blob: f533b1572c65dcb42dc181c25b21ffa41452923e [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
34 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Chris Lattner0f53cf22010-03-18 18:10:56 +000041 return 4;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Chris Lattner11eafa82010-02-11 21:17:54 +000046 { "reloc_pcrel_4byte", 0, 4 * 8 },
Chris Lattner835acab2010-02-12 23:00:36 +000047 { "reloc_pcrel_1byte", 0, 1 * 8 },
Chris Lattner0f53cf22010-03-18 18:10:56 +000048 { "reloc_riprel_4byte", 0, 4 * 8 },
49 { "reloc_riprel_4byte_movq_load", 0, 4 * 8 }
Daniel Dunbar73c55742010-02-09 22:59:55 +000050 };
Chris Lattner8d31de62010-02-11 21:27:18 +000051
52 if (Kind < FirstTargetFixupKind)
53 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000054
Chris Lattner8d31de62010-02-11 21:27:18 +000055 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000056 "Invalid kind!");
57 return Infos[Kind - FirstTargetFixupKind];
58 }
Chris Lattner45762472010-02-03 21:24:49 +000059
Chris Lattner28249d92010-02-05 01:53:19 +000060 static unsigned GetX86RegNum(const MCOperand &MO) {
61 return X86RegisterInfo::getX86RegNum(MO.getReg());
62 }
63
Chris Lattner37ce80e2010-02-10 06:41:02 +000064 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000065 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000066 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000067 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000068
Chris Lattner37ce80e2010-02-10 06:41:02 +000069 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
70 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000071 // Output the constant in little endian byte order.
72 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000073 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000074 Val >>= 8;
75 }
76 }
Chris Lattner0e73c392010-02-05 06:16:07 +000077
Chris Lattnercf653392010-02-12 22:36:47 +000078 void EmitImmediate(const MCOperand &Disp,
79 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +000080 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +000081 SmallVectorImpl<MCFixup> &Fixups,
82 int ImmOffset = 0) const;
Chris Lattner28249d92010-02-05 01:53:19 +000083
84 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
85 unsigned RM) {
86 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
87 return RM | (RegOpcode << 3) | (Mod << 6);
88 }
89
90 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000091 unsigned &CurByte, raw_ostream &OS) const {
92 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000093 }
94
Chris Lattner0e73c392010-02-05 06:16:07 +000095 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +000096 unsigned &CurByte, raw_ostream &OS) const {
97 // SIB byte is in the same format as the ModRMByte.
98 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +000099 }
100
101
Chris Lattner1ac23b12010-02-05 02:18:40 +0000102 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000103 unsigned RegOpcodeField,
Chris Lattner835acab2010-02-12 23:00:36 +0000104 unsigned TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000105 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000106
Daniel Dunbar73c55742010-02-09 22:59:55 +0000107 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
108 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000109
Chris Lattner45762472010-02-03 21:24:49 +0000110};
111
112} // end anonymous namespace
113
114
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000115MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000116 TargetMachine &TM,
117 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000118 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000119}
120
121MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000122 TargetMachine &TM,
123 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000124 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000125}
126
127
Chris Lattner1ac23b12010-02-05 02:18:40 +0000128/// isDisp8 - Return true if this signed displacement fits in a 8-bit
129/// sign-extended field.
130static bool isDisp8(int Value) {
131 return Value == (signed char)Value;
132}
133
Chris Lattnercf653392010-02-12 22:36:47 +0000134/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
135/// in an instruction with the specified TSFlags.
136static MCFixupKind getImmFixupKind(unsigned TSFlags) {
137 unsigned Size = X86II::getSizeOfImm(TSFlags);
138 bool isPCRel = X86II::isImmPCRel(TSFlags);
139
Chris Lattnercf653392010-02-12 22:36:47 +0000140 switch (Size) {
141 default: assert(0 && "Unknown immediate size");
142 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
143 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
144 case 2: assert(!isPCRel); return FK_Data_2;
145 case 8: assert(!isPCRel); return FK_Data_8;
146 }
147}
148
149
Chris Lattner0e73c392010-02-05 06:16:07 +0000150void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000151EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000152 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000153 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000154 // If this is a simple integer displacement that doesn't require a relocation,
155 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000156 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000157 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
158 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000159 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000160 return;
161 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000162
Chris Lattner835acab2010-02-12 23:00:36 +0000163 // If we have an immoffset, add it to the expression.
164 const MCExpr *Expr = DispOp.getExpr();
Chris Lattnera08b5872010-02-16 05:03:17 +0000165
166 // If the fixup is pc-relative, we need to bias the value to be relative to
167 // the start of the field, not the end of the field.
168 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
169 FixupKind == MCFixupKind(X86::reloc_riprel_4byte))
170 ImmOffset -= 4;
171 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
172 ImmOffset -= 1;
173
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000174 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000175 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000176 Ctx);
Chris Lattner835acab2010-02-12 23:00:36 +0000177
Chris Lattner5dccfad2010-02-10 06:52:12 +0000178 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000179 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000180 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000181}
182
183
Chris Lattner1ac23b12010-02-05 02:18:40 +0000184void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
185 unsigned RegOpcodeField,
Chris Lattner835acab2010-02-12 23:00:36 +0000186 unsigned TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000187 raw_ostream &OS,
188 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000189 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000190 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000191 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000192 const MCOperand &IndexReg = MI.getOperand(Op+2);
193 unsigned BaseReg = Base.getReg();
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000194
195 // Handle %rip relative addressing.
196 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
197 assert(IndexReg.getReg() == 0 && Is64BitMode &&
198 "Invalid rip-relative address");
199 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner835acab2010-02-12 23:00:36 +0000200
Chris Lattner0f53cf22010-03-18 18:10:56 +0000201 unsigned FixupKind = X86::reloc_riprel_4byte;
202
203 // movq loads are handled with a special relocation form which allows the
204 // linker to eliminate some loads for GOT references which end up in the
205 // same linkage unit.
206 if (MI.getOpcode() == X86::MOV64rm_TC)
207 FixupKind = X86::reloc_riprel_4byte_movq_load;
208
Chris Lattner835acab2010-02-12 23:00:36 +0000209 // rip-relative addressing is actually relative to the *next* instruction.
210 // Since an immediate can follow the mod/rm byte for an instruction, this
211 // means that we need to bias the immediate field of the instruction with
212 // the size of the immediate field. If we have this case, add it into the
213 // expression to emit.
214 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnera08b5872010-02-16 05:03:17 +0000215
Chris Lattner0f53cf22010-03-18 18:10:56 +0000216 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000217 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000218 return;
219 }
220
221 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000222
Chris Lattnera8168ec2010-02-09 21:57:34 +0000223 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000224 // If no BaseReg, issue a RIP relative instruction only if the MCE can
225 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
226 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000227
Chris Lattnera8168ec2010-02-09 21:57:34 +0000228 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000229 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000230 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
231 // encode to an R/M value of 4, which indicates that a SIB byte is
232 // present.
233 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000234 // If there is no base register and we're in 64-bit mode, we need a SIB
235 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
236 (!Is64BitMode || BaseReg != 0)) {
237
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000238 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000239 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000240 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000241 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000242 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000243
Chris Lattnera8168ec2010-02-09 21:57:34 +0000244 // If the base is not EBP/ESP and there is no displacement, use simple
245 // indirect register encoding, this handles addresses like [EAX]. The
246 // encoding for [EBP] with no displacement means [disp32] so we handle it
247 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000248 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000249 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000250 return;
251 }
252
253 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000254 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000255 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000256 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000257 return;
258 }
259
260 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000261 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000262 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000263 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000264 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000265
266 // We need a SIB byte, so start by outputting the ModR/M byte first
267 assert(IndexReg.getReg() != X86::ESP &&
268 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
269
270 bool ForceDisp32 = false;
271 bool ForceDisp8 = false;
272 if (BaseReg == 0) {
273 // If there is no base register, we emit the special case SIB byte with
274 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000275 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000276 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000277 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000278 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000279 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000280 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000281 } else if (Disp.getImm() == 0 &&
282 // Base reg can't be anything that ends up with '5' as the base
283 // reg, it is the magic [*] nomenclature that indicates no base.
284 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000285 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000286 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000287 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000288 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000289 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000290 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
291 } else {
292 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000293 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000294 }
295
296 // Calculate what the SS field value should be...
297 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
298 unsigned SS = SSTable[Scale.getImm()];
299
300 if (BaseReg == 0) {
301 // Handle the SIB byte for the case where there is no base, see Intel
302 // Manual 2A, table 2-7. The displacement has already been output.
303 unsigned IndexRegNo;
304 if (IndexReg.getReg())
305 IndexRegNo = GetX86RegNum(IndexReg);
306 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
307 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000308 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000309 } else {
310 unsigned IndexRegNo;
311 if (IndexReg.getReg())
312 IndexRegNo = GetX86RegNum(IndexReg);
313 else
314 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000315 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000316 }
317
318 // Do we need to output a displacement?
319 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000320 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000321 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000322 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000323}
324
Chris Lattner39a612e2010-02-05 22:10:22 +0000325/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
326/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
327/// size, and 3) use of X86-64 extended registers.
328static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
329 const TargetInstrDesc &Desc) {
Chris Lattner1cea10a2010-02-13 19:16:53 +0000330 // Pseudo instructions never have a rex byte.
331 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
332 return 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000333
Chris Lattner7e851802010-02-11 22:39:10 +0000334 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000335 if (TSFlags & X86II::REX_W)
336 REX |= 1 << 3;
337
338 if (MI.getNumOperands() == 0) return REX;
339
340 unsigned NumOps = MI.getNumOperands();
341 // FIXME: MCInst should explicitize the two-addrness.
342 bool isTwoAddr = NumOps > 1 &&
343 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
344
345 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
346 unsigned i = isTwoAddr ? 1 : 0;
347 for (; i != NumOps; ++i) {
348 const MCOperand &MO = MI.getOperand(i);
349 if (!MO.isReg()) continue;
350 unsigned Reg = MO.getReg();
351 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000352 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
353 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000354 REX |= 0x40;
355 break;
356 }
357
358 switch (TSFlags & X86II::FormMask) {
359 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
360 case X86II::MRMSrcReg:
361 if (MI.getOperand(0).isReg() &&
362 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
363 REX |= 1 << 2;
364 i = isTwoAddr ? 2 : 1;
365 for (; i != NumOps; ++i) {
366 const MCOperand &MO = MI.getOperand(i);
367 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
368 REX |= 1 << 0;
369 }
370 break;
371 case X86II::MRMSrcMem: {
372 if (MI.getOperand(0).isReg() &&
373 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
374 REX |= 1 << 2;
375 unsigned Bit = 0;
376 i = isTwoAddr ? 2 : 1;
377 for (; i != NumOps; ++i) {
378 const MCOperand &MO = MI.getOperand(i);
379 if (MO.isReg()) {
380 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
381 REX |= 1 << Bit;
382 Bit++;
383 }
384 }
385 break;
386 }
387 case X86II::MRM0m: case X86II::MRM1m:
388 case X86II::MRM2m: case X86II::MRM3m:
389 case X86II::MRM4m: case X86II::MRM5m:
390 case X86II::MRM6m: case X86II::MRM7m:
391 case X86II::MRMDestMem: {
392 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
393 i = isTwoAddr ? 1 : 0;
394 if (NumOps > e && MI.getOperand(e).isReg() &&
395 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
396 REX |= 1 << 2;
397 unsigned Bit = 0;
398 for (; i != e; ++i) {
399 const MCOperand &MO = MI.getOperand(i);
400 if (MO.isReg()) {
401 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
402 REX |= 1 << Bit;
403 Bit++;
404 }
405 }
406 break;
407 }
408 default:
409 if (MI.getOperand(0).isReg() &&
410 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
411 REX |= 1 << 0;
412 i = isTwoAddr ? 2 : 1;
413 for (unsigned e = NumOps; i != e; ++i) {
414 const MCOperand &MO = MI.getOperand(i);
415 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
416 REX |= 1 << 2;
417 }
418 break;
419 }
420 return REX;
421}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000422
423void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000424EncodeInstruction(const MCInst &MI, raw_ostream &OS,
425 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000426 unsigned Opcode = MI.getOpcode();
427 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000428 unsigned TSFlags = Desc.TSFlags;
429
Chris Lattner37ce80e2010-02-10 06:41:02 +0000430 // Keep track of the current byte being emitted.
431 unsigned CurByte = 0;
432
Chris Lattner1e80f402010-02-03 21:57:59 +0000433 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
434 // in order to provide diffability.
435
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000436 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000437 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000438 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000439
440 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000441 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000442 default: assert(0 && "Invalid segment!");
443 case 0: break; // No segment override!
444 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000445 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000446 break;
447 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000448 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000449 break;
450 }
451
Chris Lattner1e80f402010-02-03 21:57:59 +0000452 // Emit the repeat opcode prefix as needed.
453 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000454 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000455
Chris Lattner1e80f402010-02-03 21:57:59 +0000456 // Emit the operand size opcode prefix as needed.
457 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000458 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000459
460 // Emit the address size opcode prefix as needed.
461 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000462 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000463
464 bool Need0FPrefix = false;
465 switch (TSFlags & X86II::Op0Mask) {
466 default: assert(0 && "Invalid prefix!");
467 case 0: break; // No prefix!
468 case X86II::REP: break; // already handled.
469 case X86II::TB: // Two-byte opcode prefix
470 case X86II::T8: // 0F 38
471 case X86II::TA: // 0F 3A
472 Need0FPrefix = true;
473 break;
474 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000475 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000476 Need0FPrefix = true;
477 break;
478 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000479 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000480 Need0FPrefix = true;
481 break;
482 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000483 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000484 Need0FPrefix = true;
485 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000486 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
487 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
488 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
489 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
490 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
491 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
492 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
493 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000494 }
495
496 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000497 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000498 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000499 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000500 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000501 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000502
503 // 0x0F escape code must be emitted just before the opcode.
504 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000505 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000506
507 // FIXME: Pull this up into previous switch if REX can be moved earlier.
508 switch (TSFlags & X86II::Op0Mask) {
509 case X86II::TF: // F2 0F 38
510 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000511 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000512 break;
513 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000514 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000515 break;
516 }
517
518 // If this is a two-address instruction, skip one of the register operands.
519 unsigned NumOps = Desc.getNumOperands();
520 unsigned CurOp = 0;
521 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
522 ++CurOp;
523 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
524 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
525 --NumOps;
526
Chris Lattner74a21512010-02-05 19:24:13 +0000527 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000528 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000529 case X86II::MRMInitReg:
530 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000531 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000532 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1cea10a2010-02-13 19:16:53 +0000533 case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000534 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000535 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000536 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000537
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000538 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000539 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000540 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000541
542 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000543 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000544 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000545 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000546 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000547 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000548
549 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000550 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000551 EmitMemModRMByte(MI, CurOp,
552 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000553 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000554 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000555 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000556
557 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000558 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000559 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000560 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000561 CurOp += 2;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000562 break;
563
564 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000565 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000566
567 // FIXME: Maybe lea should have its own form? This is a horrible hack.
568 int AddrOperands;
569 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
570 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
571 AddrOperands = X86AddrNumOperands - 1; // No segment register
572 else
573 AddrOperands = X86AddrNumOperands;
574
Chris Lattnerdaa45552010-02-05 19:04:37 +0000575 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000576 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000577 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000578 break;
579 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000580
581 case X86II::MRM0r: case X86II::MRM1r:
582 case X86II::MRM2r: case X86II::MRM3r:
583 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000584 case X86II::MRM6r: case X86II::MRM7r:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000585 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000586 EmitRegModRMByte(MI.getOperand(CurOp++),
587 (TSFlags & X86II::FormMask)-X86II::MRM0r,
588 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000589 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000590 case X86II::MRM0m: case X86II::MRM1m:
591 case X86II::MRM2m: case X86II::MRM3m:
592 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000593 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000594 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000595 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000596 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000597 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000598 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000599 case X86II::MRM_C1:
600 EmitByte(BaseOpcode, CurByte, OS);
601 EmitByte(0xC1, CurByte, OS);
602 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000603 case X86II::MRM_C2:
604 EmitByte(BaseOpcode, CurByte, OS);
605 EmitByte(0xC2, CurByte, OS);
606 break;
607 case X86II::MRM_C3:
608 EmitByte(BaseOpcode, CurByte, OS);
609 EmitByte(0xC3, CurByte, OS);
610 break;
611 case X86II::MRM_C4:
612 EmitByte(BaseOpcode, CurByte, OS);
613 EmitByte(0xC4, CurByte, OS);
614 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000615 case X86II::MRM_C8:
616 EmitByte(BaseOpcode, CurByte, OS);
617 EmitByte(0xC8, CurByte, OS);
618 break;
619 case X86II::MRM_C9:
620 EmitByte(BaseOpcode, CurByte, OS);
621 EmitByte(0xC9, CurByte, OS);
622 break;
623 case X86II::MRM_E8:
624 EmitByte(BaseOpcode, CurByte, OS);
625 EmitByte(0xE8, CurByte, OS);
626 break;
627 case X86II::MRM_F0:
628 EmitByte(BaseOpcode, CurByte, OS);
629 EmitByte(0xF0, CurByte, OS);
630 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000631 case X86II::MRM_F8:
632 EmitByte(BaseOpcode, CurByte, OS);
633 EmitByte(0xF8, CurByte, OS);
634 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000635 case X86II::MRM_F9:
636 EmitByte(BaseOpcode, CurByte, OS);
637 EmitByte(0xF9, CurByte, OS);
638 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000639 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000640
641 // If there is a remaining operand, it must be a trailing immediate. Emit it
642 // according to the right size for the instruction.
643 if (CurOp != NumOps)
Chris Lattnercf653392010-02-12 22:36:47 +0000644 EmitImmediate(MI.getOperand(CurOp++),
645 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000646 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000647
648#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000649 // FIXME: Verify.
650 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000651 errs() << "Cannot encode all operands of: ";
652 MI.dump();
653 errs() << '\n';
654 abort();
655 }
656#endif
Chris Lattner45762472010-02-03 21:24:49 +0000657}