blob: e8abb5b03fb31b5db328b4ce574f24e94f117cf1 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Justin Bognerc2bf63d2016-04-26 23:39:29 +000023#include "llvm/Transforms/Scalar/Reassociate.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000029#include "llvm/Analysis/GlobalsModRef.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000030#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000031#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/Constants.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000038#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000039#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000040#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000041#include "llvm/Support/raw_ostream.h"
Justin Bognerc2bf63d2016-04-26 23:39:29 +000042#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000043#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000044#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000045using namespace llvm;
Justin Bognerc2bf63d2016-04-26 23:39:29 +000046using namespace reassociate;
Brian Gaeke960707c2003-11-11 22:41:34 +000047
Chandler Carruth964daaa2014-04-22 02:55:47 +000048#define DEBUG_TYPE "reassociate"
49
Chris Lattner79a42ac2006-12-19 21:40:18 +000050STATISTIC(NumChanged, "Number of insts reassociated");
51STATISTIC(NumAnnihil, "Number of expr tree annihilated");
52STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000053
Devang Patel702f45d2008-11-21 21:00:20 +000054#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000055/// Print out the expression identified in the Ops list.
Chris Lattner4c065092006-03-04 09:31:13 +000056///
Chris Lattner38abecb2009-12-31 18:40:32 +000057static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000058 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000059 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000060 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000061 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000062 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000063 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000064 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000065 }
Chris Lattner4c065092006-03-04 09:31:13 +000066}
Devang Patelcb181bb2008-11-21 20:00:59 +000067#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000068
Justin Bognerc2bf63d2016-04-26 23:39:29 +000069/// Utility class representing a non-constant Xor-operand. We classify
70/// non-constant Xor-Operands into two categories:
71/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
72/// C2)
73/// C2.1) The operand is in the form of "X | C", where C is a non-zero
74/// constant.
75/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
76/// operand as "E | 0"
77class llvm::reassociate::XorOpnd {
78public:
79 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000080
Justin Bognerc2bf63d2016-04-26 23:39:29 +000081 bool isInvalid() const { return SymbolicPart == nullptr; }
82 bool isOrExpr() const { return isOr; }
83 Value *getValue() const { return OrigVal; }
84 Value *getSymbolicPart() const { return SymbolicPart; }
85 unsigned getSymbolicRank() const { return SymbolicRank; }
86 const APInt &getConstPart() const { return ConstPart; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000087
Justin Bognerc2bf63d2016-04-26 23:39:29 +000088 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
89 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000090
Justin Bognerc2bf63d2016-04-26 23:39:29 +000091private:
92 Value *OrigVal;
93 Value *SymbolicPart;
94 APInt ConstPart;
95 unsigned SymbolicRank;
96 bool isOr;
97};
Chris Lattnerc0f58002002-05-08 22:19:27 +000098
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000099XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000100 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000101 OrigVal = V;
102 Instruction *I = dyn_cast<Instruction>(V);
103 SymbolicRank = 0;
104
105 if (I && (I->getOpcode() == Instruction::Or ||
106 I->getOpcode() == Instruction::And)) {
107 Value *V0 = I->getOperand(0);
108 Value *V1 = I->getOperand(1);
109 if (isa<ConstantInt>(V0))
110 std::swap(V0, V1);
111
112 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
113 ConstPart = C->getValue();
114 SymbolicPart = V0;
115 isOr = (I->getOpcode() == Instruction::Or);
116 return;
117 }
118 }
119
120 // view the operand as "V | 0"
121 SymbolicPart = V;
122 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
123 isOr = true;
124}
125
Sanjay Patelc96ee082015-04-22 18:04:46 +0000126/// Return true if V is an instruction of the specified opcode and if it
127/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000128static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
129 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000130 cast<Instruction>(V)->getOpcode() == Opcode &&
131 (!isa<FPMathOperator>(V) ||
132 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000133 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000134 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000135}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000136
Chad Rosier11ab9412014-08-14 15:23:01 +0000137static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
138 unsigned Opcode2) {
139 if (V->hasOneUse() && isa<Instruction>(V) &&
140 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000141 cast<Instruction>(V)->getOpcode() == Opcode2) &&
142 (!isa<FPMathOperator>(V) ||
143 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000144 return cast<BinaryOperator>(V);
145 return nullptr;
146}
147
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000148void ReassociatePass::BuildRankMap(Function &F,
149 ReversePostOrderTraversal<Function*> &RPOT) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000150 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000151
Chad Rosierf59e5482014-11-14 15:01:38 +0000152 // Assign distinct ranks to function arguments.
153 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000154 ValueRankMap[&*I] = ++i;
Chad Rosierf59e5482014-11-14 15:01:38 +0000155 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
156 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000157
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000158 // Traverse basic blocks in ReversePostOrder
Benjamin Kramer135f7352016-06-26 12:28:59 +0000159 for (BasicBlock *BB : RPOT) {
Chris Lattner9f284e02005-05-08 20:57:04 +0000160 unsigned BBRank = RankMap[BB] = ++i << 16;
161
162 // Walk the basic block, adding precomputed ranks for any instructions that
163 // we cannot move. This ensures that the ranks for these instructions are
164 // all different in the block.
Benjamin Kramer135f7352016-06-26 12:28:59 +0000165 for (Instruction &I : *BB)
166 if (mayBeMemoryDependent(I))
167 ValueRankMap[&I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000168 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000169}
170
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000171unsigned ReassociatePass::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000172 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000173 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000174 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
175 return 0; // Otherwise it's a global or constant, rank 0.
176 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000177
Chris Lattner17229a72010-01-01 00:01:34 +0000178 if (unsigned Rank = ValueRankMap[I])
179 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000180
Chris Lattnerf43e9742005-05-07 04:08:02 +0000181 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
182 // we can reassociate expressions for code motion! Since we do not recurse
183 // for PHI nodes, we cannot have infinite recursion here, because there
184 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000185 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
186 for (unsigned i = 0, e = I->getNumOperands();
187 i != e && Rank != MaxRank; ++i)
188 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000189
Chris Lattner6e2086d2005-05-08 00:08:33 +0000190 // If this is a not or neg instruction, do not count it for rank. This
191 // assures us that X and ~X will have the same rank.
Robert Lougher1858ba72015-03-13 20:53:01 +0000192 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
193 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000194 ++Rank;
195
Chad Rosierf59e5482014-11-14 15:01:38 +0000196 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000197
Chris Lattner17229a72010-01-01 00:01:34 +0000198 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000199}
200
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000201// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000202void ReassociatePass::canonicalizeOperands(Instruction *I) {
Chad Rosierf8b55f12014-11-14 17:05:59 +0000203 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
204 assert(I->isCommutative() && "Expected commutative operator.");
205
206 Value *LHS = I->getOperand(0);
207 Value *RHS = I->getOperand(1);
208 unsigned LHSRank = getRank(LHS);
209 unsigned RHSRank = getRank(RHS);
210
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000211 if (isa<Constant>(RHS))
212 return;
213
Chad Rosierf8b55f12014-11-14 17:05:59 +0000214 if (isa<Constant>(LHS) || RHSRank < LHSRank)
215 cast<BinaryOperator>(I)->swapOperands();
216}
217
Chad Rosier11ab9412014-08-14 15:23:01 +0000218static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
219 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000220 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000221 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
222 else {
223 BinaryOperator *Res =
224 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
225 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
226 return Res;
227 }
228}
229
230static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
231 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000232 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000233 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
234 else {
235 BinaryOperator *Res =
236 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
237 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
238 return Res;
239 }
240}
241
242static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
243 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000244 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000245 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
246 else {
247 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
248 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
249 return Res;
250 }
251}
252
Sanjay Patelc96ee082015-04-22 18:04:46 +0000253/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000254static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000255 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000256 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
257 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000258
Chad Rosier11ab9412014-08-14 15:23:01 +0000259 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
260 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000261 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000262 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000263 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000264 return Res;
265}
266
Sanjay Patelc96ee082015-04-22 18:04:46 +0000267/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
268/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000269/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
270/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
271/// even x in Bitwidth-bit arithmetic.
272static unsigned CarmichaelShift(unsigned Bitwidth) {
273 if (Bitwidth < 3)
274 return Bitwidth - 1;
275 return Bitwidth - 2;
276}
277
Sanjay Patelc96ee082015-04-22 18:04:46 +0000278/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000279/// reducing the combined weight using any special properties of the operation.
280/// The existing weight LHS represents the computation X op X op ... op X where
281/// X occurs LHS times. The combined weight represents X op X op ... op X with
282/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
283/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
284/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
285static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
286 // If we were working with infinite precision arithmetic then the combined
287 // weight would be LHS + RHS. But we are using finite precision arithmetic,
288 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
289 // for nilpotent operations and addition, but not for idempotent operations
290 // and multiplication), so it is important to correctly reduce the combined
291 // weight back into range if wrapping would be wrong.
292
293 // If RHS is zero then the weight didn't change.
294 if (RHS.isMinValue())
295 return;
296 // If LHS is zero then the combined weight is RHS.
297 if (LHS.isMinValue()) {
298 LHS = RHS;
299 return;
300 }
301 // From this point on we know that neither LHS nor RHS is zero.
302
303 if (Instruction::isIdempotent(Opcode)) {
304 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
305 // weight of 1. Keeping weights at zero or one also means that wrapping is
306 // not a problem.
307 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
308 return; // Return a weight of 1.
309 }
310 if (Instruction::isNilpotent(Opcode)) {
311 // Nilpotent means X op X === 0, so reduce weights modulo 2.
312 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
313 LHS = 0; // 1 + 1 === 0 modulo 2.
314 return;
315 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000316 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000317 // TODO: Reduce the weight by exploiting nsw/nuw?
318 LHS += RHS;
319 return;
320 }
321
Chad Rosier11ab9412014-08-14 15:23:01 +0000322 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
323 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000324 unsigned Bitwidth = LHS.getBitWidth();
325 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
326 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
327 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
328 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
329 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
330 // which by a happy accident means that they can always be represented using
331 // Bitwidth bits.
332 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
333 // the Carmichael number).
334 if (Bitwidth > 3) {
335 /// CM - The value of Carmichael's lambda function.
336 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
337 // Any weight W >= Threshold can be replaced with W - CM.
338 APInt Threshold = CM + Bitwidth;
339 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
340 // For Bitwidth 4 or more the following sum does not overflow.
341 LHS += RHS;
342 while (LHS.uge(Threshold))
343 LHS -= CM;
344 } else {
345 // To avoid problems with overflow do everything the same as above but using
346 // a larger type.
347 unsigned CM = 1U << CarmichaelShift(Bitwidth);
348 unsigned Threshold = CM + Bitwidth;
349 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
350 "Weights not reduced!");
351 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
352 while (Total >= Threshold)
353 Total -= CM;
354 LHS = Total;
355 }
356}
357
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000358typedef std::pair<Value*, APInt> RepeatedValue;
359
Sanjay Patelc96ee082015-04-22 18:04:46 +0000360/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000361/// nodes in Ops along with their weights (how many times the leaf occurs). The
362/// original expression is the same as
363/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000364/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000365/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
366/// op
367/// ...
368/// op
369/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
370///
Duncan Sandsac852c72012-11-15 09:58:38 +0000371/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000372///
373/// This routine may modify the function, in which case it returns 'true'. The
374/// changes it makes may well be destructive, changing the value computed by 'I'
375/// to something completely different. Thus if the routine returns 'true' then
376/// you MUST either replace I with a new expression computed from the Ops array,
377/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000378///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000379/// A leaf node is either not a binary operation of the same kind as the root
380/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
381/// opcode), or is the same kind of binary operator but has a use which either
382/// does not belong to the expression, or does belong to the expression but is
383/// a leaf node. Every leaf node has at least one use that is a non-leaf node
384/// of the expression, while for non-leaf nodes (except for the root 'I') every
385/// use is a non-leaf node of the expression.
386///
387/// For example:
388/// expression graph node names
389///
390/// + | I
391/// / \ |
392/// + + | A, B
393/// / \ / \ |
394/// * + * | C, D, E
395/// / \ / \ / \ |
396/// + * | F, G
397///
398/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000399/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000400///
401/// The expression is maximal: if some instruction is a binary operator of the
402/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
403/// then the instruction also belongs to the expression, is not a leaf node of
404/// it, and its operands also belong to the expression (but may be leaf nodes).
405///
406/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
407/// order to ensure that every non-root node in the expression has *exactly one*
408/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000409/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000410/// RewriteExprTree to put the values back in if the routine indicates that it
411/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000412///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000413/// In the above example either the right operand of A or the left operand of B
414/// will be replaced by undef. If it is B's operand then this gives:
415///
416/// + | I
417/// / \ |
418/// + + | A, B - operand of B replaced with undef
419/// / \ \ |
420/// * + * | C, D, E
421/// / \ / \ / \ |
422/// + * | F, G
423///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000424/// Note that such undef operands can only be reached by passing through 'I'.
425/// For example, if you visit operands recursively starting from a leaf node
426/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000427/// which requires passing through a phi node.
428///
429/// Note that this routine may also mutate binary operators of the wrong type
430/// that have all uses inside the expression (i.e. only used by non-leaf nodes
431/// of the expression) if it can turn them into binary operators of the right
432/// type and thus make the expression bigger.
433
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000434static bool LinearizeExprTree(BinaryOperator *I,
435 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000436 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000437 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
438 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000439 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000440 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000441
442 // Visit all operands of the expression, keeping track of their weight (the
443 // number of paths from the expression root to the operand, or if you like
444 // the number of times that operand occurs in the linearized expression).
445 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
446 // while A has weight two.
447
448 // Worklist of non-leaf nodes (their operands are in the expression too) along
449 // with their weights, representing a certain number of paths to the operator.
450 // If an operator occurs in the worklist multiple times then we found multiple
451 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000452 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
453 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000454 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000455
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000456 // Leaves of the expression are values that either aren't the right kind of
457 // operation (eg: a constant, or a multiply in an add tree), or are, but have
458 // some uses that are not inside the expression. For example, in I = X + X,
459 // X = A + B, the value X has two uses (by I) that are in the expression. If
460 // X has any other uses, for example in a return instruction, then we consider
461 // X to be a leaf, and won't analyze it further. When we first visit a value,
462 // if it has more than one use then at first we conservatively consider it to
463 // be a leaf. Later, as the expression is explored, we may discover some more
464 // uses of the value from inside the expression. If all uses turn out to be
465 // from within the expression (and the value is a binary operator of the right
466 // kind) then the value is no longer considered to be a leaf, and its operands
467 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000468
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000469 // Leaves - Keeps track of the set of putative leaves as well as the number of
470 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000471 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000472 LeafMap Leaves; // Leaf -> Total weight so far.
473 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
474
475#ifndef NDEBUG
476 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
477#endif
478 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000479 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000480 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000481
482 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
483 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000484 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000485 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
486 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
487
488 // If this is a binary operation of the right kind with only one use then
489 // add its operands to the expression.
490 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000491 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000492 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
493 Worklist.push_back(std::make_pair(BO, Weight));
494 continue;
495 }
496
497 // Appears to be a leaf. Is the operand already in the set of leaves?
498 LeafMap::iterator It = Leaves.find(Op);
499 if (It == Leaves.end()) {
500 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000501 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000502 if (!Op->hasOneUse()) {
503 // This value has uses not accounted for by the expression, so it is
504 // not safe to modify. Mark it as being a leaf.
505 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
506 LeafOrder.push_back(Op);
507 Leaves[Op] = Weight;
508 continue;
509 }
510 // No uses outside the expression, try morphing it.
511 } else if (It != Leaves.end()) {
512 // Already in the leaf map.
513 assert(Visited.count(Op) && "In leaf map but not visited!");
514
515 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000516 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000517
Duncan Sands56514522012-07-26 09:26:40 +0000518#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000519 // The leaf already has one use from inside the expression. As we want
520 // exactly one such use, drop this new use of the leaf.
521 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
522 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000523 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000524
525 // If the leaf is a binary operation of the right kind and we now see
526 // that its multiple original uses were in fact all by nodes belonging
527 // to the expression, then no longer consider it to be a leaf and add
528 // its operands to the expression.
529 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
530 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
531 Worklist.push_back(std::make_pair(BO, It->second));
532 Leaves.erase(It);
533 continue;
534 }
Duncan Sands56514522012-07-26 09:26:40 +0000535#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000536
537 // If we still have uses that are not accounted for by the expression
538 // then it is not safe to modify the value.
539 if (!Op->hasOneUse())
540 continue;
541
542 // No uses outside the expression, try morphing it.
543 Weight = It->second;
544 Leaves.erase(It); // Since the value may be morphed below.
545 }
546
547 // At this point we have a value which, first of all, is not a binary
548 // expression of the right kind, and secondly, is only used inside the
549 // expression. This means that it can safely be modified. See if we
550 // can usefully morph it into an expression of the right kind.
551 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000552 cast<Instruction>(Op)->getOpcode() != Opcode
553 || (isa<FPMathOperator>(Op) &&
554 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000555 "Should have been handled above!");
556 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
557
558 // If this is a multiply expression, turn any internal negations into
559 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000560 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
561 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
562 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
563 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
564 BO = LowerNegateToMultiply(BO);
565 DEBUG(dbgs() << *BO << '\n');
566 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000567 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000568 continue;
569 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000570
571 // Failed to morph into an expression of the right type. This really is
572 // a leaf.
573 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
574 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
575 LeafOrder.push_back(Op);
576 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000577 }
578 }
579
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000580 // The leaves, repeated according to their weights, represent the linearized
581 // form of the expression.
582 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
583 Value *V = LeafOrder[i];
584 LeafMap::iterator It = Leaves.find(V);
585 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000586 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000587 continue;
588 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000589 APInt Weight = It->second;
590 if (Weight.isMinValue())
591 // Leaf already output or weight reduction eliminated it.
592 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000593 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000594 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000595 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000596 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000597
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000598 // For nilpotent operations or addition there may be no operands, for example
599 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
600 // in both cases the weight reduces to 0 causing the value to be skipped.
601 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000602 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000603 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000604 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000605 }
606
Chad Rosiere53e8c82014-11-18 20:21:54 +0000607 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000608}
609
Sanjay Patelc96ee082015-04-22 18:04:46 +0000610/// Now that the operands for this expression tree are
611/// linearized and optimized, emit them in-order.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000612void ReassociatePass::RewriteExprTree(BinaryOperator *I,
613 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000614 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000615
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000616 // Since our optimizations should never increase the number of operations, the
617 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000618 // from the original expression tree, without creating any new instructions,
619 // though the rewritten expression may have a completely different topology.
620 // We take care to not change anything if the new expression will be the same
621 // as the original. If more than trivial changes (like commuting operands)
622 // were made then we are obliged to clear out any optional subclass data like
623 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000624
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000625 /// NodesToRewrite - Nodes from the original expression available for writing
626 /// the new expression into.
627 SmallVector<BinaryOperator*, 8> NodesToRewrite;
628 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000629 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000630
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000631 /// NotRewritable - The operands being written will be the leaves of the new
632 /// expression and must not be used as inner nodes (via NodesToRewrite) by
633 /// mistake. Inner nodes are always reassociable, and usually leaves are not
634 /// (if they were they would have been incorporated into the expression and so
635 /// would not be leaves), so most of the time there is no danger of this. But
636 /// in rare cases a leaf may become reassociable if an optimization kills uses
637 /// of it, or it may momentarily become reassociable during rewriting (below)
638 /// due it being removed as an operand of one of its uses. Ensure that misuse
639 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
640 /// leaves and refusing to reuse any of them as inner nodes.
641 SmallPtrSet<Value*, 8> NotRewritable;
642 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
643 NotRewritable.insert(Ops[i].Op);
644
Duncan Sands3c05cd32012-05-26 16:42:52 +0000645 // ExpressionChanged - Non-null if the rewritten expression differs from the
646 // original in some non-trivial way, requiring the clearing of optional flags.
647 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000648 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000649 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000650 // The last operation (which comes earliest in the IR) is special as both
651 // operands will come from Ops, rather than just one with the other being
652 // a subexpression.
653 if (i+2 == Ops.size()) {
654 Value *NewLHS = Ops[i].Op;
655 Value *NewRHS = Ops[i+1].Op;
656 Value *OldLHS = Op->getOperand(0);
657 Value *OldRHS = Op->getOperand(1);
658
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000659 if (NewLHS == OldLHS && NewRHS == OldRHS)
660 // Nothing changed, leave it alone.
661 break;
662
663 if (NewLHS == OldRHS && NewRHS == OldLHS) {
664 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000665 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000666 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000667 DEBUG(dbgs() << "TO: " << *Op << '\n');
668 MadeChange = true;
669 ++NumChanged;
670 break;
671 }
672
673 // The new operation differs non-trivially from the original. Overwrite
674 // the old operands with the new ones.
675 DEBUG(dbgs() << "RA: " << *Op << '\n');
676 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000677 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
678 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000679 NodesToRewrite.push_back(BO);
680 Op->setOperand(0, NewLHS);
681 }
682 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000683 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
684 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000685 NodesToRewrite.push_back(BO);
686 Op->setOperand(1, NewRHS);
687 }
688 DEBUG(dbgs() << "TO: " << *Op << '\n');
689
Duncan Sands3c05cd32012-05-26 16:42:52 +0000690 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000691 MadeChange = true;
692 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000693
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000694 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000695 }
Chris Lattner1e506502005-05-07 21:59:39 +0000696
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000697 // Not the last operation. The left-hand side will be a sub-expression
698 // while the right-hand side will be the current element of Ops.
699 Value *NewRHS = Ops[i].Op;
700 if (NewRHS != Op->getOperand(1)) {
701 DEBUG(dbgs() << "RA: " << *Op << '\n');
702 if (NewRHS == Op->getOperand(0)) {
703 // The new right-hand side was already present as the left operand. If
704 // we are lucky then swapping the operands will sort out both of them.
705 Op->swapOperands();
706 } else {
707 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000708 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
709 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000710 NodesToRewrite.push_back(BO);
711 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000712 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000713 }
714 DEBUG(dbgs() << "TO: " << *Op << '\n');
715 MadeChange = true;
716 ++NumChanged;
717 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000718
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000719 // Now deal with the left-hand side. If this is already an operation node
720 // from the original expression then just rewrite the rest of the expression
721 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000722 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
723 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000724 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000725 continue;
726 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000727
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000728 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000729 // the left-hand side. If there are no nodes left then the optimizers made
730 // an expression with more nodes than the original! This usually means that
731 // they did something stupid but it might mean that the problem was just too
732 // hard (finding the mimimal number of multiplications needed to realize a
733 // multiplication expression is NP-complete). Whatever the reason, smart or
734 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000735 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000736 if (NodesToRewrite.empty()) {
737 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000738 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
739 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000740 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000741 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000742 } else {
743 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000744 }
745
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000746 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000747 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000748 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000749 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000750 MadeChange = true;
751 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000752 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000753 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000754
Duncan Sands3c05cd32012-05-26 16:42:52 +0000755 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000756 // starting from the operator specified in ExpressionChanged, and compactify
757 // the operators to just before the expression root to guarantee that the
758 // expression tree is dominated by all of Ops.
759 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000760 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000761 // Preserve FastMathFlags.
762 if (isa<FPMathOperator>(I)) {
763 FastMathFlags Flags = I->getFastMathFlags();
764 ExpressionChanged->clearSubclassOptionalData();
765 ExpressionChanged->setFastMathFlags(Flags);
766 } else
767 ExpressionChanged->clearSubclassOptionalData();
768
Duncan Sands3c05cd32012-05-26 16:42:52 +0000769 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000770 break;
Duncan Sands514db112012-06-27 14:19:00 +0000771 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000772 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000773 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000774
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000775 // Throw away any left over nodes from the original expression.
776 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000777 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000778}
779
Sanjay Patelc96ee082015-04-22 18:04:46 +0000780/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000781/// that computes the negative version of the value specified. The negative
782/// version of the value is returned, and BI is left pointing at the instruction
783/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000784/// Also add intermediate instructions to the redo list that are modified while
785/// pushing the negates through adds. These will be revisited to see if
786/// additional opportunities have been exposed.
787static Value *NegateValue(Value *V, Instruction *BI,
788 SetVector<AssertingVH<Instruction>> &ToRedo) {
Mehdi Amini590a2702015-01-16 03:00:58 +0000789 if (Constant *C = dyn_cast<Constant>(V)) {
790 if (C->getType()->isFPOrFPVectorTy()) {
791 return ConstantExpr::getFNeg(C);
792 }
Chris Lattnerfed33972009-12-31 20:34:32 +0000793 return ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000794 }
795
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000796
Chris Lattner7bc532d2002-05-16 04:37:07 +0000797 // We are trying to expose opportunity for reassociation. One of the things
798 // that we want to do to achieve this is to push a negation as deep into an
799 // expression chain as possible, to expose the add instructions. In practice,
800 // this means that we turn this:
801 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
802 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
803 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000804 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000805 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000806 if (BinaryOperator *I =
807 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000808 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000809 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
810 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000811 if (I->getOpcode() == Instruction::Add) {
812 I->setHasNoUnsignedWrap(false);
813 I->setHasNoSignedWrap(false);
814 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000815
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000816 // We must move the add instruction here, because the neg instructions do
817 // not dominate the old add instruction in general. By moving it, we are
818 // assured that the neg instructions we just inserted dominate the
819 // instruction we are about to insert after them.
820 //
821 I->moveBefore(BI);
822 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000823
824 // Add the intermediate negates to the redo list as processing them later
825 // could expose more reassociating opportunities.
826 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000827 return I;
828 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000829
Chris Lattnerfed33972009-12-31 20:34:32 +0000830 // Okay, we need to materialize a negated version of V with an instruction.
831 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000832 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000833 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
834 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000835
836 // We found one! Now we have to make sure that the definition dominates
837 // this use. We do this by moving it to the entry block (if it is a
838 // non-instruction value) or right after the definition. These negates will
839 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000840 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000841
842 // Verify that the negate is in this function, V might be a constant expr.
843 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
844 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000845
Chris Lattnerfed33972009-12-31 20:34:32 +0000846 BasicBlock::iterator InsertPt;
847 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
848 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
849 InsertPt = II->getNormalDest()->begin();
850 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000851 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000852 }
853 while (isa<PHINode>(InsertPt)) ++InsertPt;
854 } else {
855 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
856 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000857 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000858 if (TheNeg->getOpcode() == Instruction::Sub) {
859 TheNeg->setHasNoUnsignedWrap(false);
860 TheNeg->setHasNoSignedWrap(false);
861 } else {
862 TheNeg->andIRFlags(BI);
863 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000864 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000865 return TheNeg;
866 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000867
868 // Insert a 'neg' instruction that subtracts the value from zero to get the
869 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000870 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
871 ToRedo.insert(NewNeg);
872 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000873}
874
Sanjay Patelc96ee082015-04-22 18:04:46 +0000875/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000876static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000877 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000878 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000879 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000880
Chad Rosierbd64d462014-10-09 20:06:29 +0000881 // Don't breakup X - undef.
882 if (isa<UndefValue>(Sub->getOperand(1)))
883 return false;
884
Chris Lattner902537c2008-02-17 20:44:51 +0000885 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000886 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000887 Value *V0 = Sub->getOperand(0);
888 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
889 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000890 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000891 Value *V1 = Sub->getOperand(1);
892 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
893 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000894 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000895 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000896 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000897 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
898 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000899 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000900
Chris Lattner902537c2008-02-17 20:44:51 +0000901 return false;
902}
903
Sanjay Patelc96ee082015-04-22 18:04:46 +0000904/// If we have (X-Y), and if either X is an add, or if this is only used by an
905/// add, transform this into (X+(0-Y)) to promote better reassociation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000906static BinaryOperator *
907BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000908 // Convert a subtract into an add and a neg instruction. This allows sub
909 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000910 //
Chris Lattnera5526832010-01-01 00:04:26 +0000911 // Calculate the negative value of Operand 1 of the sub instruction,
912 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000913 //
Owen Anderson2de9f542015-11-16 18:07:30 +0000914 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +0000915 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000916 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
917 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000918 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000919
920 // Everyone now refers to the add instruction.
921 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000922 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000923
David Greened17c3912010-01-05 01:27:24 +0000924 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000925 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000926}
927
Sanjay Patelc96ee082015-04-22 18:04:46 +0000928/// If this is a shift of a reassociable multiply or is used by one, change
929/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000930static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
931 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
932 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000933
Duncan Sands3293f462012-06-08 20:15:33 +0000934 BinaryOperator *Mul =
935 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
936 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
937 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +0000938
939 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +0000940 Shl->replaceAllUsesWith(Mul);
941 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +0000942
943 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
944 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
945 // handling.
946 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
947 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
948 if (NSW && NUW)
949 Mul->setHasNoSignedWrap(true);
950 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +0000951 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000952}
953
Sanjay Patelc96ee082015-04-22 18:04:46 +0000954/// Scan backwards and forwards among values with the same rank as element i
955/// to see if X exists. If X does not exist, return i. This is useful when
956/// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +0000957static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +0000958 Value *X) {
959 unsigned XRank = Ops[i].Rank;
960 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +0000961 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000962 if (Ops[j].Op == X)
963 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000964 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
965 if (Instruction *I2 = dyn_cast<Instruction>(X))
966 if (I1->isIdenticalTo(I2))
967 return j;
968 }
Chris Lattner0c59ac32010-01-01 01:13:15 +0000969 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +0000970 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000971 if (Ops[j].Op == X)
972 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000973 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
974 if (Instruction *I2 = dyn_cast<Instruction>(X))
975 if (I1->isIdenticalTo(I2))
976 return j;
977 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000978 return i;
979}
980
Sanjay Patelc96ee082015-04-22 18:04:46 +0000981/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +0000982/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +0000983static Value *EmitAddTreeOfValues(Instruction *I,
984 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +0000985 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000986
Chris Lattner4c065092006-03-04 09:31:13 +0000987 Value *V1 = Ops.back();
988 Ops.pop_back();
989 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +0000990 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +0000991}
992
Sanjay Patelc96ee082015-04-22 18:04:46 +0000993/// If V is an expression tree that is a multiplication sequence,
994/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +0000995/// remove Factor from the tree and return the new tree.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000996Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000997 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
998 if (!BO)
999 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001000
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001001 SmallVector<RepeatedValue, 8> Tree;
1002 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001003 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001004 Factors.reserve(Tree.size());
1005 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1006 RepeatedValue E = Tree[i];
1007 Factors.append(E.second.getZExtValue(),
1008 ValueEntry(getRank(E.first), E.first));
1009 }
Chris Lattner4c065092006-03-04 09:31:13 +00001010
1011 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001012 bool NeedsNegate = false;
1013 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001014 if (Factors[i].Op == Factor) {
1015 FoundFactor = true;
1016 Factors.erase(Factors.begin()+i);
1017 break;
1018 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001019
Chris Lattner0c59ac32010-01-01 01:13:15 +00001020 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001021 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001022 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1023 if (FC1->getValue() == -FC2->getValue()) {
1024 FoundFactor = NeedsNegate = true;
1025 Factors.erase(Factors.begin()+i);
1026 break;
1027 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001028 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1029 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001030 const APFloat &F1 = FC1->getValueAPF();
Chad Rosier11ab9412014-08-14 15:23:01 +00001031 APFloat F2(FC2->getValueAPF());
1032 F2.changeSign();
1033 if (F1.compare(F2) == APFloat::cmpEqual) {
1034 FoundFactor = NeedsNegate = true;
1035 Factors.erase(Factors.begin() + i);
1036 break;
1037 }
1038 }
1039 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001040 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001041
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001042 if (!FoundFactor) {
1043 // Make sure to restore the operands to the expression tree.
1044 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001045 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001046 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001047
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001048 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001049
Chris Lattner1d897942009-12-31 19:34:45 +00001050 // If this was just a single multiply, remove the multiply and return the only
1051 // remaining operand.
1052 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001053 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001054 V = Factors[0].Op;
1055 } else {
1056 RewriteExprTree(BO, Factors);
1057 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001058 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001059
Chris Lattner0c59ac32010-01-01 01:13:15 +00001060 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001061 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001062
Chris Lattner0c59ac32010-01-01 01:13:15 +00001063 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001064}
1065
Sanjay Patelc96ee082015-04-22 18:04:46 +00001066/// If V is a single-use multiply, recursively add its operands as factors,
1067/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001068///
1069/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001070static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001071 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001072 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001073 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001074 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001075 Factors.push_back(V);
1076 return;
1077 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001078
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001079 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001080 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1081 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001082}
1083
Sanjay Patelc96ee082015-04-22 18:04:46 +00001084/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1085/// This optimizes based on identities. If it can be reduced to a single Value,
1086/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001087static Value *OptimizeAndOrXor(unsigned Opcode,
1088 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001089 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1090 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1091 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1092 // First, check for X and ~X in the operand list.
1093 assert(i < Ops.size());
1094 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1095 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1096 unsigned FoundX = FindInOperandList(Ops, i, X);
1097 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001098 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001099 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001100
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001101 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001102 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001103 }
1104 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001105
Chris Lattner5f8a0052009-12-31 07:59:34 +00001106 // Next, check for duplicate pairs of values, which we assume are next to
1107 // each other, due to our sorting criteria.
1108 assert(i < Ops.size());
1109 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1110 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001111 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001112 Ops.erase(Ops.begin()+i);
1113 --i; --e;
1114 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001115 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001116 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001117
Chris Lattner60c2ca72009-12-31 19:49:01 +00001118 // Drop pairs of values for Xor.
1119 assert(Opcode == Instruction::Xor);
1120 if (e == 2)
1121 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001122
Chris Lattnera5526832010-01-01 00:04:26 +00001123 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001124 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1125 i -= 1; e -= 2;
1126 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001127 }
1128 }
Craig Topperf40110f2014-04-25 05:29:35 +00001129 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001130}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001131
Eric Christopherbfba5722015-12-16 23:10:53 +00001132/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001133/// instruction with the given two operands, and return the resulting
1134/// instruction. There are two special cases: 1) if the constant operand is 0,
1135/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1136/// be returned.
1137static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1138 const APInt &ConstOpnd) {
1139 if (ConstOpnd != 0) {
1140 if (!ConstOpnd.isAllOnesValue()) {
1141 LLVMContext &Ctx = Opnd->getType()->getContext();
1142 Instruction *I;
1143 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1144 "and.ra", InsertBefore);
1145 I->setDebugLoc(InsertBefore->getDebugLoc());
1146 return I;
1147 }
1148 return Opnd;
1149 }
Craig Topperf40110f2014-04-25 05:29:35 +00001150 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001151}
1152
1153// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1154// into "R ^ C", where C would be 0, and R is a symbolic value.
1155//
1156// If it was successful, true is returned, and the "R" and "C" is returned
1157// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1158// and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001159//
1160bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1161 APInt &ConstOpnd, Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001162 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1163 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1164 // = (x & ~c1) ^ (c1 ^ c2)
1165 // It is useful only when c1 == c2.
1166 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1167 if (!Opnd1->getValue()->hasOneUse())
1168 return false;
1169
1170 const APInt &C1 = Opnd1->getConstPart();
1171 if (C1 != ConstOpnd)
1172 return false;
1173
1174 Value *X = Opnd1->getSymbolicPart();
1175 Res = createAndInstr(I, X, ~C1);
1176 // ConstOpnd was C2, now C1 ^ C2.
1177 ConstOpnd ^= C1;
1178
1179 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1180 RedoInsts.insert(T);
1181 return true;
1182 }
1183 return false;
1184}
1185
1186
1187// Helper function of OptimizeXor(). It tries to simplify
1188// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1189// symbolic value.
1190//
1191// If it was successful, true is returned, and the "R" and "C" is returned
1192// via "Res" and "ConstOpnd", respectively (If the entire expression is
1193// evaluated to a constant, the Res is set to NULL); otherwise, false is
1194// returned, and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001195bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1196 XorOpnd *Opnd2, APInt &ConstOpnd,
1197 Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001198 Value *X = Opnd1->getSymbolicPart();
1199 if (X != Opnd2->getSymbolicPart())
1200 return false;
1201
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001202 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1203 int DeadInstNum = 1;
1204 if (Opnd1->getValue()->hasOneUse())
1205 DeadInstNum++;
1206 if (Opnd2->getValue()->hasOneUse())
1207 DeadInstNum++;
1208
1209 // Xor-Rule 2:
1210 // (x | c1) ^ (x & c2)
1211 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1212 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1213 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1214 //
1215 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1216 if (Opnd2->isOrExpr())
1217 std::swap(Opnd1, Opnd2);
1218
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001219 const APInt &C1 = Opnd1->getConstPart();
1220 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001221 APInt C3((~C1) ^ C2);
1222
1223 // Do not increase code size!
1224 if (C3 != 0 && !C3.isAllOnesValue()) {
1225 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1226 if (NewInstNum > DeadInstNum)
1227 return false;
1228 }
1229
1230 Res = createAndInstr(I, X, C3);
1231 ConstOpnd ^= C1;
1232
1233 } else if (Opnd1->isOrExpr()) {
1234 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1235 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001236 const APInt &C1 = Opnd1->getConstPart();
1237 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001238 APInt C3 = C1 ^ C2;
1239
1240 // Do not increase code size
1241 if (C3 != 0 && !C3.isAllOnesValue()) {
1242 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1243 if (NewInstNum > DeadInstNum)
1244 return false;
1245 }
1246
1247 Res = createAndInstr(I, X, C3);
1248 ConstOpnd ^= C3;
1249 } else {
1250 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1251 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001252 const APInt &C1 = Opnd1->getConstPart();
1253 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001254 APInt C3 = C1 ^ C2;
1255 Res = createAndInstr(I, X, C3);
1256 }
1257
1258 // Put the original operands in the Redo list; hope they will be deleted
1259 // as dead code.
1260 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1261 RedoInsts.insert(T);
1262 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1263 RedoInsts.insert(T);
1264
1265 return true;
1266}
1267
1268/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1269/// to a single Value, it is returned, otherwise the Ops list is mutated as
1270/// necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001271Value *ReassociatePass::OptimizeXor(Instruction *I,
1272 SmallVectorImpl<ValueEntry> &Ops) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001273 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1274 return V;
1275
1276 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001277 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001278
1279 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001280 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001281 Type *Ty = Ops[0].Op->getType();
1282 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1283
1284 // Step 1: Convert ValueEntry to XorOpnd
1285 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1286 Value *V = Ops[i].Op;
1287 if (!isa<ConstantInt>(V)) {
1288 XorOpnd O(V);
1289 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1290 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001291 } else
1292 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1293 }
1294
Shuxin Yang331f01d2013-04-08 22:00:43 +00001295 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1296 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1297 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1298 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1299 // when new elements are added to the vector.
1300 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1301 OpndPtrs.push_back(&Opnds[i]);
1302
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001303 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1304 // the same symbolic value cluster together. For instance, the input operand
1305 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1306 // ("x | 123", "x & 789", "y & 456").
Justin Bognercb8a21c2016-04-26 23:32:00 +00001307 //
1308 // The purpose is twofold:
1309 // 1) Cluster together the operands sharing the same symbolic-value.
1310 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1311 // could potentially shorten crital path, and expose more loop-invariants.
1312 // Note that values' rank are basically defined in RPO order (FIXME).
1313 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1314 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1315 // "z" in the order of X-Y-Z is better than any other orders.
1316 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1317 [](XorOpnd *LHS, XorOpnd *RHS) {
1318 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1319 });
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001320
1321 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001322 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001323 bool Changed = false;
1324 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001325 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001326 // The combined value
1327 Value *CV;
1328
1329 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1330 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1331 Changed = true;
1332 if (CV)
1333 *CurrOpnd = XorOpnd(CV);
1334 else {
1335 CurrOpnd->Invalidate();
1336 continue;
1337 }
1338 }
1339
1340 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1341 PrevOpnd = CurrOpnd;
1342 continue;
1343 }
1344
1345 // step 3.2: When previous and current operands share the same symbolic
1346 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1347 //
1348 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1349 // Remove previous operand
1350 PrevOpnd->Invalidate();
1351 if (CV) {
1352 *CurrOpnd = XorOpnd(CV);
1353 PrevOpnd = CurrOpnd;
1354 } else {
1355 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001356 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001357 }
1358 Changed = true;
1359 }
1360 }
1361
1362 // Step 4: Reassemble the Ops
1363 if (Changed) {
1364 Ops.clear();
1365 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1366 XorOpnd &O = Opnds[i];
1367 if (O.isInvalid())
1368 continue;
1369 ValueEntry VE(getRank(O.getValue()), O.getValue());
1370 Ops.push_back(VE);
1371 }
1372 if (ConstOpnd != 0) {
1373 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1374 ValueEntry VE(getRank(C), C);
1375 Ops.push_back(VE);
1376 }
1377 int Sz = Ops.size();
1378 if (Sz == 1)
1379 return Ops.back().Op;
1380 else if (Sz == 0) {
1381 assert(ConstOpnd == 0);
1382 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1383 }
1384 }
1385
Craig Topperf40110f2014-04-25 05:29:35 +00001386 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001387}
1388
Sanjay Patelc96ee082015-04-22 18:04:46 +00001389/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001390/// optimizes based on identities. If it can be reduced to a single Value, it
1391/// is returned, otherwise the Ops list is mutated as necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001392Value *ReassociatePass::OptimizeAdd(Instruction *I,
1393 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001394 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001395 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1396 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001397 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001398
Chris Lattner5f8a0052009-12-31 07:59:34 +00001399 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001400 Value *TheOp = Ops[i].Op;
1401 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001402 // instances of the operand together. Due to our sorting criteria, we know
1403 // that these need to be next to each other in the vector.
1404 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1405 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001406 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001407 do {
1408 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001409 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001410 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001411
Chad Rosier78943bc2014-12-12 14:44:12 +00001412 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001413 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001414
Chris Lattner60b71b52009-12-31 19:24:52 +00001415 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001416 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001417 Constant *C = Ty->isIntOrIntVectorTy() ?
1418 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001419 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001420
Chris Lattner60b71b52009-12-31 19:24:52 +00001421 // Now that we have inserted a multiply, optimize it. This allows us to
1422 // handle cases that require multiple factoring steps, such as this:
1423 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001424 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001425
Chris Lattner60b71b52009-12-31 19:24:52 +00001426 // If every add operand was a duplicate, return the multiply.
1427 if (Ops.empty())
1428 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001429
Chris Lattner60b71b52009-12-31 19:24:52 +00001430 // Otherwise, we had some input that didn't have the dupe, such as
1431 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1432 // things being added by this operation.
1433 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001434
Chris Lattner60c2ca72009-12-31 19:49:01 +00001435 --i;
1436 e = Ops.size();
1437 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001438 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001439
Benjamin Kramer49689442014-05-31 15:01:54 +00001440 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001441 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1442 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001443 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001444
Benjamin Kramer49689442014-05-31 15:01:54 +00001445 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001446 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001447 X = BinaryOperator::getNegArgument(TheOp);
1448 else if (BinaryOperator::isNot(TheOp))
1449 X = BinaryOperator::getNotArgument(TheOp);
1450
Chris Lattner5f8a0052009-12-31 07:59:34 +00001451 unsigned FoundX = FindInOperandList(Ops, i, X);
1452 if (FoundX == i)
1453 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001454
Chris Lattner5f8a0052009-12-31 07:59:34 +00001455 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001456 if (Ops.size() == 2 &&
1457 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001458 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001459
Benjamin Kramer49689442014-05-31 15:01:54 +00001460 // Remove X and ~X from the operand list.
1461 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1462 return Constant::getAllOnesValue(X->getType());
1463
Chris Lattner5f8a0052009-12-31 07:59:34 +00001464 Ops.erase(Ops.begin()+i);
1465 if (i < FoundX)
1466 --FoundX;
1467 else
1468 --i; // Need to back up an extra one.
1469 Ops.erase(Ops.begin()+FoundX);
1470 ++NumAnnihil;
1471 --i; // Revisit element.
1472 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001473
1474 // if X and ~X we append -1 to the operand list.
1475 if (BinaryOperator::isNot(TheOp)) {
1476 Value *V = Constant::getAllOnesValue(X->getType());
1477 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1478 e += 1;
1479 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001480 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001481
Chris Lattner177140a2009-12-31 18:17:13 +00001482 // Scan the operand list, checking to see if there are any common factors
1483 // between operands. Consider something like A*A+A*B*C+D. We would like to
1484 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1485 // To efficiently find this, we count the number of times a factor occurs
1486 // for any ADD operands that are MULs.
1487 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001488
Chris Lattner177140a2009-12-31 18:17:13 +00001489 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1490 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001491 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001492 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001493 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001494 BinaryOperator *BOp =
1495 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001496 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001497 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001498
Chris Lattner177140a2009-12-31 18:17:13 +00001499 // Compute all of the factors of this added value.
1500 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001501 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001502 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001503
Chris Lattner177140a2009-12-31 18:17:13 +00001504 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001505 SmallPtrSet<Value*, 8> Duplicates;
1506 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1507 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001508 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001509 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001510
Chris Lattner0c59ac32010-01-01 01:13:15 +00001511 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001512 if (Occ > MaxOcc) {
1513 MaxOcc = Occ;
1514 MaxOccVal = Factor;
1515 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001516
Chris Lattner0c59ac32010-01-01 01:13:15 +00001517 // If Factor is a negative constant, add the negated value as a factor
1518 // because we can percolate the negate out. Watch for minint, which
1519 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001520 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001521 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001522 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1523 assert(!Duplicates.count(Factor) &&
1524 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001525 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001526 if (Occ > MaxOcc) {
1527 MaxOcc = Occ;
1528 MaxOccVal = Factor;
1529 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001530 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001531 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1532 if (CF->isNegative()) {
1533 APFloat F(CF->getValueAPF());
1534 F.changeSign();
1535 Factor = ConstantFP::get(CF->getContext(), F);
1536 assert(!Duplicates.count(Factor) &&
1537 "Shouldn't have two constant factors, missed a canonicalize");
1538 unsigned Occ = ++FactorOccurrences[Factor];
1539 if (Occ > MaxOcc) {
1540 MaxOcc = Occ;
1541 MaxOccVal = Factor;
1542 }
1543 }
1544 }
Chris Lattner177140a2009-12-31 18:17:13 +00001545 }
1546 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001547
Chris Lattner177140a2009-12-31 18:17:13 +00001548 // If any factor occurred more than one time, we can pull it out.
1549 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001550 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001551 ++NumFactor;
1552
1553 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1554 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001555 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001556 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001557 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001558 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001559 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1560 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1561
Bill Wendling274ba892012-05-02 09:59:45 +00001562 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001563 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001564 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001565 BinaryOperator *BOp =
1566 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001567 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001568 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001569
Chris Lattner177140a2009-12-31 18:17:13 +00001570 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001571 // The factorized operand may occur several times. Convert them all in
1572 // one fell swoop.
1573 for (unsigned j = Ops.size(); j != i;) {
1574 --j;
1575 if (Ops[j].Op == Ops[i].Op) {
1576 NewMulOps.push_back(V);
1577 Ops.erase(Ops.begin()+j);
1578 }
1579 }
1580 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001581 }
1582 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001583
Chris Lattner177140a2009-12-31 18:17:13 +00001584 // No need for extra uses anymore.
1585 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001586
Chris Lattner177140a2009-12-31 18:17:13 +00001587 unsigned NumAddedValues = NewMulOps.size();
1588 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001589
Chris Lattner60b71b52009-12-31 19:24:52 +00001590 // Now that we have inserted the add tree, optimize it. This allows us to
1591 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001592 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001593 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001594 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001595 if (Instruction *VI = dyn_cast<Instruction>(V))
1596 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001597
1598 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001599 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001600
Chris Lattner60c2ca72009-12-31 19:49:01 +00001601 // Rerun associate on the multiply in case the inner expression turned into
1602 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001603 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001604
Chris Lattner177140a2009-12-31 18:17:13 +00001605 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1606 // entire result expression is just the multiply "A*(B+C)".
1607 if (Ops.empty())
1608 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001609
Chris Lattnerac615502009-12-31 18:18:46 +00001610 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001611 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001612 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001613 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1614 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001615
Craig Topperf40110f2014-04-25 05:29:35 +00001616 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001617}
Chris Lattner4c065092006-03-04 09:31:13 +00001618
Chandler Carruth739ef802012-04-26 05:30:30 +00001619/// \brief Build up a vector of value/power pairs factoring a product.
1620///
1621/// Given a series of multiplication operands, build a vector of factors and
1622/// the powers each is raised to when forming the final product. Sort them in
1623/// the order of descending power.
1624///
1625/// (x*x) -> [(x, 2)]
1626/// ((x*x)*x) -> [(x, 3)]
1627/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1628///
1629/// \returns Whether any factors have a power greater than one.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001630bool ReassociatePass::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1631 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001632 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1633 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001634 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001635 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1636 Value *Op = Ops[Idx-1].Op;
1637
1638 // Count the number of occurrences of this value.
1639 unsigned Count = 1;
1640 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1641 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001642 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001643 if (Count > 1)
1644 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001645 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001646
Chandler Carruth739ef802012-04-26 05:30:30 +00001647 // We can only simplify factors if the sum of the powers of our simplifiable
1648 // factors is 4 or higher. When that is the case, we will *always* have
1649 // a simplification. This is an important invariant to prevent cyclicly
1650 // trying to simplify already minimal formations.
1651 if (FactorPowerSum < 4)
1652 return false;
1653
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001654 // Now gather the simplifiable factors, removing them from Ops.
1655 FactorPowerSum = 0;
1656 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1657 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001658
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001659 // Count the number of occurrences of this value.
1660 unsigned Count = 1;
1661 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1662 ++Count;
1663 if (Count == 1)
1664 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001665 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001666 Count &= ~1U;
1667 Idx -= Count;
1668 FactorPowerSum += Count;
1669 Factors.push_back(Factor(Op, Count));
1670 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001671 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001672
Chandler Carruth739ef802012-04-26 05:30:30 +00001673 // None of the adjustments above should have reduced the sum of factor powers
1674 // below our mininum of '4'.
1675 assert(FactorPowerSum >= 4);
1676
Justin Bogner90744d22016-04-26 22:22:18 +00001677 std::stable_sort(Factors.begin(), Factors.end(),
1678 [](const Factor &LHS, const Factor &RHS) {
1679 return LHS.Power > RHS.Power;
1680 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001681 return true;
1682}
1683
1684/// \brief Build a tree of multiplies, computing the product of Ops.
1685static Value *buildMultiplyTree(IRBuilder<> &Builder,
1686 SmallVectorImpl<Value*> &Ops) {
1687 if (Ops.size() == 1)
1688 return Ops.back();
1689
1690 Value *LHS = Ops.pop_back_val();
1691 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001692 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001693 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1694 else
1695 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001696 } while (!Ops.empty());
1697
1698 return LHS;
1699}
1700
1701/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1702///
1703/// Given a vector of values raised to various powers, where no two values are
1704/// equal and the powers are sorted in decreasing order, compute the minimal
1705/// DAG of multiplies to compute the final product, and return that product
1706/// value.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001707Value *
1708ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1709 SmallVectorImpl<Factor> &Factors) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001710 assert(Factors[0].Power);
1711 SmallVector<Value *, 4> OuterProduct;
1712 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1713 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1714 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1715 LastIdx = Idx;
1716 continue;
1717 }
1718
1719 // We want to multiply across all the factors with the same power so that
1720 // we can raise them to that power as a single entity. Build a mini tree
1721 // for that.
1722 SmallVector<Value *, 4> InnerProduct;
1723 InnerProduct.push_back(Factors[LastIdx].Base);
1724 do {
1725 InnerProduct.push_back(Factors[Idx].Base);
1726 ++Idx;
1727 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1728
1729 // Reset the base value of the first factor to the new expression tree.
1730 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001731 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1732 if (Instruction *MI = dyn_cast<Instruction>(M))
1733 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001734
1735 LastIdx = Idx;
1736 }
1737 // Unique factors with equal powers -- we've folded them into the first one's
1738 // base.
1739 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001740 [](const Factor &LHS, const Factor &RHS) {
1741 return LHS.Power == RHS.Power;
1742 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001743 Factors.end());
1744
1745 // Iteratively collect the base of each factor with an add power into the
1746 // outer product, and halve each power in preparation for squaring the
1747 // expression.
1748 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1749 if (Factors[Idx].Power & 1)
1750 OuterProduct.push_back(Factors[Idx].Base);
1751 Factors[Idx].Power >>= 1;
1752 }
1753 if (Factors[0].Power) {
1754 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1755 OuterProduct.push_back(SquareRoot);
1756 OuterProduct.push_back(SquareRoot);
1757 }
1758 if (OuterProduct.size() == 1)
1759 return OuterProduct.front();
1760
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001761 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001762 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001763}
1764
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001765Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1766 SmallVectorImpl<ValueEntry> &Ops) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001767 // We can only optimize the multiplies when there is a chain of more than
1768 // three, such that a balanced tree might require fewer total multiplies.
1769 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001770 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001771
1772 // Try to turn linear trees of multiplies without other uses of the
1773 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1774 // re-use.
1775 SmallVector<Factor, 4> Factors;
1776 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001777 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001778
1779 IRBuilder<> Builder(I);
1780 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1781 if (Ops.empty())
1782 return V;
1783
1784 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1785 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001786 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001787}
1788
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001789Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1790 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001791 // Now that we have the linearized expression tree, try to optimize it.
1792 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001793 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001794 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001795 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1796 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1797 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1798 }
1799 // If there was nothing but constants then we are done.
1800 if (Ops.empty())
1801 return Cst;
1802
1803 // Put the combined constant back at the end of the operand list, except if
1804 // there is no point. For example, an add of 0 gets dropped here, while a
1805 // multiplication by zero turns the whole expression into zero.
1806 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1807 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1808 return Cst;
1809 Ops.push_back(ValueEntry(0, Cst));
1810 }
1811
1812 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001813
Chris Lattner9039ff82009-12-31 07:33:14 +00001814 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001815 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001816 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001817 switch (Opcode) {
1818 default: break;
1819 case Instruction::And:
1820 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001821 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1822 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001823 break;
1824
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001825 case Instruction::Xor:
1826 if (Value *Result = OptimizeXor(I, Ops))
1827 return Result;
1828 break;
1829
Chandler Carruth739ef802012-04-26 05:30:30 +00001830 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001831 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001832 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001833 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001834 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001835
1836 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001837 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001838 if (Value *Result = OptimizeMul(I, Ops))
1839 return Result;
1840 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001841 }
1842
Duncan Sands3293f462012-06-08 20:15:33 +00001843 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001844 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001845 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001846}
1847
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001848// Remove dead instructions and if any operands are trivially dead add them to
1849// Insts so they will be removed as well.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001850void ReassociatePass::RecursivelyEraseDeadInsts(
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001851 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1852 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1853 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1854 ValueRankMap.erase(I);
1855 Insts.remove(I);
1856 RedoInsts.remove(I);
1857 I->eraseFromParent();
1858 for (auto Op : Ops)
1859 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1860 if (OpInst->use_empty())
1861 Insts.insert(OpInst);
1862}
1863
Sanjay Patelc96ee082015-04-22 18:04:46 +00001864/// Zap the given instruction, adding interesting operands to the work list.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001865void ReassociatePass::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001866 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
Chad Rosier27ac0d82016-08-30 13:58:35 +00001867 DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1868
Duncan Sands3293f462012-06-08 20:15:33 +00001869 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1870 // Erase the dead instruction.
1871 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001872 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001873 I->eraseFromParent();
1874 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001875 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001876 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1877 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1878 // If this is a node in an expression tree, climb to the expression root
1879 // and add that since that's where optimization actually happens.
1880 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001881 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001882 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001883 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001884 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001885 }
1886}
1887
Chad Rosier094ac772014-11-11 22:58:35 +00001888// Canonicalize expressions of the following form:
1889// x + (-Constant * y) -> x - (Constant * y)
1890// x - (-Constant * y) -> x + (Constant * y)
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001891Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
Chad Rosier094ac772014-11-11 22:58:35 +00001892 if (!I->hasOneUse() || I->getType()->isVectorTy())
1893 return nullptr;
1894
David Majnemer587336d2015-05-28 06:16:39 +00001895 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001896 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001897 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001898 return nullptr;
1899
David Majnemer587336d2015-05-28 06:16:39 +00001900 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1901 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1902
1903 // Both operands are constant, let it get constant folded away.
1904 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001905 return nullptr;
1906
David Majnemer587336d2015-05-28 06:16:39 +00001907 ConstantFP *CF = C0 ? C0 : C1;
1908
1909 // Must have one constant operand.
1910 if (!CF)
1911 return nullptr;
1912
1913 // Must be a negative ConstantFP.
1914 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001915 return nullptr;
1916
1917 // User must be a binary operator with one or more uses.
1918 Instruction *User = I->user_back();
David Majnemer587336d2015-05-28 06:16:39 +00001919 if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
Chad Rosier094ac772014-11-11 22:58:35 +00001920 return nullptr;
1921
1922 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001923 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001924 return nullptr;
1925
1926 // Subtraction is not commutative. Explicitly, the following transform is
1927 // not valid: (-Constant * y) - x -> x + (Constant * y)
1928 if (!User->isCommutative() && User->getOperand(1) != I)
1929 return nullptr;
1930
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001931 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001932 APFloat Val = CF->getValueAPF();
1933 Val.changeSign();
1934 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001935
Chad Rosier094ac772014-11-11 22:58:35 +00001936 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1937 // ((-Const*y) + x) -> (x + (-Const*y)).
1938 if (User->getOperand(0) == I && User->isCommutative())
1939 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001940
Chad Rosier094ac772014-11-11 22:58:35 +00001941 Value *Op0 = User->getOperand(0);
1942 Value *Op1 = User->getOperand(1);
1943 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00001944 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00001945 default:
1946 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00001947 case Instruction::FAdd:
1948 NI = BinaryOperator::CreateFSub(Op0, Op1);
1949 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1950 break;
1951 case Instruction::FSub:
1952 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1953 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1954 break;
1955 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001956
Chad Rosier094ac772014-11-11 22:58:35 +00001957 NI->insertBefore(User);
1958 NI->setName(User->getName());
1959 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001960 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00001961 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001962 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00001963 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001964}
1965
Sanjay Patelc96ee082015-04-22 18:04:46 +00001966/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00001967/// instructions is not allowed.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001968void ReassociatePass::OptimizeInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001969 // Only consider operations that we understand.
1970 if (!isa<BinaryOperator>(I))
1971 return;
1972
Chad Rosier11ab9412014-08-14 15:23:01 +00001973 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00001974 // If an operand of this shift is a reassociable multiply, or if the shift
1975 // is used by a reassociable multiply or add, turn into a multiply.
1976 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1977 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00001978 (isReassociableOp(I->user_back(), Instruction::Mul) ||
1979 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00001980 Instruction *NI = ConvertShiftToMul(I);
1981 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001982 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001983 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00001984 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00001985
Chad Rosier094ac772014-11-11 22:58:35 +00001986 // Canonicalize negative constants out of expressions.
1987 if (Instruction *Res = canonicalizeNegConstExpr(I))
1988 I = Res;
1989
Chad Rosierdf8f2a22014-11-14 17:09:19 +00001990 // Commute binary operators, to canonicalize the order of their operands.
1991 // This can potentially expose more CSE opportunities, and makes writing other
1992 // transformations simpler.
1993 if (I->isCommutative())
1994 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00001995
Robert Lougher1858ba72015-03-13 20:53:01 +00001996 // TODO: We should optimize vector Xor instructions, but they are
1997 // currently unsupported.
1998 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
Chad Rosierdf8f2a22014-11-14 17:09:19 +00001999 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002000
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002001 // Don't optimize floating point instructions that don't have unsafe algebra.
Owen Anderson630077e2015-11-20 08:16:13 +00002002 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002003 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002004
Dan Gohman1c6c3482011-04-12 00:11:56 +00002005 // Do not reassociate boolean (i1) expressions. We want to preserve the
2006 // original order of evaluation for short-circuited comparisons that
2007 // SimplifyCFG has folded to AND/OR expressions. If the expression
2008 // is not further optimized, it is likely to be transformed back to a
2009 // short-circuited form for code gen, and the source order may have been
2010 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002011 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002012 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002013
Dan Gohman1c6c3482011-04-12 00:11:56 +00002014 // If this is a subtract instruction which is not already in negate form,
2015 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002016 if (I->getOpcode() == Instruction::Sub) {
2017 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002018 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002019 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002020 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002021 I = NI;
2022 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002023 // Otherwise, this is a negation. See if the operand is a multiply tree
2024 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002025 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2026 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002027 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002028 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002029 // If the negate was simplified, revisit the users to see if we can
2030 // reassociate further.
2031 for (User *U : NI->users()) {
2032 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2033 RedoInsts.insert(Tmp);
2034 }
Duncan Sands3293f462012-06-08 20:15:33 +00002035 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002036 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002037 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002038 }
2039 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002040 } else if (I->getOpcode() == Instruction::FSub) {
2041 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002042 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002043 RedoInsts.insert(I);
2044 MadeChange = true;
2045 I = NI;
2046 } else if (BinaryOperator::isFNeg(I)) {
2047 // Otherwise, this is a negation. See if the operand is a multiply tree
2048 // and if this is not an inner node of a multiply tree.
2049 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2050 (!I->hasOneUse() ||
2051 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002052 // If the negate was simplified, revisit the users to see if we can
2053 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002054 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002055 for (User *U : NI->users()) {
2056 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2057 RedoInsts.insert(Tmp);
2058 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002059 RedoInsts.insert(I);
2060 MadeChange = true;
2061 I = NI;
2062 }
2063 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002064 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002065
Duncan Sands3293f462012-06-08 20:15:33 +00002066 // If this instruction is an associative binary operator, process it.
2067 if (!I->isAssociative()) return;
2068 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002069
2070 // If this is an interior node of a reassociable tree, ignore it until we
2071 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002072 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002073 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2074 // During the initial run we will get to the root of the tree.
2075 // But if we get here while we are redoing instructions, there is no
2076 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002077 if (BO->user_back() != BO &&
2078 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002079 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002080 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002081 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002082
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002083 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002084 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002085 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002086 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002087 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002088 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2089 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2090 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002091
Duncan Sands3293f462012-06-08 20:15:33 +00002092 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002093}
Chris Lattner1e506502005-05-07 21:59:39 +00002094
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002095void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002096 // First, walk the expression tree, linearizing the tree, collecting the
2097 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002098 SmallVector<RepeatedValue, 8> Tree;
2099 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002100 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002101 Ops.reserve(Tree.size());
2102 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2103 RepeatedValue E = Tree[i];
2104 Ops.append(E.second.getZExtValue(),
2105 ValueEntry(getRank(E.first), E.first));
2106 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002107
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002108 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2109
Chris Lattner2fc319d2006-03-14 07:11:11 +00002110 // Now that we have linearized the tree to a list and have gathered all of
2111 // the operands and their ranks, sort the operands by their rank. Use a
2112 // stable_sort so that values with equal ranks will have their relative
2113 // positions maintained (and so the compiler is deterministic). Note that
2114 // this sorts so that the highest ranking values end up at the beginning of
2115 // the vector.
2116 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002117
Sanjay Patelc96ee082015-04-22 18:04:46 +00002118 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002119 // sorted form, optimize it globally if possible.
2120 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002121 if (V == I)
2122 // Self-referential expression in unreachable code.
2123 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002124 // This expression tree simplified to something that isn't a tree,
2125 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002126 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002127 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002128 if (Instruction *VI = dyn_cast<Instruction>(V))
2129 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002130 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002131 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002132 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002133 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002134
Chris Lattner2fc319d2006-03-14 07:11:11 +00002135 // We want to sink immediates as deeply as possible except in the case where
2136 // this is a multiply tree used only by an add, and the immediate is a -1.
2137 // In this case we reassociate to put the negation on the outside so that we
2138 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002139 if (I->hasOneUse()) {
2140 if (I->getOpcode() == Instruction::Mul &&
2141 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2142 isa<ConstantInt>(Ops.back().Op) &&
2143 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2144 ValueEntry Tmp = Ops.pop_back_val();
2145 Ops.insert(Ops.begin(), Tmp);
2146 } else if (I->getOpcode() == Instruction::FMul &&
2147 cast<Instruction>(I->user_back())->getOpcode() ==
2148 Instruction::FAdd &&
2149 isa<ConstantFP>(Ops.back().Op) &&
2150 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2151 ValueEntry Tmp = Ops.pop_back_val();
2152 Ops.insert(Ops.begin(), Tmp);
2153 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002154 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002155
David Greened17c3912010-01-05 01:27:24 +00002156 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002157
Chris Lattner2fc319d2006-03-14 07:11:11 +00002158 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002159 if (Ops[0].Op == I)
2160 // Self-referential expression in unreachable code.
2161 return;
2162
Chris Lattner2fc319d2006-03-14 07:11:11 +00002163 // This expression tree simplified to something that isn't a tree,
2164 // eliminate it.
2165 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002166 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2167 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002168 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002169 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002170 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002171
Chris Lattner60b71b52009-12-31 19:24:52 +00002172 // Now that we ordered and optimized the expressions, splat them back into
2173 // the expression tree, removing any unneeded nodes.
2174 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002175}
2176
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002177PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002178 // Get the functions basic blocks in Reverse Post Order. This order is used by
2179 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2180 // blocks (it has been seen that the analysis in this pass could hang when
2181 // analysing dead basic blocks).
2182 ReversePostOrderTraversal<Function *> RPOT(&F);
2183
Chad Rosierea7e4642016-08-17 15:54:39 +00002184 // Calculate the rank map for F.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002185 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002186
Chris Lattner1e506502005-05-07 21:59:39 +00002187 MadeChange = false;
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002188 // Traverse the same blocks that was analysed by BuildRankMap.
2189 for (BasicBlock *BI : RPOT) {
2190 assert(RankMap.count(&*BI) && "BB should be ranked.");
Duncan Sands3293f462012-06-08 20:15:33 +00002191 // Optimize every instruction in the basic block.
Chad Rosierea7e4642016-08-17 15:54:39 +00002192 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002193 if (isInstructionTriviallyDead(&*II)) {
2194 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002195 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002196 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002197 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002198 ++II;
2199 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002200
Chad Rosierea7e4642016-08-17 15:54:39 +00002201 // Make a copy of all the instructions to be redone so we can remove dead
2202 // instructions.
2203 SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2204 // Iterate over all instructions to be reevaluated and remove trivially dead
2205 // instructions. If any operand of the trivially dead instruction becomes
2206 // dead mark it for deletion as well. Continue this process until all
2207 // trivially dead instructions have been removed.
2208 while (!ToRedo.empty()) {
2209 Instruction *I = ToRedo.pop_back_val();
Davide Italiano631cd272016-10-28 02:47:09 +00002210 if (isInstructionTriviallyDead(I)) {
Chad Rosierea7e4642016-08-17 15:54:39 +00002211 RecursivelyEraseDeadInsts(I, ToRedo);
Davide Italiano631cd272016-10-28 02:47:09 +00002212 MadeChange = true;
2213 }
Chad Rosierea7e4642016-08-17 15:54:39 +00002214 }
2215
2216 // Now that we have removed dead instructions, we can reoptimize the
2217 // remaining instructions.
2218 while (!RedoInsts.empty()) {
2219 Instruction *I = RedoInsts.pop_back_val();
2220 if (isInstructionTriviallyDead(I))
2221 EraseInst(I);
2222 else
2223 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002224 }
Duncan Sands3293f462012-06-08 20:15:33 +00002225 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002226
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002227 // We are done with the rank map.
2228 RankMap.clear();
2229 ValueRankMap.clear();
2230
Davide Italiano39893bd2016-05-29 00:41:17 +00002231 if (MadeChange) {
Michael Kuperstein835facd2016-06-28 00:54:12 +00002232 // FIXME: This should also 'preserve the CFG'.
Davide Italiano39893bd2016-05-29 00:41:17 +00002233 auto PA = PreservedAnalyses();
2234 PA.preserve<GlobalsAA>();
2235 return PA;
2236 }
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002237
2238 return PreservedAnalyses::all();
2239}
2240
2241namespace {
2242 class ReassociateLegacyPass : public FunctionPass {
2243 ReassociatePass Impl;
2244 public:
2245 static char ID; // Pass identification, replacement for typeid
2246 ReassociateLegacyPass() : FunctionPass(ID) {
2247 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2248 }
2249
2250 bool runOnFunction(Function &F) override {
2251 if (skipFunction(F))
2252 return false;
2253
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002254 FunctionAnalysisManager DummyFAM;
2255 auto PA = Impl.run(F, DummyFAM);
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002256 return !PA.areAllPreserved();
2257 }
2258
2259 void getAnalysisUsage(AnalysisUsage &AU) const override {
2260 AU.setPreservesCFG();
2261 AU.addPreserved<GlobalsAAWrapperPass>();
2262 }
2263 };
2264}
2265
2266char ReassociateLegacyPass::ID = 0;
2267INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2268 "Reassociate expressions", false, false)
2269
2270// Public interface to the Reassociate pass
2271FunctionPass *llvm::createReassociatePass() {
2272 return new ReassociateLegacyPass();
Chris Lattnerc0f58002002-05-08 22:19:27 +00002273}