^
7488
7489Syntax:
7490"""""""
7491
7492This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7493floating point or vector of floating point type. Not all targets support
7494all types however.
7495
7496::
7497
7498 declare float @llvm.fabs.f32(float %Val)
7499 declare double @llvm.fabs.f64(double %Val)
7500 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7501 declare fp128 @llvm.fabs.f128(fp128 %Val)
7502 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7503
7504Overview:
7505"""""""""
7506
7507The '``llvm.fabs.*``' intrinsics return the absolute value of the
7508operand.
7509
7510Arguments:
7511""""""""""
7512
7513The argument and return value are floating point numbers of the same
7514type.
7515
7516Semantics:
7517""""""""""
7518
7519This function returns the same values as the libm ``fabs`` functions
7520would, and handles error conditions in the same way.
7521
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007522'``llvm.copysign.*``' Intrinsic
7523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7524
7525Syntax:
7526"""""""
7527
7528This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7529floating point or vector of floating point type. Not all targets support
7530all types however.
7531
7532::
7533
7534 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7535 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7536 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7537 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7538 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7539
7540Overview:
7541"""""""""
7542
7543The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7544first operand and the sign of the second operand.
7545
7546Arguments:
7547""""""""""
7548
7549The arguments and return value are floating point numbers of the same
7550type.
7551
7552Semantics:
7553""""""""""
7554
7555This function returns the same values as the libm ``copysign``
7556functions would, and handles error conditions in the same way.
7557
Sean Silvab084af42012-12-07 10:36:55 +00007558'``llvm.floor.*``' Intrinsic
7559^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7560
7561Syntax:
7562"""""""
7563
7564This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7565floating point or vector of floating point type. Not all targets support
7566all types however.
7567
7568::
7569
7570 declare float @llvm.floor.f32(float %Val)
7571 declare double @llvm.floor.f64(double %Val)
7572 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7573 declare fp128 @llvm.floor.f128(fp128 %Val)
7574 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7575
7576Overview:
7577"""""""""
7578
7579The '``llvm.floor.*``' intrinsics return the floor of the operand.
7580
7581Arguments:
7582""""""""""
7583
7584The argument and return value are floating point numbers of the same
7585type.
7586
7587Semantics:
7588""""""""""
7589
7590This function returns the same values as the libm ``floor`` functions
7591would, and handles error conditions in the same way.
7592
7593'``llvm.ceil.*``' Intrinsic
7594^^^^^^^^^^^^^^^^^^^^^^^^^^^
7595
7596Syntax:
7597"""""""
7598
7599This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7600floating point or vector of floating point type. Not all targets support
7601all types however.
7602
7603::
7604
7605 declare float @llvm.ceil.f32(float %Val)
7606 declare double @llvm.ceil.f64(double %Val)
7607 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7608 declare fp128 @llvm.ceil.f128(fp128 %Val)
7609 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7610
7611Overview:
7612"""""""""
7613
7614The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7615
7616Arguments:
7617""""""""""
7618
7619The argument and return value are floating point numbers of the same
7620type.
7621
7622Semantics:
7623""""""""""
7624
7625This function returns the same values as the libm ``ceil`` functions
7626would, and handles error conditions in the same way.
7627
7628'``llvm.trunc.*``' Intrinsic
7629^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7630
7631Syntax:
7632"""""""
7633
7634This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7635floating point or vector of floating point type. Not all targets support
7636all types however.
7637
7638::
7639
7640 declare float @llvm.trunc.f32(float %Val)
7641 declare double @llvm.trunc.f64(double %Val)
7642 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7643 declare fp128 @llvm.trunc.f128(fp128 %Val)
7644 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7645
7646Overview:
7647"""""""""
7648
7649The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7650nearest integer not larger in magnitude than the operand.
7651
7652Arguments:
7653""""""""""
7654
7655The argument and return value are floating point numbers of the same
7656type.
7657
7658Semantics:
7659""""""""""
7660
7661This function returns the same values as the libm ``trunc`` functions
7662would, and handles error conditions in the same way.
7663
7664'``llvm.rint.*``' Intrinsic
7665^^^^^^^^^^^^^^^^^^^^^^^^^^^
7666
7667Syntax:
7668"""""""
7669
7670This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7671floating point or vector of floating point type. Not all targets support
7672all types however.
7673
7674::
7675
7676 declare float @llvm.rint.f32(float %Val)
7677 declare double @llvm.rint.f64(double %Val)
7678 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7679 declare fp128 @llvm.rint.f128(fp128 %Val)
7680 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7681
7682Overview:
7683"""""""""
7684
7685The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7686nearest integer. It may raise an inexact floating-point exception if the
7687operand isn't an integer.
7688
7689Arguments:
7690""""""""""
7691
7692The argument and return value are floating point numbers of the same
7693type.
7694
7695Semantics:
7696""""""""""
7697
7698This function returns the same values as the libm ``rint`` functions
7699would, and handles error conditions in the same way.
7700
7701'``llvm.nearbyint.*``' Intrinsic
7702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7703
7704Syntax:
7705"""""""
7706
7707This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7708floating point or vector of floating point type. Not all targets support
7709all types however.
7710
7711::
7712
7713 declare float @llvm.nearbyint.f32(float %Val)
7714 declare double @llvm.nearbyint.f64(double %Val)
7715 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7716 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7717 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7718
7719Overview:
7720"""""""""
7721
7722The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7723nearest integer.
7724
7725Arguments:
7726""""""""""
7727
7728The argument and return value are floating point numbers of the same
7729type.
7730
7731Semantics:
7732""""""""""
7733
7734This function returns the same values as the libm ``nearbyint``
7735functions would, and handles error conditions in the same way.
7736
Hal Finkel171817e2013-08-07 22:49:12 +00007737'``llvm.round.*``' Intrinsic
7738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7739
7740Syntax:
7741"""""""
7742
7743This is an overloaded intrinsic. You can use ``llvm.round`` on any
7744floating point or vector of floating point type. Not all targets support
7745all types however.
7746
7747::
7748
7749 declare float @llvm.round.f32(float %Val)
7750 declare double @llvm.round.f64(double %Val)
7751 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7752 declare fp128 @llvm.round.f128(fp128 %Val)
7753 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7754
7755Overview:
7756"""""""""
7757
7758The '``llvm.round.*``' intrinsics returns the operand rounded to the
7759nearest integer.
7760
7761Arguments:
7762""""""""""
7763
7764The argument and return value are floating point numbers of the same
7765type.
7766
7767Semantics:
7768""""""""""
7769
7770This function returns the same values as the libm ``round``
7771functions would, and handles error conditions in the same way.
7772
Sean Silvab084af42012-12-07 10:36:55 +00007773Bit Manipulation Intrinsics
7774---------------------------
7775
7776LLVM provides intrinsics for a few important bit manipulation
7777operations. These allow efficient code generation for some algorithms.
7778
7779'``llvm.bswap.*``' Intrinsics
7780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7781
7782Syntax:
7783"""""""
7784
7785This is an overloaded intrinsic function. You can use bswap on any
7786integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7787
7788::
7789
7790 declare i16 @llvm.bswap.i16(i16 <id>)
7791 declare i32 @llvm.bswap.i32(i32 <id>)
7792 declare i64 @llvm.bswap.i64(i64 <id>)
7793
7794Overview:
7795"""""""""
7796
7797The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7798values with an even number of bytes (positive multiple of 16 bits).
7799These are useful for performing operations on data that is not in the
7800target's native byte order.
7801
7802Semantics:
7803""""""""""
7804
7805The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7806and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7807intrinsic returns an i32 value that has the four bytes of the input i32
7808swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7809returned i32 will have its bytes in 3, 2, 1, 0 order. The
7810``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7811concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7812respectively).
7813
7814'``llvm.ctpop.*``' Intrinsic
7815^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7816
7817Syntax:
7818"""""""
7819
7820This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7821bit width, or on any vector with integer elements. Not all targets
7822support all bit widths or vector types, however.
7823
7824::
7825
7826 declare i8 @llvm.ctpop.i8(i8 <src>)
7827 declare i16 @llvm.ctpop.i16(i16 <src>)
7828 declare i32 @llvm.ctpop.i32(i32 <src>)
7829 declare i64 @llvm.ctpop.i64(i64 <src>)
7830 declare i256 @llvm.ctpop.i256(i256 <src>)
7831 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7832
7833Overview:
7834"""""""""
7835
7836The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7837in a value.
7838
7839Arguments:
7840""""""""""
7841
7842The only argument is the value to be counted. The argument may be of any
7843integer type, or a vector with integer elements. The return type must
7844match the argument type.
7845
7846Semantics:
7847""""""""""
7848
7849The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7850each element of a vector.
7851
7852'``llvm.ctlz.*``' Intrinsic
7853^^^^^^^^^^^^^^^^^^^^^^^^^^^
7854
7855Syntax:
7856"""""""
7857
7858This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7859integer bit width, or any vector whose elements are integers. Not all
7860targets support all bit widths or vector types, however.
7861
7862::
7863
7864 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7865 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7866 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7867 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7868 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7869 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7870
7871Overview:
7872"""""""""
7873
7874The '``llvm.ctlz``' family of intrinsic functions counts the number of
7875leading zeros in a variable.
7876
7877Arguments:
7878""""""""""
7879
7880The first argument is the value to be counted. This argument may be of
7881any integer type, or a vectory with integer element type. The return
7882type must match the first argument type.
7883
7884The second argument must be a constant and is a flag to indicate whether
7885the intrinsic should ensure that a zero as the first argument produces a
7886defined result. Historically some architectures did not provide a
7887defined result for zero values as efficiently, and many algorithms are
7888now predicated on avoiding zero-value inputs.
7889
7890Semantics:
7891""""""""""
7892
7893The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7894zeros in a variable, or within each element of the vector. If
7895``src == 0`` then the result is the size in bits of the type of ``src``
7896if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7897``llvm.ctlz(i32 2) = 30``.
7898
7899'``llvm.cttz.*``' Intrinsic
7900^^^^^^^^^^^^^^^^^^^^^^^^^^^
7901
7902Syntax:
7903"""""""
7904
7905This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7906integer bit width, or any vector of integer elements. Not all targets
7907support all bit widths or vector types, however.
7908
7909::
7910
7911 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7912 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7913 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7914 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7915 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7916 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7917
7918Overview:
7919"""""""""
7920
7921The '``llvm.cttz``' family of intrinsic functions counts the number of
7922trailing zeros.
7923
7924Arguments:
7925""""""""""
7926
7927The first argument is the value to be counted. This argument may be of
7928any integer type, or a vectory with integer element type. The return
7929type must match the first argument type.
7930
7931The second argument must be a constant and is a flag to indicate whether
7932the intrinsic should ensure that a zero as the first argument produces a
7933defined result. Historically some architectures did not provide a
7934defined result for zero values as efficiently, and many algorithms are
7935now predicated on avoiding zero-value inputs.
7936
7937Semantics:
7938""""""""""
7939
7940The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7941zeros in a variable, or within each element of a vector. If ``src == 0``
7942then the result is the size in bits of the type of ``src`` if
7943``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7944``llvm.cttz(2) = 1``.
7945
7946Arithmetic with Overflow Intrinsics
7947-----------------------------------
7948
7949LLVM provides intrinsics for some arithmetic with overflow operations.
7950
7951'``llvm.sadd.with.overflow.*``' Intrinsics
7952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7953
7954Syntax:
7955"""""""
7956
7957This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7958on any integer bit width.
7959
7960::
7961
7962 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7963 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7964 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7965
7966Overview:
7967"""""""""
7968
7969The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7970a signed addition of the two arguments, and indicate whether an overflow
7971occurred during the signed summation.
7972
7973Arguments:
7974""""""""""
7975
7976The arguments (%a and %b) and the first element of the result structure
7977may be of integer types of any bit width, but they must have the same
7978bit width. The second element of the result structure must be of type
7979``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7980addition.
7981
7982Semantics:
7983""""""""""
7984
7985The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007986a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007987first element of which is the signed summation, and the second element
7988of which is a bit specifying if the signed summation resulted in an
7989overflow.
7990
7991Examples:
7992"""""""""
7993
7994.. code-block:: llvm
7995
7996 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7997 %sum = extractvalue {i32, i1} %res, 0
7998 %obit = extractvalue {i32, i1} %res, 1
7999 br i1 %obit, label %overflow, label %normal
8000
8001'``llvm.uadd.with.overflow.*``' Intrinsics
8002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8003
8004Syntax:
8005"""""""
8006
8007This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8008on any integer bit width.
8009
8010::
8011
8012 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8013 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8014 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8015
8016Overview:
8017"""""""""
8018
8019The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8020an unsigned addition of the two arguments, and indicate whether a carry
8021occurred during the unsigned summation.
8022
8023Arguments:
8024""""""""""
8025
8026The arguments (%a and %b) and the first element of the result structure
8027may be of integer types of any bit width, but they must have the same
8028bit width. The second element of the result structure must be of type
8029``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8030addition.
8031
8032Semantics:
8033""""""""""
8034
8035The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008036an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008037first element of which is the sum, and the second element of which is a
8038bit specifying if the unsigned summation resulted in a carry.
8039
8040Examples:
8041"""""""""
8042
8043.. code-block:: llvm
8044
8045 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8046 %sum = extractvalue {i32, i1} %res, 0
8047 %obit = extractvalue {i32, i1} %res, 1
8048 br i1 %obit, label %carry, label %normal
8049
8050'``llvm.ssub.with.overflow.*``' Intrinsics
8051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8052
8053Syntax:
8054"""""""
8055
8056This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8057on any integer bit width.
8058
8059::
8060
8061 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8062 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8063 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8064
8065Overview:
8066"""""""""
8067
8068The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8069a signed subtraction of the two arguments, and indicate whether an
8070overflow occurred during the signed subtraction.
8071
8072Arguments:
8073""""""""""
8074
8075The arguments (%a and %b) and the first element of the result structure
8076may be of integer types of any bit width, but they must have the same
8077bit width. The second element of the result structure must be of type
8078``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8079subtraction.
8080
8081Semantics:
8082""""""""""
8083
8084The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008085a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008086first element of which is the subtraction, and the second element of
8087which is a bit specifying if the signed subtraction resulted in an
8088overflow.
8089
8090Examples:
8091"""""""""
8092
8093.. code-block:: llvm
8094
8095 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8096 %sum = extractvalue {i32, i1} %res, 0
8097 %obit = extractvalue {i32, i1} %res, 1
8098 br i1 %obit, label %overflow, label %normal
8099
8100'``llvm.usub.with.overflow.*``' Intrinsics
8101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8102
8103Syntax:
8104"""""""
8105
8106This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8107on any integer bit width.
8108
8109::
8110
8111 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8112 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8113 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8114
8115Overview:
8116"""""""""
8117
8118The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8119an unsigned subtraction of the two arguments, and indicate whether an
8120overflow occurred during the unsigned subtraction.
8121
8122Arguments:
8123""""""""""
8124
8125The arguments (%a and %b) and the first element of the result structure
8126may be of integer types of any bit width, but they must have the same
8127bit width. The second element of the result structure must be of type
8128``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8129subtraction.
8130
8131Semantics:
8132""""""""""
8133
8134The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008135an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008136the first element of which is the subtraction, and the second element of
8137which is a bit specifying if the unsigned subtraction resulted in an
8138overflow.
8139
8140Examples:
8141"""""""""
8142
8143.. code-block:: llvm
8144
8145 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8146 %sum = extractvalue {i32, i1} %res, 0
8147 %obit = extractvalue {i32, i1} %res, 1
8148 br i1 %obit, label %overflow, label %normal
8149
8150'``llvm.smul.with.overflow.*``' Intrinsics
8151^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8152
8153Syntax:
8154"""""""
8155
8156This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8157on any integer bit width.
8158
8159::
8160
8161 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8162 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8163 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8164
8165Overview:
8166"""""""""
8167
8168The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8169a signed multiplication of the two arguments, and indicate whether an
8170overflow occurred during the signed multiplication.
8171
8172Arguments:
8173""""""""""
8174
8175The arguments (%a and %b) and the first element of the result structure
8176may be of integer types of any bit width, but they must have the same
8177bit width. The second element of the result structure must be of type
8178``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8179multiplication.
8180
8181Semantics:
8182""""""""""
8183
8184The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008185a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008186the first element of which is the multiplication, and the second element
8187of which is a bit specifying if the signed multiplication resulted in an
8188overflow.
8189
8190Examples:
8191"""""""""
8192
8193.. code-block:: llvm
8194
8195 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8196 %sum = extractvalue {i32, i1} %res, 0
8197 %obit = extractvalue {i32, i1} %res, 1
8198 br i1 %obit, label %overflow, label %normal
8199
8200'``llvm.umul.with.overflow.*``' Intrinsics
8201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8202
8203Syntax:
8204"""""""
8205
8206This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8207on any integer bit width.
8208
8209::
8210
8211 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8212 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8213 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8214
8215Overview:
8216"""""""""
8217
8218The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8219a unsigned multiplication of the two arguments, and indicate whether an
8220overflow occurred during the unsigned multiplication.
8221
8222Arguments:
8223""""""""""
8224
8225The arguments (%a and %b) and the first element of the result structure
8226may be of integer types of any bit width, but they must have the same
8227bit width. The second element of the result structure must be of type
8228``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8229multiplication.
8230
8231Semantics:
8232""""""""""
8233
8234The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008235an unsigned multiplication of the two arguments. They return a structure ---
8236the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008237element of which is a bit specifying if the unsigned multiplication
8238resulted in an overflow.
8239
8240Examples:
8241"""""""""
8242
8243.. code-block:: llvm
8244
8245 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8246 %sum = extractvalue {i32, i1} %res, 0
8247 %obit = extractvalue {i32, i1} %res, 1
8248 br i1 %obit, label %overflow, label %normal
8249
8250Specialised Arithmetic Intrinsics
8251---------------------------------
8252
8253'``llvm.fmuladd.*``' Intrinsic
8254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8255
8256Syntax:
8257"""""""
8258
8259::
8260
8261 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8262 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8263
8264Overview:
8265"""""""""
8266
8267The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008268expressions that can be fused if the code generator determines that (a) the
8269target instruction set has support for a fused operation, and (b) that the
8270fused operation is more efficient than the equivalent, separate pair of mul
8271and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008272
8273Arguments:
8274""""""""""
8275
8276The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8277multiplicands, a and b, and an addend c.
8278
8279Semantics:
8280""""""""""
8281
8282The expression:
8283
8284::
8285
8286 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8287
8288is equivalent to the expression a \* b + c, except that rounding will
8289not be performed between the multiplication and addition steps if the
8290code generator fuses the operations. Fusion is not guaranteed, even if
8291the target platform supports it. If a fused multiply-add is required the
8292corresponding llvm.fma.\* intrinsic function should be used instead.
8293
8294Examples:
8295"""""""""
8296
8297.. code-block:: llvm
8298
8299 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8300
8301Half Precision Floating Point Intrinsics
8302----------------------------------------
8303
8304For most target platforms, half precision floating point is a
8305storage-only format. This means that it is a dense encoding (in memory)
8306but does not support computation in the format.
8307
8308This means that code must first load the half-precision floating point
8309value as an i16, then convert it to float with
8310:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8311then be performed on the float value (including extending to double
8312etc). To store the value back to memory, it is first converted to float
8313if needed, then converted to i16 with
8314:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8315i16 value.
8316
8317.. _int_convert_to_fp16:
8318
8319'``llvm.convert.to.fp16``' Intrinsic
8320^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8321
8322Syntax:
8323"""""""
8324
8325::
8326
8327 declare i16 @llvm.convert.to.fp16(f32 %a)
8328
8329Overview:
8330"""""""""
8331
8332The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8333from single precision floating point format to half precision floating
8334point format.
8335
8336Arguments:
8337""""""""""
8338
8339The intrinsic function contains single argument - the value to be
8340converted.
8341
8342Semantics:
8343""""""""""
8344
8345The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8346from single precision floating point format to half precision floating
8347point format. The return value is an ``i16`` which contains the
8348converted number.
8349
8350Examples:
8351"""""""""
8352
8353.. code-block:: llvm
8354
8355 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8356 store i16 %res, i16* @x, align 2
8357
8358.. _int_convert_from_fp16:
8359
8360'``llvm.convert.from.fp16``' Intrinsic
8361^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8362
8363Syntax:
8364"""""""
8365
8366::
8367
8368 declare f32 @llvm.convert.from.fp16(i16 %a)
8369
8370Overview:
8371"""""""""
8372
8373The '``llvm.convert.from.fp16``' intrinsic function performs a
8374conversion from half precision floating point format to single precision
8375floating point format.
8376
8377Arguments:
8378""""""""""
8379
8380The intrinsic function contains single argument - the value to be
8381converted.
8382
8383Semantics:
8384""""""""""
8385
8386The '``llvm.convert.from.fp16``' intrinsic function performs a
8387conversion from half single precision floating point format to single
8388precision floating point format. The input half-float value is
8389represented by an ``i16`` value.
8390
8391Examples:
8392"""""""""
8393
8394.. code-block:: llvm
8395
8396 %a = load i16* @x, align 2
8397 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8398
8399Debugger Intrinsics
8400-------------------
8401
8402The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8403prefix), are described in the `LLVM Source Level
8404Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8405document.
8406
8407Exception Handling Intrinsics
8408-----------------------------
8409
8410The LLVM exception handling intrinsics (which all start with
8411``llvm.eh.`` prefix), are described in the `LLVM Exception
8412Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8413
8414.. _int_trampoline:
8415
8416Trampoline Intrinsics
8417---------------------
8418
8419These intrinsics make it possible to excise one parameter, marked with
8420the :ref:`nest <nest>` attribute, from a function. The result is a
8421callable function pointer lacking the nest parameter - the caller does
8422not need to provide a value for it. Instead, the value to use is stored
8423in advance in a "trampoline", a block of memory usually allocated on the
8424stack, which also contains code to splice the nest value into the
8425argument list. This is used to implement the GCC nested function address
8426extension.
8427
8428For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8429then the resulting function pointer has signature ``i32 (i32, i32)*``.
8430It can be created as follows:
8431
8432.. code-block:: llvm
8433
8434 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8435 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8436 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8437 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8438 %fp = bitcast i8* %p to i32 (i32, i32)*
8439
8440The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8441``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8442
8443.. _int_it:
8444
8445'``llvm.init.trampoline``' Intrinsic
8446^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8447
8448Syntax:
8449"""""""
8450
8451::
8452
8453 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8454
8455Overview:
8456"""""""""
8457
8458This fills the memory pointed to by ``tramp`` with executable code,
8459turning it into a trampoline.
8460
8461Arguments:
8462""""""""""
8463
8464The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8465pointers. The ``tramp`` argument must point to a sufficiently large and
8466sufficiently aligned block of memory; this memory is written to by the
8467intrinsic. Note that the size and the alignment are target-specific -
8468LLVM currently provides no portable way of determining them, so a
8469front-end that generates this intrinsic needs to have some
8470target-specific knowledge. The ``func`` argument must hold a function
8471bitcast to an ``i8*``.
8472
8473Semantics:
8474""""""""""
8475
8476The block of memory pointed to by ``tramp`` is filled with target
8477dependent code, turning it into a function. Then ``tramp`` needs to be
8478passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8479be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8480function's signature is the same as that of ``func`` with any arguments
8481marked with the ``nest`` attribute removed. At most one such ``nest``
8482argument is allowed, and it must be of pointer type. Calling the new
8483function is equivalent to calling ``func`` with the same argument list,
8484but with ``nval`` used for the missing ``nest`` argument. If, after
8485calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8486modified, then the effect of any later call to the returned function
8487pointer is undefined.
8488
8489.. _int_at:
8490
8491'``llvm.adjust.trampoline``' Intrinsic
8492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8493
8494Syntax:
8495"""""""
8496
8497::
8498
8499 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8500
8501Overview:
8502"""""""""
8503
8504This performs any required machine-specific adjustment to the address of
8505a trampoline (passed as ``tramp``).
8506
8507Arguments:
8508""""""""""
8509
8510``tramp`` must point to a block of memory which already has trampoline
8511code filled in by a previous call to
8512:ref:`llvm.init.trampoline <int_it>`.
8513
8514Semantics:
8515""""""""""
8516
8517On some architectures the address of the code to be executed needs to be
8518different to the address where the trampoline is actually stored. This
8519intrinsic returns the executable address corresponding to ``tramp``
8520after performing the required machine specific adjustments. The pointer
8521returned can then be :ref:`bitcast and executed <int_trampoline>`.
8522
8523Memory Use Markers
8524------------------
8525
8526This class of intrinsics exists to information about the lifetime of
8527memory objects and ranges where variables are immutable.
8528
Reid Klecknera534a382013-12-19 02:14:12 +00008529.. _int_lifestart:
8530
Sean Silvab084af42012-12-07 10:36:55 +00008531'``llvm.lifetime.start``' Intrinsic
8532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8533
8534Syntax:
8535"""""""
8536
8537::
8538
8539 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8540
8541Overview:
8542"""""""""
8543
8544The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8545object's lifetime.
8546
8547Arguments:
8548""""""""""
8549
8550The first argument is a constant integer representing the size of the
8551object, or -1 if it is variable sized. The second argument is a pointer
8552to the object.
8553
8554Semantics:
8555""""""""""
8556
8557This intrinsic indicates that before this point in the code, the value
8558of the memory pointed to by ``ptr`` is dead. This means that it is known
8559to never be used and has an undefined value. A load from the pointer
8560that precedes this intrinsic can be replaced with ``'undef'``.
8561
Reid Klecknera534a382013-12-19 02:14:12 +00008562.. _int_lifeend:
8563
Sean Silvab084af42012-12-07 10:36:55 +00008564'``llvm.lifetime.end``' Intrinsic
8565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8566
8567Syntax:
8568"""""""
8569
8570::
8571
8572 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8573
8574Overview:
8575"""""""""
8576
8577The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8578object's lifetime.
8579
8580Arguments:
8581""""""""""
8582
8583The first argument is a constant integer representing the size of the
8584object, or -1 if it is variable sized. The second argument is a pointer
8585to the object.
8586
8587Semantics:
8588""""""""""
8589
8590This intrinsic indicates that after this point in the code, the value of
8591the memory pointed to by ``ptr`` is dead. This means that it is known to
8592never be used and has an undefined value. Any stores into the memory
8593object following this intrinsic may be removed as dead.
8594
8595'``llvm.invariant.start``' Intrinsic
8596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8597
8598Syntax:
8599"""""""
8600
8601::
8602
8603 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8604
8605Overview:
8606"""""""""
8607
8608The '``llvm.invariant.start``' intrinsic specifies that the contents of
8609a memory object will not change.
8610
8611Arguments:
8612""""""""""
8613
8614The first argument is a constant integer representing the size of the
8615object, or -1 if it is variable sized. The second argument is a pointer
8616to the object.
8617
8618Semantics:
8619""""""""""
8620
8621This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8622the return value, the referenced memory location is constant and
8623unchanging.
8624
8625'``llvm.invariant.end``' Intrinsic
8626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8627
8628Syntax:
8629"""""""
8630
8631::
8632
8633 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8634
8635Overview:
8636"""""""""
8637
8638The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8639memory object are mutable.
8640
8641Arguments:
8642""""""""""
8643
8644The first argument is the matching ``llvm.invariant.start`` intrinsic.
8645The second argument is a constant integer representing the size of the
8646object, or -1 if it is variable sized and the third argument is a
8647pointer to the object.
8648
8649Semantics:
8650""""""""""
8651
8652This intrinsic indicates that the memory is mutable again.
8653
8654General Intrinsics
8655------------------
8656
8657This class of intrinsics is designed to be generic and has no specific
8658purpose.
8659
8660'``llvm.var.annotation``' Intrinsic
8661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8662
8663Syntax:
8664"""""""
8665
8666::
8667
8668 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8669
8670Overview:
8671"""""""""
8672
8673The '``llvm.var.annotation``' intrinsic.
8674
8675Arguments:
8676""""""""""
8677
8678The first argument is a pointer to a value, the second is a pointer to a
8679global string, the third is a pointer to a global string which is the
8680source file name, and the last argument is the line number.
8681
8682Semantics:
8683""""""""""
8684
8685This intrinsic allows annotation of local variables with arbitrary
8686strings. This can be useful for special purpose optimizations that want
8687to look for these annotations. These have no other defined use; they are
8688ignored by code generation and optimization.
8689
Michael Gottesman88d18832013-03-26 00:34:27 +00008690'``llvm.ptr.annotation.*``' Intrinsic
8691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8692
8693Syntax:
8694"""""""
8695
8696This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8697pointer to an integer of any width. *NOTE* you must specify an address space for
8698the pointer. The identifier for the default address space is the integer
8699'``0``'.
8700
8701::
8702
8703 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8704 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8705 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8706 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8707 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8708
8709Overview:
8710"""""""""
8711
8712The '``llvm.ptr.annotation``' intrinsic.
8713
8714Arguments:
8715""""""""""
8716
8717The first argument is a pointer to an integer value of arbitrary bitwidth
8718(result of some expression), the second is a pointer to a global string, the
8719third is a pointer to a global string which is the source file name, and the
8720last argument is the line number. It returns the value of the first argument.
8721
8722Semantics:
8723""""""""""
8724
8725This intrinsic allows annotation of a pointer to an integer with arbitrary
8726strings. This can be useful for special purpose optimizations that want to look
8727for these annotations. These have no other defined use; they are ignored by code
8728generation and optimization.
8729
Sean Silvab084af42012-12-07 10:36:55 +00008730'``llvm.annotation.*``' Intrinsic
8731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8732
8733Syntax:
8734"""""""
8735
8736This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8737any integer bit width.
8738
8739::
8740
8741 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8742 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8743 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8744 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8745 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8746
8747Overview:
8748"""""""""
8749
8750The '``llvm.annotation``' intrinsic.
8751
8752Arguments:
8753""""""""""
8754
8755The first argument is an integer value (result of some expression), the
8756second is a pointer to a global string, the third is a pointer to a
8757global string which is the source file name, and the last argument is
8758the line number. It returns the value of the first argument.
8759
8760Semantics:
8761""""""""""
8762
8763This intrinsic allows annotations to be put on arbitrary expressions
8764with arbitrary strings. This can be useful for special purpose
8765optimizations that want to look for these annotations. These have no
8766other defined use; they are ignored by code generation and optimization.
8767
8768'``llvm.trap``' Intrinsic
8769^^^^^^^^^^^^^^^^^^^^^^^^^
8770
8771Syntax:
8772"""""""
8773
8774::
8775
8776 declare void @llvm.trap() noreturn nounwind
8777
8778Overview:
8779"""""""""
8780
8781The '``llvm.trap``' intrinsic.
8782
8783Arguments:
8784""""""""""
8785
8786None.
8787
8788Semantics:
8789""""""""""
8790
8791This intrinsic is lowered to the target dependent trap instruction. If
8792the target does not have a trap instruction, this intrinsic will be
8793lowered to a call of the ``abort()`` function.
8794
8795'``llvm.debugtrap``' Intrinsic
8796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8797
8798Syntax:
8799"""""""
8800
8801::
8802
8803 declare void @llvm.debugtrap() nounwind
8804
8805Overview:
8806"""""""""
8807
8808The '``llvm.debugtrap``' intrinsic.
8809
8810Arguments:
8811""""""""""
8812
8813None.
8814
8815Semantics:
8816""""""""""
8817
8818This intrinsic is lowered to code which is intended to cause an
8819execution trap with the intention of requesting the attention of a
8820debugger.
8821
8822'``llvm.stackprotector``' Intrinsic
8823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8824
8825Syntax:
8826"""""""
8827
8828::
8829
8830 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8831
8832Overview:
8833"""""""""
8834
8835The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8836onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8837is placed on the stack before local variables.
8838
8839Arguments:
8840""""""""""
8841
8842The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8843The first argument is the value loaded from the stack guard
8844``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8845enough space to hold the value of the guard.
8846
8847Semantics:
8848""""""""""
8849
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008850This intrinsic causes the prologue/epilogue inserter to force the position of
8851the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8852to ensure that if a local variable on the stack is overwritten, it will destroy
8853the value of the guard. When the function exits, the guard on the stack is
8854checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8855different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8856calling the ``__stack_chk_fail()`` function.
8857
8858'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008860
8861Syntax:
8862"""""""
8863
8864::
8865
8866 declare void @llvm.stackprotectorcheck(i8** <guard>)
8867
8868Overview:
8869"""""""""
8870
8871The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008872created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008873``__stack_chk_fail()`` function.
8874
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008875Arguments:
8876""""""""""
8877
8878The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8879the variable ``@__stack_chk_guard``.
8880
8881Semantics:
8882""""""""""
8883
8884This intrinsic is provided to perform the stack protector check by comparing
8885``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8886values do not match call the ``__stack_chk_fail()`` function.
8887
8888The reason to provide this as an IR level intrinsic instead of implementing it
8889via other IR operations is that in order to perform this operation at the IR
8890level without an intrinsic, one would need to create additional basic blocks to
8891handle the success/failure cases. This makes it difficult to stop the stack
8892protector check from disrupting sibling tail calls in Codegen. With this
8893intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008894codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008895
Sean Silvab084af42012-12-07 10:36:55 +00008896'``llvm.objectsize``' Intrinsic
8897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8898
8899Syntax:
8900"""""""
8901
8902::
8903
8904 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8905 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8906
8907Overview:
8908"""""""""
8909
8910The ``llvm.objectsize`` intrinsic is designed to provide information to
8911the optimizers to determine at compile time whether a) an operation
8912(like memcpy) will overflow a buffer that corresponds to an object, or
8913b) that a runtime check for overflow isn't necessary. An object in this
8914context means an allocation of a specific class, structure, array, or
8915other object.
8916
8917Arguments:
8918""""""""""
8919
8920The ``llvm.objectsize`` intrinsic takes two arguments. The first
8921argument is a pointer to or into the ``object``. The second argument is
8922a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8923or -1 (if false) when the object size is unknown. The second argument
8924only accepts constants.
8925
8926Semantics:
8927""""""""""
8928
8929The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8930the size of the object concerned. If the size cannot be determined at
8931compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8932on the ``min`` argument).
8933
8934'``llvm.expect``' Intrinsic
8935^^^^^^^^^^^^^^^^^^^^^^^^^^^
8936
8937Syntax:
8938"""""""
8939
8940::
8941
8942 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8943 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8944
8945Overview:
8946"""""""""
8947
8948The ``llvm.expect`` intrinsic provides information about expected (the
8949most probable) value of ``val``, which can be used by optimizers.
8950
8951Arguments:
8952""""""""""
8953
8954The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8955a value. The second argument is an expected value, this needs to be a
8956constant value, variables are not allowed.
8957
8958Semantics:
8959""""""""""
8960
8961This intrinsic is lowered to the ``val``.
8962
8963'``llvm.donothing``' Intrinsic
8964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8965
8966Syntax:
8967"""""""
8968
8969::
8970
8971 declare void @llvm.donothing() nounwind readnone
8972
8973Overview:
8974"""""""""
8975
8976The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8977only intrinsic that can be called with an invoke instruction.
8978
8979Arguments:
8980""""""""""
8981
8982None.
8983
8984Semantics:
8985""""""""""
8986
8987This intrinsic does nothing, and it's removed by optimizers and ignored
8988by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00008989
8990Stack Map Intrinsics
8991--------------------
8992
8993LLVM provides experimental intrinsics to support runtime patching
8994mechanisms commonly desired in dynamic language JITs. These intrinsics
8995are described in :doc:`StackMaps`.