blob: a58c590147867716fe126d544328e9b50ea622cd [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner847df252004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner847df252004-01-30 22:25:18 +000020//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnera960d952003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
Chris Lattner95b2c7d2006-12-19 22:59:26 +000026#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000027#include "X86.h"
28#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000030#include "llvm/ADT/DenseMap.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000032#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000035#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000039#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000044#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000045using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000046
Chris Lattner95b2c7d2006-12-19 22:59:26 +000047STATISTIC(NumFXCH, "Number of fxch instructions inserted");
48STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000049
Chris Lattner95b2c7d2006-12-19 22:59:26 +000050namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000051 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000052 static char ID;
Owen Anderson1f745902010-08-06 00:23:35 +000053 FPS() : MachineFunctionPass(&ID) {
Jakob Stoklund Olesenb47bb132010-07-16 22:00:33 +000054 // This is really only to keep valgrind quiet.
55 // The logic in isLive() is too much for it.
56 memset(Stack, 0, sizeof(Stack));
57 memset(RegMap, 0, sizeof(RegMap));
58 }
Devang Patel794fd752007-05-01 21:15:47 +000059
Evan Chengbbeeb2a2008-09-22 20:58:04 +000060 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000061 AU.setPreservesCFG();
Evan Cheng8b56a902008-09-22 22:21:38 +000062 AU.addPreservedID(MachineLoopInfoID);
63 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000064 MachineFunctionPass::getAnalysisUsage(AU);
65 }
66
Chris Lattnera960d952003-01-13 01:01:59 +000067 virtual bool runOnMachineFunction(MachineFunction &MF);
68
69 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
70
Chris Lattnera960d952003-01-13 01:01:59 +000071 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000072 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000073
74 // Two CFG edges are related if they leave the same block, or enter the same
75 // block. The transitive closure of an edge under this relation is a
76 // LiveBundle. It represents a set of CFG edges where the live FP stack
77 // registers must be allocated identically in the x87 stack.
78 //
79 // A LiveBundle is usually all the edges leaving a block, or all the edges
80 // entering a block, but it can contain more edges if critical edges are
81 // present.
82 //
83 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
84 // but the exact mapping of FP registers to stack slots is fixed later.
85 struct LiveBundle {
86 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
87 unsigned Mask;
88
89 // Number of pre-assigned live registers in FixStack. This is 0 when the
90 // stack order has not yet been fixed.
91 unsigned FixCount;
92
93 // Assigned stack order for live-in registers.
94 // FixStack[i] == getStackEntry(i) for all i < FixCount.
95 unsigned char FixStack[8];
96
97 LiveBundle(unsigned m = 0) : Mask(m), FixCount(0) {}
98
99 // Have the live registers been assigned a stack order yet?
100 bool isFixed() const { return !Mask || FixCount; }
101 };
102
103 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
104 // with no live FP registers.
105 SmallVector<LiveBundle, 8> LiveBundles;
106
107 // Map each MBB in the current function to an (ingoing, outgoing) index into
108 // LiveBundles. Blocks with no FP registers live in or out map to (0, 0)
109 // and are not actually stored in the map.
110 DenseMap<MachineBasicBlock*, std::pair<unsigned, unsigned> > BlockBundle;
111
112 // Return a bitmask of FP registers in block's live-in list.
113 unsigned calcLiveInMask(MachineBasicBlock *MBB) {
114 unsigned Mask = 0;
115 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
116 E = MBB->livein_end(); I != E; ++I) {
117 unsigned Reg = *I - X86::FP0;
118 if (Reg < 8)
119 Mask |= 1 << Reg;
120 }
121 return Mask;
122 }
123
124 // Partition all the CFG edges into LiveBundles.
125 void bundleCFG(MachineFunction &MF);
126
Evan Cheng32644ac2006-12-01 10:11:51 +0000127 MachineBasicBlock *MBB; // Current basic block
128 unsigned Stack[8]; // FP<n> Registers in each stack slot...
129 unsigned RegMap[8]; // Track which stack slot contains each register
130 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000131
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000132 // Set up our stack model to match the incoming registers to MBB.
133 void setupBlockStack();
134
135 // Shuffle live registers to match the expectations of successor blocks.
136 void finishBlockStack();
137
Chris Lattnera960d952003-01-13 01:01:59 +0000138 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +0000139 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +0000140 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +0000141 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000142 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +0000143 }
David Greenef5c95a62010-01-05 01:29:34 +0000144 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +0000145 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000146
Chris Lattner447ff682008-03-11 03:23:40 +0000147 /// isStackEmpty - Return true if the FP stack is empty.
148 bool isStackEmpty() const {
149 return StackTop == 0;
150 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000151
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000152 /// getSlot - Return the stack slot number a particular register number is
153 /// in.
Chris Lattnera960d952003-01-13 01:01:59 +0000154 unsigned getSlot(unsigned RegNo) const {
155 assert(RegNo < 8 && "Regno out of range!");
156 return RegMap[RegNo];
157 }
158
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000159 /// isLive - Is RegNo currently live in the stack?
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000160 bool isLive(unsigned RegNo) const {
161 unsigned Slot = getSlot(RegNo);
162 return Slot < StackTop && Stack[Slot] == RegNo;
163 }
164
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000165 /// getScratchReg - Return an FP register that is not currently in use.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000166 unsigned getScratchReg() {
167 for (int i = 7; i >= 0; --i)
168 if (!isLive(i))
169 return i;
170 llvm_unreachable("Ran out of scratch FP registers");
171 }
172
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000173 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +0000174 unsigned getStackEntry(unsigned STi) const {
175 assert(STi < StackTop && "Access past stack top!");
176 return Stack[StackTop-1-STi];
177 }
178
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000179 /// getSTReg - Return the X86::ST(i) register which contains the specified
180 /// FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000181 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000182 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000183 }
184
Chris Lattner447ff682008-03-11 03:23:40 +0000185 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000186 void pushReg(unsigned Reg) {
187 assert(Reg < 8 && "Register number out of range!");
188 assert(StackTop < 8 && "Stack overflow!");
189 Stack[StackTop] = Reg;
190 RegMap[Reg] = StackTop++;
191 }
192
193 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000194 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000195 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000196 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000197
Chris Lattner447ff682008-03-11 03:23:40 +0000198 unsigned STReg = getSTReg(RegNo);
199 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000200
Chris Lattner447ff682008-03-11 03:23:40 +0000201 // Swap the slots the regs are in.
202 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000203
Chris Lattner447ff682008-03-11 03:23:40 +0000204 // Swap stack slot contents.
205 assert(RegMap[RegOnTop] < StackTop);
206 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000207
Chris Lattner447ff682008-03-11 03:23:40 +0000208 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000209 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmanfe601042010-06-22 15:08:57 +0000210 ++NumFXCH;
Chris Lattnera960d952003-01-13 01:01:59 +0000211 }
212
Chris Lattner0526f012004-04-01 04:06:09 +0000213 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000214 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000215 unsigned STReg = getSTReg(RegNo);
216 pushReg(AsReg); // New register on top of stack
217
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000218 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000219 }
220
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000221 /// popStackAfter - Pop the current value off of the top of the FP stack
222 /// after the specified instruction.
Chris Lattnera960d952003-01-13 01:01:59 +0000223 void popStackAfter(MachineBasicBlock::iterator &I);
224
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000225 /// freeStackSlotAfter - Free the specified register from the register
226 /// stack, so that it is no longer in a register. If the register is
227 /// currently at the top of the stack, we just pop the current instruction,
228 /// otherwise we store the current top-of-stack into the specified slot,
229 /// then pop the top of stack.
Chris Lattner0526f012004-04-01 04:06:09 +0000230 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
231
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000232 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
233 /// instruction.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000234 MachineBasicBlock::iterator
235 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
236
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000237 /// Adjust the live registers to be the set in Mask.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000238 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
239
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000240 /// Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
241 /// st(0), FP reg FixStack[1] is st(1) etc.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000242 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
243 MachineBasicBlock::iterator I);
244
Chris Lattnera960d952003-01-13 01:01:59 +0000245 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
246
247 void handleZeroArgFP(MachineBasicBlock::iterator &I);
248 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000249 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000250 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000251 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000252 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000253 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000254
255 bool translateCopy(MachineInstr*);
Chris Lattnera960d952003-01-13 01:01:59 +0000256 };
Devang Patel19974732007-05-03 01:11:54 +0000257 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000258}
259
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000260FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000261
Chris Lattner3cc83842008-01-14 06:41:29 +0000262/// getFPReg - Return the X86::FPx register number for the specified operand.
263/// For example, this returns 3 for X86::FP3.
264static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000265 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000266 unsigned Reg = MO.getReg();
267 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
268 return Reg - X86::FP0;
269}
270
Chris Lattnera960d952003-01-13 01:01:59 +0000271/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
272/// register references into FP stack references.
273///
274bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000275 // We only need to run this pass if there are any FP registers used in this
276 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000277 bool FPIsUsed = false;
278
279 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
280 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000281 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000282 FPIsUsed = true;
283 break;
284 }
285
286 // Early exit.
287 if (!FPIsUsed) return false;
288
Evan Cheng32644ac2006-12-01 10:11:51 +0000289 TII = MF.getTarget().getInstrInfo();
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000290
291 // Prepare cross-MBB liveness.
292 bundleCFG(MF);
293
Chris Lattnera960d952003-01-13 01:01:59 +0000294 StackTop = 0;
295
Chris Lattner847df252004-01-30 22:25:18 +0000296 // Process the function in depth first order so that we process at least one
297 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000298 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000299 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000300
301 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000302 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000303 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
304 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000305 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000306
Chris Lattnerba3598c2009-09-08 04:55:44 +0000307 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000308 if (MF.size() != Processed.size())
309 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
310 if (Processed.insert(BB))
311 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerba3598c2009-09-08 04:55:44 +0000312
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000313 BlockBundle.clear();
314 LiveBundles.clear();
315
Chris Lattnera960d952003-01-13 01:01:59 +0000316 return Changed;
317}
318
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000319/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
320/// live-out sets for the FP registers. Consistent means that the set of
321/// registers live-out from a block is identical to the live-in set of all
322/// successors. This is not enforced by the normal live-in lists since
323/// registers may be implicitly defined, or not used by all successors.
324void FPS::bundleCFG(MachineFunction &MF) {
325 assert(LiveBundles.empty() && "Stale data in LiveBundles");
326 assert(BlockBundle.empty() && "Stale data in BlockBundle");
327 SmallPtrSet<MachineBasicBlock*, 8> PropDown, PropUp;
328
329 // LiveBundle[0] is the empty live-in set.
330 LiveBundles.resize(1);
331
332 // First gather the actual live-in masks for all MBBs.
333 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
334 MachineBasicBlock *MBB = I;
335 const unsigned Mask = calcLiveInMask(MBB);
336 if (!Mask)
337 continue;
338 // Ingoing bundle index.
339 unsigned &Idx = BlockBundle[MBB].first;
340 // Already assigned an ingoing bundle?
341 if (Idx)
342 continue;
343 // Allocate a new LiveBundle struct for this block's live-ins.
344 const unsigned BundleIdx = Idx = LiveBundles.size();
345 DEBUG(dbgs() << "Creating LB#" << BundleIdx << ": in:BB#"
346 << MBB->getNumber());
347 LiveBundles.push_back(Mask);
348 LiveBundle &Bundle = LiveBundles.back();
349
350 // Make sure all predecessors have the same live-out set.
351 PropUp.insert(MBB);
352
353 // Keep pushing liveness up and down the CFG until convergence.
354 // Only critical edges cause iteration here, but when they do, multiple
355 // blocks can be assigned to the same LiveBundle index.
356 do {
357 // Assign BundleIdx as liveout from predecessors in PropUp.
358 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropUp.begin(),
359 E = PropUp.end(); I != E; ++I) {
360 MachineBasicBlock *MBB = *I;
361 for (MachineBasicBlock::const_pred_iterator LinkI = MBB->pred_begin(),
362 LinkE = MBB->pred_end(); LinkI != LinkE; ++LinkI) {
363 MachineBasicBlock *PredMBB = *LinkI;
364 // PredMBB's liveout bundle should be set to LIIdx.
365 unsigned &Idx = BlockBundle[PredMBB].second;
366 if (Idx) {
367 assert(Idx == BundleIdx && "Inconsistent CFG");
368 continue;
369 }
370 Idx = BundleIdx;
371 DEBUG(dbgs() << " out:BB#" << PredMBB->getNumber());
372 // Propagate to siblings.
373 if (PredMBB->succ_size() > 1)
374 PropDown.insert(PredMBB);
375 }
376 }
377 PropUp.clear();
378
379 // Assign BundleIdx as livein to successors in PropDown.
380 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropDown.begin(),
381 E = PropDown.end(); I != E; ++I) {
382 MachineBasicBlock *MBB = *I;
383 for (MachineBasicBlock::const_succ_iterator LinkI = MBB->succ_begin(),
384 LinkE = MBB->succ_end(); LinkI != LinkE; ++LinkI) {
385 MachineBasicBlock *SuccMBB = *LinkI;
386 // LinkMBB's livein bundle should be set to BundleIdx.
387 unsigned &Idx = BlockBundle[SuccMBB].first;
388 if (Idx) {
389 assert(Idx == BundleIdx && "Inconsistent CFG");
390 continue;
391 }
392 Idx = BundleIdx;
393 DEBUG(dbgs() << " in:BB#" << SuccMBB->getNumber());
394 // Propagate to siblings.
395 if (SuccMBB->pred_size() > 1)
396 PropUp.insert(SuccMBB);
397 // Also accumulate the bundle liveness mask from the liveins here.
398 Bundle.Mask |= calcLiveInMask(SuccMBB);
399 }
400 }
401 PropDown.clear();
402 } while (!PropUp.empty());
403 DEBUG({
404 dbgs() << " live:";
405 for (unsigned i = 0; i < 8; ++i)
406 if (Bundle.Mask & (1<<i))
407 dbgs() << " %FP" << i;
408 dbgs() << '\n';
409 });
410 }
411}
412
Chris Lattnera960d952003-01-13 01:01:59 +0000413/// processBasicBlock - Loop over all of the instructions in the basic block,
414/// transforming FP instructions into their stack form.
415///
416bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000417 bool Changed = false;
418 MBB = &BB;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000419
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000420 setupBlockStack();
421
Chris Lattnera960d952003-01-13 01:01:59 +0000422 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000423 MachineInstr *MI = I;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000424 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000425
Chris Lattnere12ecf22008-03-11 19:50:13 +0000426 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattner518bb532010-02-09 19:54:29 +0000427 if (MI->isInlineAsm())
Chris Lattnere12ecf22008-03-11 19:50:13 +0000428 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000429
430 if (MI->isCopy() && translateCopy(MI))
431 FPInstClass = X86II::SpecialFP;
432
Chris Lattnere12ecf22008-03-11 19:50:13 +0000433 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000434 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000435
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000436 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000437 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000438 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000439
440 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000441 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000442
443 // Get dead variables list now because the MI pointer may be deleted as part
444 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000445 SmallVector<unsigned, 8> DeadRegs;
446 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
447 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000448 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000449 DeadRegs.push_back(MO.getReg());
450 }
Chris Lattnera960d952003-01-13 01:01:59 +0000451
Chris Lattnere12ecf22008-03-11 19:50:13 +0000452 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000453 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000454 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000455 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000456 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000457 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000458 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000459 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000460 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000461 }
462
463 // Check to see if any of the values defined by this instruction are dead
464 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000465 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
466 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000467 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000468 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000469 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000470 }
471 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000472
Chris Lattnera960d952003-01-13 01:01:59 +0000473 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000474 DEBUG(
475 MachineBasicBlock::iterator PrevI(PrevMI);
476 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000477 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000478 } else {
479 MachineBasicBlock::iterator Start = I;
480 // Rewind to first instruction newly inserted.
481 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000482 dbgs() << "Inserted instructions:\n\t";
483 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000484 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000485 }
486 dumpStack();
487 );
Chris Lattnera960d952003-01-13 01:01:59 +0000488
489 Changed = true;
490 }
491
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000492 finishBlockStack();
493
Chris Lattnera960d952003-01-13 01:01:59 +0000494 return Changed;
495}
496
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000497/// setupBlockStack - Use the BlockBundle map to set up our model of the stack
498/// to match predecessors' live out stack.
499void FPS::setupBlockStack() {
500 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
501 << " derived from " << MBB->getName() << ".\n");
502 StackTop = 0;
503 const LiveBundle &Bundle = LiveBundles[BlockBundle.lookup(MBB).first];
504
505 if (!Bundle.Mask) {
506 DEBUG(dbgs() << "Block has no FP live-ins.\n");
507 return;
508 }
509
510 // Depth-first iteration should ensure that we always have an assigned stack.
511 assert(Bundle.isFixed() && "Reached block before any predecessors");
512
513 // Push the fixed live-in registers.
514 for (unsigned i = Bundle.FixCount; i > 0; --i) {
515 MBB->addLiveIn(X86::ST0+i-1);
516 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
517 << unsigned(Bundle.FixStack[i-1]) << '\n');
518 pushReg(Bundle.FixStack[i-1]);
519 }
520
521 // Kill off unwanted live-ins. This can happen with a critical edge.
522 // FIXME: We could keep these live registers around as zombies. They may need
523 // to be revived at the end of a short block. It might save a few instrs.
524 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
525 DEBUG(MBB->dump());
526}
527
528/// finishBlockStack - Revive live-outs that are implicitly defined out of
529/// MBB. Shuffle live registers to match the expected fixed stack of any
530/// predecessors, and ensure that all predecessors are expecting the same
531/// stack.
532void FPS::finishBlockStack() {
533 // The RET handling below takes care of return blocks for us.
534 if (MBB->succ_empty())
535 return;
536
537 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
538 << " derived from " << MBB->getName() << ".\n");
539
540 unsigned BundleIdx = BlockBundle.lookup(MBB).second;
541 LiveBundle &Bundle = LiveBundles[BundleIdx];
542
543 // We may need to kill and define some registers to match successors.
544 // FIXME: This can probably be combined with the shuffle below.
545 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
546 adjustLiveRegs(Bundle.Mask, Term);
547
548 if (!Bundle.Mask) {
549 DEBUG(dbgs() << "No live-outs.\n");
550 return;
551 }
552
553 // Has the stack order been fixed yet?
554 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
555 if (Bundle.isFixed()) {
556 DEBUG(dbgs() << "Shuffling stack to match.\n");
557 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
558 } else {
559 // Not fixed yet, we get to choose.
560 DEBUG(dbgs() << "Fixing stack order now.\n");
561 Bundle.FixCount = StackTop;
562 for (unsigned i = 0; i < StackTop; ++i)
563 Bundle.FixStack[i] = getStackEntry(i);
564 }
565}
566
567
Chris Lattnera960d952003-01-13 01:01:59 +0000568//===----------------------------------------------------------------------===//
569// Efficient Lookup Table Support
570//===----------------------------------------------------------------------===//
571
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000572namespace {
573 struct TableEntry {
574 unsigned from;
575 unsigned to;
576 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000577 friend bool operator<(const TableEntry &TE, unsigned V) {
578 return TE.from < V;
579 }
580 friend bool operator<(unsigned V, const TableEntry &TE) {
581 return V < TE.from;
582 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000583 };
584}
Chris Lattnera960d952003-01-13 01:01:59 +0000585
Evan Chenga022bdf2008-07-21 20:02:45 +0000586#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000587static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
588 for (unsigned i = 0; i != NumEntries-1; ++i)
589 if (!(Table[i] < Table[i+1])) return false;
590 return true;
591}
Evan Chenga022bdf2008-07-21 20:02:45 +0000592#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000593
594static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
595 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
596 if (I != Table+N && I->from == Opcode)
597 return I->to;
598 return -1;
599}
600
Chris Lattnera960d952003-01-13 01:01:59 +0000601#ifdef NDEBUG
602#define ASSERT_SORTED(TABLE)
603#else
604#define ASSERT_SORTED(TABLE) \
605 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000606 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000607 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000608 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000609 TABLE##Checked = true; \
610 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000611 }
612#endif
613
Chris Lattner58fe4592005-12-21 07:47:04 +0000614//===----------------------------------------------------------------------===//
615// Register File -> Register Stack Mapping Methods
616//===----------------------------------------------------------------------===//
617
618// OpcodeTable - Sorted map of register instructions to their stack version.
619// The first element is an register file pseudo instruction, the second is the
620// concrete X86 instruction which uses the register stack.
621//
622static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000623 { X86::ABS_Fp32 , X86::ABS_F },
624 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000625 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000626 { X86::ADD_Fp32m , X86::ADD_F32m },
627 { X86::ADD_Fp64m , X86::ADD_F64m },
628 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000629 { X86::ADD_Fp80m32 , X86::ADD_F32m },
630 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000631 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
632 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000633 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000634 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
635 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000636 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000637 { X86::CHS_Fp32 , X86::CHS_F },
638 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000639 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000640 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
641 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000642 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000643 { X86::CMOVB_Fp32 , X86::CMOVB_F },
644 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000645 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000646 { X86::CMOVE_Fp32 , X86::CMOVE_F },
647 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000648 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000649 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
650 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000651 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000652 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
653 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000654 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000655 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
656 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000657 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000658 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
659 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000660 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000661 { X86::CMOVP_Fp32 , X86::CMOVP_F },
662 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000663 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000664 { X86::COS_Fp32 , X86::COS_F },
665 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000666 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000667 { X86::DIVR_Fp32m , X86::DIVR_F32m },
668 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000669 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000670 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
671 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000672 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
673 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000674 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000675 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
676 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000677 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000678 { X86::DIV_Fp32m , X86::DIV_F32m },
679 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000680 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000681 { X86::DIV_Fp80m32 , X86::DIV_F32m },
682 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000683 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
684 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000685 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000686 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
687 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000688 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000689 { X86::ILD_Fp16m32 , X86::ILD_F16m },
690 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000691 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000692 { X86::ILD_Fp32m32 , X86::ILD_F32m },
693 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000694 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000695 { X86::ILD_Fp64m32 , X86::ILD_F64m },
696 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000697 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000698 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
699 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000700 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000701 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
702 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000703 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000704 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
705 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000706 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000707 { X86::IST_Fp16m32 , X86::IST_F16m },
708 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000709 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000710 { X86::IST_Fp32m32 , X86::IST_F32m },
711 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000712 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000713 { X86::IST_Fp64m32 , X86::IST_FP64m },
714 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000715 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000716 { X86::LD_Fp032 , X86::LD_F0 },
717 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000718 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000719 { X86::LD_Fp132 , X86::LD_F1 },
720 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000721 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000722 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000723 { X86::LD_Fp32m64 , X86::LD_F32m },
724 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000725 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000726 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000727 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000728 { X86::MUL_Fp32m , X86::MUL_F32m },
729 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000730 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000731 { X86::MUL_Fp80m32 , X86::MUL_F32m },
732 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000733 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
734 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000735 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000736 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
737 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000738 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000739 { X86::SIN_Fp32 , X86::SIN_F },
740 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000741 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000742 { X86::SQRT_Fp32 , X86::SQRT_F },
743 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000744 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000745 { X86::ST_Fp32m , X86::ST_F32m },
746 { X86::ST_Fp64m , X86::ST_F64m },
747 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000748 { X86::ST_Fp80m32 , X86::ST_F32m },
749 { X86::ST_Fp80m64 , X86::ST_F64m },
750 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000751 { X86::SUBR_Fp32m , X86::SUBR_F32m },
752 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000753 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000754 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
755 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000756 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
757 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000758 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000759 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
760 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000761 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000762 { X86::SUB_Fp32m , X86::SUB_F32m },
763 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000764 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000765 { X86::SUB_Fp80m32 , X86::SUB_F32m },
766 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000767 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
768 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000769 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000770 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
771 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000772 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000773 { X86::TST_Fp32 , X86::TST_F },
774 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000775 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000776 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
777 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000778 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000779 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
780 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000781 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000782};
783
784static unsigned getConcreteOpcode(unsigned Opcode) {
785 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000786 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000787 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
788 return Opc;
789}
Chris Lattnera960d952003-01-13 01:01:59 +0000790
791//===----------------------------------------------------------------------===//
792// Helper Methods
793//===----------------------------------------------------------------------===//
794
795// PopTable - Sorted map of instructions to their popping version. The first
796// element is an instruction, the second is the version which pops.
797//
798static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000799 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000800
Dale Johannesene377d4d2007-07-04 21:07:47 +0000801 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
802 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000803
Dale Johannesene377d4d2007-07-04 21:07:47 +0000804 { X86::IST_F16m , X86::IST_FP16m },
805 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000806
Dale Johannesene377d4d2007-07-04 21:07:47 +0000807 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000808
Dale Johannesene377d4d2007-07-04 21:07:47 +0000809 { X86::ST_F32m , X86::ST_FP32m },
810 { X86::ST_F64m , X86::ST_FP64m },
811 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000812
Dale Johannesene377d4d2007-07-04 21:07:47 +0000813 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
814 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000815
Dale Johannesene377d4d2007-07-04 21:07:47 +0000816 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000817
Dale Johannesene377d4d2007-07-04 21:07:47 +0000818 { X86::UCOM_FPr , X86::UCOM_FPPr },
819 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000820};
821
822/// popStackAfter - Pop the current value off of the top of the FP stack after
823/// the specified instruction. This attempts to be sneaky and combine the pop
824/// into the instruction itself if possible. The iterator is left pointing to
825/// the last instruction, be it a new pop instruction inserted, or the old
826/// instruction if it was modified in place.
827///
828void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000829 MachineInstr* MI = I;
830 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000831 ASSERT_SORTED(PopTable);
832 assert(StackTop > 0 && "Cannot pop empty stack!");
833 RegMap[Stack[--StackTop]] = ~0; // Update state
834
835 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000836 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000837 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000838 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000839 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000840 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000841 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000842 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000843 }
844}
845
Chris Lattner0526f012004-04-01 04:06:09 +0000846/// freeStackSlotAfter - Free the specified register from the register stack, so
847/// that it is no longer in a register. If the register is currently at the top
848/// of the stack, we just pop the current instruction, otherwise we store the
849/// current top-of-stack into the specified slot, then pop the top of stack.
850void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
851 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
852 popStackAfter(I);
853 return;
854 }
855
856 // Otherwise, store the top of stack into the dead slot, killing the operand
857 // without having to add in an explicit xchg then pop.
858 //
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000859 I = freeStackSlotBefore(++I, FPRegNo);
860}
861
862/// freeStackSlotBefore - Free the specified register without trying any
863/// folding.
864MachineBasicBlock::iterator
865FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattner0526f012004-04-01 04:06:09 +0000866 unsigned STReg = getSTReg(FPRegNo);
867 unsigned OldSlot = getSlot(FPRegNo);
868 unsigned TopReg = Stack[StackTop-1];
869 Stack[OldSlot] = TopReg;
870 RegMap[TopReg] = OldSlot;
871 RegMap[FPRegNo] = ~0;
872 Stack[--StackTop] = ~0;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000873 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
874}
875
876/// adjustLiveRegs - Kill and revive registers such that exactly the FP
877/// registers with a bit in Mask are live.
878void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
879 unsigned Defs = Mask;
880 unsigned Kills = 0;
881 for (unsigned i = 0; i < StackTop; ++i) {
882 unsigned RegNo = Stack[i];
883 if (!(Defs & (1 << RegNo)))
884 // This register is live, but we don't want it.
885 Kills |= (1 << RegNo);
886 else
887 // We don't need to imp-def this live register.
888 Defs &= ~(1 << RegNo);
889 }
890 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
891
892 // Produce implicit-defs for free by using killed registers.
893 while (Kills && Defs) {
894 unsigned KReg = CountTrailingZeros_32(Kills);
895 unsigned DReg = CountTrailingZeros_32(Defs);
896 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
897 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
898 std::swap(RegMap[KReg], RegMap[DReg]);
899 Kills &= ~(1 << KReg);
900 Defs &= ~(1 << DReg);
901 }
902
903 // Kill registers by popping.
904 if (Kills && I != MBB->begin()) {
905 MachineBasicBlock::iterator I2 = llvm::prior(I);
906 for (;;) {
907 unsigned KReg = getStackEntry(0);
908 if (!(Kills & (1 << KReg)))
909 break;
910 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
911 popStackAfter(I2);
912 Kills &= ~(1 << KReg);
913 }
914 }
915
916 // Manually kill the rest.
917 while (Kills) {
918 unsigned KReg = CountTrailingZeros_32(Kills);
919 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
920 freeStackSlotBefore(I, KReg);
921 Kills &= ~(1 << KReg);
922 }
923
924 // Load zeros for all the imp-defs.
925 while(Defs) {
926 unsigned DReg = CountTrailingZeros_32(Defs);
927 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
928 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
929 pushReg(DReg);
930 Defs &= ~(1 << DReg);
931 }
932
933 // Now we should have the correct registers live.
934 DEBUG(dumpStack());
935 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
936}
937
938/// shuffleStackTop - emit fxch instructions before I to shuffle the top
939/// FixCount entries into the order given by FixStack.
940/// FIXME: Is there a better algorithm than insertion sort?
941void FPS::shuffleStackTop(const unsigned char *FixStack,
942 unsigned FixCount,
943 MachineBasicBlock::iterator I) {
944 // Move items into place, starting from the desired stack bottom.
945 while (FixCount--) {
946 // Old register at position FixCount.
947 unsigned OldReg = getStackEntry(FixCount);
948 // Desired register at position FixCount.
949 unsigned Reg = FixStack[FixCount];
950 if (Reg == OldReg)
951 continue;
952 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
953 moveToTop(Reg, I);
954 moveToTop(OldReg, I);
955 }
956 DEBUG(dumpStack());
Chris Lattner0526f012004-04-01 04:06:09 +0000957}
958
959
Chris Lattnera960d952003-01-13 01:01:59 +0000960//===----------------------------------------------------------------------===//
961// Instruction transformation implementation
962//===----------------------------------------------------------------------===//
963
964/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000965///
Chris Lattnera960d952003-01-13 01:01:59 +0000966void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000967 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000968 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000969
Chris Lattner58fe4592005-12-21 07:47:04 +0000970 // Change from the pseudo instruction to the concrete instruction.
971 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000972 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000973
974 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000975 pushReg(DestReg);
976}
977
Chris Lattner4a06f352004-02-02 19:23:15 +0000978/// handleOneArgFP - fst <mem>, ST(0)
979///
Chris Lattnera960d952003-01-13 01:01:59 +0000980void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000981 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000982 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000983 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000984 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000985
Chris Lattner4a06f352004-02-02 19:23:15 +0000986 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000987 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000988 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000989
Evan Cheng2b152712006-02-18 02:36:28 +0000990 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000991 // If we have one _and_ we don't want to pop the operand, duplicate the value
992 // on the stack instead of moving it. This ensure that popping the value is
993 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000994 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000995 //
Evan Cheng2b152712006-02-18 02:36:28 +0000996 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000997 (MI->getOpcode() == X86::IST_Fp64m32 ||
998 MI->getOpcode() == X86::ISTT_Fp16m32 ||
999 MI->getOpcode() == X86::ISTT_Fp32m32 ||
1000 MI->getOpcode() == X86::ISTT_Fp64m32 ||
1001 MI->getOpcode() == X86::IST_Fp64m64 ||
1002 MI->getOpcode() == X86::ISTT_Fp16m64 ||
1003 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +00001004 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +00001005 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +00001006 MI->getOpcode() == X86::ISTT_Fp16m80 ||
1007 MI->getOpcode() == X86::ISTT_Fp32m80 ||
1008 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +00001009 MI->getOpcode() == X86::ST_FpP80m)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001010 duplicateToTop(Reg, getScratchReg(), I);
Chris Lattnera960d952003-01-13 01:01:59 +00001011 } else {
1012 moveToTop(Reg, I); // Move to the top of the stack...
1013 }
Chris Lattner58fe4592005-12-21 07:47:04 +00001014
1015 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +00001016 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +00001017 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001018
Dale Johannesene377d4d2007-07-04 21:07:47 +00001019 if (MI->getOpcode() == X86::IST_FP64m ||
1020 MI->getOpcode() == X86::ISTT_FP16m ||
1021 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +00001022 MI->getOpcode() == X86::ISTT_FP64m ||
1023 MI->getOpcode() == X86::ST_FP80m) {
Chris Lattnera960d952003-01-13 01:01:59 +00001024 assert(StackTop > 0 && "Stack empty??");
1025 --StackTop;
1026 } else if (KillsSrc) { // Last use of operand?
1027 popStackAfter(I);
1028 }
1029}
1030
Chris Lattner4a06f352004-02-02 19:23:15 +00001031
Chris Lattner4cf15e72004-04-11 20:21:06 +00001032/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1033/// replace the value with a newly computed value. These instructions may have
1034/// non-fp operands after their FP operands.
1035///
1036/// Examples:
1037/// R1 = fchs R2
1038/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +00001039///
1040void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001041 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +00001042#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +00001043 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +00001044 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +00001045#endif
Chris Lattner4a06f352004-02-02 19:23:15 +00001046
1047 // Is this the last use of the source register?
1048 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +00001049 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +00001050
1051 if (KillsSrc) {
1052 // If this is the last use of the source register, just make sure it's on
1053 // the top of the stack.
1054 moveToTop(Reg, I);
1055 assert(StackTop > 0 && "Stack cannot be empty!");
1056 --StackTop;
1057 pushReg(getFPReg(MI->getOperand(0)));
1058 } else {
1059 // If this is not the last use of the source register, _copy_ it to the top
1060 // of the stack.
1061 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1062 }
1063
Chris Lattner58fe4592005-12-21 07:47:04 +00001064 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +00001065 MI->RemoveOperand(1); // Drop the source operand.
1066 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001067 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +00001068}
1069
1070
Chris Lattnera960d952003-01-13 01:01:59 +00001071//===----------------------------------------------------------------------===//
1072// Define tables of various ways to map pseudo instructions
1073//
1074
1075// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1076static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001077 { X86::ADD_Fp32 , X86::ADD_FST0r },
1078 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001079 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001080 { X86::DIV_Fp32 , X86::DIV_FST0r },
1081 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001082 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001083 { X86::MUL_Fp32 , X86::MUL_FST0r },
1084 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001085 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001086 { X86::SUB_Fp32 , X86::SUB_FST0r },
1087 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001088 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001089};
1090
1091// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1092static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001093 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1094 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001095 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001096 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1097 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001098 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001099 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1100 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001101 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001102 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1103 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001104 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001105};
1106
1107// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1108static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001109 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1110 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001111 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001112 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1113 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001114 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001115 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1116 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001117 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001118 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1119 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001120 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001121};
1122
1123// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1124static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001125 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1126 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001127 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001128 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1129 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001130 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001131 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1132 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001133 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001134 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1135 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001136 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001137};
1138
1139
1140/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1141/// instructions which need to be simplified and possibly transformed.
1142///
1143/// Result: ST(0) = fsub ST(0), ST(i)
1144/// ST(i) = fsub ST(0), ST(i)
1145/// ST(0) = fsubr ST(0), ST(i)
1146/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001147///
Chris Lattnera960d952003-01-13 01:01:59 +00001148void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1149 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1150 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001151 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001152
Chris Lattner749c6f62008-01-07 07:27:27 +00001153 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001154 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +00001155 unsigned Dest = getFPReg(MI->getOperand(0));
1156 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1157 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001158 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1159 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001160 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001161
Chris Lattnera960d952003-01-13 01:01:59 +00001162 unsigned TOS = getStackEntry(0);
1163
1164 // One of our operands must be on the top of the stack. If neither is yet, we
1165 // need to move one.
1166 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1167 // We can choose to move either operand to the top of the stack. If one of
1168 // the operands is killed by this instruction, we want that one so that we
1169 // can update right on top of the old version.
1170 if (KillsOp0) {
1171 moveToTop(Op0, I); // Move dead operand to TOS.
1172 TOS = Op0;
1173 } else if (KillsOp1) {
1174 moveToTop(Op1, I);
1175 TOS = Op1;
1176 } else {
1177 // All of the operands are live after this instruction executes, so we
1178 // cannot update on top of any operand. Because of this, we must
1179 // duplicate one of the stack elements to the top. It doesn't matter
1180 // which one we pick.
1181 //
1182 duplicateToTop(Op0, Dest, I);
1183 Op0 = TOS = Dest;
1184 KillsOp0 = true;
1185 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001186 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +00001187 // If we DO have one of our operands at the top of the stack, but we don't
1188 // have a dead operand, we must duplicate one of the operands to a new slot
1189 // on the stack.
1190 duplicateToTop(Op0, Dest, I);
1191 Op0 = TOS = Dest;
1192 KillsOp0 = true;
1193 }
1194
1195 // Now we know that one of our operands is on the top of the stack, and at
1196 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001197 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1198 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +00001199
1200 // We decide which form to use based on what is on the top of the stack, and
1201 // which operand is killed by this instruction.
1202 const TableEntry *InstTable;
1203 bool isForward = TOS == Op0;
1204 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1205 if (updateST0) {
1206 if (isForward)
1207 InstTable = ForwardST0Table;
1208 else
1209 InstTable = ReverseST0Table;
1210 } else {
1211 if (isForward)
1212 InstTable = ForwardSTiTable;
1213 else
1214 InstTable = ReverseSTiTable;
1215 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001216
Owen Anderson718cb662007-09-07 04:06:50 +00001217 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1218 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +00001219 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1220
1221 // NotTOS - The register which is not on the top of stack...
1222 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1223
1224 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +00001225 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001226 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +00001227
1228 // If both operands are killed, pop one off of the stack in addition to
1229 // overwriting the other one.
1230 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1231 assert(!updateST0 && "Should have updated other operand!");
1232 popStackAfter(I); // Pop the top of stack
1233 }
1234
Chris Lattnera960d952003-01-13 01:01:59 +00001235 // Update stack information so that we know the destination register is now on
1236 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001237 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1238 assert(UpdatedSlot < StackTop && Dest < 7);
1239 Stack[UpdatedSlot] = Dest;
1240 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001241 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001242}
1243
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001244/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001245/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001246///
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001247void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1248 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1249 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1250 MachineInstr *MI = I;
1251
Chris Lattner749c6f62008-01-07 07:27:27 +00001252 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001253 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001254 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1255 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001256 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1257 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001258
1259 // Make sure the first operand is on the top of stack, the other one can be
1260 // anywhere.
1261 moveToTop(Op0, I);
1262
Chris Lattner58fe4592005-12-21 07:47:04 +00001263 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +00001264 MI->getOperand(0).setReg(getSTReg(Op1));
1265 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +00001266 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +00001267
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001268 // If any of the operands are killed by this instruction, free them.
1269 if (KillsOp0) freeStackSlotAfter(I, Op0);
1270 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +00001271}
1272
Chris Lattnerc1bab322004-03-31 22:02:36 +00001273/// handleCondMovFP - Handle two address conditional move instructions. These
1274/// instructions move a st(i) register to st(0) iff a condition is true. These
1275/// instructions require that the first operand is at the top of the stack, but
1276/// otherwise don't modify the stack at all.
1277void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1278 MachineInstr *MI = I;
1279
1280 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001281 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +00001282 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001283
1284 // The first operand *must* be on the top of the stack.
1285 moveToTop(Op0, I);
1286
1287 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +00001288 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +00001289 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001290 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001291 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +00001292 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +00001293
Chris Lattnerc1bab322004-03-31 22:02:36 +00001294 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +00001295 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +00001296 // Get this value off of the register stack.
1297 freeStackSlotAfter(I, Op1);
1298 }
Chris Lattnerc1bab322004-03-31 22:02:36 +00001299}
1300
Chris Lattnera960d952003-01-13 01:01:59 +00001301
1302/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001303/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +00001304/// instructions.
1305///
1306void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001307 MachineInstr *MI = I;
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001308 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001309 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001310 default: llvm_unreachable("Unknown SpecialFP instruction!");
Chris Lattner6fa2f9c2008-03-09 07:05:32 +00001311 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1312 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1313 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Chris Lattnera960d952003-01-13 01:01:59 +00001314 assert(StackTop == 0 && "Stack should be empty after a call!");
1315 pushReg(getFPReg(MI->getOperand(0)));
1316 break;
Chris Lattner24e0a542008-03-21 06:38:26 +00001317 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1318 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1319 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1320 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1321 // The pattern we expect is:
1322 // CALL
1323 // FP1 = FpGET_ST0
1324 // FP4 = FpGET_ST1
1325 //
1326 // At this point, we've pushed FP1 on the top of stack, so it should be
1327 // present if it isn't dead. If it was dead, we already emitted a pop to
1328 // remove it from the stack and StackTop = 0.
1329
1330 // Push FP4 as top of stack next.
1331 pushReg(getFPReg(MI->getOperand(0)));
1332
1333 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1334 // dead. In this case, the ST(1) value is the only thing that is live, so
1335 // it should be on the TOS (after the pop that was emitted) and is. Just
1336 // continue in this case.
1337 if (StackTop == 1)
1338 break;
1339
1340 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1341 // elements so that our accounting is correct.
1342 unsigned RegOnTop = getStackEntry(0);
1343 unsigned RegNo = getStackEntry(1);
1344
1345 // Swap the slots the regs are in.
1346 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1347
1348 // Swap stack slot contents.
1349 assert(RegMap[RegOnTop] < StackTop);
1350 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1351 break;
1352 }
Chris Lattnerafb23f42008-03-09 07:08:44 +00001353 case X86::FpSET_ST0_32:
1354 case X86::FpSET_ST0_64:
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001355 case X86::FpSET_ST0_80: {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001356 // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1357 // arguments that use an st constraint. We expect a sequence of
1358 // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001359 unsigned Op0 = getFPReg(MI->getOperand(0));
1360
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001361 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001362 // Duplicate Op0 into a temporary on the stack top.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001363 duplicateToTop(Op0, getScratchReg(), I);
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001364 } else {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001365 // Op0 is killed, so just swap it into position.
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001366 moveToTop(Op0, I);
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001367 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001368 --StackTop; // "Forget" we have something on the top of stack!
1369 break;
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001370 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001371 case X86::FpSET_ST1_32:
1372 case X86::FpSET_ST1_64:
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001373 case X86::FpSET_ST1_80: {
1374 // Set up st(1) for inline asm. We are assuming that st(0) has already been
1375 // set up by FpSET_ST0, and our StackTop is off by one because of it.
1376 unsigned Op0 = getFPReg(MI->getOperand(0));
1377 // Restore the actual StackTop from before Fp_SET_ST0.
1378 // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1379 // are not enforcing the constraint.
1380 ++StackTop;
1381 unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1382 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001383 duplicateToTop(Op0, getScratchReg(), I);
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001384 moveToTop(RegOnTop, I);
1385 } else if (getSTReg(Op0) != X86::ST1) {
1386 // We have the wrong value at st(1). Shuffle! Untested!
1387 moveToTop(getStackEntry(1), I);
1388 moveToTop(Op0, I);
1389 moveToTop(RegOnTop, I);
Evan Chenga0eedac2009-02-09 23:32:07 +00001390 }
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001391 assert(StackTop >= 2 && "Too few live registers");
1392 StackTop -= 2; // "Forget" both st(0) and st(1).
Chris Lattnera960d952003-01-13 01:01:59 +00001393 break;
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001394 }
Dale Johannesene377d4d2007-07-04 21:07:47 +00001395 case X86::MOV_Fp3232:
1396 case X86::MOV_Fp3264:
1397 case X86::MOV_Fp6432:
Dale Johannesen59a58732007-08-05 18:49:15 +00001398 case X86::MOV_Fp6464:
1399 case X86::MOV_Fp3280:
1400 case X86::MOV_Fp6480:
1401 case X86::MOV_Fp8032:
1402 case X86::MOV_Fp8064:
1403 case X86::MOV_Fp8080: {
Evan Chengfb112882009-03-23 08:01:15 +00001404 const MachineOperand &MO1 = MI->getOperand(1);
1405 unsigned SrcReg = getFPReg(MO1);
Chris Lattnera960d952003-01-13 01:01:59 +00001406
Evan Chengfb112882009-03-23 08:01:15 +00001407 const MachineOperand &MO0 = MI->getOperand(0);
Evan Chengfb112882009-03-23 08:01:15 +00001408 unsigned DestReg = getFPReg(MO0);
Evan Cheng6130f662008-03-05 00:59:57 +00001409 if (MI->killsRegister(X86::FP0+SrcReg)) {
Chris Lattnera960d952003-01-13 01:01:59 +00001410 // If the input operand is killed, we can just change the owner of the
1411 // incoming stack slot into the result.
1412 unsigned Slot = getSlot(SrcReg);
1413 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1414 Stack[Slot] = DestReg;
1415 RegMap[DestReg] = Slot;
1416
1417 } else {
1418 // For FMOV we just duplicate the specified value to a new stack slot.
1419 // This could be made better, but would require substantial changes.
1420 duplicateToTop(SrcReg, DestReg, I);
1421 }
Nick Lewycky3c786972008-03-11 05:56:09 +00001422 }
Chris Lattnera960d952003-01-13 01:01:59 +00001423 break;
Chris Lattner518bb532010-02-09 19:54:29 +00001424 case TargetOpcode::INLINEASM: {
Chris Lattnere12ecf22008-03-11 19:50:13 +00001425 // The inline asm MachineInstr currently only *uses* FP registers for the
1426 // 'f' constraint. These should be turned into the current ST(x) register
1427 // in the machine instr. Also, any kills should be explicitly popped after
1428 // the inline asm.
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001429 unsigned Kills = 0;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001430 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1431 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001432 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001433 continue;
1434 assert(Op.isUse() && "Only handle inline asm uses right now");
1435
1436 unsigned FPReg = getFPReg(Op);
1437 Op.setReg(getSTReg(FPReg));
1438
1439 // If we kill this operand, make sure to pop it from the stack after the
1440 // asm. We just remember it for now, and pop them all off at the end in
1441 // a batch.
1442 if (Op.isKill())
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001443 Kills |= 1U << FPReg;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001444 }
1445
1446 // If this asm kills any FP registers (is the last use of them) we must
1447 // explicitly emit pop instructions for them. Do this now after the asm has
1448 // executed so that the ST(x) numbers are not off (which would happen if we
1449 // did this inline with operand rewriting).
1450 //
1451 // Note: this might be a non-optimal pop sequence. We might be able to do
1452 // better by trying to pop in stack order or something.
1453 MachineBasicBlock::iterator InsertPt = MI;
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001454 while (Kills) {
1455 unsigned FPReg = CountTrailingZeros_32(Kills);
1456 freeStackSlotAfter(InsertPt, FPReg);
1457 Kills &= ~(1U << FPReg);
1458 }
Chris Lattnere12ecf22008-03-11 19:50:13 +00001459 // Don't delete the inline asm!
1460 return;
1461 }
1462
Chris Lattner447ff682008-03-11 03:23:40 +00001463 case X86::RET:
1464 case X86::RETI:
1465 // If RET has an FP register use operand, pass the first one in ST(0) and
1466 // the second one in ST(1).
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001467
Chris Lattner447ff682008-03-11 03:23:40 +00001468 // Find the register operands.
1469 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001470 unsigned LiveMask = 0;
1471
Chris Lattner447ff682008-03-11 03:23:40 +00001472 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1473 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001474 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001475 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001476 // FP Register uses must be kills unless there are two uses of the same
1477 // register, in which case only one will be a kill.
1478 assert(Op.isUse() &&
1479 (Op.isKill() || // Marked kill.
1480 getFPReg(Op) == FirstFPRegOp || // Second instance.
1481 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1482 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001483
1484 if (FirstFPRegOp == ~0U)
1485 FirstFPRegOp = getFPReg(Op);
1486 else {
1487 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1488 SecondFPRegOp = getFPReg(Op);
1489 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001490 LiveMask |= (1 << getFPReg(Op));
Chris Lattner447ff682008-03-11 03:23:40 +00001491
1492 // Remove the operand so that later passes don't see it.
1493 MI->RemoveOperand(i);
1494 --i, --e;
1495 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001496
1497 // We may have been carrying spurious live-ins, so make sure only the returned
1498 // registers are left live.
1499 adjustLiveRegs(LiveMask, MI);
1500 if (!LiveMask) return; // Quick check to see if any are possible.
1501
Chris Lattner447ff682008-03-11 03:23:40 +00001502 // There are only four possibilities here:
1503 // 1) we are returning a single FP value. In this case, it has to be in
1504 // ST(0) already, so just declare success by removing the value from the
1505 // FP Stack.
1506 if (SecondFPRegOp == ~0U) {
1507 // Assert that the top of stack contains the right FP register.
1508 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1509 "Top of stack not the right register for RET!");
1510
1511 // Ok, everything is good, mark the value as not being on the stack
1512 // anymore so that our assertion about the stack being empty at end of
1513 // block doesn't fire.
1514 StackTop = 0;
1515 return;
1516 }
1517
Chris Lattner447ff682008-03-11 03:23:40 +00001518 // Otherwise, we are returning two values:
1519 // 2) If returning the same value for both, we only have one thing in the FP
1520 // stack. Consider: RET FP1, FP1
1521 if (StackTop == 1) {
1522 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1523 "Stack misconfiguration for RET!");
1524
1525 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1526 // register to hold it.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001527 unsigned NewReg = getScratchReg();
Chris Lattner447ff682008-03-11 03:23:40 +00001528 duplicateToTop(FirstFPRegOp, NewReg, MI);
1529 FirstFPRegOp = NewReg;
1530 }
1531
1532 /// Okay we know we have two different FPx operands now:
1533 assert(StackTop == 2 && "Must have two values live!");
1534
1535 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1536 /// in ST(1). In this case, emit an fxch.
1537 if (getStackEntry(0) == SecondFPRegOp) {
1538 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1539 moveToTop(FirstFPRegOp, MI);
1540 }
1541
1542 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1543 /// ST(1). Just remove both from our understanding of the stack and return.
1544 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001545 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001546 StackTop = 0;
1547 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001548 }
Chris Lattnera960d952003-01-13 01:01:59 +00001549
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001550 I = MBB->erase(I); // Remove the pseudo instruction
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001551
1552 // We want to leave I pointing to the previous instruction, but what if we
1553 // just erased the first instruction?
1554 if (I == MBB->begin()) {
1555 DEBUG(dbgs() << "Inserting dummy KILL\n");
1556 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1557 } else
1558 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001559}
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +00001560
1561// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1562bool FPS::translateCopy(MachineInstr *MI) {
1563 unsigned DstReg = MI->getOperand(0).getReg();
1564 unsigned SrcReg = MI->getOperand(1).getReg();
1565
1566 if (DstReg == X86::ST0) {
1567 MI->setDesc(TII->get(X86::FpSET_ST0_80));
1568 MI->RemoveOperand(0);
1569 return true;
1570 }
1571 if (DstReg == X86::ST1) {
1572 MI->setDesc(TII->get(X86::FpSET_ST1_80));
1573 MI->RemoveOperand(0);
1574 return true;
1575 }
1576 if (SrcReg == X86::ST0) {
1577 MI->setDesc(TII->get(X86::FpGET_ST0_80));
1578 return true;
1579 }
1580 if (SrcReg == X86::ST1) {
1581 MI->setDesc(TII->get(X86::FpGET_ST1_80));
1582 return true;
1583 }
1584 if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1585 MI->setDesc(TII->get(X86::MOV_Fp8080));
1586 return true;
1587 }
1588 return false;
1589}