blob: fe23ac0ce1d0ec0a279736fabef2584870f775dd [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Bendersky1de14102013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvaf722b002012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Bendersky1de14102013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvaf722b002012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
451instead of run-time. Global variables may optionally be initialized, may
452have an explicit section to be placed in, and may have an optional
453explicit alignment specified.
454
455A variable may be defined as ``thread_local``, which means that it will
456not be shared by threads (each thread will have a separated copy of the
457variable). Not all targets support thread-local variables. Optionally, a
458TLS model may be specified:
459
460``localdynamic``
461 For variables that are only used within the current shared library.
462``initialexec``
463 For variables in modules that will not be loaded dynamically.
464``localexec``
465 For variables defined in the executable and only used within it.
466
467The models correspond to the ELF TLS models; see `ELF Handling For
468Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
469more information on under which circumstances the different models may
470be used. The target may choose a different TLS model if the specified
471model is not supported, or if a better choice of model can be made.
472
Michael Gottesmanf5735882013-01-31 05:48:48 +0000473A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000474the contents of the variable will **never** be modified (enabling better
475optimization, allowing the global data to be placed in the read-only
476section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000477initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000478variable.
479
480LLVM explicitly allows *declarations* of global variables to be marked
481constant, even if the final definition of the global is not. This
482capability can be used to enable slightly better optimization of the
483program, but requires the language definition to guarantee that
484optimizations based on the 'constantness' are valid for the translation
485units that do not include the definition.
486
487As SSA values, global variables define pointer values that are in scope
488(i.e. they dominate) all basic blocks in the program. Global variables
489always define a pointer to their "content" type because they describe a
490region of memory, and all memory objects in LLVM are accessed through
491pointers.
492
493Global variables can be marked with ``unnamed_addr`` which indicates
494that the address is not significant, only the content. Constants marked
495like this can be merged with other constants if they have the same
496initializer. Note that a constant with significant address *can* be
497merged with a ``unnamed_addr`` constant, the result being a constant
498whose address is significant.
499
500A global variable may be declared to reside in a target-specific
501numbered address space. For targets that support them, address spaces
502may affect how optimizations are performed and/or what target
503instructions are used to access the variable. The default address space
504is zero. The address space qualifier must precede any other attributes.
505
506LLVM allows an explicit section to be specified for globals. If the
507target supports it, it will emit globals to the section specified.
508
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000509By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000510variables defined within the module are not modified from their
511initial values before the start of the global initializer. This is
512true even for variables potentially accessible from outside the
513module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000514``@llvm.used``. This assumption may be suppressed by marking the
515variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000516
Sean Silvaf722b002012-12-07 10:36:55 +0000517An explicit alignment may be specified for a global, which must be a
518power of 2. If not present, or if the alignment is set to zero, the
519alignment of the global is set by the target to whatever it feels
520convenient. If an explicit alignment is specified, the global is forced
521to have exactly that alignment. Targets and optimizers are not allowed
522to over-align the global if the global has an assigned section. In this
523case, the extra alignment could be observable: for example, code could
524assume that the globals are densely packed in their section and try to
525iterate over them as an array, alignment padding would break this
526iteration.
527
528For example, the following defines a global in a numbered address space
529with an initializer, section, and alignment:
530
531.. code-block:: llvm
532
533 @G = addrspace(5) constant float 1.0, section "foo", align 4
534
535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
555collector name <gc>`, an opening curly brace, a list of basic blocks,
556and a closing curly brace.
557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
563name, a possibly empty list of arguments, an optional alignment, and an
564optional :ref:`garbage collector name <gc>`.
565
566A function definition contains a list of basic blocks, forming the CFG
567(Control Flow Graph) for the function. Each basic block may optionally
568start with a label (giving the basic block a symbol table entry),
569contains a list of instructions, and ends with a
570:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000571return). If explicit label is not provided, a block is assigned an
572implicit numbered label, using a next value from the same counter as used
573for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
574function entry block does not have explicit label, it will be assigned
575label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000576
577The first basic block in a function is special in two ways: it is
578immediately executed on entrance to the function, and it is not allowed
579to have predecessor basic blocks (i.e. there can not be any branches to
580the entry block of a function). Because the block can have no
581predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
582
583LLVM allows an explicit section to be specified for functions. If the
584target supports it, it will emit functions to the section specified.
585
586An explicit alignment may be specified for a function. If not present,
587or if the alignment is set to zero, the alignment of the function is set
588by the target to whatever it feels convenient. If an explicit alignment
589is specified, the function is forced to have at least that much
590alignment. All alignments must be a power of 2.
591
592If the ``unnamed_addr`` attribute is given, the address is know to not
593be significant and two identical functions can be merged.
594
595Syntax::
596
597 define [linkage] [visibility]
598 [cconv] [ret attrs]
599 <ResultType> @<FunctionName> ([argument list])
600 [fn Attrs] [section "name"] [align N]
601 [gc] { ... }
602
Eli Bendersky1de14102013-06-07 19:40:08 +0000603.. _langref_aliases:
604
Sean Silvaf722b002012-12-07 10:36:55 +0000605Aliases
606-------
607
608Aliases act as "second name" for the aliasee value (which can be either
609function, global variable, another alias or bitcast of global value).
610Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
611:ref:`visibility style <visibility>`.
612
613Syntax::
614
615 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
616
617.. _namedmetadatastructure:
618
619Named Metadata
620--------------
621
622Named metadata is a collection of metadata. :ref:`Metadata
623nodes <metadata>` (but not metadata strings) are the only valid
624operands for a named metadata.
625
626Syntax::
627
628 ; Some unnamed metadata nodes, which are referenced by the named metadata.
629 !0 = metadata !{metadata !"zero"}
630 !1 = metadata !{metadata !"one"}
631 !2 = metadata !{metadata !"two"}
632 ; A named metadata.
633 !name = !{!0, !1, !2}
634
635.. _paramattrs:
636
637Parameter Attributes
638--------------------
639
640The return type and each parameter of a function type may have a set of
641*parameter attributes* associated with them. Parameter attributes are
642used to communicate additional information about the result or
643parameters of a function. Parameter attributes are considered to be part
644of the function, not of the function type, so functions with different
645parameter attributes can have the same function type.
646
647Parameter attributes are simple keywords that follow the type specified.
648If multiple parameter attributes are needed, they are space separated.
649For example:
650
651.. code-block:: llvm
652
653 declare i32 @printf(i8* noalias nocapture, ...)
654 declare i32 @atoi(i8 zeroext)
655 declare signext i8 @returns_signed_char()
656
657Note that any attributes for the function result (``nounwind``,
658``readonly``) come immediately after the argument list.
659
660Currently, only the following parameter attributes are defined:
661
662``zeroext``
663 This indicates to the code generator that the parameter or return
664 value should be zero-extended to the extent required by the target's
665 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
666 the caller (for a parameter) or the callee (for a return value).
667``signext``
668 This indicates to the code generator that the parameter or return
669 value should be sign-extended to the extent required by the target's
670 ABI (which is usually 32-bits) by the caller (for a parameter) or
671 the callee (for a return value).
672``inreg``
673 This indicates that this parameter or return value should be treated
674 in a special target-dependent fashion during while emitting code for
675 a function call or return (usually, by putting it in a register as
676 opposed to memory, though some targets use it to distinguish between
677 two different kinds of registers). Use of this attribute is
678 target-specific.
679``byval``
680 This indicates that the pointer parameter should really be passed by
681 value to the function. The attribute implies that a hidden copy of
682 the pointee is made between the caller and the callee, so the callee
683 is unable to modify the value in the caller. This attribute is only
684 valid on LLVM pointer arguments. It is generally used to pass
685 structs and arrays by value, but is also valid on pointers to
686 scalars. The copy is considered to belong to the caller not the
687 callee (for example, ``readonly`` functions should not write to
688 ``byval`` parameters). This is not a valid attribute for return
689 values.
690
691 The byval attribute also supports specifying an alignment with the
692 align attribute. It indicates the alignment of the stack slot to
693 form and the known alignment of the pointer specified to the call
694 site. If the alignment is not specified, then the code generator
695 makes a target-specific assumption.
696
697``sret``
698 This indicates that the pointer parameter specifies the address of a
699 structure that is the return value of the function in the source
700 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000701 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000702 not to trap and to be properly aligned. This may only be applied to
703 the first parameter. This is not a valid attribute for return
704 values.
705``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000706 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000707 the argument or return value do not alias pointer values which are
708 not *based* on it, ignoring certain "irrelevant" dependencies. For a
709 call to the parent function, dependencies between memory references
710 from before or after the call and from those during the call are
711 "irrelevant" to the ``noalias`` keyword for the arguments and return
712 value used in that call. The caller shares the responsibility with
713 the callee for ensuring that these requirements are met. For further
714 details, please see the discussion of the NoAlias response in `alias
715 analysis <AliasAnalysis.html#MustMayNo>`_.
716
717 Note that this definition of ``noalias`` is intentionally similar
718 to the definition of ``restrict`` in C99 for function arguments,
719 though it is slightly weaker.
720
721 For function return values, C99's ``restrict`` is not meaningful,
722 while LLVM's ``noalias`` is.
723``nocapture``
724 This indicates that the callee does not make any copies of the
725 pointer that outlive the callee itself. This is not a valid
726 attribute for return values.
727
728.. _nest:
729
730``nest``
731 This indicates that the pointer parameter can be excised using the
732 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000733 attribute for return values and can only be applied to one parameter.
734
735``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000736 This indicates that the function always returns the argument as its return
737 value. This is an optimization hint to the code generator when generating
738 the caller, allowing tail call optimization and omission of register saves
739 and restores in some cases; it is not checked or enforced when generating
740 the callee. The parameter and the function return type must be valid
741 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
742 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000743
744.. _gc:
745
746Garbage Collector Names
747-----------------------
748
749Each function may specify a garbage collector name, which is simply a
750string:
751
752.. code-block:: llvm
753
754 define void @f() gc "name" { ... }
755
756The compiler declares the supported values of *name*. Specifying a
757collector which will cause the compiler to alter its output in order to
758support the named garbage collection algorithm.
759
Bill Wendling95ce4c22013-02-06 06:52:58 +0000760.. _attrgrp:
761
762Attribute Groups
763----------------
764
765Attribute groups are groups of attributes that are referenced by objects within
766the IR. They are important for keeping ``.ll`` files readable, because a lot of
767functions will use the same set of attributes. In the degenerative case of a
768``.ll`` file that corresponds to a single ``.c`` file, the single attribute
769group will capture the important command line flags used to build that file.
770
771An attribute group is a module-level object. To use an attribute group, an
772object references the attribute group's ID (e.g. ``#37``). An object may refer
773to more than one attribute group. In that situation, the attributes from the
774different groups are merged.
775
776Here is an example of attribute groups for a function that should always be
777inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
778
779.. code-block:: llvm
780
781 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000782 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000783
784 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000785 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000786
787 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
788 define void @f() #0 #1 { ... }
789
Sean Silvaf722b002012-12-07 10:36:55 +0000790.. _fnattrs:
791
792Function Attributes
793-------------------
794
795Function attributes are set to communicate additional information about
796a function. Function attributes are considered to be part of the
797function, not of the function type, so functions with different function
798attributes can have the same function type.
799
800Function attributes are simple keywords that follow the type specified.
801If multiple attributes are needed, they are space separated. For
802example:
803
804.. code-block:: llvm
805
806 define void @f() noinline { ... }
807 define void @f() alwaysinline { ... }
808 define void @f() alwaysinline optsize { ... }
809 define void @f() optsize { ... }
810
Sean Silvaf722b002012-12-07 10:36:55 +0000811``alignstack(<n>)``
812 This attribute indicates that, when emitting the prologue and
813 epilogue, the backend should forcibly align the stack pointer.
814 Specify the desired alignment, which must be a power of two, in
815 parentheses.
816``alwaysinline``
817 This attribute indicates that the inliner should attempt to inline
818 this function into callers whenever possible, ignoring any active
819 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000820``builtin``
821 This indicates that the callee function at a call site should be
822 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000823 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000824 direct calls to functions which are declared with the ``nobuiltin``
825 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000826``cold``
827 This attribute indicates that this function is rarely called. When
828 computing edge weights, basic blocks post-dominated by a cold
829 function call are also considered to be cold; and, thus, given low
830 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000831``inlinehint``
832 This attribute indicates that the source code contained a hint that
833 inlining this function is desirable (such as the "inline" keyword in
834 C/C++). It is just a hint; it imposes no requirements on the
835 inliner.
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000836``minsize``
837 This attribute suggests that optimization passes and code generator
838 passes make choices that keep the code size of this function as small
839 as possible and perform optimizations that may sacrifice runtime
840 performance in order to minimize the size of the generated code.
Sean Silvaf722b002012-12-07 10:36:55 +0000841``naked``
842 This attribute disables prologue / epilogue emission for the
843 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000844``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000845 This indicates that the callee function at a call site is not recognized as
846 a built-in function. LLVM will retain the original call and not replace it
847 with equivalent code based on the semantics of the built-in function, unless
848 the call site uses the ``builtin`` attribute. This is valid at call sites
849 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000850``noduplicate``
851 This attribute indicates that calls to the function cannot be
852 duplicated. A call to a ``noduplicate`` function may be moved
853 within its parent function, but may not be duplicated within
854 its parent function.
855
856 A function containing a ``noduplicate`` call may still
857 be an inlining candidate, provided that the call is not
858 duplicated by inlining. That implies that the function has
859 internal linkage and only has one call site, so the original
860 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000861``noimplicitfloat``
862 This attributes disables implicit floating point instructions.
863``noinline``
864 This attribute indicates that the inliner should never inline this
865 function in any situation. This attribute may not be used together
866 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +0000867``nonlazybind``
868 This attribute suppresses lazy symbol binding for the function. This
869 may make calls to the function faster, at the cost of extra program
870 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +0000871``noredzone``
872 This attribute indicates that the code generator should not use a
873 red zone, even if the target-specific ABI normally permits it.
874``noreturn``
875 This function attribute indicates that the function never returns
876 normally. This produces undefined behavior at runtime if the
877 function ever does dynamically return.
878``nounwind``
879 This function attribute indicates that the function never returns
880 with an unwind or exceptional control flow. If the function does
881 unwind, its runtime behavior is undefined.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000882``optnone``
883 This function attribute indicates that the function is not optimized
884 by any optimization or code generator passes with the
885 exception of interprocedural optimization passes.
886 This attribute cannot be used together with the ``alwaysinline``
887 attribute; this attribute is also incompatible
888 with the ``minsize`` attribute and the ``optsize`` attribute.
889
890 The inliner should never inline this function in any situation.
891 Only functions with the ``alwaysinline`` attribute are valid
892 candidates for inlining inside the body of this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000893``optsize``
894 This attribute suggests that optimization passes and code generator
895 passes make choices that keep the code size of this function low,
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000896 and otherwise do optimizations specifically to reduce code size as
897 long as they do not significantly impact runtime performance.
Sean Silvaf722b002012-12-07 10:36:55 +0000898``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000899 On a function, this attribute indicates that the function computes its
900 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000901 without dereferencing any pointer arguments or otherwise accessing
902 any mutable state (e.g. memory, control registers, etc) visible to
903 caller functions. It does not write through any pointer arguments
904 (including ``byval`` arguments) and never changes any state visible
905 to callers. This means that it cannot unwind exceptions by calling
906 the ``C++`` exception throwing methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000907
908 On an argument, this attribute indicates that the function does not
909 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +0000910 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000911``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000912 On a function, this attribute indicates that the function does not write
913 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000914 modify any state (e.g. memory, control registers, etc) visible to
915 caller functions. It may dereference pointer arguments and read
916 state that may be set in the caller. A readonly function always
917 returns the same value (or unwinds an exception identically) when
918 called with the same set of arguments and global state. It cannot
919 unwind an exception by calling the ``C++`` exception throwing
920 methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000921
922 On an argument, this attribute indicates that the function does not write
923 through this pointer argument, even though it may write to the memory that
924 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000925``returns_twice``
926 This attribute indicates that this function can return twice. The C
927 ``setjmp`` is an example of such a function. The compiler disables
928 some optimizations (like tail calls) in the caller of these
929 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000930``sanitize_address``
931 This attribute indicates that AddressSanitizer checks
932 (dynamic address safety analysis) are enabled for this function.
933``sanitize_memory``
934 This attribute indicates that MemorySanitizer checks (dynamic detection
935 of accesses to uninitialized memory) are enabled for this function.
936``sanitize_thread``
937 This attribute indicates that ThreadSanitizer checks
938 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000939``ssp``
940 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000941 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000942 placed on the stack before the local variables that's checked upon
943 return from the function to see if it has been overwritten. A
944 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000945 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000946
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000947 - Character arrays larger than ``ssp-buffer-size`` (default 8).
948 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
949 - Calls to alloca() with variable sizes or constant sizes greater than
950 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000951
952 If a function that has an ``ssp`` attribute is inlined into a
953 function that doesn't have an ``ssp`` attribute, then the resulting
954 function will have an ``ssp`` attribute.
955``sspreq``
956 This attribute indicates that the function should *always* emit a
957 stack smashing protector. This overrides the ``ssp`` function
958 attribute.
959
960 If a function that has an ``sspreq`` attribute is inlined into a
961 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000962 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
963 an ``sspreq`` attribute.
964``sspstrong``
965 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000966 protector. This attribute causes a strong heuristic to be used when
967 determining if a function needs stack protectors. The strong heuristic
968 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000969
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000970 - Arrays of any size and type
971 - Aggregates containing an array of any size and type.
972 - Calls to alloca().
973 - Local variables that have had their address taken.
974
975 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000976
977 If a function that has an ``sspstrong`` attribute is inlined into a
978 function that doesn't have an ``sspstrong`` attribute, then the
979 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000980``uwtable``
981 This attribute indicates that the ABI being targeted requires that
982 an unwind table entry be produce for this function even if we can
983 show that no exceptions passes by it. This is normally the case for
984 the ELF x86-64 abi, but it can be disabled for some compilation
985 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000986
987.. _moduleasm:
988
989Module-Level Inline Assembly
990----------------------------
991
992Modules may contain "module-level inline asm" blocks, which corresponds
993to the GCC "file scope inline asm" blocks. These blocks are internally
994concatenated by LLVM and treated as a single unit, but may be separated
995in the ``.ll`` file if desired. The syntax is very simple:
996
997.. code-block:: llvm
998
999 module asm "inline asm code goes here"
1000 module asm "more can go here"
1001
1002The strings can contain any character by escaping non-printable
1003characters. The escape sequence used is simply "\\xx" where "xx" is the
1004two digit hex code for the number.
1005
1006The inline asm code is simply printed to the machine code .s file when
1007assembly code is generated.
1008
Eli Bendersky1de14102013-06-07 19:40:08 +00001009.. _langref_datalayout:
1010
Sean Silvaf722b002012-12-07 10:36:55 +00001011Data Layout
1012-----------
1013
1014A module may specify a target specific data layout string that specifies
1015how data is to be laid out in memory. The syntax for the data layout is
1016simply:
1017
1018.. code-block:: llvm
1019
1020 target datalayout = "layout specification"
1021
1022The *layout specification* consists of a list of specifications
1023separated by the minus sign character ('-'). Each specification starts
1024with a letter and may include other information after the letter to
1025define some aspect of the data layout. The specifications accepted are
1026as follows:
1027
1028``E``
1029 Specifies that the target lays out data in big-endian form. That is,
1030 the bits with the most significance have the lowest address
1031 location.
1032``e``
1033 Specifies that the target lays out data in little-endian form. That
1034 is, the bits with the least significance have the lowest address
1035 location.
1036``S<size>``
1037 Specifies the natural alignment of the stack in bits. Alignment
1038 promotion of stack variables is limited to the natural stack
1039 alignment to avoid dynamic stack realignment. The stack alignment
1040 must be a multiple of 8-bits. If omitted, the natural stack
1041 alignment defaults to "unspecified", which does not prevent any
1042 alignment promotions.
1043``p[n]:<size>:<abi>:<pref>``
1044 This specifies the *size* of a pointer and its ``<abi>`` and
1045 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1046 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1047 preceding ``:`` should be omitted too. The address space, ``n`` is
1048 optional, and if not specified, denotes the default address space 0.
1049 The value of ``n`` must be in the range [1,2^23).
1050``i<size>:<abi>:<pref>``
1051 This specifies the alignment for an integer type of a given bit
1052 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1053``v<size>:<abi>:<pref>``
1054 This specifies the alignment for a vector type of a given bit
1055 ``<size>``.
1056``f<size>:<abi>:<pref>``
1057 This specifies the alignment for a floating point type of a given bit
1058 ``<size>``. Only values of ``<size>`` that are supported by the target
1059 will work. 32 (float) and 64 (double) are supported on all targets; 80
1060 or 128 (different flavors of long double) are also supported on some
1061 targets.
1062``a<size>:<abi>:<pref>``
1063 This specifies the alignment for an aggregate type of a given bit
1064 ``<size>``.
1065``s<size>:<abi>:<pref>``
1066 This specifies the alignment for a stack object of a given bit
1067 ``<size>``.
1068``n<size1>:<size2>:<size3>...``
1069 This specifies a set of native integer widths for the target CPU in
1070 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1071 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1072 this set are considered to support most general arithmetic operations
1073 efficiently.
1074
1075When constructing the data layout for a given target, LLVM starts with a
1076default set of specifications which are then (possibly) overridden by
1077the specifications in the ``datalayout`` keyword. The default
1078specifications are given in this list:
1079
1080- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00001081- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1082- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1083 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001084- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001085- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1086- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1087- ``i16:16:16`` - i16 is 16-bit aligned
1088- ``i32:32:32`` - i32 is 32-bit aligned
1089- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1090 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001091- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001092- ``f32:32:32`` - float is 32-bit aligned
1093- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001094- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001095- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1096- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001097- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001098
1099When LLVM is determining the alignment for a given type, it uses the
1100following rules:
1101
1102#. If the type sought is an exact match for one of the specifications,
1103 that specification is used.
1104#. If no match is found, and the type sought is an integer type, then
1105 the smallest integer type that is larger than the bitwidth of the
1106 sought type is used. If none of the specifications are larger than
1107 the bitwidth then the largest integer type is used. For example,
1108 given the default specifications above, the i7 type will use the
1109 alignment of i8 (next largest) while both i65 and i256 will use the
1110 alignment of i64 (largest specified).
1111#. If no match is found, and the type sought is a vector type, then the
1112 largest vector type that is smaller than the sought vector type will
1113 be used as a fall back. This happens because <128 x double> can be
1114 implemented in terms of 64 <2 x double>, for example.
1115
1116The function of the data layout string may not be what you expect.
1117Notably, this is not a specification from the frontend of what alignment
1118the code generator should use.
1119
1120Instead, if specified, the target data layout is required to match what
1121the ultimate *code generator* expects. This string is used by the
1122mid-level optimizers to improve code, and this only works if it matches
1123what the ultimate code generator uses. If you would like to generate IR
1124that does not embed this target-specific detail into the IR, then you
1125don't have to specify the string. This will disable some optimizations
1126that require precise layout information, but this also prevents those
1127optimizations from introducing target specificity into the IR.
1128
1129.. _pointeraliasing:
1130
1131Pointer Aliasing Rules
1132----------------------
1133
1134Any memory access must be done through a pointer value associated with
1135an address range of the memory access, otherwise the behavior is
1136undefined. Pointer values are associated with address ranges according
1137to the following rules:
1138
1139- A pointer value is associated with the addresses associated with any
1140 value it is *based* on.
1141- An address of a global variable is associated with the address range
1142 of the variable's storage.
1143- The result value of an allocation instruction is associated with the
1144 address range of the allocated storage.
1145- A null pointer in the default address-space is associated with no
1146 address.
1147- An integer constant other than zero or a pointer value returned from
1148 a function not defined within LLVM may be associated with address
1149 ranges allocated through mechanisms other than those provided by
1150 LLVM. Such ranges shall not overlap with any ranges of addresses
1151 allocated by mechanisms provided by LLVM.
1152
1153A pointer value is *based* on another pointer value according to the
1154following rules:
1155
1156- A pointer value formed from a ``getelementptr`` operation is *based*
1157 on the first operand of the ``getelementptr``.
1158- The result value of a ``bitcast`` is *based* on the operand of the
1159 ``bitcast``.
1160- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1161 values that contribute (directly or indirectly) to the computation of
1162 the pointer's value.
1163- The "*based* on" relationship is transitive.
1164
1165Note that this definition of *"based"* is intentionally similar to the
1166definition of *"based"* in C99, though it is slightly weaker.
1167
1168LLVM IR does not associate types with memory. The result type of a
1169``load`` merely indicates the size and alignment of the memory from
1170which to load, as well as the interpretation of the value. The first
1171operand type of a ``store`` similarly only indicates the size and
1172alignment of the store.
1173
1174Consequently, type-based alias analysis, aka TBAA, aka
1175``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1176:ref:`Metadata <metadata>` may be used to encode additional information
1177which specialized optimization passes may use to implement type-based
1178alias analysis.
1179
1180.. _volatile:
1181
1182Volatile Memory Accesses
1183------------------------
1184
1185Certain memory accesses, such as :ref:`load <i_load>`'s,
1186:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1187marked ``volatile``. The optimizers must not change the number of
1188volatile operations or change their order of execution relative to other
1189volatile operations. The optimizers *may* change the order of volatile
1190operations relative to non-volatile operations. This is not Java's
1191"volatile" and has no cross-thread synchronization behavior.
1192
Andrew Trick9a6dd022013-01-30 21:19:35 +00001193IR-level volatile loads and stores cannot safely be optimized into
1194llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1195flagged volatile. Likewise, the backend should never split or merge
1196target-legal volatile load/store instructions.
1197
Andrew Trick946317d2013-01-31 00:49:39 +00001198.. admonition:: Rationale
1199
1200 Platforms may rely on volatile loads and stores of natively supported
1201 data width to be executed as single instruction. For example, in C
1202 this holds for an l-value of volatile primitive type with native
1203 hardware support, but not necessarily for aggregate types. The
1204 frontend upholds these expectations, which are intentionally
1205 unspecified in the IR. The rules above ensure that IR transformation
1206 do not violate the frontend's contract with the language.
1207
Sean Silvaf722b002012-12-07 10:36:55 +00001208.. _memmodel:
1209
1210Memory Model for Concurrent Operations
1211--------------------------------------
1212
1213The LLVM IR does not define any way to start parallel threads of
1214execution or to register signal handlers. Nonetheless, there are
1215platform-specific ways to create them, and we define LLVM IR's behavior
1216in their presence. This model is inspired by the C++0x memory model.
1217
1218For a more informal introduction to this model, see the :doc:`Atomics`.
1219
1220We define a *happens-before* partial order as the least partial order
1221that
1222
1223- Is a superset of single-thread program order, and
1224- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1225 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1226 techniques, like pthread locks, thread creation, thread joining,
1227 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1228 Constraints <ordering>`).
1229
1230Note that program order does not introduce *happens-before* edges
1231between a thread and signals executing inside that thread.
1232
1233Every (defined) read operation (load instructions, memcpy, atomic
1234loads/read-modify-writes, etc.) R reads a series of bytes written by
1235(defined) write operations (store instructions, atomic
1236stores/read-modify-writes, memcpy, etc.). For the purposes of this
1237section, initialized globals are considered to have a write of the
1238initializer which is atomic and happens before any other read or write
1239of the memory in question. For each byte of a read R, R\ :sub:`byte`
1240may see any write to the same byte, except:
1241
1242- If write\ :sub:`1` happens before write\ :sub:`2`, and
1243 write\ :sub:`2` happens before R\ :sub:`byte`, then
1244 R\ :sub:`byte` does not see write\ :sub:`1`.
1245- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1246 R\ :sub:`byte` does not see write\ :sub:`3`.
1247
1248Given that definition, R\ :sub:`byte` is defined as follows:
1249
1250- If R is volatile, the result is target-dependent. (Volatile is
1251 supposed to give guarantees which can support ``sig_atomic_t`` in
1252 C/C++, and may be used for accesses to addresses which do not behave
1253 like normal memory. It does not generally provide cross-thread
1254 synchronization.)
1255- Otherwise, if there is no write to the same byte that happens before
1256 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1257- Otherwise, if R\ :sub:`byte` may see exactly one write,
1258 R\ :sub:`byte` returns the value written by that write.
1259- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1260 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1261 Memory Ordering Constraints <ordering>` section for additional
1262 constraints on how the choice is made.
1263- Otherwise R\ :sub:`byte` returns ``undef``.
1264
1265R returns the value composed of the series of bytes it read. This
1266implies that some bytes within the value may be ``undef`` **without**
1267the entire value being ``undef``. Note that this only defines the
1268semantics of the operation; it doesn't mean that targets will emit more
1269than one instruction to read the series of bytes.
1270
1271Note that in cases where none of the atomic intrinsics are used, this
1272model places only one restriction on IR transformations on top of what
1273is required for single-threaded execution: introducing a store to a byte
1274which might not otherwise be stored is not allowed in general.
1275(Specifically, in the case where another thread might write to and read
1276from an address, introducing a store can change a load that may see
1277exactly one write into a load that may see multiple writes.)
1278
1279.. _ordering:
1280
1281Atomic Memory Ordering Constraints
1282----------------------------------
1283
1284Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1285:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1286:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1287an ordering parameter that determines which other atomic instructions on
1288the same address they *synchronize with*. These semantics are borrowed
1289from Java and C++0x, but are somewhat more colloquial. If these
1290descriptions aren't precise enough, check those specs (see spec
1291references in the :doc:`atomics guide <Atomics>`).
1292:ref:`fence <i_fence>` instructions treat these orderings somewhat
1293differently since they don't take an address. See that instruction's
1294documentation for details.
1295
1296For a simpler introduction to the ordering constraints, see the
1297:doc:`Atomics`.
1298
1299``unordered``
1300 The set of values that can be read is governed by the happens-before
1301 partial order. A value cannot be read unless some operation wrote
1302 it. This is intended to provide a guarantee strong enough to model
1303 Java's non-volatile shared variables. This ordering cannot be
1304 specified for read-modify-write operations; it is not strong enough
1305 to make them atomic in any interesting way.
1306``monotonic``
1307 In addition to the guarantees of ``unordered``, there is a single
1308 total order for modifications by ``monotonic`` operations on each
1309 address. All modification orders must be compatible with the
1310 happens-before order. There is no guarantee that the modification
1311 orders can be combined to a global total order for the whole program
1312 (and this often will not be possible). The read in an atomic
1313 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1314 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1315 order immediately before the value it writes. If one atomic read
1316 happens before another atomic read of the same address, the later
1317 read must see the same value or a later value in the address's
1318 modification order. This disallows reordering of ``monotonic`` (or
1319 stronger) operations on the same address. If an address is written
1320 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1321 read that address repeatedly, the other threads must eventually see
1322 the write. This corresponds to the C++0x/C1x
1323 ``memory_order_relaxed``.
1324``acquire``
1325 In addition to the guarantees of ``monotonic``, a
1326 *synchronizes-with* edge may be formed with a ``release`` operation.
1327 This is intended to model C++'s ``memory_order_acquire``.
1328``release``
1329 In addition to the guarantees of ``monotonic``, if this operation
1330 writes a value which is subsequently read by an ``acquire``
1331 operation, it *synchronizes-with* that operation. (This isn't a
1332 complete description; see the C++0x definition of a release
1333 sequence.) This corresponds to the C++0x/C1x
1334 ``memory_order_release``.
1335``acq_rel`` (acquire+release)
1336 Acts as both an ``acquire`` and ``release`` operation on its
1337 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1338``seq_cst`` (sequentially consistent)
1339 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1340 operation which only reads, ``release`` for an operation which only
1341 writes), there is a global total order on all
1342 sequentially-consistent operations on all addresses, which is
1343 consistent with the *happens-before* partial order and with the
1344 modification orders of all the affected addresses. Each
1345 sequentially-consistent read sees the last preceding write to the
1346 same address in this global order. This corresponds to the C++0x/C1x
1347 ``memory_order_seq_cst`` and Java volatile.
1348
1349.. _singlethread:
1350
1351If an atomic operation is marked ``singlethread``, it only *synchronizes
1352with* or participates in modification and seq\_cst total orderings with
1353other operations running in the same thread (for example, in signal
1354handlers).
1355
1356.. _fastmath:
1357
1358Fast-Math Flags
1359---------------
1360
1361LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1362:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1363:ref:`frem <i_frem>`) have the following flags that can set to enable
1364otherwise unsafe floating point operations
1365
1366``nnan``
1367 No NaNs - Allow optimizations to assume the arguments and result are not
1368 NaN. Such optimizations are required to retain defined behavior over
1369 NaNs, but the value of the result is undefined.
1370
1371``ninf``
1372 No Infs - Allow optimizations to assume the arguments and result are not
1373 +/-Inf. Such optimizations are required to retain defined behavior over
1374 +/-Inf, but the value of the result is undefined.
1375
1376``nsz``
1377 No Signed Zeros - Allow optimizations to treat the sign of a zero
1378 argument or result as insignificant.
1379
1380``arcp``
1381 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1382 argument rather than perform division.
1383
1384``fast``
1385 Fast - Allow algebraically equivalent transformations that may
1386 dramatically change results in floating point (e.g. reassociate). This
1387 flag implies all the others.
1388
1389.. _typesystem:
1390
1391Type System
1392===========
1393
1394The LLVM type system is one of the most important features of the
1395intermediate representation. Being typed enables a number of
1396optimizations to be performed on the intermediate representation
1397directly, without having to do extra analyses on the side before the
1398transformation. A strong type system makes it easier to read the
1399generated code and enables novel analyses and transformations that are
1400not feasible to perform on normal three address code representations.
1401
Eli Bendersky88fe6822013-06-07 20:24:43 +00001402.. _typeclassifications:
1403
Sean Silvaf722b002012-12-07 10:36:55 +00001404Type Classifications
1405--------------------
1406
1407The types fall into a few useful classifications:
1408
1409
1410.. list-table::
1411 :header-rows: 1
1412
1413 * - Classification
1414 - Types
1415
1416 * - :ref:`integer <t_integer>`
1417 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1418 ``i64``, ...
1419
1420 * - :ref:`floating point <t_floating>`
1421 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1422 ``ppc_fp128``
1423
1424
1425 * - first class
1426
1427 .. _t_firstclass:
1428
1429 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1430 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1431 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1432 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1433
1434 * - :ref:`primitive <t_primitive>`
1435 - :ref:`label <t_label>`,
1436 :ref:`void <t_void>`,
1437 :ref:`integer <t_integer>`,
1438 :ref:`floating point <t_floating>`,
1439 :ref:`x86mmx <t_x86mmx>`,
1440 :ref:`metadata <t_metadata>`.
1441
1442 * - :ref:`derived <t_derived>`
1443 - :ref:`array <t_array>`,
1444 :ref:`function <t_function>`,
1445 :ref:`pointer <t_pointer>`,
1446 :ref:`structure <t_struct>`,
1447 :ref:`vector <t_vector>`,
1448 :ref:`opaque <t_opaque>`.
1449
1450The :ref:`first class <t_firstclass>` types are perhaps the most important.
1451Values of these types are the only ones which can be produced by
1452instructions.
1453
1454.. _t_primitive:
1455
1456Primitive Types
1457---------------
1458
1459The primitive types are the fundamental building blocks of the LLVM
1460system.
1461
1462.. _t_integer:
1463
1464Integer Type
1465^^^^^^^^^^^^
1466
1467Overview:
1468"""""""""
1469
1470The integer type is a very simple type that simply specifies an
1471arbitrary bit width for the integer type desired. Any bit width from 1
1472bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1473
1474Syntax:
1475"""""""
1476
1477::
1478
1479 iN
1480
1481The number of bits the integer will occupy is specified by the ``N``
1482value.
1483
1484Examples:
1485"""""""""
1486
1487+----------------+------------------------------------------------+
1488| ``i1`` | a single-bit integer. |
1489+----------------+------------------------------------------------+
1490| ``i32`` | a 32-bit integer. |
1491+----------------+------------------------------------------------+
1492| ``i1942652`` | a really big integer of over 1 million bits. |
1493+----------------+------------------------------------------------+
1494
1495.. _t_floating:
1496
1497Floating Point Types
1498^^^^^^^^^^^^^^^^^^^^
1499
1500.. list-table::
1501 :header-rows: 1
1502
1503 * - Type
1504 - Description
1505
1506 * - ``half``
1507 - 16-bit floating point value
1508
1509 * - ``float``
1510 - 32-bit floating point value
1511
1512 * - ``double``
1513 - 64-bit floating point value
1514
1515 * - ``fp128``
1516 - 128-bit floating point value (112-bit mantissa)
1517
1518 * - ``x86_fp80``
1519 - 80-bit floating point value (X87)
1520
1521 * - ``ppc_fp128``
1522 - 128-bit floating point value (two 64-bits)
1523
1524.. _t_x86mmx:
1525
1526X86mmx Type
1527^^^^^^^^^^^
1528
1529Overview:
1530"""""""""
1531
1532The x86mmx type represents a value held in an MMX register on an x86
1533machine. The operations allowed on it are quite limited: parameters and
1534return values, load and store, and bitcast. User-specified MMX
1535instructions are represented as intrinsic or asm calls with arguments
1536and/or results of this type. There are no arrays, vectors or constants
1537of this type.
1538
1539Syntax:
1540"""""""
1541
1542::
1543
1544 x86mmx
1545
1546.. _t_void:
1547
1548Void Type
1549^^^^^^^^^
1550
1551Overview:
1552"""""""""
1553
1554The void type does not represent any value and has no size.
1555
1556Syntax:
1557"""""""
1558
1559::
1560
1561 void
1562
1563.. _t_label:
1564
1565Label Type
1566^^^^^^^^^^
1567
1568Overview:
1569"""""""""
1570
1571The label type represents code labels.
1572
1573Syntax:
1574"""""""
1575
1576::
1577
1578 label
1579
1580.. _t_metadata:
1581
1582Metadata Type
1583^^^^^^^^^^^^^
1584
1585Overview:
1586"""""""""
1587
1588The metadata type represents embedded metadata. No derived types may be
1589created from metadata except for :ref:`function <t_function>` arguments.
1590
1591Syntax:
1592"""""""
1593
1594::
1595
1596 metadata
1597
1598.. _t_derived:
1599
1600Derived Types
1601-------------
1602
1603The real power in LLVM comes from the derived types in the system. This
1604is what allows a programmer to represent arrays, functions, pointers,
1605and other useful types. Each of these types contain one or more element
1606types which may be a primitive type, or another derived type. For
1607example, it is possible to have a two dimensional array, using an array
1608as the element type of another array.
1609
1610.. _t_aggregate:
1611
1612Aggregate Types
1613^^^^^^^^^^^^^^^
1614
1615Aggregate Types are a subset of derived types that can contain multiple
1616member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1617aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1618aggregate types.
1619
1620.. _t_array:
1621
1622Array Type
1623^^^^^^^^^^
1624
1625Overview:
1626"""""""""
1627
1628The array type is a very simple derived type that arranges elements
1629sequentially in memory. The array type requires a size (number of
1630elements) and an underlying data type.
1631
1632Syntax:
1633"""""""
1634
1635::
1636
1637 [<# elements> x <elementtype>]
1638
1639The number of elements is a constant integer value; ``elementtype`` may
1640be any type with a size.
1641
1642Examples:
1643"""""""""
1644
1645+------------------+--------------------------------------+
1646| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1647+------------------+--------------------------------------+
1648| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1649+------------------+--------------------------------------+
1650| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1651+------------------+--------------------------------------+
1652
1653Here are some examples of multidimensional arrays:
1654
1655+-----------------------------+----------------------------------------------------------+
1656| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1657+-----------------------------+----------------------------------------------------------+
1658| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1659+-----------------------------+----------------------------------------------------------+
1660| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1661+-----------------------------+----------------------------------------------------------+
1662
1663There is no restriction on indexing beyond the end of the array implied
1664by a static type (though there are restrictions on indexing beyond the
1665bounds of an allocated object in some cases). This means that
1666single-dimension 'variable sized array' addressing can be implemented in
1667LLVM with a zero length array type. An implementation of 'pascal style
1668arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1669example.
1670
1671.. _t_function:
1672
1673Function Type
1674^^^^^^^^^^^^^
1675
1676Overview:
1677"""""""""
1678
1679The function type can be thought of as a function signature. It consists
1680of a return type and a list of formal parameter types. The return type
1681of a function type is a first class type or a void type.
1682
1683Syntax:
1684"""""""
1685
1686::
1687
1688 <returntype> (<parameter list>)
1689
1690...where '``<parameter list>``' is a comma-separated list of type
1691specifiers. Optionally, the parameter list may include a type ``...``,
1692which indicates that the function takes a variable number of arguments.
1693Variable argument functions can access their arguments with the
1694:ref:`variable argument handling intrinsic <int_varargs>` functions.
1695'``<returntype>``' is any type except :ref:`label <t_label>`.
1696
1697Examples:
1698"""""""""
1699
1700+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1701| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1702+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001703| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001704+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1705| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1706+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1707| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1708+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1709
1710.. _t_struct:
1711
1712Structure Type
1713^^^^^^^^^^^^^^
1714
1715Overview:
1716"""""""""
1717
1718The structure type is used to represent a collection of data members
1719together in memory. The elements of a structure may be any type that has
1720a size.
1721
1722Structures in memory are accessed using '``load``' and '``store``' by
1723getting a pointer to a field with the '``getelementptr``' instruction.
1724Structures in registers are accessed using the '``extractvalue``' and
1725'``insertvalue``' instructions.
1726
1727Structures may optionally be "packed" structures, which indicate that
1728the alignment of the struct is one byte, and that there is no padding
1729between the elements. In non-packed structs, padding between field types
1730is inserted as defined by the DataLayout string in the module, which is
1731required to match what the underlying code generator expects.
1732
1733Structures can either be "literal" or "identified". A literal structure
1734is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1735identified types are always defined at the top level with a name.
1736Literal types are uniqued by their contents and can never be recursive
1737or opaque since there is no way to write one. Identified types can be
1738recursive, can be opaqued, and are never uniqued.
1739
1740Syntax:
1741"""""""
1742
1743::
1744
1745 %T1 = type { <type list> } ; Identified normal struct type
1746 %T2 = type <{ <type list> }> ; Identified packed struct type
1747
1748Examples:
1749"""""""""
1750
1751+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1752| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1753+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001754| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001755+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1756| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1757+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1758
1759.. _t_opaque:
1760
1761Opaque Structure Types
1762^^^^^^^^^^^^^^^^^^^^^^
1763
1764Overview:
1765"""""""""
1766
1767Opaque structure types are used to represent named structure types that
1768do not have a body specified. This corresponds (for example) to the C
1769notion of a forward declared structure.
1770
1771Syntax:
1772"""""""
1773
1774::
1775
1776 %X = type opaque
1777 %52 = type opaque
1778
1779Examples:
1780"""""""""
1781
1782+--------------+-------------------+
1783| ``opaque`` | An opaque type. |
1784+--------------+-------------------+
1785
1786.. _t_pointer:
1787
1788Pointer Type
1789^^^^^^^^^^^^
1790
1791Overview:
1792"""""""""
1793
1794The pointer type is used to specify memory locations. Pointers are
1795commonly used to reference objects in memory.
1796
1797Pointer types may have an optional address space attribute defining the
1798numbered address space where the pointed-to object resides. The default
1799address space is number zero. The semantics of non-zero address spaces
1800are target-specific.
1801
1802Note that LLVM does not permit pointers to void (``void*``) nor does it
1803permit pointers to labels (``label*``). Use ``i8*`` instead.
1804
1805Syntax:
1806"""""""
1807
1808::
1809
1810 <type> *
1811
1812Examples:
1813"""""""""
1814
1815+-------------------------+--------------------------------------------------------------------------------------------------------------+
1816| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1817+-------------------------+--------------------------------------------------------------------------------------------------------------+
1818| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1819+-------------------------+--------------------------------------------------------------------------------------------------------------+
1820| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1821+-------------------------+--------------------------------------------------------------------------------------------------------------+
1822
1823.. _t_vector:
1824
1825Vector Type
1826^^^^^^^^^^^
1827
1828Overview:
1829"""""""""
1830
1831A vector type is a simple derived type that represents a vector of
1832elements. Vector types are used when multiple primitive data are
1833operated in parallel using a single instruction (SIMD). A vector type
1834requires a size (number of elements) and an underlying primitive data
1835type. Vector types are considered :ref:`first class <t_firstclass>`.
1836
1837Syntax:
1838"""""""
1839
1840::
1841
1842 < <# elements> x <elementtype> >
1843
1844The number of elements is a constant integer value larger than 0;
1845elementtype may be any integer or floating point type, or a pointer to
1846these types. Vectors of size zero are not allowed.
1847
1848Examples:
1849"""""""""
1850
1851+-------------------+--------------------------------------------------+
1852| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1853+-------------------+--------------------------------------------------+
1854| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1855+-------------------+--------------------------------------------------+
1856| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1857+-------------------+--------------------------------------------------+
1858| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1859+-------------------+--------------------------------------------------+
1860
1861Constants
1862=========
1863
1864LLVM has several different basic types of constants. This section
1865describes them all and their syntax.
1866
1867Simple Constants
1868----------------
1869
1870**Boolean constants**
1871 The two strings '``true``' and '``false``' are both valid constants
1872 of the ``i1`` type.
1873**Integer constants**
1874 Standard integers (such as '4') are constants of the
1875 :ref:`integer <t_integer>` type. Negative numbers may be used with
1876 integer types.
1877**Floating point constants**
1878 Floating point constants use standard decimal notation (e.g.
1879 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1880 hexadecimal notation (see below). The assembler requires the exact
1881 decimal value of a floating-point constant. For example, the
1882 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1883 decimal in binary. Floating point constants must have a :ref:`floating
1884 point <t_floating>` type.
1885**Null pointer constants**
1886 The identifier '``null``' is recognized as a null pointer constant
1887 and must be of :ref:`pointer type <t_pointer>`.
1888
1889The one non-intuitive notation for constants is the hexadecimal form of
1890floating point constants. For example, the form
1891'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1892than) '``double 4.5e+15``'. The only time hexadecimal floating point
1893constants are required (and the only time that they are generated by the
1894disassembler) is when a floating point constant must be emitted but it
1895cannot be represented as a decimal floating point number in a reasonable
1896number of digits. For example, NaN's, infinities, and other special
1897values are represented in their IEEE hexadecimal format so that assembly
1898and disassembly do not cause any bits to change in the constants.
1899
1900When using the hexadecimal form, constants of types half, float, and
1901double are represented using the 16-digit form shown above (which
1902matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001903must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001904precision, respectively. Hexadecimal format is always used for long
1905double, and there are three forms of long double. The 80-bit format used
1906by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1907128-bit format used by PowerPC (two adjacent doubles) is represented by
1908``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001909represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1910will only work if they match the long double format on your target.
1911The IEEE 16-bit format (half precision) is represented by ``0xH``
1912followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1913(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001914
1915There are no constants of type x86mmx.
1916
Eli Bendersky88fe6822013-06-07 20:24:43 +00001917.. _complexconstants:
1918
Sean Silvaf722b002012-12-07 10:36:55 +00001919Complex Constants
1920-----------------
1921
1922Complex constants are a (potentially recursive) combination of simple
1923constants and smaller complex constants.
1924
1925**Structure constants**
1926 Structure constants are represented with notation similar to
1927 structure type definitions (a comma separated list of elements,
1928 surrounded by braces (``{}``)). For example:
1929 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1930 "``@G = external global i32``". Structure constants must have
1931 :ref:`structure type <t_struct>`, and the number and types of elements
1932 must match those specified by the type.
1933**Array constants**
1934 Array constants are represented with notation similar to array type
1935 definitions (a comma separated list of elements, surrounded by
1936 square brackets (``[]``)). For example:
1937 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1938 :ref:`array type <t_array>`, and the number and types of elements must
1939 match those specified by the type.
1940**Vector constants**
1941 Vector constants are represented with notation similar to vector
1942 type definitions (a comma separated list of elements, surrounded by
1943 less-than/greater-than's (``<>``)). For example:
1944 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1945 must have :ref:`vector type <t_vector>`, and the number and types of
1946 elements must match those specified by the type.
1947**Zero initialization**
1948 The string '``zeroinitializer``' can be used to zero initialize a
1949 value to zero of *any* type, including scalar and
1950 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1951 having to print large zero initializers (e.g. for large arrays) and
1952 is always exactly equivalent to using explicit zero initializers.
1953**Metadata node**
1954 A metadata node is a structure-like constant with :ref:`metadata
1955 type <t_metadata>`. For example:
1956 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1957 constants that are meant to be interpreted as part of the
1958 instruction stream, metadata is a place to attach additional
1959 information such as debug info.
1960
1961Global Variable and Function Addresses
1962--------------------------------------
1963
1964The addresses of :ref:`global variables <globalvars>` and
1965:ref:`functions <functionstructure>` are always implicitly valid
1966(link-time) constants. These constants are explicitly referenced when
1967the :ref:`identifier for the global <identifiers>` is used and always have
1968:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1969file:
1970
1971.. code-block:: llvm
1972
1973 @X = global i32 17
1974 @Y = global i32 42
1975 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1976
1977.. _undefvalues:
1978
1979Undefined Values
1980----------------
1981
1982The string '``undef``' can be used anywhere a constant is expected, and
1983indicates that the user of the value may receive an unspecified
1984bit-pattern. Undefined values may be of any type (other than '``label``'
1985or '``void``') and be used anywhere a constant is permitted.
1986
1987Undefined values are useful because they indicate to the compiler that
1988the program is well defined no matter what value is used. This gives the
1989compiler more freedom to optimize. Here are some examples of
1990(potentially surprising) transformations that are valid (in pseudo IR):
1991
1992.. code-block:: llvm
1993
1994 %A = add %X, undef
1995 %B = sub %X, undef
1996 %C = xor %X, undef
1997 Safe:
1998 %A = undef
1999 %B = undef
2000 %C = undef
2001
2002This is safe because all of the output bits are affected by the undef
2003bits. Any output bit can have a zero or one depending on the input bits.
2004
2005.. code-block:: llvm
2006
2007 %A = or %X, undef
2008 %B = and %X, undef
2009 Safe:
2010 %A = -1
2011 %B = 0
2012 Unsafe:
2013 %A = undef
2014 %B = undef
2015
2016These logical operations have bits that are not always affected by the
2017input. For example, if ``%X`` has a zero bit, then the output of the
2018'``and``' operation will always be a zero for that bit, no matter what
2019the corresponding bit from the '``undef``' is. As such, it is unsafe to
2020optimize or assume that the result of the '``and``' is '``undef``'.
2021However, it is safe to assume that all bits of the '``undef``' could be
20220, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2023all the bits of the '``undef``' operand to the '``or``' could be set,
2024allowing the '``or``' to be folded to -1.
2025
2026.. code-block:: llvm
2027
2028 %A = select undef, %X, %Y
2029 %B = select undef, 42, %Y
2030 %C = select %X, %Y, undef
2031 Safe:
2032 %A = %X (or %Y)
2033 %B = 42 (or %Y)
2034 %C = %Y
2035 Unsafe:
2036 %A = undef
2037 %B = undef
2038 %C = undef
2039
2040This set of examples shows that undefined '``select``' (and conditional
2041branch) conditions can go *either way*, but they have to come from one
2042of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2043both known to have a clear low bit, then ``%A`` would have to have a
2044cleared low bit. However, in the ``%C`` example, the optimizer is
2045allowed to assume that the '``undef``' operand could be the same as
2046``%Y``, allowing the whole '``select``' to be eliminated.
2047
2048.. code-block:: llvm
2049
2050 %A = xor undef, undef
2051
2052 %B = undef
2053 %C = xor %B, %B
2054
2055 %D = undef
2056 %E = icmp lt %D, 4
2057 %F = icmp gte %D, 4
2058
2059 Safe:
2060 %A = undef
2061 %B = undef
2062 %C = undef
2063 %D = undef
2064 %E = undef
2065 %F = undef
2066
2067This example points out that two '``undef``' operands are not
2068necessarily the same. This can be surprising to people (and also matches
2069C semantics) where they assume that "``X^X``" is always zero, even if
2070``X`` is undefined. This isn't true for a number of reasons, but the
2071short answer is that an '``undef``' "variable" can arbitrarily change
2072its value over its "live range". This is true because the variable
2073doesn't actually *have a live range*. Instead, the value is logically
2074read from arbitrary registers that happen to be around when needed, so
2075the value is not necessarily consistent over time. In fact, ``%A`` and
2076``%C`` need to have the same semantics or the core LLVM "replace all
2077uses with" concept would not hold.
2078
2079.. code-block:: llvm
2080
2081 %A = fdiv undef, %X
2082 %B = fdiv %X, undef
2083 Safe:
2084 %A = undef
2085 b: unreachable
2086
2087These examples show the crucial difference between an *undefined value*
2088and *undefined behavior*. An undefined value (like '``undef``') is
2089allowed to have an arbitrary bit-pattern. This means that the ``%A``
2090operation can be constant folded to '``undef``', because the '``undef``'
2091could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2092However, in the second example, we can make a more aggressive
2093assumption: because the ``undef`` is allowed to be an arbitrary value,
2094we are allowed to assume that it could be zero. Since a divide by zero
2095has *undefined behavior*, we are allowed to assume that the operation
2096does not execute at all. This allows us to delete the divide and all
2097code after it. Because the undefined operation "can't happen", the
2098optimizer can assume that it occurs in dead code.
2099
2100.. code-block:: llvm
2101
2102 a: store undef -> %X
2103 b: store %X -> undef
2104 Safe:
2105 a: <deleted>
2106 b: unreachable
2107
2108These examples reiterate the ``fdiv`` example: a store *of* an undefined
2109value can be assumed to not have any effect; we can assume that the
2110value is overwritten with bits that happen to match what was already
2111there. However, a store *to* an undefined location could clobber
2112arbitrary memory, therefore, it has undefined behavior.
2113
2114.. _poisonvalues:
2115
2116Poison Values
2117-------------
2118
2119Poison values are similar to :ref:`undef values <undefvalues>`, however
2120they also represent the fact that an instruction or constant expression
2121which cannot evoke side effects has nevertheless detected a condition
2122which results in undefined behavior.
2123
2124There is currently no way of representing a poison value in the IR; they
2125only exist when produced by operations such as :ref:`add <i_add>` with
2126the ``nsw`` flag.
2127
2128Poison value behavior is defined in terms of value *dependence*:
2129
2130- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2131- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2132 their dynamic predecessor basic block.
2133- Function arguments depend on the corresponding actual argument values
2134 in the dynamic callers of their functions.
2135- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2136 instructions that dynamically transfer control back to them.
2137- :ref:`Invoke <i_invoke>` instructions depend on the
2138 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2139 call instructions that dynamically transfer control back to them.
2140- Non-volatile loads and stores depend on the most recent stores to all
2141 of the referenced memory addresses, following the order in the IR
2142 (including loads and stores implied by intrinsics such as
2143 :ref:`@llvm.memcpy <int_memcpy>`.)
2144- An instruction with externally visible side effects depends on the
2145 most recent preceding instruction with externally visible side
2146 effects, following the order in the IR. (This includes :ref:`volatile
2147 operations <volatile>`.)
2148- An instruction *control-depends* on a :ref:`terminator
2149 instruction <terminators>` if the terminator instruction has
2150 multiple successors and the instruction is always executed when
2151 control transfers to one of the successors, and may not be executed
2152 when control is transferred to another.
2153- Additionally, an instruction also *control-depends* on a terminator
2154 instruction if the set of instructions it otherwise depends on would
2155 be different if the terminator had transferred control to a different
2156 successor.
2157- Dependence is transitive.
2158
2159Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2160with the additional affect that any instruction which has a *dependence*
2161on a poison value has undefined behavior.
2162
2163Here are some examples:
2164
2165.. code-block:: llvm
2166
2167 entry:
2168 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2169 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2170 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2171 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2172
2173 store i32 %poison, i32* @g ; Poison value stored to memory.
2174 %poison2 = load i32* @g ; Poison value loaded back from memory.
2175
2176 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2177
2178 %narrowaddr = bitcast i32* @g to i16*
2179 %wideaddr = bitcast i32* @g to i64*
2180 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2181 %poison4 = load i64* %wideaddr ; Returns a poison value.
2182
2183 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2184 br i1 %cmp, label %true, label %end ; Branch to either destination.
2185
2186 true:
2187 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2188 ; it has undefined behavior.
2189 br label %end
2190
2191 end:
2192 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2193 ; Both edges into this PHI are
2194 ; control-dependent on %cmp, so this
2195 ; always results in a poison value.
2196
2197 store volatile i32 0, i32* @g ; This would depend on the store in %true
2198 ; if %cmp is true, or the store in %entry
2199 ; otherwise, so this is undefined behavior.
2200
2201 br i1 %cmp, label %second_true, label %second_end
2202 ; The same branch again, but this time the
2203 ; true block doesn't have side effects.
2204
2205 second_true:
2206 ; No side effects!
2207 ret void
2208
2209 second_end:
2210 store volatile i32 0, i32* @g ; This time, the instruction always depends
2211 ; on the store in %end. Also, it is
2212 ; control-equivalent to %end, so this is
2213 ; well-defined (ignoring earlier undefined
2214 ; behavior in this example).
2215
2216.. _blockaddress:
2217
2218Addresses of Basic Blocks
2219-------------------------
2220
2221``blockaddress(@function, %block)``
2222
2223The '``blockaddress``' constant computes the address of the specified
2224basic block in the specified function, and always has an ``i8*`` type.
2225Taking the address of the entry block is illegal.
2226
2227This value only has defined behavior when used as an operand to the
2228':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2229against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002230undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002231no label is equal to the null pointer. This may be passed around as an
2232opaque pointer sized value as long as the bits are not inspected. This
2233allows ``ptrtoint`` and arithmetic to be performed on these values so
2234long as the original value is reconstituted before the ``indirectbr``
2235instruction.
2236
2237Finally, some targets may provide defined semantics when using the value
2238as the operand to an inline assembly, but that is target specific.
2239
Eli Bendersky88fe6822013-06-07 20:24:43 +00002240.. _constantexprs:
2241
Sean Silvaf722b002012-12-07 10:36:55 +00002242Constant Expressions
2243--------------------
2244
2245Constant expressions are used to allow expressions involving other
2246constants to be used as constants. Constant expressions may be of any
2247:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2248that does not have side effects (e.g. load and call are not supported).
2249The following is the syntax for constant expressions:
2250
2251``trunc (CST to TYPE)``
2252 Truncate a constant to another type. The bit size of CST must be
2253 larger than the bit size of TYPE. Both types must be integers.
2254``zext (CST to TYPE)``
2255 Zero extend a constant to another type. The bit size of CST must be
2256 smaller than the bit size of TYPE. Both types must be integers.
2257``sext (CST to TYPE)``
2258 Sign extend a constant to another type. The bit size of CST must be
2259 smaller than the bit size of TYPE. Both types must be integers.
2260``fptrunc (CST to TYPE)``
2261 Truncate a floating point constant to another floating point type.
2262 The size of CST must be larger than the size of TYPE. Both types
2263 must be floating point.
2264``fpext (CST to TYPE)``
2265 Floating point extend a constant to another type. The size of CST
2266 must be smaller or equal to the size of TYPE. Both types must be
2267 floating point.
2268``fptoui (CST to TYPE)``
2269 Convert a floating point constant to the corresponding unsigned
2270 integer constant. TYPE must be a scalar or vector integer type. CST
2271 must be of scalar or vector floating point type. Both CST and TYPE
2272 must be scalars, or vectors of the same number of elements. If the
2273 value won't fit in the integer type, the results are undefined.
2274``fptosi (CST to TYPE)``
2275 Convert a floating point constant to the corresponding signed
2276 integer constant. TYPE must be a scalar or vector integer type. CST
2277 must be of scalar or vector floating point type. Both CST and TYPE
2278 must be scalars, or vectors of the same number of elements. If the
2279 value won't fit in the integer type, the results are undefined.
2280``uitofp (CST to TYPE)``
2281 Convert an unsigned integer constant to the corresponding floating
2282 point constant. TYPE must be a scalar or vector floating point type.
2283 CST must be of scalar or vector integer type. Both CST and TYPE must
2284 be scalars, or vectors of the same number of elements. If the value
2285 won't fit in the floating point type, the results are undefined.
2286``sitofp (CST to TYPE)``
2287 Convert a signed integer constant to the corresponding floating
2288 point constant. TYPE must be a scalar or vector floating point type.
2289 CST must be of scalar or vector integer type. Both CST and TYPE must
2290 be scalars, or vectors of the same number of elements. If the value
2291 won't fit in the floating point type, the results are undefined.
2292``ptrtoint (CST to TYPE)``
2293 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002294 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002295 pointer type. The ``CST`` value is zero extended, truncated, or
2296 unchanged to make it fit in ``TYPE``.
2297``inttoptr (CST to TYPE)``
2298 Convert an integer constant to a pointer constant. TYPE must be a
2299 pointer type. CST must be of integer type. The CST value is zero
2300 extended, truncated, or unchanged to make it fit in a pointer size.
2301 This one is *really* dangerous!
2302``bitcast (CST to TYPE)``
2303 Convert a constant, CST, to another TYPE. The constraints of the
2304 operands are the same as those for the :ref:`bitcast
2305 instruction <i_bitcast>`.
2306``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2307 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2308 constants. As with the :ref:`getelementptr <i_getelementptr>`
2309 instruction, the index list may have zero or more indexes, which are
2310 required to make sense for the type of "CSTPTR".
2311``select (COND, VAL1, VAL2)``
2312 Perform the :ref:`select operation <i_select>` on constants.
2313``icmp COND (VAL1, VAL2)``
2314 Performs the :ref:`icmp operation <i_icmp>` on constants.
2315``fcmp COND (VAL1, VAL2)``
2316 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2317``extractelement (VAL, IDX)``
2318 Perform the :ref:`extractelement operation <i_extractelement>` on
2319 constants.
2320``insertelement (VAL, ELT, IDX)``
2321 Perform the :ref:`insertelement operation <i_insertelement>` on
2322 constants.
2323``shufflevector (VEC1, VEC2, IDXMASK)``
2324 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2325 constants.
2326``extractvalue (VAL, IDX0, IDX1, ...)``
2327 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2328 constants. The index list is interpreted in a similar manner as
2329 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2330 least one index value must be specified.
2331``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2332 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2333 The index list is interpreted in a similar manner as indices in a
2334 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2335 value must be specified.
2336``OPCODE (LHS, RHS)``
2337 Perform the specified operation of the LHS and RHS constants. OPCODE
2338 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2339 binary <bitwiseops>` operations. The constraints on operands are
2340 the same as those for the corresponding instruction (e.g. no bitwise
2341 operations on floating point values are allowed).
2342
2343Other Values
2344============
2345
Eli Bendersky88fe6822013-06-07 20:24:43 +00002346.. _inlineasmexprs:
2347
Sean Silvaf722b002012-12-07 10:36:55 +00002348Inline Assembler Expressions
2349----------------------------
2350
2351LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2352Inline Assembly <moduleasm>`) through the use of a special value. This
2353value represents the inline assembler as a string (containing the
2354instructions to emit), a list of operand constraints (stored as a
2355string), a flag that indicates whether or not the inline asm expression
2356has side effects, and a flag indicating whether the function containing
2357the asm needs to align its stack conservatively. An example inline
2358assembler expression is:
2359
2360.. code-block:: llvm
2361
2362 i32 (i32) asm "bswap $0", "=r,r"
2363
2364Inline assembler expressions may **only** be used as the callee operand
2365of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2366Thus, typically we have:
2367
2368.. code-block:: llvm
2369
2370 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2371
2372Inline asms with side effects not visible in the constraint list must be
2373marked as having side effects. This is done through the use of the
2374'``sideeffect``' keyword, like so:
2375
2376.. code-block:: llvm
2377
2378 call void asm sideeffect "eieio", ""()
2379
2380In some cases inline asms will contain code that will not work unless
2381the stack is aligned in some way, such as calls or SSE instructions on
2382x86, yet will not contain code that does that alignment within the asm.
2383The compiler should make conservative assumptions about what the asm
2384might contain and should generate its usual stack alignment code in the
2385prologue if the '``alignstack``' keyword is present:
2386
2387.. code-block:: llvm
2388
2389 call void asm alignstack "eieio", ""()
2390
2391Inline asms also support using non-standard assembly dialects. The
2392assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2393the inline asm is using the Intel dialect. Currently, ATT and Intel are
2394the only supported dialects. An example is:
2395
2396.. code-block:: llvm
2397
2398 call void asm inteldialect "eieio", ""()
2399
2400If multiple keywords appear the '``sideeffect``' keyword must come
2401first, the '``alignstack``' keyword second and the '``inteldialect``'
2402keyword last.
2403
2404Inline Asm Metadata
2405^^^^^^^^^^^^^^^^^^^
2406
2407The call instructions that wrap inline asm nodes may have a
2408"``!srcloc``" MDNode attached to it that contains a list of constant
2409integers. If present, the code generator will use the integer as the
2410location cookie value when report errors through the ``LLVMContext``
2411error reporting mechanisms. This allows a front-end to correlate backend
2412errors that occur with inline asm back to the source code that produced
2413it. For example:
2414
2415.. code-block:: llvm
2416
2417 call void asm sideeffect "something bad", ""(), !srcloc !42
2418 ...
2419 !42 = !{ i32 1234567 }
2420
2421It is up to the front-end to make sense of the magic numbers it places
2422in the IR. If the MDNode contains multiple constants, the code generator
2423will use the one that corresponds to the line of the asm that the error
2424occurs on.
2425
2426.. _metadata:
2427
2428Metadata Nodes and Metadata Strings
2429-----------------------------------
2430
2431LLVM IR allows metadata to be attached to instructions in the program
2432that can convey extra information about the code to the optimizers and
2433code generator. One example application of metadata is source-level
2434debug information. There are two metadata primitives: strings and nodes.
2435All metadata has the ``metadata`` type and is identified in syntax by a
2436preceding exclamation point ('``!``').
2437
2438A metadata string is a string surrounded by double quotes. It can
2439contain any character by escaping non-printable characters with
2440"``\xx``" where "``xx``" is the two digit hex code. For example:
2441"``!"test\00"``".
2442
2443Metadata nodes are represented with notation similar to structure
2444constants (a comma separated list of elements, surrounded by braces and
2445preceded by an exclamation point). Metadata nodes can have any values as
2446their operand. For example:
2447
2448.. code-block:: llvm
2449
2450 !{ metadata !"test\00", i32 10}
2451
2452A :ref:`named metadata <namedmetadatastructure>` is a collection of
2453metadata nodes, which can be looked up in the module symbol table. For
2454example:
2455
2456.. code-block:: llvm
2457
2458 !foo = metadata !{!4, !3}
2459
2460Metadata can be used as function arguments. Here ``llvm.dbg.value``
2461function is using two metadata arguments:
2462
2463.. code-block:: llvm
2464
2465 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2466
2467Metadata can be attached with an instruction. Here metadata ``!21`` is
2468attached to the ``add`` instruction using the ``!dbg`` identifier:
2469
2470.. code-block:: llvm
2471
2472 %indvar.next = add i64 %indvar, 1, !dbg !21
2473
2474More information about specific metadata nodes recognized by the
2475optimizers and code generator is found below.
2476
2477'``tbaa``' Metadata
2478^^^^^^^^^^^^^^^^^^^
2479
2480In LLVM IR, memory does not have types, so LLVM's own type system is not
2481suitable for doing TBAA. Instead, metadata is added to the IR to
2482describe a type system of a higher level language. This can be used to
2483implement typical C/C++ TBAA, but it can also be used to implement
2484custom alias analysis behavior for other languages.
2485
2486The current metadata format is very simple. TBAA metadata nodes have up
2487to three fields, e.g.:
2488
2489.. code-block:: llvm
2490
2491 !0 = metadata !{ metadata !"an example type tree" }
2492 !1 = metadata !{ metadata !"int", metadata !0 }
2493 !2 = metadata !{ metadata !"float", metadata !0 }
2494 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2495
2496The first field is an identity field. It can be any value, usually a
2497metadata string, which uniquely identifies the type. The most important
2498name in the tree is the name of the root node. Two trees with different
2499root node names are entirely disjoint, even if they have leaves with
2500common names.
2501
2502The second field identifies the type's parent node in the tree, or is
2503null or omitted for a root node. A type is considered to alias all of
2504its descendants and all of its ancestors in the tree. Also, a type is
2505considered to alias all types in other trees, so that bitcode produced
2506from multiple front-ends is handled conservatively.
2507
2508If the third field is present, it's an integer which if equal to 1
2509indicates that the type is "constant" (meaning
2510``pointsToConstantMemory`` should return true; see `other useful
2511AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2512
2513'``tbaa.struct``' Metadata
2514^^^^^^^^^^^^^^^^^^^^^^^^^^
2515
2516The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2517aggregate assignment operations in C and similar languages, however it
2518is defined to copy a contiguous region of memory, which is more than
2519strictly necessary for aggregate types which contain holes due to
2520padding. Also, it doesn't contain any TBAA information about the fields
2521of the aggregate.
2522
2523``!tbaa.struct`` metadata can describe which memory subregions in a
2524memcpy are padding and what the TBAA tags of the struct are.
2525
2526The current metadata format is very simple. ``!tbaa.struct`` metadata
2527nodes are a list of operands which are in conceptual groups of three.
2528For each group of three, the first operand gives the byte offset of a
2529field in bytes, the second gives its size in bytes, and the third gives
2530its tbaa tag. e.g.:
2531
2532.. code-block:: llvm
2533
2534 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2535
2536This describes a struct with two fields. The first is at offset 0 bytes
2537with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2538and has size 4 bytes and has tbaa tag !2.
2539
2540Note that the fields need not be contiguous. In this example, there is a
25414 byte gap between the two fields. This gap represents padding which
2542does not carry useful data and need not be preserved.
2543
2544'``fpmath``' Metadata
2545^^^^^^^^^^^^^^^^^^^^^
2546
2547``fpmath`` metadata may be attached to any instruction of floating point
2548type. It can be used to express the maximum acceptable error in the
2549result of that instruction, in ULPs, thus potentially allowing the
2550compiler to use a more efficient but less accurate method of computing
2551it. ULP is defined as follows:
2552
2553 If ``x`` is a real number that lies between two finite consecutive
2554 floating-point numbers ``a`` and ``b``, without being equal to one
2555 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2556 distance between the two non-equal finite floating-point numbers
2557 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2558
2559The metadata node shall consist of a single positive floating point
2560number representing the maximum relative error, for example:
2561
2562.. code-block:: llvm
2563
2564 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2565
2566'``range``' Metadata
2567^^^^^^^^^^^^^^^^^^^^
2568
2569``range`` metadata may be attached only to loads of integer types. It
2570expresses the possible ranges the loaded value is in. The ranges are
2571represented with a flattened list of integers. The loaded value is known
2572to be in the union of the ranges defined by each consecutive pair. Each
2573pair has the following properties:
2574
2575- The type must match the type loaded by the instruction.
2576- The pair ``a,b`` represents the range ``[a,b)``.
2577- Both ``a`` and ``b`` are constants.
2578- The range is allowed to wrap.
2579- The range should not represent the full or empty set. That is,
2580 ``a!=b``.
2581
2582In addition, the pairs must be in signed order of the lower bound and
2583they must be non-contiguous.
2584
2585Examples:
2586
2587.. code-block:: llvm
2588
2589 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2590 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2591 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2592 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2593 ...
2594 !0 = metadata !{ i8 0, i8 2 }
2595 !1 = metadata !{ i8 255, i8 2 }
2596 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2597 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2598
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002599'``llvm.loop``'
2600^^^^^^^^^^^^^^^
2601
2602It is sometimes useful to attach information to loop constructs. Currently,
2603loop metadata is implemented as metadata attached to the branch instruction
2604in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002605guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002606specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002607
2608The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002609itself to avoid merging it with any other identifier metadata, e.g.,
2610during module linkage or function inlining. That is, each loop should refer
2611to their own identification metadata even if they reside in separate functions.
2612The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002613constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002614
2615.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002616
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002617 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002618 !1 = metadata !{ metadata !1 }
2619
Paul Redmondee21b6f2013-05-28 20:00:34 +00002620The loop identifier metadata can be used to specify additional per-loop
2621metadata. Any operands after the first operand can be treated as user-defined
2622metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2623by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002624
Paul Redmondee21b6f2013-05-28 20:00:34 +00002625.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002626
Paul Redmondee21b6f2013-05-28 20:00:34 +00002627 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2628 ...
2629 !0 = metadata !{ metadata !0, metadata !1 }
2630 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002631
2632'``llvm.mem``'
2633^^^^^^^^^^^^^^^
2634
2635Metadata types used to annotate memory accesses with information helpful
2636for optimizations are prefixed with ``llvm.mem``.
2637
2638'``llvm.mem.parallel_loop_access``' Metadata
2639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2640
2641For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002642the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002643also all of the memory accessing instructions in the loop body need to be
2644marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2645is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002646the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002647converted to sequential loops due to optimization passes that are unaware of
2648the parallel semantics and that insert new memory instructions to the loop
2649body.
2650
2651Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002652both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002653metadata types that refer to the same loop identifier metadata.
2654
2655.. code-block:: llvm
2656
2657 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002658 ...
2659 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2660 ...
2661 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2662 ...
2663 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002664
2665 for.end:
2666 ...
2667 !0 = metadata !{ metadata !0 }
2668
2669It is also possible to have nested parallel loops. In that case the
2670memory accesses refer to a list of loop identifier metadata nodes instead of
2671the loop identifier metadata node directly:
2672
2673.. code-block:: llvm
2674
2675 outer.for.body:
2676 ...
2677
2678 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002679 ...
2680 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2681 ...
2682 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2683 ...
2684 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002685
2686 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002687 ...
2688 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2689 ...
2690 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2691 ...
2692 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002693
2694 outer.for.end: ; preds = %for.body
2695 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002696 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2697 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2698 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002699
Paul Redmondee21b6f2013-05-28 20:00:34 +00002700'``llvm.vectorizer``'
2701^^^^^^^^^^^^^^^^^^^^^
2702
2703Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2704vectorization parameters such as vectorization factor and unroll factor.
2705
2706``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2707loop identification metadata.
2708
2709'``llvm.vectorizer.unroll``' Metadata
2710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2711
2712This metadata instructs the loop vectorizer to unroll the specified
2713loop exactly ``N`` times.
2714
2715The first operand is the string ``llvm.vectorizer.unroll`` and the second
2716operand is an integer specifying the unroll factor. For example:
2717
2718.. code-block:: llvm
2719
2720 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2721
2722Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2723loop.
2724
2725If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2726determined automatically.
2727
2728'``llvm.vectorizer.width``' Metadata
2729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2730
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002731This metadata sets the target width of the vectorizer to ``N``. Without
2732this metadata, the vectorizer will choose a width automatically.
2733Regardless of this metadata, the vectorizer will only vectorize loops if
2734it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002735
2736The first operand is the string ``llvm.vectorizer.width`` and the second
2737operand is an integer specifying the width. For example:
2738
2739.. code-block:: llvm
2740
2741 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2742
2743Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2744loop.
2745
2746If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2747automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002748
Sean Silvaf722b002012-12-07 10:36:55 +00002749Module Flags Metadata
2750=====================
2751
2752Information about the module as a whole is difficult to convey to LLVM's
2753subsystems. The LLVM IR isn't sufficient to transmit this information.
2754The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002755this. These flags are in the form of key / value pairs --- much like a
2756dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002757look it up.
2758
2759The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2760Each triplet has the following form:
2761
2762- The first element is a *behavior* flag, which specifies the behavior
2763 when two (or more) modules are merged together, and it encounters two
2764 (or more) metadata with the same ID. The supported behaviors are
2765 described below.
2766- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002767 metadata. Each module may only have one flag entry for each unique ID (not
2768 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002769- The third element is the value of the flag.
2770
2771When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002772``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2773each unique metadata ID string, there will be exactly one entry in the merged
2774modules ``llvm.module.flags`` metadata table, and the value for that entry will
2775be determined by the merge behavior flag, as described below. The only exception
2776is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002777
2778The following behaviors are supported:
2779
2780.. list-table::
2781 :header-rows: 1
2782 :widths: 10 90
2783
2784 * - Value
2785 - Behavior
2786
2787 * - 1
2788 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002789 Emits an error if two values disagree, otherwise the resulting value
2790 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002791
2792 * - 2
2793 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002794 Emits a warning if two values disagree. The result value will be the
2795 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002796
2797 * - 3
2798 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002799 Adds a requirement that another module flag be present and have a
2800 specified value after linking is performed. The value must be a
2801 metadata pair, where the first element of the pair is the ID of the
2802 module flag to be restricted, and the second element of the pair is
2803 the value the module flag should be restricted to. This behavior can
2804 be used to restrict the allowable results (via triggering of an
2805 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002806
2807 * - 4
2808 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002809 Uses the specified value, regardless of the behavior or value of the
2810 other module. If both modules specify **Override**, but the values
2811 differ, an error will be emitted.
2812
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002813 * - 5
2814 - **Append**
2815 Appends the two values, which are required to be metadata nodes.
2816
2817 * - 6
2818 - **AppendUnique**
2819 Appends the two values, which are required to be metadata
2820 nodes. However, duplicate entries in the second list are dropped
2821 during the append operation.
2822
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002823It is an error for a particular unique flag ID to have multiple behaviors,
2824except in the case of **Require** (which adds restrictions on another metadata
2825value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002826
2827An example of module flags:
2828
2829.. code-block:: llvm
2830
2831 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2832 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2833 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2834 !3 = metadata !{ i32 3, metadata !"qux",
2835 metadata !{
2836 metadata !"foo", i32 1
2837 }
2838 }
2839 !llvm.module.flags = !{ !0, !1, !2, !3 }
2840
2841- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2842 if two or more ``!"foo"`` flags are seen is to emit an error if their
2843 values are not equal.
2844
2845- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2846 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002847 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002848
2849- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2850 behavior if two or more ``!"qux"`` flags are seen is to emit a
2851 warning if their values are not equal.
2852
2853- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2854
2855 ::
2856
2857 metadata !{ metadata !"foo", i32 1 }
2858
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002859 The behavior is to emit an error if the ``llvm.module.flags`` does not
2860 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2861 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002862
2863Objective-C Garbage Collection Module Flags Metadata
2864----------------------------------------------------
2865
2866On the Mach-O platform, Objective-C stores metadata about garbage
2867collection in a special section called "image info". The metadata
2868consists of a version number and a bitmask specifying what types of
2869garbage collection are supported (if any) by the file. If two or more
2870modules are linked together their garbage collection metadata needs to
2871be merged rather than appended together.
2872
2873The Objective-C garbage collection module flags metadata consists of the
2874following key-value pairs:
2875
2876.. list-table::
2877 :header-rows: 1
2878 :widths: 30 70
2879
2880 * - Key
2881 - Value
2882
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002883 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002884 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002885
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002886 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002887 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002888 always 0.
2889
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002890 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002891 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002892 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2893 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2894 Objective-C ABI version 2.
2895
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002896 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002897 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002898 not. Valid values are 0, for no garbage collection, and 2, for garbage
2899 collection supported.
2900
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002901 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002902 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002903 If present, its value must be 6. This flag requires that the
2904 ``Objective-C Garbage Collection`` flag have the value 2.
2905
2906Some important flag interactions:
2907
2908- If a module with ``Objective-C Garbage Collection`` set to 0 is
2909 merged with a module with ``Objective-C Garbage Collection`` set to
2910 2, then the resulting module has the
2911 ``Objective-C Garbage Collection`` flag set to 0.
2912- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2913 merged with a module with ``Objective-C GC Only`` set to 6.
2914
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002915Automatic Linker Flags Module Flags Metadata
2916--------------------------------------------
2917
2918Some targets support embedding flags to the linker inside individual object
2919files. Typically this is used in conjunction with language extensions which
2920allow source files to explicitly declare the libraries they depend on, and have
2921these automatically be transmitted to the linker via object files.
2922
2923These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002924using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002925to be ``AppendUnique``, and the value for the key is expected to be a metadata
2926node which should be a list of other metadata nodes, each of which should be a
2927list of metadata strings defining linker options.
2928
2929For example, the following metadata section specifies two separate sets of
2930linker options, presumably to link against ``libz`` and the ``Cocoa``
2931framework::
2932
Michael Liao2faa0f32013-03-06 18:24:34 +00002933 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002934 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002935 metadata !{ metadata !"-lz" },
2936 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002937 !llvm.module.flags = !{ !0 }
2938
2939The metadata encoding as lists of lists of options, as opposed to a collapsed
2940list of options, is chosen so that the IR encoding can use multiple option
2941strings to specify e.g., a single library, while still having that specifier be
2942preserved as an atomic element that can be recognized by a target specific
2943assembly writer or object file emitter.
2944
2945Each individual option is required to be either a valid option for the target's
2946linker, or an option that is reserved by the target specific assembly writer or
2947object file emitter. No other aspect of these options is defined by the IR.
2948
Eli Bendersky88fe6822013-06-07 20:24:43 +00002949.. _intrinsicglobalvariables:
2950
Sean Silvaf722b002012-12-07 10:36:55 +00002951Intrinsic Global Variables
2952==========================
2953
2954LLVM has a number of "magic" global variables that contain data that
2955affect code generation or other IR semantics. These are documented here.
2956All globals of this sort should have a section specified as
2957"``llvm.metadata``". This section and all globals that start with
2958"``llvm.``" are reserved for use by LLVM.
2959
Eli Bendersky88fe6822013-06-07 20:24:43 +00002960.. _gv_llvmused:
2961
Sean Silvaf722b002012-12-07 10:36:55 +00002962The '``llvm.used``' Global Variable
2963-----------------------------------
2964
Rafael Espindolacde25b42013-04-22 14:58:02 +00002965The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00002966:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002967pointers to named global variables, functions and aliases which may optionally
2968have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00002969use of it is:
2970
2971.. code-block:: llvm
2972
2973 @X = global i8 4
2974 @Y = global i32 123
2975
2976 @llvm.used = appending global [2 x i8*] [
2977 i8* @X,
2978 i8* bitcast (i32* @Y to i8*)
2979 ], section "llvm.metadata"
2980
Rafael Espindolacde25b42013-04-22 14:58:02 +00002981If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2982and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002983symbol that it cannot see (which is why they have to be named). For example, if
2984a variable has internal linkage and no references other than that from the
2985``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
2986references from inline asms and other things the compiler cannot "see", and
2987corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002988
2989On some targets, the code generator must emit a directive to the
2990assembler or object file to prevent the assembler and linker from
2991molesting the symbol.
2992
Eli Bendersky88fe6822013-06-07 20:24:43 +00002993.. _gv_llvmcompilerused:
2994
Sean Silvaf722b002012-12-07 10:36:55 +00002995The '``llvm.compiler.used``' Global Variable
2996--------------------------------------------
2997
2998The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2999directive, except that it only prevents the compiler from touching the
3000symbol. On targets that support it, this allows an intelligent linker to
3001optimize references to the symbol without being impeded as it would be
3002by ``@llvm.used``.
3003
3004This is a rare construct that should only be used in rare circumstances,
3005and should not be exposed to source languages.
3006
Eli Bendersky88fe6822013-06-07 20:24:43 +00003007.. _gv_llvmglobalctors:
3008
Sean Silvaf722b002012-12-07 10:36:55 +00003009The '``llvm.global_ctors``' Global Variable
3010-------------------------------------------
3011
3012.. code-block:: llvm
3013
3014 %0 = type { i32, void ()* }
3015 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3016
3017The ``@llvm.global_ctors`` array contains a list of constructor
3018functions and associated priorities. The functions referenced by this
3019array will be called in ascending order of priority (i.e. lowest first)
3020when the module is loaded. The order of functions with the same priority
3021is not defined.
3022
Eli Bendersky88fe6822013-06-07 20:24:43 +00003023.. _llvmglobaldtors:
3024
Sean Silvaf722b002012-12-07 10:36:55 +00003025The '``llvm.global_dtors``' Global Variable
3026-------------------------------------------
3027
3028.. code-block:: llvm
3029
3030 %0 = type { i32, void ()* }
3031 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3032
3033The ``@llvm.global_dtors`` array contains a list of destructor functions
3034and associated priorities. The functions referenced by this array will
3035be called in descending order of priority (i.e. highest first) when the
3036module is loaded. The order of functions with the same priority is not
3037defined.
3038
3039Instruction Reference
3040=====================
3041
3042The LLVM instruction set consists of several different classifications
3043of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3044instructions <binaryops>`, :ref:`bitwise binary
3045instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3046:ref:`other instructions <otherops>`.
3047
3048.. _terminators:
3049
3050Terminator Instructions
3051-----------------------
3052
3053As mentioned :ref:`previously <functionstructure>`, every basic block in a
3054program ends with a "Terminator" instruction, which indicates which
3055block should be executed after the current block is finished. These
3056terminator instructions typically yield a '``void``' value: they produce
3057control flow, not values (the one exception being the
3058':ref:`invoke <i_invoke>`' instruction).
3059
3060The terminator instructions are: ':ref:`ret <i_ret>`',
3061':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3062':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3063':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3064
3065.. _i_ret:
3066
3067'``ret``' Instruction
3068^^^^^^^^^^^^^^^^^^^^^
3069
3070Syntax:
3071"""""""
3072
3073::
3074
3075 ret <type> <value> ; Return a value from a non-void function
3076 ret void ; Return from void function
3077
3078Overview:
3079"""""""""
3080
3081The '``ret``' instruction is used to return control flow (and optionally
3082a value) from a function back to the caller.
3083
3084There are two forms of the '``ret``' instruction: one that returns a
3085value and then causes control flow, and one that just causes control
3086flow to occur.
3087
3088Arguments:
3089""""""""""
3090
3091The '``ret``' instruction optionally accepts a single argument, the
3092return value. The type of the return value must be a ':ref:`first
3093class <t_firstclass>`' type.
3094
3095A function is not :ref:`well formed <wellformed>` if it it has a non-void
3096return type and contains a '``ret``' instruction with no return value or
3097a return value with a type that does not match its type, or if it has a
3098void return type and contains a '``ret``' instruction with a return
3099value.
3100
3101Semantics:
3102""""""""""
3103
3104When the '``ret``' instruction is executed, control flow returns back to
3105the calling function's context. If the caller is a
3106":ref:`call <i_call>`" instruction, execution continues at the
3107instruction after the call. If the caller was an
3108":ref:`invoke <i_invoke>`" instruction, execution continues at the
3109beginning of the "normal" destination block. If the instruction returns
3110a value, that value shall set the call or invoke instruction's return
3111value.
3112
3113Example:
3114""""""""
3115
3116.. code-block:: llvm
3117
3118 ret i32 5 ; Return an integer value of 5
3119 ret void ; Return from a void function
3120 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3121
3122.. _i_br:
3123
3124'``br``' Instruction
3125^^^^^^^^^^^^^^^^^^^^
3126
3127Syntax:
3128"""""""
3129
3130::
3131
3132 br i1 <cond>, label <iftrue>, label <iffalse>
3133 br label <dest> ; Unconditional branch
3134
3135Overview:
3136"""""""""
3137
3138The '``br``' instruction is used to cause control flow to transfer to a
3139different basic block in the current function. There are two forms of
3140this instruction, corresponding to a conditional branch and an
3141unconditional branch.
3142
3143Arguments:
3144""""""""""
3145
3146The conditional branch form of the '``br``' instruction takes a single
3147'``i1``' value and two '``label``' values. The unconditional form of the
3148'``br``' instruction takes a single '``label``' value as a target.
3149
3150Semantics:
3151""""""""""
3152
3153Upon execution of a conditional '``br``' instruction, the '``i1``'
3154argument is evaluated. If the value is ``true``, control flows to the
3155'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3156to the '``iffalse``' ``label`` argument.
3157
3158Example:
3159""""""""
3160
3161.. code-block:: llvm
3162
3163 Test:
3164 %cond = icmp eq i32 %a, %b
3165 br i1 %cond, label %IfEqual, label %IfUnequal
3166 IfEqual:
3167 ret i32 1
3168 IfUnequal:
3169 ret i32 0
3170
3171.. _i_switch:
3172
3173'``switch``' Instruction
3174^^^^^^^^^^^^^^^^^^^^^^^^
3175
3176Syntax:
3177"""""""
3178
3179::
3180
3181 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3182
3183Overview:
3184"""""""""
3185
3186The '``switch``' instruction is used to transfer control flow to one of
3187several different places. It is a generalization of the '``br``'
3188instruction, allowing a branch to occur to one of many possible
3189destinations.
3190
3191Arguments:
3192""""""""""
3193
3194The '``switch``' instruction uses three parameters: an integer
3195comparison value '``value``', a default '``label``' destination, and an
3196array of pairs of comparison value constants and '``label``'s. The table
3197is not allowed to contain duplicate constant entries.
3198
3199Semantics:
3200""""""""""
3201
3202The ``switch`` instruction specifies a table of values and destinations.
3203When the '``switch``' instruction is executed, this table is searched
3204for the given value. If the value is found, control flow is transferred
3205to the corresponding destination; otherwise, control flow is transferred
3206to the default destination.
3207
3208Implementation:
3209"""""""""""""""
3210
3211Depending on properties of the target machine and the particular
3212``switch`` instruction, this instruction may be code generated in
3213different ways. For example, it could be generated as a series of
3214chained conditional branches or with a lookup table.
3215
3216Example:
3217""""""""
3218
3219.. code-block:: llvm
3220
3221 ; Emulate a conditional br instruction
3222 %Val = zext i1 %value to i32
3223 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3224
3225 ; Emulate an unconditional br instruction
3226 switch i32 0, label %dest [ ]
3227
3228 ; Implement a jump table:
3229 switch i32 %val, label %otherwise [ i32 0, label %onzero
3230 i32 1, label %onone
3231 i32 2, label %ontwo ]
3232
3233.. _i_indirectbr:
3234
3235'``indirectbr``' Instruction
3236^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3237
3238Syntax:
3239"""""""
3240
3241::
3242
3243 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3244
3245Overview:
3246"""""""""
3247
3248The '``indirectbr``' instruction implements an indirect branch to a
3249label within the current function, whose address is specified by
3250"``address``". Address must be derived from a
3251:ref:`blockaddress <blockaddress>` constant.
3252
3253Arguments:
3254""""""""""
3255
3256The '``address``' argument is the address of the label to jump to. The
3257rest of the arguments indicate the full set of possible destinations
3258that the address may point to. Blocks are allowed to occur multiple
3259times in the destination list, though this isn't particularly useful.
3260
3261This destination list is required so that dataflow analysis has an
3262accurate understanding of the CFG.
3263
3264Semantics:
3265""""""""""
3266
3267Control transfers to the block specified in the address argument. All
3268possible destination blocks must be listed in the label list, otherwise
3269this instruction has undefined behavior. This implies that jumps to
3270labels defined in other functions have undefined behavior as well.
3271
3272Implementation:
3273"""""""""""""""
3274
3275This is typically implemented with a jump through a register.
3276
3277Example:
3278""""""""
3279
3280.. code-block:: llvm
3281
3282 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3283
3284.. _i_invoke:
3285
3286'``invoke``' Instruction
3287^^^^^^^^^^^^^^^^^^^^^^^^
3288
3289Syntax:
3290"""""""
3291
3292::
3293
3294 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3295 to label <normal label> unwind label <exception label>
3296
3297Overview:
3298"""""""""
3299
3300The '``invoke``' instruction causes control to transfer to a specified
3301function, with the possibility of control flow transfer to either the
3302'``normal``' label or the '``exception``' label. If the callee function
3303returns with the "``ret``" instruction, control flow will return to the
3304"normal" label. If the callee (or any indirect callees) returns via the
3305":ref:`resume <i_resume>`" instruction or other exception handling
3306mechanism, control is interrupted and continued at the dynamically
3307nearest "exception" label.
3308
3309The '``exception``' label is a `landing
3310pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3311'``exception``' label is required to have the
3312":ref:`landingpad <i_landingpad>`" instruction, which contains the
3313information about the behavior of the program after unwinding happens,
3314as its first non-PHI instruction. The restrictions on the
3315"``landingpad``" instruction's tightly couples it to the "``invoke``"
3316instruction, so that the important information contained within the
3317"``landingpad``" instruction can't be lost through normal code motion.
3318
3319Arguments:
3320""""""""""
3321
3322This instruction requires several arguments:
3323
3324#. The optional "cconv" marker indicates which :ref:`calling
3325 convention <callingconv>` the call should use. If none is
3326 specified, the call defaults to using C calling conventions.
3327#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3328 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3329 are valid here.
3330#. '``ptr to function ty``': shall be the signature of the pointer to
3331 function value being invoked. In most cases, this is a direct
3332 function invocation, but indirect ``invoke``'s are just as possible,
3333 branching off an arbitrary pointer to function value.
3334#. '``function ptr val``': An LLVM value containing a pointer to a
3335 function to be invoked.
3336#. '``function args``': argument list whose types match the function
3337 signature argument types and parameter attributes. All arguments must
3338 be of :ref:`first class <t_firstclass>` type. If the function signature
3339 indicates the function accepts a variable number of arguments, the
3340 extra arguments can be specified.
3341#. '``normal label``': the label reached when the called function
3342 executes a '``ret``' instruction.
3343#. '``exception label``': the label reached when a callee returns via
3344 the :ref:`resume <i_resume>` instruction or other exception handling
3345 mechanism.
3346#. The optional :ref:`function attributes <fnattrs>` list. Only
3347 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3348 attributes are valid here.
3349
3350Semantics:
3351""""""""""
3352
3353This instruction is designed to operate as a standard '``call``'
3354instruction in most regards. The primary difference is that it
3355establishes an association with a label, which is used by the runtime
3356library to unwind the stack.
3357
3358This instruction is used in languages with destructors to ensure that
3359proper cleanup is performed in the case of either a ``longjmp`` or a
3360thrown exception. Additionally, this is important for implementation of
3361'``catch``' clauses in high-level languages that support them.
3362
3363For the purposes of the SSA form, the definition of the value returned
3364by the '``invoke``' instruction is deemed to occur on the edge from the
3365current block to the "normal" label. If the callee unwinds then no
3366return value is available.
3367
3368Example:
3369""""""""
3370
3371.. code-block:: llvm
3372
3373 %retval = invoke i32 @Test(i32 15) to label %Continue
3374 unwind label %TestCleanup ; {i32}:retval set
3375 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3376 unwind label %TestCleanup ; {i32}:retval set
3377
3378.. _i_resume:
3379
3380'``resume``' Instruction
3381^^^^^^^^^^^^^^^^^^^^^^^^
3382
3383Syntax:
3384"""""""
3385
3386::
3387
3388 resume <type> <value>
3389
3390Overview:
3391"""""""""
3392
3393The '``resume``' instruction is a terminator instruction that has no
3394successors.
3395
3396Arguments:
3397""""""""""
3398
3399The '``resume``' instruction requires one argument, which must have the
3400same type as the result of any '``landingpad``' instruction in the same
3401function.
3402
3403Semantics:
3404""""""""""
3405
3406The '``resume``' instruction resumes propagation of an existing
3407(in-flight) exception whose unwinding was interrupted with a
3408:ref:`landingpad <i_landingpad>` instruction.
3409
3410Example:
3411""""""""
3412
3413.. code-block:: llvm
3414
3415 resume { i8*, i32 } %exn
3416
3417.. _i_unreachable:
3418
3419'``unreachable``' Instruction
3420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3421
3422Syntax:
3423"""""""
3424
3425::
3426
3427 unreachable
3428
3429Overview:
3430"""""""""
3431
3432The '``unreachable``' instruction has no defined semantics. This
3433instruction is used to inform the optimizer that a particular portion of
3434the code is not reachable. This can be used to indicate that the code
3435after a no-return function cannot be reached, and other facts.
3436
3437Semantics:
3438""""""""""
3439
3440The '``unreachable``' instruction has no defined semantics.
3441
3442.. _binaryops:
3443
3444Binary Operations
3445-----------------
3446
3447Binary operators are used to do most of the computation in a program.
3448They require two operands of the same type, execute an operation on
3449them, and produce a single value. The operands might represent multiple
3450data, as is the case with the :ref:`vector <t_vector>` data type. The
3451result value has the same type as its operands.
3452
3453There are several different binary operators:
3454
3455.. _i_add:
3456
3457'``add``' Instruction
3458^^^^^^^^^^^^^^^^^^^^^
3459
3460Syntax:
3461"""""""
3462
3463::
3464
3465 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3466 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3467 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3468 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3469
3470Overview:
3471"""""""""
3472
3473The '``add``' instruction returns the sum of its two operands.
3474
3475Arguments:
3476""""""""""
3477
3478The two arguments to the '``add``' instruction must be
3479:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3480arguments must have identical types.
3481
3482Semantics:
3483""""""""""
3484
3485The value produced is the integer sum of the two operands.
3486
3487If the sum has unsigned overflow, the result returned is the
3488mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3489the result.
3490
3491Because LLVM integers use a two's complement representation, this
3492instruction is appropriate for both signed and unsigned integers.
3493
3494``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3495respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3496result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3497unsigned and/or signed overflow, respectively, occurs.
3498
3499Example:
3500""""""""
3501
3502.. code-block:: llvm
3503
3504 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3505
3506.. _i_fadd:
3507
3508'``fadd``' Instruction
3509^^^^^^^^^^^^^^^^^^^^^^
3510
3511Syntax:
3512"""""""
3513
3514::
3515
3516 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3517
3518Overview:
3519"""""""""
3520
3521The '``fadd``' instruction returns the sum of its two operands.
3522
3523Arguments:
3524""""""""""
3525
3526The two arguments to the '``fadd``' instruction must be :ref:`floating
3527point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3528Both arguments must have identical types.
3529
3530Semantics:
3531""""""""""
3532
3533The value produced is the floating point sum of the two operands. This
3534instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3535which are optimization hints to enable otherwise unsafe floating point
3536optimizations:
3537
3538Example:
3539""""""""
3540
3541.. code-block:: llvm
3542
3543 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3544
3545'``sub``' Instruction
3546^^^^^^^^^^^^^^^^^^^^^
3547
3548Syntax:
3549"""""""
3550
3551::
3552
3553 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3554 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3555 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3556 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3557
3558Overview:
3559"""""""""
3560
3561The '``sub``' instruction returns the difference of its two operands.
3562
3563Note that the '``sub``' instruction is used to represent the '``neg``'
3564instruction present in most other intermediate representations.
3565
3566Arguments:
3567""""""""""
3568
3569The two arguments to the '``sub``' instruction must be
3570:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3571arguments must have identical types.
3572
3573Semantics:
3574""""""""""
3575
3576The value produced is the integer difference of the two operands.
3577
3578If the difference has unsigned overflow, the result returned is the
3579mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3580the result.
3581
3582Because LLVM integers use a two's complement representation, this
3583instruction is appropriate for both signed and unsigned integers.
3584
3585``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3586respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3587result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3588unsigned and/or signed overflow, respectively, occurs.
3589
3590Example:
3591""""""""
3592
3593.. code-block:: llvm
3594
3595 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3596 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3597
3598.. _i_fsub:
3599
3600'``fsub``' Instruction
3601^^^^^^^^^^^^^^^^^^^^^^
3602
3603Syntax:
3604"""""""
3605
3606::
3607
3608 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3609
3610Overview:
3611"""""""""
3612
3613The '``fsub``' instruction returns the difference of its two operands.
3614
3615Note that the '``fsub``' instruction is used to represent the '``fneg``'
3616instruction present in most other intermediate representations.
3617
3618Arguments:
3619""""""""""
3620
3621The two arguments to the '``fsub``' instruction must be :ref:`floating
3622point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3623Both arguments must have identical types.
3624
3625Semantics:
3626""""""""""
3627
3628The value produced is the floating point difference of the two operands.
3629This instruction can also take any number of :ref:`fast-math
3630flags <fastmath>`, which are optimization hints to enable otherwise
3631unsafe floating point optimizations:
3632
3633Example:
3634""""""""
3635
3636.. code-block:: llvm
3637
3638 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3639 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3640
3641'``mul``' Instruction
3642^^^^^^^^^^^^^^^^^^^^^
3643
3644Syntax:
3645"""""""
3646
3647::
3648
3649 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3650 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3651 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3652 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3653
3654Overview:
3655"""""""""
3656
3657The '``mul``' instruction returns the product of its two operands.
3658
3659Arguments:
3660""""""""""
3661
3662The two arguments to the '``mul``' instruction must be
3663:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3664arguments must have identical types.
3665
3666Semantics:
3667""""""""""
3668
3669The value produced is the integer product of the two operands.
3670
3671If the result of the multiplication has unsigned overflow, the result
3672returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3673bit width of the result.
3674
3675Because LLVM integers use a two's complement representation, and the
3676result is the same width as the operands, this instruction returns the
3677correct result for both signed and unsigned integers. If a full product
3678(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3679sign-extended or zero-extended as appropriate to the width of the full
3680product.
3681
3682``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3683respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3684result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3685unsigned and/or signed overflow, respectively, occurs.
3686
3687Example:
3688""""""""
3689
3690.. code-block:: llvm
3691
3692 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3693
3694.. _i_fmul:
3695
3696'``fmul``' Instruction
3697^^^^^^^^^^^^^^^^^^^^^^
3698
3699Syntax:
3700"""""""
3701
3702::
3703
3704 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3705
3706Overview:
3707"""""""""
3708
3709The '``fmul``' instruction returns the product of its two operands.
3710
3711Arguments:
3712""""""""""
3713
3714The two arguments to the '``fmul``' instruction must be :ref:`floating
3715point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3716Both arguments must have identical types.
3717
3718Semantics:
3719""""""""""
3720
3721The value produced is the floating point product of the two operands.
3722This instruction can also take any number of :ref:`fast-math
3723flags <fastmath>`, which are optimization hints to enable otherwise
3724unsafe floating point optimizations:
3725
3726Example:
3727""""""""
3728
3729.. code-block:: llvm
3730
3731 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3732
3733'``udiv``' Instruction
3734^^^^^^^^^^^^^^^^^^^^^^
3735
3736Syntax:
3737"""""""
3738
3739::
3740
3741 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3742 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3743
3744Overview:
3745"""""""""
3746
3747The '``udiv``' instruction returns the quotient of its two operands.
3748
3749Arguments:
3750""""""""""
3751
3752The two arguments to the '``udiv``' instruction must be
3753:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3754arguments must have identical types.
3755
3756Semantics:
3757""""""""""
3758
3759The value produced is the unsigned integer quotient of the two operands.
3760
3761Note that unsigned integer division and signed integer division are
3762distinct operations; for signed integer division, use '``sdiv``'.
3763
3764Division by zero leads to undefined behavior.
3765
3766If the ``exact`` keyword is present, the result value of the ``udiv`` is
3767a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3768such, "((a udiv exact b) mul b) == a").
3769
3770Example:
3771""""""""
3772
3773.. code-block:: llvm
3774
3775 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3776
3777'``sdiv``' Instruction
3778^^^^^^^^^^^^^^^^^^^^^^
3779
3780Syntax:
3781"""""""
3782
3783::
3784
3785 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3786 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3787
3788Overview:
3789"""""""""
3790
3791The '``sdiv``' instruction returns the quotient of its two operands.
3792
3793Arguments:
3794""""""""""
3795
3796The two arguments to the '``sdiv``' instruction must be
3797:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3798arguments must have identical types.
3799
3800Semantics:
3801""""""""""
3802
3803The value produced is the signed integer quotient of the two operands
3804rounded towards zero.
3805
3806Note that signed integer division and unsigned integer division are
3807distinct operations; for unsigned integer division, use '``udiv``'.
3808
3809Division by zero leads to undefined behavior. Overflow also leads to
3810undefined behavior; this is a rare case, but can occur, for example, by
3811doing a 32-bit division of -2147483648 by -1.
3812
3813If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3814a :ref:`poison value <poisonvalues>` if the result would be rounded.
3815
3816Example:
3817""""""""
3818
3819.. code-block:: llvm
3820
3821 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3822
3823.. _i_fdiv:
3824
3825'``fdiv``' Instruction
3826^^^^^^^^^^^^^^^^^^^^^^
3827
3828Syntax:
3829"""""""
3830
3831::
3832
3833 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3834
3835Overview:
3836"""""""""
3837
3838The '``fdiv``' instruction returns the quotient of its two operands.
3839
3840Arguments:
3841""""""""""
3842
3843The two arguments to the '``fdiv``' instruction must be :ref:`floating
3844point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3845Both arguments must have identical types.
3846
3847Semantics:
3848""""""""""
3849
3850The value produced is the floating point quotient of the two operands.
3851This instruction can also take any number of :ref:`fast-math
3852flags <fastmath>`, which are optimization hints to enable otherwise
3853unsafe floating point optimizations:
3854
3855Example:
3856""""""""
3857
3858.. code-block:: llvm
3859
3860 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3861
3862'``urem``' Instruction
3863^^^^^^^^^^^^^^^^^^^^^^
3864
3865Syntax:
3866"""""""
3867
3868::
3869
3870 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3871
3872Overview:
3873"""""""""
3874
3875The '``urem``' instruction returns the remainder from the unsigned
3876division of its two arguments.
3877
3878Arguments:
3879""""""""""
3880
3881The two arguments to the '``urem``' instruction must be
3882:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3883arguments must have identical types.
3884
3885Semantics:
3886""""""""""
3887
3888This instruction returns the unsigned integer *remainder* of a division.
3889This instruction always performs an unsigned division to get the
3890remainder.
3891
3892Note that unsigned integer remainder and signed integer remainder are
3893distinct operations; for signed integer remainder, use '``srem``'.
3894
3895Taking the remainder of a division by zero leads to undefined behavior.
3896
3897Example:
3898""""""""
3899
3900.. code-block:: llvm
3901
3902 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3903
3904'``srem``' Instruction
3905^^^^^^^^^^^^^^^^^^^^^^
3906
3907Syntax:
3908"""""""
3909
3910::
3911
3912 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3913
3914Overview:
3915"""""""""
3916
3917The '``srem``' instruction returns the remainder from the signed
3918division of its two operands. This instruction can also take
3919:ref:`vector <t_vector>` versions of the values in which case the elements
3920must be integers.
3921
3922Arguments:
3923""""""""""
3924
3925The two arguments to the '``srem``' instruction must be
3926:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3927arguments must have identical types.
3928
3929Semantics:
3930""""""""""
3931
3932This instruction returns the *remainder* of a division (where the result
3933is either zero or has the same sign as the dividend, ``op1``), not the
3934*modulo* operator (where the result is either zero or has the same sign
3935as the divisor, ``op2``) of a value. For more information about the
3936difference, see `The Math
3937Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3938table of how this is implemented in various languages, please see
3939`Wikipedia: modulo
3940operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3941
3942Note that signed integer remainder and unsigned integer remainder are
3943distinct operations; for unsigned integer remainder, use '``urem``'.
3944
3945Taking the remainder of a division by zero leads to undefined behavior.
3946Overflow also leads to undefined behavior; this is a rare case, but can
3947occur, for example, by taking the remainder of a 32-bit division of
3948-2147483648 by -1. (The remainder doesn't actually overflow, but this
3949rule lets srem be implemented using instructions that return both the
3950result of the division and the remainder.)
3951
3952Example:
3953""""""""
3954
3955.. code-block:: llvm
3956
3957 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3958
3959.. _i_frem:
3960
3961'``frem``' Instruction
3962^^^^^^^^^^^^^^^^^^^^^^
3963
3964Syntax:
3965"""""""
3966
3967::
3968
3969 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3970
3971Overview:
3972"""""""""
3973
3974The '``frem``' instruction returns the remainder from the division of
3975its two operands.
3976
3977Arguments:
3978""""""""""
3979
3980The two arguments to the '``frem``' instruction must be :ref:`floating
3981point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3982Both arguments must have identical types.
3983
3984Semantics:
3985""""""""""
3986
3987This instruction returns the *remainder* of a division. The remainder
3988has the same sign as the dividend. This instruction can also take any
3989number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3990to enable otherwise unsafe floating point optimizations:
3991
3992Example:
3993""""""""
3994
3995.. code-block:: llvm
3996
3997 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3998
3999.. _bitwiseops:
4000
4001Bitwise Binary Operations
4002-------------------------
4003
4004Bitwise binary operators are used to do various forms of bit-twiddling
4005in a program. They are generally very efficient instructions and can
4006commonly be strength reduced from other instructions. They require two
4007operands of the same type, execute an operation on them, and produce a
4008single value. The resulting value is the same type as its operands.
4009
4010'``shl``' Instruction
4011^^^^^^^^^^^^^^^^^^^^^
4012
4013Syntax:
4014"""""""
4015
4016::
4017
4018 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4019 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4020 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4021 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4022
4023Overview:
4024"""""""""
4025
4026The '``shl``' instruction returns the first operand shifted to the left
4027a specified number of bits.
4028
4029Arguments:
4030""""""""""
4031
4032Both arguments to the '``shl``' instruction must be the same
4033:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4034'``op2``' is treated as an unsigned value.
4035
4036Semantics:
4037""""""""""
4038
4039The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4040where ``n`` is the width of the result. If ``op2`` is (statically or
4041dynamically) negative or equal to or larger than the number of bits in
4042``op1``, the result is undefined. If the arguments are vectors, each
4043vector element of ``op1`` is shifted by the corresponding shift amount
4044in ``op2``.
4045
4046If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4047value <poisonvalues>` if it shifts out any non-zero bits. If the
4048``nsw`` keyword is present, then the shift produces a :ref:`poison
4049value <poisonvalues>` if it shifts out any bits that disagree with the
4050resultant sign bit. As such, NUW/NSW have the same semantics as they
4051would if the shift were expressed as a mul instruction with the same
4052nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4053
4054Example:
4055""""""""
4056
4057.. code-block:: llvm
4058
4059 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4060 <result> = shl i32 4, 2 ; yields {i32}: 16
4061 <result> = shl i32 1, 10 ; yields {i32}: 1024
4062 <result> = shl i32 1, 32 ; undefined
4063 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4064
4065'``lshr``' Instruction
4066^^^^^^^^^^^^^^^^^^^^^^
4067
4068Syntax:
4069"""""""
4070
4071::
4072
4073 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4074 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4075
4076Overview:
4077"""""""""
4078
4079The '``lshr``' instruction (logical shift right) returns the first
4080operand shifted to the right a specified number of bits with zero fill.
4081
4082Arguments:
4083""""""""""
4084
4085Both arguments to the '``lshr``' instruction must be the same
4086:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4087'``op2``' is treated as an unsigned value.
4088
4089Semantics:
4090""""""""""
4091
4092This instruction always performs a logical shift right operation. The
4093most significant bits of the result will be filled with zero bits after
4094the shift. If ``op2`` is (statically or dynamically) equal to or larger
4095than the number of bits in ``op1``, the result is undefined. If the
4096arguments are vectors, each vector element of ``op1`` is shifted by the
4097corresponding shift amount in ``op2``.
4098
4099If the ``exact`` keyword is present, the result value of the ``lshr`` is
4100a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4101non-zero.
4102
4103Example:
4104""""""""
4105
4106.. code-block:: llvm
4107
4108 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4109 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4110 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004111 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004112 <result> = lshr i32 1, 32 ; undefined
4113 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4114
4115'``ashr``' Instruction
4116^^^^^^^^^^^^^^^^^^^^^^
4117
4118Syntax:
4119"""""""
4120
4121::
4122
4123 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4124 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4125
4126Overview:
4127"""""""""
4128
4129The '``ashr``' instruction (arithmetic shift right) returns the first
4130operand shifted to the right a specified number of bits with sign
4131extension.
4132
4133Arguments:
4134""""""""""
4135
4136Both arguments to the '``ashr``' instruction must be the same
4137:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4138'``op2``' is treated as an unsigned value.
4139
4140Semantics:
4141""""""""""
4142
4143This instruction always performs an arithmetic shift right operation,
4144The most significant bits of the result will be filled with the sign bit
4145of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4146than the number of bits in ``op1``, the result is undefined. If the
4147arguments are vectors, each vector element of ``op1`` is shifted by the
4148corresponding shift amount in ``op2``.
4149
4150If the ``exact`` keyword is present, the result value of the ``ashr`` is
4151a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4152non-zero.
4153
4154Example:
4155""""""""
4156
4157.. code-block:: llvm
4158
4159 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4160 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4161 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4162 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4163 <result> = ashr i32 1, 32 ; undefined
4164 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4165
4166'``and``' Instruction
4167^^^^^^^^^^^^^^^^^^^^^
4168
4169Syntax:
4170"""""""
4171
4172::
4173
4174 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4175
4176Overview:
4177"""""""""
4178
4179The '``and``' instruction returns the bitwise logical and of its two
4180operands.
4181
4182Arguments:
4183""""""""""
4184
4185The two arguments to the '``and``' instruction must be
4186:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4187arguments must have identical types.
4188
4189Semantics:
4190""""""""""
4191
4192The truth table used for the '``and``' instruction is:
4193
4194+-----+-----+-----+
4195| In0 | In1 | Out |
4196+-----+-----+-----+
4197| 0 | 0 | 0 |
4198+-----+-----+-----+
4199| 0 | 1 | 0 |
4200+-----+-----+-----+
4201| 1 | 0 | 0 |
4202+-----+-----+-----+
4203| 1 | 1 | 1 |
4204+-----+-----+-----+
4205
4206Example:
4207""""""""
4208
4209.. code-block:: llvm
4210
4211 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4212 <result> = and i32 15, 40 ; yields {i32}:result = 8
4213 <result> = and i32 4, 8 ; yields {i32}:result = 0
4214
4215'``or``' Instruction
4216^^^^^^^^^^^^^^^^^^^^
4217
4218Syntax:
4219"""""""
4220
4221::
4222
4223 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4224
4225Overview:
4226"""""""""
4227
4228The '``or``' instruction returns the bitwise logical inclusive or of its
4229two operands.
4230
4231Arguments:
4232""""""""""
4233
4234The two arguments to the '``or``' instruction must be
4235:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4236arguments must have identical types.
4237
4238Semantics:
4239""""""""""
4240
4241The truth table used for the '``or``' instruction is:
4242
4243+-----+-----+-----+
4244| In0 | In1 | Out |
4245+-----+-----+-----+
4246| 0 | 0 | 0 |
4247+-----+-----+-----+
4248| 0 | 1 | 1 |
4249+-----+-----+-----+
4250| 1 | 0 | 1 |
4251+-----+-----+-----+
4252| 1 | 1 | 1 |
4253+-----+-----+-----+
4254
4255Example:
4256""""""""
4257
4258::
4259
4260 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4261 <result> = or i32 15, 40 ; yields {i32}:result = 47
4262 <result> = or i32 4, 8 ; yields {i32}:result = 12
4263
4264'``xor``' Instruction
4265^^^^^^^^^^^^^^^^^^^^^
4266
4267Syntax:
4268"""""""
4269
4270::
4271
4272 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4273
4274Overview:
4275"""""""""
4276
4277The '``xor``' instruction returns the bitwise logical exclusive or of
4278its two operands. The ``xor`` is used to implement the "one's
4279complement" operation, which is the "~" operator in C.
4280
4281Arguments:
4282""""""""""
4283
4284The two arguments to the '``xor``' instruction must be
4285:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4286arguments must have identical types.
4287
4288Semantics:
4289""""""""""
4290
4291The truth table used for the '``xor``' instruction is:
4292
4293+-----+-----+-----+
4294| In0 | In1 | Out |
4295+-----+-----+-----+
4296| 0 | 0 | 0 |
4297+-----+-----+-----+
4298| 0 | 1 | 1 |
4299+-----+-----+-----+
4300| 1 | 0 | 1 |
4301+-----+-----+-----+
4302| 1 | 1 | 0 |
4303+-----+-----+-----+
4304
4305Example:
4306""""""""
4307
4308.. code-block:: llvm
4309
4310 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4311 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4312 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4313 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4314
4315Vector Operations
4316-----------------
4317
4318LLVM supports several instructions to represent vector operations in a
4319target-independent manner. These instructions cover the element-access
4320and vector-specific operations needed to process vectors effectively.
4321While LLVM does directly support these vector operations, many
4322sophisticated algorithms will want to use target-specific intrinsics to
4323take full advantage of a specific target.
4324
4325.. _i_extractelement:
4326
4327'``extractelement``' Instruction
4328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4329
4330Syntax:
4331"""""""
4332
4333::
4334
4335 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4336
4337Overview:
4338"""""""""
4339
4340The '``extractelement``' instruction extracts a single scalar element
4341from a vector at a specified index.
4342
4343Arguments:
4344""""""""""
4345
4346The first operand of an '``extractelement``' instruction is a value of
4347:ref:`vector <t_vector>` type. The second operand is an index indicating
4348the position from which to extract the element. The index may be a
4349variable.
4350
4351Semantics:
4352""""""""""
4353
4354The result is a scalar of the same type as the element type of ``val``.
4355Its value is the value at position ``idx`` of ``val``. If ``idx``
4356exceeds the length of ``val``, the results are undefined.
4357
4358Example:
4359""""""""
4360
4361.. code-block:: llvm
4362
4363 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4364
4365.. _i_insertelement:
4366
4367'``insertelement``' Instruction
4368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4369
4370Syntax:
4371"""""""
4372
4373::
4374
4375 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4376
4377Overview:
4378"""""""""
4379
4380The '``insertelement``' instruction inserts a scalar element into a
4381vector at a specified index.
4382
4383Arguments:
4384""""""""""
4385
4386The first operand of an '``insertelement``' instruction is a value of
4387:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4388type must equal the element type of the first operand. The third operand
4389is an index indicating the position at which to insert the value. The
4390index may be a variable.
4391
4392Semantics:
4393""""""""""
4394
4395The result is a vector of the same type as ``val``. Its element values
4396are those of ``val`` except at position ``idx``, where it gets the value
4397``elt``. If ``idx`` exceeds the length of ``val``, the results are
4398undefined.
4399
4400Example:
4401""""""""
4402
4403.. code-block:: llvm
4404
4405 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4406
4407.. _i_shufflevector:
4408
4409'``shufflevector``' Instruction
4410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4411
4412Syntax:
4413"""""""
4414
4415::
4416
4417 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4418
4419Overview:
4420"""""""""
4421
4422The '``shufflevector``' instruction constructs a permutation of elements
4423from two input vectors, returning a vector with the same element type as
4424the input and length that is the same as the shuffle mask.
4425
4426Arguments:
4427""""""""""
4428
4429The first two operands of a '``shufflevector``' instruction are vectors
4430with the same type. The third argument is a shuffle mask whose element
4431type is always 'i32'. The result of the instruction is a vector whose
4432length is the same as the shuffle mask and whose element type is the
4433same as the element type of the first two operands.
4434
4435The shuffle mask operand is required to be a constant vector with either
4436constant integer or undef values.
4437
4438Semantics:
4439""""""""""
4440
4441The elements of the two input vectors are numbered from left to right
4442across both of the vectors. The shuffle mask operand specifies, for each
4443element of the result vector, which element of the two input vectors the
4444result element gets. The element selector may be undef (meaning "don't
4445care") and the second operand may be undef if performing a shuffle from
4446only one vector.
4447
4448Example:
4449""""""""
4450
4451.. code-block:: llvm
4452
4453 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4454 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4455 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4456 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4457 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4458 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4459 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4460 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4461
4462Aggregate Operations
4463--------------------
4464
4465LLVM supports several instructions for working with
4466:ref:`aggregate <t_aggregate>` values.
4467
4468.. _i_extractvalue:
4469
4470'``extractvalue``' Instruction
4471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4472
4473Syntax:
4474"""""""
4475
4476::
4477
4478 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4479
4480Overview:
4481"""""""""
4482
4483The '``extractvalue``' instruction extracts the value of a member field
4484from an :ref:`aggregate <t_aggregate>` value.
4485
4486Arguments:
4487""""""""""
4488
4489The first operand of an '``extractvalue``' instruction is a value of
4490:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4491constant indices to specify which value to extract in a similar manner
4492as indices in a '``getelementptr``' instruction.
4493
4494The major differences to ``getelementptr`` indexing are:
4495
4496- Since the value being indexed is not a pointer, the first index is
4497 omitted and assumed to be zero.
4498- At least one index must be specified.
4499- Not only struct indices but also array indices must be in bounds.
4500
4501Semantics:
4502""""""""""
4503
4504The result is the value at the position in the aggregate specified by
4505the index operands.
4506
4507Example:
4508""""""""
4509
4510.. code-block:: llvm
4511
4512 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4513
4514.. _i_insertvalue:
4515
4516'``insertvalue``' Instruction
4517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4518
4519Syntax:
4520"""""""
4521
4522::
4523
4524 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4525
4526Overview:
4527"""""""""
4528
4529The '``insertvalue``' instruction inserts a value into a member field in
4530an :ref:`aggregate <t_aggregate>` value.
4531
4532Arguments:
4533""""""""""
4534
4535The first operand of an '``insertvalue``' instruction is a value of
4536:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4537a first-class value to insert. The following operands are constant
4538indices indicating the position at which to insert the value in a
4539similar manner as indices in a '``extractvalue``' instruction. The value
4540to insert must have the same type as the value identified by the
4541indices.
4542
4543Semantics:
4544""""""""""
4545
4546The result is an aggregate of the same type as ``val``. Its value is
4547that of ``val`` except that the value at the position specified by the
4548indices is that of ``elt``.
4549
4550Example:
4551""""""""
4552
4553.. code-block:: llvm
4554
4555 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4556 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4557 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4558
4559.. _memoryops:
4560
4561Memory Access and Addressing Operations
4562---------------------------------------
4563
4564A key design point of an SSA-based representation is how it represents
4565memory. In LLVM, no memory locations are in SSA form, which makes things
4566very simple. This section describes how to read, write, and allocate
4567memory in LLVM.
4568
4569.. _i_alloca:
4570
4571'``alloca``' Instruction
4572^^^^^^^^^^^^^^^^^^^^^^^^
4573
4574Syntax:
4575"""""""
4576
4577::
4578
4579 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4580
4581Overview:
4582"""""""""
4583
4584The '``alloca``' instruction allocates memory on the stack frame of the
4585currently executing function, to be automatically released when this
4586function returns to its caller. The object is always allocated in the
4587generic address space (address space zero).
4588
4589Arguments:
4590""""""""""
4591
4592The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4593bytes of memory on the runtime stack, returning a pointer of the
4594appropriate type to the program. If "NumElements" is specified, it is
4595the number of elements allocated, otherwise "NumElements" is defaulted
4596to be one. If a constant alignment is specified, the value result of the
4597allocation is guaranteed to be aligned to at least that boundary. If not
4598specified, or if zero, the target can choose to align the allocation on
4599any convenient boundary compatible with the type.
4600
4601'``type``' may be any sized type.
4602
4603Semantics:
4604""""""""""
4605
4606Memory is allocated; a pointer is returned. The operation is undefined
4607if there is insufficient stack space for the allocation. '``alloca``'d
4608memory is automatically released when the function returns. The
4609'``alloca``' instruction is commonly used to represent automatic
4610variables that must have an address available. When the function returns
4611(either with the ``ret`` or ``resume`` instructions), the memory is
4612reclaimed. Allocating zero bytes is legal, but the result is undefined.
4613The order in which memory is allocated (ie., which way the stack grows)
4614is not specified.
4615
4616Example:
4617""""""""
4618
4619.. code-block:: llvm
4620
4621 %ptr = alloca i32 ; yields {i32*}:ptr
4622 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4623 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4624 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4625
4626.. _i_load:
4627
4628'``load``' Instruction
4629^^^^^^^^^^^^^^^^^^^^^^
4630
4631Syntax:
4632"""""""
4633
4634::
4635
4636 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4637 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4638 !<index> = !{ i32 1 }
4639
4640Overview:
4641"""""""""
4642
4643The '``load``' instruction is used to read from memory.
4644
4645Arguments:
4646""""""""""
4647
Eli Bendersky8c493382013-04-17 20:17:08 +00004648The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004649from which to load. The pointer must point to a :ref:`first
4650class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4651then the optimizer is not allowed to modify the number or order of
4652execution of this ``load`` with other :ref:`volatile
4653operations <volatile>`.
4654
4655If the ``load`` is marked as ``atomic``, it takes an extra
4656:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4657``release`` and ``acq_rel`` orderings are not valid on ``load``
4658instructions. Atomic loads produce :ref:`defined <memmodel>` results
4659when they may see multiple atomic stores. The type of the pointee must
4660be an integer type whose bit width is a power of two greater than or
4661equal to eight and less than or equal to a target-specific size limit.
4662``align`` must be explicitly specified on atomic loads, and the load has
4663undefined behavior if the alignment is not set to a value which is at
4664least the size in bytes of the pointee. ``!nontemporal`` does not have
4665any defined semantics for atomic loads.
4666
4667The optional constant ``align`` argument specifies the alignment of the
4668operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004669or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004670alignment for the target. It is the responsibility of the code emitter
4671to ensure that the alignment information is correct. Overestimating the
4672alignment results in undefined behavior. Underestimating the alignment
4673may produce less efficient code. An alignment of 1 is always safe.
4674
4675The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004676metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004677``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004678metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004679that this load is not expected to be reused in the cache. The code
4680generator may select special instructions to save cache bandwidth, such
4681as the ``MOVNT`` instruction on x86.
4682
4683The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004684metadata name ``<index>`` corresponding to a metadata node with no
4685entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004686instruction tells the optimizer and code generator that this load
4687address points to memory which does not change value during program
4688execution. The optimizer may then move this load around, for example, by
4689hoisting it out of loops using loop invariant code motion.
4690
4691Semantics:
4692""""""""""
4693
4694The location of memory pointed to is loaded. If the value being loaded
4695is of scalar type then the number of bytes read does not exceed the
4696minimum number of bytes needed to hold all bits of the type. For
4697example, loading an ``i24`` reads at most three bytes. When loading a
4698value of a type like ``i20`` with a size that is not an integral number
4699of bytes, the result is undefined if the value was not originally
4700written using a store of the same type.
4701
4702Examples:
4703"""""""""
4704
4705.. code-block:: llvm
4706
4707 %ptr = alloca i32 ; yields {i32*}:ptr
4708 store i32 3, i32* %ptr ; yields {void}
4709 %val = load i32* %ptr ; yields {i32}:val = i32 3
4710
4711.. _i_store:
4712
4713'``store``' Instruction
4714^^^^^^^^^^^^^^^^^^^^^^^
4715
4716Syntax:
4717"""""""
4718
4719::
4720
4721 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4722 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4723
4724Overview:
4725"""""""""
4726
4727The '``store``' instruction is used to write to memory.
4728
4729Arguments:
4730""""""""""
4731
Eli Bendersky8952d902013-04-17 17:17:20 +00004732There are two arguments to the ``store`` instruction: a value to store
4733and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004734operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004735the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004736then the optimizer is not allowed to modify the number or order of
4737execution of this ``store`` with other :ref:`volatile
4738operations <volatile>`.
4739
4740If the ``store`` is marked as ``atomic``, it takes an extra
4741:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4742``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4743instructions. Atomic loads produce :ref:`defined <memmodel>` results
4744when they may see multiple atomic stores. The type of the pointee must
4745be an integer type whose bit width is a power of two greater than or
4746equal to eight and less than or equal to a target-specific size limit.
4747``align`` must be explicitly specified on atomic stores, and the store
4748has undefined behavior if the alignment is not set to a value which is
4749at least the size in bytes of the pointee. ``!nontemporal`` does not
4750have any defined semantics for atomic stores.
4751
Eli Bendersky8952d902013-04-17 17:17:20 +00004752The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004753operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004754or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004755alignment for the target. It is the responsibility of the code emitter
4756to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004757alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004758alignment may produce less efficient code. An alignment of 1 is always
4759safe.
4760
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004761The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004762name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004763value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004764tells the optimizer and code generator that this load is not expected to
4765be reused in the cache. The code generator may select special
4766instructions to save cache bandwidth, such as the MOVNT instruction on
4767x86.
4768
4769Semantics:
4770""""""""""
4771
Eli Bendersky8952d902013-04-17 17:17:20 +00004772The contents of memory are updated to contain ``<value>`` at the
4773location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004774of scalar type then the number of bytes written does not exceed the
4775minimum number of bytes needed to hold all bits of the type. For
4776example, storing an ``i24`` writes at most three bytes. When writing a
4777value of a type like ``i20`` with a size that is not an integral number
4778of bytes, it is unspecified what happens to the extra bits that do not
4779belong to the type, but they will typically be overwritten.
4780
4781Example:
4782""""""""
4783
4784.. code-block:: llvm
4785
4786 %ptr = alloca i32 ; yields {i32*}:ptr
4787 store i32 3, i32* %ptr ; yields {void}
4788 %val = load i32* %ptr ; yields {i32}:val = i32 3
4789
4790.. _i_fence:
4791
4792'``fence``' Instruction
4793^^^^^^^^^^^^^^^^^^^^^^^
4794
4795Syntax:
4796"""""""
4797
4798::
4799
4800 fence [singlethread] <ordering> ; yields {void}
4801
4802Overview:
4803"""""""""
4804
4805The '``fence``' instruction is used to introduce happens-before edges
4806between operations.
4807
4808Arguments:
4809""""""""""
4810
4811'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4812defines what *synchronizes-with* edges they add. They can only be given
4813``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4814
4815Semantics:
4816""""""""""
4817
4818A fence A which has (at least) ``release`` ordering semantics
4819*synchronizes with* a fence B with (at least) ``acquire`` ordering
4820semantics if and only if there exist atomic operations X and Y, both
4821operating on some atomic object M, such that A is sequenced before X, X
4822modifies M (either directly or through some side effect of a sequence
4823headed by X), Y is sequenced before B, and Y observes M. This provides a
4824*happens-before* dependency between A and B. Rather than an explicit
4825``fence``, one (but not both) of the atomic operations X or Y might
4826provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4827still *synchronize-with* the explicit ``fence`` and establish the
4828*happens-before* edge.
4829
4830A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4831``acquire`` and ``release`` semantics specified above, participates in
4832the global program order of other ``seq_cst`` operations and/or fences.
4833
4834The optional ":ref:`singlethread <singlethread>`" argument specifies
4835that the fence only synchronizes with other fences in the same thread.
4836(This is useful for interacting with signal handlers.)
4837
4838Example:
4839""""""""
4840
4841.. code-block:: llvm
4842
4843 fence acquire ; yields {void}
4844 fence singlethread seq_cst ; yields {void}
4845
4846.. _i_cmpxchg:
4847
4848'``cmpxchg``' Instruction
4849^^^^^^^^^^^^^^^^^^^^^^^^^
4850
4851Syntax:
4852"""""""
4853
4854::
4855
4856 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4857
4858Overview:
4859"""""""""
4860
4861The '``cmpxchg``' instruction is used to atomically modify memory. It
4862loads a value in memory and compares it to a given value. If they are
4863equal, it stores a new value into the memory.
4864
4865Arguments:
4866""""""""""
4867
4868There are three arguments to the '``cmpxchg``' instruction: an address
4869to operate on, a value to compare to the value currently be at that
4870address, and a new value to place at that address if the compared values
4871are equal. The type of '<cmp>' must be an integer type whose bit width
4872is a power of two greater than or equal to eight and less than or equal
4873to a target-specific size limit. '<cmp>' and '<new>' must have the same
4874type, and the type of '<pointer>' must be a pointer to that type. If the
4875``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4876to modify the number or order of execution of this ``cmpxchg`` with
4877other :ref:`volatile operations <volatile>`.
4878
4879The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4880synchronizes with other atomic operations.
4881
4882The optional "``singlethread``" argument declares that the ``cmpxchg``
4883is only atomic with respect to code (usually signal handlers) running in
4884the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4885respect to all other code in the system.
4886
4887The pointer passed into cmpxchg must have alignment greater than or
4888equal to the size in memory of the operand.
4889
4890Semantics:
4891""""""""""
4892
4893The contents of memory at the location specified by the '``<pointer>``'
4894operand is read and compared to '``<cmp>``'; if the read value is the
4895equal, '``<new>``' is written. The original value at the location is
4896returned.
4897
4898A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4899of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4900atomic load with an ordering parameter determined by dropping any
4901``release`` part of the ``cmpxchg``'s ordering.
4902
4903Example:
4904""""""""
4905
4906.. code-block:: llvm
4907
4908 entry:
4909 %orig = atomic load i32* %ptr unordered ; yields {i32}
4910 br label %loop
4911
4912 loop:
4913 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4914 %squared = mul i32 %cmp, %cmp
4915 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4916 %success = icmp eq i32 %cmp, %old
4917 br i1 %success, label %done, label %loop
4918
4919 done:
4920 ...
4921
4922.. _i_atomicrmw:
4923
4924'``atomicrmw``' Instruction
4925^^^^^^^^^^^^^^^^^^^^^^^^^^^
4926
4927Syntax:
4928"""""""
4929
4930::
4931
4932 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4933
4934Overview:
4935"""""""""
4936
4937The '``atomicrmw``' instruction is used to atomically modify memory.
4938
4939Arguments:
4940""""""""""
4941
4942There are three arguments to the '``atomicrmw``' instruction: an
4943operation to apply, an address whose value to modify, an argument to the
4944operation. The operation must be one of the following keywords:
4945
4946- xchg
4947- add
4948- sub
4949- and
4950- nand
4951- or
4952- xor
4953- max
4954- min
4955- umax
4956- umin
4957
4958The type of '<value>' must be an integer type whose bit width is a power
4959of two greater than or equal to eight and less than or equal to a
4960target-specific size limit. The type of the '``<pointer>``' operand must
4961be a pointer to that type. If the ``atomicrmw`` is marked as
4962``volatile``, then the optimizer is not allowed to modify the number or
4963order of execution of this ``atomicrmw`` with other :ref:`volatile
4964operations <volatile>`.
4965
4966Semantics:
4967""""""""""
4968
4969The contents of memory at the location specified by the '``<pointer>``'
4970operand are atomically read, modified, and written back. The original
4971value at the location is returned. The modification is specified by the
4972operation argument:
4973
4974- xchg: ``*ptr = val``
4975- add: ``*ptr = *ptr + val``
4976- sub: ``*ptr = *ptr - val``
4977- and: ``*ptr = *ptr & val``
4978- nand: ``*ptr = ~(*ptr & val)``
4979- or: ``*ptr = *ptr | val``
4980- xor: ``*ptr = *ptr ^ val``
4981- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4982- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4983- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4984 comparison)
4985- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4986 comparison)
4987
4988Example:
4989""""""""
4990
4991.. code-block:: llvm
4992
4993 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4994
4995.. _i_getelementptr:
4996
4997'``getelementptr``' Instruction
4998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4999
5000Syntax:
5001"""""""
5002
5003::
5004
5005 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5006 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5007 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5008
5009Overview:
5010"""""""""
5011
5012The '``getelementptr``' instruction is used to get the address of a
5013subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5014address calculation only and does not access memory.
5015
5016Arguments:
5017""""""""""
5018
5019The first argument is always a pointer or a vector of pointers, and
5020forms the basis of the calculation. The remaining arguments are indices
5021that indicate which of the elements of the aggregate object are indexed.
5022The interpretation of each index is dependent on the type being indexed
5023into. The first index always indexes the pointer value given as the
5024first argument, the second index indexes a value of the type pointed to
5025(not necessarily the value directly pointed to, since the first index
5026can be non-zero), etc. The first type indexed into must be a pointer
5027value, subsequent types can be arrays, vectors, and structs. Note that
5028subsequent types being indexed into can never be pointers, since that
5029would require loading the pointer before continuing calculation.
5030
5031The type of each index argument depends on the type it is indexing into.
5032When indexing into a (optionally packed) structure, only ``i32`` integer
5033**constants** are allowed (when using a vector of indices they must all
5034be the **same** ``i32`` integer constant). When indexing into an array,
5035pointer or vector, integers of any width are allowed, and they are not
5036required to be constant. These integers are treated as signed values
5037where relevant.
5038
5039For example, let's consider a C code fragment and how it gets compiled
5040to LLVM:
5041
5042.. code-block:: c
5043
5044 struct RT {
5045 char A;
5046 int B[10][20];
5047 char C;
5048 };
5049 struct ST {
5050 int X;
5051 double Y;
5052 struct RT Z;
5053 };
5054
5055 int *foo(struct ST *s) {
5056 return &s[1].Z.B[5][13];
5057 }
5058
5059The LLVM code generated by Clang is:
5060
5061.. code-block:: llvm
5062
5063 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5064 %struct.ST = type { i32, double, %struct.RT }
5065
5066 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5067 entry:
5068 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5069 ret i32* %arrayidx
5070 }
5071
5072Semantics:
5073""""""""""
5074
5075In the example above, the first index is indexing into the
5076'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5077= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5078indexes into the third element of the structure, yielding a
5079'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5080structure. The third index indexes into the second element of the
5081structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5082dimensions of the array are subscripted into, yielding an '``i32``'
5083type. The '``getelementptr``' instruction returns a pointer to this
5084element, thus computing a value of '``i32*``' type.
5085
5086Note that it is perfectly legal to index partially through a structure,
5087returning a pointer to an inner element. Because of this, the LLVM code
5088for the given testcase is equivalent to:
5089
5090.. code-block:: llvm
5091
5092 define i32* @foo(%struct.ST* %s) {
5093 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5094 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5095 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5096 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5097 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5098 ret i32* %t5
5099 }
5100
5101If the ``inbounds`` keyword is present, the result value of the
5102``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5103pointer is not an *in bounds* address of an allocated object, or if any
5104of the addresses that would be formed by successive addition of the
5105offsets implied by the indices to the base address with infinitely
5106precise signed arithmetic are not an *in bounds* address of that
5107allocated object. The *in bounds* addresses for an allocated object are
5108all the addresses that point into the object, plus the address one byte
5109past the end. In cases where the base is a vector of pointers the
5110``inbounds`` keyword applies to each of the computations element-wise.
5111
5112If the ``inbounds`` keyword is not present, the offsets are added to the
5113base address with silently-wrapping two's complement arithmetic. If the
5114offsets have a different width from the pointer, they are sign-extended
5115or truncated to the width of the pointer. The result value of the
5116``getelementptr`` may be outside the object pointed to by the base
5117pointer. The result value may not necessarily be used to access memory
5118though, even if it happens to point into allocated storage. See the
5119:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5120information.
5121
5122The getelementptr instruction is often confusing. For some more insight
5123into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5124
5125Example:
5126""""""""
5127
5128.. code-block:: llvm
5129
5130 ; yields [12 x i8]*:aptr
5131 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5132 ; yields i8*:vptr
5133 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5134 ; yields i8*:eptr
5135 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5136 ; yields i32*:iptr
5137 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5138
5139In cases where the pointer argument is a vector of pointers, each index
5140must be a vector with the same number of elements. For example:
5141
5142.. code-block:: llvm
5143
5144 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5145
5146Conversion Operations
5147---------------------
5148
5149The instructions in this category are the conversion instructions
5150(casting) which all take a single operand and a type. They perform
5151various bit conversions on the operand.
5152
5153'``trunc .. to``' Instruction
5154^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5155
5156Syntax:
5157"""""""
5158
5159::
5160
5161 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5162
5163Overview:
5164"""""""""
5165
5166The '``trunc``' instruction truncates its operand to the type ``ty2``.
5167
5168Arguments:
5169""""""""""
5170
5171The '``trunc``' instruction takes a value to trunc, and a type to trunc
5172it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5173of the same number of integers. The bit size of the ``value`` must be
5174larger than the bit size of the destination type, ``ty2``. Equal sized
5175types are not allowed.
5176
5177Semantics:
5178""""""""""
5179
5180The '``trunc``' instruction truncates the high order bits in ``value``
5181and converts the remaining bits to ``ty2``. Since the source size must
5182be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5183It will always truncate bits.
5184
5185Example:
5186""""""""
5187
5188.. code-block:: llvm
5189
5190 %X = trunc i32 257 to i8 ; yields i8:1
5191 %Y = trunc i32 123 to i1 ; yields i1:true
5192 %Z = trunc i32 122 to i1 ; yields i1:false
5193 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5194
5195'``zext .. to``' Instruction
5196^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5197
5198Syntax:
5199"""""""
5200
5201::
5202
5203 <result> = zext <ty> <value> to <ty2> ; yields ty2
5204
5205Overview:
5206"""""""""
5207
5208The '``zext``' instruction zero extends its operand to type ``ty2``.
5209
5210Arguments:
5211""""""""""
5212
5213The '``zext``' instruction takes a value to cast, and a type to cast it
5214to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5215the same number of integers. The bit size of the ``value`` must be
5216smaller than the bit size of the destination type, ``ty2``.
5217
5218Semantics:
5219""""""""""
5220
5221The ``zext`` fills the high order bits of the ``value`` with zero bits
5222until it reaches the size of the destination type, ``ty2``.
5223
5224When zero extending from i1, the result will always be either 0 or 1.
5225
5226Example:
5227""""""""
5228
5229.. code-block:: llvm
5230
5231 %X = zext i32 257 to i64 ; yields i64:257
5232 %Y = zext i1 true to i32 ; yields i32:1
5233 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5234
5235'``sext .. to``' Instruction
5236^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5237
5238Syntax:
5239"""""""
5240
5241::
5242
5243 <result> = sext <ty> <value> to <ty2> ; yields ty2
5244
5245Overview:
5246"""""""""
5247
5248The '``sext``' sign extends ``value`` to the type ``ty2``.
5249
5250Arguments:
5251""""""""""
5252
5253The '``sext``' instruction takes a value to cast, and a type to cast it
5254to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5255the same number of integers. The bit size of the ``value`` must be
5256smaller than the bit size of the destination type, ``ty2``.
5257
5258Semantics:
5259""""""""""
5260
5261The '``sext``' instruction performs a sign extension by copying the sign
5262bit (highest order bit) of the ``value`` until it reaches the bit size
5263of the type ``ty2``.
5264
5265When sign extending from i1, the extension always results in -1 or 0.
5266
5267Example:
5268""""""""
5269
5270.. code-block:: llvm
5271
5272 %X = sext i8 -1 to i16 ; yields i16 :65535
5273 %Y = sext i1 true to i32 ; yields i32:-1
5274 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5275
5276'``fptrunc .. to``' Instruction
5277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5278
5279Syntax:
5280"""""""
5281
5282::
5283
5284 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5285
5286Overview:
5287"""""""""
5288
5289The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5290
5291Arguments:
5292""""""""""
5293
5294The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5295value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5296The size of ``value`` must be larger than the size of ``ty2``. This
5297implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5298
5299Semantics:
5300""""""""""
5301
5302The '``fptrunc``' instruction truncates a ``value`` from a larger
5303:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5304point <t_floating>` type. If the value cannot fit within the
5305destination type, ``ty2``, then the results are undefined.
5306
5307Example:
5308""""""""
5309
5310.. code-block:: llvm
5311
5312 %X = fptrunc double 123.0 to float ; yields float:123.0
5313 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5314
5315'``fpext .. to``' Instruction
5316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5317
5318Syntax:
5319"""""""
5320
5321::
5322
5323 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5324
5325Overview:
5326"""""""""
5327
5328The '``fpext``' extends a floating point ``value`` to a larger floating
5329point value.
5330
5331Arguments:
5332""""""""""
5333
5334The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5335``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5336to. The source type must be smaller than the destination type.
5337
5338Semantics:
5339""""""""""
5340
5341The '``fpext``' instruction extends the ``value`` from a smaller
5342:ref:`floating point <t_floating>` type to a larger :ref:`floating
5343point <t_floating>` type. The ``fpext`` cannot be used to make a
5344*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5345*no-op cast* for a floating point cast.
5346
5347Example:
5348""""""""
5349
5350.. code-block:: llvm
5351
5352 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5353 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5354
5355'``fptoui .. to``' Instruction
5356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5357
5358Syntax:
5359"""""""
5360
5361::
5362
5363 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5364
5365Overview:
5366"""""""""
5367
5368The '``fptoui``' converts a floating point ``value`` to its unsigned
5369integer equivalent of type ``ty2``.
5370
5371Arguments:
5372""""""""""
5373
5374The '``fptoui``' instruction takes a value to cast, which must be a
5375scalar or vector :ref:`floating point <t_floating>` value, and a type to
5376cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5377``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5378type with the same number of elements as ``ty``
5379
5380Semantics:
5381""""""""""
5382
5383The '``fptoui``' instruction converts its :ref:`floating
5384point <t_floating>` operand into the nearest (rounding towards zero)
5385unsigned integer value. If the value cannot fit in ``ty2``, the results
5386are undefined.
5387
5388Example:
5389""""""""
5390
5391.. code-block:: llvm
5392
5393 %X = fptoui double 123.0 to i32 ; yields i32:123
5394 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5395 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5396
5397'``fptosi .. to``' Instruction
5398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5399
5400Syntax:
5401"""""""
5402
5403::
5404
5405 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5406
5407Overview:
5408"""""""""
5409
5410The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5411``value`` to type ``ty2``.
5412
5413Arguments:
5414""""""""""
5415
5416The '``fptosi``' instruction takes a value to cast, which must be a
5417scalar or vector :ref:`floating point <t_floating>` value, and a type to
5418cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5419``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5420type with the same number of elements as ``ty``
5421
5422Semantics:
5423""""""""""
5424
5425The '``fptosi``' instruction converts its :ref:`floating
5426point <t_floating>` operand into the nearest (rounding towards zero)
5427signed integer value. If the value cannot fit in ``ty2``, the results
5428are undefined.
5429
5430Example:
5431""""""""
5432
5433.. code-block:: llvm
5434
5435 %X = fptosi double -123.0 to i32 ; yields i32:-123
5436 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5437 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5438
5439'``uitofp .. to``' Instruction
5440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5441
5442Syntax:
5443"""""""
5444
5445::
5446
5447 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5448
5449Overview:
5450"""""""""
5451
5452The '``uitofp``' instruction regards ``value`` as an unsigned integer
5453and converts that value to the ``ty2`` type.
5454
5455Arguments:
5456""""""""""
5457
5458The '``uitofp``' instruction takes a value to cast, which must be a
5459scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5460``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5461``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5462type with the same number of elements as ``ty``
5463
5464Semantics:
5465""""""""""
5466
5467The '``uitofp``' instruction interprets its operand as an unsigned
5468integer quantity and converts it to the corresponding floating point
5469value. If the value cannot fit in the floating point value, the results
5470are undefined.
5471
5472Example:
5473""""""""
5474
5475.. code-block:: llvm
5476
5477 %X = uitofp i32 257 to float ; yields float:257.0
5478 %Y = uitofp i8 -1 to double ; yields double:255.0
5479
5480'``sitofp .. to``' Instruction
5481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5482
5483Syntax:
5484"""""""
5485
5486::
5487
5488 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5489
5490Overview:
5491"""""""""
5492
5493The '``sitofp``' instruction regards ``value`` as a signed integer and
5494converts that value to the ``ty2`` type.
5495
5496Arguments:
5497""""""""""
5498
5499The '``sitofp``' instruction takes a value to cast, which must be a
5500scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5501``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5502``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5503type with the same number of elements as ``ty``
5504
5505Semantics:
5506""""""""""
5507
5508The '``sitofp``' instruction interprets its operand as a signed integer
5509quantity and converts it to the corresponding floating point value. If
5510the value cannot fit in the floating point value, the results are
5511undefined.
5512
5513Example:
5514""""""""
5515
5516.. code-block:: llvm
5517
5518 %X = sitofp i32 257 to float ; yields float:257.0
5519 %Y = sitofp i8 -1 to double ; yields double:-1.0
5520
5521.. _i_ptrtoint:
5522
5523'``ptrtoint .. to``' Instruction
5524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5525
5526Syntax:
5527"""""""
5528
5529::
5530
5531 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5532
5533Overview:
5534"""""""""
5535
5536The '``ptrtoint``' instruction converts the pointer or a vector of
5537pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5538
5539Arguments:
5540""""""""""
5541
5542The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5543a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5544type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5545a vector of integers type.
5546
5547Semantics:
5548""""""""""
5549
5550The '``ptrtoint``' instruction converts ``value`` to integer type
5551``ty2`` by interpreting the pointer value as an integer and either
5552truncating or zero extending that value to the size of the integer type.
5553If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5554``value`` is larger than ``ty2`` then a truncation is done. If they are
5555the same size, then nothing is done (*no-op cast*) other than a type
5556change.
5557
5558Example:
5559""""""""
5560
5561.. code-block:: llvm
5562
5563 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5564 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5565 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5566
5567.. _i_inttoptr:
5568
5569'``inttoptr .. to``' Instruction
5570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5571
5572Syntax:
5573"""""""
5574
5575::
5576
5577 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5578
5579Overview:
5580"""""""""
5581
5582The '``inttoptr``' instruction converts an integer ``value`` to a
5583pointer type, ``ty2``.
5584
5585Arguments:
5586""""""""""
5587
5588The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5589cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5590type.
5591
5592Semantics:
5593""""""""""
5594
5595The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5596applying either a zero extension or a truncation depending on the size
5597of the integer ``value``. If ``value`` is larger than the size of a
5598pointer then a truncation is done. If ``value`` is smaller than the size
5599of a pointer then a zero extension is done. If they are the same size,
5600nothing is done (*no-op cast*).
5601
5602Example:
5603""""""""
5604
5605.. code-block:: llvm
5606
5607 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5608 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5609 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5610 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5611
5612.. _i_bitcast:
5613
5614'``bitcast .. to``' Instruction
5615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5616
5617Syntax:
5618"""""""
5619
5620::
5621
5622 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5623
5624Overview:
5625"""""""""
5626
5627The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5628changing any bits.
5629
5630Arguments:
5631""""""""""
5632
5633The '``bitcast``' instruction takes a value to cast, which must be a
5634non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005635also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5636bit sizes of ``value`` and the destination type, ``ty2``, must be
5637identical. If the source type is a pointer, the destination type must
5638also be a pointer of the same size. This instruction supports bitwise
5639conversion of vectors to integers and to vectors of other types (as
5640long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00005641
5642Semantics:
5643""""""""""
5644
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005645The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5646is always a *no-op cast* because no bits change with this
5647conversion. The conversion is done as if the ``value`` had been stored
5648to memory and read back as type ``ty2``. Pointer (or vector of
5649pointers) types may only be converted to other pointer (or vector of
5650pointers) types with this instruction if the pointer sizes are
5651equal. To convert pointers to other types, use the :ref:`inttoptr
5652<i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00005653
5654Example:
5655""""""""
5656
5657.. code-block:: llvm
5658
5659 %X = bitcast i8 255 to i8 ; yields i8 :-1
5660 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5661 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5662 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5663
5664.. _otherops:
5665
5666Other Operations
5667----------------
5668
5669The instructions in this category are the "miscellaneous" instructions,
5670which defy better classification.
5671
5672.. _i_icmp:
5673
5674'``icmp``' Instruction
5675^^^^^^^^^^^^^^^^^^^^^^
5676
5677Syntax:
5678"""""""
5679
5680::
5681
5682 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5683
5684Overview:
5685"""""""""
5686
5687The '``icmp``' instruction returns a boolean value or a vector of
5688boolean values based on comparison of its two integer, integer vector,
5689pointer, or pointer vector operands.
5690
5691Arguments:
5692""""""""""
5693
5694The '``icmp``' instruction takes three operands. The first operand is
5695the condition code indicating the kind of comparison to perform. It is
5696not a value, just a keyword. The possible condition code are:
5697
5698#. ``eq``: equal
5699#. ``ne``: not equal
5700#. ``ugt``: unsigned greater than
5701#. ``uge``: unsigned greater or equal
5702#. ``ult``: unsigned less than
5703#. ``ule``: unsigned less or equal
5704#. ``sgt``: signed greater than
5705#. ``sge``: signed greater or equal
5706#. ``slt``: signed less than
5707#. ``sle``: signed less or equal
5708
5709The remaining two arguments must be :ref:`integer <t_integer>` or
5710:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5711must also be identical types.
5712
5713Semantics:
5714""""""""""
5715
5716The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5717code given as ``cond``. The comparison performed always yields either an
5718:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5719
5720#. ``eq``: yields ``true`` if the operands are equal, ``false``
5721 otherwise. No sign interpretation is necessary or performed.
5722#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5723 otherwise. No sign interpretation is necessary or performed.
5724#. ``ugt``: interprets the operands as unsigned values and yields
5725 ``true`` if ``op1`` is greater than ``op2``.
5726#. ``uge``: interprets the operands as unsigned values and yields
5727 ``true`` if ``op1`` is greater than or equal to ``op2``.
5728#. ``ult``: interprets the operands as unsigned values and yields
5729 ``true`` if ``op1`` is less than ``op2``.
5730#. ``ule``: interprets the operands as unsigned values and yields
5731 ``true`` if ``op1`` is less than or equal to ``op2``.
5732#. ``sgt``: interprets the operands as signed values and yields ``true``
5733 if ``op1`` is greater than ``op2``.
5734#. ``sge``: interprets the operands as signed values and yields ``true``
5735 if ``op1`` is greater than or equal to ``op2``.
5736#. ``slt``: interprets the operands as signed values and yields ``true``
5737 if ``op1`` is less than ``op2``.
5738#. ``sle``: interprets the operands as signed values and yields ``true``
5739 if ``op1`` is less than or equal to ``op2``.
5740
5741If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5742are compared as if they were integers.
5743
5744If the operands are integer vectors, then they are compared element by
5745element. The result is an ``i1`` vector with the same number of elements
5746as the values being compared. Otherwise, the result is an ``i1``.
5747
5748Example:
5749""""""""
5750
5751.. code-block:: llvm
5752
5753 <result> = icmp eq i32 4, 5 ; yields: result=false
5754 <result> = icmp ne float* %X, %X ; yields: result=false
5755 <result> = icmp ult i16 4, 5 ; yields: result=true
5756 <result> = icmp sgt i16 4, 5 ; yields: result=false
5757 <result> = icmp ule i16 -4, 5 ; yields: result=false
5758 <result> = icmp sge i16 4, 5 ; yields: result=false
5759
5760Note that the code generator does not yet support vector types with the
5761``icmp`` instruction.
5762
5763.. _i_fcmp:
5764
5765'``fcmp``' Instruction
5766^^^^^^^^^^^^^^^^^^^^^^
5767
5768Syntax:
5769"""""""
5770
5771::
5772
5773 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5774
5775Overview:
5776"""""""""
5777
5778The '``fcmp``' instruction returns a boolean value or vector of boolean
5779values based on comparison of its operands.
5780
5781If the operands are floating point scalars, then the result type is a
5782boolean (:ref:`i1 <t_integer>`).
5783
5784If the operands are floating point vectors, then the result type is a
5785vector of boolean with the same number of elements as the operands being
5786compared.
5787
5788Arguments:
5789""""""""""
5790
5791The '``fcmp``' instruction takes three operands. The first operand is
5792the condition code indicating the kind of comparison to perform. It is
5793not a value, just a keyword. The possible condition code are:
5794
5795#. ``false``: no comparison, always returns false
5796#. ``oeq``: ordered and equal
5797#. ``ogt``: ordered and greater than
5798#. ``oge``: ordered and greater than or equal
5799#. ``olt``: ordered and less than
5800#. ``ole``: ordered and less than or equal
5801#. ``one``: ordered and not equal
5802#. ``ord``: ordered (no nans)
5803#. ``ueq``: unordered or equal
5804#. ``ugt``: unordered or greater than
5805#. ``uge``: unordered or greater than or equal
5806#. ``ult``: unordered or less than
5807#. ``ule``: unordered or less than or equal
5808#. ``une``: unordered or not equal
5809#. ``uno``: unordered (either nans)
5810#. ``true``: no comparison, always returns true
5811
5812*Ordered* means that neither operand is a QNAN while *unordered* means
5813that either operand may be a QNAN.
5814
5815Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5816point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5817type. They must have identical types.
5818
5819Semantics:
5820""""""""""
5821
5822The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5823condition code given as ``cond``. If the operands are vectors, then the
5824vectors are compared element by element. Each comparison performed
5825always yields an :ref:`i1 <t_integer>` result, as follows:
5826
5827#. ``false``: always yields ``false``, regardless of operands.
5828#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5829 is equal to ``op2``.
5830#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5831 is greater than ``op2``.
5832#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5833 is greater than or equal to ``op2``.
5834#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5835 is less than ``op2``.
5836#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5837 is less than or equal to ``op2``.
5838#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5839 is not equal to ``op2``.
5840#. ``ord``: yields ``true`` if both operands are not a QNAN.
5841#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5842 equal to ``op2``.
5843#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5844 greater than ``op2``.
5845#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5846 greater than or equal to ``op2``.
5847#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5848 less than ``op2``.
5849#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5850 less than or equal to ``op2``.
5851#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5852 not equal to ``op2``.
5853#. ``uno``: yields ``true`` if either operand is a QNAN.
5854#. ``true``: always yields ``true``, regardless of operands.
5855
5856Example:
5857""""""""
5858
5859.. code-block:: llvm
5860
5861 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5862 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5863 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5864 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5865
5866Note that the code generator does not yet support vector types with the
5867``fcmp`` instruction.
5868
5869.. _i_phi:
5870
5871'``phi``' Instruction
5872^^^^^^^^^^^^^^^^^^^^^
5873
5874Syntax:
5875"""""""
5876
5877::
5878
5879 <result> = phi <ty> [ <val0>, <label0>], ...
5880
5881Overview:
5882"""""""""
5883
5884The '``phi``' instruction is used to implement the φ node in the SSA
5885graph representing the function.
5886
5887Arguments:
5888""""""""""
5889
5890The type of the incoming values is specified with the first type field.
5891After this, the '``phi``' instruction takes a list of pairs as
5892arguments, with one pair for each predecessor basic block of the current
5893block. Only values of :ref:`first class <t_firstclass>` type may be used as
5894the value arguments to the PHI node. Only labels may be used as the
5895label arguments.
5896
5897There must be no non-phi instructions between the start of a basic block
5898and the PHI instructions: i.e. PHI instructions must be first in a basic
5899block.
5900
5901For the purposes of the SSA form, the use of each incoming value is
5902deemed to occur on the edge from the corresponding predecessor block to
5903the current block (but after any definition of an '``invoke``'
5904instruction's return value on the same edge).
5905
5906Semantics:
5907""""""""""
5908
5909At runtime, the '``phi``' instruction logically takes on the value
5910specified by the pair corresponding to the predecessor basic block that
5911executed just prior to the current block.
5912
5913Example:
5914""""""""
5915
5916.. code-block:: llvm
5917
5918 Loop: ; Infinite loop that counts from 0 on up...
5919 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5920 %nextindvar = add i32 %indvar, 1
5921 br label %Loop
5922
5923.. _i_select:
5924
5925'``select``' Instruction
5926^^^^^^^^^^^^^^^^^^^^^^^^
5927
5928Syntax:
5929"""""""
5930
5931::
5932
5933 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5934
5935 selty is either i1 or {<N x i1>}
5936
5937Overview:
5938"""""""""
5939
5940The '``select``' instruction is used to choose one value based on a
5941condition, without branching.
5942
5943Arguments:
5944""""""""""
5945
5946The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5947values indicating the condition, and two values of the same :ref:`first
5948class <t_firstclass>` type. If the val1/val2 are vectors and the
5949condition is a scalar, then entire vectors are selected, not individual
5950elements.
5951
5952Semantics:
5953""""""""""
5954
5955If the condition is an i1 and it evaluates to 1, the instruction returns
5956the first value argument; otherwise, it returns the second value
5957argument.
5958
5959If the condition is a vector of i1, then the value arguments must be
5960vectors of the same size, and the selection is done element by element.
5961
5962Example:
5963""""""""
5964
5965.. code-block:: llvm
5966
5967 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5968
5969.. _i_call:
5970
5971'``call``' Instruction
5972^^^^^^^^^^^^^^^^^^^^^^
5973
5974Syntax:
5975"""""""
5976
5977::
5978
5979 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5980
5981Overview:
5982"""""""""
5983
5984The '``call``' instruction represents a simple function call.
5985
5986Arguments:
5987""""""""""
5988
5989This instruction requires several arguments:
5990
5991#. The optional "tail" marker indicates that the callee function does
5992 not access any allocas or varargs in the caller. Note that calls may
5993 be marked "tail" even if they do not occur before a
5994 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5995 function call is eligible for tail call optimization, but `might not
5996 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5997 The code generator may optimize calls marked "tail" with either 1)
5998 automatic `sibling call
5999 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6000 callee have matching signatures, or 2) forced tail call optimization
6001 when the following extra requirements are met:
6002
6003 - Caller and callee both have the calling convention ``fastcc``.
6004 - The call is in tail position (ret immediately follows call and ret
6005 uses value of call or is void).
6006 - Option ``-tailcallopt`` is enabled, or
6007 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6008 - `Platform specific constraints are
6009 met. <CodeGenerator.html#tailcallopt>`_
6010
6011#. The optional "cconv" marker indicates which :ref:`calling
6012 convention <callingconv>` the call should use. If none is
6013 specified, the call defaults to using C calling conventions. The
6014 calling convention of the call must match the calling convention of
6015 the target function, or else the behavior is undefined.
6016#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6017 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6018 are valid here.
6019#. '``ty``': the type of the call instruction itself which is also the
6020 type of the return value. Functions that return no value are marked
6021 ``void``.
6022#. '``fnty``': shall be the signature of the pointer to function value
6023 being invoked. The argument types must match the types implied by
6024 this signature. This type can be omitted if the function is not
6025 varargs and if the function type does not return a pointer to a
6026 function.
6027#. '``fnptrval``': An LLVM value containing a pointer to a function to
6028 be invoked. In most cases, this is a direct function invocation, but
6029 indirect ``call``'s are just as possible, calling an arbitrary pointer
6030 to function value.
6031#. '``function args``': argument list whose types match the function
6032 signature argument types and parameter attributes. All arguments must
6033 be of :ref:`first class <t_firstclass>` type. If the function signature
6034 indicates the function accepts a variable number of arguments, the
6035 extra arguments can be specified.
6036#. The optional :ref:`function attributes <fnattrs>` list. Only
6037 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6038 attributes are valid here.
6039
6040Semantics:
6041""""""""""
6042
6043The '``call``' instruction is used to cause control flow to transfer to
6044a specified function, with its incoming arguments bound to the specified
6045values. Upon a '``ret``' instruction in the called function, control
6046flow continues with the instruction after the function call, and the
6047return value of the function is bound to the result argument.
6048
6049Example:
6050""""""""
6051
6052.. code-block:: llvm
6053
6054 %retval = call i32 @test(i32 %argc)
6055 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6056 %X = tail call i32 @foo() ; yields i32
6057 %Y = tail call fastcc i32 @foo() ; yields i32
6058 call void %foo(i8 97 signext)
6059
6060 %struct.A = type { i32, i8 }
6061 %r = call %struct.A @foo() ; yields { 32, i8 }
6062 %gr = extractvalue %struct.A %r, 0 ; yields i32
6063 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6064 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6065 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6066
6067llvm treats calls to some functions with names and arguments that match
6068the standard C99 library as being the C99 library functions, and may
6069perform optimizations or generate code for them under that assumption.
6070This is something we'd like to change in the future to provide better
6071support for freestanding environments and non-C-based languages.
6072
6073.. _i_va_arg:
6074
6075'``va_arg``' Instruction
6076^^^^^^^^^^^^^^^^^^^^^^^^
6077
6078Syntax:
6079"""""""
6080
6081::
6082
6083 <resultval> = va_arg <va_list*> <arglist>, <argty>
6084
6085Overview:
6086"""""""""
6087
6088The '``va_arg``' instruction is used to access arguments passed through
6089the "variable argument" area of a function call. It is used to implement
6090the ``va_arg`` macro in C.
6091
6092Arguments:
6093""""""""""
6094
6095This instruction takes a ``va_list*`` value and the type of the
6096argument. It returns a value of the specified argument type and
6097increments the ``va_list`` to point to the next argument. The actual
6098type of ``va_list`` is target specific.
6099
6100Semantics:
6101""""""""""
6102
6103The '``va_arg``' instruction loads an argument of the specified type
6104from the specified ``va_list`` and causes the ``va_list`` to point to
6105the next argument. For more information, see the variable argument
6106handling :ref:`Intrinsic Functions <int_varargs>`.
6107
6108It is legal for this instruction to be called in a function which does
6109not take a variable number of arguments, for example, the ``vfprintf``
6110function.
6111
6112``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6113function <intrinsics>` because it takes a type as an argument.
6114
6115Example:
6116""""""""
6117
6118See the :ref:`variable argument processing <int_varargs>` section.
6119
6120Note that the code generator does not yet fully support va\_arg on many
6121targets. Also, it does not currently support va\_arg with aggregate
6122types on any target.
6123
6124.. _i_landingpad:
6125
6126'``landingpad``' Instruction
6127^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6128
6129Syntax:
6130"""""""
6131
6132::
6133
6134 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6135 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6136
6137 <clause> := catch <type> <value>
6138 <clause> := filter <array constant type> <array constant>
6139
6140Overview:
6141"""""""""
6142
6143The '``landingpad``' instruction is used by `LLVM's exception handling
6144system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006145is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006146code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6147defines values supplied by the personality function (``pers_fn``) upon
6148re-entry to the function. The ``resultval`` has the type ``resultty``.
6149
6150Arguments:
6151""""""""""
6152
6153This instruction takes a ``pers_fn`` value. This is the personality
6154function associated with the unwinding mechanism. The optional
6155``cleanup`` flag indicates that the landing pad block is a cleanup.
6156
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006157A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006158contains the global variable representing the "type" that may be caught
6159or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6160clause takes an array constant as its argument. Use
6161"``[0 x i8**] undef``" for a filter which cannot throw. The
6162'``landingpad``' instruction must contain *at least* one ``clause`` or
6163the ``cleanup`` flag.
6164
6165Semantics:
6166""""""""""
6167
6168The '``landingpad``' instruction defines the values which are set by the
6169personality function (``pers_fn``) upon re-entry to the function, and
6170therefore the "result type" of the ``landingpad`` instruction. As with
6171calling conventions, how the personality function results are
6172represented in LLVM IR is target specific.
6173
6174The clauses are applied in order from top to bottom. If two
6175``landingpad`` instructions are merged together through inlining, the
6176clauses from the calling function are appended to the list of clauses.
6177When the call stack is being unwound due to an exception being thrown,
6178the exception is compared against each ``clause`` in turn. If it doesn't
6179match any of the clauses, and the ``cleanup`` flag is not set, then
6180unwinding continues further up the call stack.
6181
6182The ``landingpad`` instruction has several restrictions:
6183
6184- A landing pad block is a basic block which is the unwind destination
6185 of an '``invoke``' instruction.
6186- A landing pad block must have a '``landingpad``' instruction as its
6187 first non-PHI instruction.
6188- There can be only one '``landingpad``' instruction within the landing
6189 pad block.
6190- A basic block that is not a landing pad block may not include a
6191 '``landingpad``' instruction.
6192- All '``landingpad``' instructions in a function must have the same
6193 personality function.
6194
6195Example:
6196""""""""
6197
6198.. code-block:: llvm
6199
6200 ;; A landing pad which can catch an integer.
6201 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6202 catch i8** @_ZTIi
6203 ;; A landing pad that is a cleanup.
6204 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6205 cleanup
6206 ;; A landing pad which can catch an integer and can only throw a double.
6207 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6208 catch i8** @_ZTIi
6209 filter [1 x i8**] [@_ZTId]
6210
6211.. _intrinsics:
6212
6213Intrinsic Functions
6214===================
6215
6216LLVM supports the notion of an "intrinsic function". These functions
6217have well known names and semantics and are required to follow certain
6218restrictions. Overall, these intrinsics represent an extension mechanism
6219for the LLVM language that does not require changing all of the
6220transformations in LLVM when adding to the language (or the bitcode
6221reader/writer, the parser, etc...).
6222
6223Intrinsic function names must all start with an "``llvm.``" prefix. This
6224prefix is reserved in LLVM for intrinsic names; thus, function names may
6225not begin with this prefix. Intrinsic functions must always be external
6226functions: you cannot define the body of intrinsic functions. Intrinsic
6227functions may only be used in call or invoke instructions: it is illegal
6228to take the address of an intrinsic function. Additionally, because
6229intrinsic functions are part of the LLVM language, it is required if any
6230are added that they be documented here.
6231
6232Some intrinsic functions can be overloaded, i.e., the intrinsic
6233represents a family of functions that perform the same operation but on
6234different data types. Because LLVM can represent over 8 million
6235different integer types, overloading is used commonly to allow an
6236intrinsic function to operate on any integer type. One or more of the
6237argument types or the result type can be overloaded to accept any
6238integer type. Argument types may also be defined as exactly matching a
6239previous argument's type or the result type. This allows an intrinsic
6240function which accepts multiple arguments, but needs all of them to be
6241of the same type, to only be overloaded with respect to a single
6242argument or the result.
6243
6244Overloaded intrinsics will have the names of its overloaded argument
6245types encoded into its function name, each preceded by a period. Only
6246those types which are overloaded result in a name suffix. Arguments
6247whose type is matched against another type do not. For example, the
6248``llvm.ctpop`` function can take an integer of any width and returns an
6249integer of exactly the same integer width. This leads to a family of
6250functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6251``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6252overloaded, and only one type suffix is required. Because the argument's
6253type is matched against the return type, it does not require its own
6254name suffix.
6255
6256To learn how to add an intrinsic function, please see the `Extending
6257LLVM Guide <ExtendingLLVM.html>`_.
6258
6259.. _int_varargs:
6260
6261Variable Argument Handling Intrinsics
6262-------------------------------------
6263
6264Variable argument support is defined in LLVM with the
6265:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6266functions. These functions are related to the similarly named macros
6267defined in the ``<stdarg.h>`` header file.
6268
6269All of these functions operate on arguments that use a target-specific
6270value type "``va_list``". The LLVM assembly language reference manual
6271does not define what this type is, so all transformations should be
6272prepared to handle these functions regardless of the type used.
6273
6274This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6275variable argument handling intrinsic functions are used.
6276
6277.. code-block:: llvm
6278
6279 define i32 @test(i32 %X, ...) {
6280 ; Initialize variable argument processing
6281 %ap = alloca i8*
6282 %ap2 = bitcast i8** %ap to i8*
6283 call void @llvm.va_start(i8* %ap2)
6284
6285 ; Read a single integer argument
6286 %tmp = va_arg i8** %ap, i32
6287
6288 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6289 %aq = alloca i8*
6290 %aq2 = bitcast i8** %aq to i8*
6291 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6292 call void @llvm.va_end(i8* %aq2)
6293
6294 ; Stop processing of arguments.
6295 call void @llvm.va_end(i8* %ap2)
6296 ret i32 %tmp
6297 }
6298
6299 declare void @llvm.va_start(i8*)
6300 declare void @llvm.va_copy(i8*, i8*)
6301 declare void @llvm.va_end(i8*)
6302
6303.. _int_va_start:
6304
6305'``llvm.va_start``' Intrinsic
6306^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6307
6308Syntax:
6309"""""""
6310
6311::
6312
6313 declare void %llvm.va_start(i8* <arglist>)
6314
6315Overview:
6316"""""""""
6317
6318The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6319subsequent use by ``va_arg``.
6320
6321Arguments:
6322""""""""""
6323
6324The argument is a pointer to a ``va_list`` element to initialize.
6325
6326Semantics:
6327""""""""""
6328
6329The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6330available in C. In a target-dependent way, it initializes the
6331``va_list`` element to which the argument points, so that the next call
6332to ``va_arg`` will produce the first variable argument passed to the
6333function. Unlike the C ``va_start`` macro, this intrinsic does not need
6334to know the last argument of the function as the compiler can figure
6335that out.
6336
6337'``llvm.va_end``' Intrinsic
6338^^^^^^^^^^^^^^^^^^^^^^^^^^^
6339
6340Syntax:
6341"""""""
6342
6343::
6344
6345 declare void @llvm.va_end(i8* <arglist>)
6346
6347Overview:
6348"""""""""
6349
6350The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6351initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6352
6353Arguments:
6354""""""""""
6355
6356The argument is a pointer to a ``va_list`` to destroy.
6357
6358Semantics:
6359""""""""""
6360
6361The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6362available in C. In a target-dependent way, it destroys the ``va_list``
6363element to which the argument points. Calls to
6364:ref:`llvm.va_start <int_va_start>` and
6365:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6366``llvm.va_end``.
6367
6368.. _int_va_copy:
6369
6370'``llvm.va_copy``' Intrinsic
6371^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6372
6373Syntax:
6374"""""""
6375
6376::
6377
6378 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6379
6380Overview:
6381"""""""""
6382
6383The '``llvm.va_copy``' intrinsic copies the current argument position
6384from the source argument list to the destination argument list.
6385
6386Arguments:
6387""""""""""
6388
6389The first argument is a pointer to a ``va_list`` element to initialize.
6390The second argument is a pointer to a ``va_list`` element to copy from.
6391
6392Semantics:
6393""""""""""
6394
6395The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6396available in C. In a target-dependent way, it copies the source
6397``va_list`` element into the destination ``va_list`` element. This
6398intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6399arbitrarily complex and require, for example, memory allocation.
6400
6401Accurate Garbage Collection Intrinsics
6402--------------------------------------
6403
6404LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6405(GC) requires the implementation and generation of these intrinsics.
6406These intrinsics allow identification of :ref:`GC roots on the
6407stack <int_gcroot>`, as well as garbage collector implementations that
6408require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6409Front-ends for type-safe garbage collected languages should generate
6410these intrinsics to make use of the LLVM garbage collectors. For more
6411details, see `Accurate Garbage Collection with
6412LLVM <GarbageCollection.html>`_.
6413
6414The garbage collection intrinsics only operate on objects in the generic
6415address space (address space zero).
6416
6417.. _int_gcroot:
6418
6419'``llvm.gcroot``' Intrinsic
6420^^^^^^^^^^^^^^^^^^^^^^^^^^^
6421
6422Syntax:
6423"""""""
6424
6425::
6426
6427 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6428
6429Overview:
6430"""""""""
6431
6432The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6433the code generator, and allows some metadata to be associated with it.
6434
6435Arguments:
6436""""""""""
6437
6438The first argument specifies the address of a stack object that contains
6439the root pointer. The second pointer (which must be either a constant or
6440a global value address) contains the meta-data to be associated with the
6441root.
6442
6443Semantics:
6444""""""""""
6445
6446At runtime, a call to this intrinsic stores a null pointer into the
6447"ptrloc" location. At compile-time, the code generator generates
6448information to allow the runtime to find the pointer at GC safe points.
6449The '``llvm.gcroot``' intrinsic may only be used in a function which
6450:ref:`specifies a GC algorithm <gc>`.
6451
6452.. _int_gcread:
6453
6454'``llvm.gcread``' Intrinsic
6455^^^^^^^^^^^^^^^^^^^^^^^^^^^
6456
6457Syntax:
6458"""""""
6459
6460::
6461
6462 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6463
6464Overview:
6465"""""""""
6466
6467The '``llvm.gcread``' intrinsic identifies reads of references from heap
6468locations, allowing garbage collector implementations that require read
6469barriers.
6470
6471Arguments:
6472""""""""""
6473
6474The second argument is the address to read from, which should be an
6475address allocated from the garbage collector. The first object is a
6476pointer to the start of the referenced object, if needed by the language
6477runtime (otherwise null).
6478
6479Semantics:
6480""""""""""
6481
6482The '``llvm.gcread``' intrinsic has the same semantics as a load
6483instruction, but may be replaced with substantially more complex code by
6484the garbage collector runtime, as needed. The '``llvm.gcread``'
6485intrinsic may only be used in a function which :ref:`specifies a GC
6486algorithm <gc>`.
6487
6488.. _int_gcwrite:
6489
6490'``llvm.gcwrite``' Intrinsic
6491^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6492
6493Syntax:
6494"""""""
6495
6496::
6497
6498 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6499
6500Overview:
6501"""""""""
6502
6503The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6504locations, allowing garbage collector implementations that require write
6505barriers (such as generational or reference counting collectors).
6506
6507Arguments:
6508""""""""""
6509
6510The first argument is the reference to store, the second is the start of
6511the object to store it to, and the third is the address of the field of
6512Obj to store to. If the runtime does not require a pointer to the
6513object, Obj may be null.
6514
6515Semantics:
6516""""""""""
6517
6518The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6519instruction, but may be replaced with substantially more complex code by
6520the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6521intrinsic may only be used in a function which :ref:`specifies a GC
6522algorithm <gc>`.
6523
6524Code Generator Intrinsics
6525-------------------------
6526
6527These intrinsics are provided by LLVM to expose special features that
6528may only be implemented with code generator support.
6529
6530'``llvm.returnaddress``' Intrinsic
6531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6532
6533Syntax:
6534"""""""
6535
6536::
6537
6538 declare i8 *@llvm.returnaddress(i32 <level>)
6539
6540Overview:
6541"""""""""
6542
6543The '``llvm.returnaddress``' intrinsic attempts to compute a
6544target-specific value indicating the return address of the current
6545function or one of its callers.
6546
6547Arguments:
6548""""""""""
6549
6550The argument to this intrinsic indicates which function to return the
6551address for. Zero indicates the calling function, one indicates its
6552caller, etc. The argument is **required** to be a constant integer
6553value.
6554
6555Semantics:
6556""""""""""
6557
6558The '``llvm.returnaddress``' intrinsic either returns a pointer
6559indicating the return address of the specified call frame, or zero if it
6560cannot be identified. The value returned by this intrinsic is likely to
6561be incorrect or 0 for arguments other than zero, so it should only be
6562used for debugging purposes.
6563
6564Note that calling this intrinsic does not prevent function inlining or
6565other aggressive transformations, so the value returned may not be that
6566of the obvious source-language caller.
6567
6568'``llvm.frameaddress``' Intrinsic
6569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6570
6571Syntax:
6572"""""""
6573
6574::
6575
6576 declare i8* @llvm.frameaddress(i32 <level>)
6577
6578Overview:
6579"""""""""
6580
6581The '``llvm.frameaddress``' intrinsic attempts to return the
6582target-specific frame pointer value for the specified stack frame.
6583
6584Arguments:
6585""""""""""
6586
6587The argument to this intrinsic indicates which function to return the
6588frame pointer for. Zero indicates the calling function, one indicates
6589its caller, etc. The argument is **required** to be a constant integer
6590value.
6591
6592Semantics:
6593""""""""""
6594
6595The '``llvm.frameaddress``' intrinsic either returns a pointer
6596indicating the frame address of the specified call frame, or zero if it
6597cannot be identified. The value returned by this intrinsic is likely to
6598be incorrect or 0 for arguments other than zero, so it should only be
6599used for debugging purposes.
6600
6601Note that calling this intrinsic does not prevent function inlining or
6602other aggressive transformations, so the value returned may not be that
6603of the obvious source-language caller.
6604
6605.. _int_stacksave:
6606
6607'``llvm.stacksave``' Intrinsic
6608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6609
6610Syntax:
6611"""""""
6612
6613::
6614
6615 declare i8* @llvm.stacksave()
6616
6617Overview:
6618"""""""""
6619
6620The '``llvm.stacksave``' intrinsic is used to remember the current state
6621of the function stack, for use with
6622:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6623implementing language features like scoped automatic variable sized
6624arrays in C99.
6625
6626Semantics:
6627""""""""""
6628
6629This intrinsic returns a opaque pointer value that can be passed to
6630:ref:`llvm.stackrestore <int_stackrestore>`. When an
6631``llvm.stackrestore`` intrinsic is executed with a value saved from
6632``llvm.stacksave``, it effectively restores the state of the stack to
6633the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6634practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6635were allocated after the ``llvm.stacksave`` was executed.
6636
6637.. _int_stackrestore:
6638
6639'``llvm.stackrestore``' Intrinsic
6640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6641
6642Syntax:
6643"""""""
6644
6645::
6646
6647 declare void @llvm.stackrestore(i8* %ptr)
6648
6649Overview:
6650"""""""""
6651
6652The '``llvm.stackrestore``' intrinsic is used to restore the state of
6653the function stack to the state it was in when the corresponding
6654:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6655useful for implementing language features like scoped automatic variable
6656sized arrays in C99.
6657
6658Semantics:
6659""""""""""
6660
6661See the description for :ref:`llvm.stacksave <int_stacksave>`.
6662
6663'``llvm.prefetch``' Intrinsic
6664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6665
6666Syntax:
6667"""""""
6668
6669::
6670
6671 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6672
6673Overview:
6674"""""""""
6675
6676The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6677insert a prefetch instruction if supported; otherwise, it is a noop.
6678Prefetches have no effect on the behavior of the program but can change
6679its performance characteristics.
6680
6681Arguments:
6682""""""""""
6683
6684``address`` is the address to be prefetched, ``rw`` is the specifier
6685determining if the fetch should be for a read (0) or write (1), and
6686``locality`` is a temporal locality specifier ranging from (0) - no
6687locality, to (3) - extremely local keep in cache. The ``cache type``
6688specifies whether the prefetch is performed on the data (1) or
6689instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6690arguments must be constant integers.
6691
6692Semantics:
6693""""""""""
6694
6695This intrinsic does not modify the behavior of the program. In
6696particular, prefetches cannot trap and do not produce a value. On
6697targets that support this intrinsic, the prefetch can provide hints to
6698the processor cache for better performance.
6699
6700'``llvm.pcmarker``' Intrinsic
6701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6702
6703Syntax:
6704"""""""
6705
6706::
6707
6708 declare void @llvm.pcmarker(i32 <id>)
6709
6710Overview:
6711"""""""""
6712
6713The '``llvm.pcmarker``' intrinsic is a method to export a Program
6714Counter (PC) in a region of code to simulators and other tools. The
6715method is target specific, but it is expected that the marker will use
6716exported symbols to transmit the PC of the marker. The marker makes no
6717guarantees that it will remain with any specific instruction after
6718optimizations. It is possible that the presence of a marker will inhibit
6719optimizations. The intended use is to be inserted after optimizations to
6720allow correlations of simulation runs.
6721
6722Arguments:
6723""""""""""
6724
6725``id`` is a numerical id identifying the marker.
6726
6727Semantics:
6728""""""""""
6729
6730This intrinsic does not modify the behavior of the program. Backends
6731that do not support this intrinsic may ignore it.
6732
6733'``llvm.readcyclecounter``' Intrinsic
6734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6735
6736Syntax:
6737"""""""
6738
6739::
6740
6741 declare i64 @llvm.readcyclecounter()
6742
6743Overview:
6744"""""""""
6745
6746The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6747counter register (or similar low latency, high accuracy clocks) on those
6748targets that support it. On X86, it should map to RDTSC. On Alpha, it
6749should map to RPCC. As the backing counters overflow quickly (on the
6750order of 9 seconds on alpha), this should only be used for small
6751timings.
6752
6753Semantics:
6754""""""""""
6755
6756When directly supported, reading the cycle counter should not modify any
6757memory. Implementations are allowed to either return a application
6758specific value or a system wide value. On backends without support, this
6759is lowered to a constant 0.
6760
Tim Northover5a02fc42013-05-23 19:11:20 +00006761Note that runtime support may be conditional on the privilege-level code is
6762running at and the host platform.
6763
Sean Silvaf722b002012-12-07 10:36:55 +00006764Standard C Library Intrinsics
6765-----------------------------
6766
6767LLVM provides intrinsics for a few important standard C library
6768functions. These intrinsics allow source-language front-ends to pass
6769information about the alignment of the pointer arguments to the code
6770generator, providing opportunity for more efficient code generation.
6771
6772.. _int_memcpy:
6773
6774'``llvm.memcpy``' Intrinsic
6775^^^^^^^^^^^^^^^^^^^^^^^^^^^
6776
6777Syntax:
6778"""""""
6779
6780This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6781integer bit width and for different address spaces. Not all targets
6782support all bit widths however.
6783
6784::
6785
6786 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6787 i32 <len>, i32 <align>, i1 <isvolatile>)
6788 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6789 i64 <len>, i32 <align>, i1 <isvolatile>)
6790
6791Overview:
6792"""""""""
6793
6794The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6795source location to the destination location.
6796
6797Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6798intrinsics do not return a value, takes extra alignment/isvolatile
6799arguments and the pointers can be in specified address spaces.
6800
6801Arguments:
6802""""""""""
6803
6804The first argument is a pointer to the destination, the second is a
6805pointer to the source. The third argument is an integer argument
6806specifying the number of bytes to copy, the fourth argument is the
6807alignment of the source and destination locations, and the fifth is a
6808boolean indicating a volatile access.
6809
6810If the call to this intrinsic has an alignment value that is not 0 or 1,
6811then the caller guarantees that both the source and destination pointers
6812are aligned to that boundary.
6813
6814If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6815a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6816very cleanly specified and it is unwise to depend on it.
6817
6818Semantics:
6819""""""""""
6820
6821The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6822source location to the destination location, which are not allowed to
6823overlap. It copies "len" bytes of memory over. If the argument is known
6824to be aligned to some boundary, this can be specified as the fourth
6825argument, otherwise it should be set to 0 or 1.
6826
6827'``llvm.memmove``' Intrinsic
6828^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6829
6830Syntax:
6831"""""""
6832
6833This is an overloaded intrinsic. You can use llvm.memmove on any integer
6834bit width and for different address space. Not all targets support all
6835bit widths however.
6836
6837::
6838
6839 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6840 i32 <len>, i32 <align>, i1 <isvolatile>)
6841 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6842 i64 <len>, i32 <align>, i1 <isvolatile>)
6843
6844Overview:
6845"""""""""
6846
6847The '``llvm.memmove.*``' intrinsics move a block of memory from the
6848source location to the destination location. It is similar to the
6849'``llvm.memcpy``' intrinsic but allows the two memory locations to
6850overlap.
6851
6852Note that, unlike the standard libc function, the ``llvm.memmove.*``
6853intrinsics do not return a value, takes extra alignment/isvolatile
6854arguments and the pointers can be in specified address spaces.
6855
6856Arguments:
6857""""""""""
6858
6859The first argument is a pointer to the destination, the second is a
6860pointer to the source. The third argument is an integer argument
6861specifying the number of bytes to copy, the fourth argument is the
6862alignment of the source and destination locations, and the fifth is a
6863boolean indicating a volatile access.
6864
6865If the call to this intrinsic has an alignment value that is not 0 or 1,
6866then the caller guarantees that the source and destination pointers are
6867aligned to that boundary.
6868
6869If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6870is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6871not very cleanly specified and it is unwise to depend on it.
6872
6873Semantics:
6874""""""""""
6875
6876The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6877source location to the destination location, which may overlap. It
6878copies "len" bytes of memory over. If the argument is known to be
6879aligned to some boundary, this can be specified as the fourth argument,
6880otherwise it should be set to 0 or 1.
6881
6882'``llvm.memset.*``' Intrinsics
6883^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6884
6885Syntax:
6886"""""""
6887
6888This is an overloaded intrinsic. You can use llvm.memset on any integer
6889bit width and for different address spaces. However, not all targets
6890support all bit widths.
6891
6892::
6893
6894 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6895 i32 <len>, i32 <align>, i1 <isvolatile>)
6896 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6897 i64 <len>, i32 <align>, i1 <isvolatile>)
6898
6899Overview:
6900"""""""""
6901
6902The '``llvm.memset.*``' intrinsics fill a block of memory with a
6903particular byte value.
6904
6905Note that, unlike the standard libc function, the ``llvm.memset``
6906intrinsic does not return a value and takes extra alignment/volatile
6907arguments. Also, the destination can be in an arbitrary address space.
6908
6909Arguments:
6910""""""""""
6911
6912The first argument is a pointer to the destination to fill, the second
6913is the byte value with which to fill it, the third argument is an
6914integer argument specifying the number of bytes to fill, and the fourth
6915argument is the known alignment of the destination location.
6916
6917If the call to this intrinsic has an alignment value that is not 0 or 1,
6918then the caller guarantees that the destination pointer is aligned to
6919that boundary.
6920
6921If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6922a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6923very cleanly specified and it is unwise to depend on it.
6924
6925Semantics:
6926""""""""""
6927
6928The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6929at the destination location. If the argument is known to be aligned to
6930some boundary, this can be specified as the fourth argument, otherwise
6931it should be set to 0 or 1.
6932
6933'``llvm.sqrt.*``' Intrinsic
6934^^^^^^^^^^^^^^^^^^^^^^^^^^^
6935
6936Syntax:
6937"""""""
6938
6939This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6940floating point or vector of floating point type. Not all targets support
6941all types however.
6942
6943::
6944
6945 declare float @llvm.sqrt.f32(float %Val)
6946 declare double @llvm.sqrt.f64(double %Val)
6947 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6948 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6949 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6950
6951Overview:
6952"""""""""
6953
6954The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6955returning the same value as the libm '``sqrt``' functions would. Unlike
6956``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6957negative numbers other than -0.0 (which allows for better optimization,
6958because there is no need to worry about errno being set).
6959``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6960
6961Arguments:
6962""""""""""
6963
6964The argument and return value are floating point numbers of the same
6965type.
6966
6967Semantics:
6968""""""""""
6969
6970This function returns the sqrt of the specified operand if it is a
6971nonnegative floating point number.
6972
6973'``llvm.powi.*``' Intrinsic
6974^^^^^^^^^^^^^^^^^^^^^^^^^^^
6975
6976Syntax:
6977"""""""
6978
6979This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6980floating point or vector of floating point type. Not all targets support
6981all types however.
6982
6983::
6984
6985 declare float @llvm.powi.f32(float %Val, i32 %power)
6986 declare double @llvm.powi.f64(double %Val, i32 %power)
6987 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6988 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6989 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6990
6991Overview:
6992"""""""""
6993
6994The '``llvm.powi.*``' intrinsics return the first operand raised to the
6995specified (positive or negative) power. The order of evaluation of
6996multiplications is not defined. When a vector of floating point type is
6997used, the second argument remains a scalar integer value.
6998
6999Arguments:
7000""""""""""
7001
7002The second argument is an integer power, and the first is a value to
7003raise to that power.
7004
7005Semantics:
7006""""""""""
7007
7008This function returns the first value raised to the second power with an
7009unspecified sequence of rounding operations.
7010
7011'``llvm.sin.*``' Intrinsic
7012^^^^^^^^^^^^^^^^^^^^^^^^^^
7013
7014Syntax:
7015"""""""
7016
7017This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7018floating point or vector of floating point type. Not all targets support
7019all types however.
7020
7021::
7022
7023 declare float @llvm.sin.f32(float %Val)
7024 declare double @llvm.sin.f64(double %Val)
7025 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7026 declare fp128 @llvm.sin.f128(fp128 %Val)
7027 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7028
7029Overview:
7030"""""""""
7031
7032The '``llvm.sin.*``' intrinsics return the sine of the operand.
7033
7034Arguments:
7035""""""""""
7036
7037The argument and return value are floating point numbers of the same
7038type.
7039
7040Semantics:
7041""""""""""
7042
7043This function returns the sine of the specified operand, returning the
7044same values as the libm ``sin`` functions would, and handles error
7045conditions in the same way.
7046
7047'``llvm.cos.*``' Intrinsic
7048^^^^^^^^^^^^^^^^^^^^^^^^^^
7049
7050Syntax:
7051"""""""
7052
7053This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7054floating point or vector of floating point type. Not all targets support
7055all types however.
7056
7057::
7058
7059 declare float @llvm.cos.f32(float %Val)
7060 declare double @llvm.cos.f64(double %Val)
7061 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7062 declare fp128 @llvm.cos.f128(fp128 %Val)
7063 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7064
7065Overview:
7066"""""""""
7067
7068The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7069
7070Arguments:
7071""""""""""
7072
7073The argument and return value are floating point numbers of the same
7074type.
7075
7076Semantics:
7077""""""""""
7078
7079This function returns the cosine of the specified operand, returning the
7080same values as the libm ``cos`` functions would, and handles error
7081conditions in the same way.
7082
7083'``llvm.pow.*``' Intrinsic
7084^^^^^^^^^^^^^^^^^^^^^^^^^^
7085
7086Syntax:
7087"""""""
7088
7089This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7090floating point or vector of floating point type. Not all targets support
7091all types however.
7092
7093::
7094
7095 declare float @llvm.pow.f32(float %Val, float %Power)
7096 declare double @llvm.pow.f64(double %Val, double %Power)
7097 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7098 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7099 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7100
7101Overview:
7102"""""""""
7103
7104The '``llvm.pow.*``' intrinsics return the first operand raised to the
7105specified (positive or negative) power.
7106
7107Arguments:
7108""""""""""
7109
7110The second argument is a floating point power, and the first is a value
7111to raise to that power.
7112
7113Semantics:
7114""""""""""
7115
7116This function returns the first value raised to the second power,
7117returning the same values as the libm ``pow`` functions would, and
7118handles error conditions in the same way.
7119
7120'``llvm.exp.*``' Intrinsic
7121^^^^^^^^^^^^^^^^^^^^^^^^^^
7122
7123Syntax:
7124"""""""
7125
7126This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7127floating point or vector of floating point type. Not all targets support
7128all types however.
7129
7130::
7131
7132 declare float @llvm.exp.f32(float %Val)
7133 declare double @llvm.exp.f64(double %Val)
7134 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7135 declare fp128 @llvm.exp.f128(fp128 %Val)
7136 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7137
7138Overview:
7139"""""""""
7140
7141The '``llvm.exp.*``' intrinsics perform the exp function.
7142
7143Arguments:
7144""""""""""
7145
7146The argument and return value are floating point numbers of the same
7147type.
7148
7149Semantics:
7150""""""""""
7151
7152This function returns the same values as the libm ``exp`` functions
7153would, and handles error conditions in the same way.
7154
7155'``llvm.exp2.*``' Intrinsic
7156^^^^^^^^^^^^^^^^^^^^^^^^^^^
7157
7158Syntax:
7159"""""""
7160
7161This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7162floating point or vector of floating point type. Not all targets support
7163all types however.
7164
7165::
7166
7167 declare float @llvm.exp2.f32(float %Val)
7168 declare double @llvm.exp2.f64(double %Val)
7169 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7170 declare fp128 @llvm.exp2.f128(fp128 %Val)
7171 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7172
7173Overview:
7174"""""""""
7175
7176The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7177
7178Arguments:
7179""""""""""
7180
7181The argument and return value are floating point numbers of the same
7182type.
7183
7184Semantics:
7185""""""""""
7186
7187This function returns the same values as the libm ``exp2`` functions
7188would, and handles error conditions in the same way.
7189
7190'``llvm.log.*``' Intrinsic
7191^^^^^^^^^^^^^^^^^^^^^^^^^^
7192
7193Syntax:
7194"""""""
7195
7196This is an overloaded intrinsic. You can use ``llvm.log`` on any
7197floating point or vector of floating point type. Not all targets support
7198all types however.
7199
7200::
7201
7202 declare float @llvm.log.f32(float %Val)
7203 declare double @llvm.log.f64(double %Val)
7204 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7205 declare fp128 @llvm.log.f128(fp128 %Val)
7206 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7207
7208Overview:
7209"""""""""
7210
7211The '``llvm.log.*``' intrinsics perform the log function.
7212
7213Arguments:
7214""""""""""
7215
7216The argument and return value are floating point numbers of the same
7217type.
7218
7219Semantics:
7220""""""""""
7221
7222This function returns the same values as the libm ``log`` functions
7223would, and handles error conditions in the same way.
7224
7225'``llvm.log10.*``' Intrinsic
7226^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7227
7228Syntax:
7229"""""""
7230
7231This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7232floating point or vector of floating point type. Not all targets support
7233all types however.
7234
7235::
7236
7237 declare float @llvm.log10.f32(float %Val)
7238 declare double @llvm.log10.f64(double %Val)
7239 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7240 declare fp128 @llvm.log10.f128(fp128 %Val)
7241 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7242
7243Overview:
7244"""""""""
7245
7246The '``llvm.log10.*``' intrinsics perform the log10 function.
7247
7248Arguments:
7249""""""""""
7250
7251The argument and return value are floating point numbers of the same
7252type.
7253
7254Semantics:
7255""""""""""
7256
7257This function returns the same values as the libm ``log10`` functions
7258would, and handles error conditions in the same way.
7259
7260'``llvm.log2.*``' Intrinsic
7261^^^^^^^^^^^^^^^^^^^^^^^^^^^
7262
7263Syntax:
7264"""""""
7265
7266This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7267floating point or vector of floating point type. Not all targets support
7268all types however.
7269
7270::
7271
7272 declare float @llvm.log2.f32(float %Val)
7273 declare double @llvm.log2.f64(double %Val)
7274 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7275 declare fp128 @llvm.log2.f128(fp128 %Val)
7276 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7277
7278Overview:
7279"""""""""
7280
7281The '``llvm.log2.*``' intrinsics perform the log2 function.
7282
7283Arguments:
7284""""""""""
7285
7286The argument and return value are floating point numbers of the same
7287type.
7288
7289Semantics:
7290""""""""""
7291
7292This function returns the same values as the libm ``log2`` functions
7293would, and handles error conditions in the same way.
7294
7295'``llvm.fma.*``' Intrinsic
7296^^^^^^^^^^^^^^^^^^^^^^^^^^
7297
7298Syntax:
7299"""""""
7300
7301This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7302floating point or vector of floating point type. Not all targets support
7303all types however.
7304
7305::
7306
7307 declare float @llvm.fma.f32(float %a, float %b, float %c)
7308 declare double @llvm.fma.f64(double %a, double %b, double %c)
7309 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7310 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7311 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7312
7313Overview:
7314"""""""""
7315
7316The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7317operation.
7318
7319Arguments:
7320""""""""""
7321
7322The argument and return value are floating point numbers of the same
7323type.
7324
7325Semantics:
7326""""""""""
7327
7328This function returns the same values as the libm ``fma`` functions
7329would.
7330
7331'``llvm.fabs.*``' Intrinsic
7332^^^^^^^^^^^^^^^^^^^^^^^^^^^
7333
7334Syntax:
7335"""""""
7336
7337This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7338floating point or vector of floating point type. Not all targets support
7339all types however.
7340
7341::
7342
7343 declare float @llvm.fabs.f32(float %Val)
7344 declare double @llvm.fabs.f64(double %Val)
7345 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7346 declare fp128 @llvm.fabs.f128(fp128 %Val)
7347 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7348
7349Overview:
7350"""""""""
7351
7352The '``llvm.fabs.*``' intrinsics return the absolute value of the
7353operand.
7354
7355Arguments:
7356""""""""""
7357
7358The argument and return value are floating point numbers of the same
7359type.
7360
7361Semantics:
7362""""""""""
7363
7364This function returns the same values as the libm ``fabs`` functions
7365would, and handles error conditions in the same way.
7366
Hal Finkel66d1fa62013-08-19 23:35:46 +00007367'``llvm.copysign.*``' Intrinsic
7368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7369
7370Syntax:
7371"""""""
7372
7373This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7374floating point or vector of floating point type. Not all targets support
7375all types however.
7376
7377::
7378
7379 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7380 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7381 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7382 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7383 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7384
7385Overview:
7386"""""""""
7387
7388The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7389first operand and the sign of the second operand.
7390
7391Arguments:
7392""""""""""
7393
7394The arguments and return value are floating point numbers of the same
7395type.
7396
7397Semantics:
7398""""""""""
7399
7400This function returns the same values as the libm ``copysign``
7401functions would, and handles error conditions in the same way.
7402
Sean Silvaf722b002012-12-07 10:36:55 +00007403'``llvm.floor.*``' Intrinsic
7404^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7405
7406Syntax:
7407"""""""
7408
7409This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7410floating point or vector of floating point type. Not all targets support
7411all types however.
7412
7413::
7414
7415 declare float @llvm.floor.f32(float %Val)
7416 declare double @llvm.floor.f64(double %Val)
7417 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7418 declare fp128 @llvm.floor.f128(fp128 %Val)
7419 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7420
7421Overview:
7422"""""""""
7423
7424The '``llvm.floor.*``' intrinsics return the floor of the operand.
7425
7426Arguments:
7427""""""""""
7428
7429The argument and return value are floating point numbers of the same
7430type.
7431
7432Semantics:
7433""""""""""
7434
7435This function returns the same values as the libm ``floor`` functions
7436would, and handles error conditions in the same way.
7437
7438'``llvm.ceil.*``' Intrinsic
7439^^^^^^^^^^^^^^^^^^^^^^^^^^^
7440
7441Syntax:
7442"""""""
7443
7444This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7445floating point or vector of floating point type. Not all targets support
7446all types however.
7447
7448::
7449
7450 declare float @llvm.ceil.f32(float %Val)
7451 declare double @llvm.ceil.f64(double %Val)
7452 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7453 declare fp128 @llvm.ceil.f128(fp128 %Val)
7454 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7455
7456Overview:
7457"""""""""
7458
7459The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7460
7461Arguments:
7462""""""""""
7463
7464The argument and return value are floating point numbers of the same
7465type.
7466
7467Semantics:
7468""""""""""
7469
7470This function returns the same values as the libm ``ceil`` functions
7471would, and handles error conditions in the same way.
7472
7473'``llvm.trunc.*``' Intrinsic
7474^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7475
7476Syntax:
7477"""""""
7478
7479This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7480floating point or vector of floating point type. Not all targets support
7481all types however.
7482
7483::
7484
7485 declare float @llvm.trunc.f32(float %Val)
7486 declare double @llvm.trunc.f64(double %Val)
7487 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7488 declare fp128 @llvm.trunc.f128(fp128 %Val)
7489 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7490
7491Overview:
7492"""""""""
7493
7494The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7495nearest integer not larger in magnitude than the operand.
7496
7497Arguments:
7498""""""""""
7499
7500The argument and return value are floating point numbers of the same
7501type.
7502
7503Semantics:
7504""""""""""
7505
7506This function returns the same values as the libm ``trunc`` functions
7507would, and handles error conditions in the same way.
7508
7509'``llvm.rint.*``' Intrinsic
7510^^^^^^^^^^^^^^^^^^^^^^^^^^^
7511
7512Syntax:
7513"""""""
7514
7515This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7516floating point or vector of floating point type. Not all targets support
7517all types however.
7518
7519::
7520
7521 declare float @llvm.rint.f32(float %Val)
7522 declare double @llvm.rint.f64(double %Val)
7523 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7524 declare fp128 @llvm.rint.f128(fp128 %Val)
7525 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7526
7527Overview:
7528"""""""""
7529
7530The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7531nearest integer. It may raise an inexact floating-point exception if the
7532operand isn't an integer.
7533
7534Arguments:
7535""""""""""
7536
7537The argument and return value are floating point numbers of the same
7538type.
7539
7540Semantics:
7541""""""""""
7542
7543This function returns the same values as the libm ``rint`` functions
7544would, and handles error conditions in the same way.
7545
7546'``llvm.nearbyint.*``' Intrinsic
7547^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7548
7549Syntax:
7550"""""""
7551
7552This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7553floating point or vector of floating point type. Not all targets support
7554all types however.
7555
7556::
7557
7558 declare float @llvm.nearbyint.f32(float %Val)
7559 declare double @llvm.nearbyint.f64(double %Val)
7560 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7561 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7562 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7563
7564Overview:
7565"""""""""
7566
7567The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7568nearest integer.
7569
7570Arguments:
7571""""""""""
7572
7573The argument and return value are floating point numbers of the same
7574type.
7575
7576Semantics:
7577""""""""""
7578
7579This function returns the same values as the libm ``nearbyint``
7580functions would, and handles error conditions in the same way.
7581
Hal Finkel41418d12013-08-07 22:49:12 +00007582'``llvm.round.*``' Intrinsic
7583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7584
7585Syntax:
7586"""""""
7587
7588This is an overloaded intrinsic. You can use ``llvm.round`` on any
7589floating point or vector of floating point type. Not all targets support
7590all types however.
7591
7592::
7593
7594 declare float @llvm.round.f32(float %Val)
7595 declare double @llvm.round.f64(double %Val)
7596 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7597 declare fp128 @llvm.round.f128(fp128 %Val)
7598 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7599
7600Overview:
7601"""""""""
7602
7603The '``llvm.round.*``' intrinsics returns the operand rounded to the
7604nearest integer.
7605
7606Arguments:
7607""""""""""
7608
7609The argument and return value are floating point numbers of the same
7610type.
7611
7612Semantics:
7613""""""""""
7614
7615This function returns the same values as the libm ``round``
7616functions would, and handles error conditions in the same way.
7617
Sean Silvaf722b002012-12-07 10:36:55 +00007618Bit Manipulation Intrinsics
7619---------------------------
7620
7621LLVM provides intrinsics for a few important bit manipulation
7622operations. These allow efficient code generation for some algorithms.
7623
7624'``llvm.bswap.*``' Intrinsics
7625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7626
7627Syntax:
7628"""""""
7629
7630This is an overloaded intrinsic function. You can use bswap on any
7631integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7632
7633::
7634
7635 declare i16 @llvm.bswap.i16(i16 <id>)
7636 declare i32 @llvm.bswap.i32(i32 <id>)
7637 declare i64 @llvm.bswap.i64(i64 <id>)
7638
7639Overview:
7640"""""""""
7641
7642The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7643values with an even number of bytes (positive multiple of 16 bits).
7644These are useful for performing operations on data that is not in the
7645target's native byte order.
7646
7647Semantics:
7648""""""""""
7649
7650The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7651and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7652intrinsic returns an i32 value that has the four bytes of the input i32
7653swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7654returned i32 will have its bytes in 3, 2, 1, 0 order. The
7655``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7656concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7657respectively).
7658
7659'``llvm.ctpop.*``' Intrinsic
7660^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7661
7662Syntax:
7663"""""""
7664
7665This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7666bit width, or on any vector with integer elements. Not all targets
7667support all bit widths or vector types, however.
7668
7669::
7670
7671 declare i8 @llvm.ctpop.i8(i8 <src>)
7672 declare i16 @llvm.ctpop.i16(i16 <src>)
7673 declare i32 @llvm.ctpop.i32(i32 <src>)
7674 declare i64 @llvm.ctpop.i64(i64 <src>)
7675 declare i256 @llvm.ctpop.i256(i256 <src>)
7676 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7677
7678Overview:
7679"""""""""
7680
7681The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7682in a value.
7683
7684Arguments:
7685""""""""""
7686
7687The only argument is the value to be counted. The argument may be of any
7688integer type, or a vector with integer elements. The return type must
7689match the argument type.
7690
7691Semantics:
7692""""""""""
7693
7694The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7695each element of a vector.
7696
7697'``llvm.ctlz.*``' Intrinsic
7698^^^^^^^^^^^^^^^^^^^^^^^^^^^
7699
7700Syntax:
7701"""""""
7702
7703This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7704integer bit width, or any vector whose elements are integers. Not all
7705targets support all bit widths or vector types, however.
7706
7707::
7708
7709 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7710 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7711 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7712 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7713 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7714 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7715
7716Overview:
7717"""""""""
7718
7719The '``llvm.ctlz``' family of intrinsic functions counts the number of
7720leading zeros in a variable.
7721
7722Arguments:
7723""""""""""
7724
7725The first argument is the value to be counted. This argument may be of
7726any integer type, or a vectory with integer element type. The return
7727type must match the first argument type.
7728
7729The second argument must be a constant and is a flag to indicate whether
7730the intrinsic should ensure that a zero as the first argument produces a
7731defined result. Historically some architectures did not provide a
7732defined result for zero values as efficiently, and many algorithms are
7733now predicated on avoiding zero-value inputs.
7734
7735Semantics:
7736""""""""""
7737
7738The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7739zeros in a variable, or within each element of the vector. If
7740``src == 0`` then the result is the size in bits of the type of ``src``
7741if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7742``llvm.ctlz(i32 2) = 30``.
7743
7744'``llvm.cttz.*``' Intrinsic
7745^^^^^^^^^^^^^^^^^^^^^^^^^^^
7746
7747Syntax:
7748"""""""
7749
7750This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7751integer bit width, or any vector of integer elements. Not all targets
7752support all bit widths or vector types, however.
7753
7754::
7755
7756 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7757 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7758 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7759 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7760 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7761 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7762
7763Overview:
7764"""""""""
7765
7766The '``llvm.cttz``' family of intrinsic functions counts the number of
7767trailing zeros.
7768
7769Arguments:
7770""""""""""
7771
7772The first argument is the value to be counted. This argument may be of
7773any integer type, or a vectory with integer element type. The return
7774type must match the first argument type.
7775
7776The second argument must be a constant and is a flag to indicate whether
7777the intrinsic should ensure that a zero as the first argument produces a
7778defined result. Historically some architectures did not provide a
7779defined result for zero values as efficiently, and many algorithms are
7780now predicated on avoiding zero-value inputs.
7781
7782Semantics:
7783""""""""""
7784
7785The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7786zeros in a variable, or within each element of a vector. If ``src == 0``
7787then the result is the size in bits of the type of ``src`` if
7788``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7789``llvm.cttz(2) = 1``.
7790
7791Arithmetic with Overflow Intrinsics
7792-----------------------------------
7793
7794LLVM provides intrinsics for some arithmetic with overflow operations.
7795
7796'``llvm.sadd.with.overflow.*``' Intrinsics
7797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7798
7799Syntax:
7800"""""""
7801
7802This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7803on any integer bit width.
7804
7805::
7806
7807 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7808 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7809 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7810
7811Overview:
7812"""""""""
7813
7814The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7815a signed addition of the two arguments, and indicate whether an overflow
7816occurred during the signed summation.
7817
7818Arguments:
7819""""""""""
7820
7821The arguments (%a and %b) and the first element of the result structure
7822may be of integer types of any bit width, but they must have the same
7823bit width. The second element of the result structure must be of type
7824``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7825addition.
7826
7827Semantics:
7828""""""""""
7829
7830The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007831a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007832first element of which is the signed summation, and the second element
7833of which is a bit specifying if the signed summation resulted in an
7834overflow.
7835
7836Examples:
7837"""""""""
7838
7839.. code-block:: llvm
7840
7841 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7842 %sum = extractvalue {i32, i1} %res, 0
7843 %obit = extractvalue {i32, i1} %res, 1
7844 br i1 %obit, label %overflow, label %normal
7845
7846'``llvm.uadd.with.overflow.*``' Intrinsics
7847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7848
7849Syntax:
7850"""""""
7851
7852This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7853on any integer bit width.
7854
7855::
7856
7857 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7858 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7859 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7860
7861Overview:
7862"""""""""
7863
7864The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7865an unsigned addition of the two arguments, and indicate whether a carry
7866occurred during the unsigned summation.
7867
7868Arguments:
7869""""""""""
7870
7871The arguments (%a and %b) and the first element of the result structure
7872may be of integer types of any bit width, but they must have the same
7873bit width. The second element of the result structure must be of type
7874``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7875addition.
7876
7877Semantics:
7878""""""""""
7879
7880The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007881an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007882first element of which is the sum, and the second element of which is a
7883bit specifying if the unsigned summation resulted in a carry.
7884
7885Examples:
7886"""""""""
7887
7888.. code-block:: llvm
7889
7890 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7891 %sum = extractvalue {i32, i1} %res, 0
7892 %obit = extractvalue {i32, i1} %res, 1
7893 br i1 %obit, label %carry, label %normal
7894
7895'``llvm.ssub.with.overflow.*``' Intrinsics
7896^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7897
7898Syntax:
7899"""""""
7900
7901This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7902on any integer bit width.
7903
7904::
7905
7906 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7907 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7908 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7909
7910Overview:
7911"""""""""
7912
7913The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7914a signed subtraction of the two arguments, and indicate whether an
7915overflow occurred during the signed subtraction.
7916
7917Arguments:
7918""""""""""
7919
7920The arguments (%a and %b) and the first element of the result structure
7921may be of integer types of any bit width, but they must have the same
7922bit width. The second element of the result structure must be of type
7923``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7924subtraction.
7925
7926Semantics:
7927""""""""""
7928
7929The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007930a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007931first element of which is the subtraction, and the second element of
7932which is a bit specifying if the signed subtraction resulted in an
7933overflow.
7934
7935Examples:
7936"""""""""
7937
7938.. code-block:: llvm
7939
7940 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7941 %sum = extractvalue {i32, i1} %res, 0
7942 %obit = extractvalue {i32, i1} %res, 1
7943 br i1 %obit, label %overflow, label %normal
7944
7945'``llvm.usub.with.overflow.*``' Intrinsics
7946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7947
7948Syntax:
7949"""""""
7950
7951This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7952on any integer bit width.
7953
7954::
7955
7956 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7957 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7958 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7959
7960Overview:
7961"""""""""
7962
7963The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7964an unsigned subtraction of the two arguments, and indicate whether an
7965overflow occurred during the unsigned subtraction.
7966
7967Arguments:
7968""""""""""
7969
7970The arguments (%a and %b) and the first element of the result structure
7971may be of integer types of any bit width, but they must have the same
7972bit width. The second element of the result structure must be of type
7973``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7974subtraction.
7975
7976Semantics:
7977""""""""""
7978
7979The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007980an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007981the first element of which is the subtraction, and the second element of
7982which is a bit specifying if the unsigned subtraction resulted in an
7983overflow.
7984
7985Examples:
7986"""""""""
7987
7988.. code-block:: llvm
7989
7990 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7991 %sum = extractvalue {i32, i1} %res, 0
7992 %obit = extractvalue {i32, i1} %res, 1
7993 br i1 %obit, label %overflow, label %normal
7994
7995'``llvm.smul.with.overflow.*``' Intrinsics
7996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7997
7998Syntax:
7999"""""""
8000
8001This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8002on any integer bit width.
8003
8004::
8005
8006 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8007 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8008 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8009
8010Overview:
8011"""""""""
8012
8013The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8014a signed multiplication of the two arguments, and indicate whether an
8015overflow occurred during the signed multiplication.
8016
8017Arguments:
8018""""""""""
8019
8020The arguments (%a and %b) and the first element of the result structure
8021may be of integer types of any bit width, but they must have the same
8022bit width. The second element of the result structure must be of type
8023``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8024multiplication.
8025
8026Semantics:
8027""""""""""
8028
8029The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008030a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008031the first element of which is the multiplication, and the second element
8032of which is a bit specifying if the signed multiplication resulted in an
8033overflow.
8034
8035Examples:
8036"""""""""
8037
8038.. code-block:: llvm
8039
8040 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8041 %sum = extractvalue {i32, i1} %res, 0
8042 %obit = extractvalue {i32, i1} %res, 1
8043 br i1 %obit, label %overflow, label %normal
8044
8045'``llvm.umul.with.overflow.*``' Intrinsics
8046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8047
8048Syntax:
8049"""""""
8050
8051This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8052on any integer bit width.
8053
8054::
8055
8056 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8057 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8058 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8059
8060Overview:
8061"""""""""
8062
8063The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8064a unsigned multiplication of the two arguments, and indicate whether an
8065overflow occurred during the unsigned multiplication.
8066
8067Arguments:
8068""""""""""
8069
8070The arguments (%a and %b) and the first element of the result structure
8071may be of integer types of any bit width, but they must have the same
8072bit width. The second element of the result structure must be of type
8073``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8074multiplication.
8075
8076Semantics:
8077""""""""""
8078
8079The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008080an unsigned multiplication of the two arguments. They return a structure ---
8081the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00008082element of which is a bit specifying if the unsigned multiplication
8083resulted in an overflow.
8084
8085Examples:
8086"""""""""
8087
8088.. code-block:: llvm
8089
8090 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8091 %sum = extractvalue {i32, i1} %res, 0
8092 %obit = extractvalue {i32, i1} %res, 1
8093 br i1 %obit, label %overflow, label %normal
8094
8095Specialised Arithmetic Intrinsics
8096---------------------------------
8097
8098'``llvm.fmuladd.*``' Intrinsic
8099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8100
8101Syntax:
8102"""""""
8103
8104::
8105
8106 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8107 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8108
8109Overview:
8110"""""""""
8111
8112The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008113expressions that can be fused if the code generator determines that (a) the
8114target instruction set has support for a fused operation, and (b) that the
8115fused operation is more efficient than the equivalent, separate pair of mul
8116and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008117
8118Arguments:
8119""""""""""
8120
8121The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8122multiplicands, a and b, and an addend c.
8123
8124Semantics:
8125""""""""""
8126
8127The expression:
8128
8129::
8130
8131 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8132
8133is equivalent to the expression a \* b + c, except that rounding will
8134not be performed between the multiplication and addition steps if the
8135code generator fuses the operations. Fusion is not guaranteed, even if
8136the target platform supports it. If a fused multiply-add is required the
8137corresponding llvm.fma.\* intrinsic function should be used instead.
8138
8139Examples:
8140"""""""""
8141
8142.. code-block:: llvm
8143
8144 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8145
8146Half Precision Floating Point Intrinsics
8147----------------------------------------
8148
8149For most target platforms, half precision floating point is a
8150storage-only format. This means that it is a dense encoding (in memory)
8151but does not support computation in the format.
8152
8153This means that code must first load the half-precision floating point
8154value as an i16, then convert it to float with
8155:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8156then be performed on the float value (including extending to double
8157etc). To store the value back to memory, it is first converted to float
8158if needed, then converted to i16 with
8159:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8160i16 value.
8161
8162.. _int_convert_to_fp16:
8163
8164'``llvm.convert.to.fp16``' Intrinsic
8165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8166
8167Syntax:
8168"""""""
8169
8170::
8171
8172 declare i16 @llvm.convert.to.fp16(f32 %a)
8173
8174Overview:
8175"""""""""
8176
8177The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8178from single precision floating point format to half precision floating
8179point format.
8180
8181Arguments:
8182""""""""""
8183
8184The intrinsic function contains single argument - the value to be
8185converted.
8186
8187Semantics:
8188""""""""""
8189
8190The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8191from single precision floating point format to half precision floating
8192point format. The return value is an ``i16`` which contains the
8193converted number.
8194
8195Examples:
8196"""""""""
8197
8198.. code-block:: llvm
8199
8200 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8201 store i16 %res, i16* @x, align 2
8202
8203.. _int_convert_from_fp16:
8204
8205'``llvm.convert.from.fp16``' Intrinsic
8206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8207
8208Syntax:
8209"""""""
8210
8211::
8212
8213 declare f32 @llvm.convert.from.fp16(i16 %a)
8214
8215Overview:
8216"""""""""
8217
8218The '``llvm.convert.from.fp16``' intrinsic function performs a
8219conversion from half precision floating point format to single precision
8220floating point format.
8221
8222Arguments:
8223""""""""""
8224
8225The intrinsic function contains single argument - the value to be
8226converted.
8227
8228Semantics:
8229""""""""""
8230
8231The '``llvm.convert.from.fp16``' intrinsic function performs a
8232conversion from half single precision floating point format to single
8233precision floating point format. The input half-float value is
8234represented by an ``i16`` value.
8235
8236Examples:
8237"""""""""
8238
8239.. code-block:: llvm
8240
8241 %a = load i16* @x, align 2
8242 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8243
8244Debugger Intrinsics
8245-------------------
8246
8247The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8248prefix), are described in the `LLVM Source Level
8249Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8250document.
8251
8252Exception Handling Intrinsics
8253-----------------------------
8254
8255The LLVM exception handling intrinsics (which all start with
8256``llvm.eh.`` prefix), are described in the `LLVM Exception
8257Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8258
8259.. _int_trampoline:
8260
8261Trampoline Intrinsics
8262---------------------
8263
8264These intrinsics make it possible to excise one parameter, marked with
8265the :ref:`nest <nest>` attribute, from a function. The result is a
8266callable function pointer lacking the nest parameter - the caller does
8267not need to provide a value for it. Instead, the value to use is stored
8268in advance in a "trampoline", a block of memory usually allocated on the
8269stack, which also contains code to splice the nest value into the
8270argument list. This is used to implement the GCC nested function address
8271extension.
8272
8273For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8274then the resulting function pointer has signature ``i32 (i32, i32)*``.
8275It can be created as follows:
8276
8277.. code-block:: llvm
8278
8279 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8280 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8281 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8282 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8283 %fp = bitcast i8* %p to i32 (i32, i32)*
8284
8285The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8286``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8287
8288.. _int_it:
8289
8290'``llvm.init.trampoline``' Intrinsic
8291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8292
8293Syntax:
8294"""""""
8295
8296::
8297
8298 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8299
8300Overview:
8301"""""""""
8302
8303This fills the memory pointed to by ``tramp`` with executable code,
8304turning it into a trampoline.
8305
8306Arguments:
8307""""""""""
8308
8309The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8310pointers. The ``tramp`` argument must point to a sufficiently large and
8311sufficiently aligned block of memory; this memory is written to by the
8312intrinsic. Note that the size and the alignment are target-specific -
8313LLVM currently provides no portable way of determining them, so a
8314front-end that generates this intrinsic needs to have some
8315target-specific knowledge. The ``func`` argument must hold a function
8316bitcast to an ``i8*``.
8317
8318Semantics:
8319""""""""""
8320
8321The block of memory pointed to by ``tramp`` is filled with target
8322dependent code, turning it into a function. Then ``tramp`` needs to be
8323passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8324be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8325function's signature is the same as that of ``func`` with any arguments
8326marked with the ``nest`` attribute removed. At most one such ``nest``
8327argument is allowed, and it must be of pointer type. Calling the new
8328function is equivalent to calling ``func`` with the same argument list,
8329but with ``nval`` used for the missing ``nest`` argument. If, after
8330calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8331modified, then the effect of any later call to the returned function
8332pointer is undefined.
8333
8334.. _int_at:
8335
8336'``llvm.adjust.trampoline``' Intrinsic
8337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8338
8339Syntax:
8340"""""""
8341
8342::
8343
8344 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8345
8346Overview:
8347"""""""""
8348
8349This performs any required machine-specific adjustment to the address of
8350a trampoline (passed as ``tramp``).
8351
8352Arguments:
8353""""""""""
8354
8355``tramp`` must point to a block of memory which already has trampoline
8356code filled in by a previous call to
8357:ref:`llvm.init.trampoline <int_it>`.
8358
8359Semantics:
8360""""""""""
8361
8362On some architectures the address of the code to be executed needs to be
8363different to the address where the trampoline is actually stored. This
8364intrinsic returns the executable address corresponding to ``tramp``
8365after performing the required machine specific adjustments. The pointer
8366returned can then be :ref:`bitcast and executed <int_trampoline>`.
8367
8368Memory Use Markers
8369------------------
8370
8371This class of intrinsics exists to information about the lifetime of
8372memory objects and ranges where variables are immutable.
8373
8374'``llvm.lifetime.start``' Intrinsic
8375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8376
8377Syntax:
8378"""""""
8379
8380::
8381
8382 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8383
8384Overview:
8385"""""""""
8386
8387The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8388object's lifetime.
8389
8390Arguments:
8391""""""""""
8392
8393The first argument is a constant integer representing the size of the
8394object, or -1 if it is variable sized. The second argument is a pointer
8395to the object.
8396
8397Semantics:
8398""""""""""
8399
8400This intrinsic indicates that before this point in the code, the value
8401of the memory pointed to by ``ptr`` is dead. This means that it is known
8402to never be used and has an undefined value. A load from the pointer
8403that precedes this intrinsic can be replaced with ``'undef'``.
8404
8405'``llvm.lifetime.end``' Intrinsic
8406^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8407
8408Syntax:
8409"""""""
8410
8411::
8412
8413 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8414
8415Overview:
8416"""""""""
8417
8418The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8419object's lifetime.
8420
8421Arguments:
8422""""""""""
8423
8424The first argument is a constant integer representing the size of the
8425object, or -1 if it is variable sized. The second argument is a pointer
8426to the object.
8427
8428Semantics:
8429""""""""""
8430
8431This intrinsic indicates that after this point in the code, the value of
8432the memory pointed to by ``ptr`` is dead. This means that it is known to
8433never be used and has an undefined value. Any stores into the memory
8434object following this intrinsic may be removed as dead.
8435
8436'``llvm.invariant.start``' Intrinsic
8437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8438
8439Syntax:
8440"""""""
8441
8442::
8443
8444 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8445
8446Overview:
8447"""""""""
8448
8449The '``llvm.invariant.start``' intrinsic specifies that the contents of
8450a memory object will not change.
8451
8452Arguments:
8453""""""""""
8454
8455The first argument is a constant integer representing the size of the
8456object, or -1 if it is variable sized. The second argument is a pointer
8457to the object.
8458
8459Semantics:
8460""""""""""
8461
8462This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8463the return value, the referenced memory location is constant and
8464unchanging.
8465
8466'``llvm.invariant.end``' Intrinsic
8467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8468
8469Syntax:
8470"""""""
8471
8472::
8473
8474 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8475
8476Overview:
8477"""""""""
8478
8479The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8480memory object are mutable.
8481
8482Arguments:
8483""""""""""
8484
8485The first argument is the matching ``llvm.invariant.start`` intrinsic.
8486The second argument is a constant integer representing the size of the
8487object, or -1 if it is variable sized and the third argument is a
8488pointer to the object.
8489
8490Semantics:
8491""""""""""
8492
8493This intrinsic indicates that the memory is mutable again.
8494
8495General Intrinsics
8496------------------
8497
8498This class of intrinsics is designed to be generic and has no specific
8499purpose.
8500
8501'``llvm.var.annotation``' Intrinsic
8502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8503
8504Syntax:
8505"""""""
8506
8507::
8508
8509 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8510
8511Overview:
8512"""""""""
8513
8514The '``llvm.var.annotation``' intrinsic.
8515
8516Arguments:
8517""""""""""
8518
8519The first argument is a pointer to a value, the second is a pointer to a
8520global string, the third is a pointer to a global string which is the
8521source file name, and the last argument is the line number.
8522
8523Semantics:
8524""""""""""
8525
8526This intrinsic allows annotation of local variables with arbitrary
8527strings. This can be useful for special purpose optimizations that want
8528to look for these annotations. These have no other defined use; they are
8529ignored by code generation and optimization.
8530
Michael Gottesman872b4e52013-03-26 00:34:27 +00008531'``llvm.ptr.annotation.*``' Intrinsic
8532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8533
8534Syntax:
8535"""""""
8536
8537This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8538pointer to an integer of any width. *NOTE* you must specify an address space for
8539the pointer. The identifier for the default address space is the integer
8540'``0``'.
8541
8542::
8543
8544 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8545 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8546 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8547 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8548 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8549
8550Overview:
8551"""""""""
8552
8553The '``llvm.ptr.annotation``' intrinsic.
8554
8555Arguments:
8556""""""""""
8557
8558The first argument is a pointer to an integer value of arbitrary bitwidth
8559(result of some expression), the second is a pointer to a global string, the
8560third is a pointer to a global string which is the source file name, and the
8561last argument is the line number. It returns the value of the first argument.
8562
8563Semantics:
8564""""""""""
8565
8566This intrinsic allows annotation of a pointer to an integer with arbitrary
8567strings. This can be useful for special purpose optimizations that want to look
8568for these annotations. These have no other defined use; they are ignored by code
8569generation and optimization.
8570
Sean Silvaf722b002012-12-07 10:36:55 +00008571'``llvm.annotation.*``' Intrinsic
8572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8573
8574Syntax:
8575"""""""
8576
8577This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8578any integer bit width.
8579
8580::
8581
8582 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8583 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8584 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8585 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8586 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8587
8588Overview:
8589"""""""""
8590
8591The '``llvm.annotation``' intrinsic.
8592
8593Arguments:
8594""""""""""
8595
8596The first argument is an integer value (result of some expression), the
8597second is a pointer to a global string, the third is a pointer to a
8598global string which is the source file name, and the last argument is
8599the line number. It returns the value of the first argument.
8600
8601Semantics:
8602""""""""""
8603
8604This intrinsic allows annotations to be put on arbitrary expressions
8605with arbitrary strings. This can be useful for special purpose
8606optimizations that want to look for these annotations. These have no
8607other defined use; they are ignored by code generation and optimization.
8608
8609'``llvm.trap``' Intrinsic
8610^^^^^^^^^^^^^^^^^^^^^^^^^
8611
8612Syntax:
8613"""""""
8614
8615::
8616
8617 declare void @llvm.trap() noreturn nounwind
8618
8619Overview:
8620"""""""""
8621
8622The '``llvm.trap``' intrinsic.
8623
8624Arguments:
8625""""""""""
8626
8627None.
8628
8629Semantics:
8630""""""""""
8631
8632This intrinsic is lowered to the target dependent trap instruction. If
8633the target does not have a trap instruction, this intrinsic will be
8634lowered to a call of the ``abort()`` function.
8635
8636'``llvm.debugtrap``' Intrinsic
8637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8638
8639Syntax:
8640"""""""
8641
8642::
8643
8644 declare void @llvm.debugtrap() nounwind
8645
8646Overview:
8647"""""""""
8648
8649The '``llvm.debugtrap``' intrinsic.
8650
8651Arguments:
8652""""""""""
8653
8654None.
8655
8656Semantics:
8657""""""""""
8658
8659This intrinsic is lowered to code which is intended to cause an
8660execution trap with the intention of requesting the attention of a
8661debugger.
8662
8663'``llvm.stackprotector``' Intrinsic
8664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8665
8666Syntax:
8667"""""""
8668
8669::
8670
8671 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8672
8673Overview:
8674"""""""""
8675
8676The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8677onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8678is placed on the stack before local variables.
8679
8680Arguments:
8681""""""""""
8682
8683The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8684The first argument is the value loaded from the stack guard
8685``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8686enough space to hold the value of the guard.
8687
8688Semantics:
8689""""""""""
8690
Michael Gottesman2a64a632013-08-12 18:35:32 +00008691This intrinsic causes the prologue/epilogue inserter to force the position of
8692the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8693to ensure that if a local variable on the stack is overwritten, it will destroy
8694the value of the guard. When the function exits, the guard on the stack is
8695checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8696different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8697calling the ``__stack_chk_fail()`` function.
8698
8699'``llvm.stackprotectorcheck``' Intrinsic
8700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8701
8702Syntax:
8703"""""""
8704
8705::
8706
8707 declare void @llvm.stackprotectorcheck(i8** <guard>)
8708
8709Overview:
8710"""""""""
8711
8712The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman2bf823e2013-08-12 19:44:09 +00008713created stack protector and if they are not equal calls the
Sean Silvaf722b002012-12-07 10:36:55 +00008714``__stack_chk_fail()`` function.
8715
Michael Gottesman2a64a632013-08-12 18:35:32 +00008716Arguments:
8717""""""""""
8718
8719The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8720the variable ``@__stack_chk_guard``.
8721
8722Semantics:
8723""""""""""
8724
8725This intrinsic is provided to perform the stack protector check by comparing
8726``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8727values do not match call the ``__stack_chk_fail()`` function.
8728
8729The reason to provide this as an IR level intrinsic instead of implementing it
8730via other IR operations is that in order to perform this operation at the IR
8731level without an intrinsic, one would need to create additional basic blocks to
8732handle the success/failure cases. This makes it difficult to stop the stack
8733protector check from disrupting sibling tail calls in Codegen. With this
8734intrinsic, we are able to generate the stack protector basic blocks late in
8735codegen after the tail call decision has occured.
8736
Sean Silvaf722b002012-12-07 10:36:55 +00008737'``llvm.objectsize``' Intrinsic
8738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8739
8740Syntax:
8741"""""""
8742
8743::
8744
8745 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8746 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8747
8748Overview:
8749"""""""""
8750
8751The ``llvm.objectsize`` intrinsic is designed to provide information to
8752the optimizers to determine at compile time whether a) an operation
8753(like memcpy) will overflow a buffer that corresponds to an object, or
8754b) that a runtime check for overflow isn't necessary. An object in this
8755context means an allocation of a specific class, structure, array, or
8756other object.
8757
8758Arguments:
8759""""""""""
8760
8761The ``llvm.objectsize`` intrinsic takes two arguments. The first
8762argument is a pointer to or into the ``object``. The second argument is
8763a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8764or -1 (if false) when the object size is unknown. The second argument
8765only accepts constants.
8766
8767Semantics:
8768""""""""""
8769
8770The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8771the size of the object concerned. If the size cannot be determined at
8772compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8773on the ``min`` argument).
8774
8775'``llvm.expect``' Intrinsic
8776^^^^^^^^^^^^^^^^^^^^^^^^^^^
8777
8778Syntax:
8779"""""""
8780
8781::
8782
8783 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8784 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8785
8786Overview:
8787"""""""""
8788
8789The ``llvm.expect`` intrinsic provides information about expected (the
8790most probable) value of ``val``, which can be used by optimizers.
8791
8792Arguments:
8793""""""""""
8794
8795The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8796a value. The second argument is an expected value, this needs to be a
8797constant value, variables are not allowed.
8798
8799Semantics:
8800""""""""""
8801
8802This intrinsic is lowered to the ``val``.
8803
8804'``llvm.donothing``' Intrinsic
8805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8806
8807Syntax:
8808"""""""
8809
8810::
8811
8812 declare void @llvm.donothing() nounwind readnone
8813
8814Overview:
8815"""""""""
8816
8817The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8818only intrinsic that can be called with an invoke instruction.
8819
8820Arguments:
8821""""""""""
8822
8823None.
8824
8825Semantics:
8826""""""""""
8827
8828This intrinsic does nothing, and it's removed by optimizers and ignored
8829by codegen.