blob: 8dca4151720cc307f03d19f43eda1c8ae3a01a01 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher455c5772009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencercb84e432004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +000015<h1>LLVM Language Reference Manual</h1>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling03bcd6e2010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling578ee402010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
Bill Wendlingb4d076e2011-10-11 06:41:28 +000038 <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000039 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Eli Friedman35b54aa2011-07-20 21:35:53 +000056 <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
Eli Friedmanc9a551e2011-07-28 21:48:00 +000057 <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000058 </ol>
59 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000060 <li><a href="#typesystem">Type System</a>
61 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000062 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher455c5772009-12-05 02:46:03 +000063 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000064 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000065 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000066 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen33e5c352010-10-01 00:48:59 +000067 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000068 <li><a href="#t_void">Void Type</a></li>
69 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000070 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 </ol>
72 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000073 <li><a href="#t_derived">Derived Types</a>
74 <ol>
Chris Lattner392be582010-02-12 20:49:41 +000075 <li><a href="#t_aggregate">Aggregate Types</a>
76 <ol>
77 <li><a href="#t_array">Array Type</a></li>
78 <li><a href="#t_struct">Structure Type</a></li>
Chris Lattner2a843822011-07-23 19:59:08 +000079 <li><a href="#t_opaque">Opaque Structure Types</a></li>
Chris Lattner392be582010-02-12 20:49:41 +000080 <li><a href="#t_vector">Vector Type</a></li>
81 </ol>
82 </li>
Misha Brukman76307852003-11-08 01:05:38 +000083 <li><a href="#t_function">Function Type</a></li>
84 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000085 </ol>
86 </li>
87 </ol>
88 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000090 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +000095 <li><a href="#trapvalues">Trap Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000098 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
104 <ol>
105 <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
106 </ol>
107 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000108 </ol>
109 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000110 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
111 <ol>
112 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +0000113 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
114 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000115 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
116 Global Variable</a></li>
117 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
118 Global Variable</a></li>
119 </ol>
120 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000121 <li><a href="#instref">Instruction Reference</a>
122 <ol>
123 <li><a href="#terminators">Terminator Instructions</a>
124 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000125 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
126 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000127 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000128 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000129 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000130 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Bill Wendlingf891bf82011-07-31 06:30:59 +0000131 <li><a href="#i_resume">'<tt>resume</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000132 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000133 </ol>
134 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000135 <li><a href="#binaryops">Binary Operations</a>
136 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000137 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000138 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000139 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000140 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000141 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000142 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000143 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
144 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
145 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000146 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
147 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
148 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000149 </ol>
150 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000151 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
152 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000153 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
154 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
155 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000156 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000157 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000158 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000159 </ol>
160 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000161 <li><a href="#vectorops">Vector Operations</a>
162 <ol>
163 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
164 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
165 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000166 </ol>
167 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000168 <li><a href="#aggregateops">Aggregate Operations</a>
169 <ol>
170 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
171 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
172 </ol>
173 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000174 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000175 <ol>
Eli Friedmanc9a551e2011-07-28 21:48:00 +0000176 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
177 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
178 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
179 <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
180 <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
181 <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000182 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000183 </ol>
184 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000185 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000186 <ol>
187 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
188 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
189 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
190 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
191 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000192 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
193 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
194 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
195 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000196 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
197 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000198 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000199 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000200 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000201 <li><a href="#otherops">Other Operations</a>
202 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000203 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
204 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000205 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000206 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000207 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000208 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +0000209 <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000210 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000211 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000212 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000213 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000214 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000215 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000216 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
217 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000218 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
219 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
220 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000221 </ol>
222 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000223 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
224 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000225 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
226 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
227 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000228 </ol>
229 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000230 <li><a href="#int_codegen">Code Generator Intrinsics</a>
231 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000232 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
233 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
234 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
235 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
236 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
237 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohmane58f7b32010-05-26 21:56:15 +0000238 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000239 </ol>
240 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000241 <li><a href="#int_libc">Standard C Library Intrinsics</a>
242 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000243 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
244 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
245 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
246 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
247 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000248 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
249 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
250 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmane635c522011-05-27 00:36:31 +0000251 <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
252 <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
Cameron Zwarichf03fa182011-07-08 21:39:21 +0000253 <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000254 </ol>
255 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000256 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000257 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000258 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000259 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
260 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
261 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000262 </ol>
263 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000264 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
265 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000266 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
267 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
268 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
269 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
270 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000271 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000272 </ol>
273 </li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000274 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
275 <ol>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +0000276 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
277 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000278 </ol>
279 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000280 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000281 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000282 <li><a href="#int_trampoline">Trampoline Intrinsics</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000283 <ol>
284 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000285 <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000286 </ol>
287 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000288 <li><a href="#int_memorymarkers">Memory Use Markers</a>
289 <ol>
290 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
291 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
292 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
293 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
294 </ol>
295 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000296 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000297 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000298 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000299 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000300 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000301 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000302 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000303 '<tt>llvm.trap</tt>' Intrinsic</a></li>
304 <li><a href="#int_stackprotector">
305 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher73484322009-11-30 08:03:53 +0000306 <li><a href="#int_objectsize">
307 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000308 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000309 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000310 </ol>
311 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000312</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000313
314<div class="doc_author">
315 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
316 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000317</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000318
Chris Lattner2f7c9632001-06-06 20:29:01 +0000319<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000320<h2><a name="abstract">Abstract</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000321<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000322
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000323<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000324
325<p>This document is a reference manual for the LLVM assembly language. LLVM is
326 a Static Single Assignment (SSA) based representation that provides type
327 safety, low-level operations, flexibility, and the capability of representing
328 'all' high-level languages cleanly. It is the common code representation
329 used throughout all phases of the LLVM compilation strategy.</p>
330
Misha Brukman76307852003-11-08 01:05:38 +0000331</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000332
Chris Lattner2f7c9632001-06-06 20:29:01 +0000333<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000334<h2><a name="introduction">Introduction</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000335<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000336
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000337<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000338
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000339<p>The LLVM code representation is designed to be used in three different forms:
340 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
341 for fast loading by a Just-In-Time compiler), and as a human readable
342 assembly language representation. This allows LLVM to provide a powerful
343 intermediate representation for efficient compiler transformations and
344 analysis, while providing a natural means to debug and visualize the
345 transformations. The three different forms of LLVM are all equivalent. This
346 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000347
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000348<p>The LLVM representation aims to be light-weight and low-level while being
349 expressive, typed, and extensible at the same time. It aims to be a
350 "universal IR" of sorts, by being at a low enough level that high-level ideas
351 may be cleanly mapped to it (similar to how microprocessors are "universal
352 IR's", allowing many source languages to be mapped to them). By providing
353 type information, LLVM can be used as the target of optimizations: for
354 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000355 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000356 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000357
Chris Lattner2f7c9632001-06-06 20:29:01 +0000358<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000359<h4>
360 <a name="wellformed">Well-Formedness</a>
361</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000362
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000363<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000364
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000365<p>It is important to note that this document describes 'well formed' LLVM
366 assembly language. There is a difference between what the parser accepts and
367 what is considered 'well formed'. For example, the following instruction is
368 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000369
Benjamin Kramer79698be2010-07-13 12:26:09 +0000370<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000371%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000372</pre>
373
Bill Wendling7f4a3362009-11-02 00:24:16 +0000374<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
375 LLVM infrastructure provides a verification pass that may be used to verify
376 that an LLVM module is well formed. This pass is automatically run by the
377 parser after parsing input assembly and by the optimizer before it outputs
378 bitcode. The violations pointed out by the verifier pass indicate bugs in
379 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000380
Bill Wendling3716c5d2007-05-29 09:04:49 +0000381</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000382
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000383</div>
384
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000385<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000386
Chris Lattner2f7c9632001-06-06 20:29:01 +0000387<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000388<h2><a name="identifiers">Identifiers</a></h2>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000389<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000390
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000391<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000392
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000393<p>LLVM identifiers come in two basic types: global and local. Global
394 identifiers (functions, global variables) begin with the <tt>'@'</tt>
395 character. Local identifiers (register names, types) begin with
396 the <tt>'%'</tt> character. Additionally, there are three different formats
397 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000398
Chris Lattner2f7c9632001-06-06 20:29:01 +0000399<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000400 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000401 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
402 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
403 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
404 other characters in their names can be surrounded with quotes. Special
405 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
406 ASCII code for the character in hexadecimal. In this way, any character
407 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000408
Reid Spencerb23b65f2007-08-07 14:34:28 +0000409 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000410 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000411
Reid Spencer8f08d802004-12-09 18:02:53 +0000412 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000413 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000414</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000415
Reid Spencerb23b65f2007-08-07 14:34:28 +0000416<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000417 don't need to worry about name clashes with reserved words, and the set of
418 reserved words may be expanded in the future without penalty. Additionally,
419 unnamed identifiers allow a compiler to quickly come up with a temporary
420 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000421
Chris Lattner48b383b02003-11-25 01:02:51 +0000422<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000423 languages. There are keywords for different opcodes
424 ('<tt><a href="#i_add">add</a></tt>',
425 '<tt><a href="#i_bitcast">bitcast</a></tt>',
426 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
427 ('<tt><a href="#t_void">void</a></tt>',
428 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
429 reserved words cannot conflict with variable names, because none of them
430 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000431
432<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000433 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000434
Misha Brukman76307852003-11-08 01:05:38 +0000435<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000436
Benjamin Kramer79698be2010-07-13 12:26:09 +0000437<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000438%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000439</pre>
440
Misha Brukman76307852003-11-08 01:05:38 +0000441<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000442
Benjamin Kramer79698be2010-07-13 12:26:09 +0000443<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000444%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000445</pre>
446
Misha Brukman76307852003-11-08 01:05:38 +0000447<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000448
Benjamin Kramer79698be2010-07-13 12:26:09 +0000449<pre class="doc_code">
Gabor Greifbd0328f2009-10-28 13:05:07 +0000450%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
451%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000452%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000453</pre>
454
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000455<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
456 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000457
Chris Lattner2f7c9632001-06-06 20:29:01 +0000458<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000459 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000460 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000461
462 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000463 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000464
Misha Brukman76307852003-11-08 01:05:38 +0000465 <li>Unnamed temporaries are numbered sequentially</li>
466</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000467
Bill Wendling7f4a3362009-11-02 00:24:16 +0000468<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000469 demonstrating instructions, we will follow an instruction with a comment that
470 defines the type and name of value produced. Comments are shown in italic
471 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000472
Misha Brukman76307852003-11-08 01:05:38 +0000473</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000474
475<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000476<h2><a name="highlevel">High Level Structure</a></h2>
Chris Lattner6af02f32004-12-09 16:11:40 +0000477<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000478<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000479<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000480<h3>
481 <a name="modulestructure">Module Structure</a>
482</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000483
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000484<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000485
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000486<p>LLVM programs are composed of "Module"s, each of which is a translation unit
487 of the input programs. Each module consists of functions, global variables,
488 and symbol table entries. Modules may be combined together with the LLVM
489 linker, which merges function (and global variable) definitions, resolves
490 forward declarations, and merges symbol table entries. Here is an example of
491 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000492
Benjamin Kramer79698be2010-07-13 12:26:09 +0000493<pre class="doc_code">
Chris Lattner54a7be72010-08-17 17:13:42 +0000494<i>; Declare the string constant as a global constant.</i>&nbsp;
Nick Lewyckyfea7ddc2011-01-29 01:09:53 +0000495<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000496
Chris Lattner54a7be72010-08-17 17:13:42 +0000497<i>; External declaration of the puts function</i>&nbsp;
498<a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000499
500<i>; Definition of main function</i>
Chris Lattner54a7be72010-08-17 17:13:42 +0000501define i32 @main() { <i>; i32()* </i>&nbsp;
502 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
503 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000504
Chris Lattner54a7be72010-08-17 17:13:42 +0000505 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
506 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
507 <a href="#i_ret">ret</a> i32 0&nbsp;
508}
Devang Pateld1a89692010-01-11 19:35:55 +0000509
510<i>; Named metadata</i>
511!1 = metadata !{i32 41}
512!foo = !{!1, null}
Bill Wendling3716c5d2007-05-29 09:04:49 +0000513</pre>
Chris Lattner6af02f32004-12-09 16:11:40 +0000514
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000515<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Pateld1a89692010-01-11 19:35:55 +0000516 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000517 a <a href="#functionstructure">function definition</a> for
Devang Pateld1a89692010-01-11 19:35:55 +0000518 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
519 "<tt>foo"</tt>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000520
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000521<p>In general, a module is made up of a list of global values, where both
522 functions and global variables are global values. Global values are
523 represented by a pointer to a memory location (in this case, a pointer to an
524 array of char, and a pointer to a function), and have one of the
525 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000526
Chris Lattnerd79749a2004-12-09 16:36:40 +0000527</div>
528
529<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000530<h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000531 <a name="linkage">Linkage Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000532</h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000533
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000534<div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000535
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000536<p>All Global Variables and Functions have one of the following types of
537 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000538
539<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000540 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000541 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
542 by objects in the current module. In particular, linking code into a
543 module with an private global value may cause the private to be renamed as
544 necessary to avoid collisions. Because the symbol is private to the
545 module, all references can be updated. This doesn't show up in any symbol
546 table in the object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000547
Bill Wendling7f4a3362009-11-02 00:24:16 +0000548 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000549 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
550 assembler and evaluated by the linker. Unlike normal strong symbols, they
551 are removed by the linker from the final linked image (executable or
552 dynamic library).</dd>
553
554 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
555 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
556 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
557 linker. The symbols are removed by the linker from the final linked image
558 (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000559
Bill Wendling578ee402010-08-20 22:05:50 +0000560 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
561 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
562 of the object is not taken. For instance, functions that had an inline
563 definition, but the compiler decided not to inline it. Note,
564 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
565 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
566 visibility. The symbols are removed by the linker from the final linked
567 image (executable or dynamic library).</dd>
568
Bill Wendling7f4a3362009-11-02 00:24:16 +0000569 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling36321712010-06-29 22:34:52 +0000570 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000571 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
572 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000573
Bill Wendling7f4a3362009-11-02 00:24:16 +0000574 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000575 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000576 into the object file corresponding to the LLVM module. They exist to
577 allow inlining and other optimizations to take place given knowledge of
578 the definition of the global, which is known to be somewhere outside the
579 module. Globals with <tt>available_externally</tt> linkage are allowed to
580 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
581 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000582
Bill Wendling7f4a3362009-11-02 00:24:16 +0000583 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000584 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner0de4caa2010-01-09 19:15:14 +0000585 the same name when linkage occurs. This can be used to implement
586 some forms of inline functions, templates, or other code which must be
587 generated in each translation unit that uses it, but where the body may
588 be overridden with a more definitive definition later. Unreferenced
589 <tt>linkonce</tt> globals are allowed to be discarded. Note that
590 <tt>linkonce</tt> linkage does not actually allow the optimizer to
591 inline the body of this function into callers because it doesn't know if
592 this definition of the function is the definitive definition within the
593 program or whether it will be overridden by a stronger definition.
594 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
595 linkage.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000596
Bill Wendling7f4a3362009-11-02 00:24:16 +0000597 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000598 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
599 <tt>linkonce</tt> linkage, except that unreferenced globals with
600 <tt>weak</tt> linkage may not be discarded. This is used for globals that
601 are declared "weak" in C source code.</dd>
602
Bill Wendling7f4a3362009-11-02 00:24:16 +0000603 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000604 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
605 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
606 global scope.
607 Symbols with "<tt>common</tt>" linkage are merged in the same way as
608 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000609 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher455c5772009-12-05 02:46:03 +0000610 must have a zero initializer, and may not be marked '<a
Chris Lattner0aff0b22009-08-05 05:41:44 +0000611 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
612 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000613
Chris Lattnerd79749a2004-12-09 16:36:40 +0000614
Bill Wendling7f4a3362009-11-02 00:24:16 +0000615 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000616 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000617 pointer to array type. When two global variables with appending linkage
618 are linked together, the two global arrays are appended together. This is
619 the LLVM, typesafe, equivalent of having the system linker append together
620 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000621
Bill Wendling7f4a3362009-11-02 00:24:16 +0000622 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000623 <dd>The semantics of this linkage follow the ELF object file model: the symbol
624 is weak until linked, if not linked, the symbol becomes null instead of
625 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000626
Bill Wendling7f4a3362009-11-02 00:24:16 +0000627 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
628 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000629 <dd>Some languages allow differing globals to be merged, such as two functions
630 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000631 that only equivalent globals are ever merged (the "one definition rule"
632 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000633 and <tt>weak_odr</tt> linkage types to indicate that the global will only
634 be merged with equivalent globals. These linkage types are otherwise the
635 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000636
Bill Wendlingb4d076e2011-10-11 06:41:28 +0000637 <dt><tt><b><a name="linkage_external">external</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000638 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000639 visible, meaning that it participates in linkage and can be used to
640 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000641</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000642
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000643<p>The next two types of linkage are targeted for Microsoft Windows platform
644 only. They are designed to support importing (exporting) symbols from (to)
645 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000646
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000647<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000648 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000649 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000650 or variable via a global pointer to a pointer that is set up by the DLL
651 exporting the symbol. On Microsoft Windows targets, the pointer name is
652 formed by combining <code>__imp_</code> and the function or variable
653 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000654
Bill Wendling7f4a3362009-11-02 00:24:16 +0000655 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000656 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000657 pointer to a pointer in a DLL, so that it can be referenced with the
658 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
659 name is formed by combining <code>__imp_</code> and the function or
660 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000661</dl>
662
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000663<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
664 another module defined a "<tt>.LC0</tt>" variable and was linked with this
665 one, one of the two would be renamed, preventing a collision. Since
666 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
667 declarations), they are accessible outside of the current module.</p>
668
669<p>It is illegal for a function <i>declaration</i> to have any linkage type
Bill Wendlingb4d076e2011-10-11 06:41:28 +0000670 other than <tt>external</tt>, <tt>dllimport</tt>
671 or <tt>extern_weak</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000672
Duncan Sands12da8ce2009-03-07 15:45:40 +0000673<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000674 or <tt>weak_odr</tt> linkages.</p>
675
Chris Lattner6af02f32004-12-09 16:11:40 +0000676</div>
677
678<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000679<h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000680 <a name="callingconv">Calling Conventions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000681</h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000682
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000683<div>
Chris Lattner0132aff2005-05-06 22:57:40 +0000684
685<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000686 and <a href="#i_invoke">invokes</a> can all have an optional calling
687 convention specified for the call. The calling convention of any pair of
688 dynamic caller/callee must match, or the behavior of the program is
689 undefined. The following calling conventions are supported by LLVM, and more
690 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000691
692<dl>
693 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000694 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000695 specified) matches the target C calling conventions. This calling
696 convention supports varargs function calls and tolerates some mismatch in
697 the declared prototype and implemented declaration of the function (as
698 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000699
700 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000701 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000702 (e.g. by passing things in registers). This calling convention allows the
703 target to use whatever tricks it wants to produce fast code for the
704 target, without having to conform to an externally specified ABI
Jeffrey Yasskinb8677462010-01-09 19:44:16 +0000705 (Application Binary Interface).
706 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattnera179e4d2010-03-11 00:22:57 +0000707 when this or the GHC convention is used.</a> This calling convention
708 does not support varargs and requires the prototype of all callees to
709 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000710
711 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000712 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000713 as possible under the assumption that the call is not commonly executed.
714 As such, these calls often preserve all registers so that the call does
715 not break any live ranges in the caller side. This calling convention
716 does not support varargs and requires the prototype of all callees to
717 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000718
Chris Lattnera179e4d2010-03-11 00:22:57 +0000719 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
720 <dd>This calling convention has been implemented specifically for use by the
721 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
722 It passes everything in registers, going to extremes to achieve this by
723 disabling callee save registers. This calling convention should not be
724 used lightly but only for specific situations such as an alternative to
725 the <em>register pinning</em> performance technique often used when
726 implementing functional programming languages.At the moment only X86
727 supports this convention and it has the following limitations:
728 <ul>
729 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
730 floating point types are supported.</li>
731 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
732 6 floating point parameters.</li>
733 </ul>
734 This calling convention supports
735 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
736 requires both the caller and callee are using it.
737 </dd>
738
Chris Lattner573f64e2005-05-07 01:46:40 +0000739 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000740 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000741 target-specific calling conventions to be used. Target specific calling
742 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000743</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000744
745<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000746 support Pascal conventions or any other well-known target-independent
747 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000748
749</div>
750
751<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000752<h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000753 <a name="visibility">Visibility Styles</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000754</h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000755
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000756<div>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000757
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000758<p>All Global Variables and Functions have one of the following visibility
759 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000760
761<dl>
762 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000763 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000764 that the declaration is visible to other modules and, in shared libraries,
765 means that the declared entity may be overridden. On Darwin, default
766 visibility means that the declaration is visible to other modules. Default
767 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000768
769 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000770 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000771 object if they are in the same shared object. Usually, hidden visibility
772 indicates that the symbol will not be placed into the dynamic symbol
773 table, so no other module (executable or shared library) can reference it
774 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000775
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000776 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000777 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000778 the dynamic symbol table, but that references within the defining module
779 will bind to the local symbol. That is, the symbol cannot be overridden by
780 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000781</dl>
782
783</div>
784
785<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000786<h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000787 <a name="namedtypes">Named Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000788</h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000789
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000790<div>
Chris Lattnerbc088212009-01-11 20:53:49 +0000791
792<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000793 it easier to read the IR and make the IR more condensed (particularly when
794 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000795
Benjamin Kramer79698be2010-07-13 12:26:09 +0000796<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +0000797%mytype = type { %mytype*, i32 }
798</pre>
Chris Lattnerbc088212009-01-11 20:53:49 +0000799
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000800<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattner249b9762010-08-17 23:26:04 +0000801 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000802 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000803
804<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000805 and that you can therefore specify multiple names for the same type. This
806 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
807 uses structural typing, the name is not part of the type. When printing out
808 LLVM IR, the printer will pick <em>one name</em> to render all types of a
809 particular shape. This means that if you have code where two different
810 source types end up having the same LLVM type, that the dumper will sometimes
811 print the "wrong" or unexpected type. This is an important design point and
812 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000813
814</div>
815
Chris Lattnerbc088212009-01-11 20:53:49 +0000816<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000817<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000818 <a name="globalvars">Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000819</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000820
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000821<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000822
Chris Lattner5d5aede2005-02-12 19:30:21 +0000823<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000824 instead of run-time. Global variables may optionally be initialized, may
825 have an explicit section to be placed in, and may have an optional explicit
826 alignment specified. A variable may be defined as "thread_local", which
827 means that it will not be shared by threads (each thread will have a
828 separated copy of the variable). A variable may be defined as a global
829 "constant," which indicates that the contents of the variable
830 will <b>never</b> be modified (enabling better optimization, allowing the
831 global data to be placed in the read-only section of an executable, etc).
832 Note that variables that need runtime initialization cannot be marked
833 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000834
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000835<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
836 constant, even if the final definition of the global is not. This capability
837 can be used to enable slightly better optimization of the program, but
838 requires the language definition to guarantee that optimizations based on the
839 'constantness' are valid for the translation units that do not include the
840 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000841
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000842<p>As SSA values, global variables define pointer values that are in scope
843 (i.e. they dominate) all basic blocks in the program. Global variables
844 always define a pointer to their "content" type because they describe a
845 region of memory, and all memory objects in LLVM are accessed through
846 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000847
Rafael Espindola45e6c192011-01-08 16:42:36 +0000848<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
849 that the address is not significant, only the content. Constants marked
Rafael Espindolaf1ed7812011-01-15 08:20:57 +0000850 like this can be merged with other constants if they have the same
851 initializer. Note that a constant with significant address <em>can</em>
852 be merged with a <tt>unnamed_addr</tt> constant, the result being a
853 constant whose address is significant.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000854
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000855<p>A global variable may be declared to reside in a target-specific numbered
856 address space. For targets that support them, address spaces may affect how
857 optimizations are performed and/or what target instructions are used to
858 access the variable. The default address space is zero. The address space
859 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000860
Chris Lattner662c8722005-11-12 00:45:07 +0000861<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000862 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000863
Chris Lattner78e00bc2010-04-28 00:13:42 +0000864<p>An explicit alignment may be specified for a global, which must be a power
865 of 2. If not present, or if the alignment is set to zero, the alignment of
866 the global is set by the target to whatever it feels convenient. If an
867 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner4bd85e42010-04-28 00:31:12 +0000868 alignment. Targets and optimizers are not allowed to over-align the global
869 if the global has an assigned section. In this case, the extra alignment
870 could be observable: for example, code could assume that the globals are
871 densely packed in their section and try to iterate over them as an array,
872 alignment padding would break this iteration.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000873
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000874<p>For example, the following defines a global in a numbered address space with
875 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000876
Benjamin Kramer79698be2010-07-13 12:26:09 +0000877<pre class="doc_code">
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000878@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000879</pre>
880
Chris Lattner6af02f32004-12-09 16:11:40 +0000881</div>
882
883
884<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000885<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000886 <a name="functionstructure">Functions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000887</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000888
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000889<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000890
Dan Gohmana269a0a2010-03-01 17:41:39 +0000891<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000892 optional <a href="#linkage">linkage type</a>, an optional
893 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000894 <a href="#callingconv">calling convention</a>,
895 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000896 <a href="#paramattrs">parameter attribute</a> for the return type, a function
897 name, a (possibly empty) argument list (each with optional
898 <a href="#paramattrs">parameter attributes</a>), optional
899 <a href="#fnattrs">function attributes</a>, an optional section, an optional
900 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
901 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000902
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000903<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
904 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher455c5772009-12-05 02:46:03 +0000905 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000906 <a href="#callingconv">calling convention</a>,
907 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000908 <a href="#paramattrs">parameter attribute</a> for the return type, a function
909 name, a possibly empty list of arguments, an optional alignment, and an
910 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000911
Chris Lattner67c37d12008-08-05 18:29:16 +0000912<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000913 (Control Flow Graph) for the function. Each basic block may optionally start
914 with a label (giving the basic block a symbol table entry), contains a list
915 of instructions, and ends with a <a href="#terminators">terminator</a>
916 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000917
Chris Lattnera59fb102007-06-08 16:52:14 +0000918<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000919 executed on entrance to the function, and it is not allowed to have
920 predecessor basic blocks (i.e. there can not be any branches to the entry
921 block of a function). Because the block can have no predecessors, it also
922 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000923
Chris Lattner662c8722005-11-12 00:45:07 +0000924<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000925 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000926
Chris Lattner54611b42005-11-06 08:02:57 +0000927<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000928 the alignment is set to zero, the alignment of the function is set by the
929 target to whatever it feels convenient. If an explicit alignment is
930 specified, the function is forced to have at least that much alignment. All
931 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000932
Rafael Espindola45e6c192011-01-08 16:42:36 +0000933<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
934 be significant and two identical functions can be merged</p>.
935
Bill Wendling30235112009-07-20 02:39:26 +0000936<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000937<pre class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000938define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000939 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
940 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
941 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
942 [<a href="#gc">gc</a>] { ... }
943</pre>
Devang Patel02256232008-10-07 17:48:33 +0000944
Chris Lattner6af02f32004-12-09 16:11:40 +0000945</div>
946
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000947<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000948<h3>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000949 <a name="aliasstructure">Aliases</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000950</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000951
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000952<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000953
954<p>Aliases act as "second name" for the aliasee value (which can be either
955 function, global variable, another alias or bitcast of global value). Aliases
956 may have an optional <a href="#linkage">linkage type</a>, and an
957 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000958
Bill Wendling30235112009-07-20 02:39:26 +0000959<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000960<pre class="doc_code">
Duncan Sands7e99a942008-09-12 20:48:21 +0000961@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000962</pre>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000963
964</div>
965
Chris Lattner91c15c42006-01-23 23:23:47 +0000966<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000967<h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000968 <a name="namedmetadatastructure">Named Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000969</h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000970
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000971<div>
Devang Pateld1a89692010-01-11 19:35:55 +0000972
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000973<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman093cb792010-07-21 18:54:18 +0000974 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000975 a named metadata.</p>
Devang Pateld1a89692010-01-11 19:35:55 +0000976
977<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000978<pre class="doc_code">
Dan Gohman093cb792010-07-21 18:54:18 +0000979; Some unnamed metadata nodes, which are referenced by the named metadata.
980!0 = metadata !{metadata !"zero"}
Devang Pateld1a89692010-01-11 19:35:55 +0000981!1 = metadata !{metadata !"one"}
Dan Gohman093cb792010-07-21 18:54:18 +0000982!2 = metadata !{metadata !"two"}
Dan Gohman58cd65f2010-07-13 19:48:13 +0000983; A named metadata.
Dan Gohman093cb792010-07-21 18:54:18 +0000984!name = !{!0, !1, !2}
Devang Pateld1a89692010-01-11 19:35:55 +0000985</pre>
Devang Pateld1a89692010-01-11 19:35:55 +0000986
987</div>
988
989<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000990<h3>
991 <a name="paramattrs">Parameter Attributes</a>
992</h3>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000993
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000994<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000995
996<p>The return type and each parameter of a function type may have a set of
997 <i>parameter attributes</i> associated with them. Parameter attributes are
998 used to communicate additional information about the result or parameters of
999 a function. Parameter attributes are considered to be part of the function,
1000 not of the function type, so functions with different parameter attributes
1001 can have the same function type.</p>
1002
1003<p>Parameter attributes are simple keywords that follow the type specified. If
1004 multiple parameter attributes are needed, they are space separated. For
1005 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001006
Benjamin Kramer79698be2010-07-13 12:26:09 +00001007<pre class="doc_code">
Nick Lewyckydac78d82009-02-15 23:06:14 +00001008declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +00001009declare i32 @atoi(i8 zeroext)
1010declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +00001011</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001012
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001013<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1014 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001015
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001016<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001017
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001018<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001019 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001020 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarichac106272011-03-16 22:20:18 +00001021 should be zero-extended to the extent required by the target's ABI (which
1022 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1023 parameter) or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001024
Bill Wendling7f4a3362009-11-02 00:24:16 +00001025 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001026 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarich341c36d2011-03-17 14:21:58 +00001027 should be sign-extended to the extent required by the target's ABI (which
1028 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1029 return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001030
Bill Wendling7f4a3362009-11-02 00:24:16 +00001031 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001032 <dd>This indicates that this parameter or return value should be treated in a
1033 special target-dependent fashion during while emitting code for a function
1034 call or return (usually, by putting it in a register as opposed to memory,
1035 though some targets use it to distinguish between two different kinds of
1036 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001037
Bill Wendling7f4a3362009-11-02 00:24:16 +00001038 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001039 <dd><p>This indicates that the pointer parameter should really be passed by
1040 value to the function. The attribute implies that a hidden copy of the
1041 pointee
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001042 is made between the caller and the callee, so the callee is unable to
1043 modify the value in the callee. This attribute is only valid on LLVM
1044 pointer arguments. It is generally used to pass structs and arrays by
1045 value, but is also valid on pointers to scalars. The copy is considered
1046 to belong to the caller not the callee (for example,
1047 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1048 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001049 values.</p>
1050
1051 <p>The byval attribute also supports specifying an alignment with
1052 the align attribute. It indicates the alignment of the stack slot to
1053 form and the known alignment of the pointer specified to the call site. If
1054 the alignment is not specified, then the code generator makes a
1055 target-specific assumption.</p></dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001056
Dan Gohman3770af52010-07-02 23:18:08 +00001057 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001058 <dd>This indicates that the pointer parameter specifies the address of a
1059 structure that is the return value of the function in the source program.
1060 This pointer must be guaranteed by the caller to be valid: loads and
1061 stores to the structure may be assumed by the callee to not to trap. This
1062 may only be applied to the first parameter. This is not a valid attribute
1063 for return values. </dd>
1064
Dan Gohman3770af52010-07-02 23:18:08 +00001065 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohmandf12d082010-07-02 18:41:32 +00001066 <dd>This indicates that pointer values
1067 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmande256292010-07-02 23:46:54 +00001068 value do not alias pointer values which are not <i>based</i> on it,
1069 ignoring certain "irrelevant" dependencies.
1070 For a call to the parent function, dependencies between memory
1071 references from before or after the call and from those during the call
1072 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1073 return value used in that call.
Dan Gohmandf12d082010-07-02 18:41:32 +00001074 The caller shares the responsibility with the callee for ensuring that
1075 these requirements are met.
1076 For further details, please see the discussion of the NoAlias response in
Dan Gohman6c858db2010-07-06 15:26:33 +00001077 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1078<br>
John McCall72ed8902010-07-06 21:07:14 +00001079 Note that this definition of <tt>noalias</tt> is intentionally
1080 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner5eff9ca2010-07-06 20:51:35 +00001081 arguments, though it is slightly weaker.
Dan Gohman6c858db2010-07-06 15:26:33 +00001082<br>
1083 For function return values, C99's <tt>restrict</tt> is not meaningful,
1084 while LLVM's <tt>noalias</tt> is.
1085 </dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001086
Dan Gohman3770af52010-07-02 23:18:08 +00001087 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001088 <dd>This indicates that the callee does not make any copies of the pointer
1089 that outlive the callee itself. This is not a valid attribute for return
1090 values.</dd>
1091
Dan Gohman3770af52010-07-02 23:18:08 +00001092 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001093 <dd>This indicates that the pointer parameter can be excised using the
1094 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1095 attribute for return values.</dd>
1096</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001097
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001098</div>
1099
1100<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001101<h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001102 <a name="gc">Garbage Collector Names</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001103</h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001104
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001105<div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001106
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001107<p>Each function may specify a garbage collector name, which is simply a
1108 string:</p>
1109
Benjamin Kramer79698be2010-07-13 12:26:09 +00001110<pre class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +00001111define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001112</pre>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001113
1114<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001115 collector which will cause the compiler to alter its output in order to
1116 support the named garbage collection algorithm.</p>
1117
Gordon Henriksen71183b62007-12-10 03:18:06 +00001118</div>
1119
1120<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001121<h3>
Devang Patel9eb525d2008-09-26 23:51:19 +00001122 <a name="fnattrs">Function Attributes</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001123</h3>
Devang Patelcaacdba2008-09-04 23:05:13 +00001124
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001125<div>
Devang Patel9eb525d2008-09-26 23:51:19 +00001126
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001127<p>Function attributes are set to communicate additional information about a
1128 function. Function attributes are considered to be part of the function, not
1129 of the function type, so functions with different parameter attributes can
1130 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001131
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001132<p>Function attributes are simple keywords that follow the type specified. If
1133 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001134
Benjamin Kramer79698be2010-07-13 12:26:09 +00001135<pre class="doc_code">
Devang Patel9eb525d2008-09-26 23:51:19 +00001136define void @f() noinline { ... }
1137define void @f() alwaysinline { ... }
1138define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001139define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001140</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001141
Bill Wendlingb175fa42008-09-07 10:26:33 +00001142<dl>
Charles Davisbe5557e2010-02-12 00:31:15 +00001143 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1144 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1145 the backend should forcibly align the stack pointer. Specify the
1146 desired alignment, which must be a power of two, in parentheses.
1147
Bill Wendling7f4a3362009-11-02 00:24:16 +00001148 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001149 <dd>This attribute indicates that the inliner should attempt to inline this
1150 function into callers whenever possible, ignoring any active inlining size
1151 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001152
Dan Gohman8bd11f12011-06-16 16:03:13 +00001153 <dt><tt><b>nonlazybind</b></tt></dt>
1154 <dd>This attribute suppresses lazy symbol binding for the function. This
1155 may make calls to the function faster, at the cost of extra program
1156 startup time if the function is not called during program startup.</dd>
1157
Jakob Stoklund Olesen74bb06c2010-02-06 01:16:28 +00001158 <dt><tt><b>inlinehint</b></tt></dt>
1159 <dd>This attribute indicates that the source code contained a hint that inlining
1160 this function is desirable (such as the "inline" keyword in C/C++). It
1161 is just a hint; it imposes no requirements on the inliner.</dd>
1162
Nick Lewycky14b58da2010-07-06 18:24:09 +00001163 <dt><tt><b>naked</b></tt></dt>
1164 <dd>This attribute disables prologue / epilogue emission for the function.
1165 This can have very system-specific consequences.</dd>
1166
1167 <dt><tt><b>noimplicitfloat</b></tt></dt>
1168 <dd>This attributes disables implicit floating point instructions.</dd>
1169
Bill Wendling7f4a3362009-11-02 00:24:16 +00001170 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001171 <dd>This attribute indicates that the inliner should never inline this
1172 function in any situation. This attribute may not be used together with
1173 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001174
Nick Lewycky14b58da2010-07-06 18:24:09 +00001175 <dt><tt><b>noredzone</b></tt></dt>
1176 <dd>This attribute indicates that the code generator should not use a red
1177 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001178
Bill Wendling7f4a3362009-11-02 00:24:16 +00001179 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001180 <dd>This function attribute indicates that the function never returns
1181 normally. This produces undefined behavior at runtime if the function
1182 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001183
Bill Wendling7f4a3362009-11-02 00:24:16 +00001184 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001185 <dd>This function attribute indicates that the function never returns with an
1186 unwind or exceptional control flow. If the function does unwind, its
1187 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001188
Nick Lewycky14b58da2010-07-06 18:24:09 +00001189 <dt><tt><b>optsize</b></tt></dt>
1190 <dd>This attribute suggests that optimization passes and code generator passes
1191 make choices that keep the code size of this function low, and otherwise
1192 do optimizations specifically to reduce code size.</dd>
1193
Bill Wendling7f4a3362009-11-02 00:24:16 +00001194 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001195 <dd>This attribute indicates that the function computes its result (or decides
1196 to unwind an exception) based strictly on its arguments, without
1197 dereferencing any pointer arguments or otherwise accessing any mutable
1198 state (e.g. memory, control registers, etc) visible to caller functions.
1199 It does not write through any pointer arguments
1200 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1201 changes any state visible to callers. This means that it cannot unwind
1202 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1203 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001204
Bill Wendling7f4a3362009-11-02 00:24:16 +00001205 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001206 <dd>This attribute indicates that the function does not write through any
1207 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1208 arguments) or otherwise modify any state (e.g. memory, control registers,
1209 etc) visible to caller functions. It may dereference pointer arguments
1210 and read state that may be set in the caller. A readonly function always
1211 returns the same value (or unwinds an exception identically) when called
1212 with the same set of arguments and global state. It cannot unwind an
1213 exception by calling the <tt>C++</tt> exception throwing methods, but may
1214 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001215
Bill Wendling7f4a3362009-11-02 00:24:16 +00001216 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001217 <dd>This attribute indicates that the function should emit a stack smashing
1218 protector. It is in the form of a "canary"&mdash;a random value placed on
1219 the stack before the local variables that's checked upon return from the
1220 function to see if it has been overwritten. A heuristic is used to
1221 determine if a function needs stack protectors or not.<br>
1222<br>
1223 If a function that has an <tt>ssp</tt> attribute is inlined into a
1224 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1225 function will have an <tt>ssp</tt> attribute.</dd>
1226
Bill Wendling7f4a3362009-11-02 00:24:16 +00001227 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001228 <dd>This attribute indicates that the function should <em>always</em> emit a
1229 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001230 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1231<br>
1232 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1233 function that doesn't have an <tt>sspreq</tt> attribute or which has
1234 an <tt>ssp</tt> attribute, then the resulting function will have
1235 an <tt>sspreq</tt> attribute.</dd>
Rafael Espindola163d6752011-07-25 15:27:59 +00001236
1237 <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
1238 <dd>This attribute indicates that the ABI being targeted requires that
1239 an unwind table entry be produce for this function even if we can
1240 show that no exceptions passes by it. This is normally the case for
1241 the ELF x86-64 abi, but it can be disabled for some compilation
1242 units.</dd>
1243
Rafael Espindolacc349c82011-10-03 14:45:37 +00001244 <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
1245 <dd>This attribute indicates that this function can return
1246 twice. The C <code>setjmp</code> is an example of such a function.
1247 The compiler disables some optimizations (like tail calls) in the caller of
1248 these functions.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001249</dl>
1250
Devang Patelcaacdba2008-09-04 23:05:13 +00001251</div>
1252
1253<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001254<h3>
Chris Lattner93564892006-04-08 04:40:53 +00001255 <a name="moduleasm">Module-Level Inline Assembly</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001256</h3>
Chris Lattner91c15c42006-01-23 23:23:47 +00001257
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001258<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001259
1260<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1261 the GCC "file scope inline asm" blocks. These blocks are internally
1262 concatenated by LLVM and treated as a single unit, but may be separated in
1263 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001264
Benjamin Kramer79698be2010-07-13 12:26:09 +00001265<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00001266module asm "inline asm code goes here"
1267module asm "more can go here"
1268</pre>
Chris Lattner91c15c42006-01-23 23:23:47 +00001269
1270<p>The strings can contain any character by escaping non-printable characters.
1271 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001272 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001273
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001274<p>The inline asm code is simply printed to the machine code .s file when
1275 assembly code is generated.</p>
1276
Chris Lattner91c15c42006-01-23 23:23:47 +00001277</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001278
Reid Spencer50c723a2007-02-19 23:54:10 +00001279<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001280<h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001281 <a name="datalayout">Data Layout</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001282</h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001283
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001284<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001285
Reid Spencer50c723a2007-02-19 23:54:10 +00001286<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001287 data is to be laid out in memory. The syntax for the data layout is
1288 simply:</p>
1289
Benjamin Kramer79698be2010-07-13 12:26:09 +00001290<pre class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001291target datalayout = "<i>layout specification</i>"
1292</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001293
1294<p>The <i>layout specification</i> consists of a list of specifications
1295 separated by the minus sign character ('-'). Each specification starts with
1296 a letter and may include other information after the letter to define some
1297 aspect of the data layout. The specifications accepted are as follows:</p>
1298
Reid Spencer50c723a2007-02-19 23:54:10 +00001299<dl>
1300 <dt><tt>E</tt></dt>
1301 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001302 bits with the most significance have the lowest address location.</dd>
1303
Reid Spencer50c723a2007-02-19 23:54:10 +00001304 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001305 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001306 the bits with the least significance have the lowest address
1307 location.</dd>
1308
Lang Hamesde7ab802011-10-10 23:42:08 +00001309 <dt><tt>S<i>size</i></tt></dt>
1310 <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
1311 of stack variables is limited to the natural stack alignment to avoid
1312 dynamic stack realignment. The stack alignment must be a multiple of
Lang Hamesff2c52c2011-10-11 17:50:14 +00001313 8-bits. If omitted, the natural stack alignment defaults to "unspecified",
1314 which does not prevent any alignment promotions.</dd>
Lang Hamesde7ab802011-10-10 23:42:08 +00001315
Reid Spencer50c723a2007-02-19 23:54:10 +00001316 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001317 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001318 <i>preferred</i> alignments. All sizes are in bits. Specifying
1319 the <i>pref</i> alignment is optional. If omitted, the
1320 preceding <tt>:</tt> should be omitted too.</dd>
1321
Reid Spencer50c723a2007-02-19 23:54:10 +00001322 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1323 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001324 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1325
Reid Spencer50c723a2007-02-19 23:54:10 +00001326 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001327 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001328 <i>size</i>.</dd>
1329
Reid Spencer50c723a2007-02-19 23:54:10 +00001330 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001331 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesence522852010-05-28 18:54:47 +00001332 <i>size</i>. Only values of <i>size</i> that are supported by the target
1333 will work. 32 (float) and 64 (double) are supported on all targets;
1334 80 or 128 (different flavors of long double) are also supported on some
1335 targets.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001336
Reid Spencer50c723a2007-02-19 23:54:10 +00001337 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1338 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001339 <i>size</i>.</dd>
1340
Daniel Dunbar7921a592009-06-08 22:17:53 +00001341 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1342 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001343 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001344
1345 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1346 <dd>This specifies a set of native integer widths for the target CPU
1347 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1348 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher455c5772009-12-05 02:46:03 +00001349 this set are considered to support most general arithmetic
Chris Lattnera381eff2009-11-07 09:35:34 +00001350 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001351</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001352
Reid Spencer50c723a2007-02-19 23:54:10 +00001353<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman61110ae2010-04-28 00:36:01 +00001354 default set of specifications which are then (possibly) overridden by the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001355 specifications in the <tt>datalayout</tt> keyword. The default specifications
1356 are given in this list:</p>
1357
Reid Spencer50c723a2007-02-19 23:54:10 +00001358<ul>
1359 <li><tt>E</tt> - big endian</li>
Dan Gohman8ad777d2010-02-23 02:44:03 +00001360 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001361 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1362 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1363 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1364 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001365 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001366 alignment of 64-bits</li>
1367 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1368 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1369 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1370 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1371 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001372 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001373</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001374
1375<p>When LLVM is determining the alignment for a given type, it uses the
1376 following rules:</p>
1377
Reid Spencer50c723a2007-02-19 23:54:10 +00001378<ol>
1379 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001380 specification is used.</li>
1381
Reid Spencer50c723a2007-02-19 23:54:10 +00001382 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001383 smallest integer type that is larger than the bitwidth of the sought type
1384 is used. If none of the specifications are larger than the bitwidth then
1385 the the largest integer type is used. For example, given the default
1386 specifications above, the i7 type will use the alignment of i8 (next
1387 largest) while both i65 and i256 will use the alignment of i64 (largest
1388 specified).</li>
1389
Reid Spencer50c723a2007-02-19 23:54:10 +00001390 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001391 largest vector type that is smaller than the sought vector type will be
1392 used as a fall back. This happens because &lt;128 x double&gt; can be
1393 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001394</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001395
Chris Lattner48797402011-10-11 23:01:39 +00001396<p>The function of the data layout string may not be what you expect. Notably,
1397 this is not a specification from the frontend of what alignment the code
1398 generator should use.</p>
1399
1400<p>Instead, if specified, the target data layout is required to match what the
1401 ultimate <em>code generator</em> expects. This string is used by the
1402 mid-level optimizers to
1403 improve code, and this only works if it matches what the ultimate code
1404 generator uses. If you would like to generate IR that does not embed this
1405 target-specific detail into the IR, then you don't have to specify the
1406 string. This will disable some optimizations that require precise layout
1407 information, but this also prevents those optimizations from introducing
1408 target specificity into the IR.</p>
1409
1410
1411
Reid Spencer50c723a2007-02-19 23:54:10 +00001412</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001413
Dan Gohman6154a012009-07-27 18:07:55 +00001414<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001415<h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001416 <a name="pointeraliasing">Pointer Aliasing Rules</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001417</h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001418
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001419<div>
Dan Gohman6154a012009-07-27 18:07:55 +00001420
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001421<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001422with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001423is undefined. Pointer values are associated with address ranges
1424according to the following rules:</p>
1425
1426<ul>
Dan Gohmandf12d082010-07-02 18:41:32 +00001427 <li>A pointer value is associated with the addresses associated with
1428 any value it is <i>based</i> on.
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001429 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001430 range of the variable's storage.</li>
1431 <li>The result value of an allocation instruction is associated with
1432 the address range of the allocated storage.</li>
1433 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001434 no address.</li>
Dan Gohman6154a012009-07-27 18:07:55 +00001435 <li>An integer constant other than zero or a pointer value returned
1436 from a function not defined within LLVM may be associated with address
1437 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001438 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001439 allocated by mechanisms provided by LLVM.</li>
Dan Gohmandf12d082010-07-02 18:41:32 +00001440</ul>
1441
1442<p>A pointer value is <i>based</i> on another pointer value according
1443 to the following rules:</p>
1444
1445<ul>
1446 <li>A pointer value formed from a
1447 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1448 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1449 <li>The result value of a
1450 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1451 of the <tt>bitcast</tt>.</li>
1452 <li>A pointer value formed by an
1453 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1454 pointer values that contribute (directly or indirectly) to the
1455 computation of the pointer's value.</li>
1456 <li>The "<i>based</i> on" relationship is transitive.</li>
1457</ul>
1458
1459<p>Note that this definition of <i>"based"</i> is intentionally
1460 similar to the definition of <i>"based"</i> in C99, though it is
1461 slightly weaker.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001462
1463<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001464<tt><a href="#i_load">load</a></tt> merely indicates the size and
1465alignment of the memory from which to load, as well as the
Dan Gohman4eb47192010-06-17 19:23:50 +00001466interpretation of the value. The first operand type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001467<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1468and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001469
1470<p>Consequently, type-based alias analysis, aka TBAA, aka
1471<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1472LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1473additional information which specialized optimization passes may use
1474to implement type-based alias analysis.</p>
1475
1476</div>
1477
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001478<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001479<h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001480 <a name="volatile">Volatile Memory Accesses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001481</h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001482
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001483<div>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001484
1485<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1486href="#i_store"><tt>store</tt></a>s, and <a
1487href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1488The optimizers must not change the number of volatile operations or change their
1489order of execution relative to other volatile operations. The optimizers
1490<i>may</i> change the order of volatile operations relative to non-volatile
1491operations. This is not Java's "volatile" and has no cross-thread
1492synchronization behavior.</p>
1493
1494</div>
1495
Eli Friedman35b54aa2011-07-20 21:35:53 +00001496<!-- ======================================================================= -->
1497<h3>
1498 <a name="memmodel">Memory Model for Concurrent Operations</a>
1499</h3>
1500
1501<div>
1502
1503<p>The LLVM IR does not define any way to start parallel threads of execution
1504or to register signal handlers. Nonetheless, there are platform-specific
1505ways to create them, and we define LLVM IR's behavior in their presence. This
1506model is inspired by the C++0x memory model.</p>
1507
Eli Friedman95f69a42011-08-22 21:35:27 +00001508<p>For a more informal introduction to this model, see the
1509<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
1510
Eli Friedman35b54aa2011-07-20 21:35:53 +00001511<p>We define a <i>happens-before</i> partial order as the least partial order
1512that</p>
1513<ul>
1514 <li>Is a superset of single-thread program order, and</li>
1515 <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
1516 <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
1517 by platform-specific techniques, like pthread locks, thread
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001518 creation, thread joining, etc., and by atomic instructions.
1519 (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
1520 </li>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001521</ul>
1522
1523<p>Note that program order does not introduce <i>happens-before</i> edges
1524between a thread and signals executing inside that thread.</p>
1525
1526<p>Every (defined) read operation (load instructions, memcpy, atomic
1527loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
1528(defined) write operations (store instructions, atomic
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001529stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
1530initialized globals are considered to have a write of the initializer which is
1531atomic and happens before any other read or write of the memory in question.
1532For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
1533any write to the same byte, except:</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001534
1535<ul>
1536 <li>If <var>write<sub>1</sub></var> happens before
1537 <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
1538 before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001539 does not see <var>write<sub>1</sub></var>.
Bill Wendling537603b2011-07-31 06:45:03 +00001540 <li>If <var>R<sub>byte</sub></var> happens before
1541 <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
1542 see <var>write<sub>3</sub></var>.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001543</ul>
1544
1545<p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
1546<ul>
Eli Friedman95f69a42011-08-22 21:35:27 +00001547 <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
1548 is supposed to give guarantees which can support
1549 <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
1550 addresses which do not behave like normal memory. It does not generally
1551 provide cross-thread synchronization.)
1552 <li>Otherwise, if there is no write to the same byte that happens before
Eli Friedman35b54aa2011-07-20 21:35:53 +00001553 <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns
1554 <tt>undef</tt> for that byte.
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001555 <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
Eli Friedman35b54aa2011-07-20 21:35:53 +00001556 <var>R<sub>byte</sub></var> returns the value written by that
1557 write.</li>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001558 <li>Otherwise, if <var>R</var> is atomic, and all the writes
1559 <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001560 values written. See the <a href="#ordering">Atomic Memory Ordering
1561 Constraints</a> section for additional constraints on how the choice
1562 is made.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001563 <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
1564</ul>
1565
1566<p><var>R</var> returns the value composed of the series of bytes it read.
1567This implies that some bytes within the value may be <tt>undef</tt>
1568<b>without</b> the entire value being <tt>undef</tt>. Note that this only
1569defines the semantics of the operation; it doesn't mean that targets will
1570emit more than one instruction to read the series of bytes.</p>
1571
1572<p>Note that in cases where none of the atomic intrinsics are used, this model
1573places only one restriction on IR transformations on top of what is required
1574for single-threaded execution: introducing a store to a byte which might not
Eli Friedman4bc9f3c2011-08-02 01:15:34 +00001575otherwise be stored is not allowed in general. (Specifically, in the case
1576where another thread might write to and read from an address, introducing a
1577store can change a load that may see exactly one write into a load that may
1578see multiple writes.)</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001579
1580<!-- FIXME: This model assumes all targets where concurrency is relevant have
1581a byte-size store which doesn't affect adjacent bytes. As far as I can tell,
1582none of the backends currently in the tree fall into this category; however,
1583there might be targets which care. If there are, we want a paragraph
1584like the following:
1585
1586Targets may specify that stores narrower than a certain width are not
1587available; on such a target, for the purposes of this model, treat any
1588non-atomic write with an alignment or width less than the minimum width
1589as if it writes to the relevant surrounding bytes.
1590-->
1591
1592</div>
1593
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001594<!-- ======================================================================= -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001595<h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001596 <a name="ordering">Atomic Memory Ordering Constraints</a>
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001597</h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001598
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001599<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001600
1601<p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
Eli Friedman59b66882011-08-09 23:02:53 +00001602<a href="#i_atomicrmw"><code>atomicrmw</code></a>,
1603<a href="#i_fence"><code>fence</code></a>,
1604<a href="#i_load"><code>atomic load</code></a>, and
Eli Friedman75362532011-08-09 23:26:12 +00001605<a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001606that determines which other atomic instructions on the same address they
1607<i>synchronize with</i>. These semantics are borrowed from Java and C++0x,
1608but are somewhat more colloquial. If these descriptions aren't precise enough,
Eli Friedman95f69a42011-08-22 21:35:27 +00001609check those specs (see spec references in the
1610<a href="Atomic.html#introduction">atomics guide</a>).
1611<a href="#i_fence"><code>fence</code></a> instructions
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001612treat these orderings somewhat differently since they don't take an address.
1613See that instruction's documentation for details.</p>
1614
Eli Friedman95f69a42011-08-22 21:35:27 +00001615<p>For a simpler introduction to the ordering constraints, see the
1616<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
1617
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001618<dl>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001619<dt><code>unordered</code></dt>
1620<dd>The set of values that can be read is governed by the happens-before
1621partial order. A value cannot be read unless some operation wrote it.
1622This is intended to provide a guarantee strong enough to model Java's
1623non-volatile shared variables. This ordering cannot be specified for
1624read-modify-write operations; it is not strong enough to make them atomic
1625in any interesting way.</dd>
1626<dt><code>monotonic</code></dt>
1627<dd>In addition to the guarantees of <code>unordered</code>, there is a single
1628total order for modifications by <code>monotonic</code> operations on each
1629address. All modification orders must be compatible with the happens-before
1630order. There is no guarantee that the modification orders can be combined to
1631a global total order for the whole program (and this often will not be
1632possible). The read in an atomic read-modify-write operation
1633(<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
1634<a href="#i_atomicrmw"><code>atomicrmw</code></a>)
1635reads the value in the modification order immediately before the value it
1636writes. If one atomic read happens before another atomic read of the same
1637address, the later read must see the same value or a later value in the
1638address's modification order. This disallows reordering of
1639<code>monotonic</code> (or stronger) operations on the same address. If an
1640address is written <code>monotonic</code>ally by one thread, and other threads
1641<code>monotonic</code>ally read that address repeatedly, the other threads must
Eli Friedman95f69a42011-08-22 21:35:27 +00001642eventually see the write. This corresponds to the C++0x/C1x
1643<code>memory_order_relaxed</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001644<dt><code>acquire</code></dt>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001645<dd>In addition to the guarantees of <code>monotonic</code>,
Eli Friedman0cb3b562011-08-24 20:28:39 +00001646a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
1647operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
1648<dt><code>release</code></dt>
1649<dd>In addition to the guarantees of <code>monotonic</code>, if this operation
1650writes a value which is subsequently read by an <code>acquire</code> operation,
1651it <i>synchronizes-with</i> that operation. (This isn't a complete
1652description; see the C++0x definition of a release sequence.) This corresponds
1653to the C++0x/C1x <code>memory_order_release</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001654<dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
Eli Friedman95f69a42011-08-22 21:35:27 +00001655<code>acquire</code> and <code>release</code> operation on its address.
1656This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001657<dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
1658<dd>In addition to the guarantees of <code>acq_rel</code>
1659(<code>acquire</code> for an operation which only reads, <code>release</code>
1660for an operation which only writes), there is a global total order on all
1661sequentially-consistent operations on all addresses, which is consistent with
1662the <i>happens-before</i> partial order and with the modification orders of
1663all the affected addresses. Each sequentially-consistent read sees the last
Eli Friedman95f69a42011-08-22 21:35:27 +00001664preceding write to the same address in this global order. This corresponds
1665to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001666</dl>
1667
1668<p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
1669it only <i>synchronizes with</i> or participates in modification and seq_cst
1670total orderings with other operations running in the same thread (for example,
1671in signal handlers).</p>
1672
1673</div>
1674
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001675</div>
1676
Chris Lattner2f7c9632001-06-06 20:29:01 +00001677<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001678<h2><a name="typesystem">Type System</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00001679<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001680
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001681<div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001682
Misha Brukman76307852003-11-08 01:05:38 +00001683<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001684 intermediate representation. Being typed enables a number of optimizations
1685 to be performed on the intermediate representation directly, without having
1686 to do extra analyses on the side before the transformation. A strong type
1687 system makes it easier to read the generated code and enables novel analyses
1688 and transformations that are not feasible to perform on normal three address
1689 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001690
Chris Lattner2f7c9632001-06-06 20:29:01 +00001691<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001692<h3>
1693 <a name="t_classifications">Type Classifications</a>
1694</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001695
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001696<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001697
1698<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001699
1700<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001701 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001702 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001703 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001704 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001705 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001706 </tr>
1707 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001708 <td><a href="#t_floating">floating point</a></td>
1709 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001710 </tr>
1711 <tr>
1712 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001713 <td><a href="#t_integer">integer</a>,
1714 <a href="#t_floating">floating point</a>,
1715 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001716 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001717 <a href="#t_struct">structure</a>,
1718 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001719 <a href="#t_label">label</a>,
1720 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001721 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001722 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001723 <tr>
1724 <td><a href="#t_primitive">primitive</a></td>
1725 <td><a href="#t_label">label</a>,
1726 <a href="#t_void">void</a>,
Tobias Grosser4c8c95b2010-12-28 20:29:31 +00001727 <a href="#t_integer">integer</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001728 <a href="#t_floating">floating point</a>,
Dale Johannesen33e5c352010-10-01 00:48:59 +00001729 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001730 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001731 </tr>
1732 <tr>
1733 <td><a href="#t_derived">derived</a></td>
Chris Lattner392be582010-02-12 20:49:41 +00001734 <td><a href="#t_array">array</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001735 <a href="#t_function">function</a>,
1736 <a href="#t_pointer">pointer</a>,
1737 <a href="#t_struct">structure</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001738 <a href="#t_vector">vector</a>,
1739 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001740 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001741 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001742 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001743</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001744
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001745<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1746 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001747 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001748
Misha Brukman76307852003-11-08 01:05:38 +00001749</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001750
Chris Lattner2f7c9632001-06-06 20:29:01 +00001751<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001752<h3>
1753 <a name="t_primitive">Primitive Types</a>
1754</h3>
Chris Lattner43542b32008-01-04 04:34:14 +00001755
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001756<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001757
Chris Lattner7824d182008-01-04 04:32:38 +00001758<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001759 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001760
1761<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001762<h4>
1763 <a name="t_integer">Integer Type</a>
1764</h4>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001765
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001766<div>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001767
1768<h5>Overview:</h5>
1769<p>The integer type is a very simple type that simply specifies an arbitrary
1770 bit width for the integer type desired. Any bit width from 1 bit to
1771 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1772
1773<h5>Syntax:</h5>
1774<pre>
1775 iN
1776</pre>
1777
1778<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1779 value.</p>
1780
1781<h5>Examples:</h5>
1782<table class="layout">
1783 <tr class="layout">
1784 <td class="left"><tt>i1</tt></td>
1785 <td class="left">a single-bit integer.</td>
1786 </tr>
1787 <tr class="layout">
1788 <td class="left"><tt>i32</tt></td>
1789 <td class="left">a 32-bit integer.</td>
1790 </tr>
1791 <tr class="layout">
1792 <td class="left"><tt>i1942652</tt></td>
1793 <td class="left">a really big integer of over 1 million bits.</td>
1794 </tr>
1795</table>
1796
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001797</div>
1798
1799<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001800<h4>
1801 <a name="t_floating">Floating Point Types</a>
1802</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001803
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001804<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001805
1806<table>
1807 <tbody>
1808 <tr><th>Type</th><th>Description</th></tr>
1809 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1810 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1811 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1812 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1813 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1814 </tbody>
1815</table>
1816
Chris Lattner7824d182008-01-04 04:32:38 +00001817</div>
1818
1819<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001820<h4>
1821 <a name="t_x86mmx">X86mmx Type</a>
1822</h4>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001823
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001824<div>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001825
1826<h5>Overview:</h5>
1827<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1828
1829<h5>Syntax:</h5>
1830<pre>
Dale Johannesenb1f0ff12010-10-01 01:07:02 +00001831 x86mmx
Dale Johannesen33e5c352010-10-01 00:48:59 +00001832</pre>
1833
1834</div>
1835
1836<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001837<h4>
1838 <a name="t_void">Void Type</a>
1839</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001840
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001841<div>
Bill Wendling30235112009-07-20 02:39:26 +00001842
Chris Lattner7824d182008-01-04 04:32:38 +00001843<h5>Overview:</h5>
1844<p>The void type does not represent any value and has no size.</p>
1845
1846<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001847<pre>
1848 void
1849</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001850
Chris Lattner7824d182008-01-04 04:32:38 +00001851</div>
1852
1853<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001854<h4>
1855 <a name="t_label">Label Type</a>
1856</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001857
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001858<div>
Bill Wendling30235112009-07-20 02:39:26 +00001859
Chris Lattner7824d182008-01-04 04:32:38 +00001860<h5>Overview:</h5>
1861<p>The label type represents code labels.</p>
1862
1863<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001864<pre>
1865 label
1866</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001867
Chris Lattner7824d182008-01-04 04:32:38 +00001868</div>
1869
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001870<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001871<h4>
1872 <a name="t_metadata">Metadata Type</a>
1873</h4>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001874
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001875<div>
Bill Wendling30235112009-07-20 02:39:26 +00001876
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001877<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001878<p>The metadata type represents embedded metadata. No derived types may be
1879 created from metadata except for <a href="#t_function">function</a>
1880 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001881
1882<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001883<pre>
1884 metadata
1885</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001886
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001887</div>
1888
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001889</div>
Chris Lattner7824d182008-01-04 04:32:38 +00001890
1891<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001892<h3>
1893 <a name="t_derived">Derived Types</a>
1894</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00001895
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001896<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001897
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001898<p>The real power in LLVM comes from the derived types in the system. This is
1899 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001900 useful types. Each of these types contain one or more element types which
1901 may be a primitive type, or another derived type. For example, it is
1902 possible to have a two dimensional array, using an array as the element type
1903 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001904
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00001905</div>
1906
1907
Chris Lattner392be582010-02-12 20:49:41 +00001908<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001909<h4>
1910 <a name="t_aggregate">Aggregate Types</a>
1911</h4>
Chris Lattner392be582010-02-12 20:49:41 +00001912
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001913<div>
Chris Lattner392be582010-02-12 20:49:41 +00001914
1915<p>Aggregate Types are a subset of derived types that can contain multiple
1916 member types. <a href="#t_array">Arrays</a>,
Chris Lattner13ee7952010-08-28 04:09:24 +00001917 <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1918 aggregate types.</p>
Chris Lattner392be582010-02-12 20:49:41 +00001919
1920</div>
1921
Reid Spencer138249b2007-05-16 18:44:01 +00001922<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001923<h4>
1924 <a name="t_array">Array Type</a>
1925</h4>
Chris Lattner74d3f822004-12-09 17:30:23 +00001926
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001927<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001928
Chris Lattner2f7c9632001-06-06 20:29:01 +00001929<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001930<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001931 sequentially in memory. The array type requires a size (number of elements)
1932 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001933
Chris Lattner590645f2002-04-14 06:13:44 +00001934<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001935<pre>
1936 [&lt;# elements&gt; x &lt;elementtype&gt;]
1937</pre>
1938
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001939<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1940 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001941
Chris Lattner590645f2002-04-14 06:13:44 +00001942<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001943<table class="layout">
1944 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001945 <td class="left"><tt>[40 x i32]</tt></td>
1946 <td class="left">Array of 40 32-bit integer values.</td>
1947 </tr>
1948 <tr class="layout">
1949 <td class="left"><tt>[41 x i32]</tt></td>
1950 <td class="left">Array of 41 32-bit integer values.</td>
1951 </tr>
1952 <tr class="layout">
1953 <td class="left"><tt>[4 x i8]</tt></td>
1954 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001955 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001956</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001957<p>Here are some examples of multidimensional arrays:</p>
1958<table class="layout">
1959 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001960 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1961 <td class="left">3x4 array of 32-bit integer values.</td>
1962 </tr>
1963 <tr class="layout">
1964 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1965 <td class="left">12x10 array of single precision floating point values.</td>
1966 </tr>
1967 <tr class="layout">
1968 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1969 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001970 </tr>
1971</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001972
Dan Gohmanc74bc282009-11-09 19:01:53 +00001973<p>There is no restriction on indexing beyond the end of the array implied by
1974 a static type (though there are restrictions on indexing beyond the bounds
1975 of an allocated object in some cases). This means that single-dimension
1976 'variable sized array' addressing can be implemented in LLVM with a zero
1977 length array type. An implementation of 'pascal style arrays' in LLVM could
1978 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001979
Misha Brukman76307852003-11-08 01:05:38 +00001980</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001981
Chris Lattner2f7c9632001-06-06 20:29:01 +00001982<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001983<h4>
1984 <a name="t_function">Function Type</a>
1985</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001986
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001987<div>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001988
Chris Lattner2f7c9632001-06-06 20:29:01 +00001989<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001990<p>The function type can be thought of as a function signature. It consists of
1991 a return type and a list of formal parameter types. The return type of a
Chris Lattner13ee7952010-08-28 04:09:24 +00001992 function type is a first class type or a void type.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001993
Chris Lattner2f7c9632001-06-06 20:29:01 +00001994<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001995<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001996 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00001997</pre>
1998
John Criswell4c0cf7f2005-10-24 16:17:18 +00001999<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002000 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
2001 which indicates that the function takes a variable number of arguments.
2002 Variable argument functions can access their arguments with
2003 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner47f2a832010-03-02 06:36:51 +00002004 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00002005 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002006
Chris Lattner2f7c9632001-06-06 20:29:01 +00002007<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002008<table class="layout">
2009 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00002010 <td class="left"><tt>i32 (i32)</tt></td>
2011 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002012 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00002013 </tr><tr class="layout">
Chris Lattner47f2a832010-03-02 06:36:51 +00002014 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00002015 </tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002016 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner47f2a832010-03-02 06:36:51 +00002017 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
2018 returning <tt>float</tt>.
Reid Spencer58c08712006-12-31 07:18:34 +00002019 </td>
2020 </tr><tr class="layout">
2021 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002022 <td class="left">A vararg function that takes at least one
2023 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
2024 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer58c08712006-12-31 07:18:34 +00002025 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002026 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00002027 </tr><tr class="layout">
2028 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00002029 <td class="left">A function taking an <tt>i32</tt>, returning a
2030 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00002031 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002032 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002033</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002034
Misha Brukman76307852003-11-08 01:05:38 +00002035</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002036
Chris Lattner2f7c9632001-06-06 20:29:01 +00002037<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002038<h4>
2039 <a name="t_struct">Structure Type</a>
2040</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002041
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002042<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002043
Chris Lattner2f7c9632001-06-06 20:29:01 +00002044<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002045<p>The structure type is used to represent a collection of data members together
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002046 in memory. The elements of a structure may be any type that has a size.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002047
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00002048<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
2049 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
2050 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2051 Structures in registers are accessed using the
2052 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
2053 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002054
2055<p>Structures may optionally be "packed" structures, which indicate that the
2056 alignment of the struct is one byte, and that there is no padding between
Chris Lattner190552d2011-08-12 17:31:02 +00002057 the elements. In non-packed structs, padding between field types is inserted
2058 as defined by the TargetData string in the module, which is required to match
Chris Lattner7bd0ea32011-10-11 23:02:17 +00002059 what the underlying code generator expects.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002060
Chris Lattner190552d2011-08-12 17:31:02 +00002061<p>Structures can either be "literal" or "identified". A literal structure is
2062 defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
2063 types are always defined at the top level with a name. Literal types are
2064 uniqued by their contents and can never be recursive or opaque since there is
Chris Lattner32531732011-08-12 18:12:40 +00002065 no way to write one. Identified types can be recursive, can be opaqued, and are
Chris Lattner190552d2011-08-12 17:31:02 +00002066 never uniqued.
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002067</p>
2068
Chris Lattner2f7c9632001-06-06 20:29:01 +00002069<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002070<pre>
Chris Lattner190552d2011-08-12 17:31:02 +00002071 %T1 = type { &lt;type list&gt; } <i>; Identified normal struct type</i>
2072 %T2 = type &lt;{ &lt;type list&gt; }&gt; <i>; Identified packed struct type</i>
Bill Wendling30235112009-07-20 02:39:26 +00002073</pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002074
Chris Lattner2f7c9632001-06-06 20:29:01 +00002075<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002076<table class="layout">
2077 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002078 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
2079 <td class="left">A triple of three <tt>i32</tt> values</td>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002080 </tr>
2081 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002082 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
2083 <td class="left">A pair, where the first element is a <tt>float</tt> and the
2084 second element is a <a href="#t_pointer">pointer</a> to a
2085 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
2086 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002087 </tr>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002088 <tr class="layout">
2089 <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
2090 <td class="left">A packed struct known to be 5 bytes in size.</td>
2091 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002092</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002093
Misha Brukman76307852003-11-08 01:05:38 +00002094</div>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002095
Chris Lattner2f7c9632001-06-06 20:29:01 +00002096<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002097<h4>
Chris Lattner2a843822011-07-23 19:59:08 +00002098 <a name="t_opaque">Opaque Structure Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002099</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002100
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002101<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002102
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002103<h5>Overview:</h5>
Chris Lattner2a843822011-07-23 19:59:08 +00002104<p>Opaque structure types are used to represent named structure types that do
2105 not have a body specified. This corresponds (for example) to the C notion of
2106 a forward declared structure.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002107
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002108<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002109<pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002110 %X = type opaque
2111 %52 = type opaque
Bill Wendling30235112009-07-20 02:39:26 +00002112</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002113
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002114<h5>Examples:</h5>
2115<table class="layout">
2116 <tr class="layout">
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002117 <td class="left"><tt>opaque</tt></td>
2118 <td class="left">An opaque type.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002119 </tr>
2120</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002121
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002122</div>
2123
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002124
2125
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002126<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002127<h4>
2128 <a name="t_pointer">Pointer Type</a>
2129</h4>
Chris Lattner4a67c912009-02-08 19:53:29 +00002130
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002131<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002132
2133<h5>Overview:</h5>
Dan Gohman88481112010-02-25 16:50:07 +00002134<p>The pointer type is used to specify memory locations.
2135 Pointers are commonly used to reference objects in memory.</p>
2136
2137<p>Pointer types may have an optional address space attribute defining the
2138 numbered address space where the pointed-to object resides. The default
2139 address space is number zero. The semantics of non-zero address
2140 spaces are target-specific.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002141
2142<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
2143 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00002144
Chris Lattner590645f2002-04-14 06:13:44 +00002145<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002146<pre>
2147 &lt;type&gt; *
2148</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002149
Chris Lattner590645f2002-04-14 06:13:44 +00002150<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002151<table class="layout">
2152 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00002153 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002154 <td class="left">A <a href="#t_pointer">pointer</a> to <a
2155 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
2156 </tr>
2157 <tr class="layout">
Dan Gohmanaabfdb32010-05-28 17:13:49 +00002158 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002159 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002160 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00002161 <tt>i32</tt>.</td>
2162 </tr>
2163 <tr class="layout">
2164 <td class="left"><tt>i32 addrspace(5)*</tt></td>
2165 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
2166 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002167 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00002168</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002169
Misha Brukman76307852003-11-08 01:05:38 +00002170</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002171
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002172<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002173<h4>
2174 <a name="t_vector">Vector Type</a>
2175</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002176
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002177<div>
Chris Lattner37b6b092005-04-25 17:34:15 +00002178
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002179<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002180<p>A vector type is a simple derived type that represents a vector of elements.
2181 Vector types are used when multiple primitive data are operated in parallel
2182 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00002183 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002184 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002185
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002186<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00002187<pre>
2188 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
2189</pre>
2190
Chris Lattnerf11031a2010-10-10 18:20:35 +00002191<p>The number of elements is a constant integer value larger than 0; elementtype
2192 may be any integer or floating point type. Vectors of size zero are not
2193 allowed, and pointers are not allowed as the element type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002194
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002195<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002196<table class="layout">
2197 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00002198 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
2199 <td class="left">Vector of 4 32-bit integer values.</td>
2200 </tr>
2201 <tr class="layout">
2202 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
2203 <td class="left">Vector of 8 32-bit floating-point values.</td>
2204 </tr>
2205 <tr class="layout">
2206 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2207 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002208 </tr>
2209</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002210
Misha Brukman76307852003-11-08 01:05:38 +00002211</div>
2212
Bill Wendlingae8b5ea2011-07-31 06:47:33 +00002213</div>
2214
Chris Lattner74d3f822004-12-09 17:30:23 +00002215<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002216<h2><a name="constants">Constants</a></h2>
Chris Lattner74d3f822004-12-09 17:30:23 +00002217<!-- *********************************************************************** -->
2218
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002219<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002220
2221<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002222 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002223
Chris Lattner74d3f822004-12-09 17:30:23 +00002224<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002225<h3>
2226 <a name="simpleconstants">Simple Constants</a>
2227</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002228
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002229<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002230
2231<dl>
2232 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002233 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00002234 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002235
2236 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002237 <dd>Standard integers (such as '4') are constants of
2238 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2239 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002240
2241 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002242 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002243 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2244 notation (see below). The assembler requires the exact decimal value of a
2245 floating-point constant. For example, the assembler accepts 1.25 but
2246 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2247 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002248
2249 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00002250 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002251 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002252</dl>
2253
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002254<p>The one non-intuitive notation for constants is the hexadecimal form of
2255 floating point constants. For example, the form '<tt>double
2256 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2257 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2258 constants are required (and the only time that they are generated by the
2259 disassembler) is when a floating point constant must be emitted but it cannot
2260 be represented as a decimal floating point number in a reasonable number of
2261 digits. For example, NaN's, infinities, and other special values are
2262 represented in their IEEE hexadecimal format so that assembly and disassembly
2263 do not cause any bits to change in the constants.</p>
2264
Dale Johannesencd4a3012009-02-11 22:14:51 +00002265<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002266 represented using the 16-digit form shown above (which matches the IEEE754
2267 representation for double); float values must, however, be exactly
2268 representable as IEE754 single precision. Hexadecimal format is always used
2269 for long double, and there are three forms of long double. The 80-bit format
2270 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2271 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2272 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2273 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2274 currently supported target uses this format. Long doubles will only work if
2275 they match the long double format on your target. All hexadecimal formats
2276 are big-endian (sign bit at the left).</p>
2277
Dale Johannesen33e5c352010-10-01 00:48:59 +00002278<p>There are no constants of type x86mmx.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002279</div>
2280
2281<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002282<h3>
Bill Wendling972b7202009-07-20 02:32:41 +00002283<a name="aggregateconstants"></a> <!-- old anchor -->
2284<a name="complexconstants">Complex Constants</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002285</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002286
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002287<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002288
Chris Lattner361bfcd2009-02-28 18:32:25 +00002289<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002290 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002291
2292<dl>
2293 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002294 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002295 type definitions (a comma separated list of elements, surrounded by braces
2296 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2297 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2298 Structure constants must have <a href="#t_struct">structure type</a>, and
2299 the number and types of elements must match those specified by the
2300 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002301
2302 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002303 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002304 definitions (a comma separated list of elements, surrounded by square
2305 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2306 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2307 the number and types of elements must match those specified by the
2308 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002309
Reid Spencer404a3252007-02-15 03:07:05 +00002310 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00002311 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002312 definitions (a comma separated list of elements, surrounded by
2313 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2314 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2315 have <a href="#t_vector">vector type</a>, and the number and types of
2316 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002317
2318 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002319 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattner392be582010-02-12 20:49:41 +00002320 value to zero of <em>any</em> type, including scalar and
2321 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002322 This is often used to avoid having to print large zero initializers
2323 (e.g. for large arrays) and is always exactly equivalent to using explicit
2324 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00002325
2326 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00002327 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002328 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2329 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2330 be interpreted as part of the instruction stream, metadata is a place to
2331 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002332</dl>
2333
2334</div>
2335
2336<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002337<h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002338 <a name="globalconstants">Global Variable and Function Addresses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002339</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002340
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002341<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002342
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002343<p>The addresses of <a href="#globalvars">global variables</a>
2344 and <a href="#functionstructure">functions</a> are always implicitly valid
2345 (link-time) constants. These constants are explicitly referenced when
2346 the <a href="#identifiers">identifier for the global</a> is used and always
2347 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2348 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002349
Benjamin Kramer79698be2010-07-13 12:26:09 +00002350<pre class="doc_code">
Chris Lattner00538a12007-06-06 18:28:13 +00002351@X = global i32 17
2352@Y = global i32 42
2353@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002354</pre>
2355
2356</div>
2357
2358<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002359<h3>
2360 <a name="undefvalues">Undefined Values</a>
2361</h3>
2362
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002363<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002364
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002365<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002366 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002367 Undefined values may be of any type (other than '<tt>label</tt>'
2368 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002369
Chris Lattner92ada5d2009-09-11 01:49:31 +00002370<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002371 program is well defined no matter what value is used. This gives the
2372 compiler more freedom to optimize. Here are some examples of (potentially
2373 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002374
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002375
Benjamin Kramer79698be2010-07-13 12:26:09 +00002376<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002377 %A = add %X, undef
2378 %B = sub %X, undef
2379 %C = xor %X, undef
2380Safe:
2381 %A = undef
2382 %B = undef
2383 %C = undef
2384</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002385
2386<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002387 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002388
Benjamin Kramer79698be2010-07-13 12:26:09 +00002389<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002390 %A = or %X, undef
2391 %B = and %X, undef
2392Safe:
2393 %A = -1
2394 %B = 0
2395Unsafe:
2396 %A = undef
2397 %B = undef
2398</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002399
2400<p>These logical operations have bits that are not always affected by the input.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002401 For example, if <tt>%X</tt> has a zero bit, then the output of the
2402 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2403 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2404 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2405 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2406 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2407 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2408 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002409
Benjamin Kramer79698be2010-07-13 12:26:09 +00002410<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002411 %A = select undef, %X, %Y
2412 %B = select undef, 42, %Y
2413 %C = select %X, %Y, undef
2414Safe:
2415 %A = %X (or %Y)
2416 %B = 42 (or %Y)
2417 %C = %Y
2418Unsafe:
2419 %A = undef
2420 %B = undef
2421 %C = undef
2422</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002423
Bill Wendling6bbe0912010-10-27 01:07:41 +00002424<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2425 branch) conditions can go <em>either way</em>, but they have to come from one
2426 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2427 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2428 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2429 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2430 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2431 eliminated.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002432
Benjamin Kramer79698be2010-07-13 12:26:09 +00002433<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002434 %A = xor undef, undef
Eric Christopher455c5772009-12-05 02:46:03 +00002435
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002436 %B = undef
2437 %C = xor %B, %B
2438
2439 %D = undef
2440 %E = icmp lt %D, 4
2441 %F = icmp gte %D, 4
2442
2443Safe:
2444 %A = undef
2445 %B = undef
2446 %C = undef
2447 %D = undef
2448 %E = undef
2449 %F = undef
2450</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002451
Bill Wendling6bbe0912010-10-27 01:07:41 +00002452<p>This example points out that two '<tt>undef</tt>' operands are not
2453 necessarily the same. This can be surprising to people (and also matches C
2454 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2455 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2456 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2457 its value over its "live range". This is true because the variable doesn't
2458 actually <em>have a live range</em>. Instead, the value is logically read
2459 from arbitrary registers that happen to be around when needed, so the value
2460 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2461 need to have the same semantics or the core LLVM "replace all uses with"
2462 concept would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002463
Benjamin Kramer79698be2010-07-13 12:26:09 +00002464<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002465 %A = fdiv undef, %X
2466 %B = fdiv %X, undef
2467Safe:
2468 %A = undef
2469b: unreachable
2470</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002471
2472<p>These examples show the crucial difference between an <em>undefined
Bill Wendling6bbe0912010-10-27 01:07:41 +00002473 value</em> and <em>undefined behavior</em>. An undefined value (like
2474 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2475 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2476 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2477 defined on SNaN's. However, in the second example, we can make a more
2478 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2479 arbitrary value, we are allowed to assume that it could be zero. Since a
2480 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2481 the operation does not execute at all. This allows us to delete the divide and
2482 all code after it. Because the undefined operation "can't happen", the
2483 optimizer can assume that it occurs in dead code.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002484
Benjamin Kramer79698be2010-07-13 12:26:09 +00002485<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002486a: store undef -> %X
2487b: store %X -> undef
2488Safe:
2489a: &lt;deleted&gt;
2490b: unreachable
2491</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002492
Bill Wendling6bbe0912010-10-27 01:07:41 +00002493<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2494 undefined value can be assumed to not have any effect; we can assume that the
2495 value is overwritten with bits that happen to match what was already there.
2496 However, a store <em>to</em> an undefined location could clobber arbitrary
2497 memory, therefore, it has undefined behavior.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002498
Chris Lattner74d3f822004-12-09 17:30:23 +00002499</div>
2500
2501<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002502<h3>
2503 <a name="trapvalues">Trap Values</a>
2504</h3>
2505
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002506<div>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002507
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002508<p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002509 instead of representing an unspecified bit pattern, they represent the
2510 fact that an instruction or constant expression which cannot evoke side
2511 effects has nevertheless detected a condition which results in undefined
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002512 behavior.</p>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002513
Dan Gohman2f1ae062010-04-28 00:49:41 +00002514<p>There is currently no way of representing a trap value in the IR; they
Dan Gohmanac355aa2010-05-03 14:51:43 +00002515 only exist when produced by operations such as
Dan Gohman2f1ae062010-04-28 00:49:41 +00002516 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002517
Dan Gohman2f1ae062010-04-28 00:49:41 +00002518<p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002519
Dan Gohman2f1ae062010-04-28 00:49:41 +00002520<ul>
2521<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2522 their operands.</li>
2523
2524<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2525 to their dynamic predecessor basic block.</li>
2526
2527<li>Function arguments depend on the corresponding actual argument values in
2528 the dynamic callers of their functions.</li>
2529
2530<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2531 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2532 control back to them.</li>
2533
Dan Gohman7292a752010-05-03 14:55:22 +00002534<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2535 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2536 or exception-throwing call instructions that dynamically transfer control
2537 back to them.</li>
2538
Dan Gohman2f1ae062010-04-28 00:49:41 +00002539<li>Non-volatile loads and stores depend on the most recent stores to all of the
2540 referenced memory addresses, following the order in the IR
2541 (including loads and stores implied by intrinsics such as
2542 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2543
Dan Gohman3513ea52010-05-03 14:59:34 +00002544<!-- TODO: In the case of multiple threads, this only applies if the store
2545 "happens-before" the load or store. -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002546
Dan Gohman2f1ae062010-04-28 00:49:41 +00002547<!-- TODO: floating-point exception state -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002548
Dan Gohman2f1ae062010-04-28 00:49:41 +00002549<li>An instruction with externally visible side effects depends on the most
2550 recent preceding instruction with externally visible side effects, following
Dan Gohman6c858db2010-07-06 15:26:33 +00002551 the order in the IR. (This includes
2552 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002553
Dan Gohman7292a752010-05-03 14:55:22 +00002554<li>An instruction <i>control-depends</i> on a
2555 <a href="#terminators">terminator instruction</a>
2556 if the terminator instruction has multiple successors and the instruction
2557 is always executed when control transfers to one of the successors, and
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002558 may not be executed when control is transferred to another.</li>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002559
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002560<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2561 instruction if the set of instructions it otherwise depends on would be
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002562 different if the terminator had transferred control to a different
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002563 successor.</li>
2564
Dan Gohman2f1ae062010-04-28 00:49:41 +00002565<li>Dependence is transitive.</li>
2566
2567</ul>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002568
2569<p>Whenever a trap value is generated, all values which depend on it evaluate
Lang Hames91fc0902011-10-13 23:04:49 +00002570 to trap. If they have side effects, they evoke their side effects as if each
Dan Gohman2f1ae062010-04-28 00:49:41 +00002571 operand with a trap value were undef. If they have externally-visible side
2572 effects, the behavior is undefined.</p>
2573
2574<p>Here are some examples:</p>
Dan Gohman48a25882010-04-26 20:54:53 +00002575
Benjamin Kramer79698be2010-07-13 12:26:09 +00002576<pre class="doc_code">
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002577entry:
2578 %trap = sub nuw i32 0, 1 ; Results in a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002579 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2580 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2581 store i32 0, i32* %trap_yet_again ; undefined behavior
2582
2583 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2584 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2585
2586 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2587
2588 %narrowaddr = bitcast i32* @g to i16*
2589 %wideaddr = bitcast i32* @g to i64*
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002590 %trap3 = load i16* %narrowaddr ; Returns a trap value.
2591 %trap4 = load i64* %wideaddr ; Returns a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002592
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002593 %cmp = icmp slt i32 %trap, 0 ; Returns a trap value.
2594 br i1 %cmp, label %true, label %end ; Branch to either destination.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002595
2596true:
Dan Gohman2f1ae062010-04-28 00:49:41 +00002597 volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so
2598 ; it has undefined behavior.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002599 br label %end
2600
2601end:
2602 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2603 ; Both edges into this PHI are
2604 ; control-dependent on %cmp, so this
Dan Gohman2f1ae062010-04-28 00:49:41 +00002605 ; always results in a trap value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002606
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002607 volatile store i32 0, i32* @g ; This would depend on the store in %true
2608 ; if %cmp is true, or the store in %entry
2609 ; otherwise, so this is undefined behavior.
2610
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002611 br i1 %cmp, label %second_true, label %second_end
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002612 ; The same branch again, but this time the
2613 ; true block doesn't have side effects.
2614
2615second_true:
2616 ; No side effects!
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002617 ret void
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002618
2619second_end:
2620 volatile store i32 0, i32* @g ; This time, the instruction always depends
2621 ; on the store in %end. Also, it is
2622 ; control-equivalent to %end, so this is
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002623 ; well-defined (again, ignoring earlier
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002624 ; undefined behavior in this example).
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002625</pre>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002626
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002627</div>
2628
2629<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002630<h3>
2631 <a name="blockaddress">Addresses of Basic Blocks</a>
2632</h3>
2633
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002634<div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002635
Chris Lattneraa99c942009-11-01 01:27:45 +00002636<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002637
2638<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002639 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002640 the address of the entry block is illegal.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002641
Chris Lattnere4801f72009-10-27 21:01:34 +00002642<p>This value only has defined behavior when used as an operand to the
Bill Wendling6bbe0912010-10-27 01:07:41 +00002643 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2644 comparisons against null. Pointer equality tests between labels addresses
2645 results in undefined behavior &mdash; though, again, comparison against null
2646 is ok, and no label is equal to the null pointer. This may be passed around
2647 as an opaque pointer sized value as long as the bits are not inspected. This
2648 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2649 long as the original value is reconstituted before the <tt>indirectbr</tt>
2650 instruction.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002651
Bill Wendling6bbe0912010-10-27 01:07:41 +00002652<p>Finally, some targets may provide defined semantics when using the value as
2653 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002654
2655</div>
2656
2657
2658<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002659<h3>
2660 <a name="constantexprs">Constant Expressions</a>
2661</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002662
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002663<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002664
2665<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002666 to be used as constants. Constant expressions may be of
2667 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2668 operation that does not have side effects (e.g. load and call are not
Bill Wendling6bbe0912010-10-27 01:07:41 +00002669 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002670
2671<dl>
Dan Gohmand6a6f612010-05-28 17:07:41 +00002672 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002673 <dd>Truncate a constant to another type. The bit size of CST must be larger
2674 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002675
Dan Gohmand6a6f612010-05-28 17:07:41 +00002676 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002677 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002678 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002679
Dan Gohmand6a6f612010-05-28 17:07:41 +00002680 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002681 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002682 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002683
Dan Gohmand6a6f612010-05-28 17:07:41 +00002684 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002685 <dd>Truncate a floating point constant to another floating point type. The
2686 size of CST must be larger than the size of TYPE. Both types must be
2687 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002688
Dan Gohmand6a6f612010-05-28 17:07:41 +00002689 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002690 <dd>Floating point extend a constant to another type. The size of CST must be
2691 smaller or equal to the size of TYPE. Both types must be floating
2692 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002693
Dan Gohmand6a6f612010-05-28 17:07:41 +00002694 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002695 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002696 constant. TYPE must be a scalar or vector integer type. CST must be of
2697 scalar or vector floating point type. Both CST and TYPE must be scalars,
2698 or vectors of the same number of elements. If the value won't fit in the
2699 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002700
Dan Gohmand6a6f612010-05-28 17:07:41 +00002701 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002702 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002703 constant. TYPE must be a scalar or vector integer type. CST must be of
2704 scalar or vector floating point type. Both CST and TYPE must be scalars,
2705 or vectors of the same number of elements. If the value won't fit in the
2706 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002707
Dan Gohmand6a6f612010-05-28 17:07:41 +00002708 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002709 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002710 constant. TYPE must be a scalar or vector floating point type. CST must be
2711 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2712 vectors of the same number of elements. If the value won't fit in the
2713 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002714
Dan Gohmand6a6f612010-05-28 17:07:41 +00002715 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002716 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002717 constant. TYPE must be a scalar or vector floating point type. CST must be
2718 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2719 vectors of the same number of elements. If the value won't fit in the
2720 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002721
Dan Gohmand6a6f612010-05-28 17:07:41 +00002722 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5b950642006-11-11 23:08:07 +00002723 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002724 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2725 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2726 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002727
Dan Gohmand6a6f612010-05-28 17:07:41 +00002728 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002729 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2730 type. CST must be of integer type. The CST value is zero extended,
2731 truncated, or unchanged to make it fit in a pointer size. This one is
2732 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002733
Dan Gohmand6a6f612010-05-28 17:07:41 +00002734 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002735 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2736 are the same as those for the <a href="#i_bitcast">bitcast
2737 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002738
Dan Gohmand6a6f612010-05-28 17:07:41 +00002739 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2740 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002741 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002742 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2743 instruction, the index list may have zero or more indexes, which are
2744 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002745
Dan Gohmand6a6f612010-05-28 17:07:41 +00002746 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002747 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002748
Dan Gohmand6a6f612010-05-28 17:07:41 +00002749 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002750 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2751
Dan Gohmand6a6f612010-05-28 17:07:41 +00002752 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002753 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002754
Dan Gohmand6a6f612010-05-28 17:07:41 +00002755 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002756 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2757 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002758
Dan Gohmand6a6f612010-05-28 17:07:41 +00002759 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002760 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2761 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002762
Dan Gohmand6a6f612010-05-28 17:07:41 +00002763 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002764 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2765 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002766
Nick Lewycky9ab9a7f2010-05-29 06:44:15 +00002767 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2768 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2769 constants. The index list is interpreted in a similar manner as indices in
2770 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2771 index value must be specified.</dd>
2772
2773 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2774 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2775 constants. The index list is interpreted in a similar manner as indices in
2776 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2777 index value must be specified.</dd>
2778
Dan Gohmand6a6f612010-05-28 17:07:41 +00002779 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002780 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2781 be any of the <a href="#binaryops">binary</a>
2782 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2783 on operands are the same as those for the corresponding instruction
2784 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002785</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002786
Chris Lattner74d3f822004-12-09 17:30:23 +00002787</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002788
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002789</div>
2790
Chris Lattner2f7c9632001-06-06 20:29:01 +00002791<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002792<h2><a name="othervalues">Other Values</a></h2>
Chris Lattner98f013c2006-01-25 23:47:57 +00002793<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002794<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002795<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002796<h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002797<a name="inlineasm">Inline Assembler Expressions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002798</h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002799
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002800<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002801
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002802<p>LLVM supports inline assembler expressions (as opposed
2803 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2804 a special value. This value represents the inline assembler as a string
2805 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002806 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002807 expression has side effects, and a flag indicating whether the function
2808 containing the asm needs to align its stack conservatively. An example
2809 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002810
Benjamin Kramer79698be2010-07-13 12:26:09 +00002811<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002812i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002813</pre>
2814
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002815<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2816 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2817 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002818
Benjamin Kramer79698be2010-07-13 12:26:09 +00002819<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002820%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002821</pre>
2822
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002823<p>Inline asms with side effects not visible in the constraint list must be
2824 marked as having side effects. This is done through the use of the
2825 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002826
Benjamin Kramer79698be2010-07-13 12:26:09 +00002827<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002828call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002829</pre>
2830
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002831<p>In some cases inline asms will contain code that will not work unless the
2832 stack is aligned in some way, such as calls or SSE instructions on x86,
2833 yet will not contain code that does that alignment within the asm.
2834 The compiler should make conservative assumptions about what the asm might
2835 contain and should generate its usual stack alignment code in the prologue
2836 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002837
Benjamin Kramer79698be2010-07-13 12:26:09 +00002838<pre class="doc_code">
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002839call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002840</pre>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002841
2842<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2843 first.</p>
2844
Chris Lattner98f013c2006-01-25 23:47:57 +00002845<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002846 documented here. Constraints on what can be done (e.g. duplication, moving,
2847 etc need to be documented). This is probably best done by reference to
2848 another document that covers inline asm from a holistic perspective.</p>
Chris Lattner51065562010-04-07 05:38:05 +00002849
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002850<h4>
Chris Lattner51065562010-04-07 05:38:05 +00002851<a name="inlineasm_md">Inline Asm Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002852</h4>
Chris Lattner51065562010-04-07 05:38:05 +00002853
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002854<div>
Chris Lattner51065562010-04-07 05:38:05 +00002855
2856<p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
Chris Lattner79ffdc72010-11-17 08:20:42 +00002857 attached to it that contains a list of constant integers. If present, the
2858 code generator will use the integer as the location cookie value when report
Chris Lattner51065562010-04-07 05:38:05 +00002859 errors through the LLVMContext error reporting mechanisms. This allows a
Dan Gohman61110ae2010-04-28 00:36:01 +00002860 front-end to correlate backend errors that occur with inline asm back to the
Chris Lattner51065562010-04-07 05:38:05 +00002861 source code that produced it. For example:</p>
2862
Benjamin Kramer79698be2010-07-13 12:26:09 +00002863<pre class="doc_code">
Chris Lattner51065562010-04-07 05:38:05 +00002864call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2865...
2866!42 = !{ i32 1234567 }
2867</pre>
Chris Lattner51065562010-04-07 05:38:05 +00002868
2869<p>It is up to the front-end to make sense of the magic numbers it places in the
Chris Lattner79ffdc72010-11-17 08:20:42 +00002870 IR. If the MDNode contains multiple constants, the code generator will use
2871 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002872
2873</div>
2874
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002875</div>
2876
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002877<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002878<h3>
2879 <a name="metadata">Metadata Nodes and Metadata Strings</a>
2880</h3>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002881
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002882<div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002883
2884<p>LLVM IR allows metadata to be attached to instructions in the program that
2885 can convey extra information about the code to the optimizers and code
2886 generator. One example application of metadata is source-level debug
2887 information. There are two metadata primitives: strings and nodes. All
2888 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2889 preceding exclamation point ('<tt>!</tt>').</p>
2890
2891<p>A metadata string is a string surrounded by double quotes. It can contain
2892 any character by escaping non-printable characters with "\xx" where "xx" is
2893 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2894
2895<p>Metadata nodes are represented with notation similar to structure constants
2896 (a comma separated list of elements, surrounded by braces and preceded by an
2897 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2898 10}</tt>". Metadata nodes can have any values as their operand.</p>
2899
2900<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2901 metadata nodes, which can be looked up in the module symbol table. For
2902 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2903
Devang Patel9984bd62010-03-04 23:44:48 +00002904<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Benjamin Kramer79698be2010-07-13 12:26:09 +00002905 function is using two metadata arguments.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002906
Bill Wendlingc0e10672011-03-02 02:17:11 +00002907<div class="doc_code">
2908<pre>
2909call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2910</pre>
2911</div>
Devang Patel9984bd62010-03-04 23:44:48 +00002912
2913<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Benjamin Kramer79698be2010-07-13 12:26:09 +00002914 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002915
Bill Wendlingc0e10672011-03-02 02:17:11 +00002916<div class="doc_code">
2917<pre>
2918%indvar.next = add i64 %indvar, 1, !dbg !21
2919</pre>
2920</div>
2921
Peter Collingbourneec9ff672011-10-27 19:19:07 +00002922<p>More information about specific metadata nodes recognized by the optimizers
2923 and code generator is found below.</p>
2924
2925<h4>
2926 <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
2927</h4>
2928
2929<div>
2930
2931<p>In LLVM IR, memory does not have types, so LLVM's own type system is not
2932 suitable for doing TBAA. Instead, metadata is added to the IR to describe
2933 a type system of a higher level language. This can be used to implement
2934 typical C/C++ TBAA, but it can also be used to implement custom alias
2935 analysis behavior for other languages.</p>
2936
2937<p>The current metadata format is very simple. TBAA metadata nodes have up to
2938 three fields, e.g.:</p>
2939
2940<div class="doc_code">
2941<pre>
2942!0 = metadata !{ metadata !"an example type tree" }
2943!1 = metadata !{ metadata !"int", metadata !0 }
2944!2 = metadata !{ metadata !"float", metadata !0 }
2945!3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2946</pre>
2947</div>
2948
2949<p>The first field is an identity field. It can be any value, usually
2950 a metadata string, which uniquely identifies the type. The most important
2951 name in the tree is the name of the root node. Two trees with
2952 different root node names are entirely disjoint, even if they
2953 have leaves with common names.</p>
2954
2955<p>The second field identifies the type's parent node in the tree, or
2956 is null or omitted for a root node. A type is considered to alias
2957 all of its descendants and all of its ancestors in the tree. Also,
2958 a type is considered to alias all types in other trees, so that
2959 bitcode produced from multiple front-ends is handled conservatively.</p>
2960
2961<p>If the third field is present, it's an integer which if equal to 1
2962 indicates that the type is "constant" (meaning
2963 <tt>pointsToConstantMemory</tt> should return true; see
2964 <a href="AliasAnalysis.html#OtherItfs">other useful
2965 <tt>AliasAnalysis</tt> methods</a>).</p>
2966
2967</div>
2968
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002969</div>
2970
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002971</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00002972
2973<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002974<h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00002975 <a name="intrinsic_globals">Intrinsic Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002976</h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00002977<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002978<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00002979<p>LLVM has a number of "magic" global variables that contain data that affect
2980code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00002981of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2982section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2983by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002984
2985<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002986<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00002987<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002988</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00002989
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002990<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00002991
2992<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2993href="#linkage_appending">appending linkage</a>. This array contains a list of
2994pointers to global variables and functions which may optionally have a pointer
2995cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2996
2997<pre>
2998 @X = global i8 4
2999 @Y = global i32 123
3000
3001 @llvm.used = appending global [2 x i8*] [
3002 i8* @X,
3003 i8* bitcast (i32* @Y to i8*)
3004 ], section "llvm.metadata"
3005</pre>
3006
3007<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
3008compiler, assembler, and linker are required to treat the symbol as if there is
3009a reference to the global that it cannot see. For example, if a variable has
3010internal linkage and no references other than that from the <tt>@llvm.used</tt>
3011list, it cannot be deleted. This is commonly used to represent references from
3012inline asms and other things the compiler cannot "see", and corresponds to
3013"attribute((used))" in GNU C.</p>
3014
3015<p>On some targets, the code generator must emit a directive to the assembler or
3016object file to prevent the assembler and linker from molesting the symbol.</p>
3017
3018</div>
3019
3020<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003021<h3>
3022 <a name="intg_compiler_used">
3023 The '<tt>llvm.compiler.used</tt>' Global Variable
3024 </a>
3025</h3>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003026
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003027<div>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003028
3029<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
3030<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
3031touching the symbol. On targets that support it, this allows an intelligent
3032linker to optimize references to the symbol without being impeded as it would be
3033by <tt>@llvm.used</tt>.</p>
3034
3035<p>This is a rare construct that should only be used in rare circumstances, and
3036should not be exposed to source languages.</p>
3037
3038</div>
3039
3040<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003041<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003042<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003043</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003044
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003045<div>
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003046<pre>
3047%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003048@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003049</pre>
3050<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded. The order of functions with the same priority is not defined.
3051</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003052
3053</div>
3054
3055<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003056<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003057<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003058</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003059
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003060<div>
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003061<pre>
3062%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003063@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003064</pre>
Chris Lattnerae76db52009-07-20 05:55:19 +00003065
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003066<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities. The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded. The order of functions with the same priority is not defined.
3067</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003068
3069</div>
3070
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003071</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003072
Chris Lattner98f013c2006-01-25 23:47:57 +00003073<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003074<h2><a name="instref">Instruction Reference</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00003075<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00003076
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003077<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003078
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003079<p>The LLVM instruction set consists of several different classifications of
3080 instructions: <a href="#terminators">terminator
3081 instructions</a>, <a href="#binaryops">binary instructions</a>,
3082 <a href="#bitwiseops">bitwise binary instructions</a>,
3083 <a href="#memoryops">memory instructions</a>, and
3084 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003085
Chris Lattner2f7c9632001-06-06 20:29:01 +00003086<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003087<h3>
3088 <a name="terminators">Terminator Instructions</a>
3089</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00003090
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003091<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003092
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003093<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
3094 in a program ends with a "Terminator" instruction, which indicates which
3095 block should be executed after the current block is finished. These
3096 terminator instructions typically yield a '<tt>void</tt>' value: they produce
3097 control flow, not values (the one exception being the
3098 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
3099
Chris Lattnerd3d65ab2011-08-02 20:29:13 +00003100<p>The terminator instructions are:
3101 '<a href="#i_ret"><tt>ret</tt></a>',
3102 '<a href="#i_br"><tt>br</tt></a>',
3103 '<a href="#i_switch"><tt>switch</tt></a>',
3104 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
3105 '<a href="#i_invoke"><tt>invoke</tt></a>',
3106 '<a href="#i_unwind"><tt>unwind</tt></a>',
3107 '<a href="#i_resume"><tt>resume</tt></a>', and
3108 '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003109
Chris Lattner2f7c9632001-06-06 20:29:01 +00003110<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003111<h4>
3112 <a name="i_ret">'<tt>ret</tt>' Instruction</a>
3113</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003114
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003115<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003116
Chris Lattner2f7c9632001-06-06 20:29:01 +00003117<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003118<pre>
3119 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003120 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003121</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003122
Chris Lattner2f7c9632001-06-06 20:29:01 +00003123<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003124<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
3125 a value) from a function back to the caller.</p>
3126
3127<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
3128 value and then causes control flow, and one that just causes control flow to
3129 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003130
Chris Lattner2f7c9632001-06-06 20:29:01 +00003131<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003132<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
3133 return value. The type of the return value must be a
3134 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003135
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003136<p>A function is not <a href="#wellformed">well formed</a> if it it has a
3137 non-void return type and contains a '<tt>ret</tt>' instruction with no return
3138 value or a return value with a type that does not match its type, or if it
3139 has a void return type and contains a '<tt>ret</tt>' instruction with a
3140 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003141
Chris Lattner2f7c9632001-06-06 20:29:01 +00003142<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003143<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
3144 the calling function's context. If the caller is a
3145 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
3146 instruction after the call. If the caller was an
3147 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
3148 the beginning of the "normal" destination block. If the instruction returns
3149 a value, that value shall set the call or invoke instruction's return
3150 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003151
Chris Lattner2f7c9632001-06-06 20:29:01 +00003152<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003153<pre>
3154 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003155 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00003156 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003157</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003158
Misha Brukman76307852003-11-08 01:05:38 +00003159</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003160<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003161<h4>
3162 <a name="i_br">'<tt>br</tt>' Instruction</a>
3163</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003164
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003165<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003166
Chris Lattner2f7c9632001-06-06 20:29:01 +00003167<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003168<pre>
Bill Wendling16b86742011-07-26 10:41:15 +00003169 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
3170 br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003171</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003172
Chris Lattner2f7c9632001-06-06 20:29:01 +00003173<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003174<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
3175 different basic block in the current function. There are two forms of this
3176 instruction, corresponding to a conditional branch and an unconditional
3177 branch.</p>
3178
Chris Lattner2f7c9632001-06-06 20:29:01 +00003179<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003180<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
3181 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
3182 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
3183 target.</p>
3184
Chris Lattner2f7c9632001-06-06 20:29:01 +00003185<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00003186<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003187 argument is evaluated. If the value is <tt>true</tt>, control flows to the
3188 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
3189 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3190
Chris Lattner2f7c9632001-06-06 20:29:01 +00003191<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00003192<pre>
3193Test:
3194 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3195 br i1 %cond, label %IfEqual, label %IfUnequal
3196IfEqual:
3197 <a href="#i_ret">ret</a> i32 1
3198IfUnequal:
3199 <a href="#i_ret">ret</a> i32 0
3200</pre>
3201
Misha Brukman76307852003-11-08 01:05:38 +00003202</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003203
Chris Lattner2f7c9632001-06-06 20:29:01 +00003204<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003205<h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003206 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003207</h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003208
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003209<div>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003210
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003211<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003212<pre>
3213 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3214</pre>
3215
Chris Lattner2f7c9632001-06-06 20:29:01 +00003216<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003217<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003218 several different places. It is a generalization of the '<tt>br</tt>'
3219 instruction, allowing a branch to occur to one of many possible
3220 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003221
Chris Lattner2f7c9632001-06-06 20:29:01 +00003222<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003223<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003224 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3225 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3226 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003227
Chris Lattner2f7c9632001-06-06 20:29:01 +00003228<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003229<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003230 destinations. When the '<tt>switch</tt>' instruction is executed, this table
3231 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00003232 transferred to the corresponding destination; otherwise, control flow is
3233 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003234
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003235<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003236<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003237 <tt>switch</tt> instruction, this instruction may be code generated in
3238 different ways. For example, it could be generated as a series of chained
3239 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003240
3241<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003242<pre>
3243 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003244 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00003245 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003246
3247 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003248 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003249
3250 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00003251 switch i32 %val, label %otherwise [ i32 0, label %onzero
3252 i32 1, label %onone
3253 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00003254</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003255
Misha Brukman76307852003-11-08 01:05:38 +00003256</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003257
Chris Lattner3ed871f2009-10-27 19:13:16 +00003258
3259<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003260<h4>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003261 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003262</h4>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003263
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003264<div>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003265
3266<h5>Syntax:</h5>
3267<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003268 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003269</pre>
3270
3271<h5>Overview:</h5>
3272
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003273<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00003274 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00003275 "<tt>address</tt>". Address must be derived from a <a
3276 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003277
3278<h5>Arguments:</h5>
3279
3280<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3281 rest of the arguments indicate the full set of possible destinations that the
3282 address may point to. Blocks are allowed to occur multiple times in the
3283 destination list, though this isn't particularly useful.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003284
Chris Lattner3ed871f2009-10-27 19:13:16 +00003285<p>This destination list is required so that dataflow analysis has an accurate
3286 understanding of the CFG.</p>
3287
3288<h5>Semantics:</h5>
3289
3290<p>Control transfers to the block specified in the address argument. All
3291 possible destination blocks must be listed in the label list, otherwise this
3292 instruction has undefined behavior. This implies that jumps to labels
3293 defined in other functions have undefined behavior as well.</p>
3294
3295<h5>Implementation:</h5>
3296
3297<p>This is typically implemented with a jump through a register.</p>
3298
3299<h5>Example:</h5>
3300<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003301 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003302</pre>
3303
3304</div>
3305
3306
Chris Lattner2f7c9632001-06-06 20:29:01 +00003307<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003308<h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003309 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003310</h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003311
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003312<div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003313
Chris Lattner2f7c9632001-06-06 20:29:01 +00003314<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003315<pre>
Devang Patel02256232008-10-07 17:48:33 +00003316 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00003317 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00003318</pre>
3319
Chris Lattnera8292f32002-05-06 22:08:29 +00003320<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003321<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003322 function, with the possibility of control flow transfer to either the
3323 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3324 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3325 control flow will return to the "normal" label. If the callee (or any
3326 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3327 instruction, control is interrupted and continued at the dynamically nearest
3328 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003329
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003330<p>The '<tt>exception</tt>' label is a
3331 <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
3332 exception. As such, '<tt>exception</tt>' label is required to have the
3333 "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
3334 the information about about the behavior of the program after unwinding
3335 happens, as its first non-PHI instruction. The restrictions on the
3336 "<tt>landingpad</tt>" instruction's tightly couples it to the
3337 "<tt>invoke</tt>" instruction, so that the important information contained
3338 within the "<tt>landingpad</tt>" instruction can't be lost through normal
3339 code motion.</p>
3340
Chris Lattner2f7c9632001-06-06 20:29:01 +00003341<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003342<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003343
Chris Lattner2f7c9632001-06-06 20:29:01 +00003344<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003345 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3346 convention</a> the call should use. If none is specified, the call
3347 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003348
3349 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003350 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3351 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003352
Chris Lattner0132aff2005-05-06 22:57:40 +00003353 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003354 function value being invoked. In most cases, this is a direct function
3355 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3356 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003357
3358 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003359 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003360
3361 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00003362 signature argument types and parameter attributes. All arguments must be
3363 of <a href="#t_firstclass">first class</a> type. If the function
3364 signature indicates the function accepts a variable number of arguments,
3365 the extra arguments can be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003366
3367 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003368 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003369
3370 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003371 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003372
Devang Patel02256232008-10-07 17:48:33 +00003373 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003374 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3375 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003376</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00003377
Chris Lattner2f7c9632001-06-06 20:29:01 +00003378<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003379<p>This instruction is designed to operate as a standard
3380 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3381 primary difference is that it establishes an association with a label, which
3382 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003383
3384<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003385 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3386 exception. Additionally, this is important for implementation of
3387 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003388
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003389<p>For the purposes of the SSA form, the definition of the value returned by the
3390 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3391 block to the "normal" label. If the callee unwinds then no return value is
3392 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00003393
Chris Lattner97257f82010-01-15 18:08:37 +00003394<p>Note that the code generator does not yet completely support unwind, and
3395that the invoke/unwind semantics are likely to change in future versions.</p>
3396
Chris Lattner2f7c9632001-06-06 20:29:01 +00003397<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003398<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00003399 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003400 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00003401 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003402 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003403</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003404
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003405</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003406
Chris Lattner5ed60612003-09-03 00:41:47 +00003407<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003408
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003409<h4>
3410 <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
3411</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003412
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003413<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003414
Chris Lattner5ed60612003-09-03 00:41:47 +00003415<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003416<pre>
3417 unwind
3418</pre>
3419
Chris Lattner5ed60612003-09-03 00:41:47 +00003420<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003421<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003422 at the first callee in the dynamic call stack which used
3423 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3424 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003425
Chris Lattner5ed60612003-09-03 00:41:47 +00003426<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003427<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003428 immediately halt. The dynamic call stack is then searched for the
3429 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3430 Once found, execution continues at the "exceptional" destination block
3431 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3432 instruction in the dynamic call chain, undefined behavior results.</p>
3433
Chris Lattner97257f82010-01-15 18:08:37 +00003434<p>Note that the code generator does not yet completely support unwind, and
3435that the invoke/unwind semantics are likely to change in future versions.</p>
3436
Misha Brukman76307852003-11-08 01:05:38 +00003437</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003438
Bill Wendlingf891bf82011-07-31 06:30:59 +00003439 <!-- _______________________________________________________________________ -->
3440
3441<h4>
3442 <a name="i_resume">'<tt>resume</tt>' Instruction</a>
3443</h4>
3444
3445<div>
3446
3447<h5>Syntax:</h5>
3448<pre>
3449 resume &lt;type&gt; &lt;value&gt;
3450</pre>
3451
3452<h5>Overview:</h5>
3453<p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
3454 successors.</p>
3455
3456<h5>Arguments:</h5>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003457<p>The '<tt>resume</tt>' instruction requires one argument, which must have the
Bill Wendlingc5a13612011-08-03 18:37:32 +00003458 same type as the result of any '<tt>landingpad</tt>' instruction in the same
3459 function.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003460
3461<h5>Semantics:</h5>
3462<p>The '<tt>resume</tt>' instruction resumes propagation of an existing
3463 (in-flight) exception whose unwinding was interrupted with
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003464 a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003465
3466<h5>Example:</h5>
3467<pre>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003468 resume { i8*, i32 } %exn
Bill Wendlingf891bf82011-07-31 06:30:59 +00003469</pre>
3470
3471</div>
3472
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003473<!-- _______________________________________________________________________ -->
3474
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003475<h4>
3476 <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3477</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003478
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003479<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003480
3481<h5>Syntax:</h5>
3482<pre>
3483 unreachable
3484</pre>
3485
3486<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003487<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003488 instruction is used to inform the optimizer that a particular portion of the
3489 code is not reachable. This can be used to indicate that the code after a
3490 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003491
3492<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003493<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003494
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003495</div>
3496
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003497</div>
3498
Chris Lattner2f7c9632001-06-06 20:29:01 +00003499<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003500<h3>
3501 <a name="binaryops">Binary Operations</a>
3502</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003503
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003504<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003505
3506<p>Binary operators are used to do most of the computation in a program. They
3507 require two operands of the same type, execute an operation on them, and
3508 produce a single value. The operands might represent multiple data, as is
3509 the case with the <a href="#t_vector">vector</a> data type. The result value
3510 has the same type as its operands.</p>
3511
Misha Brukman76307852003-11-08 01:05:38 +00003512<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003513
Chris Lattner2f7c9632001-06-06 20:29:01 +00003514<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003515<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003516 <a name="i_add">'<tt>add</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003517</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003518
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003519<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003520
Chris Lattner2f7c9632001-06-06 20:29:01 +00003521<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003522<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003523 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003524 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3525 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3526 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003527</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003528
Chris Lattner2f7c9632001-06-06 20:29:01 +00003529<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003530<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003531
Chris Lattner2f7c9632001-06-06 20:29:01 +00003532<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003533<p>The two arguments to the '<tt>add</tt>' instruction must
3534 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3535 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003536
Chris Lattner2f7c9632001-06-06 20:29:01 +00003537<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003538<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003539
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003540<p>If the sum has unsigned overflow, the result returned is the mathematical
3541 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003542
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003543<p>Because LLVM integers use a two's complement representation, this instruction
3544 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003545
Dan Gohman902dfff2009-07-22 22:44:56 +00003546<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3547 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3548 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003549 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3550 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003551
Chris Lattner2f7c9632001-06-06 20:29:01 +00003552<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003553<pre>
3554 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003555</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003556
Misha Brukman76307852003-11-08 01:05:38 +00003557</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003558
Chris Lattner2f7c9632001-06-06 20:29:01 +00003559<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003560<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003561 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003562</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003563
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003564<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003565
3566<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003567<pre>
3568 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3569</pre>
3570
3571<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003572<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3573
3574<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003575<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003576 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3577 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003578
3579<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003580<p>The value produced is the floating point sum of the two operands.</p>
3581
3582<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003583<pre>
3584 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3585</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003586
Dan Gohmana5b96452009-06-04 22:49:04 +00003587</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003588
Dan Gohmana5b96452009-06-04 22:49:04 +00003589<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003590<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003591 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003592</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003593
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003594<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003595
Chris Lattner2f7c9632001-06-06 20:29:01 +00003596<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003597<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003598 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003599 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3600 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3601 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003602</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003603
Chris Lattner2f7c9632001-06-06 20:29:01 +00003604<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003605<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003606 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003607
3608<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003609 '<tt>neg</tt>' instruction present in most other intermediate
3610 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003611
Chris Lattner2f7c9632001-06-06 20:29:01 +00003612<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003613<p>The two arguments to the '<tt>sub</tt>' instruction must
3614 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3615 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003616
Chris Lattner2f7c9632001-06-06 20:29:01 +00003617<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003618<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003619
Dan Gohmana5b96452009-06-04 22:49:04 +00003620<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003621 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3622 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003623
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003624<p>Because LLVM integers use a two's complement representation, this instruction
3625 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003626
Dan Gohman902dfff2009-07-22 22:44:56 +00003627<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3628 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3629 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003630 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3631 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003632
Chris Lattner2f7c9632001-06-06 20:29:01 +00003633<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003634<pre>
3635 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003636 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003637</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003638
Misha Brukman76307852003-11-08 01:05:38 +00003639</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003640
Chris Lattner2f7c9632001-06-06 20:29:01 +00003641<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003642<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003643 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003644</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003645
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003646<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003647
3648<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003649<pre>
3650 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3651</pre>
3652
3653<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003654<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003655 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003656
3657<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003658 '<tt>fneg</tt>' instruction present in most other intermediate
3659 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003660
3661<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003662<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003663 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3664 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003665
3666<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003667<p>The value produced is the floating point difference of the two operands.</p>
3668
3669<h5>Example:</h5>
3670<pre>
3671 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3672 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3673</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003674
Dan Gohmana5b96452009-06-04 22:49:04 +00003675</div>
3676
3677<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003678<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003679 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003680</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003681
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003682<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003683
Chris Lattner2f7c9632001-06-06 20:29:01 +00003684<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003685<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003686 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003687 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3688 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3689 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003690</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003691
Chris Lattner2f7c9632001-06-06 20:29:01 +00003692<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003693<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003694
Chris Lattner2f7c9632001-06-06 20:29:01 +00003695<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003696<p>The two arguments to the '<tt>mul</tt>' instruction must
3697 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3698 integer values. Both arguments must have identical types.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003699
Chris Lattner2f7c9632001-06-06 20:29:01 +00003700<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003701<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003702
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003703<p>If the result of the multiplication has unsigned overflow, the result
3704 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3705 width of the result.</p>
3706
3707<p>Because LLVM integers use a two's complement representation, and the result
3708 is the same width as the operands, this instruction returns the correct
3709 result for both signed and unsigned integers. If a full product
3710 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3711 be sign-extended or zero-extended as appropriate to the width of the full
3712 product.</p>
3713
Dan Gohman902dfff2009-07-22 22:44:56 +00003714<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3715 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3716 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003717 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3718 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003719
Chris Lattner2f7c9632001-06-06 20:29:01 +00003720<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003721<pre>
3722 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003723</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003724
Misha Brukman76307852003-11-08 01:05:38 +00003725</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003726
Chris Lattner2f7c9632001-06-06 20:29:01 +00003727<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003728<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003729 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003730</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003731
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003732<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003733
3734<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003735<pre>
3736 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003737</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003738
Dan Gohmana5b96452009-06-04 22:49:04 +00003739<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003740<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003741
3742<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003743<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003744 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3745 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003746
3747<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003748<p>The value produced is the floating point product of the two operands.</p>
3749
3750<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003751<pre>
3752 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003753</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003754
Dan Gohmana5b96452009-06-04 22:49:04 +00003755</div>
3756
3757<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003758<h4>
3759 <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
3760</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003761
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003762<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003763
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003764<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003765<pre>
Chris Lattner35315d02011-02-06 21:44:57 +00003766 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3767 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003768</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003769
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003770<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003771<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003772
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003773<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003774<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003775 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3776 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003777
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003778<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00003779<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003780
Chris Lattner2f2427e2008-01-28 00:36:27 +00003781<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003782 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3783
Chris Lattner2f2427e2008-01-28 00:36:27 +00003784<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003785
Chris Lattner35315d02011-02-06 21:44:57 +00003786<p>If the <tt>exact</tt> keyword is present, the result value of the
3787 <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
3788 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3789
3790
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003791<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003792<pre>
3793 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003794</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003795
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003796</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003797
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003798<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003799<h4>
3800 <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
3801</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003802
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003803<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003804
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003805<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003806<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003807 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003808 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003809</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003810
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003811<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003812<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003813
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003814<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003815<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003816 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3817 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003818
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003819<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003820<p>The value produced is the signed integer quotient of the two operands rounded
3821 towards zero.</p>
3822
Chris Lattner2f2427e2008-01-28 00:36:27 +00003823<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003824 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3825
Chris Lattner2f2427e2008-01-28 00:36:27 +00003826<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003827 undefined behavior; this is a rare case, but can occur, for example, by doing
3828 a 32-bit division of -2147483648 by -1.</p>
3829
Dan Gohman71dfd782009-07-22 00:04:19 +00003830<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00003831 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
Dan Gohmane501ff72010-07-11 00:08:34 +00003832 be rounded.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003833
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003834<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003835<pre>
3836 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003837</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003838
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003839</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003840
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003841<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003842<h4>
3843 <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
3844</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003845
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003846<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003847
Chris Lattner2f7c9632001-06-06 20:29:01 +00003848<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003849<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003850 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003851</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003852
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003853<h5>Overview:</h5>
3854<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003855
Chris Lattner48b383b02003-11-25 01:02:51 +00003856<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003857<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003858 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3859 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003860
Chris Lattner48b383b02003-11-25 01:02:51 +00003861<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003862<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003863
Chris Lattner48b383b02003-11-25 01:02:51 +00003864<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003865<pre>
3866 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003867</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003868
Chris Lattner48b383b02003-11-25 01:02:51 +00003869</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003870
Chris Lattner48b383b02003-11-25 01:02:51 +00003871<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003872<h4>
3873 <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3874</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003875
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003876<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003877
Reid Spencer7eb55b32006-11-02 01:53:59 +00003878<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003879<pre>
3880 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003881</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003882
Reid Spencer7eb55b32006-11-02 01:53:59 +00003883<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003884<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3885 division of its two arguments.</p>
3886
Reid Spencer7eb55b32006-11-02 01:53:59 +00003887<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003888<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003889 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3890 values. Both arguments must have identical types.</p>
3891
Reid Spencer7eb55b32006-11-02 01:53:59 +00003892<h5>Semantics:</h5>
3893<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003894 This instruction always performs an unsigned division to get the
3895 remainder.</p>
3896
Chris Lattner2f2427e2008-01-28 00:36:27 +00003897<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003898 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3899
Chris Lattner2f2427e2008-01-28 00:36:27 +00003900<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003901
Reid Spencer7eb55b32006-11-02 01:53:59 +00003902<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003903<pre>
3904 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003905</pre>
3906
3907</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003908
Reid Spencer7eb55b32006-11-02 01:53:59 +00003909<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003910<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003911 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003912</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003913
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003914<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003915
Chris Lattner48b383b02003-11-25 01:02:51 +00003916<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003917<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003918 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003919</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003920
Chris Lattner48b383b02003-11-25 01:02:51 +00003921<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003922<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3923 division of its two operands. This instruction can also take
3924 <a href="#t_vector">vector</a> versions of the values in which case the
3925 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00003926
Chris Lattner48b383b02003-11-25 01:02:51 +00003927<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003928<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003929 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3930 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003931
Chris Lattner48b383b02003-11-25 01:02:51 +00003932<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003933<p>This instruction returns the <i>remainder</i> of a division (where the result
Duncan Sands2769c6e2011-03-07 09:12:24 +00003934 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
3935 <i>modulo</i> operator (where the result is either zero or has the same sign
3936 as the divisor, <tt>op2</tt>) of a value.
3937 For more information about the difference,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003938 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3939 Math Forum</a>. For a table of how this is implemented in various languages,
3940 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3941 Wikipedia: modulo operation</a>.</p>
3942
Chris Lattner2f2427e2008-01-28 00:36:27 +00003943<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003944 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3945
Chris Lattner2f2427e2008-01-28 00:36:27 +00003946<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003947 Overflow also leads to undefined behavior; this is a rare case, but can
3948 occur, for example, by taking the remainder of a 32-bit division of
3949 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3950 lets srem be implemented using instructions that return both the result of
3951 the division and the remainder.)</p>
3952
Chris Lattner48b383b02003-11-25 01:02:51 +00003953<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003954<pre>
3955 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003956</pre>
3957
3958</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003959
Reid Spencer7eb55b32006-11-02 01:53:59 +00003960<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003961<h4>
3962 <a name="i_frem">'<tt>frem</tt>' Instruction</a>
3963</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003964
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003965<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003966
Reid Spencer7eb55b32006-11-02 01:53:59 +00003967<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003968<pre>
3969 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003970</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003971
Reid Spencer7eb55b32006-11-02 01:53:59 +00003972<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003973<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3974 its two operands.</p>
3975
Reid Spencer7eb55b32006-11-02 01:53:59 +00003976<h5>Arguments:</h5>
3977<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003978 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3979 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003980
Reid Spencer7eb55b32006-11-02 01:53:59 +00003981<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003982<p>This instruction returns the <i>remainder</i> of a division. The remainder
3983 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003984
Reid Spencer7eb55b32006-11-02 01:53:59 +00003985<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003986<pre>
3987 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003988</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003989
Misha Brukman76307852003-11-08 01:05:38 +00003990</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00003991
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003992</div>
3993
Reid Spencer2ab01932007-02-02 13:57:07 +00003994<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003995<h3>
3996 <a name="bitwiseops">Bitwise Binary Operations</a>
3997</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003998
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003999<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004000
4001<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
4002 program. They are generally very efficient instructions and can commonly be
4003 strength reduced from other instructions. They require two operands of the
4004 same type, execute an operation on them, and produce a single value. The
4005 resulting value is the same type as its operands.</p>
4006
Reid Spencer04e259b2007-01-31 21:39:12 +00004007<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004008<h4>
4009 <a name="i_shl">'<tt>shl</tt>' Instruction</a>
4010</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004011
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004012<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004013
Reid Spencer04e259b2007-01-31 21:39:12 +00004014<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004015<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004016 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4017 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4018 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4019 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004020</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004021
Reid Spencer04e259b2007-01-31 21:39:12 +00004022<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004023<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
4024 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004025
Reid Spencer04e259b2007-01-31 21:39:12 +00004026<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004027<p>Both arguments to the '<tt>shl</tt>' instruction must be the
4028 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
4029 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00004030
Reid Spencer04e259b2007-01-31 21:39:12 +00004031<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004032<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
4033 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
4034 is (statically or dynamically) negative or equal to or larger than the number
4035 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4036 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4037 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004038
Chris Lattnera676c0f2011-02-07 16:40:21 +00004039<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
4040 <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits. If
Chris Lattnerf10dfdc2011-02-09 16:44:44 +00004041 the <tt>nsw</tt> keyword is present, then the shift produces a
Chris Lattnera676c0f2011-02-07 16:40:21 +00004042 <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
4043 with the resultant sign bit. As such, NUW/NSW have the same semantics as
4044 they would if the shift were expressed as a mul instruction with the same
4045 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
4046
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004047<h5>Example:</h5>
4048<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00004049 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
4050 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
4051 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004052 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004053 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004054</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004055
Reid Spencer04e259b2007-01-31 21:39:12 +00004056</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004057
Reid Spencer04e259b2007-01-31 21:39:12 +00004058<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004059<h4>
4060 <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
4061</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004062
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004063<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004064
Reid Spencer04e259b2007-01-31 21:39:12 +00004065<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004066<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004067 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4068 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004069</pre>
4070
4071<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004072<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
4073 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004074
4075<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004076<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004077 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4078 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004079
4080<h5>Semantics:</h5>
4081<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004082 significant bits of the result will be filled with zero bits after the shift.
4083 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
4084 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4085 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4086 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004087
Chris Lattnera676c0f2011-02-07 16:40:21 +00004088<p>If the <tt>exact</tt> keyword is present, the result value of the
4089 <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
4090 shifted out are non-zero.</p>
4091
4092
Reid Spencer04e259b2007-01-31 21:39:12 +00004093<h5>Example:</h5>
4094<pre>
4095 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
4096 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
4097 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
4098 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004099 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004100 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004101</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004102
Reid Spencer04e259b2007-01-31 21:39:12 +00004103</div>
4104
Reid Spencer2ab01932007-02-02 13:57:07 +00004105<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004106<h4>
4107 <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
4108</h4>
4109
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004110<div>
Reid Spencer04e259b2007-01-31 21:39:12 +00004111
4112<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004113<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004114 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4115 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004116</pre>
4117
4118<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004119<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
4120 operand shifted to the right a specified number of bits with sign
4121 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004122
4123<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004124<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004125 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4126 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004127
4128<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004129<p>This instruction always performs an arithmetic shift right operation, The
4130 most significant bits of the result will be filled with the sign bit
4131 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
4132 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
4133 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
4134 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004135
Chris Lattnera676c0f2011-02-07 16:40:21 +00004136<p>If the <tt>exact</tt> keyword is present, the result value of the
4137 <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
4138 shifted out are non-zero.</p>
4139
Reid Spencer04e259b2007-01-31 21:39:12 +00004140<h5>Example:</h5>
4141<pre>
4142 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
4143 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
4144 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
4145 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004146 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004147 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004148</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004149
Reid Spencer04e259b2007-01-31 21:39:12 +00004150</div>
4151
Chris Lattner2f7c9632001-06-06 20:29:01 +00004152<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004153<h4>
4154 <a name="i_and">'<tt>and</tt>' Instruction</a>
4155</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004156
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004157<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004158
Chris Lattner2f7c9632001-06-06 20:29:01 +00004159<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004160<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004161 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004162</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004163
Chris Lattner2f7c9632001-06-06 20:29:01 +00004164<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004165<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
4166 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004167
Chris Lattner2f7c9632001-06-06 20:29:01 +00004168<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004169<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004170 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4171 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004172
Chris Lattner2f7c9632001-06-06 20:29:01 +00004173<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004174<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004175
Misha Brukman76307852003-11-08 01:05:38 +00004176<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00004177 <tbody>
4178 <tr>
4179 <td>In0</td>
4180 <td>In1</td>
4181 <td>Out</td>
4182 </tr>
4183 <tr>
4184 <td>0</td>
4185 <td>0</td>
4186 <td>0</td>
4187 </tr>
4188 <tr>
4189 <td>0</td>
4190 <td>1</td>
4191 <td>0</td>
4192 </tr>
4193 <tr>
4194 <td>1</td>
4195 <td>0</td>
4196 <td>0</td>
4197 </tr>
4198 <tr>
4199 <td>1</td>
4200 <td>1</td>
4201 <td>1</td>
4202 </tr>
4203 </tbody>
4204</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004205
Chris Lattner2f7c9632001-06-06 20:29:01 +00004206<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004207<pre>
4208 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004209 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
4210 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004211</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004212</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004213<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004214<h4>
4215 <a name="i_or">'<tt>or</tt>' Instruction</a>
4216</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004217
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004218<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004219
4220<h5>Syntax:</h5>
4221<pre>
4222 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4223</pre>
4224
4225<h5>Overview:</h5>
4226<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
4227 two operands.</p>
4228
4229<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004230<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004231 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4232 values. Both arguments must have identical types.</p>
4233
Chris Lattner2f7c9632001-06-06 20:29:01 +00004234<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004235<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004236
Chris Lattner48b383b02003-11-25 01:02:51 +00004237<table border="1" cellspacing="0" cellpadding="4">
4238 <tbody>
4239 <tr>
4240 <td>In0</td>
4241 <td>In1</td>
4242 <td>Out</td>
4243 </tr>
4244 <tr>
4245 <td>0</td>
4246 <td>0</td>
4247 <td>0</td>
4248 </tr>
4249 <tr>
4250 <td>0</td>
4251 <td>1</td>
4252 <td>1</td>
4253 </tr>
4254 <tr>
4255 <td>1</td>
4256 <td>0</td>
4257 <td>1</td>
4258 </tr>
4259 <tr>
4260 <td>1</td>
4261 <td>1</td>
4262 <td>1</td>
4263 </tr>
4264 </tbody>
4265</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004266
Chris Lattner2f7c9632001-06-06 20:29:01 +00004267<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004268<pre>
4269 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004270 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
4271 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004272</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004273
Misha Brukman76307852003-11-08 01:05:38 +00004274</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004275
Chris Lattner2f7c9632001-06-06 20:29:01 +00004276<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004277<h4>
4278 <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4279</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004280
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004281<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004282
Chris Lattner2f7c9632001-06-06 20:29:01 +00004283<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004284<pre>
4285 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004286</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004287
Chris Lattner2f7c9632001-06-06 20:29:01 +00004288<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004289<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4290 its two operands. The <tt>xor</tt> is used to implement the "one's
4291 complement" operation, which is the "~" operator in C.</p>
4292
Chris Lattner2f7c9632001-06-06 20:29:01 +00004293<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004294<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004295 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4296 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004297
Chris Lattner2f7c9632001-06-06 20:29:01 +00004298<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004299<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004300
Chris Lattner48b383b02003-11-25 01:02:51 +00004301<table border="1" cellspacing="0" cellpadding="4">
4302 <tbody>
4303 <tr>
4304 <td>In0</td>
4305 <td>In1</td>
4306 <td>Out</td>
4307 </tr>
4308 <tr>
4309 <td>0</td>
4310 <td>0</td>
4311 <td>0</td>
4312 </tr>
4313 <tr>
4314 <td>0</td>
4315 <td>1</td>
4316 <td>1</td>
4317 </tr>
4318 <tr>
4319 <td>1</td>
4320 <td>0</td>
4321 <td>1</td>
4322 </tr>
4323 <tr>
4324 <td>1</td>
4325 <td>1</td>
4326 <td>0</td>
4327 </tr>
4328 </tbody>
4329</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004330
Chris Lattner2f7c9632001-06-06 20:29:01 +00004331<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004332<pre>
4333 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004334 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4335 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4336 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004337</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004338
Misha Brukman76307852003-11-08 01:05:38 +00004339</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004340
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004341</div>
4342
Chris Lattner2f7c9632001-06-06 20:29:01 +00004343<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004344<h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004345 <a name="vectorops">Vector Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004346</h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004347
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004348<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004349
4350<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004351 target-independent manner. These instructions cover the element-access and
4352 vector-specific operations needed to process vectors effectively. While LLVM
4353 does directly support these vector operations, many sophisticated algorithms
4354 will want to use target-specific intrinsics to take full advantage of a
4355 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004356
Chris Lattnerce83bff2006-04-08 23:07:04 +00004357<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004358<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004359 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004360</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004361
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004362<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004363
4364<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004365<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004366 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004367</pre>
4368
4369<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004370<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4371 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004372
4373
4374<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004375<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4376 of <a href="#t_vector">vector</a> type. The second operand is an index
4377 indicating the position from which to extract the element. The index may be
4378 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004379
4380<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004381<p>The result is a scalar of the same type as the element type of
4382 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4383 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4384 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004385
4386<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004387<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004388 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004389</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004390
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004391</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004392
4393<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004394<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004395 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004396</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004397
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004398<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004399
4400<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004401<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00004402 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004403</pre>
4404
4405<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004406<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4407 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004408
4409<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004410<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4411 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4412 whose type must equal the element type of the first operand. The third
4413 operand is an index indicating the position at which to insert the value.
4414 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004415
4416<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004417<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4418 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4419 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4420 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004421
4422<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004423<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004424 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004425</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004426
Chris Lattnerce83bff2006-04-08 23:07:04 +00004427</div>
4428
4429<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004430<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004431 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004432</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004433
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004434<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004435
4436<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004437<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00004438 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004439</pre>
4440
4441<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004442<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4443 from two input vectors, returning a vector with the same element type as the
4444 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004445
4446<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004447<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4448 with types that match each other. The third argument is a shuffle mask whose
4449 element type is always 'i32'. The result of the instruction is a vector
4450 whose length is the same as the shuffle mask and whose element type is the
4451 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004452
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004453<p>The shuffle mask operand is required to be a constant vector with either
4454 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004455
4456<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004457<p>The elements of the two input vectors are numbered from left to right across
4458 both of the vectors. The shuffle mask operand specifies, for each element of
4459 the result vector, which element of the two input vectors the result element
4460 gets. The element selector may be undef (meaning "don't care") and the
4461 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004462
4463<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004464<pre>
Eric Christopher455c5772009-12-05 02:46:03 +00004465 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00004466 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004467 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004468 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher455c5772009-12-05 02:46:03 +00004469 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00004470 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004471 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00004472 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004473</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004474
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004475</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00004476
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004477</div>
4478
Chris Lattnerce83bff2006-04-08 23:07:04 +00004479<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004480<h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004481 <a name="aggregateops">Aggregate Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004482</h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004483
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004484<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004485
Chris Lattner392be582010-02-12 20:49:41 +00004486<p>LLVM supports several instructions for working with
4487 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004488
Dan Gohmanb9d66602008-05-12 23:51:09 +00004489<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004490<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004491 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004492</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004493
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004494<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004495
4496<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004497<pre>
4498 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4499</pre>
4500
4501<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004502<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4503 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004504
4505<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004506<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004507 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004508 <a href="#t_array">array</a> type. The operands are constant indices to
4509 specify which value to extract in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004510 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004511 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4512 <ul>
4513 <li>Since the value being indexed is not a pointer, the first index is
4514 omitted and assumed to be zero.</li>
4515 <li>At least one index must be specified.</li>
4516 <li>Not only struct indices but also array indices must be in
4517 bounds.</li>
4518 </ul>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004519
4520<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004521<p>The result is the value at the position in the aggregate specified by the
4522 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004523
4524<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004525<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004526 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004527</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004528
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004529</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004530
4531<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004532<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004533 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004534</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004535
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004536<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004537
4538<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004539<pre>
Bill Wendlingf6a91cf2011-07-26 20:42:28 +00004540 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}* <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004541</pre>
4542
4543<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004544<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4545 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004546
4547<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004548<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004549 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004550 <a href="#t_array">array</a> type. The second operand is a first-class
4551 value to insert. The following operands are constant indices indicating
4552 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004553 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004554 value to insert must have the same type as the value identified by the
4555 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004556
4557<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004558<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4559 that of <tt>val</tt> except that the value at the position specified by the
4560 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004561
4562<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004563<pre>
Chris Lattnerc2e85402011-05-22 07:18:08 +00004564 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4565 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
4566 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 <i>; yields {i32 1, float %val}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004567</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004568
Dan Gohmanb9d66602008-05-12 23:51:09 +00004569</div>
4570
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004571</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004572
4573<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004574<h3>
Chris Lattner6ab66722006-08-15 00:45:58 +00004575 <a name="memoryops">Memory Access and Addressing Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004576</h3>
Chris Lattner54611b42005-11-06 08:02:57 +00004577
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004578<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004579
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004580<p>A key design point of an SSA-based representation is how it represents
4581 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00004582 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004583 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004584
Chris Lattner2f7c9632001-06-06 20:29:01 +00004585<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004586<h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004587 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004588</h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004589
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004590<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004591
Chris Lattner2f7c9632001-06-06 20:29:01 +00004592<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004593<pre>
Dan Gohman2140a742010-05-28 01:14:11 +00004594 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004595</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00004596
Chris Lattner2f7c9632001-06-06 20:29:01 +00004597<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004598<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004599 currently executing function, to be automatically released when this function
4600 returns to its caller. The object is always allocated in the generic address
4601 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004602
Chris Lattner2f7c9632001-06-06 20:29:01 +00004603<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004604<p>The '<tt>alloca</tt>' instruction
4605 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4606 runtime stack, returning a pointer of the appropriate type to the program.
4607 If "NumElements" is specified, it is the number of elements allocated,
4608 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4609 specified, the value result of the allocation is guaranteed to be aligned to
4610 at least that boundary. If not specified, or if zero, the target can choose
4611 to align the allocation on any convenient boundary compatible with the
4612 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004613
Misha Brukman76307852003-11-08 01:05:38 +00004614<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004615
Chris Lattner2f7c9632001-06-06 20:29:01 +00004616<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00004617<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004618 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4619 memory is automatically released when the function returns. The
4620 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4621 variables that must have an address available. When the function returns
4622 (either with the <tt><a href="#i_ret">ret</a></tt>
4623 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4624 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004625
Chris Lattner2f7c9632001-06-06 20:29:01 +00004626<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004627<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00004628 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4629 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4630 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4631 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004632</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004633
Misha Brukman76307852003-11-08 01:05:38 +00004634</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004635
Chris Lattner2f7c9632001-06-06 20:29:01 +00004636<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004637<h4>
4638 <a name="i_load">'<tt>load</tt>' Instruction</a>
4639</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004640
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004641<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004642
Chris Lattner095735d2002-05-06 03:03:22 +00004643<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004644<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004645 &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4646 &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004647 !&lt;index&gt; = !{ i32 1 }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004648</pre>
4649
Chris Lattner095735d2002-05-06 03:03:22 +00004650<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004651<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004652
Chris Lattner095735d2002-05-06 03:03:22 +00004653<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004654<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4655 from which to load. The pointer must point to
4656 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4657 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004658 number or order of execution of this <tt>load</tt> with other <a
4659 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004660
Eli Friedman59b66882011-08-09 23:02:53 +00004661<p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
4662 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4663 argument. The <code>release</code> and <code>acq_rel</code> orderings are
4664 not valid on <code>load</code> instructions. Atomic loads produce <a
4665 href="#memorymodel">defined</a> results when they may see multiple atomic
4666 stores. The type of the pointee must be an integer type whose bit width
4667 is a power of two greater than or equal to eight and less than or equal
4668 to a target-specific size limit. <code>align</code> must be explicitly
4669 specified on atomic loads, and the load has undefined behavior if the
4670 alignment is not set to a value which is at least the size in bytes of
4671 the pointee. <code>!nontemporal</code> does not have any defined semantics
4672 for atomic loads.</p>
4673
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004674<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004675 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004676 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004677 alignment for the target. It is the responsibility of the code emitter to
4678 ensure that the alignment information is correct. Overestimating the
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004679 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004680 produce less efficient code. An alignment of 1 is always safe.</p>
4681
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004682<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4683 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmana269a0a2010-03-01 17:41:39 +00004684 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004685 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4686 and code generator that this load is not expected to be reused in the cache.
4687 The code generator may select special instructions to save cache bandwidth,
Dan Gohmana269a0a2010-03-01 17:41:39 +00004688 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004689
Chris Lattner095735d2002-05-06 03:03:22 +00004690<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004691<p>The location of memory pointed to is loaded. If the value being loaded is of
4692 scalar type then the number of bytes read does not exceed the minimum number
4693 of bytes needed to hold all bits of the type. For example, loading an
4694 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4695 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4696 is undefined if the value was not originally written using a store of the
4697 same type.</p>
4698
Chris Lattner095735d2002-05-06 03:03:22 +00004699<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004700<pre>
4701 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4702 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004703 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004704</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004705
Misha Brukman76307852003-11-08 01:05:38 +00004706</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004707
Chris Lattner095735d2002-05-06 03:03:22 +00004708<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004709<h4>
4710 <a name="i_store">'<tt>store</tt>' Instruction</a>
4711</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004712
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004713<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004714
Chris Lattner095735d2002-05-06 03:03:22 +00004715<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004716<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004717 store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4718 store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt; <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004719</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004720
Chris Lattner095735d2002-05-06 03:03:22 +00004721<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004722<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004723
Chris Lattner095735d2002-05-06 03:03:22 +00004724<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004725<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4726 and an address at which to store it. The type of the
4727 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4728 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004729 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4730 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4731 order of execution of this <tt>store</tt> with other <a
4732 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004733
Eli Friedman59b66882011-08-09 23:02:53 +00004734<p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
4735 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4736 argument. The <code>acquire</code> and <code>acq_rel</code> orderings aren't
4737 valid on <code>store</code> instructions. Atomic loads produce <a
4738 href="#memorymodel">defined</a> results when they may see multiple atomic
4739 stores. The type of the pointee must be an integer type whose bit width
4740 is a power of two greater than or equal to eight and less than or equal
4741 to a target-specific size limit. <code>align</code> must be explicitly
4742 specified on atomic stores, and the store has undefined behavior if the
4743 alignment is not set to a value which is at least the size in bytes of
4744 the pointee. <code>!nontemporal</code> does not have any defined semantics
4745 for atomic stores.</p>
4746
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004747<p>The optional constant "align" argument specifies the alignment of the
4748 operation (that is, the alignment of the memory address). A value of 0 or an
4749 omitted "align" argument means that the operation has the preferential
4750 alignment for the target. It is the responsibility of the code emitter to
4751 ensure that the alignment information is correct. Overestimating the
4752 alignment results in an undefined behavior. Underestimating the alignment may
4753 produce less efficient code. An alignment of 1 is always safe.</p>
4754
David Greene9641d062010-02-16 20:50:18 +00004755<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer79698be2010-07-13 12:26:09 +00004756 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmana269a0a2010-03-01 17:41:39 +00004757 value 1. The existence of the !nontemporal metatadata on the
David Greene9641d062010-02-16 20:50:18 +00004758 instruction tells the optimizer and code generator that this load is
4759 not expected to be reused in the cache. The code generator may
4760 select special instructions to save cache bandwidth, such as the
Dan Gohmana269a0a2010-03-01 17:41:39 +00004761 MOVNT instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004762
4763
Chris Lattner48b383b02003-11-25 01:02:51 +00004764<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004765<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4766 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4767 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4768 does not exceed the minimum number of bytes needed to hold all bits of the
4769 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4770 writing a value of a type like <tt>i20</tt> with a size that is not an
4771 integral number of bytes, it is unspecified what happens to the extra bits
4772 that do not belong to the type, but they will typically be overwritten.</p>
4773
Chris Lattner095735d2002-05-06 03:03:22 +00004774<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004775<pre>
4776 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00004777 store i32 3, i32* %ptr <i>; yields {void}</i>
4778 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004779</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004780
Reid Spencer443460a2006-11-09 21:15:49 +00004781</div>
4782
Chris Lattner095735d2002-05-06 03:03:22 +00004783<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004784<h4>
4785<a name="i_fence">'<tt>fence</tt>' Instruction</a>
4786</h4>
Eli Friedmanfee02c62011-07-25 23:16:38 +00004787
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004788<div>
Eli Friedmanfee02c62011-07-25 23:16:38 +00004789
4790<h5>Syntax:</h5>
4791<pre>
4792 fence [singlethread] &lt;ordering&gt; <i>; yields {void}</i>
4793</pre>
4794
4795<h5>Overview:</h5>
4796<p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
4797between operations.</p>
4798
4799<h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
4800href="#ordering">ordering</a> argument which defines what
4801<i>synchronizes-with</i> edges they add. They can only be given
4802<code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
4803<code>seq_cst</code> orderings.</p>
4804
4805<h5>Semantics:</h5>
4806<p>A fence <var>A</var> which has (at least) <code>release</code> ordering
4807semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
4808<code>acquire</code> ordering semantics if and only if there exist atomic
4809operations <var>X</var> and <var>Y</var>, both operating on some atomic object
4810<var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
4811<var>X</var> modifies <var>M</var> (either directly or through some side effect
4812of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
4813<var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
4814<i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
4815than an explicit <code>fence</code>, one (but not both) of the atomic operations
4816<var>X</var> or <var>Y</var> might provide a <code>release</code> or
4817<code>acquire</code> (resp.) ordering constraint and still
4818<i>synchronize-with</i> the explicit <code>fence</code> and establish the
4819<i>happens-before</i> edge.</p>
4820
4821<p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
4822having both <code>acquire</code> and <code>release</code> semantics specified
4823above, participates in the global program order of other <code>seq_cst</code>
4824operations and/or fences.</p>
4825
4826<p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
4827specifies that the fence only synchronizes with other fences in the same
4828thread. (This is useful for interacting with signal handlers.)</p>
4829
Eli Friedmanfee02c62011-07-25 23:16:38 +00004830<h5>Example:</h5>
4831<pre>
4832 fence acquire <i>; yields {void}</i>
4833 fence singlethread seq_cst <i>; yields {void}</i>
4834</pre>
4835
4836</div>
4837
4838<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004839<h4>
4840<a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
4841</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004842
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004843<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004844
4845<h5>Syntax:</h5>
4846<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004847 cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004848</pre>
4849
4850<h5>Overview:</h5>
4851<p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
4852It loads a value in memory and compares it to a given value. If they are
4853equal, it stores a new value into the memory.</p>
4854
4855<h5>Arguments:</h5>
4856<p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
4857address to operate on, a value to compare to the value currently be at that
4858address, and a new value to place at that address if the compared values are
4859equal. The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
4860bit width is a power of two greater than or equal to eight and less than
4861or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
4862'<var>&lt;new&gt;</var>' must have the same type, and the type of
4863'<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
4864<code>cmpxchg</code> is marked as <code>volatile</code>, then the
4865optimizer is not allowed to modify the number or order of execution
4866of this <code>cmpxchg</code> with other <a href="#volatile">volatile
4867operations</a>.</p>
4868
4869<!-- FIXME: Extend allowed types. -->
4870
4871<p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
4872<code>cmpxchg</code> synchronizes with other atomic operations.</p>
4873
4874<p>The optional "<code>singlethread</code>" argument declares that the
4875<code>cmpxchg</code> is only atomic with respect to code (usually signal
4876handlers) running in the same thread as the <code>cmpxchg</code>. Otherwise the
4877cmpxchg is atomic with respect to all other code in the system.</p>
4878
4879<p>The pointer passed into cmpxchg must have alignment greater than or equal to
4880the size in memory of the operand.
4881
4882<h5>Semantics:</h5>
4883<p>The contents of memory at the location specified by the
4884'<tt>&lt;pointer&gt;</tt>' operand is read and compared to
4885'<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
4886'<tt>&lt;new&gt;</tt>' is written. The original value at the location
4887is returned.
4888
4889<p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
4890purpose of identifying <a href="#release_sequence">release sequences</a>. A
4891failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
4892parameter determined by dropping any <code>release</code> part of the
4893<code>cmpxchg</code>'s ordering.</p>
4894
4895<!--
4896FIXME: Is compare_exchange_weak() necessary? (Consider after we've done
4897optimization work on ARM.)
4898
4899FIXME: Is a weaker ordering constraint on failure helpful in practice?
4900-->
4901
4902<h5>Example:</h5>
4903<pre>
4904entry:
4905 %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered <i>; yields {i32}</i>
4906 <a href="#i_br">br</a> label %loop
4907
4908loop:
4909 %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
4910 %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
4911 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared <i>; yields {i32}</i>
4912 %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
4913 <a href="#i_br">br</a> i1 %success, label %done, label %loop
4914
4915done:
4916 ...
4917</pre>
4918
4919</div>
4920
4921<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004922<h4>
4923<a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
4924</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004925
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004926<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004927
4928<h5>Syntax:</h5>
4929<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004930 atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004931</pre>
4932
4933<h5>Overview:</h5>
4934<p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
4935
4936<h5>Arguments:</h5>
4937<p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
4938operation to apply, an address whose value to modify, an argument to the
4939operation. The operation must be one of the following keywords:</p>
4940<ul>
4941 <li>xchg</li>
4942 <li>add</li>
4943 <li>sub</li>
4944 <li>and</li>
4945 <li>nand</li>
4946 <li>or</li>
4947 <li>xor</li>
4948 <li>max</li>
4949 <li>min</li>
4950 <li>umax</li>
4951 <li>umin</li>
4952</ul>
4953
4954<p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
4955bit width is a power of two greater than or equal to eight and less than
4956or equal to a target-specific size limit. The type of the
4957'<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
4958If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
4959optimizer is not allowed to modify the number or order of execution of this
4960<code>atomicrmw</code> with other <a href="#volatile">volatile
4961 operations</a>.</p>
4962
4963<!-- FIXME: Extend allowed types. -->
4964
4965<h5>Semantics:</h5>
4966<p>The contents of memory at the location specified by the
4967'<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
4968back. The original value at the location is returned. The modification is
4969specified by the <var>operation</var> argument:</p>
4970
4971<ul>
4972 <li>xchg: <code>*ptr = val</code></li>
4973 <li>add: <code>*ptr = *ptr + val</code></li>
4974 <li>sub: <code>*ptr = *ptr - val</code></li>
4975 <li>and: <code>*ptr = *ptr &amp; val</code></li>
4976 <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
4977 <li>or: <code>*ptr = *ptr | val</code></li>
4978 <li>xor: <code>*ptr = *ptr ^ val</code></li>
4979 <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
4980 <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
4981 <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
4982 <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
4983</ul>
4984
4985<h5>Example:</h5>
4986<pre>
4987 %old = atomicrmw add i32* %ptr, i32 1 acquire <i>; yields {i32}</i>
4988</pre>
4989
4990</div>
4991
4992<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004993<h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00004994 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004995</h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00004996
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004997<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004998
Chris Lattner590645f2002-04-14 06:13:44 +00004999<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005000<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005001 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00005002 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00005003</pre>
5004
Chris Lattner590645f2002-04-14 06:13:44 +00005005<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005006<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner392be582010-02-12 20:49:41 +00005007 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
5008 It performs address calculation only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005009
Chris Lattner590645f2002-04-14 06:13:44 +00005010<h5>Arguments:</h5>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005011<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00005012 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005013 elements of the aggregate object are indexed. The interpretation of each
5014 index is dependent on the type being indexed into. The first index always
5015 indexes the pointer value given as the first argument, the second index
5016 indexes a value of the type pointed to (not necessarily the value directly
5017 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattner392be582010-02-12 20:49:41 +00005018 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner13ee7952010-08-28 04:09:24 +00005019 vectors, and structs. Note that subsequent types being indexed into
Chris Lattner392be582010-02-12 20:49:41 +00005020 can never be pointers, since that would require loading the pointer before
5021 continuing calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005022
5023<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner13ee7952010-08-28 04:09:24 +00005024 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattner392be582010-02-12 20:49:41 +00005025 integer <b>constants</b> are allowed. When indexing into an array, pointer
5026 or vector, integers of any width are allowed, and they are not required to be
Eli Friedmand8874dc2011-08-12 23:37:55 +00005027 constant. These integers are treated as signed values where relevant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005028
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005029<p>For example, let's consider a C code fragment and how it gets compiled to
5030 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005031
Benjamin Kramer79698be2010-07-13 12:26:09 +00005032<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00005033struct RT {
5034 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00005035 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00005036 char C;
5037};
5038struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00005039 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00005040 double Y;
5041 struct RT Z;
5042};
Chris Lattner33fd7022004-04-05 01:30:49 +00005043
Chris Lattnera446f1b2007-05-29 15:43:56 +00005044int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005045 return &amp;s[1].Z.B[5][13];
5046}
Chris Lattner33fd7022004-04-05 01:30:49 +00005047</pre>
5048
Misha Brukman76307852003-11-08 01:05:38 +00005049<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005050
Benjamin Kramer79698be2010-07-13 12:26:09 +00005051<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +00005052%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
5053%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00005054
Dan Gohman6b867702009-07-25 02:23:48 +00005055define i32* @foo(%ST* %s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005056entry:
5057 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
5058 ret i32* %reg
5059}
Chris Lattner33fd7022004-04-05 01:30:49 +00005060</pre>
5061
Chris Lattner590645f2002-04-14 06:13:44 +00005062<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005063<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005064 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
5065 }</tt>' type, a structure. The second index indexes into the third element
5066 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
5067 i8 }</tt>' type, another structure. The third index indexes into the second
5068 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
5069 array. The two dimensions of the array are subscripted into, yielding an
5070 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
5071 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005072
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005073<p>Note that it is perfectly legal to index partially through a structure,
5074 returning a pointer to an inner element. Because of this, the LLVM code for
5075 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005076
5077<pre>
Dan Gohman6b867702009-07-25 02:23:48 +00005078 define i32* @foo(%ST* %s) {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005079 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00005080 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
5081 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005082 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
5083 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
5084 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00005085 }
Chris Lattnera8292f32002-05-06 22:08:29 +00005086</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00005087
Dan Gohman1639c392009-07-27 21:53:46 +00005088<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00005089 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
5090 base pointer is not an <i>in bounds</i> address of an allocated object,
5091 or if any of the addresses that would be formed by successive addition of
5092 the offsets implied by the indices to the base address with infinitely
Eli Friedmand8874dc2011-08-12 23:37:55 +00005093 precise signed arithmetic are not an <i>in bounds</i> address of that
5094 allocated object. The <i>in bounds</i> addresses for an allocated object
5095 are all the addresses that point into the object, plus the address one
5096 byte past the end.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00005097
5098<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
Eli Friedmand8874dc2011-08-12 23:37:55 +00005099 the base address with silently-wrapping two's complement arithmetic. If the
5100 offsets have a different width from the pointer, they are sign-extended or
5101 truncated to the width of the pointer. The result value of the
5102 <tt>getelementptr</tt> may be outside the object pointed to by the base
5103 pointer. The result value may not necessarily be used to access memory
5104 though, even if it happens to point into allocated storage. See the
5105 <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
5106 information.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00005107
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005108<p>The getelementptr instruction is often confusing. For some more insight into
5109 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00005110
Chris Lattner590645f2002-04-14 06:13:44 +00005111<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005112<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005113 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005114 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5115 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005116 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005117 <i>; yields i8*:eptr</i>
5118 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00005119 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00005120 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00005121</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005122
Chris Lattner33fd7022004-04-05 01:30:49 +00005123</div>
Reid Spencer443460a2006-11-09 21:15:49 +00005124
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005125</div>
5126
Chris Lattner2f7c9632001-06-06 20:29:01 +00005127<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005128<h3>
5129 <a name="convertops">Conversion Operations</a>
5130</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005131
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005132<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005133
Reid Spencer97c5fa42006-11-08 01:18:52 +00005134<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005135 which all take a single operand and a type. They perform various bit
5136 conversions on the operand.</p>
5137
Chris Lattnera8292f32002-05-06 22:08:29 +00005138<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005139<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005140 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005141</h4>
5142
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005143<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005144
5145<h5>Syntax:</h5>
5146<pre>
5147 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5148</pre>
5149
5150<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005151<p>The '<tt>trunc</tt>' instruction truncates its operand to the
5152 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005153
5154<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005155<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
5156 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5157 of the same number of integers.
5158 The bit size of the <tt>value</tt> must be larger than
5159 the bit size of the destination type, <tt>ty2</tt>.
5160 Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005161
5162<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005163<p>The '<tt>trunc</tt>' instruction truncates the high order bits
5164 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
5165 source size must be larger than the destination size, <tt>trunc</tt> cannot
5166 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005167
5168<h5>Example:</h5>
5169<pre>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005170 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
5171 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
5172 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
5173 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005174</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005175
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005176</div>
5177
5178<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005179<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005180 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005181</h4>
5182
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005183<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005184
5185<h5>Syntax:</h5>
5186<pre>
5187 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5188</pre>
5189
5190<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005191<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005192 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005193
5194
5195<h5>Arguments:</h5>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005196<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
5197 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5198 of the same number of integers.
5199 The bit size of the <tt>value</tt> must be smaller than
5200 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005201 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005202
5203<h5>Semantics:</h5>
5204<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005205 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005206
Reid Spencer07c9c682007-01-12 15:46:11 +00005207<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005208
5209<h5>Example:</h5>
5210<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005211 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005212 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005213 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005214</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005215
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005216</div>
5217
5218<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005219<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005220 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005221</h4>
5222
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005223<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005224
5225<h5>Syntax:</h5>
5226<pre>
5227 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5228</pre>
5229
5230<h5>Overview:</h5>
5231<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
5232
5233<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005234<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
5235 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5236 of the same number of integers.
5237 The bit size of the <tt>value</tt> must be smaller than
5238 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005239 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005240
5241<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005242<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
5243 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
5244 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005245
Reid Spencer36a15422007-01-12 03:35:51 +00005246<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005247
5248<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005249<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005250 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005251 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005252 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005253</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005254
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005255</div>
5256
5257<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005258<h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005259 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005260</h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005261
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005262<div>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005263
5264<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005265<pre>
5266 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5267</pre>
5268
5269<h5>Overview:</h5>
5270<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005271 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005272
5273<h5>Arguments:</h5>
5274<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005275 point</a> value to cast and a <a href="#t_floating">floating point</a> type
5276 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher455c5772009-12-05 02:46:03 +00005277 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005278 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005279
5280<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005281<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher455c5772009-12-05 02:46:03 +00005282 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005283 <a href="#t_floating">floating point</a> type. If the value cannot fit
5284 within the destination type, <tt>ty2</tt>, then the results are
5285 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005286
5287<h5>Example:</h5>
5288<pre>
5289 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
5290 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
5291</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005292
Reid Spencer2e2740d2006-11-09 21:48:10 +00005293</div>
5294
5295<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005296<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005297 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005298</h4>
5299
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005300<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005301
5302<h5>Syntax:</h5>
5303<pre>
5304 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5305</pre>
5306
5307<h5>Overview:</h5>
5308<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005309 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005310
5311<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005312<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005313 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
5314 a <a href="#t_floating">floating point</a> type to cast it to. The source
5315 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005316
5317<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005318<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005319 <a href="#t_floating">floating point</a> type to a larger
5320 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
5321 used to make a <i>no-op cast</i> because it always changes bits. Use
5322 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005323
5324<h5>Example:</h5>
5325<pre>
Nick Lewycky9feca672011-03-31 18:20:19 +00005326 %X = fpext float 3.125 to double <i>; yields double:3.125000e+00</i>
5327 %Y = fpext double %X to fp128 <i>; yields fp128:0xL00000000000000004000900000000000</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005328</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005329
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005330</div>
5331
5332<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005333<h4>
Reid Spencer2eadb532007-01-21 00:29:26 +00005334 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005335</h4>
5336
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005337<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005338
5339<h5>Syntax:</h5>
5340<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005341 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005342</pre>
5343
5344<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00005345<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005346 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005347
5348<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005349<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
5350 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5351 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5352 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5353 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005354
5355<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005356<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005357 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5358 towards zero) unsigned integer value. If the value cannot fit
5359 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005360
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005361<h5>Example:</h5>
5362<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005363 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005364 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005365 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005366</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005367
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005368</div>
5369
5370<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005371<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005372 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005373</h4>
5374
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005375<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005376
5377<h5>Syntax:</h5>
5378<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005379 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005380</pre>
5381
5382<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005383<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005384 <a href="#t_floating">floating point</a> <tt>value</tt> to
5385 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005386
Chris Lattnera8292f32002-05-06 22:08:29 +00005387<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005388<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
5389 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5390 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5391 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5392 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005393
Chris Lattnera8292f32002-05-06 22:08:29 +00005394<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005395<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005396 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5397 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
5398 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005399
Chris Lattner70de6632001-07-09 00:26:23 +00005400<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005401<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005402 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005403 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005404 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005405</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005406
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005407</div>
5408
5409<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005410<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005411 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005412</h4>
5413
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005414<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005415
5416<h5>Syntax:</h5>
5417<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005418 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005419</pre>
5420
5421<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005422<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005423 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005424
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005425<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005426<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005427 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5428 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5429 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5430 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005431
5432<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005433<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005434 integer quantity and converts it to the corresponding floating point
5435 value. If the value cannot fit in the floating point value, the results are
5436 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005437
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005438<h5>Example:</h5>
5439<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005440 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005441 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005442</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005443
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005444</div>
5445
5446<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005447<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005448 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005449</h4>
5450
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005451<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005452
5453<h5>Syntax:</h5>
5454<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005455 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005456</pre>
5457
5458<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005459<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
5460 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005461
5462<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005463<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005464 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5465 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5466 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5467 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005468
5469<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005470<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
5471 quantity and converts it to the corresponding floating point value. If the
5472 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005473
5474<h5>Example:</h5>
5475<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005476 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005477 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005478</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005479
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005480</div>
5481
5482<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005483<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005484 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005485</h4>
5486
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005487<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005488
5489<h5>Syntax:</h5>
5490<pre>
5491 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5492</pre>
5493
5494<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005495<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
5496 the integer type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005497
5498<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005499<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
5500 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
5501 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005502
5503<h5>Semantics:</h5>
5504<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005505 <tt>ty2</tt> by interpreting the pointer value as an integer and either
5506 truncating or zero extending that value to the size of the integer type. If
5507 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5508 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5509 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5510 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005511
5512<h5>Example:</h5>
5513<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005514 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
5515 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005516</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005517
Reid Spencerb7344ff2006-11-11 21:00:47 +00005518</div>
5519
5520<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005521<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005522 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005523</h4>
5524
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005525<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005526
5527<h5>Syntax:</h5>
5528<pre>
5529 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5530</pre>
5531
5532<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005533<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5534 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005535
5536<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00005537<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005538 value to cast, and a type to cast it to, which must be a
5539 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005540
5541<h5>Semantics:</h5>
5542<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005543 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5544 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5545 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5546 than the size of a pointer then a zero extension is done. If they are the
5547 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005548
5549<h5>Example:</h5>
5550<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005551 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005552 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
5553 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005554</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005555
Reid Spencerb7344ff2006-11-11 21:00:47 +00005556</div>
5557
5558<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005559<h4>
Reid Spencer5b950642006-11-11 23:08:07 +00005560 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005561</h4>
5562
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005563<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005564
5565<h5>Syntax:</h5>
5566<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00005567 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005568</pre>
5569
5570<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005571<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005572 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005573
5574<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005575<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5576 non-aggregate first class value, and a type to cast it to, which must also be
5577 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5578 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5579 identical. If the source type is a pointer, the destination type must also be
5580 a pointer. This instruction supports bitwise conversion of vectors to
5581 integers and to vectors of other types (as long as they have the same
5582 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005583
5584<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005585<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005586 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5587 this conversion. The conversion is done as if the <tt>value</tt> had been
5588 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
5589 be converted to other pointer types with this instruction. To convert
5590 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5591 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005592
5593<h5>Example:</h5>
5594<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005595 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005596 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christopher455c5772009-12-05 02:46:03 +00005597 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00005598</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005599
Misha Brukman76307852003-11-08 01:05:38 +00005600</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005601
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005602</div>
5603
Reid Spencer97c5fa42006-11-08 01:18:52 +00005604<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005605<h3>
5606 <a name="otherops">Other Operations</a>
5607</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005608
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005609<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005610
5611<p>The instructions in this category are the "miscellaneous" instructions, which
5612 defy better classification.</p>
5613
Reid Spencerc828a0e2006-11-18 21:50:54 +00005614<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005615<h4>
5616 <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5617</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005618
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005619<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005620
Reid Spencerc828a0e2006-11-18 21:50:54 +00005621<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005622<pre>
5623 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005624</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005625
Reid Spencerc828a0e2006-11-18 21:50:54 +00005626<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005627<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5628 boolean values based on comparison of its two integer, integer vector, or
5629 pointer operands.</p>
5630
Reid Spencerc828a0e2006-11-18 21:50:54 +00005631<h5>Arguments:</h5>
5632<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005633 the condition code indicating the kind of comparison to perform. It is not a
5634 value, just a keyword. The possible condition code are:</p>
5635
Reid Spencerc828a0e2006-11-18 21:50:54 +00005636<ol>
5637 <li><tt>eq</tt>: equal</li>
5638 <li><tt>ne</tt>: not equal </li>
5639 <li><tt>ugt</tt>: unsigned greater than</li>
5640 <li><tt>uge</tt>: unsigned greater or equal</li>
5641 <li><tt>ult</tt>: unsigned less than</li>
5642 <li><tt>ule</tt>: unsigned less or equal</li>
5643 <li><tt>sgt</tt>: signed greater than</li>
5644 <li><tt>sge</tt>: signed greater or equal</li>
5645 <li><tt>slt</tt>: signed less than</li>
5646 <li><tt>sle</tt>: signed less or equal</li>
5647</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005648
Chris Lattnerc0f423a2007-01-15 01:54:13 +00005649<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005650 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5651 typed. They must also be identical types.</p>
5652
Reid Spencerc828a0e2006-11-18 21:50:54 +00005653<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005654<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5655 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005656 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005657 result, as follows:</p>
5658
Reid Spencerc828a0e2006-11-18 21:50:54 +00005659<ol>
Eric Christopher455c5772009-12-05 02:46:03 +00005660 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005661 <tt>false</tt> otherwise. No sign interpretation is necessary or
5662 performed.</li>
5663
Eric Christopher455c5772009-12-05 02:46:03 +00005664 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005665 <tt>false</tt> otherwise. No sign interpretation is necessary or
5666 performed.</li>
5667
Reid Spencerc828a0e2006-11-18 21:50:54 +00005668 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005669 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5670
Reid Spencerc828a0e2006-11-18 21:50:54 +00005671 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005672 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5673 to <tt>op2</tt>.</li>
5674
Reid Spencerc828a0e2006-11-18 21:50:54 +00005675 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005676 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5677
Reid Spencerc828a0e2006-11-18 21:50:54 +00005678 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005679 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5680
Reid Spencerc828a0e2006-11-18 21:50:54 +00005681 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005682 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5683
Reid Spencerc828a0e2006-11-18 21:50:54 +00005684 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005685 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5686 to <tt>op2</tt>.</li>
5687
Reid Spencerc828a0e2006-11-18 21:50:54 +00005688 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005689 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5690
Reid Spencerc828a0e2006-11-18 21:50:54 +00005691 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005692 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005693</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005694
Reid Spencerc828a0e2006-11-18 21:50:54 +00005695<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005696 values are compared as if they were integers.</p>
5697
5698<p>If the operands are integer vectors, then they are compared element by
5699 element. The result is an <tt>i1</tt> vector with the same number of elements
5700 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005701
5702<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005703<pre>
5704 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005705 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5706 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5707 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5708 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5709 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005710</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005711
5712<p>Note that the code generator does not yet support vector types with
5713 the <tt>icmp</tt> instruction.</p>
5714
Reid Spencerc828a0e2006-11-18 21:50:54 +00005715</div>
5716
5717<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005718<h4>
5719 <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5720</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005721
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005722<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005723
Reid Spencerc828a0e2006-11-18 21:50:54 +00005724<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005725<pre>
5726 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005727</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005728
Reid Spencerc828a0e2006-11-18 21:50:54 +00005729<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005730<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5731 values based on comparison of its operands.</p>
5732
5733<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005734(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005735
5736<p>If the operands are floating point vectors, then the result type is a vector
5737 of boolean with the same number of elements as the operands being
5738 compared.</p>
5739
Reid Spencerc828a0e2006-11-18 21:50:54 +00005740<h5>Arguments:</h5>
5741<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005742 the condition code indicating the kind of comparison to perform. It is not a
5743 value, just a keyword. The possible condition code are:</p>
5744
Reid Spencerc828a0e2006-11-18 21:50:54 +00005745<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00005746 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005747 <li><tt>oeq</tt>: ordered and equal</li>
5748 <li><tt>ogt</tt>: ordered and greater than </li>
5749 <li><tt>oge</tt>: ordered and greater than or equal</li>
5750 <li><tt>olt</tt>: ordered and less than </li>
5751 <li><tt>ole</tt>: ordered and less than or equal</li>
5752 <li><tt>one</tt>: ordered and not equal</li>
5753 <li><tt>ord</tt>: ordered (no nans)</li>
5754 <li><tt>ueq</tt>: unordered or equal</li>
5755 <li><tt>ugt</tt>: unordered or greater than </li>
5756 <li><tt>uge</tt>: unordered or greater than or equal</li>
5757 <li><tt>ult</tt>: unordered or less than </li>
5758 <li><tt>ule</tt>: unordered or less than or equal</li>
5759 <li><tt>une</tt>: unordered or not equal</li>
5760 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00005761 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005762</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005763
Jeff Cohen222a8a42007-04-29 01:07:00 +00005764<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005765 <i>unordered</i> means that either operand may be a QNAN.</p>
5766
5767<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5768 a <a href="#t_floating">floating point</a> type or
5769 a <a href="#t_vector">vector</a> of floating point type. They must have
5770 identical types.</p>
5771
Reid Spencerc828a0e2006-11-18 21:50:54 +00005772<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00005773<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005774 according to the condition code given as <tt>cond</tt>. If the operands are
5775 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005776 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005777 follows:</p>
5778
Reid Spencerc828a0e2006-11-18 21:50:54 +00005779<ol>
5780 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005781
Eric Christopher455c5772009-12-05 02:46:03 +00005782 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005783 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5784
Reid Spencerf69acf32006-11-19 03:00:14 +00005785 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmana269a0a2010-03-01 17:41:39 +00005786 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005787
Eric Christopher455c5772009-12-05 02:46:03 +00005788 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005789 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5790
Eric Christopher455c5772009-12-05 02:46:03 +00005791 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005792 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5793
Eric Christopher455c5772009-12-05 02:46:03 +00005794 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005795 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5796
Eric Christopher455c5772009-12-05 02:46:03 +00005797 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005798 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5799
Reid Spencerf69acf32006-11-19 03:00:14 +00005800 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005801
Eric Christopher455c5772009-12-05 02:46:03 +00005802 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005803 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5804
Eric Christopher455c5772009-12-05 02:46:03 +00005805 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005806 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5807
Eric Christopher455c5772009-12-05 02:46:03 +00005808 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005809 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5810
Eric Christopher455c5772009-12-05 02:46:03 +00005811 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005812 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5813
Eric Christopher455c5772009-12-05 02:46:03 +00005814 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005815 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5816
Eric Christopher455c5772009-12-05 02:46:03 +00005817 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005818 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5819
Reid Spencerf69acf32006-11-19 03:00:14 +00005820 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005821
Reid Spencerc828a0e2006-11-18 21:50:54 +00005822 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5823</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005824
5825<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005826<pre>
5827 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00005828 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5829 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5830 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005831</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005832
5833<p>Note that the code generator does not yet support vector types with
5834 the <tt>fcmp</tt> instruction.</p>
5835
Reid Spencerc828a0e2006-11-18 21:50:54 +00005836</div>
5837
Reid Spencer97c5fa42006-11-08 01:18:52 +00005838<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005839<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005840 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005841</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005842
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005843<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005844
Reid Spencer97c5fa42006-11-08 01:18:52 +00005845<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005846<pre>
5847 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5848</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005849
Reid Spencer97c5fa42006-11-08 01:18:52 +00005850<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005851<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5852 SSA graph representing the function.</p>
5853
Reid Spencer97c5fa42006-11-08 01:18:52 +00005854<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005855<p>The type of the incoming values is specified with the first type field. After
5856 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5857 one pair for each predecessor basic block of the current block. Only values
5858 of <a href="#t_firstclass">first class</a> type may be used as the value
5859 arguments to the PHI node. Only labels may be used as the label
5860 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005861
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005862<p>There must be no non-phi instructions between the start of a basic block and
5863 the PHI instructions: i.e. PHI instructions must be first in a basic
5864 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005865
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005866<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5867 occur on the edge from the corresponding predecessor block to the current
5868 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5869 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00005870
Reid Spencer97c5fa42006-11-08 01:18:52 +00005871<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005872<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005873 specified by the pair corresponding to the predecessor basic block that
5874 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005875
Reid Spencer97c5fa42006-11-08 01:18:52 +00005876<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005877<pre>
5878Loop: ; Infinite loop that counts from 0 on up...
5879 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5880 %nextindvar = add i32 %indvar, 1
5881 br label %Loop
5882</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005883
Reid Spencer97c5fa42006-11-08 01:18:52 +00005884</div>
5885
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005886<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005887<h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005888 <a name="i_select">'<tt>select</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005889</h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005890
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005891<div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005892
5893<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005894<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00005895 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5896
Dan Gohmanef9462f2008-10-14 16:51:45 +00005897 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005898</pre>
5899
5900<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005901<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5902 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005903
5904
5905<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005906<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5907 values indicating the condition, and two values of the
5908 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5909 vectors and the condition is a scalar, then entire vectors are selected, not
5910 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005911
5912<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005913<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5914 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005915
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005916<p>If the condition is a vector of i1, then the value arguments must be vectors
5917 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005918
5919<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005920<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005921 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005922</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005923
5924<p>Note that the code generator does not yet support conditions
5925 with vector type.</p>
5926
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005927</div>
5928
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00005929<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005930<h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00005931 <a name="i_call">'<tt>call</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005932</h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00005933
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005934<div>
Chris Lattnere23c1392005-05-06 05:47:36 +00005935
Chris Lattner2f7c9632001-06-06 20:29:01 +00005936<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005937<pre>
Devang Patel02256232008-10-07 17:48:33 +00005938 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00005939</pre>
5940
Chris Lattner2f7c9632001-06-06 20:29:01 +00005941<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005942<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005943
Chris Lattner2f7c9632001-06-06 20:29:01 +00005944<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005945<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005946
Chris Lattnera8292f32002-05-06 22:08:29 +00005947<ol>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005948 <li>The optional "tail" marker indicates that the callee function does not
5949 access any allocas or varargs in the caller. Note that calls may be
5950 marked "tail" even if they do not occur before
5951 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5952 present, the function call is eligible for tail call optimization,
5953 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Cheng59676492010-03-08 21:05:02 +00005954 optimized into a jump</a>. The code generator may optimize calls marked
5955 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5956 sibling call optimization</a> when the caller and callee have
5957 matching signatures, or 2) forced tail call optimization when the
5958 following extra requirements are met:
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005959 <ul>
5960 <li>Caller and callee both have the calling
5961 convention <tt>fastcc</tt>.</li>
5962 <li>The call is in tail position (ret immediately follows call and ret
5963 uses value of call or is void).</li>
5964 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohman6232f732010-03-02 01:08:11 +00005965 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005966 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5967 constraints are met.</a></li>
5968 </ul>
5969 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005970
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005971 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5972 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005973 defaults to using C calling conventions. The calling convention of the
5974 call must match the calling convention of the target function, or else the
5975 behavior is undefined.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005976
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005977 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5978 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5979 '<tt>inreg</tt>' attributes are valid here.</li>
5980
5981 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5982 type of the return value. Functions that return no value are marked
5983 <tt><a href="#t_void">void</a></tt>.</li>
5984
5985 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5986 being invoked. The argument types must match the types implied by this
5987 signature. This type can be omitted if the function is not varargs and if
5988 the function type does not return a pointer to a function.</li>
5989
5990 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5991 be invoked. In most cases, this is a direct function invocation, but
5992 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5993 to function value.</li>
5994
5995 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00005996 signature argument types and parameter attributes. All arguments must be
5997 of <a href="#t_firstclass">first class</a> type. If the function
5998 signature indicates the function accepts a variable number of arguments,
5999 the extra arguments can be specified.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006000
6001 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
6002 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
6003 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00006004</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00006005
Chris Lattner2f7c9632001-06-06 20:29:01 +00006006<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006007<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
6008 a specified function, with its incoming arguments bound to the specified
6009 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
6010 function, control flow continues with the instruction after the function
6011 call, and the return value of the function is bound to the result
6012 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006013
Chris Lattner2f7c9632001-06-06 20:29:01 +00006014<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00006015<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00006016 %retval = call i32 @test(i32 %argc)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006017 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00006018 %X = tail call i32 @foo() <i>; yields i32</i>
6019 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
6020 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00006021
6022 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00006023 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00006024 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
6025 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00006026 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00006027 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00006028</pre>
6029
Dale Johannesen68f971b2009-09-24 18:38:21 +00006030<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00006031standard C99 library as being the C99 library functions, and may perform
6032optimizations or generate code for them under that assumption. This is
6033something we'd like to change in the future to provide better support for
Dan Gohmana269a0a2010-03-01 17:41:39 +00006034freestanding environments and non-C-based languages.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00006035
Misha Brukman76307852003-11-08 01:05:38 +00006036</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006037
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006038<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006039<h4>
Chris Lattner33337472006-01-13 23:26:01 +00006040 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006041</h4>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006042
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006043<div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006044
Chris Lattner26ca62e2003-10-18 05:51:36 +00006045<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006046<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006047 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00006048</pre>
6049
Chris Lattner26ca62e2003-10-18 05:51:36 +00006050<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006051<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006052 the "variable argument" area of a function call. It is used to implement the
6053 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006054
Chris Lattner26ca62e2003-10-18 05:51:36 +00006055<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006056<p>This instruction takes a <tt>va_list*</tt> value and the type of the
6057 argument. It returns a value of the specified argument type and increments
6058 the <tt>va_list</tt> to point to the next argument. The actual type
6059 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006060
Chris Lattner26ca62e2003-10-18 05:51:36 +00006061<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006062<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
6063 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
6064 to the next argument. For more information, see the variable argument
6065 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006066
6067<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006068 take a variable number of arguments, for example, the <tt>vfprintf</tt>
6069 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006070
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006071<p><tt>va_arg</tt> is an LLVM instruction instead of
6072 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
6073 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006074
Chris Lattner26ca62e2003-10-18 05:51:36 +00006075<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006076<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
6077
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006078<p>Note that the code generator does not yet fully support va_arg on many
6079 targets. Also, it does not currently support va_arg with aggregate types on
6080 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00006081
Misha Brukman76307852003-11-08 01:05:38 +00006082</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006083
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006084<!-- _______________________________________________________________________ -->
6085<h4>
6086 <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
6087</h4>
6088
6089<div>
6090
6091<h5>Syntax:</h5>
6092<pre>
Bill Wendling49bfb122011-08-08 08:06:05 +00006093 &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
6094 &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
6095
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006096 &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
Bill Wendlingfae14752011-08-12 20:24:12 +00006097 &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006098</pre>
6099
6100<h5>Overview:</h5>
6101<p>The '<tt>landingpad</tt>' instruction is used by
6102 <a href="ExceptionHandling.html#overview">LLVM's exception handling
6103 system</a> to specify that a basic block is a landing pad &mdash; one where
6104 the exception lands, and corresponds to the code found in the
6105 <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
6106 defines values supplied by the personality function (<tt>pers_fn</tt>) upon
6107 re-entry to the function. The <tt>resultval</tt> has the
6108 type <tt>somety</tt>.</p>
6109
6110<h5>Arguments:</h5>
6111<p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
6112 function associated with the unwinding mechanism. The optional
6113 <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
6114
6115<p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
Bill Wendlingfae14752011-08-12 20:24:12 +00006116 or <tt>filter</tt> &mdash; and contains the global variable representing the
6117 "type" that may be caught or filtered respectively. Unlike the
6118 <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
6119 its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
6120 throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006121 one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
6122
6123<h5>Semantics:</h5>
6124<p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
6125 personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
6126 therefore the "result type" of the <tt>landingpad</tt> instruction. As with
6127 calling conventions, how the personality function results are represented in
6128 LLVM IR is target specific.</p>
6129
Bill Wendling0524b8d2011-08-03 17:17:06 +00006130<p>The clauses are applied in order from top to bottom. If two
6131 <tt>landingpad</tt> instructions are merged together through inlining, the
Bill Wendlinga503fc02011-08-08 07:58:58 +00006132 clauses from the calling function are appended to the list of clauses.</p>
Bill Wendling0524b8d2011-08-03 17:17:06 +00006133
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006134<p>The <tt>landingpad</tt> instruction has several restrictions:</p>
6135
6136<ul>
6137 <li>A landing pad block is a basic block which is the unwind destination of an
6138 '<tt>invoke</tt>' instruction.</li>
6139 <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
6140 first non-PHI instruction.</li>
6141 <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
6142 pad block.</li>
6143 <li>A basic block that is not a landing pad block may not include a
6144 '<tt>landingpad</tt>' instruction.</li>
6145 <li>All '<tt>landingpad</tt>' instructions in a function must have the same
6146 personality function.</li>
6147</ul>
6148
6149<h5>Example:</h5>
6150<pre>
6151 ;; A landing pad which can catch an integer.
6152 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6153 catch i8** @_ZTIi
6154 ;; A landing pad that is a cleanup.
6155 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
Bill Wendlingfae14752011-08-12 20:24:12 +00006156 cleanup
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006157 ;; A landing pad which can catch an integer and can only throw a double.
6158 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6159 catch i8** @_ZTIi
Bill Wendlingfae14752011-08-12 20:24:12 +00006160 filter [1 x i8**] [@_ZTId]
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006161</pre>
6162
6163</div>
6164
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006165</div>
6166
6167</div>
6168
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006169<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006170<h2><a name="intrinsics">Intrinsic Functions</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00006171<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00006172
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006173<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006174
6175<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006176 well known names and semantics and are required to follow certain
6177 restrictions. Overall, these intrinsics represent an extension mechanism for
6178 the LLVM language that does not require changing all of the transformations
6179 in LLVM when adding to the language (or the bitcode reader/writer, the
6180 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006181
John Criswell88190562005-05-16 16:17:45 +00006182<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006183 prefix is reserved in LLVM for intrinsic names; thus, function names may not
6184 begin with this prefix. Intrinsic functions must always be external
6185 functions: you cannot define the body of intrinsic functions. Intrinsic
6186 functions may only be used in call or invoke instructions: it is illegal to
6187 take the address of an intrinsic function. Additionally, because intrinsic
6188 functions are part of the LLVM language, it is required if any are added that
6189 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006190
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006191<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
6192 family of functions that perform the same operation but on different data
6193 types. Because LLVM can represent over 8 million different integer types,
6194 overloading is used commonly to allow an intrinsic function to operate on any
6195 integer type. One or more of the argument types or the result type can be
6196 overloaded to accept any integer type. Argument types may also be defined as
6197 exactly matching a previous argument's type or the result type. This allows
6198 an intrinsic function which accepts multiple arguments, but needs all of them
6199 to be of the same type, to only be overloaded with respect to a single
6200 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006201
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006202<p>Overloaded intrinsics will have the names of its overloaded argument types
6203 encoded into its function name, each preceded by a period. Only those types
6204 which are overloaded result in a name suffix. Arguments whose type is matched
6205 against another type do not. For example, the <tt>llvm.ctpop</tt> function
6206 can take an integer of any width and returns an integer of exactly the same
6207 integer width. This leads to a family of functions such as
6208 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
6209 %val)</tt>. Only one type, the return type, is overloaded, and only one type
6210 suffix is required. Because the argument's type is matched against the return
6211 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006212
Eric Christopher455c5772009-12-05 02:46:03 +00006213<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006214 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006215
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006216<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006217<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006218 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006219</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006220
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006221<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006222
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006223<p>Variable argument support is defined in LLVM with
6224 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
6225 intrinsic functions. These functions are related to the similarly named
6226 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006227
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006228<p>All of these functions operate on arguments that use a target-specific value
6229 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
6230 not define what this type is, so all transformations should be prepared to
6231 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006232
Chris Lattner30b868d2006-05-15 17:26:46 +00006233<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006234 instruction and the variable argument handling intrinsic functions are
6235 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006236
Benjamin Kramer79698be2010-07-13 12:26:09 +00006237<pre class="doc_code">
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006238define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00006239 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00006240 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006241 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006242 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006243
6244 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00006245 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00006246
6247 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00006248 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006249 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00006250 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006251 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006252
6253 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006254 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00006255 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00006256}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006257
6258declare void @llvm.va_start(i8*)
6259declare void @llvm.va_copy(i8*, i8*)
6260declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00006261</pre>
Chris Lattner941515c2004-01-06 05:31:32 +00006262
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006263<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006264<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006265 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006266</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006267
6268
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006269<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006270
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006271<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006272<pre>
6273 declare void %llvm.va_start(i8* &lt;arglist&gt;)
6274</pre>
6275
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006276<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006277<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
6278 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006279
6280<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006281<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006282
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006283<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006284<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006285 macro available in C. In a target-dependent way, it initializes
6286 the <tt>va_list</tt> element to which the argument points, so that the next
6287 call to <tt>va_arg</tt> will produce the first variable argument passed to
6288 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
6289 need to know the last argument of the function as the compiler can figure
6290 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006291
Misha Brukman76307852003-11-08 01:05:38 +00006292</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006293
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006294<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006295<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006296 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006297</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006298
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006299<div>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006300
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006301<h5>Syntax:</h5>
6302<pre>
6303 declare void @llvm.va_end(i8* &lt;arglist&gt;)
6304</pre>
6305
6306<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006307<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006308 which has been initialized previously
6309 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
6310 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006311
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006312<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006313<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006314
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006315<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006316<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006317 macro available in C. In a target-dependent way, it destroys
6318 the <tt>va_list</tt> element to which the argument points. Calls
6319 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
6320 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
6321 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006322
Misha Brukman76307852003-11-08 01:05:38 +00006323</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006324
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006325<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006326<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006327 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006328</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006329
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006330<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006331
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006332<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006333<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006334 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006335</pre>
6336
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006337<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006338<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006339 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006340
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006341<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006342<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006343 The second argument is a pointer to a <tt>va_list</tt> element to copy
6344 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006345
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006346<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006347<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006348 macro available in C. In a target-dependent way, it copies the
6349 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
6350 element. This intrinsic is necessary because
6351 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
6352 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006353
Misha Brukman76307852003-11-08 01:05:38 +00006354</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006355
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006356</div>
6357
Bill Wendling537603b2011-07-31 06:45:03 +00006358</div>
6359
Chris Lattnerfee11462004-02-12 17:01:32 +00006360<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006361<h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006362 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006363</h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006364
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006365<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006366
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006367<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00006368Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006369intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
6370roots on the stack</a>, as well as garbage collector implementations that
6371require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
6372barriers. Front-ends for type-safe garbage collected languages should generate
6373these intrinsics to make use of the LLVM garbage collectors. For more details,
6374see <a href="GarbageCollection.html">Accurate Garbage Collection with
6375LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006376
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006377<p>The garbage collection intrinsics only operate on objects in the generic
6378 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006379
Chris Lattner757528b0b2004-05-23 21:06:01 +00006380<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006381<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006382 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006383</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006384
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006385<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006386
6387<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006388<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006389 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006390</pre>
6391
6392<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00006393<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006394 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006395
6396<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006397<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006398 root pointer. The second pointer (which must be either a constant or a
6399 global value address) contains the meta-data to be associated with the
6400 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006401
6402<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00006403<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006404 location. At compile-time, the code generator generates information to allow
6405 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
6406 intrinsic may only be used in a function which <a href="#gc">specifies a GC
6407 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006408
6409</div>
6410
Chris Lattner757528b0b2004-05-23 21:06:01 +00006411<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006412<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006413 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006414</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006415
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006416<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006417
6418<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006419<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006420 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006421</pre>
6422
6423<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006424<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006425 locations, allowing garbage collector implementations that require read
6426 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006427
6428<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006429<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006430 allocated from the garbage collector. The first object is a pointer to the
6431 start of the referenced object, if needed by the language runtime (otherwise
6432 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006433
6434<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006435<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006436 instruction, but may be replaced with substantially more complex code by the
6437 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
6438 may only be used in a function which <a href="#gc">specifies a GC
6439 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006440
6441</div>
6442
Chris Lattner757528b0b2004-05-23 21:06:01 +00006443<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006444<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006445 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006446</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006447
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006448<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006449
6450<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006451<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006452 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006453</pre>
6454
6455<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006456<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006457 locations, allowing garbage collector implementations that require write
6458 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006459
6460<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006461<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006462 object to store it to, and the third is the address of the field of Obj to
6463 store to. If the runtime does not require a pointer to the object, Obj may
6464 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006465
6466<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006467<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006468 instruction, but may be replaced with substantially more complex code by the
6469 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
6470 may only be used in a function which <a href="#gc">specifies a GC
6471 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006472
6473</div>
6474
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006475</div>
6476
Chris Lattner757528b0b2004-05-23 21:06:01 +00006477<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006478<h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006479 <a name="int_codegen">Code Generator Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006480</h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006481
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006482<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006483
6484<p>These intrinsics are provided by LLVM to expose special features that may
6485 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006486
Chris Lattner3649c3a2004-02-14 04:08:35 +00006487<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006488<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006489 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006490</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006491
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006492<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006493
6494<h5>Syntax:</h5>
6495<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006496 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006497</pre>
6498
6499<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006500<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
6501 target-specific value indicating the return address of the current function
6502 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006503
6504<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006505<p>The argument to this intrinsic indicates which function to return the address
6506 for. Zero indicates the calling function, one indicates its caller, etc.
6507 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006508
6509<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006510<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
6511 indicating the return address of the specified call frame, or zero if it
6512 cannot be identified. The value returned by this intrinsic is likely to be
6513 incorrect or 0 for arguments other than zero, so it should only be used for
6514 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006515
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006516<p>Note that calling this intrinsic does not prevent function inlining or other
6517 aggressive transformations, so the value returned may not be that of the
6518 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006519
Chris Lattner3649c3a2004-02-14 04:08:35 +00006520</div>
6521
Chris Lattner3649c3a2004-02-14 04:08:35 +00006522<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006523<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006524 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006525</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006526
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006527<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006528
6529<h5>Syntax:</h5>
6530<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006531 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006532</pre>
6533
6534<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006535<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
6536 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006537
6538<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006539<p>The argument to this intrinsic indicates which function to return the frame
6540 pointer for. Zero indicates the calling function, one indicates its caller,
6541 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006542
6543<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006544<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
6545 indicating the frame address of the specified call frame, or zero if it
6546 cannot be identified. The value returned by this intrinsic is likely to be
6547 incorrect or 0 for arguments other than zero, so it should only be used for
6548 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006549
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006550<p>Note that calling this intrinsic does not prevent function inlining or other
6551 aggressive transformations, so the value returned may not be that of the
6552 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006553
Chris Lattner3649c3a2004-02-14 04:08:35 +00006554</div>
6555
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006556<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006557<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006558 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006559</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006560
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006561<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006562
6563<h5>Syntax:</h5>
6564<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006565 declare i8* @llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00006566</pre>
6567
6568<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006569<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6570 of the function stack, for use
6571 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
6572 useful for implementing language features like scoped automatic variable
6573 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006574
6575<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006576<p>This intrinsic returns a opaque pointer value that can be passed
6577 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
6578 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6579 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6580 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6581 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6582 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006583
6584</div>
6585
6586<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006587<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006588 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006589</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006590
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006591<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006592
6593<h5>Syntax:</h5>
6594<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006595 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00006596</pre>
6597
6598<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006599<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
6600 the function stack to the state it was in when the
6601 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
6602 executed. This is useful for implementing language features like scoped
6603 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006604
6605<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006606<p>See the description
6607 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006608
6609</div>
6610
Chris Lattner2f0f0012006-01-13 02:03:13 +00006611<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006612<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006613 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006614</h4>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006615
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006616<div>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006617
6618<h5>Syntax:</h5>
6619<pre>
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006620 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006621</pre>
6622
6623<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006624<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6625 insert a prefetch instruction if supported; otherwise, it is a noop.
6626 Prefetches have no effect on the behavior of the program but can change its
6627 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006628
6629<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006630<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6631 specifier determining if the fetch should be for a read (0) or write (1),
6632 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006633 locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
6634 specifies whether the prefetch is performed on the data (1) or instruction (0)
6635 cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
6636 must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006637
6638<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006639<p>This intrinsic does not modify the behavior of the program. In particular,
6640 prefetches cannot trap and do not produce a value. On targets that support
6641 this intrinsic, the prefetch can provide hints to the processor cache for
6642 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006643
6644</div>
6645
Andrew Lenharthb4427912005-03-28 20:05:49 +00006646<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006647<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006648 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006649</h4>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006650
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006651<div>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006652
6653<h5>Syntax:</h5>
6654<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006655 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00006656</pre>
6657
6658<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006659<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6660 Counter (PC) in a region of code to simulators and other tools. The method
6661 is target specific, but it is expected that the marker will use exported
6662 symbols to transmit the PC of the marker. The marker makes no guarantees
6663 that it will remain with any specific instruction after optimizations. It is
6664 possible that the presence of a marker will inhibit optimizations. The
6665 intended use is to be inserted after optimizations to allow correlations of
6666 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006667
6668<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006669<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006670
6671<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006672<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmana269a0a2010-03-01 17:41:39 +00006673 not support this intrinsic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006674
6675</div>
6676
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006677<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006678<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006679 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006680</h4>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006681
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006682<div>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006683
6684<h5>Syntax:</h5>
6685<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00006686 declare i64 @llvm.readcyclecounter()
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006687</pre>
6688
6689<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006690<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6691 counter register (or similar low latency, high accuracy clocks) on those
6692 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6693 should map to RPCC. As the backing counters overflow quickly (on the order
6694 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006695
6696<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006697<p>When directly supported, reading the cycle counter should not modify any
6698 memory. Implementations are allowed to either return a application specific
6699 value or a system wide value. On backends without support, this is lowered
6700 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006701
6702</div>
6703
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006704</div>
6705
Chris Lattner3649c3a2004-02-14 04:08:35 +00006706<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006707<h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006708 <a name="int_libc">Standard C Library Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006709</h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006710
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006711<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006712
6713<p>LLVM provides intrinsics for a few important standard C library functions.
6714 These intrinsics allow source-language front-ends to pass information about
6715 the alignment of the pointer arguments to the code generator, providing
6716 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006717
Chris Lattnerfee11462004-02-12 17:01:32 +00006718<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006719<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006720 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006721</h4>
Chris Lattnerfee11462004-02-12 17:01:32 +00006722
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006723<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006724
6725<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006726<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wang508127b2010-04-07 06:35:53 +00006727 integer bit width and for different address spaces. Not all targets support
6728 all bit widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006729
Chris Lattnerfee11462004-02-12 17:01:32 +00006730<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006731 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006732 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006733 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006734 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00006735</pre>
6736
6737<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006738<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6739 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006740
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006741<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006742 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6743 and the pointers can be in specified address spaces.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006744
6745<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006746
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006747<p>The first argument is a pointer to the destination, the second is a pointer
6748 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006749 number of bytes to copy, the fourth argument is the alignment of the
6750 source and destination locations, and the fifth is a boolean indicating a
6751 volatile access.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006752
Dan Gohmana269a0a2010-03-01 17:41:39 +00006753<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006754 then the caller guarantees that both the source and destination pointers are
6755 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006756
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006757<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6758 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6759 The detailed access behavior is not very cleanly specified and it is unwise
6760 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006761
Chris Lattnerfee11462004-02-12 17:01:32 +00006762<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006763
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006764<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6765 source location to the destination location, which are not allowed to
6766 overlap. It copies "len" bytes of memory over. If the argument is known to
6767 be aligned to some boundary, this can be specified as the fourth argument,
6768 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006769
Chris Lattnerfee11462004-02-12 17:01:32 +00006770</div>
6771
Chris Lattnerf30152e2004-02-12 18:10:10 +00006772<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006773<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006774 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006775</h4>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006776
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006777<div>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006778
6779<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006780<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wang508127b2010-04-07 06:35:53 +00006781 width and for different address space. Not all targets support all bit
6782 widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006783
Chris Lattnerf30152e2004-02-12 18:10:10 +00006784<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006785 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006786 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006787 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006788 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00006789</pre>
6790
6791<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006792<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6793 source location to the destination location. It is similar to the
6794 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6795 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006796
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006797<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006798 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6799 and the pointers can be in specified address spaces.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006800
6801<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006802
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006803<p>The first argument is a pointer to the destination, the second is a pointer
6804 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006805 number of bytes to copy, the fourth argument is the alignment of the
6806 source and destination locations, and the fifth is a boolean indicating a
6807 volatile access.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006808
Dan Gohmana269a0a2010-03-01 17:41:39 +00006809<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006810 then the caller guarantees that the source and destination pointers are
6811 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006812
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006813<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6814 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6815 The detailed access behavior is not very cleanly specified and it is unwise
6816 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006817
Chris Lattnerf30152e2004-02-12 18:10:10 +00006818<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006819
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006820<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6821 source location to the destination location, which may overlap. It copies
6822 "len" bytes of memory over. If the argument is known to be aligned to some
6823 boundary, this can be specified as the fourth argument, otherwise it should
6824 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006825
Chris Lattnerf30152e2004-02-12 18:10:10 +00006826</div>
6827
Chris Lattner3649c3a2004-02-14 04:08:35 +00006828<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006829<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006830 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006831</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006832
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006833<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006834
6835<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006836<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellad05ae42010-07-30 16:30:28 +00006837 width and for different address spaces. However, not all targets support all
6838 bit widths.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006839
Chris Lattner3649c3a2004-02-14 04:08:35 +00006840<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006841 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006842 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006843 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006844 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006845</pre>
6846
6847<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006848<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6849 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006850
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006851<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellad05ae42010-07-30 16:30:28 +00006852 intrinsic does not return a value and takes extra alignment/volatile
6853 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006854
6855<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006856<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellad05ae42010-07-30 16:30:28 +00006857 byte value with which to fill it, the third argument is an integer argument
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006858 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellad05ae42010-07-30 16:30:28 +00006859 alignment of the destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006860
Dan Gohmana269a0a2010-03-01 17:41:39 +00006861<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006862 then the caller guarantees that the destination pointer is aligned to that
6863 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006864
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006865<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6866 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6867 The detailed access behavior is not very cleanly specified and it is unwise
6868 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006869
Chris Lattner3649c3a2004-02-14 04:08:35 +00006870<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006871<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6872 at the destination location. If the argument is known to be aligned to some
6873 boundary, this can be specified as the fourth argument, otherwise it should
6874 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006875
Chris Lattner3649c3a2004-02-14 04:08:35 +00006876</div>
6877
Chris Lattner3b4f4372004-06-11 02:28:03 +00006878<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006879<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006880 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006881</h4>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006882
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006883<div>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006884
6885<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006886<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6887 floating point or vector of floating point type. Not all targets support all
6888 types however.</p>
6889
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006890<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006891 declare float @llvm.sqrt.f32(float %Val)
6892 declare double @llvm.sqrt.f64(double %Val)
6893 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6894 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6895 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006896</pre>
6897
6898<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006899<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6900 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6901 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6902 behavior for negative numbers other than -0.0 (which allows for better
6903 optimization, because there is no need to worry about errno being
6904 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006905
6906<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006907<p>The argument and return value are floating point numbers of the same
6908 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006909
6910<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006911<p>This function returns the sqrt of the specified operand if it is a
6912 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006913
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006914</div>
6915
Chris Lattner33b73f92006-09-08 06:34:02 +00006916<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006917<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006918 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006919</h4>
Chris Lattner33b73f92006-09-08 06:34:02 +00006920
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006921<div>
Chris Lattner33b73f92006-09-08 06:34:02 +00006922
6923<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006924<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6925 floating point or vector of floating point type. Not all targets support all
6926 types however.</p>
6927
Chris Lattner33b73f92006-09-08 06:34:02 +00006928<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006929 declare float @llvm.powi.f32(float %Val, i32 %power)
6930 declare double @llvm.powi.f64(double %Val, i32 %power)
6931 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6932 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6933 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00006934</pre>
6935
6936<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006937<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6938 specified (positive or negative) power. The order of evaluation of
6939 multiplications is not defined. When a vector of floating point type is
6940 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006941
6942<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006943<p>The second argument is an integer power, and the first is a value to raise to
6944 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006945
6946<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006947<p>This function returns the first value raised to the second power with an
6948 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006949
Chris Lattner33b73f92006-09-08 06:34:02 +00006950</div>
6951
Dan Gohmanb6324c12007-10-15 20:30:11 +00006952<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006953<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006954 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006955</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006956
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006957<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006958
6959<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006960<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6961 floating point or vector of floating point type. Not all targets support all
6962 types however.</p>
6963
Dan Gohmanb6324c12007-10-15 20:30:11 +00006964<pre>
6965 declare float @llvm.sin.f32(float %Val)
6966 declare double @llvm.sin.f64(double %Val)
6967 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6968 declare fp128 @llvm.sin.f128(fp128 %Val)
6969 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6970</pre>
6971
6972<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006973<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006974
6975<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006976<p>The argument and return value are floating point numbers of the same
6977 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006978
6979<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006980<p>This function returns the sine of the specified operand, returning the same
6981 values as the libm <tt>sin</tt> functions would, and handles error conditions
6982 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006983
Dan Gohmanb6324c12007-10-15 20:30:11 +00006984</div>
6985
6986<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006987<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006988 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006989</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006990
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006991<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006992
6993<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006994<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6995 floating point or vector of floating point type. Not all targets support all
6996 types however.</p>
6997
Dan Gohmanb6324c12007-10-15 20:30:11 +00006998<pre>
6999 declare float @llvm.cos.f32(float %Val)
7000 declare double @llvm.cos.f64(double %Val)
7001 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7002 declare fp128 @llvm.cos.f128(fp128 %Val)
7003 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7004</pre>
7005
7006<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007007<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007008
7009<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007010<p>The argument and return value are floating point numbers of the same
7011 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007012
7013<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007014<p>This function returns the cosine of the specified operand, returning the same
7015 values as the libm <tt>cos</tt> functions would, and handles error conditions
7016 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007017
Dan Gohmanb6324c12007-10-15 20:30:11 +00007018</div>
7019
7020<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007021<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007022 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007023</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007024
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007025<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007026
7027<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007028<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
7029 floating point or vector of floating point type. Not all targets support all
7030 types however.</p>
7031
Dan Gohmanb6324c12007-10-15 20:30:11 +00007032<pre>
7033 declare float @llvm.pow.f32(float %Val, float %Power)
7034 declare double @llvm.pow.f64(double %Val, double %Power)
7035 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7036 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7037 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7038</pre>
7039
7040<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007041<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
7042 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007043
7044<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007045<p>The second argument is a floating point power, and the first is a value to
7046 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007047
7048<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007049<p>This function returns the first value raised to the second power, returning
7050 the same values as the libm <tt>pow</tt> functions would, and handles error
7051 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007052
Dan Gohmanb6324c12007-10-15 20:30:11 +00007053</div>
7054
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007055</div>
7056
Dan Gohman911fa902011-05-23 21:13:03 +00007057<!-- _______________________________________________________________________ -->
7058<h4>
7059 <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
7060</h4>
7061
7062<div>
7063
7064<h5>Syntax:</h5>
7065<p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
7066 floating point or vector of floating point type. Not all targets support all
7067 types however.</p>
7068
7069<pre>
7070 declare float @llvm.exp.f32(float %Val)
7071 declare double @llvm.exp.f64(double %Val)
7072 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7073 declare fp128 @llvm.exp.f128(fp128 %Val)
7074 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7075</pre>
7076
7077<h5>Overview:</h5>
7078<p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
7079
7080<h5>Arguments:</h5>
7081<p>The argument and return value are floating point numbers of the same
7082 type.</p>
7083
7084<h5>Semantics:</h5>
7085<p>This function returns the same values as the libm <tt>exp</tt> functions
7086 would, and handles error conditions in the same way.</p>
7087
7088</div>
7089
7090<!-- _______________________________________________________________________ -->
7091<h4>
7092 <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
7093</h4>
7094
7095<div>
7096
7097<h5>Syntax:</h5>
7098<p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
7099 floating point or vector of floating point type. Not all targets support all
7100 types however.</p>
7101
7102<pre>
7103 declare float @llvm.log.f32(float %Val)
7104 declare double @llvm.log.f64(double %Val)
7105 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7106 declare fp128 @llvm.log.f128(fp128 %Val)
7107 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7108</pre>
7109
7110<h5>Overview:</h5>
7111<p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
7112
7113<h5>Arguments:</h5>
7114<p>The argument and return value are floating point numbers of the same
7115 type.</p>
7116
7117<h5>Semantics:</h5>
7118<p>This function returns the same values as the libm <tt>log</tt> functions
7119 would, and handles error conditions in the same way.</p>
7120
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007121<h4>
7122 <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
7123</h4>
7124
7125<div>
7126
7127<h5>Syntax:</h5>
7128<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
7129 floating point or vector of floating point type. Not all targets support all
7130 types however.</p>
7131
7132<pre>
7133 declare float @llvm.fma.f32(float %a, float %b, float %c)
7134 declare double @llvm.fma.f64(double %a, double %b, double %c)
7135 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7136 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7137 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7138</pre>
7139
7140<h5>Overview:</h5>
Cameron Zwaricha32fd212011-07-08 22:13:55 +00007141<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007142 operation.</p>
7143
7144<h5>Arguments:</h5>
7145<p>The argument and return value are floating point numbers of the same
7146 type.</p>
7147
7148<h5>Semantics:</h5>
7149<p>This function returns the same values as the libm <tt>fma</tt> functions
7150 would.</p>
7151
Dan Gohman911fa902011-05-23 21:13:03 +00007152</div>
7153
Andrew Lenharth1d463522005-05-03 18:01:48 +00007154<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007155<h3>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007156 <a name="int_manip">Bit Manipulation Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007157</h3>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007158
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007159<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007160
7161<p>LLVM provides intrinsics for a few important bit manipulation operations.
7162 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007163
Andrew Lenharth1d463522005-05-03 18:01:48 +00007164<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007165<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007166 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007167</h4>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007168
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007169<div>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007170
7171<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007172<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007173 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
7174
Nate Begeman0f223bb2006-01-13 23:26:38 +00007175<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007176 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
7177 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
7178 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00007179</pre>
7180
7181<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007182<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
7183 values with an even number of bytes (positive multiple of 16 bits). These
7184 are useful for performing operations on data that is not in the target's
7185 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007186
7187<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007188<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
7189 and low byte of the input i16 swapped. Similarly,
7190 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
7191 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
7192 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
7193 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
7194 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
7195 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007196
7197</div>
7198
7199<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007200<h4>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00007201 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007202</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007203
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007204<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007205
7206<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007207<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007208 width, or on any vector with integer elements. Not all targets support all
7209 bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007210
Andrew Lenharth1d463522005-05-03 18:01:48 +00007211<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007212 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007213 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007214 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007215 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
7216 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007217 declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007218</pre>
7219
7220<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007221<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
7222 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007223
7224<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007225<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007226 integer type, or a vector with integer elements.
7227 The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007228
7229<h5>Semantics:</h5>
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007230<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
7231 element of a vector.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007232
Andrew Lenharth1d463522005-05-03 18:01:48 +00007233</div>
7234
7235<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007236<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007237 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007238</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007239
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007240<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007241
7242<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007243<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007244 integer bit width, or any vector whose elements are integers. Not all
7245 targets support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007246
Andrew Lenharth1d463522005-05-03 18:01:48 +00007247<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007248 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
7249 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007250 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007251 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
7252 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007253 declare &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src;gt)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007254</pre>
7255
7256<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007257<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
7258 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007259
7260<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007261<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007262 integer type, or any vector type with integer element type.
7263 The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007264
7265<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007266<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007267 zeros in a variable, or within each element of the vector if the operation
7268 is of vector type. If the src == 0 then the result is the size in bits of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007269 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007270
Andrew Lenharth1d463522005-05-03 18:01:48 +00007271</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00007272
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007273<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007274<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007275 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007276</h4>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007277
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007278<div>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007279
7280<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007281<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007282 integer bit width, or any vector of integer elements. Not all targets
7283 support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007284
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007285<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007286 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
7287 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007288 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007289 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
7290 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007291 declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007292</pre>
7293
7294<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007295<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
7296 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007297
7298<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007299<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007300 integer type, or a vectory with integer element type.. The return type
7301 must match the argument type.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007302
7303<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007304<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007305 zeros in a variable, or within each element of a vector.
7306 If the src == 0 then the result is the size in bits of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007307 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007308
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007309</div>
7310
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007311</div>
7312
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007313<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007314<h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007315 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007316</h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007317
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007318<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007319
7320<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007321
Bill Wendlingf4d70622009-02-08 01:40:31 +00007322<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007323<h4>
7324 <a name="int_sadd_overflow">
7325 '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
7326 </a>
7327</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007328
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007329<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007330
7331<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007332<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007333 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007334
7335<pre>
7336 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7337 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7338 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7339</pre>
7340
7341<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007342<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007343 a signed addition of the two arguments, and indicate whether an overflow
7344 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007345
7346<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007347<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007348 be of integer types of any bit width, but they must have the same bit
7349 width. The second element of the result structure must be of
7350 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7351 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007352
7353<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007354<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007355 a signed addition of the two variables. They return a structure &mdash; the
7356 first element of which is the signed summation, and the second element of
7357 which is a bit specifying if the signed summation resulted in an
7358 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007359
7360<h5>Examples:</h5>
7361<pre>
7362 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7363 %sum = extractvalue {i32, i1} %res, 0
7364 %obit = extractvalue {i32, i1} %res, 1
7365 br i1 %obit, label %overflow, label %normal
7366</pre>
7367
7368</div>
7369
7370<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007371<h4>
7372 <a name="int_uadd_overflow">
7373 '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
7374 </a>
7375</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007376
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007377<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007378
7379<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007380<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007381 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007382
7383<pre>
7384 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7385 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7386 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7387</pre>
7388
7389<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007390<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007391 an unsigned addition of the two arguments, and indicate whether a carry
7392 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007393
7394<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007395<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007396 be of integer types of any bit width, but they must have the same bit
7397 width. The second element of the result structure must be of
7398 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7399 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007400
7401<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007402<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007403 an unsigned addition of the two arguments. They return a structure &mdash;
7404 the first element of which is the sum, and the second element of which is a
7405 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007406
7407<h5>Examples:</h5>
7408<pre>
7409 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7410 %sum = extractvalue {i32, i1} %res, 0
7411 %obit = extractvalue {i32, i1} %res, 1
7412 br i1 %obit, label %carry, label %normal
7413</pre>
7414
7415</div>
7416
7417<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007418<h4>
7419 <a name="int_ssub_overflow">
7420 '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
7421 </a>
7422</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007423
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007424<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007425
7426<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007427<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007428 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007429
7430<pre>
7431 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7432 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7433 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7434</pre>
7435
7436<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007437<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007438 a signed subtraction of the two arguments, and indicate whether an overflow
7439 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007440
7441<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007442<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007443 be of integer types of any bit width, but they must have the same bit
7444 width. The second element of the result structure must be of
7445 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7446 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007447
7448<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007449<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007450 a signed subtraction of the two arguments. They return a structure &mdash;
7451 the first element of which is the subtraction, and the second element of
7452 which is a bit specifying if the signed subtraction resulted in an
7453 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007454
7455<h5>Examples:</h5>
7456<pre>
7457 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7458 %sum = extractvalue {i32, i1} %res, 0
7459 %obit = extractvalue {i32, i1} %res, 1
7460 br i1 %obit, label %overflow, label %normal
7461</pre>
7462
7463</div>
7464
7465<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007466<h4>
7467 <a name="int_usub_overflow">
7468 '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
7469 </a>
7470</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007471
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007472<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007473
7474<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007475<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007476 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007477
7478<pre>
7479 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7480 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7481 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7482</pre>
7483
7484<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007485<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007486 an unsigned subtraction of the two arguments, and indicate whether an
7487 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007488
7489<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007490<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007491 be of integer types of any bit width, but they must have the same bit
7492 width. The second element of the result structure must be of
7493 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7494 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007495
7496<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007497<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007498 an unsigned subtraction of the two arguments. They return a structure &mdash;
7499 the first element of which is the subtraction, and the second element of
7500 which is a bit specifying if the unsigned subtraction resulted in an
7501 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007502
7503<h5>Examples:</h5>
7504<pre>
7505 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7506 %sum = extractvalue {i32, i1} %res, 0
7507 %obit = extractvalue {i32, i1} %res, 1
7508 br i1 %obit, label %overflow, label %normal
7509</pre>
7510
7511</div>
7512
7513<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007514<h4>
7515 <a name="int_smul_overflow">
7516 '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
7517 </a>
7518</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007519
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007520<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007521
7522<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007523<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007524 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007525
7526<pre>
7527 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7528 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7529 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7530</pre>
7531
7532<h5>Overview:</h5>
7533
7534<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007535 a signed multiplication of the two arguments, and indicate whether an
7536 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007537
7538<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007539<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007540 be of integer types of any bit width, but they must have the same bit
7541 width. The second element of the result structure must be of
7542 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7543 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007544
7545<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007546<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007547 a signed multiplication of the two arguments. They return a structure &mdash;
7548 the first element of which is the multiplication, and the second element of
7549 which is a bit specifying if the signed multiplication resulted in an
7550 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007551
7552<h5>Examples:</h5>
7553<pre>
7554 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7555 %sum = extractvalue {i32, i1} %res, 0
7556 %obit = extractvalue {i32, i1} %res, 1
7557 br i1 %obit, label %overflow, label %normal
7558</pre>
7559
Reid Spencer5bf54c82007-04-11 23:23:49 +00007560</div>
7561
Bill Wendlingb9a73272009-02-08 23:00:09 +00007562<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007563<h4>
7564 <a name="int_umul_overflow">
7565 '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
7566 </a>
7567</h4>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007568
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007569<div>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007570
7571<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007572<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007573 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007574
7575<pre>
7576 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7577 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7578 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7579</pre>
7580
7581<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007582<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007583 a unsigned multiplication of the two arguments, and indicate whether an
7584 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007585
7586<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007587<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007588 be of integer types of any bit width, but they must have the same bit
7589 width. The second element of the result structure must be of
7590 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7591 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007592
7593<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007594<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007595 an unsigned multiplication of the two arguments. They return a structure
7596 &mdash; the first element of which is the multiplication, and the second
7597 element of which is a bit specifying if the unsigned multiplication resulted
7598 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007599
7600<h5>Examples:</h5>
7601<pre>
7602 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7603 %sum = extractvalue {i32, i1} %res, 0
7604 %obit = extractvalue {i32, i1} %res, 1
7605 br i1 %obit, label %overflow, label %normal
7606</pre>
7607
7608</div>
7609
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007610</div>
7611
Chris Lattner941515c2004-01-06 05:31:32 +00007612<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007613<h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007614 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007615</h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007616
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007617<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007618
Chris Lattner022a9fb2010-03-15 04:12:21 +00007619<p>Half precision floating point is a storage-only format. This means that it is
7620 a dense encoding (in memory) but does not support computation in the
7621 format.</p>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007622
Chris Lattner022a9fb2010-03-15 04:12:21 +00007623<p>This means that code must first load the half-precision floating point
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007624 value as an i16, then convert it to float with <a
7625 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
7626 Computation can then be performed on the float value (including extending to
Chris Lattner022a9fb2010-03-15 04:12:21 +00007627 double etc). To store the value back to memory, it is first converted to
7628 float if needed, then converted to i16 with
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007629 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
7630 storing as an i16 value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007631
7632<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007633<h4>
7634 <a name="int_convert_to_fp16">
7635 '<tt>llvm.convert.to.fp16</tt>' Intrinsic
7636 </a>
7637</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007638
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007639<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007640
7641<h5>Syntax:</h5>
7642<pre>
7643 declare i16 @llvm.convert.to.fp16(f32 %a)
7644</pre>
7645
7646<h5>Overview:</h5>
7647<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7648 a conversion from single precision floating point format to half precision
7649 floating point format.</p>
7650
7651<h5>Arguments:</h5>
7652<p>The intrinsic function contains single argument - the value to be
7653 converted.</p>
7654
7655<h5>Semantics:</h5>
7656<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7657 a conversion from single precision floating point format to half precision
Chris Lattner022a9fb2010-03-15 04:12:21 +00007658 floating point format. The return value is an <tt>i16</tt> which
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007659 contains the converted number.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007660
7661<h5>Examples:</h5>
7662<pre>
7663 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7664 store i16 %res, i16* @x, align 2
7665</pre>
7666
7667</div>
7668
7669<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007670<h4>
7671 <a name="int_convert_from_fp16">
7672 '<tt>llvm.convert.from.fp16</tt>' Intrinsic
7673 </a>
7674</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007675
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007676<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007677
7678<h5>Syntax:</h5>
7679<pre>
7680 declare f32 @llvm.convert.from.fp16(i16 %a)
7681</pre>
7682
7683<h5>Overview:</h5>
7684<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
7685 a conversion from half precision floating point format to single precision
7686 floating point format.</p>
7687
7688<h5>Arguments:</h5>
7689<p>The intrinsic function contains single argument - the value to be
7690 converted.</p>
7691
7692<h5>Semantics:</h5>
7693<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner022a9fb2010-03-15 04:12:21 +00007694 conversion from half single precision floating point format to single
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007695 precision floating point format. The input half-float value is represented by
7696 an <tt>i16</tt> value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007697
7698<h5>Examples:</h5>
7699<pre>
7700 %a = load i16* @x, align 2
7701 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7702</pre>
7703
7704</div>
7705
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007706</div>
7707
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007708<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007709<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007710 <a name="int_debugger">Debugger Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007711</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007712
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007713<div>
Chris Lattner941515c2004-01-06 05:31:32 +00007714
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007715<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
7716 prefix), are described in
7717 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
7718 Level Debugging</a> document.</p>
7719
7720</div>
Chris Lattner941515c2004-01-06 05:31:32 +00007721
Jim Laskey2211f492007-03-14 19:31:19 +00007722<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007723<h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007724 <a name="int_eh">Exception Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007725</h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007726
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007727<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007728
7729<p>The LLVM exception handling intrinsics (which all start with
7730 <tt>llvm.eh.</tt> prefix), are described in
7731 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
7732 Handling</a> document.</p>
7733
Jim Laskey2211f492007-03-14 19:31:19 +00007734</div>
7735
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007736<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007737<h3>
Duncan Sandsa0984362011-09-06 13:37:06 +00007738 <a name="int_trampoline">Trampoline Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007739</h3>
Duncan Sands644f9172007-07-27 12:58:54 +00007740
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007741<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007742
Duncan Sandsa0984362011-09-06 13:37:06 +00007743<p>These intrinsics make it possible to excise one parameter, marked with
Dan Gohman3770af52010-07-02 23:18:08 +00007744 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
7745 The result is a callable
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007746 function pointer lacking the nest parameter - the caller does not need to
7747 provide a value for it. Instead, the value to use is stored in advance in a
7748 "trampoline", a block of memory usually allocated on the stack, which also
7749 contains code to splice the nest value into the argument list. This is used
7750 to implement the GCC nested function address extension.</p>
7751
7752<p>For example, if the function is
7753 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
7754 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
7755 follows:</p>
7756
Benjamin Kramer79698be2010-07-13 12:26:09 +00007757<pre class="doc_code">
Duncan Sands86e01192007-09-11 14:10:23 +00007758 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7759 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Duncan Sandsa0984362011-09-06 13:37:06 +00007760 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7761 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
Duncan Sands86e01192007-09-11 14:10:23 +00007762 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00007763</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007764
Dan Gohmand6a6f612010-05-28 17:07:41 +00007765<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
7766 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007767
Duncan Sands644f9172007-07-27 12:58:54 +00007768<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007769<h4>
7770 <a name="int_it">
7771 '<tt>llvm.init.trampoline</tt>' Intrinsic
7772 </a>
7773</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007774
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007775<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007776
Duncan Sands644f9172007-07-27 12:58:54 +00007777<h5>Syntax:</h5>
7778<pre>
Duncan Sandsa0984362011-09-06 13:37:06 +00007779 declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00007780</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007781
Duncan Sands644f9172007-07-27 12:58:54 +00007782<h5>Overview:</h5>
Duncan Sandsa0984362011-09-06 13:37:06 +00007783<p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
7784 turning it into a trampoline.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007785
Duncan Sands644f9172007-07-27 12:58:54 +00007786<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007787<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
7788 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
7789 sufficiently aligned block of memory; this memory is written to by the
7790 intrinsic. Note that the size and the alignment are target-specific - LLVM
7791 currently provides no portable way of determining them, so a front-end that
7792 generates this intrinsic needs to have some target-specific knowledge.
7793 The <tt>func</tt> argument must hold a function bitcast to
7794 an <tt>i8*</tt>.</p>
7795
Duncan Sands644f9172007-07-27 12:58:54 +00007796<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007797<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsa0984362011-09-06 13:37:06 +00007798 dependent code, turning it into a function. Then <tt>tramp</tt> needs to be
7799 passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
7800 which can be <a href="#int_trampoline">bitcast (to a new function) and
7801 called</a>. The new function's signature is the same as that of
7802 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
7803 removed. At most one such <tt>nest</tt> argument is allowed, and it must be of
7804 pointer type. Calling the new function is equivalent to calling <tt>func</tt>
7805 with the same argument list, but with <tt>nval</tt> used for the missing
7806 <tt>nest</tt> argument. If, after calling <tt>llvm.init.trampoline</tt>, the
7807 memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
7808 to the returned function pointer is undefined.</p>
7809</div>
7810
7811<!-- _______________________________________________________________________ -->
7812<h4>
7813 <a name="int_at">
7814 '<tt>llvm.adjust.trampoline</tt>' Intrinsic
7815 </a>
7816</h4>
7817
7818<div>
7819
7820<h5>Syntax:</h5>
7821<pre>
7822 declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
7823</pre>
7824
7825<h5>Overview:</h5>
7826<p>This performs any required machine-specific adjustment to the address of a
7827 trampoline (passed as <tt>tramp</tt>).</p>
7828
7829<h5>Arguments:</h5>
7830<p><tt>tramp</tt> must point to a block of memory which already has trampoline code
7831 filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
7832 </a>.</p>
7833
7834<h5>Semantics:</h5>
7835<p>On some architectures the address of the code to be executed needs to be
7836 different to the address where the trampoline is actually stored. This
7837 intrinsic returns the executable address corresponding to <tt>tramp</tt>
7838 after performing the required machine specific adjustments.
7839 The pointer returned can then be <a href="#int_trampoline"> bitcast and
7840 executed</a>.
7841</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007842
Duncan Sands644f9172007-07-27 12:58:54 +00007843</div>
7844
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007845</div>
7846
Duncan Sands644f9172007-07-27 12:58:54 +00007847<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007848<h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007849 <a name="int_memorymarkers">Memory Use Markers</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007850</h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007851
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007852<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007853
7854<p>This class of intrinsics exists to information about the lifetime of memory
7855 objects and ranges where variables are immutable.</p>
7856
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007857<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007858<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007859 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007860</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007861
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007862<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007863
7864<h5>Syntax:</h5>
7865<pre>
7866 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7867</pre>
7868
7869<h5>Overview:</h5>
7870<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7871 object's lifetime.</p>
7872
7873<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007874<p>The first argument is a constant integer representing the size of the
7875 object, or -1 if it is variable sized. The second argument is a pointer to
7876 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007877
7878<h5>Semantics:</h5>
7879<p>This intrinsic indicates that before this point in the code, the value of the
7880 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00007881 never be used and has an undefined value. A load from the pointer that
7882 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007883 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7884
7885</div>
7886
7887<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007888<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007889 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007890</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007891
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007892<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007893
7894<h5>Syntax:</h5>
7895<pre>
7896 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7897</pre>
7898
7899<h5>Overview:</h5>
7900<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7901 object's lifetime.</p>
7902
7903<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007904<p>The first argument is a constant integer representing the size of the
7905 object, or -1 if it is variable sized. The second argument is a pointer to
7906 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007907
7908<h5>Semantics:</h5>
7909<p>This intrinsic indicates that after this point in the code, the value of the
7910 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7911 never be used and has an undefined value. Any stores into the memory object
7912 following this intrinsic may be removed as dead.
7913
7914</div>
7915
7916<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007917<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007918 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007919</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007920
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007921<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007922
7923<h5>Syntax:</h5>
7924<pre>
Nick Lewycky2965d3e2010-11-30 04:13:41 +00007925 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007926</pre>
7927
7928<h5>Overview:</h5>
7929<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7930 a memory object will not change.</p>
7931
7932<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007933<p>The first argument is a constant integer representing the size of the
7934 object, or -1 if it is variable sized. The second argument is a pointer to
7935 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007936
7937<h5>Semantics:</h5>
7938<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7939 the return value, the referenced memory location is constant and
7940 unchanging.</p>
7941
7942</div>
7943
7944<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007945<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007946 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007947</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007948
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007949<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007950
7951<h5>Syntax:</h5>
7952<pre>
7953 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7954</pre>
7955
7956<h5>Overview:</h5>
7957<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7958 a memory object are mutable.</p>
7959
7960<h5>Arguments:</h5>
7961<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00007962 The second argument is a constant integer representing the size of the
7963 object, or -1 if it is variable sized and the third argument is a pointer
7964 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007965
7966<h5>Semantics:</h5>
7967<p>This intrinsic indicates that the memory is mutable again.</p>
7968
7969</div>
7970
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007971</div>
7972
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007973<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007974<h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007975 <a name="int_general">General Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007976</h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007977
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007978<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007979
7980<p>This class of intrinsics is designed to be generic and has no specific
7981 purpose.</p>
7982
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007983<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007984<h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007985 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007986</h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007987
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007988<div>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007989
7990<h5>Syntax:</h5>
7991<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007992 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007993</pre>
7994
7995<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007996<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007997
7998<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007999<p>The first argument is a pointer to a value, the second is a pointer to a
8000 global string, the third is a pointer to a global string which is the source
8001 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008002
8003<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008004<p>This intrinsic allows annotation of local variables with arbitrary strings.
8005 This can be useful for special purpose optimizations that want to look for
John Criswellf0d536a2011-08-19 16:57:55 +00008006 these annotations. These have no other defined use; they are ignored by code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008007 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008008
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008009</div>
8010
Tanya Lattner293c0372007-09-21 22:59:12 +00008011<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008012<h4>
Tanya Lattner0186a652007-09-21 23:57:59 +00008013 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008014</h4>
Tanya Lattner293c0372007-09-21 22:59:12 +00008015
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008016<div>
Tanya Lattner293c0372007-09-21 22:59:12 +00008017
8018<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008019<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
8020 any integer bit width.</p>
8021
Tanya Lattner293c0372007-09-21 22:59:12 +00008022<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008023 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8024 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8025 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8026 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8027 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner293c0372007-09-21 22:59:12 +00008028</pre>
8029
8030<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008031<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008032
8033<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008034<p>The first argument is an integer value (result of some expression), the
8035 second is a pointer to a global string, the third is a pointer to a global
8036 string which is the source file name, and the last argument is the line
8037 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008038
8039<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008040<p>This intrinsic allows annotations to be put on arbitrary expressions with
8041 arbitrary strings. This can be useful for special purpose optimizations that
John Criswellf0d536a2011-08-19 16:57:55 +00008042 want to look for these annotations. These have no other defined use; they
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008043 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008044
Tanya Lattner293c0372007-09-21 22:59:12 +00008045</div>
Jim Laskey2211f492007-03-14 19:31:19 +00008046
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008047<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008048<h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008049 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008050</h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008051
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008052<div>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008053
8054<h5>Syntax:</h5>
8055<pre>
8056 declare void @llvm.trap()
8057</pre>
8058
8059<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008060<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008061
8062<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008063<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008064
8065<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008066<p>This intrinsics is lowered to the target dependent trap instruction. If the
8067 target does not have a trap instruction, this intrinsic will be lowered to
8068 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008069
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008070</div>
8071
Bill Wendling14313312008-11-19 05:56:17 +00008072<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008073<h4>
Misha Brukman50de2b22008-11-22 23:55:29 +00008074 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008075</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008076
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008077<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008078
Bill Wendling14313312008-11-19 05:56:17 +00008079<h5>Syntax:</h5>
8080<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008081 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling14313312008-11-19 05:56:17 +00008082</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008083
Bill Wendling14313312008-11-19 05:56:17 +00008084<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008085<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
8086 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
8087 ensure that it is placed on the stack before local variables.</p>
8088
Bill Wendling14313312008-11-19 05:56:17 +00008089<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008090<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
8091 arguments. The first argument is the value loaded from the stack
8092 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
8093 that has enough space to hold the value of the guard.</p>
8094
Bill Wendling14313312008-11-19 05:56:17 +00008095<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008096<p>This intrinsic causes the prologue/epilogue inserter to force the position of
8097 the <tt>AllocaInst</tt> stack slot to be before local variables on the
8098 stack. This is to ensure that if a local variable on the stack is
8099 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling6bbe0912010-10-27 01:07:41 +00008100 the guard on the stack is checked against the original guard. If they are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008101 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
8102 function.</p>
8103
Bill Wendling14313312008-11-19 05:56:17 +00008104</div>
8105
Eric Christopher73484322009-11-30 08:03:53 +00008106<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008107<h4>
Eric Christopher73484322009-11-30 08:03:53 +00008108 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008109</h4>
Eric Christopher73484322009-11-30 08:03:53 +00008110
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008111<div>
Eric Christopher73484322009-11-30 08:03:53 +00008112
8113<h5>Syntax:</h5>
8114<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008115 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
8116 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
Eric Christopher73484322009-11-30 08:03:53 +00008117</pre>
8118
8119<h5>Overview:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008120<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
8121 the optimizers to determine at compile time whether a) an operation (like
8122 memcpy) will overflow a buffer that corresponds to an object, or b) that a
8123 runtime check for overflow isn't necessary. An object in this context means
8124 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008125
8126<h5>Arguments:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008127<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher31e39bd2009-12-23 00:29:49 +00008128 argument is a pointer to or into the <tt>object</tt>. The second argument
Bill Wendling6bbe0912010-10-27 01:07:41 +00008129 is a boolean 0 or 1. This argument determines whether you want the
8130 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
Eric Christopher31e39bd2009-12-23 00:29:49 +00008131 1, variables are not allowed.</p>
8132
Eric Christopher73484322009-11-30 08:03:53 +00008133<h5>Semantics:</h5>
8134<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Bill Wendling6bbe0912010-10-27 01:07:41 +00008135 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
8136 depending on the <tt>type</tt> argument, if the size cannot be determined at
8137 compile time.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008138
8139</div>
8140
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008141</div>
8142
8143</div>
8144
Chris Lattner2f7c9632001-06-06 20:29:01 +00008145<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00008146<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00008147<address>
8148 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008149 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008150 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008151 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008152
8153 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumica46f5a2011-04-09 02:13:37 +00008154 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00008155 Last modified: $Date$
8156</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00008157
Misha Brukman76307852003-11-08 01:05:38 +00008158</body>
8159</html>