blob: 3aaa6932797667217417a70919c5656bedac4d27 [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner847df252004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner847df252004-01-30 22:25:18 +000020//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnera960d952003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
Chris Lattner95b2c7d2006-12-19 22:59:26 +000026#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000027#include "X86.h"
28#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000030#include "llvm/ADT/DenseMap.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000032#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000035#include "llvm/CodeGen/EdgeBundles.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000036#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/Passes.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000040#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000045#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000046using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000047
Chris Lattner95b2c7d2006-12-19 22:59:26 +000048STATISTIC(NumFXCH, "Number of fxch instructions inserted");
49STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000050
Chris Lattner95b2c7d2006-12-19 22:59:26 +000051namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000052 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000053 static char ID;
Owen Anderson90c579d2010-08-06 18:33:48 +000054 FPS() : MachineFunctionPass(ID) {
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000055 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
Jakob Stoklund Olesenb47bb132010-07-16 22:00:33 +000056 // This is really only to keep valgrind quiet.
57 // The logic in isLive() is too much for it.
58 memset(Stack, 0, sizeof(Stack));
59 memset(RegMap, 0, sizeof(RegMap));
60 }
Devang Patel794fd752007-05-01 21:15:47 +000061
Evan Chengbbeeb2a2008-09-22 20:58:04 +000062 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000063 AU.setPreservesCFG();
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000064 AU.addRequired<EdgeBundles>();
Evan Cheng8b56a902008-09-22 22:21:38 +000065 AU.addPreservedID(MachineLoopInfoID);
66 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000067 MachineFunctionPass::getAnalysisUsage(AU);
68 }
69
Chris Lattnera960d952003-01-13 01:01:59 +000070 virtual bool runOnMachineFunction(MachineFunction &MF);
71
72 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
73
Chris Lattnera960d952003-01-13 01:01:59 +000074 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000075 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000076
77 // Two CFG edges are related if they leave the same block, or enter the same
78 // block. The transitive closure of an edge under this relation is a
79 // LiveBundle. It represents a set of CFG edges where the live FP stack
80 // registers must be allocated identically in the x87 stack.
81 //
82 // A LiveBundle is usually all the edges leaving a block, or all the edges
83 // entering a block, but it can contain more edges if critical edges are
84 // present.
85 //
86 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
87 // but the exact mapping of FP registers to stack slots is fixed later.
88 struct LiveBundle {
89 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
90 unsigned Mask;
91
92 // Number of pre-assigned live registers in FixStack. This is 0 when the
93 // stack order has not yet been fixed.
94 unsigned FixCount;
95
96 // Assigned stack order for live-in registers.
97 // FixStack[i] == getStackEntry(i) for all i < FixCount.
98 unsigned char FixStack[8];
99
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000100 LiveBundle() : Mask(0), FixCount(0) {}
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000101
102 // Have the live registers been assigned a stack order yet?
103 bool isFixed() const { return !Mask || FixCount; }
104 };
105
106 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
107 // with no live FP registers.
108 SmallVector<LiveBundle, 8> LiveBundles;
109
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000110 // The edge bundle analysis provides indices into the LiveBundles vector.
111 EdgeBundles *Bundles;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000112
113 // Return a bitmask of FP registers in block's live-in list.
114 unsigned calcLiveInMask(MachineBasicBlock *MBB) {
115 unsigned Mask = 0;
116 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
117 E = MBB->livein_end(); I != E; ++I) {
118 unsigned Reg = *I - X86::FP0;
119 if (Reg < 8)
120 Mask |= 1 << Reg;
121 }
122 return Mask;
123 }
124
125 // Partition all the CFG edges into LiveBundles.
126 void bundleCFG(MachineFunction &MF);
127
Evan Cheng32644ac2006-12-01 10:11:51 +0000128 MachineBasicBlock *MBB; // Current basic block
129 unsigned Stack[8]; // FP<n> Registers in each stack slot...
130 unsigned RegMap[8]; // Track which stack slot contains each register
131 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000132
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000133 // Set up our stack model to match the incoming registers to MBB.
134 void setupBlockStack();
135
136 // Shuffle live registers to match the expectations of successor blocks.
137 void finishBlockStack();
138
Chris Lattnera960d952003-01-13 01:01:59 +0000139 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +0000140 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +0000141 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +0000142 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000143 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +0000144 }
David Greenef5c95a62010-01-05 01:29:34 +0000145 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +0000146 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000147
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000148 /// getSlot - Return the stack slot number a particular register number is
149 /// in.
Chris Lattnera960d952003-01-13 01:01:59 +0000150 unsigned getSlot(unsigned RegNo) const {
151 assert(RegNo < 8 && "Regno out of range!");
152 return RegMap[RegNo];
153 }
154
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000155 /// isLive - Is RegNo currently live in the stack?
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000156 bool isLive(unsigned RegNo) const {
157 unsigned Slot = getSlot(RegNo);
158 return Slot < StackTop && Stack[Slot] == RegNo;
159 }
160
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000161 /// getScratchReg - Return an FP register that is not currently in use.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000162 unsigned getScratchReg() {
163 for (int i = 7; i >= 0; --i)
164 if (!isLive(i))
165 return i;
166 llvm_unreachable("Ran out of scratch FP registers");
167 }
168
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000169 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +0000170 unsigned getStackEntry(unsigned STi) const {
Evan Cheng3f490f32010-10-12 23:19:28 +0000171 if (STi >= StackTop)
172 report_fatal_error("Access past stack top!");
Chris Lattnera960d952003-01-13 01:01:59 +0000173 return Stack[StackTop-1-STi];
174 }
175
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000176 /// getSTReg - Return the X86::ST(i) register which contains the specified
177 /// FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000178 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000179 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000180 }
181
Chris Lattner447ff682008-03-11 03:23:40 +0000182 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000183 void pushReg(unsigned Reg) {
184 assert(Reg < 8 && "Register number out of range!");
Evan Cheng3f490f32010-10-12 23:19:28 +0000185 if (StackTop >= 8)
186 report_fatal_error("Stack overflow!");
Chris Lattnera960d952003-01-13 01:01:59 +0000187 Stack[StackTop] = Reg;
188 RegMap[Reg] = StackTop++;
189 }
190
191 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000192 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000193 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000194 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000195
Chris Lattner447ff682008-03-11 03:23:40 +0000196 unsigned STReg = getSTReg(RegNo);
197 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000198
Chris Lattner447ff682008-03-11 03:23:40 +0000199 // Swap the slots the regs are in.
200 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000201
Chris Lattner447ff682008-03-11 03:23:40 +0000202 // Swap stack slot contents.
Evan Cheng3f490f32010-10-12 23:19:28 +0000203 if (RegMap[RegOnTop] >= StackTop)
204 report_fatal_error("Access past stack top!");
Chris Lattner447ff682008-03-11 03:23:40 +0000205 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000206
Chris Lattner447ff682008-03-11 03:23:40 +0000207 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000208 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmanfe601042010-06-22 15:08:57 +0000209 ++NumFXCH;
Chris Lattnera960d952003-01-13 01:01:59 +0000210 }
211
Chris Lattner0526f012004-04-01 04:06:09 +0000212 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000213 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000214 unsigned STReg = getSTReg(RegNo);
215 pushReg(AsReg); // New register on top of stack
216
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000217 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000218 }
219
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000220 /// popStackAfter - Pop the current value off of the top of the FP stack
221 /// after the specified instruction.
Chris Lattnera960d952003-01-13 01:01:59 +0000222 void popStackAfter(MachineBasicBlock::iterator &I);
223
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000224 /// freeStackSlotAfter - Free the specified register from the register
225 /// stack, so that it is no longer in a register. If the register is
226 /// currently at the top of the stack, we just pop the current instruction,
227 /// otherwise we store the current top-of-stack into the specified slot,
228 /// then pop the top of stack.
Chris Lattner0526f012004-04-01 04:06:09 +0000229 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
230
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000231 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
232 /// instruction.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000233 MachineBasicBlock::iterator
234 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
235
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000236 /// Adjust the live registers to be the set in Mask.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000237 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
238
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000239 /// Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
240 /// st(0), FP reg FixStack[1] is st(1) etc.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000241 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
242 MachineBasicBlock::iterator I);
243
Chris Lattnera960d952003-01-13 01:01:59 +0000244 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
245
246 void handleZeroArgFP(MachineBasicBlock::iterator &I);
247 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000248 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000249 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000250 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000251 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000252 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000253
254 bool translateCopy(MachineInstr*);
Chris Lattnera960d952003-01-13 01:01:59 +0000255 };
Devang Patel19974732007-05-03 01:11:54 +0000256 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000257}
258
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000259FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000260
Chris Lattner3cc83842008-01-14 06:41:29 +0000261/// getFPReg - Return the X86::FPx register number for the specified operand.
262/// For example, this returns 3 for X86::FP3.
263static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000264 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000265 unsigned Reg = MO.getReg();
266 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
267 return Reg - X86::FP0;
268}
269
Chris Lattnera960d952003-01-13 01:01:59 +0000270/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
271/// register references into FP stack references.
272///
273bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000274 // We only need to run this pass if there are any FP registers used in this
275 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000276 bool FPIsUsed = false;
277
278 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
279 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000280 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000281 FPIsUsed = true;
282 break;
283 }
284
285 // Early exit.
286 if (!FPIsUsed) return false;
287
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000288 Bundles = &getAnalysis<EdgeBundles>();
Evan Cheng32644ac2006-12-01 10:11:51 +0000289 TII = MF.getTarget().getInstrInfo();
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000290
291 // Prepare cross-MBB liveness.
292 bundleCFG(MF);
293
Chris Lattnera960d952003-01-13 01:01:59 +0000294 StackTop = 0;
295
Chris Lattner847df252004-01-30 22:25:18 +0000296 // Process the function in depth first order so that we process at least one
297 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000298 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000299 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000300
301 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000302 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000303 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
304 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000305 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000306
Chris Lattnerba3598c2009-09-08 04:55:44 +0000307 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000308 if (MF.size() != Processed.size())
309 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
310 if (Processed.insert(BB))
311 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerba3598c2009-09-08 04:55:44 +0000312
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000313 LiveBundles.clear();
314
Chris Lattnera960d952003-01-13 01:01:59 +0000315 return Changed;
316}
317
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000318/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
319/// live-out sets for the FP registers. Consistent means that the set of
320/// registers live-out from a block is identical to the live-in set of all
321/// successors. This is not enforced by the normal live-in lists since
322/// registers may be implicitly defined, or not used by all successors.
323void FPS::bundleCFG(MachineFunction &MF) {
324 assert(LiveBundles.empty() && "Stale data in LiveBundles");
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000325 LiveBundles.resize(Bundles->getNumBundles());
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000326
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000327 // Gather the actual live-in masks for all MBBs.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000328 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
329 MachineBasicBlock *MBB = I;
330 const unsigned Mask = calcLiveInMask(MBB);
331 if (!Mask)
332 continue;
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000333 // Update MBB ingoing bundle mask.
334 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000335 }
336}
337
Chris Lattnera960d952003-01-13 01:01:59 +0000338/// processBasicBlock - Loop over all of the instructions in the basic block,
339/// transforming FP instructions into their stack form.
340///
341bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000342 bool Changed = false;
343 MBB = &BB;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000344
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000345 setupBlockStack();
346
Chris Lattnera960d952003-01-13 01:01:59 +0000347 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000348 MachineInstr *MI = I;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000349 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000350
Chris Lattnere12ecf22008-03-11 19:50:13 +0000351 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattner518bb532010-02-09 19:54:29 +0000352 if (MI->isInlineAsm())
Chris Lattnere12ecf22008-03-11 19:50:13 +0000353 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000354
355 if (MI->isCopy() && translateCopy(MI))
356 FPInstClass = X86II::SpecialFP;
357
Chris Lattnere12ecf22008-03-11 19:50:13 +0000358 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000359 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000360
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000361 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000362 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000363 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000364
365 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000366 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000367
368 // Get dead variables list now because the MI pointer may be deleted as part
369 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000370 SmallVector<unsigned, 8> DeadRegs;
371 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
372 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000373 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000374 DeadRegs.push_back(MO.getReg());
375 }
Chris Lattnera960d952003-01-13 01:01:59 +0000376
Chris Lattnere12ecf22008-03-11 19:50:13 +0000377 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000378 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000379 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000380 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000381 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000382 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000383 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000384 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000385 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000386 }
387
388 // Check to see if any of the values defined by this instruction are dead
389 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000390 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
391 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000392 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000393 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000394 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000395 }
396 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000397
Chris Lattnera960d952003-01-13 01:01:59 +0000398 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000399 DEBUG(
400 MachineBasicBlock::iterator PrevI(PrevMI);
401 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000402 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000403 } else {
404 MachineBasicBlock::iterator Start = I;
405 // Rewind to first instruction newly inserted.
406 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000407 dbgs() << "Inserted instructions:\n\t";
408 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000409 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000410 }
411 dumpStack();
412 );
Chris Lattnera960d952003-01-13 01:01:59 +0000413
414 Changed = true;
415 }
416
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000417 finishBlockStack();
418
Chris Lattnera960d952003-01-13 01:01:59 +0000419 return Changed;
420}
421
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000422/// setupBlockStack - Use the live bundles to set up our model of the stack
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000423/// to match predecessors' live out stack.
424void FPS::setupBlockStack() {
425 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
426 << " derived from " << MBB->getName() << ".\n");
427 StackTop = 0;
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000428 // Get the live-in bundle for MBB.
429 const LiveBundle &Bundle =
430 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000431
432 if (!Bundle.Mask) {
433 DEBUG(dbgs() << "Block has no FP live-ins.\n");
434 return;
435 }
436
437 // Depth-first iteration should ensure that we always have an assigned stack.
438 assert(Bundle.isFixed() && "Reached block before any predecessors");
439
440 // Push the fixed live-in registers.
441 for (unsigned i = Bundle.FixCount; i > 0; --i) {
442 MBB->addLiveIn(X86::ST0+i-1);
443 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
444 << unsigned(Bundle.FixStack[i-1]) << '\n');
445 pushReg(Bundle.FixStack[i-1]);
446 }
447
448 // Kill off unwanted live-ins. This can happen with a critical edge.
449 // FIXME: We could keep these live registers around as zombies. They may need
450 // to be revived at the end of a short block. It might save a few instrs.
451 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
452 DEBUG(MBB->dump());
453}
454
455/// finishBlockStack - Revive live-outs that are implicitly defined out of
456/// MBB. Shuffle live registers to match the expected fixed stack of any
457/// predecessors, and ensure that all predecessors are expecting the same
458/// stack.
459void FPS::finishBlockStack() {
460 // The RET handling below takes care of return blocks for us.
461 if (MBB->succ_empty())
462 return;
463
464 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
465 << " derived from " << MBB->getName() << ".\n");
466
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000467 // Get MBB's live-out bundle.
468 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000469 LiveBundle &Bundle = LiveBundles[BundleIdx];
470
471 // We may need to kill and define some registers to match successors.
472 // FIXME: This can probably be combined with the shuffle below.
473 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
474 adjustLiveRegs(Bundle.Mask, Term);
475
476 if (!Bundle.Mask) {
477 DEBUG(dbgs() << "No live-outs.\n");
478 return;
479 }
480
481 // Has the stack order been fixed yet?
482 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
483 if (Bundle.isFixed()) {
484 DEBUG(dbgs() << "Shuffling stack to match.\n");
485 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
486 } else {
487 // Not fixed yet, we get to choose.
488 DEBUG(dbgs() << "Fixing stack order now.\n");
489 Bundle.FixCount = StackTop;
490 for (unsigned i = 0; i < StackTop; ++i)
491 Bundle.FixStack[i] = getStackEntry(i);
492 }
493}
494
495
Chris Lattnera960d952003-01-13 01:01:59 +0000496//===----------------------------------------------------------------------===//
497// Efficient Lookup Table Support
498//===----------------------------------------------------------------------===//
499
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000500namespace {
501 struct TableEntry {
502 unsigned from;
503 unsigned to;
504 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000505 friend bool operator<(const TableEntry &TE, unsigned V) {
506 return TE.from < V;
507 }
Chandler Carruth100c2672010-10-23 08:10:43 +0000508 friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
509 const TableEntry &TE) {
Jakob Stoklund Olesende78f052010-08-16 18:24:54 +0000510 return V < TE.from;
511 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000512 };
513}
Chris Lattnera960d952003-01-13 01:01:59 +0000514
Evan Chenga022bdf2008-07-21 20:02:45 +0000515#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000516static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
517 for (unsigned i = 0; i != NumEntries-1; ++i)
518 if (!(Table[i] < Table[i+1])) return false;
519 return true;
520}
Evan Chenga022bdf2008-07-21 20:02:45 +0000521#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000522
523static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
524 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
525 if (I != Table+N && I->from == Opcode)
526 return I->to;
527 return -1;
528}
529
Chris Lattnera960d952003-01-13 01:01:59 +0000530#ifdef NDEBUG
531#define ASSERT_SORTED(TABLE)
532#else
533#define ASSERT_SORTED(TABLE) \
534 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000535 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000536 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000537 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000538 TABLE##Checked = true; \
539 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000540 }
541#endif
542
Chris Lattner58fe4592005-12-21 07:47:04 +0000543//===----------------------------------------------------------------------===//
544// Register File -> Register Stack Mapping Methods
545//===----------------------------------------------------------------------===//
546
547// OpcodeTable - Sorted map of register instructions to their stack version.
548// The first element is an register file pseudo instruction, the second is the
549// concrete X86 instruction which uses the register stack.
550//
551static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000552 { X86::ABS_Fp32 , X86::ABS_F },
553 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000554 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000555 { X86::ADD_Fp32m , X86::ADD_F32m },
556 { X86::ADD_Fp64m , X86::ADD_F64m },
557 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000558 { X86::ADD_Fp80m32 , X86::ADD_F32m },
559 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000560 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
561 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000562 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000563 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
564 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000565 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000566 { X86::CHS_Fp32 , X86::CHS_F },
567 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000568 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000569 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
570 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000571 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000572 { X86::CMOVB_Fp32 , X86::CMOVB_F },
573 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000574 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000575 { X86::CMOVE_Fp32 , X86::CMOVE_F },
576 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000577 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000578 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
579 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000580 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000581 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
582 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000583 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000584 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
585 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000586 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000587 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
588 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000589 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000590 { X86::CMOVP_Fp32 , X86::CMOVP_F },
591 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000592 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000593 { X86::COS_Fp32 , X86::COS_F },
594 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000595 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000596 { X86::DIVR_Fp32m , X86::DIVR_F32m },
597 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000598 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000599 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
600 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000601 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
602 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000603 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000604 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
605 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000606 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000607 { X86::DIV_Fp32m , X86::DIV_F32m },
608 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000609 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000610 { X86::DIV_Fp80m32 , X86::DIV_F32m },
611 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000612 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
613 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000614 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000615 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
616 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000617 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000618 { X86::ILD_Fp16m32 , X86::ILD_F16m },
619 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000620 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000621 { X86::ILD_Fp32m32 , X86::ILD_F32m },
622 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000623 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000624 { X86::ILD_Fp64m32 , X86::ILD_F64m },
625 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000626 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000627 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
628 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000629 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000630 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
631 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000632 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000633 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
634 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000635 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000636 { X86::IST_Fp16m32 , X86::IST_F16m },
637 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000638 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000639 { X86::IST_Fp32m32 , X86::IST_F32m },
640 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000641 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000642 { X86::IST_Fp64m32 , X86::IST_FP64m },
643 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000644 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000645 { X86::LD_Fp032 , X86::LD_F0 },
646 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000647 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000648 { X86::LD_Fp132 , X86::LD_F1 },
649 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000650 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000651 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000652 { X86::LD_Fp32m64 , X86::LD_F32m },
653 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000654 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000655 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000656 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000657 { X86::MUL_Fp32m , X86::MUL_F32m },
658 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000659 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000660 { X86::MUL_Fp80m32 , X86::MUL_F32m },
661 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000662 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
663 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000664 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000665 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
666 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000667 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000668 { X86::SIN_Fp32 , X86::SIN_F },
669 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000670 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000671 { X86::SQRT_Fp32 , X86::SQRT_F },
672 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000673 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000674 { X86::ST_Fp32m , X86::ST_F32m },
675 { X86::ST_Fp64m , X86::ST_F64m },
676 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000677 { X86::ST_Fp80m32 , X86::ST_F32m },
678 { X86::ST_Fp80m64 , X86::ST_F64m },
679 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000680 { X86::SUBR_Fp32m , X86::SUBR_F32m },
681 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000682 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000683 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
684 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000685 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
686 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000687 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000688 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
689 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000690 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000691 { X86::SUB_Fp32m , X86::SUB_F32m },
692 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000693 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000694 { X86::SUB_Fp80m32 , X86::SUB_F32m },
695 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000696 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
697 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000698 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000699 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
700 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000701 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000702 { X86::TST_Fp32 , X86::TST_F },
703 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000704 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000705 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
706 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000707 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000708 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
709 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000710 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000711};
712
713static unsigned getConcreteOpcode(unsigned Opcode) {
714 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000715 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000716 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
717 return Opc;
718}
Chris Lattnera960d952003-01-13 01:01:59 +0000719
720//===----------------------------------------------------------------------===//
721// Helper Methods
722//===----------------------------------------------------------------------===//
723
724// PopTable - Sorted map of instructions to their popping version. The first
725// element is an instruction, the second is the version which pops.
726//
727static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000728 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000729
Dale Johannesene377d4d2007-07-04 21:07:47 +0000730 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
731 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000732
Dale Johannesene377d4d2007-07-04 21:07:47 +0000733 { X86::IST_F16m , X86::IST_FP16m },
734 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000735
Dale Johannesene377d4d2007-07-04 21:07:47 +0000736 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000737
Dale Johannesene377d4d2007-07-04 21:07:47 +0000738 { X86::ST_F32m , X86::ST_FP32m },
739 { X86::ST_F64m , X86::ST_FP64m },
740 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000741
Dale Johannesene377d4d2007-07-04 21:07:47 +0000742 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
743 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000744
Dale Johannesene377d4d2007-07-04 21:07:47 +0000745 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000746
Dale Johannesene377d4d2007-07-04 21:07:47 +0000747 { X86::UCOM_FPr , X86::UCOM_FPPr },
748 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000749};
750
751/// popStackAfter - Pop the current value off of the top of the FP stack after
752/// the specified instruction. This attempts to be sneaky and combine the pop
753/// into the instruction itself if possible. The iterator is left pointing to
754/// the last instruction, be it a new pop instruction inserted, or the old
755/// instruction if it was modified in place.
756///
757void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000758 MachineInstr* MI = I;
759 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000760 ASSERT_SORTED(PopTable);
Evan Cheng3f490f32010-10-12 23:19:28 +0000761 if (StackTop == 0)
762 report_fatal_error("Cannot pop empty stack!");
Chris Lattnera960d952003-01-13 01:01:59 +0000763 RegMap[Stack[--StackTop]] = ~0; // Update state
764
765 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000766 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000767 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000768 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000769 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000770 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000771 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000772 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000773 }
774}
775
Chris Lattner0526f012004-04-01 04:06:09 +0000776/// freeStackSlotAfter - Free the specified register from the register stack, so
777/// that it is no longer in a register. If the register is currently at the top
778/// of the stack, we just pop the current instruction, otherwise we store the
779/// current top-of-stack into the specified slot, then pop the top of stack.
780void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
781 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
782 popStackAfter(I);
783 return;
784 }
785
786 // Otherwise, store the top of stack into the dead slot, killing the operand
787 // without having to add in an explicit xchg then pop.
788 //
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000789 I = freeStackSlotBefore(++I, FPRegNo);
790}
791
792/// freeStackSlotBefore - Free the specified register without trying any
793/// folding.
794MachineBasicBlock::iterator
795FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattner0526f012004-04-01 04:06:09 +0000796 unsigned STReg = getSTReg(FPRegNo);
797 unsigned OldSlot = getSlot(FPRegNo);
798 unsigned TopReg = Stack[StackTop-1];
799 Stack[OldSlot] = TopReg;
800 RegMap[TopReg] = OldSlot;
801 RegMap[FPRegNo] = ~0;
802 Stack[--StackTop] = ~0;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000803 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
804}
805
806/// adjustLiveRegs - Kill and revive registers such that exactly the FP
807/// registers with a bit in Mask are live.
808void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
809 unsigned Defs = Mask;
810 unsigned Kills = 0;
811 for (unsigned i = 0; i < StackTop; ++i) {
812 unsigned RegNo = Stack[i];
813 if (!(Defs & (1 << RegNo)))
814 // This register is live, but we don't want it.
815 Kills |= (1 << RegNo);
816 else
817 // We don't need to imp-def this live register.
818 Defs &= ~(1 << RegNo);
819 }
820 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
821
822 // Produce implicit-defs for free by using killed registers.
823 while (Kills && Defs) {
824 unsigned KReg = CountTrailingZeros_32(Kills);
825 unsigned DReg = CountTrailingZeros_32(Defs);
826 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
827 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
828 std::swap(RegMap[KReg], RegMap[DReg]);
829 Kills &= ~(1 << KReg);
830 Defs &= ~(1 << DReg);
831 }
832
833 // Kill registers by popping.
834 if (Kills && I != MBB->begin()) {
835 MachineBasicBlock::iterator I2 = llvm::prior(I);
836 for (;;) {
837 unsigned KReg = getStackEntry(0);
838 if (!(Kills & (1 << KReg)))
839 break;
840 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
841 popStackAfter(I2);
842 Kills &= ~(1 << KReg);
843 }
844 }
845
846 // Manually kill the rest.
847 while (Kills) {
848 unsigned KReg = CountTrailingZeros_32(Kills);
849 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
850 freeStackSlotBefore(I, KReg);
851 Kills &= ~(1 << KReg);
852 }
853
854 // Load zeros for all the imp-defs.
855 while(Defs) {
856 unsigned DReg = CountTrailingZeros_32(Defs);
857 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
858 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
859 pushReg(DReg);
860 Defs &= ~(1 << DReg);
861 }
862
863 // Now we should have the correct registers live.
864 DEBUG(dumpStack());
865 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
866}
867
868/// shuffleStackTop - emit fxch instructions before I to shuffle the top
869/// FixCount entries into the order given by FixStack.
870/// FIXME: Is there a better algorithm than insertion sort?
871void FPS::shuffleStackTop(const unsigned char *FixStack,
872 unsigned FixCount,
873 MachineBasicBlock::iterator I) {
874 // Move items into place, starting from the desired stack bottom.
875 while (FixCount--) {
876 // Old register at position FixCount.
877 unsigned OldReg = getStackEntry(FixCount);
878 // Desired register at position FixCount.
879 unsigned Reg = FixStack[FixCount];
880 if (Reg == OldReg)
881 continue;
882 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
883 moveToTop(Reg, I);
884 moveToTop(OldReg, I);
885 }
886 DEBUG(dumpStack());
Chris Lattner0526f012004-04-01 04:06:09 +0000887}
888
889
Chris Lattnera960d952003-01-13 01:01:59 +0000890//===----------------------------------------------------------------------===//
891// Instruction transformation implementation
892//===----------------------------------------------------------------------===//
893
894/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000895///
Chris Lattnera960d952003-01-13 01:01:59 +0000896void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000897 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000898 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000899
Chris Lattner58fe4592005-12-21 07:47:04 +0000900 // Change from the pseudo instruction to the concrete instruction.
901 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000902 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000903
904 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000905 pushReg(DestReg);
906}
907
Chris Lattner4a06f352004-02-02 19:23:15 +0000908/// handleOneArgFP - fst <mem>, ST(0)
909///
Chris Lattnera960d952003-01-13 01:01:59 +0000910void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000911 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000912 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000913 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000914 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000915
Chris Lattner4a06f352004-02-02 19:23:15 +0000916 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000917 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000918 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000919
Evan Cheng2b152712006-02-18 02:36:28 +0000920 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000921 // If we have one _and_ we don't want to pop the operand, duplicate the value
922 // on the stack instead of moving it. This ensure that popping the value is
923 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000924 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000925 //
Evan Cheng2b152712006-02-18 02:36:28 +0000926 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000927 (MI->getOpcode() == X86::IST_Fp64m32 ||
928 MI->getOpcode() == X86::ISTT_Fp16m32 ||
929 MI->getOpcode() == X86::ISTT_Fp32m32 ||
930 MI->getOpcode() == X86::ISTT_Fp64m32 ||
931 MI->getOpcode() == X86::IST_Fp64m64 ||
932 MI->getOpcode() == X86::ISTT_Fp16m64 ||
933 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000934 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +0000935 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +0000936 MI->getOpcode() == X86::ISTT_Fp16m80 ||
937 MI->getOpcode() == X86::ISTT_Fp32m80 ||
938 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000939 MI->getOpcode() == X86::ST_FpP80m)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000940 duplicateToTop(Reg, getScratchReg(), I);
Chris Lattnera960d952003-01-13 01:01:59 +0000941 } else {
942 moveToTop(Reg, I); // Move to the top of the stack...
943 }
Chris Lattner58fe4592005-12-21 07:47:04 +0000944
945 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +0000946 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000947 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000948
Dale Johannesene377d4d2007-07-04 21:07:47 +0000949 if (MI->getOpcode() == X86::IST_FP64m ||
950 MI->getOpcode() == X86::ISTT_FP16m ||
951 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +0000952 MI->getOpcode() == X86::ISTT_FP64m ||
953 MI->getOpcode() == X86::ST_FP80m) {
Evan Cheng3f490f32010-10-12 23:19:28 +0000954 if (StackTop == 0)
955 report_fatal_error("Stack empty??");
Chris Lattnera960d952003-01-13 01:01:59 +0000956 --StackTop;
957 } else if (KillsSrc) { // Last use of operand?
958 popStackAfter(I);
959 }
960}
961
Chris Lattner4a06f352004-02-02 19:23:15 +0000962
Chris Lattner4cf15e72004-04-11 20:21:06 +0000963/// handleOneArgFPRW: Handle instructions that read from the top of stack and
964/// replace the value with a newly computed value. These instructions may have
965/// non-fp operands after their FP operands.
966///
967/// Examples:
968/// R1 = fchs R2
969/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +0000970///
971void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000972 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +0000973#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +0000974 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +0000975 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +0000976#endif
Chris Lattner4a06f352004-02-02 19:23:15 +0000977
978 // Is this the last use of the source register?
979 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +0000980 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +0000981
982 if (KillsSrc) {
983 // If this is the last use of the source register, just make sure it's on
984 // the top of the stack.
985 moveToTop(Reg, I);
Evan Cheng3f490f32010-10-12 23:19:28 +0000986 if (StackTop == 0)
987 report_fatal_error("Stack cannot be empty!");
Chris Lattner4a06f352004-02-02 19:23:15 +0000988 --StackTop;
989 pushReg(getFPReg(MI->getOperand(0)));
990 } else {
991 // If this is not the last use of the source register, _copy_ it to the top
992 // of the stack.
993 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
994 }
995
Chris Lattner58fe4592005-12-21 07:47:04 +0000996 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +0000997 MI->RemoveOperand(1); // Drop the source operand.
998 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +0000999 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +00001000}
1001
1002
Chris Lattnera960d952003-01-13 01:01:59 +00001003//===----------------------------------------------------------------------===//
1004// Define tables of various ways to map pseudo instructions
1005//
1006
1007// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1008static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001009 { X86::ADD_Fp32 , X86::ADD_FST0r },
1010 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001011 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001012 { X86::DIV_Fp32 , X86::DIV_FST0r },
1013 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001014 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001015 { X86::MUL_Fp32 , X86::MUL_FST0r },
1016 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001017 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001018 { X86::SUB_Fp32 , X86::SUB_FST0r },
1019 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001020 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001021};
1022
1023// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1024static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001025 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1026 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001027 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001028 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1029 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001030 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001031 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1032 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001033 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001034 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1035 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001036 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001037};
1038
1039// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1040static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001041 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1042 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001043 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001044 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1045 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001046 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001047 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1048 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001049 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001050 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1051 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001052 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001053};
1054
1055// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1056static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001057 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1058 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001059 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001060 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1061 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001062 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001063 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1064 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001065 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001066 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1067 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001068 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001069};
1070
1071
1072/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1073/// instructions which need to be simplified and possibly transformed.
1074///
1075/// Result: ST(0) = fsub ST(0), ST(i)
1076/// ST(i) = fsub ST(0), ST(i)
1077/// ST(0) = fsubr ST(0), ST(i)
1078/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001079///
Chris Lattnera960d952003-01-13 01:01:59 +00001080void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1081 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1082 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001083 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001084
Chris Lattner749c6f62008-01-07 07:27:27 +00001085 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001086 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +00001087 unsigned Dest = getFPReg(MI->getOperand(0));
1088 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1089 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001090 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1091 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001092 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001093
Chris Lattnera960d952003-01-13 01:01:59 +00001094 unsigned TOS = getStackEntry(0);
1095
1096 // One of our operands must be on the top of the stack. If neither is yet, we
1097 // need to move one.
1098 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1099 // We can choose to move either operand to the top of the stack. If one of
1100 // the operands is killed by this instruction, we want that one so that we
1101 // can update right on top of the old version.
1102 if (KillsOp0) {
1103 moveToTop(Op0, I); // Move dead operand to TOS.
1104 TOS = Op0;
1105 } else if (KillsOp1) {
1106 moveToTop(Op1, I);
1107 TOS = Op1;
1108 } else {
1109 // All of the operands are live after this instruction executes, so we
1110 // cannot update on top of any operand. Because of this, we must
1111 // duplicate one of the stack elements to the top. It doesn't matter
1112 // which one we pick.
1113 //
1114 duplicateToTop(Op0, Dest, I);
1115 Op0 = TOS = Dest;
1116 KillsOp0 = true;
1117 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001118 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +00001119 // If we DO have one of our operands at the top of the stack, but we don't
1120 // have a dead operand, we must duplicate one of the operands to a new slot
1121 // on the stack.
1122 duplicateToTop(Op0, Dest, I);
1123 Op0 = TOS = Dest;
1124 KillsOp0 = true;
1125 }
1126
1127 // Now we know that one of our operands is on the top of the stack, and at
1128 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001129 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1130 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +00001131
1132 // We decide which form to use based on what is on the top of the stack, and
1133 // which operand is killed by this instruction.
1134 const TableEntry *InstTable;
1135 bool isForward = TOS == Op0;
1136 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1137 if (updateST0) {
1138 if (isForward)
1139 InstTable = ForwardST0Table;
1140 else
1141 InstTable = ReverseST0Table;
1142 } else {
1143 if (isForward)
1144 InstTable = ForwardSTiTable;
1145 else
1146 InstTable = ReverseSTiTable;
1147 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001148
Owen Anderson718cb662007-09-07 04:06:50 +00001149 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1150 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +00001151 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1152
1153 // NotTOS - The register which is not on the top of stack...
1154 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1155
1156 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +00001157 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001158 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +00001159
1160 // If both operands are killed, pop one off of the stack in addition to
1161 // overwriting the other one.
1162 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1163 assert(!updateST0 && "Should have updated other operand!");
1164 popStackAfter(I); // Pop the top of stack
1165 }
1166
Chris Lattnera960d952003-01-13 01:01:59 +00001167 // Update stack information so that we know the destination register is now on
1168 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001169 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1170 assert(UpdatedSlot < StackTop && Dest < 7);
1171 Stack[UpdatedSlot] = Dest;
1172 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001173 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001174}
1175
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001176/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001177/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001178///
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001179void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1180 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1181 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1182 MachineInstr *MI = I;
1183
Chris Lattner749c6f62008-01-07 07:27:27 +00001184 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001185 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001186 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1187 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001188 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1189 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001190
1191 // Make sure the first operand is on the top of stack, the other one can be
1192 // anywhere.
1193 moveToTop(Op0, I);
1194
Chris Lattner58fe4592005-12-21 07:47:04 +00001195 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +00001196 MI->getOperand(0).setReg(getSTReg(Op1));
1197 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +00001198 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +00001199
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001200 // If any of the operands are killed by this instruction, free them.
1201 if (KillsOp0) freeStackSlotAfter(I, Op0);
1202 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +00001203}
1204
Chris Lattnerc1bab322004-03-31 22:02:36 +00001205/// handleCondMovFP - Handle two address conditional move instructions. These
1206/// instructions move a st(i) register to st(0) iff a condition is true. These
1207/// instructions require that the first operand is at the top of the stack, but
1208/// otherwise don't modify the stack at all.
1209void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1210 MachineInstr *MI = I;
1211
1212 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001213 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +00001214 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001215
1216 // The first operand *must* be on the top of the stack.
1217 moveToTop(Op0, I);
1218
1219 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +00001220 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +00001221 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001222 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001223 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +00001224 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +00001225
Chris Lattnerc1bab322004-03-31 22:02:36 +00001226 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +00001227 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +00001228 // Get this value off of the register stack.
1229 freeStackSlotAfter(I, Op1);
1230 }
Chris Lattnerc1bab322004-03-31 22:02:36 +00001231}
1232
Chris Lattnera960d952003-01-13 01:01:59 +00001233
1234/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001235/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +00001236/// instructions.
1237///
1238void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001239 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001240 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001241 default: llvm_unreachable("Unknown SpecialFP instruction!");
Chris Lattner6fa2f9c2008-03-09 07:05:32 +00001242 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1243 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1244 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Chris Lattnera960d952003-01-13 01:01:59 +00001245 assert(StackTop == 0 && "Stack should be empty after a call!");
1246 pushReg(getFPReg(MI->getOperand(0)));
1247 break;
Chris Lattner24e0a542008-03-21 06:38:26 +00001248 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1249 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1250 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1251 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1252 // The pattern we expect is:
1253 // CALL
1254 // FP1 = FpGET_ST0
1255 // FP4 = FpGET_ST1
1256 //
1257 // At this point, we've pushed FP1 on the top of stack, so it should be
1258 // present if it isn't dead. If it was dead, we already emitted a pop to
1259 // remove it from the stack and StackTop = 0.
1260
1261 // Push FP4 as top of stack next.
1262 pushReg(getFPReg(MI->getOperand(0)));
1263
1264 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1265 // dead. In this case, the ST(1) value is the only thing that is live, so
1266 // it should be on the TOS (after the pop that was emitted) and is. Just
1267 // continue in this case.
1268 if (StackTop == 1)
1269 break;
1270
1271 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1272 // elements so that our accounting is correct.
1273 unsigned RegOnTop = getStackEntry(0);
1274 unsigned RegNo = getStackEntry(1);
1275
1276 // Swap the slots the regs are in.
1277 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1278
1279 // Swap stack slot contents.
Evan Cheng3f490f32010-10-12 23:19:28 +00001280 if (RegMap[RegOnTop] >= StackTop)
1281 report_fatal_error("Access past stack top!");
Chris Lattner24e0a542008-03-21 06:38:26 +00001282 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1283 break;
1284 }
Chris Lattnerafb23f42008-03-09 07:08:44 +00001285 case X86::FpSET_ST0_32:
1286 case X86::FpSET_ST0_64:
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001287 case X86::FpSET_ST0_80: {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001288 // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1289 // arguments that use an st constraint. We expect a sequence of
1290 // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001291 unsigned Op0 = getFPReg(MI->getOperand(0));
1292
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001293 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001294 // Duplicate Op0 into a temporary on the stack top.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001295 duplicateToTop(Op0, getScratchReg(), I);
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001296 } else {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001297 // Op0 is killed, so just swap it into position.
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001298 moveToTop(Op0, I);
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001299 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001300 --StackTop; // "Forget" we have something on the top of stack!
1301 break;
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001302 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001303 case X86::FpSET_ST1_32:
1304 case X86::FpSET_ST1_64:
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001305 case X86::FpSET_ST1_80: {
1306 // Set up st(1) for inline asm. We are assuming that st(0) has already been
1307 // set up by FpSET_ST0, and our StackTop is off by one because of it.
1308 unsigned Op0 = getFPReg(MI->getOperand(0));
1309 // Restore the actual StackTop from before Fp_SET_ST0.
1310 // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1311 // are not enforcing the constraint.
1312 ++StackTop;
1313 unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1314 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001315 duplicateToTop(Op0, getScratchReg(), I);
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001316 moveToTop(RegOnTop, I);
1317 } else if (getSTReg(Op0) != X86::ST1) {
1318 // We have the wrong value at st(1). Shuffle! Untested!
1319 moveToTop(getStackEntry(1), I);
1320 moveToTop(Op0, I);
1321 moveToTop(RegOnTop, I);
Evan Chenga0eedac2009-02-09 23:32:07 +00001322 }
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001323 assert(StackTop >= 2 && "Too few live registers");
1324 StackTop -= 2; // "Forget" both st(0) and st(1).
Chris Lattnera960d952003-01-13 01:01:59 +00001325 break;
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001326 }
Dale Johannesene377d4d2007-07-04 21:07:47 +00001327 case X86::MOV_Fp3232:
1328 case X86::MOV_Fp3264:
1329 case X86::MOV_Fp6432:
Dale Johannesen59a58732007-08-05 18:49:15 +00001330 case X86::MOV_Fp6464:
1331 case X86::MOV_Fp3280:
1332 case X86::MOV_Fp6480:
1333 case X86::MOV_Fp8032:
1334 case X86::MOV_Fp8064:
1335 case X86::MOV_Fp8080: {
Evan Chengfb112882009-03-23 08:01:15 +00001336 const MachineOperand &MO1 = MI->getOperand(1);
1337 unsigned SrcReg = getFPReg(MO1);
Chris Lattnera960d952003-01-13 01:01:59 +00001338
Evan Chengfb112882009-03-23 08:01:15 +00001339 const MachineOperand &MO0 = MI->getOperand(0);
Evan Chengfb112882009-03-23 08:01:15 +00001340 unsigned DestReg = getFPReg(MO0);
Evan Cheng6130f662008-03-05 00:59:57 +00001341 if (MI->killsRegister(X86::FP0+SrcReg)) {
Chris Lattnera960d952003-01-13 01:01:59 +00001342 // If the input operand is killed, we can just change the owner of the
1343 // incoming stack slot into the result.
1344 unsigned Slot = getSlot(SrcReg);
1345 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1346 Stack[Slot] = DestReg;
1347 RegMap[DestReg] = Slot;
1348
1349 } else {
1350 // For FMOV we just duplicate the specified value to a new stack slot.
1351 // This could be made better, but would require substantial changes.
1352 duplicateToTop(SrcReg, DestReg, I);
1353 }
Nick Lewycky3c786972008-03-11 05:56:09 +00001354 }
Chris Lattnera960d952003-01-13 01:01:59 +00001355 break;
Chris Lattner518bb532010-02-09 19:54:29 +00001356 case TargetOpcode::INLINEASM: {
Chris Lattnere12ecf22008-03-11 19:50:13 +00001357 // The inline asm MachineInstr currently only *uses* FP registers for the
1358 // 'f' constraint. These should be turned into the current ST(x) register
1359 // in the machine instr. Also, any kills should be explicitly popped after
1360 // the inline asm.
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001361 unsigned Kills = 0;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001362 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1363 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001364 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001365 continue;
1366 assert(Op.isUse() && "Only handle inline asm uses right now");
1367
1368 unsigned FPReg = getFPReg(Op);
1369 Op.setReg(getSTReg(FPReg));
1370
1371 // If we kill this operand, make sure to pop it from the stack after the
1372 // asm. We just remember it for now, and pop them all off at the end in
1373 // a batch.
1374 if (Op.isKill())
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001375 Kills |= 1U << FPReg;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001376 }
1377
1378 // If this asm kills any FP registers (is the last use of them) we must
1379 // explicitly emit pop instructions for them. Do this now after the asm has
1380 // executed so that the ST(x) numbers are not off (which would happen if we
1381 // did this inline with operand rewriting).
1382 //
1383 // Note: this might be a non-optimal pop sequence. We might be able to do
1384 // better by trying to pop in stack order or something.
1385 MachineBasicBlock::iterator InsertPt = MI;
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001386 while (Kills) {
1387 unsigned FPReg = CountTrailingZeros_32(Kills);
1388 freeStackSlotAfter(InsertPt, FPReg);
1389 Kills &= ~(1U << FPReg);
1390 }
Chris Lattnere12ecf22008-03-11 19:50:13 +00001391 // Don't delete the inline asm!
1392 return;
1393 }
1394
Chris Lattner447ff682008-03-11 03:23:40 +00001395 case X86::RET:
1396 case X86::RETI:
1397 // If RET has an FP register use operand, pass the first one in ST(0) and
1398 // the second one in ST(1).
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001399
Chris Lattner447ff682008-03-11 03:23:40 +00001400 // Find the register operands.
1401 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001402 unsigned LiveMask = 0;
1403
Chris Lattner447ff682008-03-11 03:23:40 +00001404 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1405 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001406 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001407 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001408 // FP Register uses must be kills unless there are two uses of the same
1409 // register, in which case only one will be a kill.
1410 assert(Op.isUse() &&
1411 (Op.isKill() || // Marked kill.
1412 getFPReg(Op) == FirstFPRegOp || // Second instance.
1413 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1414 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001415
1416 if (FirstFPRegOp == ~0U)
1417 FirstFPRegOp = getFPReg(Op);
1418 else {
1419 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1420 SecondFPRegOp = getFPReg(Op);
1421 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001422 LiveMask |= (1 << getFPReg(Op));
Chris Lattner447ff682008-03-11 03:23:40 +00001423
1424 // Remove the operand so that later passes don't see it.
1425 MI->RemoveOperand(i);
1426 --i, --e;
1427 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001428
1429 // We may have been carrying spurious live-ins, so make sure only the returned
1430 // registers are left live.
1431 adjustLiveRegs(LiveMask, MI);
1432 if (!LiveMask) return; // Quick check to see if any are possible.
1433
Chris Lattner447ff682008-03-11 03:23:40 +00001434 // There are only four possibilities here:
1435 // 1) we are returning a single FP value. In this case, it has to be in
1436 // ST(0) already, so just declare success by removing the value from the
1437 // FP Stack.
1438 if (SecondFPRegOp == ~0U) {
1439 // Assert that the top of stack contains the right FP register.
1440 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1441 "Top of stack not the right register for RET!");
1442
1443 // Ok, everything is good, mark the value as not being on the stack
1444 // anymore so that our assertion about the stack being empty at end of
1445 // block doesn't fire.
1446 StackTop = 0;
1447 return;
1448 }
1449
Chris Lattner447ff682008-03-11 03:23:40 +00001450 // Otherwise, we are returning two values:
1451 // 2) If returning the same value for both, we only have one thing in the FP
1452 // stack. Consider: RET FP1, FP1
1453 if (StackTop == 1) {
1454 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1455 "Stack misconfiguration for RET!");
1456
1457 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1458 // register to hold it.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001459 unsigned NewReg = getScratchReg();
Chris Lattner447ff682008-03-11 03:23:40 +00001460 duplicateToTop(FirstFPRegOp, NewReg, MI);
1461 FirstFPRegOp = NewReg;
1462 }
1463
1464 /// Okay we know we have two different FPx operands now:
1465 assert(StackTop == 2 && "Must have two values live!");
1466
1467 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1468 /// in ST(1). In this case, emit an fxch.
1469 if (getStackEntry(0) == SecondFPRegOp) {
1470 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1471 moveToTop(FirstFPRegOp, MI);
1472 }
1473
1474 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1475 /// ST(1). Just remove both from our understanding of the stack and return.
1476 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001477 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001478 StackTop = 0;
1479 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001480 }
Chris Lattnera960d952003-01-13 01:01:59 +00001481
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001482 I = MBB->erase(I); // Remove the pseudo instruction
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001483
1484 // We want to leave I pointing to the previous instruction, but what if we
1485 // just erased the first instruction?
1486 if (I == MBB->begin()) {
1487 DEBUG(dbgs() << "Inserting dummy KILL\n");
1488 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1489 } else
1490 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001491}
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +00001492
1493// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1494bool FPS::translateCopy(MachineInstr *MI) {
1495 unsigned DstReg = MI->getOperand(0).getReg();
1496 unsigned SrcReg = MI->getOperand(1).getReg();
1497
1498 if (DstReg == X86::ST0) {
1499 MI->setDesc(TII->get(X86::FpSET_ST0_80));
1500 MI->RemoveOperand(0);
1501 return true;
1502 }
1503 if (DstReg == X86::ST1) {
1504 MI->setDesc(TII->get(X86::FpSET_ST1_80));
1505 MI->RemoveOperand(0);
1506 return true;
1507 }
1508 if (SrcReg == X86::ST0) {
1509 MI->setDesc(TII->get(X86::FpGET_ST0_80));
1510 return true;
1511 }
1512 if (SrcReg == X86::ST1) {
1513 MI->setDesc(TII->get(X86::FpGET_ST1_80));
1514 return true;
1515 }
1516 if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1517 MI->setDesc(TII->get(X86::MOV_Fp8080));
1518 return true;
1519 }
1520 return false;
1521}