blob: 051cd07cdae65c1f16b725ccb8e767d6a66dc694 [file] [log] [blame]
Eugene Zelenko32a40562017-09-11 23:00:48 +00001//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
Brendon Cahoon254f8892016-07-29 16:44:44 +00002//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Brendon Cahoon254f8892016-07-29 16:44:44 +00006//
7//===----------------------------------------------------------------------===//
8//
9// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10//
Brendon Cahoon254f8892016-07-29 16:44:44 +000011// This SMS implementation is a target-independent back-end pass. When enabled,
12// the pass runs just prior to the register allocation pass, while the machine
13// IR is in SSA form. If software pipelining is successful, then the original
14// loop is replaced by the optimized loop. The optimized loop contains one or
15// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16// the instructions cannot be scheduled in a given MII, we increase the MII by
17// one and try again.
18//
19// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20// represent loop carried dependences in the DAG as order edges to the Phi
21// nodes. We also perform several passes over the DAG to eliminate unnecessary
22// edges that inhibit the ability to pipeline. The implementation uses the
23// DFAPacketizer class to compute the minimum initiation interval and the check
24// where an instruction may be inserted in the pipelined schedule.
25//
26// In order for the SMS pass to work, several target specific hooks need to be
27// implemented to get information about the loop structure and to rewrite
28// instructions.
29//
30//===----------------------------------------------------------------------===//
31
Eugene Zelenkocdc71612016-08-11 17:20:18 +000032#include "llvm/ADT/ArrayRef.h"
33#include "llvm/ADT/BitVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000034#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/MapVector.h"
36#include "llvm/ADT/PriorityQueue.h"
37#include "llvm/ADT/SetVector.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallSet.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000040#include "llvm/ADT/SmallVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000041#include "llvm/ADT/Statistic.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000042#include "llvm/ADT/iterator_range.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000043#include "llvm/Analysis/AliasAnalysis.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000044#include "llvm/Analysis/MemoryLocation.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000045#include "llvm/Analysis/ValueTracking.h"
46#include "llvm/CodeGen/DFAPacketizer.h"
Matthias Braunf8422972017-12-13 02:51:04 +000047#include "llvm/CodeGen/LiveIntervals.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000048#include "llvm/CodeGen/MachineBasicBlock.h"
49#include "llvm/CodeGen/MachineDominators.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000050#include "llvm/CodeGen/MachineFunction.h"
51#include "llvm/CodeGen/MachineFunctionPass.h"
52#include "llvm/CodeGen/MachineInstr.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000053#include "llvm/CodeGen/MachineInstrBuilder.h"
54#include "llvm/CodeGen/MachineLoopInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000055#include "llvm/CodeGen/MachineMemOperand.h"
56#include "llvm/CodeGen/MachineOperand.h"
Adrian Prantlfa2e3582019-01-14 17:24:11 +000057#include "llvm/CodeGen/MachinePipeliner.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000058#include "llvm/CodeGen/MachineRegisterInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000059#include "llvm/CodeGen/RegisterPressure.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000060#include "llvm/CodeGen/ScheduleDAG.h"
Krzysztof Parzyszek88391242016-12-22 19:21:20 +000061#include "llvm/CodeGen/ScheduleDAGMutation.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000062#include "llvm/CodeGen/TargetOpcodes.h"
63#include "llvm/CodeGen/TargetRegisterInfo.h"
64#include "llvm/CodeGen/TargetSubtargetInfo.h"
Nico Weber432a3882018-04-30 14:59:11 +000065#include "llvm/Config/llvm-config.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000066#include "llvm/IR/Attributes.h"
67#include "llvm/IR/DebugLoc.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +000068#include "llvm/IR/Function.h"
69#include "llvm/MC/LaneBitmask.h"
70#include "llvm/MC/MCInstrDesc.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000071#include "llvm/MC/MCInstrItineraries.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +000072#include "llvm/MC/MCRegisterInfo.h"
73#include "llvm/Pass.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000074#include "llvm/Support/CommandLine.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +000075#include "llvm/Support/Compiler.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000076#include "llvm/Support/Debug.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000077#include "llvm/Support/MathExtras.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000078#include "llvm/Support/raw_ostream.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000079#include <algorithm>
80#include <cassert>
Brendon Cahoon254f8892016-07-29 16:44:44 +000081#include <climits>
Eugene Zelenkocdc71612016-08-11 17:20:18 +000082#include <cstdint>
Brendon Cahoon254f8892016-07-29 16:44:44 +000083#include <deque>
Eugene Zelenkocdc71612016-08-11 17:20:18 +000084#include <functional>
85#include <iterator>
Brendon Cahoon254f8892016-07-29 16:44:44 +000086#include <map>
Eugene Zelenko32a40562017-09-11 23:00:48 +000087#include <memory>
Eugene Zelenkocdc71612016-08-11 17:20:18 +000088#include <tuple>
89#include <utility>
90#include <vector>
Brendon Cahoon254f8892016-07-29 16:44:44 +000091
92using namespace llvm;
93
94#define DEBUG_TYPE "pipeliner"
95
96STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
97STATISTIC(NumPipelined, "Number of loops software pipelined");
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +000098STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
Brendon Cahoon254f8892016-07-29 16:44:44 +000099
100/// A command line option to turn software pipelining on or off.
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000101static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
102 cl::ZeroOrMore,
103 cl::desc("Enable Software Pipelining"));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000104
105/// A command line option to enable SWP at -Os.
106static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
107 cl::desc("Enable SWP at Os."), cl::Hidden,
108 cl::init(false));
109
110/// A command line argument to limit minimum initial interval for pipelining.
111static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000112 cl::desc("Size limit for the MII."),
Brendon Cahoon254f8892016-07-29 16:44:44 +0000113 cl::Hidden, cl::init(27));
114
115/// A command line argument to limit the number of stages in the pipeline.
116static cl::opt<int>
117 SwpMaxStages("pipeliner-max-stages",
118 cl::desc("Maximum stages allowed in the generated scheduled."),
119 cl::Hidden, cl::init(3));
120
121/// A command line option to disable the pruning of chain dependences due to
122/// an unrelated Phi.
123static cl::opt<bool>
124 SwpPruneDeps("pipeliner-prune-deps",
125 cl::desc("Prune dependences between unrelated Phi nodes."),
126 cl::Hidden, cl::init(true));
127
128/// A command line option to disable the pruning of loop carried order
129/// dependences.
130static cl::opt<bool>
131 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
132 cl::desc("Prune loop carried order dependences."),
133 cl::Hidden, cl::init(true));
134
135#ifndef NDEBUG
136static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
137#endif
138
139static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
140 cl::ReallyHidden, cl::init(false),
141 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
142
Adrian Prantlfa2e3582019-01-14 17:24:11 +0000143namespace llvm {
144
Sumanth Gundapaneni62ac69d2018-10-18 15:51:16 +0000145// A command line option to enable the CopyToPhi DAG mutation.
Adrian Prantlfa2e3582019-01-14 17:24:11 +0000146cl::opt<bool>
Aleksandr Urakov00d4c382018-10-23 14:27:45 +0000147 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
148 cl::init(true), cl::ZeroOrMore,
149 cl::desc("Enable CopyToPhi DAG Mutation"));
Sumanth Gundapaneni62ac69d2018-10-18 15:51:16 +0000150
Adrian Prantlfa2e3582019-01-14 17:24:11 +0000151} // end namespace llvm
Brendon Cahoon254f8892016-07-29 16:44:44 +0000152
153unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
154char MachinePipeliner::ID = 0;
155#ifndef NDEBUG
156int MachinePipeliner::NumTries = 0;
157#endif
158char &llvm::MachinePipelinerID = MachinePipeliner::ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000159
Matthias Braun1527baa2017-05-25 21:26:32 +0000160INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000161 "Modulo Software Pipelining", false, false)
162INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
163INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
164INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
165INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
Matthias Braun1527baa2017-05-25 21:26:32 +0000166INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000167 "Modulo Software Pipelining", false, false)
168
169/// The "main" function for implementing Swing Modulo Scheduling.
170bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
Matthias Braunf1caa282017-12-15 22:22:58 +0000171 if (skipFunction(mf.getFunction()))
Brendon Cahoon254f8892016-07-29 16:44:44 +0000172 return false;
173
174 if (!EnableSWP)
175 return false;
176
Matthias Braunf1caa282017-12-15 22:22:58 +0000177 if (mf.getFunction().getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +0000178 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
Brendon Cahoon254f8892016-07-29 16:44:44 +0000179 !EnableSWPOptSize.getPosition())
180 return false;
181
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000182 // Cannot pipeline loops without instruction itineraries if we are using
183 // DFA for the pipeliner.
184 if (mf.getSubtarget().useDFAforSMS() &&
185 (!mf.getSubtarget().getInstrItineraryData() ||
186 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
187 return false;
188
Brendon Cahoon254f8892016-07-29 16:44:44 +0000189 MF = &mf;
190 MLI = &getAnalysis<MachineLoopInfo>();
191 MDT = &getAnalysis<MachineDominatorTree>();
192 TII = MF->getSubtarget().getInstrInfo();
193 RegClassInfo.runOnMachineFunction(*MF);
194
195 for (auto &L : *MLI)
196 scheduleLoop(*L);
197
198 return false;
199}
200
201/// Attempt to perform the SMS algorithm on the specified loop. This function is
202/// the main entry point for the algorithm. The function identifies candidate
203/// loops, calculates the minimum initiation interval, and attempts to schedule
204/// the loop.
205bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
206 bool Changed = false;
207 for (auto &InnerLoop : L)
208 Changed |= scheduleLoop(*InnerLoop);
209
210#ifndef NDEBUG
211 // Stop trying after reaching the limit (if any).
212 int Limit = SwpLoopLimit;
213 if (Limit >= 0) {
214 if (NumTries >= SwpLoopLimit)
215 return Changed;
216 NumTries++;
217 }
218#endif
219
Brendon Cahoon59d99732019-01-23 03:26:10 +0000220 setPragmaPipelineOptions(L);
221 if (!canPipelineLoop(L)) {
222 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
Brendon Cahoon254f8892016-07-29 16:44:44 +0000223 return Changed;
Brendon Cahoon59d99732019-01-23 03:26:10 +0000224 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000225
226 ++NumTrytoPipeline;
227
228 Changed = swingModuloScheduler(L);
229
230 return Changed;
231}
232
Brendon Cahoon59d99732019-01-23 03:26:10 +0000233void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
234 MachineBasicBlock *LBLK = L.getTopBlock();
235
236 if (LBLK == nullptr)
237 return;
238
239 const BasicBlock *BBLK = LBLK->getBasicBlock();
240 if (BBLK == nullptr)
241 return;
242
243 const Instruction *TI = BBLK->getTerminator();
244 if (TI == nullptr)
245 return;
246
247 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
248 if (LoopID == nullptr)
249 return;
250
251 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
252 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
253
254 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
255 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
256
257 if (MD == nullptr)
258 continue;
259
260 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
261
262 if (S == nullptr)
263 continue;
264
265 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
266 assert(MD->getNumOperands() == 2 &&
267 "Pipeline initiation interval hint metadata should have two operands.");
268 II_setByPragma =
269 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
270 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
271 } else if (S->getString() == "llvm.loop.pipeline.disable") {
272 disabledByPragma = true;
273 }
274 }
275}
276
Brendon Cahoon254f8892016-07-29 16:44:44 +0000277/// Return true if the loop can be software pipelined. The algorithm is
278/// restricted to loops with a single basic block. Make sure that the
279/// branch in the loop can be analyzed.
280bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
281 if (L.getNumBlocks() != 1)
282 return false;
283
Brendon Cahoon59d99732019-01-23 03:26:10 +0000284 if (disabledByPragma)
285 return false;
286
Brendon Cahoon254f8892016-07-29 16:44:44 +0000287 // Check if the branch can't be understood because we can't do pipelining
288 // if that's the case.
289 LI.TBB = nullptr;
290 LI.FBB = nullptr;
291 LI.BrCond.clear();
292 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
293 return false;
294
295 LI.LoopInductionVar = nullptr;
296 LI.LoopCompare = nullptr;
297 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
298 return false;
299
300 if (!L.getLoopPreheader())
301 return false;
302
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000303 // Remove any subregisters from inputs to phi nodes.
304 preprocessPhiNodes(*L.getHeader());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000305 return true;
306}
307
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000308void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
309 MachineRegisterInfo &MRI = MF->getRegInfo();
310 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
311
312 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
313 MachineOperand &DefOp = PI.getOperand(0);
314 assert(DefOp.getSubReg() == 0);
315 auto *RC = MRI.getRegClass(DefOp.getReg());
316
317 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
318 MachineOperand &RegOp = PI.getOperand(i);
319 if (RegOp.getSubReg() == 0)
320 continue;
321
322 // If the operand uses a subregister, replace it with a new register
323 // without subregisters, and generate a copy to the new register.
324 unsigned NewReg = MRI.createVirtualRegister(RC);
325 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
326 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
327 const DebugLoc &DL = PredB.findDebugLoc(At);
328 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
329 .addReg(RegOp.getReg(), getRegState(RegOp),
330 RegOp.getSubReg());
331 Slots.insertMachineInstrInMaps(*Copy);
332 RegOp.setReg(NewReg);
333 RegOp.setSubReg(0);
334 }
335 }
336}
337
Brendon Cahoon254f8892016-07-29 16:44:44 +0000338/// The SMS algorithm consists of the following main steps:
339/// 1. Computation and analysis of the dependence graph.
340/// 2. Ordering of the nodes (instructions).
341/// 3. Attempt to Schedule the loop.
342bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
343 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
344
Brendon Cahoon59d99732019-01-23 03:26:10 +0000345 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
346 II_setByPragma);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000347
348 MachineBasicBlock *MBB = L.getHeader();
349 // The kernel should not include any terminator instructions. These
350 // will be added back later.
351 SMS.startBlock(MBB);
352
353 // Compute the number of 'real' instructions in the basic block by
354 // ignoring terminators.
355 unsigned size = MBB->size();
356 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
357 E = MBB->instr_end();
358 I != E; ++I, --size)
359 ;
360
361 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
362 SMS.schedule();
363 SMS.exitRegion();
364
365 SMS.finishBlock();
366 return SMS.hasNewSchedule();
367}
368
Brendon Cahoon59d99732019-01-23 03:26:10 +0000369void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
370 if (II_setByPragma > 0)
371 MII = II_setByPragma;
372 else
373 MII = std::max(ResMII, RecMII);
374}
375
376void SwingSchedulerDAG::setMAX_II() {
377 if (II_setByPragma > 0)
378 MAX_II = II_setByPragma;
379 else
380 MAX_II = MII + 10;
381}
382
Brendon Cahoon254f8892016-07-29 16:44:44 +0000383/// We override the schedule function in ScheduleDAGInstrs to implement the
384/// scheduling part of the Swing Modulo Scheduling algorithm.
385void SwingSchedulerDAG::schedule() {
386 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
387 buildSchedGraph(AA);
388 addLoopCarriedDependences(AA);
389 updatePhiDependences();
390 Topo.InitDAGTopologicalSorting();
391 changeDependences();
Sumanth Gundapaneni62ac69d2018-10-18 15:51:16 +0000392 postprocessDAG();
Matthias Braun726e12c2018-09-19 00:23:35 +0000393 LLVM_DEBUG(dump());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000394
395 NodeSetType NodeSets;
396 findCircuits(NodeSets);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000397 NodeSetType Circuits = NodeSets;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000398
399 // Calculate the MII.
400 unsigned ResMII = calculateResMII();
401 unsigned RecMII = calculateRecMII(NodeSets);
402
403 fuseRecs(NodeSets);
404
405 // This flag is used for testing and can cause correctness problems.
406 if (SwpIgnoreRecMII)
407 RecMII = 0;
408
Brendon Cahoon59d99732019-01-23 03:26:10 +0000409 setMII(ResMII, RecMII);
410 setMAX_II();
411
412 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
413 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
Brendon Cahoon254f8892016-07-29 16:44:44 +0000414
415 // Can't schedule a loop without a valid MII.
416 if (MII == 0)
417 return;
418
419 // Don't pipeline large loops.
420 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
421 return;
422
423 computeNodeFunctions(NodeSets);
424
425 registerPressureFilter(NodeSets);
426
427 colocateNodeSets(NodeSets);
428
429 checkNodeSets(NodeSets);
430
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000431 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +0000432 for (auto &I : NodeSets) {
433 dbgs() << " Rec NodeSet ";
434 I.dump();
435 }
436 });
437
Fangrui Songefd94c52019-04-23 14:51:27 +0000438 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000439
440 groupRemainingNodes(NodeSets);
441
442 removeDuplicateNodes(NodeSets);
443
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000444 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +0000445 for (auto &I : NodeSets) {
446 dbgs() << " NodeSet ";
447 I.dump();
448 }
449 });
450
451 computeNodeOrder(NodeSets);
452
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +0000453 // check for node order issues
454 checkValidNodeOrder(Circuits);
455
Brendon Cahoon254f8892016-07-29 16:44:44 +0000456 SMSchedule Schedule(Pass.MF);
457 Scheduled = schedulePipeline(Schedule);
458
459 if (!Scheduled)
460 return;
461
462 unsigned numStages = Schedule.getMaxStageCount();
463 // No need to generate pipeline if there are no overlapped iterations.
464 if (numStages == 0)
465 return;
466
467 // Check that the maximum stage count is less than user-defined limit.
468 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
469 return;
470
471 generatePipelinedLoop(Schedule);
472 ++NumPipelined;
473}
474
475/// Clean up after the software pipeliner runs.
476void SwingSchedulerDAG::finishBlock() {
477 for (MachineInstr *I : NewMIs)
478 MF.DeleteMachineInstr(I);
479 NewMIs.clear();
480
481 // Call the superclass.
482 ScheduleDAGInstrs::finishBlock();
483}
484
485/// Return the register values for the operands of a Phi instruction.
486/// This function assume the instruction is a Phi.
487static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
488 unsigned &InitVal, unsigned &LoopVal) {
489 assert(Phi.isPHI() && "Expecting a Phi.");
490
491 InitVal = 0;
492 LoopVal = 0;
493 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
494 if (Phi.getOperand(i + 1).getMBB() != Loop)
495 InitVal = Phi.getOperand(i).getReg();
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +0000496 else
Brendon Cahoon254f8892016-07-29 16:44:44 +0000497 LoopVal = Phi.getOperand(i).getReg();
498
499 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
500}
501
502/// Return the Phi register value that comes from the incoming block.
503static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
504 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
505 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
506 return Phi.getOperand(i).getReg();
507 return 0;
508}
509
Hiroshi Inoue8f976ba2018-01-17 12:29:38 +0000510/// Return the Phi register value that comes the loop block.
Brendon Cahoon254f8892016-07-29 16:44:44 +0000511static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
512 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
513 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
514 return Phi.getOperand(i).getReg();
515 return 0;
516}
517
518/// Return true if SUb can be reached from SUa following the chain edges.
519static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
520 SmallPtrSet<SUnit *, 8> Visited;
521 SmallVector<SUnit *, 8> Worklist;
522 Worklist.push_back(SUa);
523 while (!Worklist.empty()) {
524 const SUnit *SU = Worklist.pop_back_val();
525 for (auto &SI : SU->Succs) {
526 SUnit *SuccSU = SI.getSUnit();
527 if (SI.getKind() == SDep::Order) {
528 if (Visited.count(SuccSU))
529 continue;
530 if (SuccSU == SUb)
531 return true;
532 Worklist.push_back(SuccSU);
533 Visited.insert(SuccSU);
534 }
535 }
536 }
537 return false;
538}
539
540/// Return true if the instruction causes a chain between memory
541/// references before and after it.
542static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
543 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
544 (MI.hasOrderedMemoryRef() &&
Justin Lebard98cf002016-09-10 01:03:20 +0000545 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000546}
547
548/// Return the underlying objects for the memory references of an instruction.
549/// This function calls the code in ValueTracking, but first checks that the
550/// instruction has a memory operand.
Bjorn Pettersson71e8c6f2019-04-24 06:55:50 +0000551static void getUnderlyingObjects(const MachineInstr *MI,
552 SmallVectorImpl<const Value *> &Objs,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000553 const DataLayout &DL) {
554 if (!MI->hasOneMemOperand())
555 return;
556 MachineMemOperand *MM = *MI->memoperands_begin();
557 if (!MM->getValue())
558 return;
Bjorn Pettersson71e8c6f2019-04-24 06:55:50 +0000559 GetUnderlyingObjects(MM->getValue(), Objs, DL);
560 for (const Value *V : Objs) {
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +0000561 if (!isIdentifiedObject(V)) {
562 Objs.clear();
563 return;
564 }
565 Objs.push_back(V);
566 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000567}
568
569/// Add a chain edge between a load and store if the store can be an
570/// alias of the load on a subsequent iteration, i.e., a loop carried
571/// dependence. This code is very similar to the code in ScheduleDAGInstrs
572/// but that code doesn't create loop carried dependences.
573void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
Bjorn Pettersson71e8c6f2019-04-24 06:55:50 +0000574 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +0000575 Value *UnknownValue =
576 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000577 for (auto &SU : SUnits) {
578 MachineInstr &MI = *SU.getInstr();
579 if (isDependenceBarrier(MI, AA))
580 PendingLoads.clear();
581 else if (MI.mayLoad()) {
Bjorn Pettersson71e8c6f2019-04-24 06:55:50 +0000582 SmallVector<const Value *, 4> Objs;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000583 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +0000584 if (Objs.empty())
585 Objs.push_back(UnknownValue);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000586 for (auto V : Objs) {
587 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
588 SUs.push_back(&SU);
589 }
590 } else if (MI.mayStore()) {
Bjorn Pettersson71e8c6f2019-04-24 06:55:50 +0000591 SmallVector<const Value *, 4> Objs;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000592 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +0000593 if (Objs.empty())
594 Objs.push_back(UnknownValue);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000595 for (auto V : Objs) {
Bjorn Pettersson71e8c6f2019-04-24 06:55:50 +0000596 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
Brendon Cahoon254f8892016-07-29 16:44:44 +0000597 PendingLoads.find(V);
598 if (I == PendingLoads.end())
599 continue;
600 for (auto Load : I->second) {
601 if (isSuccOrder(Load, &SU))
602 continue;
603 MachineInstr &LdMI = *Load->getInstr();
604 // First, perform the cheaper check that compares the base register.
605 // If they are the same and the load offset is less than the store
606 // offset, then mark the dependence as loop carried potentially.
Bjorn Pettersson238c9d6302019-04-19 09:08:38 +0000607 const MachineOperand *BaseOp1, *BaseOp2;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000608 int64_t Offset1, Offset2;
Francis Visoiu Mistrihd7eebd62018-11-28 12:00:20 +0000609 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) &&
610 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) {
611 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
612 (int)Offset1 < (int)Offset2) {
Krzysztof Parzyszek9f041b12018-03-26 16:50:11 +0000613 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
614 "What happened to the chain edge?");
615 SDep Dep(Load, SDep::Barrier);
616 Dep.setLatency(1);
617 SU.addPred(Dep);
618 continue;
619 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000620 }
621 // Second, the more expensive check that uses alias analysis on the
622 // base registers. If they alias, and the load offset is less than
623 // the store offset, the mark the dependence as loop carried.
624 if (!AA) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000625 SDep Dep(Load, SDep::Barrier);
626 Dep.setLatency(1);
627 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000628 continue;
629 }
630 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
631 MachineMemOperand *MMO2 = *MI.memoperands_begin();
632 if (!MMO1->getValue() || !MMO2->getValue()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000633 SDep Dep(Load, SDep::Barrier);
634 Dep.setLatency(1);
635 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000636 continue;
637 }
638 if (MMO1->getValue() == MMO2->getValue() &&
639 MMO1->getOffset() <= MMO2->getOffset()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000640 SDep Dep(Load, SDep::Barrier);
641 Dep.setLatency(1);
642 SU.addPred(Dep);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000643 continue;
644 }
645 AliasResult AAResult = AA->alias(
George Burgess IV6ef80022018-10-10 21:28:44 +0000646 MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
Brendon Cahoon254f8892016-07-29 16:44:44 +0000647 MMO1->getAAInfo()),
George Burgess IV6ef80022018-10-10 21:28:44 +0000648 MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
Brendon Cahoon254f8892016-07-29 16:44:44 +0000649 MMO2->getAAInfo()));
650
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000651 if (AAResult != NoAlias) {
652 SDep Dep(Load, SDep::Barrier);
653 Dep.setLatency(1);
654 SU.addPred(Dep);
655 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000656 }
657 }
658 }
659 }
660}
661
662/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
663/// processes dependences for PHIs. This function adds true dependences
664/// from a PHI to a use, and a loop carried dependence from the use to the
665/// PHI. The loop carried dependence is represented as an anti dependence
666/// edge. This function also removes chain dependences between unrelated
667/// PHIs.
668void SwingSchedulerDAG::updatePhiDependences() {
669 SmallVector<SDep, 4> RemoveDeps;
670 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
671
672 // Iterate over each DAG node.
673 for (SUnit &I : SUnits) {
674 RemoveDeps.clear();
675 // Set to true if the instruction has an operand defined by a Phi.
676 unsigned HasPhiUse = 0;
677 unsigned HasPhiDef = 0;
678 MachineInstr *MI = I.getInstr();
679 // Iterate over each operand, and we process the definitions.
680 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
681 MOE = MI->operands_end();
682 MOI != MOE; ++MOI) {
683 if (!MOI->isReg())
684 continue;
685 unsigned Reg = MOI->getReg();
686 if (MOI->isDef()) {
687 // If the register is used by a Phi, then create an anti dependence.
688 for (MachineRegisterInfo::use_instr_iterator
689 UI = MRI.use_instr_begin(Reg),
690 UE = MRI.use_instr_end();
691 UI != UE; ++UI) {
692 MachineInstr *UseMI = &*UI;
693 SUnit *SU = getSUnit(UseMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000694 if (SU != nullptr && UseMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +0000695 if (!MI->isPHI()) {
696 SDep Dep(SU, SDep::Anti, Reg);
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +0000697 Dep.setLatency(1);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000698 I.addPred(Dep);
699 } else {
700 HasPhiDef = Reg;
701 // Add a chain edge to a dependent Phi that isn't an existing
702 // predecessor.
703 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
704 I.addPred(SDep(SU, SDep::Barrier));
705 }
706 }
707 }
708 } else if (MOI->isUse()) {
709 // If the register is defined by a Phi, then create a true dependence.
710 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000711 if (DefMI == nullptr)
Brendon Cahoon254f8892016-07-29 16:44:44 +0000712 continue;
713 SUnit *SU = getSUnit(DefMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000714 if (SU != nullptr && DefMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +0000715 if (!MI->isPHI()) {
716 SDep Dep(SU, SDep::Data, Reg);
717 Dep.setLatency(0);
718 ST.adjustSchedDependency(SU, &I, Dep);
719 I.addPred(Dep);
720 } else {
721 HasPhiUse = Reg;
722 // Add a chain edge to a dependent Phi that isn't an existing
723 // predecessor.
724 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
725 I.addPred(SDep(SU, SDep::Barrier));
726 }
727 }
728 }
729 }
730 // Remove order dependences from an unrelated Phi.
731 if (!SwpPruneDeps)
732 continue;
733 for (auto &PI : I.Preds) {
734 MachineInstr *PMI = PI.getSUnit()->getInstr();
735 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
736 if (I.getInstr()->isPHI()) {
737 if (PMI->getOperand(0).getReg() == HasPhiUse)
738 continue;
739 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
740 continue;
741 }
742 RemoveDeps.push_back(PI);
743 }
744 }
745 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
746 I.removePred(RemoveDeps[i]);
747 }
748}
749
750/// Iterate over each DAG node and see if we can change any dependences
751/// in order to reduce the recurrence MII.
752void SwingSchedulerDAG::changeDependences() {
753 // See if an instruction can use a value from the previous iteration.
754 // If so, we update the base and offset of the instruction and change
755 // the dependences.
756 for (SUnit &I : SUnits) {
757 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
758 int64_t NewOffset = 0;
759 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
760 NewOffset))
761 continue;
762
763 // Get the MI and SUnit for the instruction that defines the original base.
764 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
765 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
766 if (!DefMI)
767 continue;
768 SUnit *DefSU = getSUnit(DefMI);
769 if (!DefSU)
770 continue;
771 // Get the MI and SUnit for the instruction that defins the new base.
772 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
773 if (!LastMI)
774 continue;
775 SUnit *LastSU = getSUnit(LastMI);
776 if (!LastSU)
777 continue;
778
779 if (Topo.IsReachable(&I, LastSU))
780 continue;
781
782 // Remove the dependence. The value now depends on a prior iteration.
783 SmallVector<SDep, 4> Deps;
784 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
785 ++P)
786 if (P->getSUnit() == DefSU)
787 Deps.push_back(*P);
788 for (int i = 0, e = Deps.size(); i != e; i++) {
789 Topo.RemovePred(&I, Deps[i].getSUnit());
790 I.removePred(Deps[i]);
791 }
792 // Remove the chain dependence between the instructions.
793 Deps.clear();
794 for (auto &P : LastSU->Preds)
795 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
796 Deps.push_back(P);
797 for (int i = 0, e = Deps.size(); i != e; i++) {
798 Topo.RemovePred(LastSU, Deps[i].getSUnit());
799 LastSU->removePred(Deps[i]);
800 }
801
802 // Add a dependence between the new instruction and the instruction
803 // that defines the new base.
804 SDep Dep(&I, SDep::Anti, NewBase);
Sumanth Gundapaneni8916e432018-10-11 19:42:46 +0000805 Topo.AddPred(LastSU, &I);
Brendon Cahoon254f8892016-07-29 16:44:44 +0000806 LastSU->addPred(Dep);
807
808 // Remember the base and offset information so that we can update the
809 // instruction during code generation.
810 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
811 }
812}
813
814namespace {
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000815
Brendon Cahoon254f8892016-07-29 16:44:44 +0000816// FuncUnitSorter - Comparison operator used to sort instructions by
817// the number of functional unit choices.
818struct FuncUnitSorter {
819 const InstrItineraryData *InstrItins;
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000820 const MCSubtargetInfo *STI;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000821 DenseMap<unsigned, unsigned> Resources;
822
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000823 FuncUnitSorter(const TargetSubtargetInfo &TSI)
824 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
Eugene Zelenko32a40562017-09-11 23:00:48 +0000825
Brendon Cahoon254f8892016-07-29 16:44:44 +0000826 // Compute the number of functional unit alternatives needed
827 // at each stage, and take the minimum value. We prioritize the
828 // instructions by the least number of choices first.
829 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000830 unsigned SchedClass = Inst->getDesc().getSchedClass();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000831 unsigned min = UINT_MAX;
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000832 if (InstrItins && !InstrItins->isEmpty()) {
833 for (const InstrStage &IS :
834 make_range(InstrItins->beginStage(SchedClass),
835 InstrItins->endStage(SchedClass))) {
836 unsigned funcUnits = IS.getUnits();
837 unsigned numAlternatives = countPopulation(funcUnits);
838 if (numAlternatives < min) {
839 min = numAlternatives;
840 F = funcUnits;
841 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000842 }
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000843 return min;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000844 }
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000845 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
846 const MCSchedClassDesc *SCDesc =
847 STI->getSchedModel().getSchedClassDesc(SchedClass);
848 if (!SCDesc->isValid())
849 // No valid Schedule Class Desc for schedClass, should be
850 // Pseudo/PostRAPseudo
851 return min;
852
853 for (const MCWriteProcResEntry &PRE :
854 make_range(STI->getWriteProcResBegin(SCDesc),
855 STI->getWriteProcResEnd(SCDesc))) {
856 if (!PRE.Cycles)
857 continue;
858 const MCProcResourceDesc *ProcResource =
859 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
860 unsigned NumUnits = ProcResource->NumUnits;
861 if (NumUnits < min) {
862 min = NumUnits;
863 F = PRE.ProcResourceIdx;
864 }
865 }
866 return min;
867 }
868 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
Brendon Cahoon254f8892016-07-29 16:44:44 +0000869 }
870
871 // Compute the critical resources needed by the instruction. This
872 // function records the functional units needed by instructions that
873 // must use only one functional unit. We use this as a tie breaker
874 // for computing the resource MII. The instrutions that require
875 // the same, highly used, functional unit have high priority.
876 void calcCriticalResources(MachineInstr &MI) {
877 unsigned SchedClass = MI.getDesc().getSchedClass();
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000878 if (InstrItins && !InstrItins->isEmpty()) {
879 for (const InstrStage &IS :
880 make_range(InstrItins->beginStage(SchedClass),
881 InstrItins->endStage(SchedClass))) {
882 unsigned FuncUnits = IS.getUnits();
883 if (countPopulation(FuncUnits) == 1)
884 Resources[FuncUnits]++;
885 }
886 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000887 }
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000888 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
889 const MCSchedClassDesc *SCDesc =
890 STI->getSchedModel().getSchedClassDesc(SchedClass);
891 if (!SCDesc->isValid())
892 // No valid Schedule Class Desc for schedClass, should be
893 // Pseudo/PostRAPseudo
894 return;
895
896 for (const MCWriteProcResEntry &PRE :
897 make_range(STI->getWriteProcResBegin(SCDesc),
898 STI->getWriteProcResEnd(SCDesc))) {
899 if (!PRE.Cycles)
900 continue;
901 Resources[PRE.ProcResourceIdx]++;
902 }
903 return;
904 }
905 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
Brendon Cahoon254f8892016-07-29 16:44:44 +0000906 }
907
Brendon Cahoon254f8892016-07-29 16:44:44 +0000908 /// Return true if IS1 has less priority than IS2.
909 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
910 unsigned F1 = 0, F2 = 0;
911 unsigned MFUs1 = minFuncUnits(IS1, F1);
912 unsigned MFUs2 = minFuncUnits(IS2, F2);
913 if (MFUs1 == 1 && MFUs2 == 1)
914 return Resources.lookup(F1) < Resources.lookup(F2);
915 return MFUs1 > MFUs2;
916 }
917};
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000918
919} // end anonymous namespace
Brendon Cahoon254f8892016-07-29 16:44:44 +0000920
921/// Calculate the resource constrained minimum initiation interval for the
922/// specified loop. We use the DFA to model the resources needed for
923/// each instruction, and we ignore dependences. A different DFA is created
924/// for each cycle that is required. When adding a new instruction, we attempt
925/// to add it to each existing DFA, until a legal space is found. If the
926/// instruction cannot be reserved in an existing DFA, we create a new one.
927unsigned SwingSchedulerDAG::calculateResMII() {
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000928
929 SmallVector<ResourceManager*, 8> Resources;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000930 MachineBasicBlock *MBB = Loop.getHeader();
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000931 Resources.push_back(new ResourceManager(&MF.getSubtarget()));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000932
933 // Sort the instructions by the number of available choices for scheduling,
934 // least to most. Use the number of critical resources as the tie breaker.
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000935 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000936 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
937 E = MBB->getFirstTerminator();
938 I != E; ++I)
939 FUS.calcCriticalResources(*I);
940 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
941 FuncUnitOrder(FUS);
942
943 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
944 E = MBB->getFirstTerminator();
945 I != E; ++I)
946 FuncUnitOrder.push(&*I);
947
948 while (!FuncUnitOrder.empty()) {
949 MachineInstr *MI = FuncUnitOrder.top();
950 FuncUnitOrder.pop();
951 if (TII->isZeroCost(MI->getOpcode()))
952 continue;
953 // Attempt to reserve the instruction in an existing DFA. At least one
954 // DFA is needed for each cycle.
955 unsigned NumCycles = getSUnit(MI)->Latency;
956 unsigned ReservedCycles = 0;
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000957 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
958 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000959 for (unsigned C = 0; C < NumCycles; ++C)
960 while (RI != RE) {
961 if ((*RI++)->canReserveResources(*MI)) {
962 ++ReservedCycles;
963 break;
964 }
965 }
966 // Start reserving resources using existing DFAs.
967 for (unsigned C = 0; C < ReservedCycles; ++C) {
968 --RI;
969 (*RI)->reserveResources(*MI);
970 }
971 // Add new DFAs, if needed, to reserve resources.
972 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000973 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
Brendon Cahoon254f8892016-07-29 16:44:44 +0000974 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
975 NewResource->reserveResources(*MI);
976 Resources.push_back(NewResource);
977 }
978 }
979 int Resmii = Resources.size();
980 // Delete the memory for each of the DFAs that were created earlier.
Jinsong Jif6cb3bc2019-05-29 03:02:59 +0000981 for (ResourceManager *RI : Resources) {
982 ResourceManager *D = RI;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000983 delete D;
984 }
985 Resources.clear();
986 return Resmii;
987}
988
989/// Calculate the recurrence-constrainted minimum initiation interval.
990/// Iterate over each circuit. Compute the delay(c) and distance(c)
991/// for each circuit. The II needs to satisfy the inequality
992/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
Hiroshi Inouec73b6d62018-06-20 05:29:26 +0000993/// II that satisfies the inequality, and the RecMII is the maximum
Brendon Cahoon254f8892016-07-29 16:44:44 +0000994/// of those values.
995unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
996 unsigned RecMII = 0;
997
998 for (NodeSet &Nodes : NodeSets) {
Eugene Zelenko32a40562017-09-11 23:00:48 +0000999 if (Nodes.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001000 continue;
1001
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00001002 unsigned Delay = Nodes.getLatency();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001003 unsigned Distance = 1;
1004
1005 // ii = ceil(delay / distance)
1006 unsigned CurMII = (Delay + Distance - 1) / Distance;
1007 Nodes.setRecMII(CurMII);
1008 if (CurMII > RecMII)
1009 RecMII = CurMII;
1010 }
1011
1012 return RecMII;
1013}
1014
1015/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1016/// but we do this to find the circuits, and then change them back.
1017static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1018 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1019 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1020 SUnit *SU = &SUnits[i];
1021 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1022 IP != EP; ++IP) {
1023 if (IP->getKind() != SDep::Anti)
1024 continue;
1025 DepsAdded.push_back(std::make_pair(SU, *IP));
1026 }
1027 }
1028 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1029 E = DepsAdded.end();
1030 I != E; ++I) {
1031 // Remove this anti dependency and add one in the reverse direction.
1032 SUnit *SU = I->first;
1033 SDep &D = I->second;
1034 SUnit *TargetSU = D.getSUnit();
1035 unsigned Reg = D.getReg();
1036 unsigned Lat = D.getLatency();
1037 SU->removePred(D);
1038 SDep Dep(SU, SDep::Anti, Reg);
1039 Dep.setLatency(Lat);
1040 TargetSU->addPred(Dep);
1041 }
1042}
1043
1044/// Create the adjacency structure of the nodes in the graph.
1045void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1046 SwingSchedulerDAG *DAG) {
1047 BitVector Added(SUnits.size());
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001048 DenseMap<int, int> OutputDeps;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001049 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1050 Added.reset();
1051 // Add any successor to the adjacency matrix and exclude duplicates.
1052 for (auto &SI : SUnits[i].Succs) {
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001053 // Only create a back-edge on the first and last nodes of a dependence
1054 // chain. This records any chains and adds them later.
1055 if (SI.getKind() == SDep::Output) {
1056 int N = SI.getSUnit()->NodeNum;
1057 int BackEdge = i;
1058 auto Dep = OutputDeps.find(BackEdge);
1059 if (Dep != OutputDeps.end()) {
1060 BackEdge = Dep->second;
1061 OutputDeps.erase(Dep);
1062 }
1063 OutputDeps[N] = BackEdge;
1064 }
Sumanth Gundapaneniada0f512018-10-25 21:27:08 +00001065 // Do not process a boundary node, an artificial node.
1066 // A back-edge is processed only if it goes to a Phi.
1067 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
Brendon Cahoon254f8892016-07-29 16:44:44 +00001068 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1069 continue;
1070 int N = SI.getSUnit()->NodeNum;
1071 if (!Added.test(N)) {
1072 AdjK[i].push_back(N);
1073 Added.set(N);
1074 }
1075 }
1076 // A chain edge between a store and a load is treated as a back-edge in the
1077 // adjacency matrix.
1078 for (auto &PI : SUnits[i].Preds) {
1079 if (!SUnits[i].getInstr()->mayStore() ||
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001080 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001081 continue;
1082 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1083 int N = PI.getSUnit()->NodeNum;
1084 if (!Added.test(N)) {
1085 AdjK[i].push_back(N);
1086 Added.set(N);
1087 }
1088 }
1089 }
1090 }
Hiroshi Inouedad8c6a2019-01-09 05:11:10 +00001091 // Add back-edges in the adjacency matrix for the output dependences.
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00001092 for (auto &OD : OutputDeps)
1093 if (!Added.test(OD.second)) {
1094 AdjK[OD.first].push_back(OD.second);
1095 Added.set(OD.second);
1096 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00001097}
1098
1099/// Identify an elementary circuit in the dependence graph starting at the
1100/// specified node.
1101bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1102 bool HasBackedge) {
1103 SUnit *SV = &SUnits[V];
1104 bool F = false;
1105 Stack.insert(SV);
1106 Blocked.set(V);
1107
1108 for (auto W : AdjK[V]) {
1109 if (NumPaths > MaxPaths)
1110 break;
1111 if (W < S)
1112 continue;
1113 if (W == S) {
1114 if (!HasBackedge)
1115 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1116 F = true;
1117 ++NumPaths;
1118 break;
1119 } else if (!Blocked.test(W)) {
Sumanth Gundapaneni77418a32018-10-11 19:45:07 +00001120 if (circuit(W, S, NodeSets,
1121 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001122 F = true;
1123 }
1124 }
1125
1126 if (F)
1127 unblock(V);
1128 else {
1129 for (auto W : AdjK[V]) {
1130 if (W < S)
1131 continue;
1132 if (B[W].count(SV) == 0)
1133 B[W].insert(SV);
1134 }
1135 }
1136 Stack.pop_back();
1137 return F;
1138}
1139
1140/// Unblock a node in the circuit finding algorithm.
1141void SwingSchedulerDAG::Circuits::unblock(int U) {
1142 Blocked.reset(U);
1143 SmallPtrSet<SUnit *, 4> &BU = B[U];
1144 while (!BU.empty()) {
1145 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1146 assert(SI != BU.end() && "Invalid B set.");
1147 SUnit *W = *SI;
1148 BU.erase(W);
1149 if (Blocked.test(W->NodeNum))
1150 unblock(W->NodeNum);
1151 }
1152}
1153
1154/// Identify all the elementary circuits in the dependence graph using
1155/// Johnson's circuit algorithm.
1156void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1157 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1158 // but we do this to find the circuits, and then change them back.
1159 swapAntiDependences(SUnits);
1160
Sumanth Gundapaneni77418a32018-10-11 19:45:07 +00001161 Circuits Cir(SUnits, Topo);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001162 // Create the adjacency structure.
1163 Cir.createAdjacencyStructure(this);
1164 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1165 Cir.reset();
1166 Cir.circuit(i, i, NodeSets);
1167 }
1168
1169 // Change the dependences back so that we've created a DAG again.
1170 swapAntiDependences(SUnits);
1171}
1172
Sumanth Gundapaneni62ac69d2018-10-18 15:51:16 +00001173// Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1174// is loop-carried to the USE in next iteration. This will help pipeliner avoid
1175// additional copies that are needed across iterations. An artificial dependence
1176// edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1177
1178// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1179// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1180// PHI-------True-Dep------> USEOfPhi
1181
1182// The mutation creates
1183// USEOfPHI -------Artificial-Dep---> SRCOfCopy
1184
1185// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1186// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1187// late to avoid additional copies across iterations. The possible scheduling
1188// order would be
1189// USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1190
1191void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1192 for (SUnit &SU : DAG->SUnits) {
1193 // Find the COPY/REG_SEQUENCE instruction.
1194 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1195 continue;
1196
1197 // Record the loop carried PHIs.
1198 SmallVector<SUnit *, 4> PHISUs;
1199 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1200 SmallVector<SUnit *, 4> SrcSUs;
1201
1202 for (auto &Dep : SU.Preds) {
1203 SUnit *TmpSU = Dep.getSUnit();
1204 MachineInstr *TmpMI = TmpSU->getInstr();
1205 SDep::Kind DepKind = Dep.getKind();
1206 // Save the loop carried PHI.
1207 if (DepKind == SDep::Anti && TmpMI->isPHI())
1208 PHISUs.push_back(TmpSU);
1209 // Save the source of COPY/REG_SEQUENCE.
1210 // If the source has no pre-decessors, we will end up creating cycles.
1211 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1212 SrcSUs.push_back(TmpSU);
1213 }
1214
1215 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1216 continue;
1217
1218 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1219 // SUnit to the container.
1220 SmallVector<SUnit *, 8> UseSUs;
1221 for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) {
1222 for (auto &Dep : (*I)->Succs) {
1223 if (Dep.getKind() != SDep::Data)
1224 continue;
1225
1226 SUnit *TmpSU = Dep.getSUnit();
1227 MachineInstr *TmpMI = TmpSU->getInstr();
1228 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1229 PHISUs.push_back(TmpSU);
1230 continue;
1231 }
1232 UseSUs.push_back(TmpSU);
1233 }
1234 }
1235
1236 if (UseSUs.size() == 0)
1237 continue;
1238
1239 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1240 // Add the artificial dependencies if it does not form a cycle.
1241 for (auto I : UseSUs) {
1242 for (auto Src : SrcSUs) {
1243 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1244 Src->addPred(SDep(I, SDep::Artificial));
1245 SDAG->Topo.AddPred(Src, I);
1246 }
1247 }
1248 }
1249 }
1250}
1251
Brendon Cahoon254f8892016-07-29 16:44:44 +00001252/// Return true for DAG nodes that we ignore when computing the cost functions.
Hiroshi Inouec73b6d62018-06-20 05:29:26 +00001253/// We ignore the back-edge recurrence in order to avoid unbounded recursion
Brendon Cahoon254f8892016-07-29 16:44:44 +00001254/// in the calculation of the ASAP, ALAP, etc functions.
1255static bool ignoreDependence(const SDep &D, bool isPred) {
1256 if (D.isArtificial())
1257 return true;
1258 return D.getKind() == SDep::Anti && isPred;
1259}
1260
1261/// Compute several functions need to order the nodes for scheduling.
1262/// ASAP - Earliest time to schedule a node.
1263/// ALAP - Latest time to schedule a node.
1264/// MOV - Mobility function, difference between ALAP and ASAP.
1265/// D - Depth of each node.
1266/// H - Height of each node.
1267void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001268 ScheduleInfo.resize(SUnits.size());
1269
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001270 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00001271 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1272 E = Topo.end();
1273 I != E; ++I) {
Matthias Braun726e12c2018-09-19 00:23:35 +00001274 const SUnit &SU = SUnits[*I];
1275 dumpNode(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001276 }
1277 });
1278
1279 int maxASAP = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001280 // Compute ASAP and ZeroLatencyDepth.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001281 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1282 E = Topo.end();
1283 I != E; ++I) {
1284 int asap = 0;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001285 int zeroLatencyDepth = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001286 SUnit *SU = &SUnits[*I];
1287 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1288 EP = SU->Preds.end();
1289 IP != EP; ++IP) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001290 SUnit *pred = IP->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001291 if (IP->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001292 zeroLatencyDepth =
1293 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001294 if (ignoreDependence(*IP, true))
1295 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001296 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00001297 getDistance(pred, SU, *IP) * MII));
1298 }
1299 maxASAP = std::max(maxASAP, asap);
1300 ScheduleInfo[*I].ASAP = asap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001301 ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001302 }
1303
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001304 // Compute ALAP, ZeroLatencyHeight, and MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001305 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1306 E = Topo.rend();
1307 I != E; ++I) {
1308 int alap = maxASAP;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001309 int zeroLatencyHeight = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001310 SUnit *SU = &SUnits[*I];
1311 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1312 ES = SU->Succs.end();
1313 IS != ES; ++IS) {
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001314 SUnit *succ = IS->getSUnit();
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001315 if (IS->getLatency() == 0)
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001316 zeroLatencyHeight =
1317 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
Brendon Cahoon254f8892016-07-29 16:44:44 +00001318 if (ignoreDependence(*IS, true))
1319 continue;
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00001320 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00001321 getDistance(SU, succ, *IS) * MII));
1322 }
1323
1324 ScheduleInfo[*I].ALAP = alap;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001325 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001326 }
1327
1328 // After computing the node functions, compute the summary for each node set.
1329 for (NodeSet &I : NodeSets)
1330 I.computeNodeSetInfo(this);
1331
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001332 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00001333 for (unsigned i = 0; i < SUnits.size(); i++) {
1334 dbgs() << "\tNode " << i << ":\n";
1335 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1336 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1337 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1338 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1339 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001340 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1341 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
Brendon Cahoon254f8892016-07-29 16:44:44 +00001342 }
1343 });
1344}
1345
1346/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1347/// as the predecessors of the elements of NodeOrder that are not also in
1348/// NodeOrder.
1349static bool pred_L(SetVector<SUnit *> &NodeOrder,
1350 SmallSetVector<SUnit *, 8> &Preds,
1351 const NodeSet *S = nullptr) {
1352 Preds.clear();
1353 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1354 I != E; ++I) {
1355 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1356 PI != PE; ++PI) {
1357 if (S && S->count(PI->getSUnit()) == 0)
1358 continue;
1359 if (ignoreDependence(*PI, true))
1360 continue;
1361 if (NodeOrder.count(PI->getSUnit()) == 0)
1362 Preds.insert(PI->getSUnit());
1363 }
1364 // Back-edges are predecessors with an anti-dependence.
1365 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1366 ES = (*I)->Succs.end();
1367 IS != ES; ++IS) {
1368 if (IS->getKind() != SDep::Anti)
1369 continue;
1370 if (S && S->count(IS->getSUnit()) == 0)
1371 continue;
1372 if (NodeOrder.count(IS->getSUnit()) == 0)
1373 Preds.insert(IS->getSUnit());
1374 }
1375 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001376 return !Preds.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001377}
1378
1379/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1380/// as the successors of the elements of NodeOrder that are not also in
1381/// NodeOrder.
1382static bool succ_L(SetVector<SUnit *> &NodeOrder,
1383 SmallSetVector<SUnit *, 8> &Succs,
1384 const NodeSet *S = nullptr) {
1385 Succs.clear();
1386 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1387 I != E; ++I) {
1388 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1389 SI != SE; ++SI) {
1390 if (S && S->count(SI->getSUnit()) == 0)
1391 continue;
1392 if (ignoreDependence(*SI, false))
1393 continue;
1394 if (NodeOrder.count(SI->getSUnit()) == 0)
1395 Succs.insert(SI->getSUnit());
1396 }
1397 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1398 PE = (*I)->Preds.end();
1399 PI != PE; ++PI) {
1400 if (PI->getKind() != SDep::Anti)
1401 continue;
1402 if (S && S->count(PI->getSUnit()) == 0)
1403 continue;
1404 if (NodeOrder.count(PI->getSUnit()) == 0)
1405 Succs.insert(PI->getSUnit());
1406 }
1407 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001408 return !Succs.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001409}
1410
1411/// Return true if there is a path from the specified node to any of the nodes
1412/// in DestNodes. Keep track and return the nodes in any path.
1413static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1414 SetVector<SUnit *> &DestNodes,
1415 SetVector<SUnit *> &Exclude,
1416 SmallPtrSet<SUnit *, 8> &Visited) {
1417 if (Cur->isBoundaryNode())
1418 return false;
1419 if (Exclude.count(Cur) != 0)
1420 return false;
1421 if (DestNodes.count(Cur) != 0)
1422 return true;
1423 if (!Visited.insert(Cur).second)
1424 return Path.count(Cur) != 0;
1425 bool FoundPath = false;
1426 for (auto &SI : Cur->Succs)
1427 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1428 for (auto &PI : Cur->Preds)
1429 if (PI.getKind() == SDep::Anti)
1430 FoundPath |=
1431 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1432 if (FoundPath)
1433 Path.insert(Cur);
1434 return FoundPath;
1435}
1436
1437/// Return true if Set1 is a subset of Set2.
1438template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1439 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1440 if (Set2.count(*I) == 0)
1441 return false;
1442 return true;
1443}
1444
1445/// Compute the live-out registers for the instructions in a node-set.
1446/// The live-out registers are those that are defined in the node-set,
1447/// but not used. Except for use operands of Phis.
1448static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1449 NodeSet &NS) {
1450 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1451 MachineRegisterInfo &MRI = MF.getRegInfo();
1452 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1453 SmallSet<unsigned, 4> Uses;
1454 for (SUnit *SU : NS) {
1455 const MachineInstr *MI = SU->getInstr();
1456 if (MI->isPHI())
1457 continue;
Matthias Braunfc371552016-10-24 21:36:43 +00001458 for (const MachineOperand &MO : MI->operands())
1459 if (MO.isReg() && MO.isUse()) {
1460 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001461 if (TargetRegisterInfo::isVirtualRegister(Reg))
1462 Uses.insert(Reg);
1463 else if (MRI.isAllocatable(Reg))
1464 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1465 Uses.insert(*Units);
1466 }
1467 }
1468 for (SUnit *SU : NS)
Matthias Braunfc371552016-10-24 21:36:43 +00001469 for (const MachineOperand &MO : SU->getInstr()->operands())
1470 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1471 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001472 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1473 if (!Uses.count(Reg))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001474 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1475 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001476 } else if (MRI.isAllocatable(Reg)) {
1477 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1478 if (!Uses.count(*Units))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001479 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1480 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001481 }
1482 }
1483 RPTracker.addLiveRegs(LiveOutRegs);
1484}
1485
1486/// A heuristic to filter nodes in recurrent node-sets if the register
1487/// pressure of a set is too high.
1488void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1489 for (auto &NS : NodeSets) {
1490 // Skip small node-sets since they won't cause register pressure problems.
1491 if (NS.size() <= 2)
1492 continue;
1493 IntervalPressure RecRegPressure;
1494 RegPressureTracker RecRPTracker(RecRegPressure);
1495 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1496 computeLiveOuts(MF, RecRPTracker, NS);
1497 RecRPTracker.closeBottom();
1498
1499 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
Fangrui Song0cac7262018-09-27 02:13:45 +00001500 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001501 return A->NodeNum > B->NodeNum;
1502 });
1503
1504 for (auto &SU : SUnits) {
1505 // Since we're computing the register pressure for a subset of the
1506 // instructions in a block, we need to set the tracker for each
1507 // instruction in the node-set. The tracker is set to the instruction
1508 // just after the one we're interested in.
1509 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1510 RecRPTracker.setPos(std::next(CurInstI));
1511
1512 RegPressureDelta RPDelta;
1513 ArrayRef<PressureChange> CriticalPSets;
1514 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1515 CriticalPSets,
1516 RecRegPressure.MaxSetPressure);
1517 if (RPDelta.Excess.isValid()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001518 LLVM_DEBUG(
1519 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1520 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1521 << ":" << RPDelta.Excess.getUnitInc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00001522 NS.setExceedPressure(SU);
1523 break;
1524 }
1525 RecRPTracker.recede();
1526 }
1527 }
1528}
1529
1530/// A heuristic to colocate node sets that have the same set of
1531/// successors.
1532void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1533 unsigned Colocate = 0;
1534 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1535 NodeSet &N1 = NodeSets[i];
1536 SmallSetVector<SUnit *, 8> S1;
1537 if (N1.empty() || !succ_L(N1, S1))
1538 continue;
1539 for (int j = i + 1; j < e; ++j) {
1540 NodeSet &N2 = NodeSets[j];
1541 if (N1.compareRecMII(N2) != 0)
1542 continue;
1543 SmallSetVector<SUnit *, 8> S2;
1544 if (N2.empty() || !succ_L(N2, S2))
1545 continue;
1546 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1547 N1.setColocate(++Colocate);
1548 N2.setColocate(Colocate);
1549 break;
1550 }
1551 }
1552 }
1553}
1554
1555/// Check if the existing node-sets are profitable. If not, then ignore the
1556/// recurrent node-sets, and attempt to schedule all nodes together. This is
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001557/// a heuristic. If the MII is large and all the recurrent node-sets are small,
1558/// then it's best to try to schedule all instructions together instead of
1559/// starting with the recurrent node-sets.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001560void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1561 // Look for loops with a large MII.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001562 if (MII < 17)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001563 return;
1564 // Check if the node-set contains only a simple add recurrence.
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001565 for (auto &NS : NodeSets) {
1566 if (NS.getRecMII() > 2)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001567 return;
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001568 if (NS.getMaxDepth() > MII)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001569 return;
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001570 }
1571 NodeSets.clear();
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001572 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
Krzysztof Parzyszek3ca23342018-03-26 17:07:41 +00001573 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001574}
1575
1576/// Add the nodes that do not belong to a recurrence set into groups
1577/// based upon connected componenets.
1578void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1579 SetVector<SUnit *> NodesAdded;
1580 SmallPtrSet<SUnit *, 8> Visited;
1581 // Add the nodes that are on a path between the previous node sets and
1582 // the current node set.
1583 for (NodeSet &I : NodeSets) {
1584 SmallSetVector<SUnit *, 8> N;
1585 // Add the nodes from the current node set to the previous node set.
1586 if (succ_L(I, N)) {
1587 SetVector<SUnit *> Path;
1588 for (SUnit *NI : N) {
1589 Visited.clear();
1590 computePath(NI, Path, NodesAdded, I, Visited);
1591 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001592 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001593 I.insert(Path.begin(), Path.end());
1594 }
1595 // Add the nodes from the previous node set to the current node set.
1596 N.clear();
1597 if (succ_L(NodesAdded, N)) {
1598 SetVector<SUnit *> Path;
1599 for (SUnit *NI : N) {
1600 Visited.clear();
1601 computePath(NI, Path, I, NodesAdded, Visited);
1602 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001603 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001604 I.insert(Path.begin(), Path.end());
1605 }
1606 NodesAdded.insert(I.begin(), I.end());
1607 }
1608
1609 // Create a new node set with the connected nodes of any successor of a node
1610 // in a recurrent set.
1611 NodeSet NewSet;
1612 SmallSetVector<SUnit *, 8> N;
1613 if (succ_L(NodesAdded, N))
1614 for (SUnit *I : N)
1615 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001616 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001617 NodeSets.push_back(NewSet);
1618
1619 // Create a new node set with the connected nodes of any predecessor of a node
1620 // in a recurrent set.
1621 NewSet.clear();
1622 if (pred_L(NodesAdded, N))
1623 for (SUnit *I : N)
1624 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001625 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001626 NodeSets.push_back(NewSet);
1627
Hiroshi Inoue372ffa12018-04-13 11:37:06 +00001628 // Create new nodes sets with the connected nodes any remaining node that
Brendon Cahoon254f8892016-07-29 16:44:44 +00001629 // has no predecessor.
1630 for (unsigned i = 0; i < SUnits.size(); ++i) {
1631 SUnit *SU = &SUnits[i];
1632 if (NodesAdded.count(SU) == 0) {
1633 NewSet.clear();
1634 addConnectedNodes(SU, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001635 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001636 NodeSets.push_back(NewSet);
1637 }
1638 }
1639}
1640
Alexey Lapshin31f47b82019-01-25 21:59:53 +00001641/// Add the node to the set, and add all of its connected nodes to the set.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001642void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1643 SetVector<SUnit *> &NodesAdded) {
1644 NewSet.insert(SU);
1645 NodesAdded.insert(SU);
1646 for (auto &SI : SU->Succs) {
1647 SUnit *Successor = SI.getSUnit();
1648 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1649 addConnectedNodes(Successor, NewSet, NodesAdded);
1650 }
1651 for (auto &PI : SU->Preds) {
1652 SUnit *Predecessor = PI.getSUnit();
1653 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1654 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1655 }
1656}
1657
1658/// Return true if Set1 contains elements in Set2. The elements in common
1659/// are returned in a different container.
1660static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1661 SmallSetVector<SUnit *, 8> &Result) {
1662 Result.clear();
1663 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1664 SUnit *SU = Set1[i];
1665 if (Set2.count(SU) != 0)
1666 Result.insert(SU);
1667 }
1668 return !Result.empty();
1669}
1670
1671/// Merge the recurrence node sets that have the same initial node.
1672void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1673 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1674 ++I) {
1675 NodeSet &NI = *I;
1676 for (NodeSetType::iterator J = I + 1; J != E;) {
1677 NodeSet &NJ = *J;
1678 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1679 if (NJ.compareRecMII(NI) > 0)
1680 NI.setRecMII(NJ.getRecMII());
1681 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1682 ++NII)
1683 I->insert(*NII);
1684 NodeSets.erase(J);
1685 E = NodeSets.end();
1686 } else {
1687 ++J;
1688 }
1689 }
1690 }
1691}
1692
1693/// Remove nodes that have been scheduled in previous NodeSets.
1694void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1695 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1696 ++I)
1697 for (NodeSetType::iterator J = I + 1; J != E;) {
1698 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1699
Eugene Zelenko32a40562017-09-11 23:00:48 +00001700 if (J->empty()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001701 NodeSets.erase(J);
1702 E = NodeSets.end();
1703 } else {
1704 ++J;
1705 }
1706 }
1707}
1708
Brendon Cahoon254f8892016-07-29 16:44:44 +00001709/// Compute an ordered list of the dependence graph nodes, which
1710/// indicates the order that the nodes will be scheduled. This is a
1711/// two-level algorithm. First, a partial order is created, which
1712/// consists of a list of sets ordered from highest to lowest priority.
1713void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1714 SmallSetVector<SUnit *, 8> R;
1715 NodeOrder.clear();
1716
1717 for (auto &Nodes : NodeSets) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001718 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001719 OrderKind Order;
1720 SmallSetVector<SUnit *, 8> N;
1721 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
1722 R.insert(N.begin(), N.end());
1723 Order = BottomUp;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001724 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001725 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
1726 R.insert(N.begin(), N.end());
1727 Order = TopDown;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001728 LLVM_DEBUG(dbgs() << " Top down (succs) ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001729 } else if (isIntersect(N, Nodes, R)) {
1730 // If some of the successors are in the existing node-set, then use the
1731 // top-down ordering.
1732 Order = TopDown;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001733 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001734 } else if (NodeSets.size() == 1) {
1735 for (auto &N : Nodes)
1736 if (N->Succs.size() == 0)
1737 R.insert(N);
1738 Order = BottomUp;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001739 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001740 } else {
1741 // Find the node with the highest ASAP.
1742 SUnit *maxASAP = nullptr;
1743 for (SUnit *SU : Nodes) {
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00001744 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1745 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001746 maxASAP = SU;
1747 }
1748 R.insert(maxASAP);
1749 Order = BottomUp;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001750 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001751 }
1752
1753 while (!R.empty()) {
1754 if (Order == TopDown) {
1755 // Choose the node with the maximum height. If more than one, choose
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00001756 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001757 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001758 while (!R.empty()) {
1759 SUnit *maxHeight = nullptr;
1760 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001761 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001762 maxHeight = I;
1763 else if (getHeight(I) == getHeight(maxHeight) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001764 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001765 maxHeight = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001766 else if (getHeight(I) == getHeight(maxHeight) &&
1767 getZeroLatencyHeight(I) ==
1768 getZeroLatencyHeight(maxHeight) &&
1769 getMOV(I) < getMOV(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001770 maxHeight = I;
1771 }
1772 NodeOrder.insert(maxHeight);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001773 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001774 R.remove(maxHeight);
1775 for (const auto &I : maxHeight->Succs) {
1776 if (Nodes.count(I.getSUnit()) == 0)
1777 continue;
1778 if (NodeOrder.count(I.getSUnit()) != 0)
1779 continue;
1780 if (ignoreDependence(I, false))
1781 continue;
1782 R.insert(I.getSUnit());
1783 }
1784 // Back-edges are predecessors with an anti-dependence.
1785 for (const auto &I : maxHeight->Preds) {
1786 if (I.getKind() != SDep::Anti)
1787 continue;
1788 if (Nodes.count(I.getSUnit()) == 0)
1789 continue;
1790 if (NodeOrder.count(I.getSUnit()) != 0)
1791 continue;
1792 R.insert(I.getSUnit());
1793 }
1794 }
1795 Order = BottomUp;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001796 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001797 SmallSetVector<SUnit *, 8> N;
1798 if (pred_L(NodeOrder, N, &Nodes))
1799 R.insert(N.begin(), N.end());
1800 } else {
1801 // Choose the node with the maximum depth. If more than one, choose
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001802 // the node with the maximum ZeroLatencyDepth. If still more than one,
1803 // choose the node with the lowest MOV.
Brendon Cahoon254f8892016-07-29 16:44:44 +00001804 while (!R.empty()) {
1805 SUnit *maxDepth = nullptr;
1806 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001807 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001808 maxDepth = I;
1809 else if (getDepth(I) == getDepth(maxDepth) &&
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001810 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001811 maxDepth = I;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00001812 else if (getDepth(I) == getDepth(maxDepth) &&
1813 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1814 getMOV(I) < getMOV(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00001815 maxDepth = I;
1816 }
1817 NodeOrder.insert(maxDepth);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001818 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001819 R.remove(maxDepth);
1820 if (Nodes.isExceedSU(maxDepth)) {
1821 Order = TopDown;
1822 R.clear();
1823 R.insert(Nodes.getNode(0));
1824 break;
1825 }
1826 for (const auto &I : maxDepth->Preds) {
1827 if (Nodes.count(I.getSUnit()) == 0)
1828 continue;
1829 if (NodeOrder.count(I.getSUnit()) != 0)
1830 continue;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001831 R.insert(I.getSUnit());
1832 }
1833 // Back-edges are predecessors with an anti-dependence.
1834 for (const auto &I : maxDepth->Succs) {
1835 if (I.getKind() != SDep::Anti)
1836 continue;
1837 if (Nodes.count(I.getSUnit()) == 0)
1838 continue;
1839 if (NodeOrder.count(I.getSUnit()) != 0)
1840 continue;
1841 R.insert(I.getSUnit());
1842 }
1843 }
1844 Order = TopDown;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001845 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001846 SmallSetVector<SUnit *, 8> N;
1847 if (succ_L(NodeOrder, N, &Nodes))
1848 R.insert(N.begin(), N.end());
1849 }
1850 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001851 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001852 }
1853
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001854 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00001855 dbgs() << "Node order: ";
1856 for (SUnit *I : NodeOrder)
1857 dbgs() << " " << I->NodeNum << " ";
1858 dbgs() << "\n";
1859 });
1860}
1861
1862/// Process the nodes in the computed order and create the pipelined schedule
1863/// of the instructions, if possible. Return true if a schedule is found.
1864bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00001865 if (NodeOrder.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001866 return false;
1867
1868 bool scheduleFound = false;
Brendon Cahoon59d99732019-01-23 03:26:10 +00001869 unsigned II = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00001870 // Keep increasing II until a valid schedule is found.
Brendon Cahoon59d99732019-01-23 03:26:10 +00001871 for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001872 Schedule.reset();
1873 Schedule.setInitiationInterval(II);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001874 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001875
1876 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
1877 SetVector<SUnit *>::iterator NE = NodeOrder.end();
1878 do {
1879 SUnit *SU = *NI;
1880
1881 // Compute the schedule time for the instruction, which is based
1882 // upon the scheduled time for any predecessors/successors.
1883 int EarlyStart = INT_MIN;
1884 int LateStart = INT_MAX;
1885 // These values are set when the size of the schedule window is limited
1886 // due to chain dependences.
1887 int SchedEnd = INT_MAX;
1888 int SchedStart = INT_MIN;
1889 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
1890 II, this);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001891 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00001892 dbgs() << "Inst (" << SU->NodeNum << ") ";
1893 SU->getInstr()->dump();
1894 dbgs() << "\n";
1895 });
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001896 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00001897 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
1898 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
1899 });
1900
1901 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
1902 SchedStart > LateStart)
1903 scheduleFound = false;
1904 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
1905 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
1906 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
1907 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
1908 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
1909 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
1910 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
1911 SchedEnd =
1912 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
1913 // When scheduling a Phi it is better to start at the late cycle and go
1914 // backwards. The default order may insert the Phi too far away from
1915 // its first dependence.
1916 if (SU->getInstr()->isPHI())
1917 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
1918 else
1919 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
1920 } else {
1921 int FirstCycle = Schedule.getFirstCycle();
1922 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
1923 FirstCycle + getASAP(SU) + II - 1, II);
1924 }
1925 // Even if we find a schedule, make sure the schedule doesn't exceed the
1926 // allowable number of stages. We keep trying if this happens.
1927 if (scheduleFound)
1928 if (SwpMaxStages > -1 &&
1929 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
1930 scheduleFound = false;
1931
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001932 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00001933 if (!scheduleFound)
1934 dbgs() << "\tCan't schedule\n";
1935 });
1936 } while (++NI != NE && scheduleFound);
1937
1938 // If a schedule is found, check if it is a valid schedule too.
1939 if (scheduleFound)
1940 scheduleFound = Schedule.isValidSchedule(this);
1941 }
1942
Brendon Cahoon59d99732019-01-23 03:26:10 +00001943 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II
1944 << ")\n");
Brendon Cahoon254f8892016-07-29 16:44:44 +00001945
1946 if (scheduleFound)
1947 Schedule.finalizeSchedule(this);
1948 else
1949 Schedule.reset();
1950
1951 return scheduleFound && Schedule.getMaxStageCount() > 0;
1952}
1953
1954/// Given a schedule for the loop, generate a new version of the loop,
1955/// and replace the old version. This function generates a prolog
1956/// that contains the initial iterations in the pipeline, and kernel
1957/// loop, and the epilogue that contains the code for the final
1958/// iterations.
1959void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
1960 // Create a new basic block for the kernel and add it to the CFG.
1961 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1962
1963 unsigned MaxStageCount = Schedule.getMaxStageCount();
1964
1965 // Remember the registers that are used in different stages. The index is
1966 // the iteration, or stage, that the instruction is scheduled in. This is
Hiroshi Inouec73b6d62018-06-20 05:29:26 +00001967 // a map between register names in the original block and the names created
Brendon Cahoon254f8892016-07-29 16:44:44 +00001968 // in each stage of the pipelined loop.
1969 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
1970 InstrMapTy InstrMap;
1971
1972 SmallVector<MachineBasicBlock *, 4> PrologBBs;
1973 // Generate the prolog instructions that set up the pipeline.
1974 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
1975 MF.insert(BB->getIterator(), KernelBB);
1976
1977 // Rearrange the instructions to generate the new, pipelined loop,
1978 // and update register names as needed.
1979 for (int Cycle = Schedule.getFirstCycle(),
1980 LastCycle = Schedule.getFinalCycle();
1981 Cycle <= LastCycle; ++Cycle) {
1982 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
1983 // This inner loop schedules each instruction in the cycle.
1984 for (SUnit *CI : CycleInstrs) {
1985 if (CI->getInstr()->isPHI())
1986 continue;
1987 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
1988 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
1989 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
1990 KernelBB->push_back(NewMI);
1991 InstrMap[NewMI] = CI->getInstr();
1992 }
1993 }
1994
1995 // Copy any terminator instructions to the new kernel, and update
1996 // names as needed.
1997 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
1998 E = BB->instr_end();
1999 I != E; ++I) {
2000 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2001 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2002 KernelBB->push_back(NewMI);
2003 InstrMap[NewMI] = &*I;
2004 }
2005
2006 KernelBB->transferSuccessors(BB);
2007 KernelBB->replaceSuccessor(BB, KernelBB);
2008
2009 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2010 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2011 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2012 InstrMap, MaxStageCount, MaxStageCount, false);
2013
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002014 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
Brendon Cahoon254f8892016-07-29 16:44:44 +00002015
2016 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2017 // Generate the epilog instructions to complete the pipeline.
2018 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2019 PrologBBs);
2020
2021 // We need this step because the register allocation doesn't handle some
2022 // situations well, so we insert copies to help out.
2023 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2024
2025 // Remove dead instructions due to loop induction variables.
2026 removeDeadInstructions(KernelBB, EpilogBBs);
2027
2028 // Add branches between prolog and epilog blocks.
2029 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2030
2031 // Remove the original loop since it's no longer referenced.
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002032 for (auto &I : *BB)
2033 LIS.RemoveMachineInstrFromMaps(I);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002034 BB->clear();
2035 BB->eraseFromParent();
2036
2037 delete[] VRMap;
2038}
2039
2040/// Generate the pipeline prolog code.
2041void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2042 MachineBasicBlock *KernelBB,
2043 ValueMapTy *VRMap,
2044 MBBVectorTy &PrologBBs) {
2045 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
Eugene Zelenko32a40562017-09-11 23:00:48 +00002046 assert(PreheaderBB != nullptr &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002047 "Need to add code to handle loops w/o preheader");
2048 MachineBasicBlock *PredBB = PreheaderBB;
2049 InstrMapTy InstrMap;
2050
2051 // Generate a basic block for each stage, not including the last stage,
2052 // which will be generated in the kernel. Each basic block may contain
2053 // instructions from multiple stages/iterations.
2054 for (unsigned i = 0; i < LastStage; ++i) {
2055 // Create and insert the prolog basic block prior to the original loop
2056 // basic block. The original loop is removed later.
2057 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2058 PrologBBs.push_back(NewBB);
2059 MF.insert(BB->getIterator(), NewBB);
2060 NewBB->transferSuccessors(PredBB);
2061 PredBB->addSuccessor(NewBB);
2062 PredBB = NewBB;
2063
2064 // Generate instructions for each appropriate stage. Process instructions
2065 // in original program order.
2066 for (int StageNum = i; StageNum >= 0; --StageNum) {
2067 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2068 BBE = BB->getFirstTerminator();
2069 BBI != BBE; ++BBI) {
2070 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2071 if (BBI->isPHI())
2072 continue;
2073 MachineInstr *NewMI =
2074 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2075 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2076 VRMap);
2077 NewBB->push_back(NewMI);
2078 InstrMap[NewMI] = &*BBI;
2079 }
2080 }
2081 }
2082 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002083 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00002084 dbgs() << "prolog:\n";
2085 NewBB->dump();
2086 });
2087 }
2088
2089 PredBB->replaceSuccessor(BB, KernelBB);
2090
2091 // Check if we need to remove the branch from the preheader to the original
2092 // loop, and replace it with a branch to the new loop.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002093 unsigned numBranches = TII->removeBranch(*PreheaderBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002094 if (numBranches) {
2095 SmallVector<MachineOperand, 0> Cond;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002096 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002097 }
2098}
2099
2100/// Generate the pipeline epilog code. The epilog code finishes the iterations
2101/// that were started in either the prolog or the kernel. We create a basic
2102/// block for each stage that needs to complete.
2103void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2104 MachineBasicBlock *KernelBB,
2105 ValueMapTy *VRMap,
2106 MBBVectorTy &EpilogBBs,
2107 MBBVectorTy &PrologBBs) {
2108 // We need to change the branch from the kernel to the first epilog block, so
2109 // this call to analyze branch uses the kernel rather than the original BB.
2110 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2111 SmallVector<MachineOperand, 4> Cond;
2112 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2113 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2114 if (checkBranch)
2115 return;
2116
2117 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2118 if (*LoopExitI == KernelBB)
2119 ++LoopExitI;
2120 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2121 MachineBasicBlock *LoopExitBB = *LoopExitI;
2122
2123 MachineBasicBlock *PredBB = KernelBB;
2124 MachineBasicBlock *EpilogStart = LoopExitBB;
2125 InstrMapTy InstrMap;
2126
2127 // Generate a basic block for each stage, not including the last stage,
2128 // which was generated for the kernel. Each basic block may contain
2129 // instructions from multiple stages/iterations.
2130 int EpilogStage = LastStage + 1;
2131 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2132 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2133 EpilogBBs.push_back(NewBB);
2134 MF.insert(BB->getIterator(), NewBB);
2135
2136 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2137 NewBB->addSuccessor(LoopExitBB);
2138
2139 if (EpilogStart == LoopExitBB)
2140 EpilogStart = NewBB;
2141
2142 // Add instructions to the epilog depending on the current block.
2143 // Process instructions in original program order.
2144 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2145 for (auto &BBI : *BB) {
2146 if (BBI.isPHI())
2147 continue;
2148 MachineInstr *In = &BBI;
2149 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00002150 // Instructions with memoperands in the epilog are updated with
2151 // conservative values.
2152 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002153 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2154 NewBB->push_back(NewMI);
2155 InstrMap[NewMI] = In;
2156 }
2157 }
2158 }
2159 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2160 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2161 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2162 InstrMap, LastStage, EpilogStage, i == 1);
2163 PredBB = NewBB;
2164
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002165 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00002166 dbgs() << "epilog:\n";
2167 NewBB->dump();
2168 });
2169 }
2170
2171 // Fix any Phi nodes in the loop exit block.
2172 for (MachineInstr &MI : *LoopExitBB) {
2173 if (!MI.isPHI())
2174 break;
2175 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2176 MachineOperand &MO = MI.getOperand(i);
2177 if (MO.getMBB() == BB)
2178 MO.setMBB(PredBB);
2179 }
2180 }
2181
2182 // Create a branch to the new epilog from the kernel.
2183 // Remove the original branch and add a new branch to the epilog.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002184 TII->removeBranch(*KernelBB);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002185 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002186 // Add a branch to the loop exit.
2187 if (EpilogBBs.size() > 0) {
2188 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2189 SmallVector<MachineOperand, 4> Cond1;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002190 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002191 }
2192}
2193
2194/// Replace all uses of FromReg that appear outside the specified
2195/// basic block with ToReg.
2196static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2197 MachineBasicBlock *MBB,
2198 MachineRegisterInfo &MRI,
2199 LiveIntervals &LIS) {
2200 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2201 E = MRI.use_end();
2202 I != E;) {
2203 MachineOperand &O = *I;
2204 ++I;
2205 if (O.getParent()->getParent() != MBB)
2206 O.setReg(ToReg);
2207 }
2208 if (!LIS.hasInterval(ToReg))
2209 LIS.createEmptyInterval(ToReg);
2210}
2211
2212/// Return true if the register has a use that occurs outside the
2213/// specified loop.
2214static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2215 MachineRegisterInfo &MRI) {
2216 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2217 E = MRI.use_end();
2218 I != E; ++I)
2219 if (I->getParent()->getParent() != BB)
2220 return true;
2221 return false;
2222}
2223
2224/// Generate Phis for the specific block in the generated pipelined code.
2225/// This function looks at the Phis from the original code to guide the
2226/// creation of new Phis.
2227void SwingSchedulerDAG::generateExistingPhis(
2228 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2229 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2230 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2231 bool IsLast) {
Simon Pilgrim6bdc7552017-03-31 10:59:37 +00002232 // Compute the stage number for the initial value of the Phi, which
Brendon Cahoon254f8892016-07-29 16:44:44 +00002233 // comes from the prolog. The prolog to use depends on to which kernel/
2234 // epilog that we're adding the Phi.
2235 unsigned PrologStage = 0;
2236 unsigned PrevStage = 0;
2237 bool InKernel = (LastStageNum == CurStageNum);
2238 if (InKernel) {
2239 PrologStage = LastStageNum - 1;
2240 PrevStage = CurStageNum;
2241 } else {
2242 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2243 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2244 }
2245
2246 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2247 BBE = BB->getFirstNonPHI();
2248 BBI != BBE; ++BBI) {
2249 unsigned Def = BBI->getOperand(0).getReg();
2250
2251 unsigned InitVal = 0;
2252 unsigned LoopVal = 0;
2253 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2254
2255 unsigned PhiOp1 = 0;
2256 // The Phi value from the loop body typically is defined in the loop, but
2257 // not always. So, we need to check if the value is defined in the loop.
2258 unsigned PhiOp2 = LoopVal;
2259 if (VRMap[LastStageNum].count(LoopVal))
2260 PhiOp2 = VRMap[LastStageNum][LoopVal];
2261
2262 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2263 int LoopValStage =
2264 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2265 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2266 if (NumStages == 0) {
2267 // We don't need to generate a Phi anymore, but we need to rename any uses
2268 // of the Phi value.
2269 unsigned NewReg = VRMap[PrevStage][LoopVal];
2270 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
Krzysztof Parzyszek16e66f52018-03-26 16:41:36 +00002271 Def, InitVal, NewReg);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002272 if (VRMap[CurStageNum].count(LoopVal))
2273 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2274 }
2275 // Adjust the number of Phis needed depending on the number of prologs left,
Krzysztof Parzyszek3f72a6b2018-03-26 16:37:55 +00002276 // and the distance from where the Phi is first scheduled. The number of
2277 // Phis cannot exceed the number of prolog stages. Each stage can
2278 // potentially define two values.
2279 unsigned MaxPhis = PrologStage + 2;
2280 if (!InKernel && (int)PrologStage <= LoopValStage)
2281 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
2282 unsigned NumPhis = std::min(NumStages, MaxPhis);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002283
2284 unsigned NewReg = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +00002285 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2286 // In the epilog, we may need to look back one stage to get the correct
2287 // Phi name because the epilog and prolog blocks execute the same stage.
2288 // The correct name is from the previous block only when the Phi has
2289 // been completely scheduled prior to the epilog, and Phi value is not
2290 // needed in multiple stages.
2291 int StageDiff = 0;
2292 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2293 NumPhis == 1)
2294 StageDiff = 1;
2295 // Adjust the computations below when the phi and the loop definition
2296 // are scheduled in different stages.
2297 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2298 StageDiff = StageScheduled - LoopValStage;
2299 for (unsigned np = 0; np < NumPhis; ++np) {
2300 // If the Phi hasn't been scheduled, then use the initial Phi operand
2301 // value. Otherwise, use the scheduled version of the instruction. This
2302 // is a little complicated when a Phi references another Phi.
2303 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2304 PhiOp1 = InitVal;
2305 // Check if the Phi has already been scheduled in a prolog stage.
2306 else if (PrologStage >= AccessStage + StageDiff + np &&
2307 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2308 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
Hiroshi Inouedad8c6a2019-01-09 05:11:10 +00002309 // Check if the Phi has already been scheduled, but the loop instruction
Brendon Cahoon254f8892016-07-29 16:44:44 +00002310 // is either another Phi, or doesn't occur in the loop.
2311 else if (PrologStage >= AccessStage + StageDiff + np) {
2312 // If the Phi references another Phi, we need to examine the other
2313 // Phi to get the correct value.
2314 PhiOp1 = LoopVal;
2315 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2316 int Indirects = 1;
2317 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2318 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2319 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2320 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2321 else
2322 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2323 InstOp1 = MRI.getVRegDef(PhiOp1);
2324 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2325 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2326 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2327 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2328 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2329 break;
2330 }
2331 ++Indirects;
2332 }
2333 } else
2334 PhiOp1 = InitVal;
2335 // If this references a generated Phi in the kernel, get the Phi operand
2336 // from the incoming block.
2337 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2338 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2339 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2340
2341 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2342 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2343 // In the epilog, a map lookup is needed to get the value from the kernel,
2344 // or previous epilog block. How is does this depends on if the
2345 // instruction is scheduled in the previous block.
2346 if (!InKernel) {
2347 int StageDiffAdj = 0;
2348 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2349 StageDiffAdj = StageScheduled - LoopValStage;
2350 // Use the loop value defined in the kernel, unless the kernel
2351 // contains the last definition of the Phi.
2352 if (np == 0 && PrevStage == LastStageNum &&
2353 (StageScheduled != 0 || LoopValStage != 0) &&
2354 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2355 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2356 // Use the value defined by the Phi. We add one because we switch
2357 // from looking at the loop value to the Phi definition.
2358 else if (np > 0 && PrevStage == LastStageNum &&
2359 VRMap[PrevStage - np + 1].count(Def))
2360 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2361 // Use the loop value defined in the kernel.
Brendon Cahoone3841eea2018-08-27 22:04:50 +00002362 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002363 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2364 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2365 // Use the value defined by the Phi, unless we're generating the first
2366 // epilog and the Phi refers to a Phi in a different stage.
2367 else if (VRMap[PrevStage - np].count(Def) &&
2368 (!LoopDefIsPhi || PrevStage != LastStageNum))
2369 PhiOp2 = VRMap[PrevStage - np][Def];
2370 }
2371
2372 // Check if we can reuse an existing Phi. This occurs when a Phi
2373 // references another Phi, and the other Phi is scheduled in an
2374 // earlier stage. We can try to reuse an existing Phi up until the last
2375 // stage of the current Phi.
Brendon Cahoone3841eea2018-08-27 22:04:50 +00002376 if (LoopDefIsPhi) {
2377 if (static_cast<int>(PrologStage - np) >= StageScheduled) {
2378 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2379 int StageDiff = (StageScheduled - LoopValStage);
2380 LVNumStages -= StageDiff;
2381 // Make sure the loop value Phi has been processed already.
2382 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
2383 NewReg = PhiOp2;
2384 unsigned ReuseStage = CurStageNum;
2385 if (Schedule.isLoopCarried(this, *PhiInst))
2386 ReuseStage -= LVNumStages;
2387 // Check if the Phi to reuse has been generated yet. If not, then
2388 // there is nothing to reuse.
2389 if (VRMap[ReuseStage - np].count(LoopVal)) {
2390 NewReg = VRMap[ReuseStage - np][LoopVal];
Brendon Cahoon254f8892016-07-29 16:44:44 +00002391
Brendon Cahoone3841eea2018-08-27 22:04:50 +00002392 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2393 &*BBI, Def, NewReg);
2394 // Update the map with the new Phi name.
2395 VRMap[CurStageNum - np][Def] = NewReg;
2396 PhiOp2 = NewReg;
2397 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2398 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
Brendon Cahoon254f8892016-07-29 16:44:44 +00002399
Brendon Cahoone3841eea2018-08-27 22:04:50 +00002400 if (IsLast && np == NumPhis - 1)
2401 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2402 continue;
2403 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00002404 }
Brendon Cahoone3841eea2018-08-27 22:04:50 +00002405 }
2406 if (InKernel && StageDiff > 0 &&
2407 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002408 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2409 }
2410
2411 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2412 NewReg = MRI.createVirtualRegister(RC);
2413
2414 MachineInstrBuilder NewPhi =
2415 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2416 TII->get(TargetOpcode::PHI), NewReg);
2417 NewPhi.addReg(PhiOp1).addMBB(BB1);
2418 NewPhi.addReg(PhiOp2).addMBB(BB2);
2419 if (np == 0)
2420 InstrMap[NewPhi] = &*BBI;
2421
2422 // We define the Phis after creating the new pipelined code, so
2423 // we need to rename the Phi values in scheduled instructions.
2424
2425 unsigned PrevReg = 0;
2426 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2427 PrevReg = VRMap[PrevStage - np][LoopVal];
2428 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2429 Def, NewReg, PrevReg);
2430 // If the Phi has been scheduled, use the new name for rewriting.
2431 if (VRMap[CurStageNum - np].count(Def)) {
2432 unsigned R = VRMap[CurStageNum - np][Def];
2433 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2434 R, NewReg);
2435 }
2436
2437 // Check if we need to rename any uses that occurs after the loop. The
2438 // register to replace depends on whether the Phi is scheduled in the
2439 // epilog.
2440 if (IsLast && np == NumPhis - 1)
2441 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2442
2443 // In the kernel, a dependent Phi uses the value from this Phi.
2444 if (InKernel)
2445 PhiOp2 = NewReg;
2446
2447 // Update the map with the new Phi name.
2448 VRMap[CurStageNum - np][Def] = NewReg;
2449 }
2450
2451 while (NumPhis++ < NumStages) {
2452 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2453 &*BBI, Def, NewReg, 0);
2454 }
2455
2456 // Check if we need to rename a Phi that has been eliminated due to
2457 // scheduling.
2458 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2459 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2460 }
2461}
2462
2463/// Generate Phis for the specified block in the generated pipelined code.
2464/// These are new Phis needed because the definition is scheduled after the
Hiroshi Inouec73b6d62018-06-20 05:29:26 +00002465/// use in the pipelined sequence.
Brendon Cahoon254f8892016-07-29 16:44:44 +00002466void SwingSchedulerDAG::generatePhis(
2467 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2468 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2469 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2470 bool IsLast) {
2471 // Compute the stage number that contains the initial Phi value, and
2472 // the Phi from the previous stage.
2473 unsigned PrologStage = 0;
2474 unsigned PrevStage = 0;
2475 unsigned StageDiff = CurStageNum - LastStageNum;
2476 bool InKernel = (StageDiff == 0);
2477 if (InKernel) {
2478 PrologStage = LastStageNum - 1;
2479 PrevStage = CurStageNum;
2480 } else {
2481 PrologStage = LastStageNum - StageDiff;
2482 PrevStage = LastStageNum + StageDiff - 1;
2483 }
2484
2485 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2486 BBE = BB->instr_end();
2487 BBI != BBE; ++BBI) {
2488 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2489 MachineOperand &MO = BBI->getOperand(i);
2490 if (!MO.isReg() || !MO.isDef() ||
2491 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2492 continue;
2493
2494 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2495 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2496 unsigned Def = MO.getReg();
2497 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2498 // An instruction scheduled in stage 0 and is used after the loop
2499 // requires a phi in the epilog for the last definition from either
2500 // the kernel or prolog.
2501 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2502 hasUseAfterLoop(Def, BB, MRI))
2503 NumPhis = 1;
2504 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2505 continue;
2506
2507 unsigned PhiOp2 = VRMap[PrevStage][Def];
2508 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2509 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2510 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2511 // The number of Phis can't exceed the number of prolog stages. The
2512 // prolog stage number is zero based.
2513 if (NumPhis > PrologStage + 1 - StageScheduled)
2514 NumPhis = PrologStage + 1 - StageScheduled;
2515 for (unsigned np = 0; np < NumPhis; ++np) {
2516 unsigned PhiOp1 = VRMap[PrologStage][Def];
2517 if (np <= PrologStage)
2518 PhiOp1 = VRMap[PrologStage - np][Def];
2519 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2520 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2521 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2522 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2523 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2524 }
2525 if (!InKernel)
2526 PhiOp2 = VRMap[PrevStage - np][Def];
2527
2528 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2529 unsigned NewReg = MRI.createVirtualRegister(RC);
2530
2531 MachineInstrBuilder NewPhi =
2532 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2533 TII->get(TargetOpcode::PHI), NewReg);
2534 NewPhi.addReg(PhiOp1).addMBB(BB1);
2535 NewPhi.addReg(PhiOp2).addMBB(BB2);
2536 if (np == 0)
2537 InstrMap[NewPhi] = &*BBI;
2538
2539 // Rewrite uses and update the map. The actions depend upon whether
2540 // we generating code for the kernel or epilog blocks.
2541 if (InKernel) {
2542 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2543 &*BBI, PhiOp1, NewReg);
2544 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2545 &*BBI, PhiOp2, NewReg);
2546
2547 PhiOp2 = NewReg;
2548 VRMap[PrevStage - np - 1][Def] = NewReg;
2549 } else {
2550 VRMap[CurStageNum - np][Def] = NewReg;
2551 if (np == NumPhis - 1)
2552 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2553 &*BBI, Def, NewReg);
2554 }
2555 if (IsLast && np == NumPhis - 1)
2556 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2557 }
2558 }
2559 }
2560}
2561
2562/// Remove instructions that generate values with no uses.
2563/// Typically, these are induction variable operations that generate values
2564/// used in the loop itself. A dead instruction has a definition with
2565/// no uses, or uses that occur in the original loop only.
2566void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2567 MBBVectorTy &EpilogBBs) {
2568 // For each epilog block, check that the value defined by each instruction
2569 // is used. If not, delete it.
2570 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2571 MBE = EpilogBBs.rend();
2572 MBB != MBE; ++MBB)
2573 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2574 ME = (*MBB)->instr_rend();
2575 MI != ME;) {
2576 // From DeadMachineInstructionElem. Don't delete inline assembly.
2577 if (MI->isInlineAsm()) {
2578 ++MI;
2579 continue;
2580 }
2581 bool SawStore = false;
2582 // Check if it's safe to remove the instruction due to side effects.
2583 // We can, and want to, remove Phis here.
2584 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2585 ++MI;
2586 continue;
2587 }
2588 bool used = true;
2589 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2590 MOE = MI->operands_end();
2591 MOI != MOE; ++MOI) {
2592 if (!MOI->isReg() || !MOI->isDef())
2593 continue;
2594 unsigned reg = MOI->getReg();
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00002595 // Assume physical registers are used, unless they are marked dead.
2596 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
2597 used = !MOI->isDead();
2598 if (used)
2599 break;
2600 continue;
2601 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00002602 unsigned realUses = 0;
2603 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2604 EI = MRI.use_end();
2605 UI != EI; ++UI) {
2606 // Check if there are any uses that occur only in the original
2607 // loop. If so, that's not a real use.
2608 if (UI->getParent()->getParent() != BB) {
2609 realUses++;
2610 used = true;
2611 break;
2612 }
2613 }
2614 if (realUses > 0)
2615 break;
2616 used = false;
2617 }
2618 if (!used) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002619 LIS.RemoveMachineInstrFromMaps(*MI);
Duncan P. N. Exon Smith5c001c32016-08-30 00:13:12 +00002620 MI++->eraseFromParent();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002621 continue;
2622 }
2623 ++MI;
2624 }
2625 // In the kernel block, check if we can remove a Phi that generates a value
2626 // used in an instruction removed in the epilog block.
2627 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2628 BBE = KernelBB->getFirstNonPHI();
2629 BBI != BBE;) {
2630 MachineInstr *MI = &*BBI;
2631 ++BBI;
2632 unsigned reg = MI->getOperand(0).getReg();
2633 if (MRI.use_begin(reg) == MRI.use_end()) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00002634 LIS.RemoveMachineInstrFromMaps(*MI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002635 MI->eraseFromParent();
2636 }
2637 }
2638}
2639
2640/// For loop carried definitions, we split the lifetime of a virtual register
2641/// that has uses past the definition in the next iteration. A copy with a new
2642/// virtual register is inserted before the definition, which helps with
2643/// generating a better register assignment.
2644///
2645/// v1 = phi(a, v2) v1 = phi(a, v2)
2646/// v2 = phi(b, v3) v2 = phi(b, v3)
2647/// v3 = .. v4 = copy v1
2648/// .. = V1 v3 = ..
2649/// .. = v4
2650void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2651 MBBVectorTy &EpilogBBs,
2652 SMSchedule &Schedule) {
2653 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Bob Wilson90ecac02018-01-04 02:58:15 +00002654 for (auto &PHI : KernelBB->phis()) {
2655 unsigned Def = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002656 // Check for any Phi definition that used as an operand of another Phi
2657 // in the same block.
2658 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2659 E = MRI.use_instr_end();
2660 I != E; ++I) {
2661 if (I->isPHI() && I->getParent() == KernelBB) {
2662 // Get the loop carried definition.
Bob Wilson90ecac02018-01-04 02:58:15 +00002663 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002664 if (!LCDef)
2665 continue;
2666 MachineInstr *MI = MRI.getVRegDef(LCDef);
2667 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2668 continue;
2669 // Search through the rest of the block looking for uses of the Phi
2670 // definition. If one occurs, then split the lifetime.
2671 unsigned SplitReg = 0;
2672 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2673 KernelBB->instr_end()))
2674 if (BBJ.readsRegister(Def)) {
2675 // We split the lifetime when we find the first use.
2676 if (SplitReg == 0) {
2677 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2678 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2679 TII->get(TargetOpcode::COPY), SplitReg)
2680 .addReg(Def);
2681 }
2682 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2683 }
2684 if (!SplitReg)
2685 continue;
2686 // Search through each of the epilog blocks for any uses to be renamed.
2687 for (auto &Epilog : EpilogBBs)
2688 for (auto &I : *Epilog)
2689 if (I.readsRegister(Def))
2690 I.substituteRegister(Def, SplitReg, 0, *TRI);
2691 break;
2692 }
2693 }
2694 }
2695}
2696
2697/// Remove the incoming block from the Phis in a basic block.
2698static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2699 for (MachineInstr &MI : *BB) {
2700 if (!MI.isPHI())
2701 break;
2702 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
2703 if (MI.getOperand(i + 1).getMBB() == Incoming) {
2704 MI.RemoveOperand(i + 1);
2705 MI.RemoveOperand(i);
2706 break;
2707 }
2708 }
2709}
2710
2711/// Create branches from each prolog basic block to the appropriate epilog
2712/// block. These edges are needed if the loop ends before reaching the
2713/// kernel.
2714void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
2715 MachineBasicBlock *KernelBB,
2716 MBBVectorTy &EpilogBBs,
2717 SMSchedule &Schedule, ValueMapTy *VRMap) {
2718 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
2719 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
2720 MachineInstr *Cmp = Pass.LI.LoopCompare;
2721 MachineBasicBlock *LastPro = KernelBB;
2722 MachineBasicBlock *LastEpi = KernelBB;
2723
2724 // Start from the blocks connected to the kernel and work "out"
2725 // to the first prolog and the last epilog blocks.
2726 SmallVector<MachineInstr *, 4> PrevInsts;
2727 unsigned MaxIter = PrologBBs.size() - 1;
2728 unsigned LC = UINT_MAX;
2729 unsigned LCMin = UINT_MAX;
2730 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
2731 // Add branches to the prolog that go to the corresponding
2732 // epilog, and the fall-thru prolog/kernel block.
2733 MachineBasicBlock *Prolog = PrologBBs[j];
2734 MachineBasicBlock *Epilog = EpilogBBs[i];
2735 // We've executed one iteration, so decrement the loop count and check for
2736 // the loop end.
2737 SmallVector<MachineOperand, 4> Cond;
2738 // Check if the LOOP0 has already been removed. If so, then there is no need
2739 // to reduce the trip count.
2740 if (LC != 0)
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00002741 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
Brendon Cahoon254f8892016-07-29 16:44:44 +00002742 MaxIter);
2743
2744 // Record the value of the first trip count, which is used to determine if
2745 // branches and blocks can be removed for constant trip counts.
2746 if (LCMin == UINT_MAX)
2747 LCMin = LC;
2748
2749 unsigned numAdded = 0;
2750 if (TargetRegisterInfo::isVirtualRegister(LC)) {
2751 Prolog->addSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002752 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002753 } else if (j >= LCMin) {
2754 Prolog->addSuccessor(Epilog);
2755 Prolog->removeSuccessor(LastPro);
2756 LastEpi->removeSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002757 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002758 removePhis(Epilog, LastEpi);
2759 // Remove the blocks that are no longer referenced.
2760 if (LastPro != LastEpi) {
2761 LastEpi->clear();
2762 LastEpi->eraseFromParent();
2763 }
2764 LastPro->clear();
2765 LastPro->eraseFromParent();
2766 } else {
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002767 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002768 removePhis(Epilog, Prolog);
2769 }
2770 LastPro = Prolog;
2771 LastEpi = Epilog;
2772 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
2773 E = Prolog->instr_rend();
2774 I != E && numAdded > 0; ++I, --numAdded)
2775 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
2776 }
2777}
2778
2779/// Return true if we can compute the amount the instruction changes
2780/// during each iteration. Set Delta to the amount of the change.
2781bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2782 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Bjorn Pettersson238c9d6302019-04-19 09:08:38 +00002783 const MachineOperand *BaseOp;
Brendon Cahoon254f8892016-07-29 16:44:44 +00002784 int64_t Offset;
Francis Visoiu Mistrihd7eebd62018-11-28 12:00:20 +00002785 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002786 return false;
2787
Francis Visoiu Mistrihd7eebd62018-11-28 12:00:20 +00002788 if (!BaseOp->isReg())
2789 return false;
2790
2791 unsigned BaseReg = BaseOp->getReg();
2792
Brendon Cahoon254f8892016-07-29 16:44:44 +00002793 MachineRegisterInfo &MRI = MF.getRegInfo();
2794 // Check if there is a Phi. If so, get the definition in the loop.
2795 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2796 if (BaseDef && BaseDef->isPHI()) {
2797 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2798 BaseDef = MRI.getVRegDef(BaseReg);
2799 }
2800 if (!BaseDef)
2801 return false;
2802
2803 int D = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00002804 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +00002805 return false;
2806
2807 Delta = D;
2808 return true;
2809}
2810
2811/// Update the memory operand with a new offset when the pipeliner
Justin Lebarcf56e922016-08-12 23:58:19 +00002812/// generates a new copy of the instruction that refers to a
Brendon Cahoon254f8892016-07-29 16:44:44 +00002813/// different memory location.
2814void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
2815 MachineInstr &OldMI, unsigned Num) {
2816 if (Num == 0)
2817 return;
2818 // If the instruction has memory operands, then adjust the offset
2819 // when the instruction appears in different stages.
Chandler Carruthc73c0302018-08-16 21:30:05 +00002820 if (NewMI.memoperands_empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002821 return;
Chandler Carruthc73c0302018-08-16 21:30:05 +00002822 SmallVector<MachineMemOperand *, 2> NewMMOs;
Justin Lebar0a33a7a2016-08-23 17:18:07 +00002823 for (MachineMemOperand *MMO : NewMI.memoperands()) {
Philip Reames00056ed2019-02-01 22:58:52 +00002824 // TODO: Figure out whether isAtomic is really necessary (see D57601).
2825 if (MMO->isVolatile() || MMO->isAtomic() ||
2826 (MMO->isInvariant() && MMO->isDereferenceable()) ||
Justin Lebaradbf09e2016-09-11 01:38:58 +00002827 (!MMO->getValue())) {
Chandler Carruthc73c0302018-08-16 21:30:05 +00002828 NewMMOs.push_back(MMO);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002829 continue;
2830 }
2831 unsigned Delta;
Krzysztof Parzyszek785b6ce2018-03-26 15:45:55 +00002832 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002833 int64_t AdjOffset = Delta * Num;
Chandler Carruthc73c0302018-08-16 21:30:05 +00002834 NewMMOs.push_back(
2835 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
Krzysztof Parzyszek2d790172018-02-27 22:40:52 +00002836 } else {
Krzysztof Parzyszekcc3f6302018-08-20 20:37:57 +00002837 NewMMOs.push_back(
2838 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
Krzysztof Parzyszek2d790172018-02-27 22:40:52 +00002839 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00002840 }
Chandler Carruthc73c0302018-08-16 21:30:05 +00002841 NewMI.setMemRefs(MF, NewMMOs);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002842}
2843
2844/// Clone the instruction for the new pipelined loop and update the
2845/// memory operands, if needed.
2846MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
2847 unsigned CurStageNum,
2848 unsigned InstStageNum) {
2849 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2850 // Check for tied operands in inline asm instructions. This should be handled
2851 // elsewhere, but I'm not sure of the best solution.
2852 if (OldMI->isInlineAsm())
2853 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
2854 const auto &MO = OldMI->getOperand(i);
2855 if (MO.isReg() && MO.isUse())
2856 break;
2857 unsigned UseIdx;
2858 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
2859 NewMI->tieOperands(i, UseIdx);
2860 }
2861 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
2862 return NewMI;
2863}
2864
2865/// Clone the instruction for the new pipelined loop. If needed, this
2866/// function updates the instruction using the values saved in the
2867/// InstrChanges structure.
2868MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
2869 unsigned CurStageNum,
2870 unsigned InstStageNum,
2871 SMSchedule &Schedule) {
2872 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
2873 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2874 InstrChanges.find(getSUnit(OldMI));
2875 if (It != InstrChanges.end()) {
2876 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2877 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00002878 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002879 return nullptr;
2880 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
2881 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
2882 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
2883 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
2884 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2885 }
2886 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
2887 return NewMI;
2888}
2889
2890/// Update the machine instruction with new virtual registers. This
2891/// function may change the defintions and/or uses.
2892void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
2893 unsigned CurStageNum,
2894 unsigned InstrStageNum,
2895 SMSchedule &Schedule,
2896 ValueMapTy *VRMap) {
2897 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
2898 MachineOperand &MO = NewMI->getOperand(i);
2899 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2900 continue;
2901 unsigned reg = MO.getReg();
2902 if (MO.isDef()) {
2903 // Create a new virtual register for the definition.
2904 const TargetRegisterClass *RC = MRI.getRegClass(reg);
2905 unsigned NewReg = MRI.createVirtualRegister(RC);
2906 MO.setReg(NewReg);
2907 VRMap[CurStageNum][reg] = NewReg;
2908 if (LastDef)
2909 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
2910 } else if (MO.isUse()) {
2911 MachineInstr *Def = MRI.getVRegDef(reg);
2912 // Compute the stage that contains the last definition for instruction.
2913 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
2914 unsigned StageNum = CurStageNum;
2915 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
2916 // Compute the difference in stages between the defintion and the use.
2917 unsigned StageDiff = (InstrStageNum - DefStageNum);
2918 // Make an adjustment to get the last definition.
2919 StageNum -= StageDiff;
2920 }
2921 if (VRMap[StageNum].count(reg))
2922 MO.setReg(VRMap[StageNum][reg]);
2923 }
2924 }
2925}
2926
2927/// Return the instruction in the loop that defines the register.
2928/// If the definition is a Phi, then follow the Phi operand to
2929/// the instruction in the loop.
2930MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
2931 SmallPtrSet<MachineInstr *, 8> Visited;
2932 MachineInstr *Def = MRI.getVRegDef(Reg);
2933 while (Def->isPHI()) {
2934 if (!Visited.insert(Def).second)
2935 break;
2936 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2937 if (Def->getOperand(i + 1).getMBB() == BB) {
2938 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2939 break;
2940 }
2941 }
2942 return Def;
2943}
2944
2945/// Return the new name for the value from the previous stage.
2946unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
2947 unsigned LoopVal, unsigned LoopStage,
2948 ValueMapTy *VRMap,
2949 MachineBasicBlock *BB) {
2950 unsigned PrevVal = 0;
2951 if (StageNum > PhiStage) {
2952 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
2953 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
2954 // The name is defined in the previous stage.
2955 PrevVal = VRMap[StageNum - 1][LoopVal];
2956 else if (VRMap[StageNum].count(LoopVal))
2957 // The previous name is defined in the current stage when the instruction
2958 // order is swapped.
2959 PrevVal = VRMap[StageNum][LoopVal];
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00002960 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
Brendon Cahoon254f8892016-07-29 16:44:44 +00002961 // The loop value hasn't yet been scheduled.
2962 PrevVal = LoopVal;
2963 else if (StageNum == PhiStage + 1)
2964 // The loop value is another phi, which has not been scheduled.
2965 PrevVal = getInitPhiReg(*LoopInst, BB);
2966 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
2967 // The loop value is another phi, which has been scheduled.
2968 PrevVal =
2969 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
2970 LoopStage, VRMap, BB);
2971 }
2972 return PrevVal;
2973}
2974
2975/// Rewrite the Phi values in the specified block to use the mappings
2976/// from the initial operand. Once the Phi is scheduled, we switch
2977/// to using the loop value instead of the Phi value, so those names
2978/// do not need to be rewritten.
2979void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
2980 unsigned StageNum,
2981 SMSchedule &Schedule,
2982 ValueMapTy *VRMap,
2983 InstrMapTy &InstrMap) {
Bob Wilson90ecac02018-01-04 02:58:15 +00002984 for (auto &PHI : BB->phis()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002985 unsigned InitVal = 0;
2986 unsigned LoopVal = 0;
Bob Wilson90ecac02018-01-04 02:58:15 +00002987 getPhiRegs(PHI, BB, InitVal, LoopVal);
2988 unsigned PhiDef = PHI.getOperand(0).getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002989
2990 unsigned PhiStage =
2991 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
2992 unsigned LoopStage =
2993 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2994 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
2995 if (NumPhis > StageNum)
2996 NumPhis = StageNum;
2997 for (unsigned np = 0; np <= NumPhis; ++np) {
2998 unsigned NewVal =
2999 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3000 if (!NewVal)
3001 NewVal = InitVal;
Bob Wilson90ecac02018-01-04 02:58:15 +00003002 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003003 PhiDef, NewVal);
3004 }
3005 }
3006}
3007
3008/// Rewrite a previously scheduled instruction to use the register value
3009/// from the new instruction. Make sure the instruction occurs in the
3010/// basic block, and we don't change the uses in the new instruction.
3011void SwingSchedulerDAG::rewriteScheduledInstr(
3012 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3013 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3014 unsigned NewReg, unsigned PrevReg) {
3015 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3016 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3017 // Rewrite uses that have been scheduled already to use the new
3018 // Phi register.
3019 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3020 EI = MRI.use_end();
3021 UI != EI;) {
3022 MachineOperand &UseOp = *UI;
3023 MachineInstr *UseMI = UseOp.getParent();
3024 ++UI;
3025 if (UseMI->getParent() != BB)
3026 continue;
3027 if (UseMI->isPHI()) {
3028 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3029 continue;
3030 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3031 continue;
3032 }
3033 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3034 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3035 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3036 int StageSched = Schedule.stageScheduled(OrigMISU);
3037 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3038 unsigned ReplaceReg = 0;
3039 // This is the stage for the scheduled instruction.
3040 if (StagePhi == StageSched && Phi->isPHI()) {
3041 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3042 if (PrevReg && InProlog)
3043 ReplaceReg = PrevReg;
3044 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3045 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3046 ReplaceReg = PrevReg;
3047 else
3048 ReplaceReg = NewReg;
3049 }
3050 // The scheduled instruction occurs before the scheduled Phi, and the
3051 // Phi is not loop carried.
3052 if (!InProlog && StagePhi + 1 == StageSched &&
3053 !Schedule.isLoopCarried(this, *Phi))
3054 ReplaceReg = NewReg;
3055 if (StagePhi > StageSched && Phi->isPHI())
3056 ReplaceReg = NewReg;
3057 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3058 ReplaceReg = NewReg;
3059 if (ReplaceReg) {
3060 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3061 UseOp.setReg(ReplaceReg);
3062 }
3063 }
3064}
3065
3066/// Check if we can change the instruction to use an offset value from the
3067/// previous iteration. If so, return true and set the base and offset values
3068/// so that we can rewrite the load, if necessary.
3069/// v1 = Phi(v0, v3)
3070/// v2 = load v1, 0
3071/// v3 = post_store v1, 4, x
3072/// This function enables the load to be rewritten as v2 = load v3, 4.
3073bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3074 unsigned &BasePos,
3075 unsigned &OffsetPos,
3076 unsigned &NewBase,
3077 int64_t &Offset) {
3078 // Get the load instruction.
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003079 if (TII->isPostIncrement(*MI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003080 return false;
3081 unsigned BasePosLd, OffsetPosLd;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003082 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003083 return false;
3084 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3085
3086 // Look for the Phi instruction.
Justin Bognerfdf9bf42017-10-10 23:50:49 +00003087 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003088 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3089 if (!Phi || !Phi->isPHI())
3090 return false;
3091 // Get the register defined in the loop block.
3092 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3093 if (!PrevReg)
3094 return false;
3095
3096 // Check for the post-increment load/store instruction.
3097 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3098 if (!PrevDef || PrevDef == MI)
3099 return false;
3100
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003101 if (!TII->isPostIncrement(*PrevDef))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003102 return false;
3103
3104 unsigned BasePos1 = 0, OffsetPos1 = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003105 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003106 return false;
3107
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003108 // Make sure that the instructions do not access the same memory location in
3109 // the next iteration.
Brendon Cahoon254f8892016-07-29 16:44:44 +00003110 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3111 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
Krzysztof Parzyszek40df8a22018-03-26 16:17:06 +00003112 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3113 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
3114 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
3115 MF.DeleteMachineInstr(NewMI);
3116 if (!Disjoint)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003117 return false;
3118
3119 // Set the return value once we determine that we return true.
3120 BasePos = BasePosLd;
3121 OffsetPos = OffsetPosLd;
3122 NewBase = PrevReg;
3123 Offset = StoreOffset;
3124 return true;
3125}
3126
3127/// Apply changes to the instruction if needed. The changes are need
3128/// to improve the scheduling and depend up on the final schedule.
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003129void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3130 SMSchedule &Schedule) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003131 SUnit *SU = getSUnit(MI);
3132 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3133 InstrChanges.find(SU);
3134 if (It != InstrChanges.end()) {
3135 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3136 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003137 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003138 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003139 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3140 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3141 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3142 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3143 int BaseStageNum = Schedule.stageScheduled(SU);
3144 int BaseCycleNum = Schedule.cycleScheduled(SU);
3145 if (BaseStageNum < DefStageNum) {
3146 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3147 int OffsetDiff = DefStageNum - BaseStageNum;
3148 if (DefCycleNum < BaseCycleNum) {
3149 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3150 if (OffsetDiff > 0)
3151 --OffsetDiff;
3152 }
3153 int64_t NewOffset =
3154 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3155 NewMI->getOperand(OffsetPos).setImm(NewOffset);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003156 SU->setInstr(NewMI);
3157 MISUnitMap[NewMI] = SU;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003158 NewMIs.insert(NewMI);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003159 }
3160 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003161}
3162
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003163/// Return true for an order or output dependence that is loop carried
3164/// potentially. A dependence is loop carried if the destination defines a valu
3165/// that may be used or defined by the source in a subsequent iteration.
3166bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
3167 bool isSucc) {
3168 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
3169 Dep.isArtificial())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003170 return false;
3171
3172 if (!SwpPruneLoopCarried)
3173 return true;
3174
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003175 if (Dep.getKind() == SDep::Output)
3176 return true;
3177
Brendon Cahoon254f8892016-07-29 16:44:44 +00003178 MachineInstr *SI = Source->getInstr();
3179 MachineInstr *DI = Dep.getSUnit()->getInstr();
3180 if (!isSucc)
3181 std::swap(SI, DI);
3182 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3183
3184 // Assume ordered loads and stores may have a loop carried dependence.
3185 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3186 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3187 return true;
3188
3189 // Only chain dependences between a load and store can be loop carried.
3190 if (!DI->mayStore() || !SI->mayLoad())
3191 return false;
3192
3193 unsigned DeltaS, DeltaD;
3194 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3195 return true;
3196
Bjorn Pettersson238c9d6302019-04-19 09:08:38 +00003197 const MachineOperand *BaseOpS, *BaseOpD;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003198 int64_t OffsetS, OffsetD;
3199 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
Francis Visoiu Mistrihd7eebd62018-11-28 12:00:20 +00003200 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) ||
3201 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003202 return true;
3203
Francis Visoiu Mistrihd7eebd62018-11-28 12:00:20 +00003204 if (!BaseOpS->isIdenticalTo(*BaseOpD))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003205 return true;
3206
Krzysztof Parzyszek8c07d0c2018-03-26 16:58:40 +00003207 // Check that the base register is incremented by a constant value for each
3208 // iteration.
Francis Visoiu Mistrihd7eebd62018-11-28 12:00:20 +00003209 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
Krzysztof Parzyszek8c07d0c2018-03-26 16:58:40 +00003210 if (!Def || !Def->isPHI())
3211 return true;
3212 unsigned InitVal = 0;
3213 unsigned LoopVal = 0;
3214 getPhiRegs(*Def, BB, InitVal, LoopVal);
3215 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
3216 int D = 0;
3217 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
3218 return true;
3219
Brendon Cahoon254f8892016-07-29 16:44:44 +00003220 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3221 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3222
3223 // This is the main test, which checks the offset values and the loop
3224 // increment value to determine if the accesses may be loop carried.
Brendon Cahoon57c3d4b2019-04-11 21:57:51 +00003225 if (AccessSizeS == MemoryLocation::UnknownSize ||
3226 AccessSizeD == MemoryLocation::UnknownSize)
3227 return true;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003228
Brendon Cahoon57c3d4b2019-04-11 21:57:51 +00003229 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
3230 return true;
3231
3232 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003233}
3234
Krzysztof Parzyszek88391242016-12-22 19:21:20 +00003235void SwingSchedulerDAG::postprocessDAG() {
3236 for (auto &M : Mutations)
3237 M->apply(this);
3238}
3239
Brendon Cahoon254f8892016-07-29 16:44:44 +00003240/// Try to schedule the node at the specified StartCycle and continue
3241/// until the node is schedule or the EndCycle is reached. This function
3242/// returns true if the node is scheduled. This routine may search either
3243/// forward or backward for a place to insert the instruction based upon
3244/// the relative values of StartCycle and EndCycle.
3245bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3246 bool forward = true;
3247 if (StartCycle > EndCycle)
3248 forward = false;
3249
3250 // The terminating condition depends on the direction.
3251 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3252 for (int curCycle = StartCycle; curCycle != termCycle;
3253 forward ? ++curCycle : --curCycle) {
3254
Jinsong Jif6cb3bc2019-05-29 03:02:59 +00003255 // Add the already scheduled instructions at the specified cycle to the
3256 // DFA.
3257 ProcItinResources.clearResources();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003258 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3259 checkCycle <= LastCycle; checkCycle += II) {
3260 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3261
3262 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3263 E = cycleInstrs.end();
3264 I != E; ++I) {
3265 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3266 continue;
Jinsong Jif6cb3bc2019-05-29 03:02:59 +00003267 assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00003268 "These instructions have already been scheduled.");
Jinsong Jif6cb3bc2019-05-29 03:02:59 +00003269 ProcItinResources.reserveResources(*(*I)->getInstr());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003270 }
3271 }
3272 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
Jinsong Jif6cb3bc2019-05-29 03:02:59 +00003273 ProcItinResources.canReserveResources(*SU->getInstr())) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00003274 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00003275 dbgs() << "\tinsert at cycle " << curCycle << " ";
3276 SU->getInstr()->dump();
3277 });
3278
3279 ScheduledInstrs[curCycle].push_back(SU);
3280 InstrToCycle.insert(std::make_pair(SU, curCycle));
3281 if (curCycle > LastCycle)
3282 LastCycle = curCycle;
3283 if (curCycle < FirstCycle)
3284 FirstCycle = curCycle;
3285 return true;
3286 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +00003287 LLVM_DEBUG({
Brendon Cahoon254f8892016-07-29 16:44:44 +00003288 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3289 SU->getInstr()->dump();
3290 });
3291 }
3292 return false;
3293}
3294
3295// Return the cycle of the earliest scheduled instruction in the chain.
3296int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3297 SmallPtrSet<SUnit *, 8> Visited;
3298 SmallVector<SDep, 8> Worklist;
3299 Worklist.push_back(Dep);
3300 int EarlyCycle = INT_MAX;
3301 while (!Worklist.empty()) {
3302 const SDep &Cur = Worklist.pop_back_val();
3303 SUnit *PrevSU = Cur.getSUnit();
3304 if (Visited.count(PrevSU))
3305 continue;
3306 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3307 if (it == InstrToCycle.end())
3308 continue;
3309 EarlyCycle = std::min(EarlyCycle, it->second);
3310 for (const auto &PI : PrevSU->Preds)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003311 if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003312 Worklist.push_back(PI);
3313 Visited.insert(PrevSU);
3314 }
3315 return EarlyCycle;
3316}
3317
3318// Return the cycle of the latest scheduled instruction in the chain.
3319int SMSchedule::latestCycleInChain(const SDep &Dep) {
3320 SmallPtrSet<SUnit *, 8> Visited;
3321 SmallVector<SDep, 8> Worklist;
3322 Worklist.push_back(Dep);
3323 int LateCycle = INT_MIN;
3324 while (!Worklist.empty()) {
3325 const SDep &Cur = Worklist.pop_back_val();
3326 SUnit *SuccSU = Cur.getSUnit();
3327 if (Visited.count(SuccSU))
3328 continue;
3329 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3330 if (it == InstrToCycle.end())
3331 continue;
3332 LateCycle = std::max(LateCycle, it->second);
3333 for (const auto &SI : SuccSU->Succs)
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003334 if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003335 Worklist.push_back(SI);
3336 Visited.insert(SuccSU);
3337 }
3338 return LateCycle;
3339}
3340
3341/// If an instruction has a use that spans multiple iterations, then
3342/// return true. These instructions are characterized by having a back-ege
3343/// to a Phi, which contains a reference to another Phi.
3344static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3345 for (auto &P : SU->Preds)
3346 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3347 for (auto &S : P.getSUnit()->Succs)
Krzysztof Parzyszekb9b75b82018-03-26 15:53:23 +00003348 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003349 return P.getSUnit();
3350 return nullptr;
3351}
3352
3353/// Compute the scheduling start slot for the instruction. The start slot
3354/// depends on any predecessor or successor nodes scheduled already.
3355void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3356 int *MinEnd, int *MaxStart, int II,
3357 SwingSchedulerDAG *DAG) {
3358 // Iterate over each instruction that has been scheduled already. The start
Hiroshi Inouec73b6d62018-06-20 05:29:26 +00003359 // slot computation depends on whether the previously scheduled instruction
Brendon Cahoon254f8892016-07-29 16:44:44 +00003360 // is a predecessor or successor of the specified instruction.
3361 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3362
3363 // Iterate over each instruction in the current cycle.
3364 for (SUnit *I : getInstructions(cycle)) {
3365 // Because we're processing a DAG for the dependences, we recognize
3366 // the back-edge in recurrences by anti dependences.
3367 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3368 const SDep &Dep = SU->Preds[i];
3369 if (Dep.getSUnit() == I) {
3370 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003371 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003372 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3373 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003374 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003375 int End = earliestCycleInChain(Dep) + (II - 1);
3376 *MinEnd = std::min(*MinEnd, End);
3377 }
3378 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003379 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003380 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3381 *MinLateStart = std::min(*MinLateStart, LateStart);
3382 }
3383 }
3384 // For instruction that requires multiple iterations, make sure that
3385 // the dependent instruction is not scheduled past the definition.
3386 SUnit *BE = multipleIterations(I, DAG);
3387 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3388 !SU->isPred(I))
3389 *MinLateStart = std::min(*MinLateStart, cycle);
3390 }
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00003391 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003392 if (SU->Succs[i].getSUnit() == I) {
3393 const SDep &Dep = SU->Succs[i];
3394 if (!DAG->isBackedge(SU, Dep)) {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003395 int LateStart = cycle - Dep.getLatency() +
Brendon Cahoon254f8892016-07-29 16:44:44 +00003396 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3397 *MinLateStart = std::min(*MinLateStart, LateStart);
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003398 if (DAG->isLoopCarriedDep(SU, Dep)) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003399 int Start = latestCycleInChain(Dep) + 1 - II;
3400 *MaxStart = std::max(*MaxStart, Start);
3401 }
3402 } else {
Krzysztof Parzyszekc715a5d2018-03-21 16:39:11 +00003403 int EarlyStart = cycle + Dep.getLatency() -
Brendon Cahoon254f8892016-07-29 16:44:44 +00003404 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3405 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3406 }
3407 }
Krzysztof Parzyszeka2122042018-03-26 16:33:16 +00003408 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003409 }
3410 }
3411}
3412
3413/// Order the instructions within a cycle so that the definitions occur
3414/// before the uses. Returns true if the instruction is added to the start
3415/// of the list, or false if added to the end.
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003416void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003417 std::deque<SUnit *> &Insts) {
3418 MachineInstr *MI = SU->getInstr();
3419 bool OrderBeforeUse = false;
3420 bool OrderAfterDef = false;
3421 bool OrderBeforeDef = false;
3422 unsigned MoveDef = 0;
3423 unsigned MoveUse = 0;
3424 int StageInst1 = stageScheduled(SU);
3425
3426 unsigned Pos = 0;
3427 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3428 ++I, ++Pos) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003429 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3430 MachineOperand &MO = MI->getOperand(i);
3431 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3432 continue;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003433
Brendon Cahoon254f8892016-07-29 16:44:44 +00003434 unsigned Reg = MO.getReg();
3435 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003436 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003437 if (MI->getOperand(BasePos).getReg() == Reg)
3438 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3439 Reg = NewReg;
3440 bool Reads, Writes;
3441 std::tie(Reads, Writes) =
3442 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3443 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3444 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003445 if (MoveUse == 0)
3446 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003447 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3448 // Add the instruction after the scheduled instruction.
3449 OrderAfterDef = true;
3450 MoveDef = Pos;
3451 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3452 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3453 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003454 if (MoveUse == 0)
3455 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003456 } else {
3457 OrderAfterDef = true;
3458 MoveDef = Pos;
3459 }
3460 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3461 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003462 if (MoveUse == 0)
3463 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003464 if (MoveUse != 0) {
3465 OrderAfterDef = true;
3466 MoveDef = Pos - 1;
3467 }
3468 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3469 // Add the instruction before the scheduled instruction.
3470 OrderBeforeUse = true;
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003471 if (MoveUse == 0)
3472 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003473 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3474 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003475 if (MoveUse == 0) {
3476 OrderBeforeDef = true;
3477 MoveUse = Pos;
3478 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003479 }
3480 }
3481 // Check for order dependences between instructions. Make sure the source
3482 // is ordered before the destination.
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003483 for (auto &S : SU->Succs) {
3484 if (S.getSUnit() != *I)
3485 continue;
3486 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3487 OrderBeforeUse = true;
3488 if (Pos < MoveUse)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003489 MoveUse = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003490 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003491 }
3492 for (auto &P : SU->Preds) {
3493 if (P.getSUnit() != *I)
3494 continue;
3495 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
3496 OrderAfterDef = true;
3497 MoveDef = Pos;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003498 }
Krzysztof Parzyszek8e1363d2018-03-26 16:05:55 +00003499 }
Brendon Cahoon254f8892016-07-29 16:44:44 +00003500 }
3501
3502 // A circular dependence.
3503 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3504 OrderBeforeUse = false;
3505
3506 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3507 // to a loop-carried dependence.
3508 if (OrderBeforeDef)
3509 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3510
3511 // The uncommon case when the instruction order needs to be updated because
3512 // there is both a use and def.
3513 if (OrderBeforeUse && OrderAfterDef) {
3514 SUnit *UseSU = Insts.at(MoveUse);
3515 SUnit *DefSU = Insts.at(MoveDef);
3516 if (MoveUse > MoveDef) {
3517 Insts.erase(Insts.begin() + MoveUse);
3518 Insts.erase(Insts.begin() + MoveDef);
3519 } else {
3520 Insts.erase(Insts.begin() + MoveDef);
3521 Insts.erase(Insts.begin() + MoveUse);
3522 }
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003523 orderDependence(SSD, UseSU, Insts);
3524 orderDependence(SSD, SU, Insts);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003525 orderDependence(SSD, DefSU, Insts);
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003526 return;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003527 }
3528 // Put the new instruction first if there is a use in the list. Otherwise,
3529 // put it at the end of the list.
3530 if (OrderBeforeUse)
3531 Insts.push_front(SU);
3532 else
3533 Insts.push_back(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003534}
3535
3536/// Return true if the scheduled Phi has a loop carried operand.
3537bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3538 if (!Phi.isPHI())
3539 return false;
Hiroshi Inouec73b6d62018-06-20 05:29:26 +00003540 assert(Phi.isPHI() && "Expecting a Phi.");
Brendon Cahoon254f8892016-07-29 16:44:44 +00003541 SUnit *DefSU = SSD->getSUnit(&Phi);
3542 unsigned DefCycle = cycleScheduled(DefSU);
3543 int DefStage = stageScheduled(DefSU);
3544
3545 unsigned InitVal = 0;
3546 unsigned LoopVal = 0;
3547 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3548 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3549 if (!UseSU)
3550 return true;
3551 if (UseSU->getInstr()->isPHI())
3552 return true;
3553 unsigned LoopCycle = cycleScheduled(UseSU);
3554 int LoopStage = stageScheduled(UseSU);
Simon Pilgrim3d8482a2016-11-14 10:40:23 +00003555 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003556}
3557
3558/// Return true if the instruction is a definition that is loop carried
3559/// and defines the use on the next iteration.
3560/// v1 = phi(v2, v3)
3561/// (Def) v3 = op v1
3562/// (MO) = v1
3563/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3564/// register.
3565bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3566 MachineInstr *Def, MachineOperand &MO) {
3567 if (!MO.isReg())
3568 return false;
3569 if (Def->isPHI())
3570 return false;
3571 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3572 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3573 return false;
3574 if (!isLoopCarried(SSD, *Phi))
3575 return false;
3576 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3577 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3578 MachineOperand &DMO = Def->getOperand(i);
3579 if (!DMO.isReg() || !DMO.isDef())
3580 continue;
3581 if (DMO.getReg() == LoopReg)
3582 return true;
3583 }
3584 return false;
3585}
3586
3587// Check if the generated schedule is valid. This function checks if
3588// an instruction that uses a physical register is scheduled in a
3589// different stage than the definition. The pipeliner does not handle
3590// physical register values that may cross a basic block boundary.
3591bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003592 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3593 SUnit &SU = SSD->SUnits[i];
3594 if (!SU.hasPhysRegDefs)
3595 continue;
3596 int StageDef = stageScheduled(&SU);
3597 assert(StageDef != -1 && "Instruction should have been scheduled.");
3598 for (auto &SI : SU.Succs)
3599 if (SI.isAssignedRegDep())
Simon Pilgrimb39236b2016-07-29 18:57:32 +00003600 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003601 if (stageScheduled(SI.getSUnit()) != StageDef)
3602 return false;
3603 }
3604 return true;
3605}
3606
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003607/// A property of the node order in swing-modulo-scheduling is
3608/// that for nodes outside circuits the following holds:
3609/// none of them is scheduled after both a successor and a
3610/// predecessor.
3611/// The method below checks whether the property is met.
3612/// If not, debug information is printed and statistics information updated.
3613/// Note that we do not use an assert statement.
3614/// The reason is that although an invalid node oder may prevent
3615/// the pipeliner from finding a pipelined schedule for arbitrary II,
3616/// it does not lead to the generation of incorrect code.
3617void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
3618
3619 // a sorted vector that maps each SUnit to its index in the NodeOrder
3620 typedef std::pair<SUnit *, unsigned> UnitIndex;
3621 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
3622
3623 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
3624 Indices.push_back(std::make_pair(NodeOrder[i], i));
3625
3626 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
3627 return std::get<0>(i1) < std::get<0>(i2);
3628 };
3629
3630 // sort, so that we can perform a binary search
Fangrui Song0cac7262018-09-27 02:13:45 +00003631 llvm::sort(Indices, CompareKey);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003632
3633 bool Valid = true;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00003634 (void)Valid;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003635 // for each SUnit in the NodeOrder, check whether
3636 // it appears after both a successor and a predecessor
3637 // of the SUnit. If this is the case, and the SUnit
3638 // is not part of circuit, then the NodeOrder is not
3639 // valid.
3640 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
3641 SUnit *SU = NodeOrder[i];
3642 unsigned Index = i;
3643
3644 bool PredBefore = false;
3645 bool SuccBefore = false;
3646
3647 SUnit *Succ;
3648 SUnit *Pred;
David L Kreitzerfebf70a2018-03-16 21:21:23 +00003649 (void)Succ;
3650 (void)Pred;
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003651
3652 for (SDep &PredEdge : SU->Preds) {
3653 SUnit *PredSU = PredEdge.getSUnit();
3654 unsigned PredIndex =
3655 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
3656 std::make_pair(PredSU, 0), CompareKey));
3657 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
3658 PredBefore = true;
3659 Pred = PredSU;
3660 break;
3661 }
3662 }
3663
3664 for (SDep &SuccEdge : SU->Succs) {
3665 SUnit *SuccSU = SuccEdge.getSUnit();
3666 unsigned SuccIndex =
3667 std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(),
3668 std::make_pair(SuccSU, 0), CompareKey));
3669 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
3670 SuccBefore = true;
3671 Succ = SuccSU;
3672 break;
3673 }
3674 }
3675
3676 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
3677 // instructions in circuits are allowed to be scheduled
3678 // after both a successor and predecessor.
3679 bool InCircuit = std::any_of(
3680 Circuits.begin(), Circuits.end(),
3681 [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
3682 if (InCircuit)
Nicola Zaghend34e60c2018-05-14 12:53:11 +00003683 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003684 else {
3685 Valid = false;
3686 NumNodeOrderIssues++;
Nicola Zaghend34e60c2018-05-14 12:53:11 +00003687 LLVM_DEBUG(dbgs() << "Predecessor ";);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003688 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +00003689 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
3690 << " are scheduled before node " << SU->NodeNum
3691 << "\n";);
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003692 }
3693 }
3694
Nicola Zaghend34e60c2018-05-14 12:53:11 +00003695 LLVM_DEBUG({
Roorda, Jan-Willem4b8bcf02018-03-07 18:53:36 +00003696 if (!Valid)
3697 dbgs() << "Invalid node order found!\n";
3698 });
3699}
3700
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003701/// Attempt to fix the degenerate cases when the instruction serialization
3702/// causes the register lifetimes to overlap. For example,
3703/// p' = store_pi(p, b)
3704/// = load p, offset
3705/// In this case p and p' overlap, which means that two registers are needed.
3706/// Instead, this function changes the load to use p' and updates the offset.
3707void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
3708 unsigned OverlapReg = 0;
3709 unsigned NewBaseReg = 0;
3710 for (SUnit *SU : Instrs) {
3711 MachineInstr *MI = SU->getInstr();
3712 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3713 const MachineOperand &MO = MI->getOperand(i);
3714 // Look for an instruction that uses p. The instruction occurs in the
3715 // same cycle but occurs later in the serialized order.
3716 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
3717 // Check that the instruction appears in the InstrChanges structure,
3718 // which contains instructions that can have the offset updated.
3719 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3720 InstrChanges.find(SU);
3721 if (It != InstrChanges.end()) {
3722 unsigned BasePos, OffsetPos;
3723 // Update the base register and adjust the offset.
3724 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
Krzysztof Parzyszek12bdcab2017-10-11 15:59:51 +00003725 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3726 NewMI->getOperand(BasePos).setReg(NewBaseReg);
3727 int64_t NewOffset =
3728 MI->getOperand(OffsetPos).getImm() - It->second.second;
3729 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3730 SU->setInstr(NewMI);
3731 MISUnitMap[NewMI] = SU;
3732 NewMIs.insert(NewMI);
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003733 }
3734 }
3735 OverlapReg = 0;
3736 NewBaseReg = 0;
3737 break;
3738 }
3739 // Look for an instruction of the form p' = op(p), which uses and defines
3740 // two virtual registers that get allocated to the same physical register.
3741 unsigned TiedUseIdx = 0;
3742 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
3743 // OverlapReg is p in the example above.
3744 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
3745 // NewBaseReg is p' in the example above.
3746 NewBaseReg = MI->getOperand(i).getReg();
3747 break;
3748 }
3749 }
3750 }
3751}
3752
Brendon Cahoon254f8892016-07-29 16:44:44 +00003753/// After the schedule has been formed, call this function to combine
3754/// the instructions from the different stages/cycles. That is, this
3755/// function creates a schedule that represents a single iteration.
3756void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3757 // Move all instructions to the first stage from later stages.
3758 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3759 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3760 ++stage) {
3761 std::deque<SUnit *> &cycleInstrs =
3762 ScheduledInstrs[cycle + (stage * InitiationInterval)];
3763 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
3764 E = cycleInstrs.rend();
3765 I != E; ++I)
3766 ScheduledInstrs[cycle].push_front(*I);
3767 }
3768 }
3769 // Iterate over the definitions in each instruction, and compute the
3770 // stage difference for each use. Keep the maximum value.
3771 for (auto &I : InstrToCycle) {
3772 int DefStage = stageScheduled(I.first);
3773 MachineInstr *MI = I.first->getInstr();
3774 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3775 MachineOperand &Op = MI->getOperand(i);
3776 if (!Op.isReg() || !Op.isDef())
3777 continue;
3778
3779 unsigned Reg = Op.getReg();
3780 unsigned MaxDiff = 0;
3781 bool PhiIsSwapped = false;
3782 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
3783 EI = MRI.use_end();
3784 UI != EI; ++UI) {
3785 MachineOperand &UseOp = *UI;
3786 MachineInstr *UseMI = UseOp.getParent();
3787 SUnit *SUnitUse = SSD->getSUnit(UseMI);
3788 int UseStage = stageScheduled(SUnitUse);
3789 unsigned Diff = 0;
3790 if (UseStage != -1 && UseStage >= DefStage)
3791 Diff = UseStage - DefStage;
3792 if (MI->isPHI()) {
3793 if (isLoopCarried(SSD, *MI))
3794 ++Diff;
3795 else
3796 PhiIsSwapped = true;
3797 }
3798 MaxDiff = std::max(Diff, MaxDiff);
3799 }
3800 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
3801 }
3802 }
3803
3804 // Erase all the elements in the later stages. Only one iteration should
3805 // remain in the scheduled list, and it contains all the instructions.
3806 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3807 ScheduledInstrs.erase(cycle);
3808
3809 // Change the registers in instruction as specified in the InstrChanges
3810 // map. We need to use the new registers to create the correct order.
3811 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
3812 SUnit *SU = &SSD->SUnits[i];
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003813 SSD->applyInstrChange(SU->getInstr(), *this);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003814 }
3815
3816 // Reorder the instructions in each cycle to fix and improve the
3817 // generated code.
3818 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3819 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003820 std::deque<SUnit *> newOrderPhi;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003821 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3822 SUnit *SU = cycleInstrs[i];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003823 if (SU->getInstr()->isPHI())
3824 newOrderPhi.push_back(SU);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003825 }
3826 std::deque<SUnit *> newOrderI;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003827 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3828 SUnit *SU = cycleInstrs[i];
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003829 if (!SU->getInstr()->isPHI())
Brendon Cahoon254f8892016-07-29 16:44:44 +00003830 orderDependence(SSD, SU, newOrderI);
3831 }
3832 // Replace the old order with the new order.
Krzysztof Parzyszekf13bbf12018-03-26 16:23:29 +00003833 cycleInstrs.swap(newOrderPhi);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003834 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
Krzysztof Parzyszek8f174dd2017-10-11 15:51:44 +00003835 SSD->fixupRegisterOverlaps(cycleInstrs);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003836 }
3837
Nicola Zaghend34e60c2018-05-14 12:53:11 +00003838 LLVM_DEBUG(dump(););
Brendon Cahoon254f8892016-07-29 16:44:44 +00003839}
3840
Adrian Prantlfa2e3582019-01-14 17:24:11 +00003841void NodeSet::print(raw_ostream &os) const {
3842 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
3843 << " depth " << MaxDepth << " col " << Colocate << "\n";
3844 for (const auto &I : Nodes)
3845 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
3846 os << "\n";
3847}
3848
Aaron Ballman615eb472017-10-15 14:32:27 +00003849#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003850/// Print the schedule information to the given output.
3851void SMSchedule::print(raw_ostream &os) const {
3852 // Iterate over each cycle.
3853 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3854 // Iterate over each instruction in the cycle.
3855 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3856 for (SUnit *CI : cycleInstrs->second) {
3857 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3858 os << "(" << CI->NodeNum << ") ";
3859 CI->getInstr()->print(os);
3860 os << "\n";
3861 }
3862 }
3863}
3864
3865/// Utility function used for debugging to print the schedule.
Matthias Braun8c209aa2017-01-28 02:02:38 +00003866LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
Adrian Prantlfa2e3582019-01-14 17:24:11 +00003867LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
3868
Matthias Braun8c209aa2017-01-28 02:02:38 +00003869#endif
Adrian Prantlfa2e3582019-01-14 17:24:11 +00003870
Jinsong Jif6cb3bc2019-05-29 03:02:59 +00003871void ResourceManager::initProcResourceVectors(
3872 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
3873 unsigned ProcResourceID = 0;
Adrian Prantlfa2e3582019-01-14 17:24:11 +00003874
Jinsong Jif6cb3bc2019-05-29 03:02:59 +00003875 // We currently limit the resource kinds to 64 and below so that we can use
3876 // uint64_t for Masks
3877 assert(SM.getNumProcResourceKinds() < 64 &&
3878 "Too many kinds of resources, unsupported");
3879 // Create a unique bitmask for every processor resource unit.
3880 // Skip resource at index 0, since it always references 'InvalidUnit'.
3881 Masks.resize(SM.getNumProcResourceKinds());
3882 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3883 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3884 if (Desc.SubUnitsIdxBegin)
3885 continue;
3886 Masks[I] = 1ULL << ProcResourceID;
3887 ProcResourceID++;
3888 }
3889 // Create a unique bitmask for every processor resource group.
3890 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3891 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3892 if (!Desc.SubUnitsIdxBegin)
3893 continue;
3894 Masks[I] = 1ULL << ProcResourceID;
3895 for (unsigned U = 0; U < Desc.NumUnits; ++U)
3896 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3897 ProcResourceID++;
3898 }
3899 LLVM_DEBUG({
3900 dbgs() << "ProcResourceDesc:\n";
3901 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3902 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3903 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3904 ProcResource->Name, I, Masks[I], ProcResource->NumUnits);
3905 }
3906 dbgs() << " -----------------\n";
3907 });
3908}
3909
3910bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
3911
3912 LLVM_DEBUG({ dbgs() << "canReserveResources:\n"; });
3913 if (UseDFA)
3914 return DFAResources->canReserveResources(MID);
3915
3916 unsigned InsnClass = MID->getSchedClass();
3917 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3918 if (!SCDesc->isValid()) {
3919 LLVM_DEBUG({
3920 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3921 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3922 });
3923 return true;
3924 }
3925
3926 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
3927 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
3928 for (; I != E; ++I) {
3929 if (!I->Cycles)
3930 continue;
3931 const MCProcResourceDesc *ProcResource =
3932 SM.getProcResource(I->ProcResourceIdx);
3933 unsigned NumUnits = ProcResource->NumUnits;
3934 LLVM_DEBUG({
3935 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3936 ProcResource->Name, I->ProcResourceIdx,
3937 ProcResourceCount[I->ProcResourceIdx], NumUnits,
3938 I->Cycles);
3939 });
3940 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
3941 return false;
3942 }
3943 LLVM_DEBUG(dbgs() << "return true\n\n";);
3944 return true;
3945}
3946
3947void ResourceManager::reserveResources(const MCInstrDesc *MID) {
3948 LLVM_DEBUG({ dbgs() << "reserveResources:\n"; });
3949 if (UseDFA)
3950 return DFAResources->reserveResources(MID);
3951
3952 unsigned InsnClass = MID->getSchedClass();
3953 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3954 if (!SCDesc->isValid()) {
3955 LLVM_DEBUG({
3956 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3957 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3958 });
3959 return;
3960 }
3961 for (const MCWriteProcResEntry &PRE :
3962 make_range(STI->getWriteProcResBegin(SCDesc),
3963 STI->getWriteProcResEnd(SCDesc))) {
3964 if (!PRE.Cycles)
3965 continue;
3966 const MCProcResourceDesc *ProcResource =
3967 SM.getProcResource(PRE.ProcResourceIdx);
3968 unsigned NumUnits = ProcResource->NumUnits;
3969 ++ProcResourceCount[PRE.ProcResourceIdx];
3970 LLVM_DEBUG({
3971 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3972 ProcResource->Name, PRE.ProcResourceIdx,
3973 ProcResourceCount[PRE.ProcResourceIdx], NumUnits,
3974 PRE.Cycles);
3975 });
3976 }
3977 LLVM_DEBUG({ dbgs() << "reserveResources: done!\n\n"; });
3978}
3979
3980bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3981 return canReserveResources(&MI.getDesc());
3982}
3983
3984void ResourceManager::reserveResources(const MachineInstr &MI) {
3985 return reserveResources(&MI.getDesc());
3986}
3987
3988void ResourceManager::clearResources() {
3989 if (UseDFA)
3990 return DFAResources->clearResources();
3991 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
3992}
Adrian Prantlfa2e3582019-01-14 17:24:11 +00003993