blob: ff27b123180d1f3df11e1d9ecf4187f356bfd41e [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Owen Anderson07000c62006-05-12 06:33:49 +000015#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000016#include "llvm/Target/TargetMachine.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000017#include "llvm/Target/MRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000018#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000019#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000020#include "llvm/ADT/StringExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000021#include "llvm/Support/MathExtras.h"
Chris Lattner310968c2005-01-07 07:44:53 +000022using namespace llvm;
23
Evan Cheng56966222007-01-12 02:11:51 +000024/// InitLibcallNames - Set default libcall names.
25///
Evan Cheng79cca502007-01-12 22:51:10 +000026static void InitLibcallNames(const char **Names) {
Evan Cheng56966222007-01-12 02:11:51 +000027 Names[RTLIB::SHL_I32] = "__ashlsi3";
28 Names[RTLIB::SHL_I64] = "__ashldi3";
29 Names[RTLIB::SRL_I32] = "__lshrsi3";
30 Names[RTLIB::SRL_I64] = "__lshrdi3";
31 Names[RTLIB::SRA_I32] = "__ashrsi3";
32 Names[RTLIB::SRA_I64] = "__ashrdi3";
33 Names[RTLIB::MUL_I32] = "__mulsi3";
34 Names[RTLIB::MUL_I64] = "__muldi3";
35 Names[RTLIB::SDIV_I32] = "__divsi3";
36 Names[RTLIB::SDIV_I64] = "__divdi3";
37 Names[RTLIB::UDIV_I32] = "__udivsi3";
38 Names[RTLIB::UDIV_I64] = "__udivdi3";
39 Names[RTLIB::SREM_I32] = "__modsi3";
40 Names[RTLIB::SREM_I64] = "__moddi3";
41 Names[RTLIB::UREM_I32] = "__umodsi3";
42 Names[RTLIB::UREM_I64] = "__umoddi3";
43 Names[RTLIB::NEG_I32] = "__negsi2";
44 Names[RTLIB::NEG_I64] = "__negdi2";
45 Names[RTLIB::ADD_F32] = "__addsf3";
46 Names[RTLIB::ADD_F64] = "__adddf3";
47 Names[RTLIB::SUB_F32] = "__subsf3";
48 Names[RTLIB::SUB_F64] = "__subdf3";
49 Names[RTLIB::MUL_F32] = "__mulsf3";
50 Names[RTLIB::MUL_F64] = "__muldf3";
51 Names[RTLIB::DIV_F32] = "__divsf3";
52 Names[RTLIB::DIV_F64] = "__divdf3";
53 Names[RTLIB::REM_F32] = "fmodf";
54 Names[RTLIB::REM_F64] = "fmod";
55 Names[RTLIB::NEG_F32] = "__negsf2";
56 Names[RTLIB::NEG_F64] = "__negdf2";
57 Names[RTLIB::POWI_F32] = "__powisf2";
58 Names[RTLIB::POWI_F64] = "__powidf2";
59 Names[RTLIB::SQRT_F32] = "sqrtf";
60 Names[RTLIB::SQRT_F64] = "sqrt";
61 Names[RTLIB::SIN_F32] = "sinf";
62 Names[RTLIB::SIN_F64] = "sin";
63 Names[RTLIB::COS_F32] = "cosf";
64 Names[RTLIB::COS_F64] = "cos";
65 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
66 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
67 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
68 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
69 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
70 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
71 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
72 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
73 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
74 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
75 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
76 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
77 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
78 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
79 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
80 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
81 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
82 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
83 Names[RTLIB::OEQ_F32] = "__eqsf2";
84 Names[RTLIB::OEQ_F64] = "__eqdf2";
85 Names[RTLIB::UNE_F32] = "__nesf2";
86 Names[RTLIB::UNE_F64] = "__nedf2";
87 Names[RTLIB::OGE_F32] = "__gesf2";
88 Names[RTLIB::OGE_F64] = "__gedf2";
89 Names[RTLIB::OLT_F32] = "__ltsf2";
90 Names[RTLIB::OLT_F64] = "__ltdf2";
91 Names[RTLIB::OLE_F32] = "__lesf2";
92 Names[RTLIB::OLE_F64] = "__ledf2";
93 Names[RTLIB::OGT_F32] = "__gtsf2";
94 Names[RTLIB::OGT_F64] = "__gtdf2";
95 Names[RTLIB::UO_F32] = "__unordsf2";
96 Names[RTLIB::UO_F64] = "__unorddf2";
Evan Chengd385fd62007-01-31 09:29:11 +000097 Names[RTLIB::O_F32] = "__unordsf2";
98 Names[RTLIB::O_F64] = "__unorddf2";
99}
100
101/// InitCmpLibcallCCs - Set default comparison libcall CC.
102///
103static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
104 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
105 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
106 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
107 CCs[RTLIB::UNE_F32] = ISD::SETNE;
108 CCs[RTLIB::UNE_F64] = ISD::SETNE;
109 CCs[RTLIB::OGE_F32] = ISD::SETGE;
110 CCs[RTLIB::OGE_F64] = ISD::SETGE;
111 CCs[RTLIB::OLT_F32] = ISD::SETLT;
112 CCs[RTLIB::OLT_F64] = ISD::SETLT;
113 CCs[RTLIB::OLE_F32] = ISD::SETLE;
114 CCs[RTLIB::OLE_F64] = ISD::SETLE;
115 CCs[RTLIB::OGT_F32] = ISD::SETGT;
116 CCs[RTLIB::OGT_F64] = ISD::SETGT;
117 CCs[RTLIB::UO_F32] = ISD::SETNE;
118 CCs[RTLIB::UO_F64] = ISD::SETNE;
119 CCs[RTLIB::O_F32] = ISD::SETEQ;
120 CCs[RTLIB::O_F64] = ISD::SETEQ;
Evan Cheng56966222007-01-12 02:11:51 +0000121}
122
Chris Lattner310968c2005-01-07 07:44:53 +0000123TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000124 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +0000125 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +0000126 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +0000127 // All operations default to being supported.
128 memset(OpActions, 0, sizeof(OpActions));
Evan Chengc5484282006-10-04 00:56:09 +0000129 memset(LoadXActions, 0, sizeof(LoadXActions));
Evan Cheng8b2794a2006-10-13 21:14:26 +0000130 memset(&StoreXActions, 0, sizeof(StoreXActions));
Evan Cheng5ff839f2006-11-09 18:56:43 +0000131 // Initialize all indexed load / store to expand.
132 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
133 for (unsigned IM = (unsigned)ISD::PRE_INC;
134 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
135 setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
136 setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
137 }
138 }
Chris Lattner310968c2005-01-07 07:44:53 +0000139
Owen Andersona69571c2006-05-03 01:29:57 +0000140 IsLittleEndian = TD->isLittleEndian();
Chris Lattnercf9668f2006-10-06 22:52:08 +0000141 UsesGlobalOffsetTable = false;
Owen Andersona69571c2006-05-03 01:29:57 +0000142 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +0000143 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +0000144 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Chris Lattner00ffed02006-03-01 04:52:55 +0000145 memset(TargetDAGCombineArray, 0,
146 sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
Evan Chenga03a5dc2006-02-14 08:38:30 +0000147 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +0000148 allowUnalignedMemoryAccesses = false;
Anton Korobeynikovd27a2582006-12-10 23:12:42 +0000149 UseUnderscoreSetJmp = false;
150 UseUnderscoreLongJmp = false;
Chris Lattner66180392007-02-25 01:28:05 +0000151 SelectIsExpensive = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +0000152 IntDivIsCheap = false;
153 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +0000154 StackPointerRegisterToSaveRestore = 0;
Jim Laskey9bb3c932007-02-22 18:04:49 +0000155 ExceptionPointerRegister = 0;
156 ExceptionSelectorRegister = 0;
Evan Cheng0577a222006-01-25 18:52:42 +0000157 SchedPreferenceInfo = SchedulingForLatency;
Chris Lattner7acf5f32006-09-05 17:39:15 +0000158 JumpBufSize = 0;
Duraid Madina0c9e0ff2006-09-04 07:44:11 +0000159 JumpBufAlignment = 0;
Evan Cheng56966222007-01-12 02:11:51 +0000160
161 InitLibcallNames(LibcallRoutineNames);
Evan Chengd385fd62007-01-31 09:29:11 +0000162 InitCmpLibcallCCs(CmpLibcallCCs);
Chris Lattner310968c2005-01-07 07:44:53 +0000163}
164
Chris Lattnercba82f92005-01-16 07:28:11 +0000165TargetLowering::~TargetLowering() {}
166
Chris Lattnerbb97d812005-01-16 01:10:58 +0000167/// setValueTypeAction - Set the action for a particular value type. This
168/// assumes an action has not already been set for this value type.
Chris Lattnercba82f92005-01-16 07:28:11 +0000169static void SetValueTypeAction(MVT::ValueType VT,
170 TargetLowering::LegalizeAction Action,
Chris Lattnerbb97d812005-01-16 01:10:58 +0000171 TargetLowering &TLI,
172 MVT::ValueType *TransformToType,
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000173 TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
174 ValueTypeActions.setTypeAction(VT, Action);
Chris Lattnercba82f92005-01-16 07:28:11 +0000175 if (Action == TargetLowering::Promote) {
Chris Lattnerbb97d812005-01-16 01:10:58 +0000176 MVT::ValueType PromoteTo;
177 if (VT == MVT::f32)
178 PromoteTo = MVT::f64;
179 else {
180 unsigned LargerReg = VT+1;
Chris Lattner9ed62c12005-08-24 16:34:12 +0000181 while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
Chris Lattnerbb97d812005-01-16 01:10:58 +0000182 ++LargerReg;
183 assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
184 "Nothing to promote to??");
185 }
186 PromoteTo = (MVT::ValueType)LargerReg;
187 }
188
189 assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
190 MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
191 "Can only promote from int->int or fp->fp!");
192 assert(VT < PromoteTo && "Must promote to a larger type!");
193 TransformToType[VT] = PromoteTo;
Chris Lattnercba82f92005-01-16 07:28:11 +0000194 } else if (Action == TargetLowering::Expand) {
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000195 // f32 and f64 is each expanded to corresponding integer type of same size.
196 if (VT == MVT::f32)
197 TransformToType[VT] = MVT::i32;
198 else if (VT == MVT::f64)
199 TransformToType[VT] = MVT::i64;
200 else {
201 assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
202 "Cannot expand this type: target must support SOME integer reg!");
203 // Expand to the next smaller integer type!
204 TransformToType[VT] = (MVT::ValueType)(VT-1);
205 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000206 }
207}
208
209
Chris Lattner310968c2005-01-07 07:44:53 +0000210/// computeRegisterProperties - Once all of the register classes are added,
211/// this allows us to compute derived properties we expose.
212void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +0000213 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +0000214 "Too many value types for ValueTypeActions to hold!");
215
Chris Lattner310968c2005-01-07 07:44:53 +0000216 // Everything defaults to one.
217 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
218 NumElementsForVT[i] = 1;
Misha Brukmanf976c852005-04-21 22:55:34 +0000219
Chris Lattner310968c2005-01-07 07:44:53 +0000220 // Find the largest integer register class.
221 unsigned LargestIntReg = MVT::i128;
222 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
223 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
224
225 // Every integer value type larger than this largest register takes twice as
226 // many registers to represent as the previous ValueType.
227 unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
228 for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
229 NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
Chris Lattner310968c2005-01-07 07:44:53 +0000230
Chris Lattnerbb97d812005-01-16 01:10:58 +0000231 // Inspect all of the ValueType's possible, deciding how to process them.
232 for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
233 // If we are expanding this type, expand it!
234 if (getNumElements((MVT::ValueType)IntReg) != 1)
Chris Lattnercba82f92005-01-16 07:28:11 +0000235 SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
Chris Lattnerbb97d812005-01-16 01:10:58 +0000236 ValueTypeActions);
Chris Lattner9ed62c12005-08-24 16:34:12 +0000237 else if (!isTypeLegal((MVT::ValueType)IntReg))
Chris Lattnerbb97d812005-01-16 01:10:58 +0000238 // Otherwise, if we don't have native support, we must promote to a
239 // larger type.
Chris Lattnercba82f92005-01-16 07:28:11 +0000240 SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
241 TransformToType, ValueTypeActions);
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000242 else
243 TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
Misha Brukmanf976c852005-04-21 22:55:34 +0000244
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000245 // If the target does not have native F64 support, expand it to I64. We will
246 // be generating soft float library calls. If the target does not have native
247 // support for F32, promote it to F64 if it is legal. Otherwise, expand it to
248 // I32.
249 if (isTypeLegal(MVT::f64))
250 TransformToType[MVT::f64] = MVT::f64;
251 else {
252 NumElementsForVT[MVT::f64] = NumElementsForVT[MVT::i64];
253 SetValueTypeAction(MVT::f64, Expand, *this, TransformToType,
254 ValueTypeActions);
255 }
256 if (isTypeLegal(MVT::f32))
Chris Lattnercfdfe4c2005-01-16 01:20:18 +0000257 TransformToType[MVT::f32] = MVT::f32;
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000258 else if (isTypeLegal(MVT::f64))
259 SetValueTypeAction(MVT::f32, Promote, *this, TransformToType,
260 ValueTypeActions);
261 else {
262 NumElementsForVT[MVT::f32] = NumElementsForVT[MVT::i32];
263 SetValueTypeAction(MVT::f32, Expand, *this, TransformToType,
264 ValueTypeActions);
265 }
Nate Begeman4ef3b812005-11-22 01:29:36 +0000266
267 // Set MVT::Vector to always be Expanded
268 SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType,
269 ValueTypeActions);
Chris Lattner3a5935842006-03-16 19:50:01 +0000270
271 // Loop over all of the legal vector value types, specifying an identity type
272 // transformation.
273 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000274 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Chris Lattner3a5935842006-03-16 19:50:01 +0000275 if (isTypeLegal((MVT::ValueType)i))
276 TransformToType[i] = (MVT::ValueType)i;
277 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000278}
Chris Lattnercba82f92005-01-16 07:28:11 +0000279
Evan Cheng72261582005-12-20 06:22:03 +0000280const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
281 return NULL;
282}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000283
Reid Spencer9d6565a2007-02-15 02:26:10 +0000284/// getVectorTypeBreakdown - Packed types are broken down into some number of
Evan Cheng7e399c12006-05-17 18:22:14 +0000285/// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000286/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
287///
288/// This method returns the number and type of the resultant breakdown.
289///
Reid Spencer9d6565a2007-02-15 02:26:10 +0000290unsigned TargetLowering::getVectorTypeBreakdown(const VectorType *PTy,
Chris Lattner79227e22006-03-31 00:46:36 +0000291 MVT::ValueType &PTyElementVT,
292 MVT::ValueType &PTyLegalElementVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000293 // Figure out the right, legal destination reg to copy into.
294 unsigned NumElts = PTy->getNumElements();
295 MVT::ValueType EltTy = getValueType(PTy->getElementType());
296
297 unsigned NumVectorRegs = 1;
298
299 // Divide the input until we get to a supported size. This will always
300 // end with a scalar if the target doesn't support vectors.
301 while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) {
302 NumElts >>= 1;
303 NumVectorRegs <<= 1;
304 }
305
Chris Lattnerc2941772007-04-12 04:44:28 +0000306 MVT::ValueType VT = getVectorType(EltTy, NumElts);
307 if (!isTypeLegal(VT))
Chris Lattnerdc879292006-03-31 00:28:56 +0000308 VT = EltTy;
Chris Lattnera6c9de42006-03-31 01:50:09 +0000309 PTyElementVT = VT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000310
311 MVT::ValueType DestVT = getTypeToTransformTo(VT);
Chris Lattner79227e22006-03-31 00:46:36 +0000312 PTyLegalElementVT = DestVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000313 if (DestVT < VT) {
314 // Value is expanded, e.g. i64 -> i16.
Chris Lattner79227e22006-03-31 00:46:36 +0000315 return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000316 } else {
317 // Otherwise, promotion or legal types use the same number of registers as
318 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000319 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000320 }
321
Evan Chenge9b3da12006-05-17 18:10:06 +0000322 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000323}
324
Chris Lattnereb8146b2006-02-04 02:13:02 +0000325//===----------------------------------------------------------------------===//
326// Optimization Methods
327//===----------------------------------------------------------------------===//
328
Nate Begeman368e18d2006-02-16 21:11:51 +0000329/// ShrinkDemandedConstant - Check to see if the specified operand of the
330/// specified instruction is a constant integer. If so, check to see if there
331/// are any bits set in the constant that are not demanded. If so, shrink the
332/// constant and return true.
333bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
334 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000335 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000336 switch(Op.getOpcode()) {
337 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000338 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000339 case ISD::OR:
340 case ISD::XOR:
341 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
342 if ((~Demanded & C->getValue()) != 0) {
343 MVT::ValueType VT = Op.getValueType();
344 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
345 DAG.getConstant(Demanded & C->getValue(),
346 VT));
347 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000348 }
Nate Begemande996292006-02-03 22:24:05 +0000349 break;
350 }
351 return false;
352}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000353
Nate Begeman368e18d2006-02-16 21:11:51 +0000354/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
355/// DemandedMask bits of the result of Op are ever used downstream. If we can
356/// use this information to simplify Op, create a new simplified DAG node and
357/// return true, returning the original and new nodes in Old and New. Otherwise,
358/// analyze the expression and return a mask of KnownOne and KnownZero bits for
359/// the expression (used to simplify the caller). The KnownZero/One bits may
360/// only be accurate for those bits in the DemandedMask.
361bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
362 uint64_t &KnownZero,
363 uint64_t &KnownOne,
364 TargetLoweringOpt &TLO,
365 unsigned Depth) const {
366 KnownZero = KnownOne = 0; // Don't know anything.
367 // Other users may use these bits.
368 if (!Op.Val->hasOneUse()) {
369 if (Depth != 0) {
370 // If not at the root, Just compute the KnownZero/KnownOne bits to
371 // simplify things downstream.
372 ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
373 return false;
374 }
375 // If this is the root being simplified, allow it to have multiple uses,
376 // just set the DemandedMask to all bits.
377 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
378 } else if (DemandedMask == 0) {
379 // Not demanding any bits from Op.
380 if (Op.getOpcode() != ISD::UNDEF)
381 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
382 return false;
383 } else if (Depth == 6) { // Limit search depth.
384 return false;
385 }
386
387 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000388 switch (Op.getOpcode()) {
389 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000390 // We know all of the bits for a constant!
391 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
392 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000393 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000394 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000395 // If the RHS is a constant, check to see if the LHS would be zero without
396 // using the bits from the RHS. Below, we use knowledge about the RHS to
397 // simplify the LHS, here we're using information from the LHS to simplify
398 // the RHS.
399 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
400 uint64_t LHSZero, LHSOne;
401 ComputeMaskedBits(Op.getOperand(0), DemandedMask,
402 LHSZero, LHSOne, Depth+1);
403 // If the LHS already has zeros where RHSC does, this and is dead.
404 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
405 return TLO.CombineTo(Op, Op.getOperand(0));
406 // If any of the set bits in the RHS are known zero on the LHS, shrink
407 // the constant.
408 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
409 return true;
410 }
411
Nate Begeman368e18d2006-02-16 21:11:51 +0000412 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
413 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000414 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000415 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000416 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
417 KnownZero2, KnownOne2, TLO, Depth+1))
418 return true;
419 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
420
421 // If all of the demanded bits are known one on one side, return the other.
422 // These bits cannot contribute to the result of the 'and'.
423 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
424 return TLO.CombineTo(Op, Op.getOperand(0));
425 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
426 return TLO.CombineTo(Op, Op.getOperand(1));
427 // If all of the demanded bits in the inputs are known zeros, return zero.
428 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
429 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
430 // If the RHS is a constant, see if we can simplify it.
431 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
432 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000433
Nate Begeman368e18d2006-02-16 21:11:51 +0000434 // Output known-1 bits are only known if set in both the LHS & RHS.
435 KnownOne &= KnownOne2;
436 // Output known-0 are known to be clear if zero in either the LHS | RHS.
437 KnownZero |= KnownZero2;
438 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000439 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000440 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
441 KnownOne, TLO, Depth+1))
442 return true;
443 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
444 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
445 KnownZero2, KnownOne2, TLO, Depth+1))
446 return true;
447 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
448
449 // If all of the demanded bits are known zero on one side, return the other.
450 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000451 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000452 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000453 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000454 return TLO.CombineTo(Op, Op.getOperand(1));
455 // If all of the potentially set bits on one side are known to be set on
456 // the other side, just use the 'other' side.
457 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
458 (DemandedMask & (~KnownZero)))
459 return TLO.CombineTo(Op, Op.getOperand(0));
460 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
461 (DemandedMask & (~KnownZero2)))
462 return TLO.CombineTo(Op, Op.getOperand(1));
463 // If the RHS is a constant, see if we can simplify it.
464 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
465 return true;
466
467 // Output known-0 bits are only known if clear in both the LHS & RHS.
468 KnownZero &= KnownZero2;
469 // Output known-1 are known to be set if set in either the LHS | RHS.
470 KnownOne |= KnownOne2;
471 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000472 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000473 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
474 KnownOne, TLO, Depth+1))
475 return true;
476 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
477 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
478 KnownOne2, TLO, Depth+1))
479 return true;
480 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
481
482 // If all of the demanded bits are known zero on one side, return the other.
483 // These bits cannot contribute to the result of the 'xor'.
484 if ((DemandedMask & KnownZero) == DemandedMask)
485 return TLO.CombineTo(Op, Op.getOperand(0));
486 if ((DemandedMask & KnownZero2) == DemandedMask)
487 return TLO.CombineTo(Op, Op.getOperand(1));
Chris Lattner3687c1a2006-11-27 21:50:02 +0000488
489 // If all of the unknown bits are known to be zero on one side or the other
490 // (but not both) turn this into an *inclusive* or.
491 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
492 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
493 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
494 Op.getOperand(0),
495 Op.getOperand(1)));
Nate Begeman368e18d2006-02-16 21:11:51 +0000496
497 // Output known-0 bits are known if clear or set in both the LHS & RHS.
498 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
499 // Output known-1 are known to be set if set in only one of the LHS, RHS.
500 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
501
Nate Begeman368e18d2006-02-16 21:11:51 +0000502 // If all of the demanded bits on one side are known, and all of the set
503 // bits on that side are also known to be set on the other side, turn this
504 // into an AND, as we know the bits will be cleared.
505 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
506 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
507 if ((KnownOne & KnownOne2) == KnownOne) {
508 MVT::ValueType VT = Op.getValueType();
509 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
510 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
511 ANDC));
512 }
513 }
514
515 // If the RHS is a constant, see if we can simplify it.
516 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
517 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
518 return true;
519
520 KnownZero = KnownZeroOut;
521 KnownOne = KnownOneOut;
522 break;
523 case ISD::SETCC:
524 // If we know the result of a setcc has the top bits zero, use this info.
525 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
526 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
527 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000528 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000529 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
530 KnownOne, TLO, Depth+1))
531 return true;
532 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
533 KnownOne2, TLO, Depth+1))
534 return true;
535 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
536 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
537
538 // If the operands are constants, see if we can simplify them.
539 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
540 return true;
541
542 // Only known if known in both the LHS and RHS.
543 KnownOne &= KnownOne2;
544 KnownZero &= KnownZero2;
545 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000546 case ISD::SELECT_CC:
547 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
548 KnownOne, TLO, Depth+1))
549 return true;
550 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
551 KnownOne2, TLO, Depth+1))
552 return true;
553 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
554 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
555
556 // If the operands are constants, see if we can simplify them.
557 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
558 return true;
559
560 // Only known if known in both the LHS and RHS.
561 KnownOne &= KnownOne2;
562 KnownZero &= KnownZero2;
563 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000564 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000565 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattner895c4ab2007-04-17 21:14:16 +0000566 unsigned ShAmt = SA->getValue();
567 SDOperand InOp = Op.getOperand(0);
568
569 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
570 // single shift. We can do this if the bottom bits (which are shifted
571 // out) are never demanded.
572 if (InOp.getOpcode() == ISD::SRL &&
573 isa<ConstantSDNode>(InOp.getOperand(1))) {
574 if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
575 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
576 unsigned Opc = ISD::SHL;
577 int Diff = ShAmt-C1;
578 if (Diff < 0) {
579 Diff = -Diff;
580 Opc = ISD::SRL;
581 }
582
583 SDOperand NewSA =
Chris Lattner8c7d2d52007-04-17 22:53:02 +0000584 TLO.DAG.getConstant(ShAmt-C1, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000585 MVT::ValueType VT = Op.getValueType();
586 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT,
587 InOp.getOperand(0), NewSA));
588 }
589 }
590
591 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
Nate Begeman368e18d2006-02-16 21:11:51 +0000592 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000593 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000594 KnownZero <<= SA->getValue();
595 KnownOne <<= SA->getValue();
596 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000597 }
598 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000599 case ISD::SRL:
600 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
601 MVT::ValueType VT = Op.getValueType();
602 unsigned ShAmt = SA->getValue();
Chris Lattner895c4ab2007-04-17 21:14:16 +0000603 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
604 unsigned VTSize = MVT::getSizeInBits(VT);
605 SDOperand InOp = Op.getOperand(0);
606
607 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
608 // single shift. We can do this if the top bits (which are shifted out)
609 // are never demanded.
610 if (InOp.getOpcode() == ISD::SHL &&
611 isa<ConstantSDNode>(InOp.getOperand(1))) {
612 if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
613 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
614 unsigned Opc = ISD::SRL;
615 int Diff = ShAmt-C1;
616 if (Diff < 0) {
617 Diff = -Diff;
618 Opc = ISD::SHL;
619 }
620
621 SDOperand NewSA =
Chris Lattner8c7d2d52007-04-17 22:53:02 +0000622 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000623 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
624 InOp.getOperand(0), NewSA));
625 }
626 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000627
628 // Compute the new bits that are at the top now.
Chris Lattner895c4ab2007-04-17 21:14:16 +0000629 if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000630 KnownZero, KnownOne, TLO, Depth+1))
631 return true;
632 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
633 KnownZero &= TypeMask;
634 KnownOne &= TypeMask;
635 KnownZero >>= ShAmt;
636 KnownOne >>= ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000637
638 uint64_t HighBits = (1ULL << ShAmt)-1;
Chris Lattner895c4ab2007-04-17 21:14:16 +0000639 HighBits <<= VTSize - ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000640 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000641 }
642 break;
643 case ISD::SRA:
644 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
645 MVT::ValueType VT = Op.getValueType();
646 unsigned ShAmt = SA->getValue();
647
648 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000649 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
650
Chris Lattner1b737132006-05-08 17:22:53 +0000651 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
652
653 // If any of the demanded bits are produced by the sign extension, we also
654 // demand the input sign bit.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000655 uint64_t HighBits = (1ULL << ShAmt)-1;
656 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
Chris Lattner1b737132006-05-08 17:22:53 +0000657 if (HighBits & DemandedMask)
658 InDemandedMask |= MVT::getIntVTSignBit(VT);
659
660 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000661 KnownZero, KnownOne, TLO, Depth+1))
662 return true;
663 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
664 KnownZero &= TypeMask;
665 KnownOne &= TypeMask;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000666 KnownZero >>= ShAmt;
667 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000668
669 // Handle the sign bits.
670 uint64_t SignBit = MVT::getIntVTSignBit(VT);
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000671 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000672
673 // If the input sign bit is known to be zero, or if none of the top bits
674 // are demanded, turn this into an unsigned shift right.
675 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
676 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
677 Op.getOperand(1)));
678 } else if (KnownOne & SignBit) { // New bits are known one.
679 KnownOne |= HighBits;
680 }
681 }
682 break;
683 case ISD::SIGN_EXTEND_INREG: {
Nate Begeman368e18d2006-02-16 21:11:51 +0000684 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
685
Chris Lattnerec665152006-02-26 23:36:02 +0000686 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000687 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000688 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000689
Chris Lattnerec665152006-02-26 23:36:02 +0000690 // If none of the extended bits are demanded, eliminate the sextinreg.
691 if (NewBits == 0)
692 return TLO.CombineTo(Op, Op.getOperand(0));
693
Nate Begeman368e18d2006-02-16 21:11:51 +0000694 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
695 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
696
Chris Lattnerec665152006-02-26 23:36:02 +0000697 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000698 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000699 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000700
701 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
702 KnownZero, KnownOne, TLO, Depth+1))
703 return true;
704 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
705
706 // If the sign bit of the input is known set or clear, then we know the
707 // top bits of the result.
708
Chris Lattnerec665152006-02-26 23:36:02 +0000709 // If the input sign bit is known zero, convert this into a zero extension.
710 if (KnownZero & InSignBit)
711 return TLO.CombineTo(Op,
712 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
713
714 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000715 KnownOne |= NewBits;
716 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000717 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000718 KnownZero &= ~NewBits;
719 KnownOne &= ~NewBits;
720 }
721 break;
722 }
Chris Lattnerec665152006-02-26 23:36:02 +0000723 case ISD::CTTZ:
724 case ISD::CTLZ:
725 case ISD::CTPOP: {
726 MVT::ValueType VT = Op.getValueType();
727 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
728 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
729 KnownOne = 0;
730 break;
731 }
Evan Cheng466685d2006-10-09 20:57:25 +0000732 case ISD::LOAD: {
Evan Chengc5484282006-10-04 00:56:09 +0000733 if (ISD::isZEXTLoad(Op.Val)) {
Evan Cheng466685d2006-10-09 20:57:25 +0000734 LoadSDNode *LD = cast<LoadSDNode>(Op);
Evan Cheng2e49f092006-10-11 07:10:22 +0000735 MVT::ValueType VT = LD->getLoadedVT();
Evan Chengc5484282006-10-04 00:56:09 +0000736 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
737 }
Chris Lattnerec665152006-02-26 23:36:02 +0000738 break;
739 }
740 case ISD::ZERO_EXTEND: {
741 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
742
743 // If none of the top bits are demanded, convert this into an any_extend.
744 uint64_t NewBits = (~InMask) & DemandedMask;
745 if (NewBits == 0)
746 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
747 Op.getValueType(),
748 Op.getOperand(0)));
749
750 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
751 KnownZero, KnownOne, TLO, Depth+1))
752 return true;
753 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
754 KnownZero |= NewBits;
755 break;
756 }
757 case ISD::SIGN_EXTEND: {
758 MVT::ValueType InVT = Op.getOperand(0).getValueType();
759 uint64_t InMask = MVT::getIntVTBitMask(InVT);
760 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
761 uint64_t NewBits = (~InMask) & DemandedMask;
762
763 // If none of the top bits are demanded, convert this into an any_extend.
764 if (NewBits == 0)
Chris Lattnerfea997a2007-02-01 04:55:59 +0000765 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
Chris Lattnerec665152006-02-26 23:36:02 +0000766 Op.getOperand(0)));
767
768 // Since some of the sign extended bits are demanded, we know that the sign
769 // bit is demanded.
770 uint64_t InDemandedBits = DemandedMask & InMask;
771 InDemandedBits |= InSignBit;
772
773 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
774 KnownOne, TLO, Depth+1))
775 return true;
776
777 // If the sign bit is known zero, convert this to a zero extend.
778 if (KnownZero & InSignBit)
779 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
780 Op.getValueType(),
781 Op.getOperand(0)));
782
783 // If the sign bit is known one, the top bits match.
784 if (KnownOne & InSignBit) {
785 KnownOne |= NewBits;
786 KnownZero &= ~NewBits;
787 } else { // Otherwise, top bits aren't known.
788 KnownOne &= ~NewBits;
789 KnownZero &= ~NewBits;
790 }
791 break;
792 }
793 case ISD::ANY_EXTEND: {
794 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
795 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
796 KnownZero, KnownOne, TLO, Depth+1))
797 return true;
798 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
799 break;
800 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000801 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000802 // Simplify the input, using demanded bit information, and compute the known
803 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000804 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
805 KnownZero, KnownOne, TLO, Depth+1))
806 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000807
808 // If the input is only used by this truncate, see if we can shrink it based
809 // on the known demanded bits.
810 if (Op.getOperand(0).Val->hasOneUse()) {
811 SDOperand In = Op.getOperand(0);
812 switch (In.getOpcode()) {
813 default: break;
814 case ISD::SRL:
815 // Shrink SRL by a constant if none of the high bits shifted in are
816 // demanded.
817 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
818 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
819 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
820 HighBits >>= ShAmt->getValue();
821
822 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
823 (DemandedMask & HighBits) == 0) {
824 // None of the shifted in bits are needed. Add a truncate of the
825 // shift input, then shift it.
826 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
827 Op.getValueType(),
828 In.getOperand(0));
829 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
830 NewTrunc, In.getOperand(1)));
831 }
832 }
833 break;
834 }
835 }
836
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000837 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
838 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
839 KnownZero &= OutMask;
840 KnownOne &= OutMask;
841 break;
842 }
Chris Lattnerec665152006-02-26 23:36:02 +0000843 case ISD::AssertZext: {
844 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
845 uint64_t InMask = MVT::getIntVTBitMask(VT);
846 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
847 KnownZero, KnownOne, TLO, Depth+1))
848 return true;
849 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
850 KnownZero |= ~InMask & DemandedMask;
851 break;
852 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000853 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000854 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000855 case ISD::INTRINSIC_WO_CHAIN:
856 case ISD::INTRINSIC_W_CHAIN:
857 case ISD::INTRINSIC_VOID:
858 // Just use ComputeMaskedBits to compute output bits.
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000859 ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
860 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000861 }
Chris Lattnerec665152006-02-26 23:36:02 +0000862
863 // If we know the value of all of the demanded bits, return this as a
864 // constant.
865 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
866 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
867
Nate Begeman368e18d2006-02-16 21:11:51 +0000868 return false;
869}
870
871/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
872/// this predicate to simplify operations downstream. Mask is known to be zero
873/// for bits that V cannot have.
874bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
875 unsigned Depth) const {
876 uint64_t KnownZero, KnownOne;
877 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
878 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
879 return (KnownZero & Mask) == Mask;
880}
881
882/// ComputeMaskedBits - Determine which of the bits specified in Mask are
883/// known to be either zero or one and return them in the KnownZero/KnownOne
884/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
885/// processing.
886void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
887 uint64_t &KnownZero, uint64_t &KnownOne,
888 unsigned Depth) const {
889 KnownZero = KnownOne = 0; // Don't know anything.
890 if (Depth == 6 || Mask == 0)
891 return; // Limit search depth.
892
893 uint64_t KnownZero2, KnownOne2;
894
895 switch (Op.getOpcode()) {
896 case ISD::Constant:
897 // We know all of the bits for a constant!
898 KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
899 KnownZero = ~KnownOne & Mask;
900 return;
901 case ISD::AND:
902 // If either the LHS or the RHS are Zero, the result is zero.
903 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
904 Mask &= ~KnownZero;
905 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
906 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
907 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
908
909 // Output known-1 bits are only known if set in both the LHS & RHS.
910 KnownOne &= KnownOne2;
911 // Output known-0 are known to be clear if zero in either the LHS | RHS.
912 KnownZero |= KnownZero2;
913 return;
914 case ISD::OR:
915 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
916 Mask &= ~KnownOne;
917 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
918 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
919 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
920
921 // Output known-0 bits are only known if clear in both the LHS & RHS.
922 KnownZero &= KnownZero2;
923 // Output known-1 are known to be set if set in either the LHS | RHS.
924 KnownOne |= KnownOne2;
925 return;
926 case ISD::XOR: {
927 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
928 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
929 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
930 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
931
932 // Output known-0 bits are known if clear or set in both the LHS & RHS.
933 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
934 // Output known-1 are known to be set if set in only one of the LHS, RHS.
935 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
936 KnownZero = KnownZeroOut;
937 return;
938 }
939 case ISD::SELECT:
940 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
941 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
942 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
943 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
944
945 // Only known if known in both the LHS and RHS.
946 KnownOne &= KnownOne2;
947 KnownZero &= KnownZero2;
948 return;
949 case ISD::SELECT_CC:
950 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
951 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
952 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
953 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
954
955 // Only known if known in both the LHS and RHS.
956 KnownOne &= KnownOne2;
957 KnownZero &= KnownZero2;
958 return;
959 case ISD::SETCC:
960 // If we know the result of a setcc has the top bits zero, use this info.
961 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
962 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
963 return;
964 case ISD::SHL:
965 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
966 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000967 ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
968 KnownZero, KnownOne, Depth+1);
Nate Begeman368e18d2006-02-16 21:11:51 +0000969 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
970 KnownZero <<= SA->getValue();
971 KnownOne <<= SA->getValue();
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000972 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000973 }
Nate Begeman003a2722006-02-18 02:43:25 +0000974 return;
Nate Begeman368e18d2006-02-16 21:11:51 +0000975 case ISD::SRL:
976 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
977 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000978 MVT::ValueType VT = Op.getValueType();
979 unsigned ShAmt = SA->getValue();
980
981 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
982 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
983 KnownZero, KnownOne, Depth+1);
Nate Begeman003a2722006-02-18 02:43:25 +0000984 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000985 KnownZero &= TypeMask;
986 KnownOne &= TypeMask;
987 KnownZero >>= ShAmt;
988 KnownOne >>= ShAmt;
989
990 uint64_t HighBits = (1ULL << ShAmt)-1;
991 HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
992 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000993 }
Nate Begeman003a2722006-02-18 02:43:25 +0000994 return;
Nate Begeman368e18d2006-02-16 21:11:51 +0000995 case ISD::SRA:
996 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000997 MVT::ValueType VT = Op.getValueType();
998 unsigned ShAmt = SA->getValue();
999
1000 // Compute the new bits that are at the top now.
1001 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1002
1003 uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1004 // If any of the demanded bits are produced by the sign extension, we also
1005 // demand the input sign bit.
1006 uint64_t HighBits = (1ULL << ShAmt)-1;
1007 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1008 if (HighBits & Mask)
1009 InDemandedMask |= MVT::getIntVTSignBit(VT);
1010
1011 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1012 Depth+1);
1013 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1014 KnownZero &= TypeMask;
1015 KnownOne &= TypeMask;
1016 KnownZero >>= ShAmt;
1017 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +00001018
1019 // Handle the sign bits.
Chris Lattnerc4fa6032006-06-13 16:52:37 +00001020 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1021 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +00001022
Jim Laskey9bfa2dc2006-06-13 13:08:58 +00001023 if (KnownZero & SignBit) {
Chris Lattnerc4fa6032006-06-13 16:52:37 +00001024 KnownZero |= HighBits; // New bits are known zero.
Jim Laskey9bfa2dc2006-06-13 13:08:58 +00001025 } else if (KnownOne & SignBit) {
Chris Lattnerc4fa6032006-06-13 16:52:37 +00001026 KnownOne |= HighBits; // New bits are known one.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +00001027 }
1028 }
Nate Begeman003a2722006-02-18 02:43:25 +00001029 return;
Chris Lattnerec665152006-02-26 23:36:02 +00001030 case ISD::SIGN_EXTEND_INREG: {
Chris Lattnerec665152006-02-26 23:36:02 +00001031 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1032
1033 // Sign extension. Compute the demanded bits in the result that are not
1034 // present in the input.
1035 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1036
1037 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1038 int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1039
1040 // If the sign extended bits are demanded, we know that the sign
1041 // bit is demanded.
1042 if (NewBits)
1043 InputDemandedBits |= InSignBit;
1044
1045 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1046 KnownZero, KnownOne, Depth+1);
1047 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1048
1049 // If the sign bit of the input is known set or clear, then we know the
1050 // top bits of the result.
1051 if (KnownZero & InSignBit) { // Input sign bit known clear
1052 KnownZero |= NewBits;
1053 KnownOne &= ~NewBits;
1054 } else if (KnownOne & InSignBit) { // Input sign bit known set
1055 KnownOne |= NewBits;
1056 KnownZero &= ~NewBits;
1057 } else { // Input sign bit unknown
1058 KnownZero &= ~NewBits;
1059 KnownOne &= ~NewBits;
1060 }
1061 return;
1062 }
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +00001063 case ISD::CTTZ:
1064 case ISD::CTLZ:
Nate Begeman368e18d2006-02-16 21:11:51 +00001065 case ISD::CTPOP: {
1066 MVT::ValueType VT = Op.getValueType();
1067 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1068 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1069 KnownOne = 0;
1070 return;
1071 }
Evan Cheng466685d2006-10-09 20:57:25 +00001072 case ISD::LOAD: {
Evan Chengc5484282006-10-04 00:56:09 +00001073 if (ISD::isZEXTLoad(Op.Val)) {
Evan Cheng466685d2006-10-09 20:57:25 +00001074 LoadSDNode *LD = cast<LoadSDNode>(Op);
Evan Cheng2e49f092006-10-11 07:10:22 +00001075 MVT::ValueType VT = LD->getLoadedVT();
Evan Chengc5484282006-10-04 00:56:09 +00001076 KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1077 }
Nate Begeman368e18d2006-02-16 21:11:51 +00001078 return;
1079 }
1080 case ISD::ZERO_EXTEND: {
Chris Lattnerec665152006-02-26 23:36:02 +00001081 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1082 uint64_t NewBits = (~InMask) & Mask;
1083 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1084 KnownOne, Depth+1);
1085 KnownZero |= NewBits & Mask;
1086 KnownOne &= ~NewBits;
1087 return;
1088 }
1089 case ISD::SIGN_EXTEND: {
1090 MVT::ValueType InVT = Op.getOperand(0).getValueType();
1091 unsigned InBits = MVT::getSizeInBits(InVT);
1092 uint64_t InMask = MVT::getIntVTBitMask(InVT);
1093 uint64_t InSignBit = 1ULL << (InBits-1);
1094 uint64_t NewBits = (~InMask) & Mask;
1095 uint64_t InDemandedBits = Mask & InMask;
1096
1097 // If any of the sign extended bits are demanded, we know that the sign
1098 // bit is demanded.
1099 if (NewBits & Mask)
1100 InDemandedBits |= InSignBit;
1101
1102 ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1103 KnownOne, Depth+1);
1104 // If the sign bit is known zero or one, the top bits match.
1105 if (KnownZero & InSignBit) {
1106 KnownZero |= NewBits;
1107 KnownOne &= ~NewBits;
1108 } else if (KnownOne & InSignBit) {
1109 KnownOne |= NewBits;
1110 KnownZero &= ~NewBits;
1111 } else { // Otherwise, top bits aren't known.
1112 KnownOne &= ~NewBits;
1113 KnownZero &= ~NewBits;
1114 }
Nate Begeman368e18d2006-02-16 21:11:51 +00001115 return;
1116 }
1117 case ISD::ANY_EXTEND: {
Chris Lattnerec665152006-02-26 23:36:02 +00001118 MVT::ValueType VT = Op.getOperand(0).getValueType();
1119 ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1120 KnownZero, KnownOne, Depth+1);
Nate Begeman368e18d2006-02-16 21:11:51 +00001121 return;
1122 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +00001123 case ISD::TRUNCATE: {
1124 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1125 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1126 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1127 KnownZero &= OutMask;
1128 KnownOne &= OutMask;
1129 break;
1130 }
Nate Begeman368e18d2006-02-16 21:11:51 +00001131 case ISD::AssertZext: {
Chris Lattnerec665152006-02-26 23:36:02 +00001132 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1133 uint64_t InMask = MVT::getIntVTBitMask(VT);
1134 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1135 KnownOne, Depth+1);
1136 KnownZero |= (~InMask) & Mask;
Nate Begeman368e18d2006-02-16 21:11:51 +00001137 return;
1138 }
1139 case ISD::ADD: {
1140 // If either the LHS or the RHS are Zero, the result is zero.
1141 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1142 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1143 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1144 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1145
1146 // Output known-0 bits are known if clear or set in both the low clear bits
Chris Lattnerb6b17ff2006-03-13 06:42:16 +00001147 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1148 // low 3 bits clear.
Nate Begeman368e18d2006-02-16 21:11:51 +00001149 uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1150 CountTrailingZeros_64(~KnownZero2));
1151
1152 KnownZero = (1ULL << KnownZeroOut) - 1;
1153 KnownOne = 0;
1154 return;
1155 }
Chris Lattnera6bc5a42006-02-27 01:00:42 +00001156 case ISD::SUB: {
1157 ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1158 if (!CLHS) return;
1159
Nate Begeman368e18d2006-02-16 21:11:51 +00001160 // We know that the top bits of C-X are clear if X contains less bits
1161 // than C (i.e. no wrap-around can happen). For example, 20-X is
Chris Lattnera6bc5a42006-02-27 01:00:42 +00001162 // positive if we can prove that X is >= 0 and < 16.
1163 MVT::ValueType VT = CLHS->getValueType(0);
1164 if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
1165 unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1166 uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1167 MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1168 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1169
1170 // If all of the MaskV bits are known to be zero, then we know the output
1171 // top bits are zero, because we now know that the output is from [0-C].
1172 if ((KnownZero & MaskV) == MaskV) {
1173 unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1174 KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
1175 KnownOne = 0; // No one bits known.
1176 } else {
Evan Cheng42f75a92006-07-07 21:37:21 +00001177 KnownZero = KnownOne = 0; // Otherwise, nothing known.
Chris Lattnera6bc5a42006-02-27 01:00:42 +00001178 }
1179 }
Nate Begeman003a2722006-02-18 02:43:25 +00001180 return;
Chris Lattnera6bc5a42006-02-27 01:00:42 +00001181 }
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +00001182 default:
1183 // Allow the target to implement this method for its nodes.
Chris Lattner1482b5f2006-04-02 06:15:09 +00001184 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1185 case ISD::INTRINSIC_WO_CHAIN:
1186 case ISD::INTRINSIC_W_CHAIN:
1187 case ISD::INTRINSIC_VOID:
Nate Begeman368e18d2006-02-16 21:11:51 +00001188 computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
Chris Lattner1482b5f2006-04-02 06:15:09 +00001189 }
Nate Begeman003a2722006-02-18 02:43:25 +00001190 return;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +00001191 }
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +00001192}
1193
Nate Begeman368e18d2006-02-16 21:11:51 +00001194/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1195/// in Mask are known to be either zero or one and return them in the
1196/// KnownZero/KnownOne bitsets.
1197void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1198 uint64_t Mask,
1199 uint64_t &KnownZero,
1200 uint64_t &KnownOne,
1201 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +00001202 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1203 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1204 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1205 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +00001206 "Should use MaskedValueIsZero if you don't know whether Op"
1207 " is a target node!");
Nate Begeman368e18d2006-02-16 21:11:51 +00001208 KnownZero = 0;
1209 KnownOne = 0;
Evan Cheng3a03ebb2005-12-21 23:05:39 +00001210}
Chris Lattner4ccb0702006-01-26 20:37:03 +00001211
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001212/// ComputeNumSignBits - Return the number of times the sign bit of the
1213/// register is replicated into the other bits. We know that at least 1 bit
1214/// is always equal to the sign bit (itself), but other cases can give us
1215/// information. For example, immediately after an "SRA X, 2", we know that
1216/// the top 3 bits are all equal to each other, so we return 3.
1217unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1218 MVT::ValueType VT = Op.getValueType();
1219 assert(MVT::isInteger(VT) && "Invalid VT!");
1220 unsigned VTBits = MVT::getSizeInBits(VT);
1221 unsigned Tmp, Tmp2;
1222
1223 if (Depth == 6)
1224 return 1; // Limit search depth.
1225
1226 switch (Op.getOpcode()) {
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001227 default: break;
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001228 case ISD::AssertSext:
1229 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1230 return VTBits-Tmp+1;
1231 case ISD::AssertZext:
1232 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1233 return VTBits-Tmp;
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001234
1235 case ISD::Constant: {
1236 uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1237 // If negative, invert the bits, then look at it.
1238 if (Val & MVT::getIntVTSignBit(VT))
1239 Val = ~Val;
1240
1241 // Shift the bits so they are the leading bits in the int64_t.
1242 Val <<= 64-VTBits;
1243
1244 // Return # leading zeros. We use 'min' here in case Val was zero before
1245 // shifting. We don't want to return '64' as for an i32 "0".
1246 return std::min(VTBits, CountLeadingZeros_64(Val));
1247 }
1248
1249 case ISD::SIGN_EXTEND:
1250 Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1251 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1252
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001253 case ISD::SIGN_EXTEND_INREG:
1254 // Max of the input and what this extends.
1255 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1256 Tmp = VTBits-Tmp+1;
1257
1258 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1259 return std::max(Tmp, Tmp2);
1260
1261 case ISD::SRA:
1262 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1263 // SRA X, C -> adds C sign bits.
1264 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1265 Tmp += C->getValue();
1266 if (Tmp > VTBits) Tmp = VTBits;
1267 }
1268 return Tmp;
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001269 case ISD::SHL:
1270 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1271 // shl destroys sign bits.
1272 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1273 if (C->getValue() >= VTBits || // Bad shift.
1274 C->getValue() >= Tmp) break; // Shifted all sign bits out.
1275 return Tmp - C->getValue();
1276 }
1277 break;
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001278 case ISD::AND:
1279 case ISD::OR:
1280 case ISD::XOR: // NOT is handled here.
1281 // Logical binary ops preserve the number of sign bits.
1282 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1283 if (Tmp == 1) return 1; // Early out.
1284 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1285 return std::min(Tmp, Tmp2);
1286
1287 case ISD::SELECT:
1288 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1289 if (Tmp == 1) return 1; // Early out.
1290 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1291 return std::min(Tmp, Tmp2);
1292
1293 case ISD::SETCC:
1294 // If setcc returns 0/-1, all bits are sign bits.
1295 if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult)
1296 return VTBits;
1297 break;
Chris Lattnere60351b2006-05-06 23:40:29 +00001298 case ISD::ROTL:
1299 case ISD::ROTR:
1300 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1301 unsigned RotAmt = C->getValue() & (VTBits-1);
1302
1303 // Handle rotate right by N like a rotate left by 32-N.
1304 if (Op.getOpcode() == ISD::ROTR)
1305 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1306
1307 // If we aren't rotating out all of the known-in sign bits, return the
1308 // number that are left. This handles rotl(sext(x), 1) for example.
1309 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1310 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1311 }
1312 break;
1313 case ISD::ADD:
1314 // Add can have at most one carry bit. Thus we know that the output
1315 // is, at worst, one more bit than the inputs.
1316 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1317 if (Tmp == 1) return 1; // Early out.
1318
1319 // Special case decrementing a value (ADD X, -1):
1320 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1321 if (CRHS->isAllOnesValue()) {
1322 uint64_t KnownZero, KnownOne;
1323 uint64_t Mask = MVT::getIntVTBitMask(VT);
1324 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1325
1326 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1327 // sign bits set.
1328 if ((KnownZero|1) == Mask)
1329 return VTBits;
1330
1331 // If we are subtracting one from a positive number, there is no carry
1332 // out of the result.
1333 if (KnownZero & MVT::getIntVTSignBit(VT))
1334 return Tmp;
1335 }
1336
1337 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1338 if (Tmp2 == 1) return 1;
1339 return std::min(Tmp, Tmp2)-1;
1340 break;
1341
1342 case ISD::SUB:
1343 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1344 if (Tmp2 == 1) return 1;
1345
1346 // Handle NEG.
1347 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1348 if (CLHS->getValue() == 0) {
1349 uint64_t KnownZero, KnownOne;
1350 uint64_t Mask = MVT::getIntVTBitMask(VT);
1351 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1352 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1353 // sign bits set.
1354 if ((KnownZero|1) == Mask)
1355 return VTBits;
1356
1357 // If the input is known to be positive (the sign bit is known clear),
1358 // the output of the NEG has the same number of sign bits as the input.
1359 if (KnownZero & MVT::getIntVTSignBit(VT))
1360 return Tmp2;
1361
1362 // Otherwise, we treat this like a SUB.
1363 }
1364
1365 // Sub can have at most one carry bit. Thus we know that the output
1366 // is, at worst, one more bit than the inputs.
1367 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1368 if (Tmp == 1) return 1; // Early out.
1369 return std::min(Tmp, Tmp2)-1;
1370 break;
1371 case ISD::TRUNCATE:
1372 // FIXME: it's tricky to do anything useful for this, but it is an important
1373 // case for targets like X86.
1374 break;
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001375 }
1376
Evan Chengc5484282006-10-04 00:56:09 +00001377 // Handle LOADX separately here. EXTLOAD case will fallthrough.
Evan Cheng466685d2006-10-09 20:57:25 +00001378 if (Op.getOpcode() == ISD::LOAD) {
1379 LoadSDNode *LD = cast<LoadSDNode>(Op);
1380 unsigned ExtType = LD->getExtensionType();
1381 switch (ExtType) {
Evan Chengc5484282006-10-04 00:56:09 +00001382 default: break;
1383 case ISD::SEXTLOAD: // '17' bits known
Evan Cheng2e49f092006-10-11 07:10:22 +00001384 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
Evan Chengc5484282006-10-04 00:56:09 +00001385 return VTBits-Tmp+1;
1386 case ISD::ZEXTLOAD: // '16' bits known
Evan Cheng2e49f092006-10-11 07:10:22 +00001387 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
Evan Chengc5484282006-10-04 00:56:09 +00001388 return VTBits-Tmp;
1389 }
1390 }
1391
Chris Lattnerd6f7fe72006-05-06 22:39:59 +00001392 // Allow the target to implement this method for its nodes.
1393 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1394 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1395 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1396 Op.getOpcode() == ISD::INTRINSIC_VOID) {
1397 unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth);
1398 if (NumBits > 1) return NumBits;
1399 }
1400
Chris Lattner822db932006-05-06 23:48:13 +00001401 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1402 // use this information.
1403 uint64_t KnownZero, KnownOne;
1404 uint64_t Mask = MVT::getIntVTBitMask(VT);
1405 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1406
1407 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1408 if (KnownZero & SignBit) { // SignBit is 0
1409 Mask = KnownZero;
1410 } else if (KnownOne & SignBit) { // SignBit is 1;
1411 Mask = KnownOne;
1412 } else {
1413 // Nothing known.
1414 return 1;
1415 }
1416
1417 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1418 // the number of identical bits in the top of the input value.
1419 Mask ^= ~0ULL;
1420 Mask <<= 64-VTBits;
1421 // Return # leading zeros. We use 'min' here in case Val was zero before
1422 // shifting. We don't want to return '64' as for an i32 "0".
1423 return std::min(VTBits, CountLeadingZeros_64(Mask));
Chris Lattner5c3e21d2006-05-06 09:27:13 +00001424}
1425
1426
1427
1428/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1429/// targets that want to expose additional information about sign bits to the
1430/// DAG Combiner.
1431unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1432 unsigned Depth) const {
1433 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1434 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1435 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1436 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1437 "Should use ComputeNumSignBits if you don't know whether Op"
1438 " is a target node!");
1439 return 1;
1440}
1441
1442
Evan Chengfa1eb272007-02-08 22:13:59 +00001443/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1444/// and cc. If it is unable to simplify it, return a null SDOperand.
1445SDOperand
1446TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1447 ISD::CondCode Cond, bool foldBooleans,
1448 DAGCombinerInfo &DCI) const {
1449 SelectionDAG &DAG = DCI.DAG;
1450
1451 // These setcc operations always fold.
1452 switch (Cond) {
1453 default: break;
1454 case ISD::SETFALSE:
1455 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1456 case ISD::SETTRUE:
1457 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1458 }
1459
1460 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1461 uint64_t C1 = N1C->getValue();
1462 if (isa<ConstantSDNode>(N0.Val)) {
1463 return DAG.FoldSetCC(VT, N0, N1, Cond);
1464 } else {
1465 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1466 // equality comparison, then we're just comparing whether X itself is
1467 // zero.
1468 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1469 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1470 N0.getOperand(1).getOpcode() == ISD::Constant) {
1471 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1472 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1473 ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1474 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1475 // (srl (ctlz x), 5) == 0 -> X != 0
1476 // (srl (ctlz x), 5) != 1 -> X != 0
1477 Cond = ISD::SETNE;
1478 } else {
1479 // (srl (ctlz x), 5) != 0 -> X == 0
1480 // (srl (ctlz x), 5) == 1 -> X == 0
1481 Cond = ISD::SETEQ;
1482 }
1483 SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1484 return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1485 Zero, Cond);
1486 }
1487 }
1488
1489 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1490 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1491 unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1492
1493 // If the comparison constant has bits in the upper part, the
1494 // zero-extended value could never match.
1495 if (C1 & (~0ULL << InSize)) {
1496 unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1497 switch (Cond) {
1498 case ISD::SETUGT:
1499 case ISD::SETUGE:
1500 case ISD::SETEQ: return DAG.getConstant(0, VT);
1501 case ISD::SETULT:
1502 case ISD::SETULE:
1503 case ISD::SETNE: return DAG.getConstant(1, VT);
1504 case ISD::SETGT:
1505 case ISD::SETGE:
1506 // True if the sign bit of C1 is set.
Chris Lattner01ca65b2007-02-24 02:09:29 +00001507 return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +00001508 case ISD::SETLT:
1509 case ISD::SETLE:
1510 // True if the sign bit of C1 isn't set.
Chris Lattner01ca65b2007-02-24 02:09:29 +00001511 return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +00001512 default:
1513 break;
1514 }
1515 }
1516
1517 // Otherwise, we can perform the comparison with the low bits.
1518 switch (Cond) {
1519 case ISD::SETEQ:
1520 case ISD::SETNE:
1521 case ISD::SETUGT:
1522 case ISD::SETUGE:
1523 case ISD::SETULT:
1524 case ISD::SETULE:
1525 return DAG.getSetCC(VT, N0.getOperand(0),
1526 DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1527 Cond);
1528 default:
1529 break; // todo, be more careful with signed comparisons
1530 }
1531 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1532 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1533 MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1534 unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1535 MVT::ValueType ExtDstTy = N0.getValueType();
1536 unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1537
1538 // If the extended part has any inconsistent bits, it cannot ever
1539 // compare equal. In other words, they have to be all ones or all
1540 // zeros.
1541 uint64_t ExtBits =
1542 (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1543 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1544 return DAG.getConstant(Cond == ISD::SETNE, VT);
1545
1546 SDOperand ZextOp;
1547 MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1548 if (Op0Ty == ExtSrcTy) {
1549 ZextOp = N0.getOperand(0);
1550 } else {
1551 int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1552 ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1553 DAG.getConstant(Imm, Op0Ty));
1554 }
1555 if (!DCI.isCalledByLegalizer())
1556 DCI.AddToWorklist(ZextOp.Val);
1557 // Otherwise, make this a use of a zext.
1558 return DAG.getSetCC(VT, ZextOp,
1559 DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1560 ExtDstTy),
1561 Cond);
1562 } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1563 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1564
1565 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1566 if (N0.getOpcode() == ISD::SETCC) {
1567 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1568 if (TrueWhenTrue)
1569 return N0;
1570
1571 // Invert the condition.
1572 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1573 CC = ISD::getSetCCInverse(CC,
1574 MVT::isInteger(N0.getOperand(0).getValueType()));
1575 return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1576 }
1577
1578 if ((N0.getOpcode() == ISD::XOR ||
1579 (N0.getOpcode() == ISD::AND &&
1580 N0.getOperand(0).getOpcode() == ISD::XOR &&
1581 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1582 isa<ConstantSDNode>(N0.getOperand(1)) &&
1583 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1584 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1585 // can only do this if the top bits are known zero.
1586 if (MaskedValueIsZero(N0, MVT::getIntVTBitMask(N0.getValueType())-1)){
1587 // Okay, get the un-inverted input value.
1588 SDOperand Val;
1589 if (N0.getOpcode() == ISD::XOR)
1590 Val = N0.getOperand(0);
1591 else {
1592 assert(N0.getOpcode() == ISD::AND &&
1593 N0.getOperand(0).getOpcode() == ISD::XOR);
1594 // ((X^1)&1)^1 -> X & 1
1595 Val = DAG.getNode(ISD::AND, N0.getValueType(),
1596 N0.getOperand(0).getOperand(0),
1597 N0.getOperand(1));
1598 }
1599 return DAG.getSetCC(VT, Val, N1,
1600 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1601 }
1602 }
1603 }
1604
1605 uint64_t MinVal, MaxVal;
1606 unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1607 if (ISD::isSignedIntSetCC(Cond)) {
1608 MinVal = 1ULL << (OperandBitSize-1);
1609 if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
1610 MaxVal = ~0ULL >> (65-OperandBitSize);
1611 else
1612 MaxVal = 0;
1613 } else {
1614 MinVal = 0;
1615 MaxVal = ~0ULL >> (64-OperandBitSize);
1616 }
1617
1618 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1619 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1620 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1621 --C1; // X >= C0 --> X > (C0-1)
1622 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1623 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1624 }
1625
1626 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1627 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1628 ++C1; // X <= C0 --> X < (C0+1)
1629 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1630 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1631 }
1632
1633 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1634 return DAG.getConstant(0, VT); // X < MIN --> false
1635 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1636 return DAG.getConstant(1, VT); // X >= MIN --> true
1637 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1638 return DAG.getConstant(0, VT); // X > MAX --> false
1639 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1640 return DAG.getConstant(1, VT); // X <= MAX --> true
1641
1642 // Canonicalize setgt X, Min --> setne X, Min
1643 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1644 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1645 // Canonicalize setlt X, Max --> setne X, Max
1646 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1647 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1648
1649 // If we have setult X, 1, turn it into seteq X, 0
1650 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1651 return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1652 ISD::SETEQ);
1653 // If we have setugt X, Max-1, turn it into seteq X, Max
1654 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1655 return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1656 ISD::SETEQ);
1657
1658 // If we have "setcc X, C0", check to see if we can shrink the immediate
1659 // by changing cc.
1660
1661 // SETUGT X, SINTMAX -> SETLT X, 0
1662 if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1663 C1 == (~0ULL >> (65-OperandBitSize)))
1664 return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1665 ISD::SETLT);
1666
1667 // FIXME: Implement the rest of these.
1668
1669 // Fold bit comparisons when we can.
1670 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1671 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1672 if (ConstantSDNode *AndRHS =
1673 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1674 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1675 // Perform the xform if the AND RHS is a single bit.
1676 if (isPowerOf2_64(AndRHS->getValue())) {
1677 return DAG.getNode(ISD::SRL, VT, N0,
1678 DAG.getConstant(Log2_64(AndRHS->getValue()),
1679 getShiftAmountTy()));
1680 }
1681 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1682 // (X & 8) == 8 --> (X & 8) >> 3
1683 // Perform the xform if C1 is a single bit.
1684 if (isPowerOf2_64(C1)) {
1685 return DAG.getNode(ISD::SRL, VT, N0,
1686 DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1687 }
1688 }
1689 }
1690 }
1691 } else if (isa<ConstantSDNode>(N0.Val)) {
1692 // Ensure that the constant occurs on the RHS.
1693 return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1694 }
1695
1696 if (isa<ConstantFPSDNode>(N0.Val)) {
1697 // Constant fold or commute setcc.
1698 SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1699 if (O.Val) return O;
1700 }
1701
1702 if (N0 == N1) {
1703 // We can always fold X == X for integer setcc's.
1704 if (MVT::isInteger(N0.getValueType()))
1705 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1706 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1707 if (UOF == 2) // FP operators that are undefined on NaNs.
1708 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1709 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1710 return DAG.getConstant(UOF, VT);
1711 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1712 // if it is not already.
1713 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1714 if (NewCond != Cond)
1715 return DAG.getSetCC(VT, N0, N1, NewCond);
1716 }
1717
1718 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1719 MVT::isInteger(N0.getValueType())) {
1720 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1721 N0.getOpcode() == ISD::XOR) {
1722 // Simplify (X+Y) == (X+Z) --> Y == Z
1723 if (N0.getOpcode() == N1.getOpcode()) {
1724 if (N0.getOperand(0) == N1.getOperand(0))
1725 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1726 if (N0.getOperand(1) == N1.getOperand(1))
1727 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1728 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1729 // If X op Y == Y op X, try other combinations.
1730 if (N0.getOperand(0) == N1.getOperand(1))
1731 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1732 if (N0.getOperand(1) == N1.getOperand(0))
1733 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1734 }
1735 }
1736
1737 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1738 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1739 // Turn (X+C1) == C2 --> X == C2-C1
1740 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1741 return DAG.getSetCC(VT, N0.getOperand(0),
1742 DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1743 N0.getValueType()), Cond);
1744 }
1745
1746 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1747 if (N0.getOpcode() == ISD::XOR)
1748 // If we know that all of the inverted bits are zero, don't bother
1749 // performing the inversion.
1750 if (MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
1751 return DAG.getSetCC(VT, N0.getOperand(0),
1752 DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1753 N0.getValueType()), Cond);
1754 }
1755
1756 // Turn (C1-X) == C2 --> X == C1-C2
1757 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1758 if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1759 return DAG.getSetCC(VT, N0.getOperand(1),
1760 DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1761 N0.getValueType()), Cond);
1762 }
1763 }
1764 }
1765
1766 // Simplify (X+Z) == X --> Z == 0
1767 if (N0.getOperand(0) == N1)
1768 return DAG.getSetCC(VT, N0.getOperand(1),
1769 DAG.getConstant(0, N0.getValueType()), Cond);
1770 if (N0.getOperand(1) == N1) {
1771 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1772 return DAG.getSetCC(VT, N0.getOperand(0),
1773 DAG.getConstant(0, N0.getValueType()), Cond);
1774 else {
1775 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1776 // (Z-X) == X --> Z == X<<1
1777 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1778 N1,
1779 DAG.getConstant(1, getShiftAmountTy()));
1780 if (!DCI.isCalledByLegalizer())
1781 DCI.AddToWorklist(SH.Val);
1782 return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1783 }
1784 }
1785 }
1786
1787 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1788 N1.getOpcode() == ISD::XOR) {
1789 // Simplify X == (X+Z) --> Z == 0
1790 if (N1.getOperand(0) == N0) {
1791 return DAG.getSetCC(VT, N1.getOperand(1),
1792 DAG.getConstant(0, N1.getValueType()), Cond);
1793 } else if (N1.getOperand(1) == N0) {
1794 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1795 return DAG.getSetCC(VT, N1.getOperand(0),
1796 DAG.getConstant(0, N1.getValueType()), Cond);
1797 } else {
1798 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1799 // X == (Z-X) --> X<<1 == Z
1800 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1801 DAG.getConstant(1, getShiftAmountTy()));
1802 if (!DCI.isCalledByLegalizer())
1803 DCI.AddToWorklist(SH.Val);
1804 return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1805 }
1806 }
1807 }
1808 }
1809
1810 // Fold away ALL boolean setcc's.
1811 SDOperand Temp;
1812 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1813 switch (Cond) {
1814 default: assert(0 && "Unknown integer setcc!");
1815 case ISD::SETEQ: // X == Y -> (X^Y)^1
1816 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1817 N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1818 if (!DCI.isCalledByLegalizer())
1819 DCI.AddToWorklist(Temp.Val);
1820 break;
1821 case ISD::SETNE: // X != Y --> (X^Y)
1822 N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1823 break;
1824 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
1825 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
1826 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1827 N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1828 if (!DCI.isCalledByLegalizer())
1829 DCI.AddToWorklist(Temp.Val);
1830 break;
1831 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
1832 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
1833 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1834 N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1835 if (!DCI.isCalledByLegalizer())
1836 DCI.AddToWorklist(Temp.Val);
1837 break;
1838 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
1839 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
1840 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1841 N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1842 if (!DCI.isCalledByLegalizer())
1843 DCI.AddToWorklist(Temp.Val);
1844 break;
1845 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
1846 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
1847 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1848 N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1849 break;
1850 }
1851 if (VT != MVT::i1) {
1852 if (!DCI.isCalledByLegalizer())
1853 DCI.AddToWorklist(N0.Val);
1854 // FIXME: If running after legalize, we probably can't do this.
1855 N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1856 }
1857 return N0;
1858 }
1859
1860 // Could not fold it.
1861 return SDOperand();
1862}
1863
Chris Lattner00ffed02006-03-01 04:52:55 +00001864SDOperand TargetLowering::
1865PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1866 // Default implementation: no optimization.
1867 return SDOperand();
1868}
1869
Chris Lattnereb8146b2006-02-04 02:13:02 +00001870//===----------------------------------------------------------------------===//
1871// Inline Assembler Implementation Methods
1872//===----------------------------------------------------------------------===//
1873
1874TargetLowering::ConstraintType
Chris Lattner4234f572007-03-25 02:14:49 +00001875TargetLowering::getConstraintType(const std::string &Constraint) const {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001876 // FIXME: lots more standard ones to handle.
Chris Lattner4234f572007-03-25 02:14:49 +00001877 if (Constraint.size() == 1) {
1878 switch (Constraint[0]) {
1879 default: break;
1880 case 'r': return C_RegisterClass;
1881 case 'm': // memory
1882 case 'o': // offsetable
1883 case 'V': // not offsetable
1884 return C_Memory;
1885 case 'i': // Simple Integer or Relocatable Constant
1886 case 'n': // Simple Integer
1887 case 's': // Relocatable Constant
Chris Lattnerc13dd1c2007-03-25 04:35:41 +00001888 case 'X': // Allow ANY value.
Chris Lattner4234f572007-03-25 02:14:49 +00001889 case 'I': // Target registers.
1890 case 'J':
1891 case 'K':
1892 case 'L':
1893 case 'M':
1894 case 'N':
1895 case 'O':
1896 case 'P':
1897 return C_Other;
1898 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001899 }
Chris Lattner065421f2007-03-25 02:18:14 +00001900
1901 if (Constraint.size() > 1 && Constraint[0] == '{' &&
1902 Constraint[Constraint.size()-1] == '}')
1903 return C_Register;
Chris Lattner4234f572007-03-25 02:14:49 +00001904 return C_Unknown;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001905}
1906
Chris Lattnerdba1aee2006-10-31 19:40:43 +00001907/// isOperandValidForConstraint - Return the specified operand (possibly
1908/// modified) if the specified SDOperand is valid for the specified target
1909/// constraint letter, otherwise return null.
1910SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op,
1911 char ConstraintLetter,
1912 SelectionDAG &DAG) {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001913 switch (ConstraintLetter) {
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001914 default: break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001915 case 'i': // Simple Integer or Relocatable Constant
1916 case 'n': // Simple Integer
1917 case 's': // Relocatable Constant
Chris Lattnerc13dd1c2007-03-25 04:35:41 +00001918 case 'X': // Allows any operand.
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001919 // These are okay if the operand is either a global variable address or a
1920 // simple immediate value. If we have one of these, map to the TargetXXX
1921 // version so that the value itself doesn't get selected.
1922 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
1923 // Simple constants are not allowed for 's'.
1924 if (ConstraintLetter != 's')
1925 return DAG.getTargetConstant(C->getValue(), Op.getValueType());
1926 }
1927 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
1928 if (ConstraintLetter != 'n')
1929 return DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getValueType(),
1930 GA->getOffset());
1931 }
1932 break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001933 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001934 return SDOperand(0,0);
Chris Lattnereb8146b2006-02-04 02:13:02 +00001935}
1936
Chris Lattner4ccb0702006-01-26 20:37:03 +00001937std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001938getRegClassForInlineAsmConstraint(const std::string &Constraint,
1939 MVT::ValueType VT) const {
1940 return std::vector<unsigned>();
1941}
1942
1943
1944std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001945getRegForInlineAsmConstraint(const std::string &Constraint,
1946 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001947 if (Constraint[0] != '{')
1948 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001949 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1950
1951 // Remove the braces from around the name.
1952 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001953
1954 // Figure out which register class contains this reg.
Chris Lattner4ccb0702006-01-26 20:37:03 +00001955 const MRegisterInfo *RI = TM.getRegisterInfo();
Chris Lattner1efa40f2006-02-22 00:56:39 +00001956 for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1957 E = RI->regclass_end(); RCI != E; ++RCI) {
1958 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001959
1960 // If none of the the value types for this register class are valid, we
1961 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1962 bool isLegal = false;
1963 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1964 I != E; ++I) {
1965 if (isTypeLegal(*I)) {
1966 isLegal = true;
1967 break;
1968 }
1969 }
1970
1971 if (!isLegal) continue;
1972
Chris Lattner1efa40f2006-02-22 00:56:39 +00001973 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1974 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001975 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001976 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001977 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001978 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001979
Chris Lattner1efa40f2006-02-22 00:56:39 +00001980 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001981}
Evan Cheng30b37b52006-03-13 23:18:16 +00001982
1983//===----------------------------------------------------------------------===//
1984// Loop Strength Reduction hooks
1985//===----------------------------------------------------------------------===//
1986
Chris Lattner1436bb62007-03-30 23:14:50 +00001987/// isLegalAddressingMode - Return true if the addressing mode represented
1988/// by AM is legal for this target, for a load/store of the specified type.
1989bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1990 const Type *Ty) const {
1991 // The default implementation of this implements a conservative RISCy, r+r and
1992 // r+i addr mode.
1993
1994 // Allows a sign-extended 16-bit immediate field.
1995 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1996 return false;
1997
1998 // No global is ever allowed as a base.
1999 if (AM.BaseGV)
2000 return false;
2001
2002 // Only support r+r,
2003 switch (AM.Scale) {
2004 case 0: // "r+i" or just "i", depending on HasBaseReg.
2005 break;
2006 case 1:
2007 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2008 return false;
2009 // Otherwise we have r+r or r+i.
2010 break;
2011 case 2:
2012 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2013 return false;
2014 // Allow 2*r as r+r.
2015 break;
2016 }
2017
2018 return true;
2019}
2020
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00002021// Magic for divide replacement
2022
2023struct ms {
2024 int64_t m; // magic number
2025 int64_t s; // shift amount
2026};
2027
2028struct mu {
2029 uint64_t m; // magic number
2030 int64_t a; // add indicator
2031 int64_t s; // shift amount
2032};
2033
2034/// magic - calculate the magic numbers required to codegen an integer sdiv as
2035/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
2036/// or -1.
2037static ms magic32(int32_t d) {
2038 int32_t p;
2039 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
2040 const uint32_t two31 = 0x80000000U;
2041 struct ms mag;
2042
2043 ad = abs(d);
2044 t = two31 + ((uint32_t)d >> 31);
2045 anc = t - 1 - t%ad; // absolute value of nc
2046 p = 31; // initialize p
2047 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
2048 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
2049 q2 = two31/ad; // initialize q2 = 2p/abs(d)
2050 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
2051 do {
2052 p = p + 1;
2053 q1 = 2*q1; // update q1 = 2p/abs(nc)
2054 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
2055 if (r1 >= anc) { // must be unsigned comparison
2056 q1 = q1 + 1;
2057 r1 = r1 - anc;
2058 }
2059 q2 = 2*q2; // update q2 = 2p/abs(d)
2060 r2 = 2*r2; // update r2 = rem(2p/abs(d))
2061 if (r2 >= ad) { // must be unsigned comparison
2062 q2 = q2 + 1;
2063 r2 = r2 - ad;
2064 }
2065 delta = ad - r2;
2066 } while (q1 < delta || (q1 == delta && r1 == 0));
2067
2068 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
2069 if (d < 0) mag.m = -mag.m; // resulting magic number
2070 mag.s = p - 32; // resulting shift
2071 return mag;
2072}
2073
2074/// magicu - calculate the magic numbers required to codegen an integer udiv as
2075/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
2076static mu magicu32(uint32_t d) {
2077 int32_t p;
2078 uint32_t nc, delta, q1, r1, q2, r2;
2079 struct mu magu;
2080 magu.a = 0; // initialize "add" indicator
2081 nc = - 1 - (-d)%d;
2082 p = 31; // initialize p
2083 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
2084 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
2085 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
2086 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
2087 do {
2088 p = p + 1;
2089 if (r1 >= nc - r1 ) {
2090 q1 = 2*q1 + 1; // update q1
2091 r1 = 2*r1 - nc; // update r1
2092 }
2093 else {
2094 q1 = 2*q1; // update q1
2095 r1 = 2*r1; // update r1
2096 }
2097 if (r2 + 1 >= d - r2) {
2098 if (q2 >= 0x7FFFFFFF) magu.a = 1;
2099 q2 = 2*q2 + 1; // update q2
2100 r2 = 2*r2 + 1 - d; // update r2
2101 }
2102 else {
2103 if (q2 >= 0x80000000) magu.a = 1;
2104 q2 = 2*q2; // update q2
2105 r2 = 2*r2 + 1; // update r2
2106 }
2107 delta = d - 1 - r2;
2108 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
2109 magu.m = q2 + 1; // resulting magic number
2110 magu.s = p - 32; // resulting shift
2111 return magu;
2112}
2113
2114/// magic - calculate the magic numbers required to codegen an integer sdiv as
2115/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
2116/// or -1.
2117static ms magic64(int64_t d) {
2118 int64_t p;
2119 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
2120 const uint64_t two63 = 9223372036854775808ULL; // 2^63
2121 struct ms mag;
2122
2123 ad = d >= 0 ? d : -d;
2124 t = two63 + ((uint64_t)d >> 63);
2125 anc = t - 1 - t%ad; // absolute value of nc
2126 p = 63; // initialize p
2127 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
2128 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
2129 q2 = two63/ad; // initialize q2 = 2p/abs(d)
2130 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
2131 do {
2132 p = p + 1;
2133 q1 = 2*q1; // update q1 = 2p/abs(nc)
2134 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
2135 if (r1 >= anc) { // must be unsigned comparison
2136 q1 = q1 + 1;
2137 r1 = r1 - anc;
2138 }
2139 q2 = 2*q2; // update q2 = 2p/abs(d)
2140 r2 = 2*r2; // update r2 = rem(2p/abs(d))
2141 if (r2 >= ad) { // must be unsigned comparison
2142 q2 = q2 + 1;
2143 r2 = r2 - ad;
2144 }
2145 delta = ad - r2;
2146 } while (q1 < delta || (q1 == delta && r1 == 0));
2147
2148 mag.m = q2 + 1;
2149 if (d < 0) mag.m = -mag.m; // resulting magic number
2150 mag.s = p - 64; // resulting shift
2151 return mag;
2152}
2153
2154/// magicu - calculate the magic numbers required to codegen an integer udiv as
2155/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
2156static mu magicu64(uint64_t d)
2157{
2158 int64_t p;
2159 uint64_t nc, delta, q1, r1, q2, r2;
2160 struct mu magu;
2161 magu.a = 0; // initialize "add" indicator
2162 nc = - 1 - (-d)%d;
2163 p = 63; // initialize p
2164 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
2165 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
2166 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
2167 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
2168 do {
2169 p = p + 1;
2170 if (r1 >= nc - r1 ) {
2171 q1 = 2*q1 + 1; // update q1
2172 r1 = 2*r1 - nc; // update r1
2173 }
2174 else {
2175 q1 = 2*q1; // update q1
2176 r1 = 2*r1; // update r1
2177 }
2178 if (r2 + 1 >= d - r2) {
2179 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2180 q2 = 2*q2 + 1; // update q2
2181 r2 = 2*r2 + 1 - d; // update r2
2182 }
2183 else {
2184 if (q2 >= 0x8000000000000000ull) magu.a = 1;
2185 q2 = 2*q2; // update q2
2186 r2 = 2*r2 + 1; // update r2
2187 }
2188 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00002189 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00002190 magu.m = q2 + 1; // resulting magic number
2191 magu.s = p - 64; // resulting shift
2192 return magu;
2193}
2194
2195/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2196/// return a DAG expression to select that will generate the same value by
2197/// multiplying by a magic number. See:
2198/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2199SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00002200 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00002201 MVT::ValueType VT = N->getValueType(0);
2202
2203 // Check to see if we can do this.
2204 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2205 return SDOperand(); // BuildSDIV only operates on i32 or i64
2206 if (!isOperationLegal(ISD::MULHS, VT))
2207 return SDOperand(); // Make sure the target supports MULHS.
2208
2209 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
2210 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2211
2212 // Multiply the numerator (operand 0) by the magic value
2213 SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2214 DAG.getConstant(magics.m, VT));
2215 // If d > 0 and m < 0, add the numerator
2216 if (d > 0 && magics.m < 0) {
2217 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2218 if (Created)
2219 Created->push_back(Q.Val);
2220 }
2221 // If d < 0 and m > 0, subtract the numerator.
2222 if (d < 0 && magics.m > 0) {
2223 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2224 if (Created)
2225 Created->push_back(Q.Val);
2226 }
2227 // Shift right algebraic if shift value is nonzero
2228 if (magics.s > 0) {
2229 Q = DAG.getNode(ISD::SRA, VT, Q,
2230 DAG.getConstant(magics.s, getShiftAmountTy()));
2231 if (Created)
2232 Created->push_back(Q.Val);
2233 }
2234 // Extract the sign bit and add it to the quotient
2235 SDOperand T =
2236 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
2237 getShiftAmountTy()));
2238 if (Created)
2239 Created->push_back(T.Val);
2240 return DAG.getNode(ISD::ADD, VT, Q, T);
2241}
2242
2243/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2244/// return a DAG expression to select that will generate the same value by
2245/// multiplying by a magic number. See:
2246/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2247SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00002248 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00002249 MVT::ValueType VT = N->getValueType(0);
2250
2251 // Check to see if we can do this.
2252 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2253 return SDOperand(); // BuildUDIV only operates on i32 or i64
2254 if (!isOperationLegal(ISD::MULHU, VT))
2255 return SDOperand(); // Make sure the target supports MULHU.
2256
2257 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
2258 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2259
2260 // Multiply the numerator (operand 0) by the magic value
2261 SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2262 DAG.getConstant(magics.m, VT));
2263 if (Created)
2264 Created->push_back(Q.Val);
2265
2266 if (magics.a == 0) {
2267 return DAG.getNode(ISD::SRL, VT, Q,
2268 DAG.getConstant(magics.s, getShiftAmountTy()));
2269 } else {
2270 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2271 if (Created)
2272 Created->push_back(NPQ.Val);
2273 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2274 DAG.getConstant(1, getShiftAmountTy()));
2275 if (Created)
2276 Created->push_back(NPQ.Val);
2277 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2278 if (Created)
2279 Created->push_back(NPQ.Val);
2280 return DAG.getNode(ISD::SRL, VT, NPQ,
2281 DAG.getConstant(magics.s-1, getShiftAmountTy()));
2282 }
2283}