blob: 08874bfbd68c46fd372b6362751f4374b5ebb5cc [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Bendersky1de14102013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvaf722b002012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Bendersky1de14102013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvaf722b002012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
451instead of run-time. Global variables may optionally be initialized, may
452have an explicit section to be placed in, and may have an optional
453explicit alignment specified.
454
455A variable may be defined as ``thread_local``, which means that it will
456not be shared by threads (each thread will have a separated copy of the
457variable). Not all targets support thread-local variables. Optionally, a
458TLS model may be specified:
459
460``localdynamic``
461 For variables that are only used within the current shared library.
462``initialexec``
463 For variables in modules that will not be loaded dynamically.
464``localexec``
465 For variables defined in the executable and only used within it.
466
467The models correspond to the ELF TLS models; see `ELF Handling For
468Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
469more information on under which circumstances the different models may
470be used. The target may choose a different TLS model if the specified
471model is not supported, or if a better choice of model can be made.
472
Michael Gottesmanf5735882013-01-31 05:48:48 +0000473A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000474the contents of the variable will **never** be modified (enabling better
475optimization, allowing the global data to be placed in the read-only
476section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000477initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000478variable.
479
480LLVM explicitly allows *declarations* of global variables to be marked
481constant, even if the final definition of the global is not. This
482capability can be used to enable slightly better optimization of the
483program, but requires the language definition to guarantee that
484optimizations based on the 'constantness' are valid for the translation
485units that do not include the definition.
486
487As SSA values, global variables define pointer values that are in scope
488(i.e. they dominate) all basic blocks in the program. Global variables
489always define a pointer to their "content" type because they describe a
490region of memory, and all memory objects in LLVM are accessed through
491pointers.
492
493Global variables can be marked with ``unnamed_addr`` which indicates
494that the address is not significant, only the content. Constants marked
495like this can be merged with other constants if they have the same
496initializer. Note that a constant with significant address *can* be
497merged with a ``unnamed_addr`` constant, the result being a constant
498whose address is significant.
499
500A global variable may be declared to reside in a target-specific
501numbered address space. For targets that support them, address spaces
502may affect how optimizations are performed and/or what target
503instructions are used to access the variable. The default address space
504is zero. The address space qualifier must precede any other attributes.
505
506LLVM allows an explicit section to be specified for globals. If the
507target supports it, it will emit globals to the section specified.
508
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000509By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000510variables defined within the module are not modified from their
511initial values before the start of the global initializer. This is
512true even for variables potentially accessible from outside the
513module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000514``@llvm.used``. This assumption may be suppressed by marking the
515variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000516
Sean Silvaf722b002012-12-07 10:36:55 +0000517An explicit alignment may be specified for a global, which must be a
518power of 2. If not present, or if the alignment is set to zero, the
519alignment of the global is set by the target to whatever it feels
520convenient. If an explicit alignment is specified, the global is forced
521to have exactly that alignment. Targets and optimizers are not allowed
522to over-align the global if the global has an assigned section. In this
523case, the extra alignment could be observable: for example, code could
524assume that the globals are densely packed in their section and try to
525iterate over them as an array, alignment padding would break this
526iteration.
527
528For example, the following defines a global in a numbered address space
529with an initializer, section, and alignment:
530
531.. code-block:: llvm
532
533 @G = addrspace(5) constant float 1.0, section "foo", align 4
534
535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000555collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
556curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvaf722b002012-12-07 10:36:55 +0000557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000563name, a possibly empty list of arguments, an optional alignment, an optional
564:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvaf722b002012-12-07 10:36:55 +0000565
566A function definition contains a list of basic blocks, forming the CFG
567(Control Flow Graph) for the function. Each basic block may optionally
568start with a label (giving the basic block a symbol table entry),
569contains a list of instructions, and ends with a
570:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000571return). If explicit label is not provided, a block is assigned an
572implicit numbered label, using a next value from the same counter as used
573for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
574function entry block does not have explicit label, it will be assigned
575label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000576
577The first basic block in a function is special in two ways: it is
578immediately executed on entrance to the function, and it is not allowed
579to have predecessor basic blocks (i.e. there can not be any branches to
580the entry block of a function). Because the block can have no
581predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
582
583LLVM allows an explicit section to be specified for functions. If the
584target supports it, it will emit functions to the section specified.
585
586An explicit alignment may be specified for a function. If not present,
587or if the alignment is set to zero, the alignment of the function is set
588by the target to whatever it feels convenient. If an explicit alignment
589is specified, the function is forced to have at least that much
590alignment. All alignments must be a power of 2.
591
592If the ``unnamed_addr`` attribute is given, the address is know to not
593be significant and two identical functions can be merged.
594
595Syntax::
596
597 define [linkage] [visibility]
598 [cconv] [ret attrs]
599 <ResultType> @<FunctionName> ([argument list])
600 [fn Attrs] [section "name"] [align N]
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000601 [gc] [prefix Constant] { ... }
Sean Silvaf722b002012-12-07 10:36:55 +0000602
Eli Bendersky1de14102013-06-07 19:40:08 +0000603.. _langref_aliases:
604
Sean Silvaf722b002012-12-07 10:36:55 +0000605Aliases
606-------
607
608Aliases act as "second name" for the aliasee value (which can be either
609function, global variable, another alias or bitcast of global value).
610Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
611:ref:`visibility style <visibility>`.
612
613Syntax::
614
615 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
616
617.. _namedmetadatastructure:
618
619Named Metadata
620--------------
621
622Named metadata is a collection of metadata. :ref:`Metadata
623nodes <metadata>` (but not metadata strings) are the only valid
624operands for a named metadata.
625
626Syntax::
627
628 ; Some unnamed metadata nodes, which are referenced by the named metadata.
629 !0 = metadata !{metadata !"zero"}
630 !1 = metadata !{metadata !"one"}
631 !2 = metadata !{metadata !"two"}
632 ; A named metadata.
633 !name = !{!0, !1, !2}
634
635.. _paramattrs:
636
637Parameter Attributes
638--------------------
639
640The return type and each parameter of a function type may have a set of
641*parameter attributes* associated with them. Parameter attributes are
642used to communicate additional information about the result or
643parameters of a function. Parameter attributes are considered to be part
644of the function, not of the function type, so functions with different
645parameter attributes can have the same function type.
646
647Parameter attributes are simple keywords that follow the type specified.
648If multiple parameter attributes are needed, they are space separated.
649For example:
650
651.. code-block:: llvm
652
653 declare i32 @printf(i8* noalias nocapture, ...)
654 declare i32 @atoi(i8 zeroext)
655 declare signext i8 @returns_signed_char()
656
657Note that any attributes for the function result (``nounwind``,
658``readonly``) come immediately after the argument list.
659
660Currently, only the following parameter attributes are defined:
661
662``zeroext``
663 This indicates to the code generator that the parameter or return
664 value should be zero-extended to the extent required by the target's
665 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
666 the caller (for a parameter) or the callee (for a return value).
667``signext``
668 This indicates to the code generator that the parameter or return
669 value should be sign-extended to the extent required by the target's
670 ABI (which is usually 32-bits) by the caller (for a parameter) or
671 the callee (for a return value).
672``inreg``
673 This indicates that this parameter or return value should be treated
674 in a special target-dependent fashion during while emitting code for
675 a function call or return (usually, by putting it in a register as
676 opposed to memory, though some targets use it to distinguish between
677 two different kinds of registers). Use of this attribute is
678 target-specific.
679``byval``
680 This indicates that the pointer parameter should really be passed by
681 value to the function. The attribute implies that a hidden copy of
682 the pointee is made between the caller and the callee, so the callee
683 is unable to modify the value in the caller. This attribute is only
684 valid on LLVM pointer arguments. It is generally used to pass
685 structs and arrays by value, but is also valid on pointers to
686 scalars. The copy is considered to belong to the caller not the
687 callee (for example, ``readonly`` functions should not write to
688 ``byval`` parameters). This is not a valid attribute for return
689 values.
690
691 The byval attribute also supports specifying an alignment with the
692 align attribute. It indicates the alignment of the stack slot to
693 form and the known alignment of the pointer specified to the call
694 site. If the alignment is not specified, then the code generator
695 makes a target-specific assumption.
696
697``sret``
698 This indicates that the pointer parameter specifies the address of a
699 structure that is the return value of the function in the source
700 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000701 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000702 not to trap and to be properly aligned. This may only be applied to
703 the first parameter. This is not a valid attribute for return
704 values.
705``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000706 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000707 the argument or return value do not alias pointer values which are
708 not *based* on it, ignoring certain "irrelevant" dependencies. For a
709 call to the parent function, dependencies between memory references
710 from before or after the call and from those during the call are
711 "irrelevant" to the ``noalias`` keyword for the arguments and return
712 value used in that call. The caller shares the responsibility with
713 the callee for ensuring that these requirements are met. For further
714 details, please see the discussion of the NoAlias response in `alias
715 analysis <AliasAnalysis.html#MustMayNo>`_.
716
717 Note that this definition of ``noalias`` is intentionally similar
718 to the definition of ``restrict`` in C99 for function arguments,
719 though it is slightly weaker.
720
721 For function return values, C99's ``restrict`` is not meaningful,
722 while LLVM's ``noalias`` is.
723``nocapture``
724 This indicates that the callee does not make any copies of the
725 pointer that outlive the callee itself. This is not a valid
726 attribute for return values.
727
728.. _nest:
729
730``nest``
731 This indicates that the pointer parameter can be excised using the
732 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000733 attribute for return values and can only be applied to one parameter.
734
735``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000736 This indicates that the function always returns the argument as its return
737 value. This is an optimization hint to the code generator when generating
738 the caller, allowing tail call optimization and omission of register saves
739 and restores in some cases; it is not checked or enforced when generating
740 the callee. The parameter and the function return type must be valid
741 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
742 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000743
744.. _gc:
745
746Garbage Collector Names
747-----------------------
748
749Each function may specify a garbage collector name, which is simply a
750string:
751
752.. code-block:: llvm
753
754 define void @f() gc "name" { ... }
755
756The compiler declares the supported values of *name*. Specifying a
757collector which will cause the compiler to alter its output in order to
758support the named garbage collection algorithm.
759
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000760.. _prefixdata:
761
762Prefix Data
763-----------
764
765Prefix data is data associated with a function which the code generator
766will emit immediately before the function body. The purpose of this feature
767is to allow frontends to associate language-specific runtime metadata with
768specific functions and make it available through the function pointer while
769still allowing the function pointer to be called. To access the data for a
770given function, a program may bitcast the function pointer to a pointer to
771the constant's type. This implies that the IR symbol points to the start
772of the prefix data.
773
774To maintain the semantics of ordinary function calls, the prefix data must
775have a particular format. Specifically, it must begin with a sequence of
776bytes which decode to a sequence of machine instructions, valid for the
777module's target, which transfer control to the point immediately succeeding
778the prefix data, without performing any other visible action. This allows
779the inliner and other passes to reason about the semantics of the function
780definition without needing to reason about the prefix data. Obviously this
781makes the format of the prefix data highly target dependent.
782
783A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
784which encodes the ``nop`` instruction:
785
786.. code-block:: llvm
787
788 define void @f() prefix i8 144 { ... }
789
790Generally prefix data can be formed by encoding a relative branch instruction
791which skips the metadata, as in this example of valid prefix data for the
792x86_64 architecture, where the first two bytes encode ``jmp .+10``:
793
794.. code-block:: llvm
795
796 %0 = type <{ i8, i8, i8* }>
797
798 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
799
800A function may have prefix data but no body. This has similar semantics
801to the ``available_externally`` linkage in that the data may be used by the
802optimizers but will not be emitted in the object file.
803
Bill Wendling95ce4c22013-02-06 06:52:58 +0000804.. _attrgrp:
805
806Attribute Groups
807----------------
808
809Attribute groups are groups of attributes that are referenced by objects within
810the IR. They are important for keeping ``.ll`` files readable, because a lot of
811functions will use the same set of attributes. In the degenerative case of a
812``.ll`` file that corresponds to a single ``.c`` file, the single attribute
813group will capture the important command line flags used to build that file.
814
815An attribute group is a module-level object. To use an attribute group, an
816object references the attribute group's ID (e.g. ``#37``). An object may refer
817to more than one attribute group. In that situation, the attributes from the
818different groups are merged.
819
820Here is an example of attribute groups for a function that should always be
821inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
822
823.. code-block:: llvm
824
825 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000826 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000827
828 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000829 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000830
831 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
832 define void @f() #0 #1 { ... }
833
Sean Silvaf722b002012-12-07 10:36:55 +0000834.. _fnattrs:
835
836Function Attributes
837-------------------
838
839Function attributes are set to communicate additional information about
840a function. Function attributes are considered to be part of the
841function, not of the function type, so functions with different function
842attributes can have the same function type.
843
844Function attributes are simple keywords that follow the type specified.
845If multiple attributes are needed, they are space separated. For
846example:
847
848.. code-block:: llvm
849
850 define void @f() noinline { ... }
851 define void @f() alwaysinline { ... }
852 define void @f() alwaysinline optsize { ... }
853 define void @f() optsize { ... }
854
Sean Silvaf722b002012-12-07 10:36:55 +0000855``alignstack(<n>)``
856 This attribute indicates that, when emitting the prologue and
857 epilogue, the backend should forcibly align the stack pointer.
858 Specify the desired alignment, which must be a power of two, in
859 parentheses.
860``alwaysinline``
861 This attribute indicates that the inliner should attempt to inline
862 this function into callers whenever possible, ignoring any active
863 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000864``builtin``
865 This indicates that the callee function at a call site should be
866 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000867 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000868 direct calls to functions which are declared with the ``nobuiltin``
869 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000870``cold``
871 This attribute indicates that this function is rarely called. When
872 computing edge weights, basic blocks post-dominated by a cold
873 function call are also considered to be cold; and, thus, given low
874 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000875``inlinehint``
876 This attribute indicates that the source code contained a hint that
877 inlining this function is desirable (such as the "inline" keyword in
878 C/C++). It is just a hint; it imposes no requirements on the
879 inliner.
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000880``minsize``
881 This attribute suggests that optimization passes and code generator
882 passes make choices that keep the code size of this function as small
883 as possible and perform optimizations that may sacrifice runtime
884 performance in order to minimize the size of the generated code.
Sean Silvaf722b002012-12-07 10:36:55 +0000885``naked``
886 This attribute disables prologue / epilogue emission for the
887 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000888``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000889 This indicates that the callee function at a call site is not recognized as
890 a built-in function. LLVM will retain the original call and not replace it
891 with equivalent code based on the semantics of the built-in function, unless
892 the call site uses the ``builtin`` attribute. This is valid at call sites
893 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000894``noduplicate``
895 This attribute indicates that calls to the function cannot be
896 duplicated. A call to a ``noduplicate`` function may be moved
897 within its parent function, but may not be duplicated within
898 its parent function.
899
900 A function containing a ``noduplicate`` call may still
901 be an inlining candidate, provided that the call is not
902 duplicated by inlining. That implies that the function has
903 internal linkage and only has one call site, so the original
904 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000905``noimplicitfloat``
906 This attributes disables implicit floating point instructions.
907``noinline``
908 This attribute indicates that the inliner should never inline this
909 function in any situation. This attribute may not be used together
910 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +0000911``nonlazybind``
912 This attribute suppresses lazy symbol binding for the function. This
913 may make calls to the function faster, at the cost of extra program
914 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +0000915``noredzone``
916 This attribute indicates that the code generator should not use a
917 red zone, even if the target-specific ABI normally permits it.
918``noreturn``
919 This function attribute indicates that the function never returns
920 normally. This produces undefined behavior at runtime if the
921 function ever does dynamically return.
922``nounwind``
923 This function attribute indicates that the function never returns
924 with an unwind or exceptional control flow. If the function does
925 unwind, its runtime behavior is undefined.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000926``optnone``
927 This function attribute indicates that the function is not optimized
928 by any optimization or code generator passes with the
929 exception of interprocedural optimization passes.
930 This attribute cannot be used together with the ``alwaysinline``
931 attribute; this attribute is also incompatible
932 with the ``minsize`` attribute and the ``optsize`` attribute.
933
934 The inliner should never inline this function in any situation.
935 Only functions with the ``alwaysinline`` attribute are valid
936 candidates for inlining inside the body of this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000937``optsize``
938 This attribute suggests that optimization passes and code generator
939 passes make choices that keep the code size of this function low,
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000940 and otherwise do optimizations specifically to reduce code size as
941 long as they do not significantly impact runtime performance.
Sean Silvaf722b002012-12-07 10:36:55 +0000942``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000943 On a function, this attribute indicates that the function computes its
944 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000945 without dereferencing any pointer arguments or otherwise accessing
946 any mutable state (e.g. memory, control registers, etc) visible to
947 caller functions. It does not write through any pointer arguments
948 (including ``byval`` arguments) and never changes any state visible
949 to callers. This means that it cannot unwind exceptions by calling
950 the ``C++`` exception throwing methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000951
952 On an argument, this attribute indicates that the function does not
953 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +0000954 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000955``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000956 On a function, this attribute indicates that the function does not write
957 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000958 modify any state (e.g. memory, control registers, etc) visible to
959 caller functions. It may dereference pointer arguments and read
960 state that may be set in the caller. A readonly function always
961 returns the same value (or unwinds an exception identically) when
962 called with the same set of arguments and global state. It cannot
963 unwind an exception by calling the ``C++`` exception throwing
964 methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000965
966 On an argument, this attribute indicates that the function does not write
967 through this pointer argument, even though it may write to the memory that
968 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000969``returns_twice``
970 This attribute indicates that this function can return twice. The C
971 ``setjmp`` is an example of such a function. The compiler disables
972 some optimizations (like tail calls) in the caller of these
973 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000974``sanitize_address``
975 This attribute indicates that AddressSanitizer checks
976 (dynamic address safety analysis) are enabled for this function.
977``sanitize_memory``
978 This attribute indicates that MemorySanitizer checks (dynamic detection
979 of accesses to uninitialized memory) are enabled for this function.
980``sanitize_thread``
981 This attribute indicates that ThreadSanitizer checks
982 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000983``ssp``
984 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000985 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000986 placed on the stack before the local variables that's checked upon
987 return from the function to see if it has been overwritten. A
988 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000989 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000990
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000991 - Character arrays larger than ``ssp-buffer-size`` (default 8).
992 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
993 - Calls to alloca() with variable sizes or constant sizes greater than
994 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000995
996 If a function that has an ``ssp`` attribute is inlined into a
997 function that doesn't have an ``ssp`` attribute, then the resulting
998 function will have an ``ssp`` attribute.
999``sspreq``
1000 This attribute indicates that the function should *always* emit a
1001 stack smashing protector. This overrides the ``ssp`` function
1002 attribute.
1003
1004 If a function that has an ``sspreq`` attribute is inlined into a
1005 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +00001006 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1007 an ``sspreq`` attribute.
1008``sspstrong``
1009 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001010 protector. This attribute causes a strong heuristic to be used when
1011 determining if a function needs stack protectors. The strong heuristic
1012 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001013
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001014 - Arrays of any size and type
1015 - Aggregates containing an array of any size and type.
1016 - Calls to alloca().
1017 - Local variables that have had their address taken.
1018
1019 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +00001020
1021 If a function that has an ``sspstrong`` attribute is inlined into a
1022 function that doesn't have an ``sspstrong`` attribute, then the
1023 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +00001024``uwtable``
1025 This attribute indicates that the ABI being targeted requires that
1026 an unwind table entry be produce for this function even if we can
1027 show that no exceptions passes by it. This is normally the case for
1028 the ELF x86-64 abi, but it can be disabled for some compilation
1029 units.
Sean Silvaf722b002012-12-07 10:36:55 +00001030
1031.. _moduleasm:
1032
1033Module-Level Inline Assembly
1034----------------------------
1035
1036Modules may contain "module-level inline asm" blocks, which corresponds
1037to the GCC "file scope inline asm" blocks. These blocks are internally
1038concatenated by LLVM and treated as a single unit, but may be separated
1039in the ``.ll`` file if desired. The syntax is very simple:
1040
1041.. code-block:: llvm
1042
1043 module asm "inline asm code goes here"
1044 module asm "more can go here"
1045
1046The strings can contain any character by escaping non-printable
1047characters. The escape sequence used is simply "\\xx" where "xx" is the
1048two digit hex code for the number.
1049
1050The inline asm code is simply printed to the machine code .s file when
1051assembly code is generated.
1052
Eli Bendersky1de14102013-06-07 19:40:08 +00001053.. _langref_datalayout:
1054
Sean Silvaf722b002012-12-07 10:36:55 +00001055Data Layout
1056-----------
1057
1058A module may specify a target specific data layout string that specifies
1059how data is to be laid out in memory. The syntax for the data layout is
1060simply:
1061
1062.. code-block:: llvm
1063
1064 target datalayout = "layout specification"
1065
1066The *layout specification* consists of a list of specifications
1067separated by the minus sign character ('-'). Each specification starts
1068with a letter and may include other information after the letter to
1069define some aspect of the data layout. The specifications accepted are
1070as follows:
1071
1072``E``
1073 Specifies that the target lays out data in big-endian form. That is,
1074 the bits with the most significance have the lowest address
1075 location.
1076``e``
1077 Specifies that the target lays out data in little-endian form. That
1078 is, the bits with the least significance have the lowest address
1079 location.
1080``S<size>``
1081 Specifies the natural alignment of the stack in bits. Alignment
1082 promotion of stack variables is limited to the natural stack
1083 alignment to avoid dynamic stack realignment. The stack alignment
1084 must be a multiple of 8-bits. If omitted, the natural stack
1085 alignment defaults to "unspecified", which does not prevent any
1086 alignment promotions.
1087``p[n]:<size>:<abi>:<pref>``
1088 This specifies the *size* of a pointer and its ``<abi>`` and
1089 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1090 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1091 preceding ``:`` should be omitted too. The address space, ``n`` is
1092 optional, and if not specified, denotes the default address space 0.
1093 The value of ``n`` must be in the range [1,2^23).
1094``i<size>:<abi>:<pref>``
1095 This specifies the alignment for an integer type of a given bit
1096 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1097``v<size>:<abi>:<pref>``
1098 This specifies the alignment for a vector type of a given bit
1099 ``<size>``.
1100``f<size>:<abi>:<pref>``
1101 This specifies the alignment for a floating point type of a given bit
1102 ``<size>``. Only values of ``<size>`` that are supported by the target
1103 will work. 32 (float) and 64 (double) are supported on all targets; 80
1104 or 128 (different flavors of long double) are also supported on some
1105 targets.
1106``a<size>:<abi>:<pref>``
1107 This specifies the alignment for an aggregate type of a given bit
1108 ``<size>``.
1109``s<size>:<abi>:<pref>``
1110 This specifies the alignment for a stack object of a given bit
1111 ``<size>``.
1112``n<size1>:<size2>:<size3>...``
1113 This specifies a set of native integer widths for the target CPU in
1114 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1115 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1116 this set are considered to support most general arithmetic operations
1117 efficiently.
1118
1119When constructing the data layout for a given target, LLVM starts with a
1120default set of specifications which are then (possibly) overridden by
1121the specifications in the ``datalayout`` keyword. The default
1122specifications are given in this list:
1123
1124- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00001125- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1126- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1127 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001128- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001129- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1130- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1131- ``i16:16:16`` - i16 is 16-bit aligned
1132- ``i32:32:32`` - i32 is 32-bit aligned
1133- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1134 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001135- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001136- ``f32:32:32`` - float is 32-bit aligned
1137- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001138- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001139- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1140- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001141- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001142
1143When LLVM is determining the alignment for a given type, it uses the
1144following rules:
1145
1146#. If the type sought is an exact match for one of the specifications,
1147 that specification is used.
1148#. If no match is found, and the type sought is an integer type, then
1149 the smallest integer type that is larger than the bitwidth of the
1150 sought type is used. If none of the specifications are larger than
1151 the bitwidth then the largest integer type is used. For example,
1152 given the default specifications above, the i7 type will use the
1153 alignment of i8 (next largest) while both i65 and i256 will use the
1154 alignment of i64 (largest specified).
1155#. If no match is found, and the type sought is a vector type, then the
1156 largest vector type that is smaller than the sought vector type will
1157 be used as a fall back. This happens because <128 x double> can be
1158 implemented in terms of 64 <2 x double>, for example.
1159
1160The function of the data layout string may not be what you expect.
1161Notably, this is not a specification from the frontend of what alignment
1162the code generator should use.
1163
1164Instead, if specified, the target data layout is required to match what
1165the ultimate *code generator* expects. This string is used by the
1166mid-level optimizers to improve code, and this only works if it matches
1167what the ultimate code generator uses. If you would like to generate IR
1168that does not embed this target-specific detail into the IR, then you
1169don't have to specify the string. This will disable some optimizations
1170that require precise layout information, but this also prevents those
1171optimizations from introducing target specificity into the IR.
1172
1173.. _pointeraliasing:
1174
1175Pointer Aliasing Rules
1176----------------------
1177
1178Any memory access must be done through a pointer value associated with
1179an address range of the memory access, otherwise the behavior is
1180undefined. Pointer values are associated with address ranges according
1181to the following rules:
1182
1183- A pointer value is associated with the addresses associated with any
1184 value it is *based* on.
1185- An address of a global variable is associated with the address range
1186 of the variable's storage.
1187- The result value of an allocation instruction is associated with the
1188 address range of the allocated storage.
1189- A null pointer in the default address-space is associated with no
1190 address.
1191- An integer constant other than zero or a pointer value returned from
1192 a function not defined within LLVM may be associated with address
1193 ranges allocated through mechanisms other than those provided by
1194 LLVM. Such ranges shall not overlap with any ranges of addresses
1195 allocated by mechanisms provided by LLVM.
1196
1197A pointer value is *based* on another pointer value according to the
1198following rules:
1199
1200- A pointer value formed from a ``getelementptr`` operation is *based*
1201 on the first operand of the ``getelementptr``.
1202- The result value of a ``bitcast`` is *based* on the operand of the
1203 ``bitcast``.
1204- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1205 values that contribute (directly or indirectly) to the computation of
1206 the pointer's value.
1207- The "*based* on" relationship is transitive.
1208
1209Note that this definition of *"based"* is intentionally similar to the
1210definition of *"based"* in C99, though it is slightly weaker.
1211
1212LLVM IR does not associate types with memory. The result type of a
1213``load`` merely indicates the size and alignment of the memory from
1214which to load, as well as the interpretation of the value. The first
1215operand type of a ``store`` similarly only indicates the size and
1216alignment of the store.
1217
1218Consequently, type-based alias analysis, aka TBAA, aka
1219``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1220:ref:`Metadata <metadata>` may be used to encode additional information
1221which specialized optimization passes may use to implement type-based
1222alias analysis.
1223
1224.. _volatile:
1225
1226Volatile Memory Accesses
1227------------------------
1228
1229Certain memory accesses, such as :ref:`load <i_load>`'s,
1230:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1231marked ``volatile``. The optimizers must not change the number of
1232volatile operations or change their order of execution relative to other
1233volatile operations. The optimizers *may* change the order of volatile
1234operations relative to non-volatile operations. This is not Java's
1235"volatile" and has no cross-thread synchronization behavior.
1236
Andrew Trick9a6dd022013-01-30 21:19:35 +00001237IR-level volatile loads and stores cannot safely be optimized into
1238llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1239flagged volatile. Likewise, the backend should never split or merge
1240target-legal volatile load/store instructions.
1241
Andrew Trick946317d2013-01-31 00:49:39 +00001242.. admonition:: Rationale
1243
1244 Platforms may rely on volatile loads and stores of natively supported
1245 data width to be executed as single instruction. For example, in C
1246 this holds for an l-value of volatile primitive type with native
1247 hardware support, but not necessarily for aggregate types. The
1248 frontend upholds these expectations, which are intentionally
1249 unspecified in the IR. The rules above ensure that IR transformation
1250 do not violate the frontend's contract with the language.
1251
Sean Silvaf722b002012-12-07 10:36:55 +00001252.. _memmodel:
1253
1254Memory Model for Concurrent Operations
1255--------------------------------------
1256
1257The LLVM IR does not define any way to start parallel threads of
1258execution or to register signal handlers. Nonetheless, there are
1259platform-specific ways to create them, and we define LLVM IR's behavior
1260in their presence. This model is inspired by the C++0x memory model.
1261
1262For a more informal introduction to this model, see the :doc:`Atomics`.
1263
1264We define a *happens-before* partial order as the least partial order
1265that
1266
1267- Is a superset of single-thread program order, and
1268- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1269 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1270 techniques, like pthread locks, thread creation, thread joining,
1271 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1272 Constraints <ordering>`).
1273
1274Note that program order does not introduce *happens-before* edges
1275between a thread and signals executing inside that thread.
1276
1277Every (defined) read operation (load instructions, memcpy, atomic
1278loads/read-modify-writes, etc.) R reads a series of bytes written by
1279(defined) write operations (store instructions, atomic
1280stores/read-modify-writes, memcpy, etc.). For the purposes of this
1281section, initialized globals are considered to have a write of the
1282initializer which is atomic and happens before any other read or write
1283of the memory in question. For each byte of a read R, R\ :sub:`byte`
1284may see any write to the same byte, except:
1285
1286- If write\ :sub:`1` happens before write\ :sub:`2`, and
1287 write\ :sub:`2` happens before R\ :sub:`byte`, then
1288 R\ :sub:`byte` does not see write\ :sub:`1`.
1289- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1290 R\ :sub:`byte` does not see write\ :sub:`3`.
1291
1292Given that definition, R\ :sub:`byte` is defined as follows:
1293
1294- If R is volatile, the result is target-dependent. (Volatile is
1295 supposed to give guarantees which can support ``sig_atomic_t`` in
1296 C/C++, and may be used for accesses to addresses which do not behave
1297 like normal memory. It does not generally provide cross-thread
1298 synchronization.)
1299- Otherwise, if there is no write to the same byte that happens before
1300 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1301- Otherwise, if R\ :sub:`byte` may see exactly one write,
1302 R\ :sub:`byte` returns the value written by that write.
1303- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1304 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1305 Memory Ordering Constraints <ordering>` section for additional
1306 constraints on how the choice is made.
1307- Otherwise R\ :sub:`byte` returns ``undef``.
1308
1309R returns the value composed of the series of bytes it read. This
1310implies that some bytes within the value may be ``undef`` **without**
1311the entire value being ``undef``. Note that this only defines the
1312semantics of the operation; it doesn't mean that targets will emit more
1313than one instruction to read the series of bytes.
1314
1315Note that in cases where none of the atomic intrinsics are used, this
1316model places only one restriction on IR transformations on top of what
1317is required for single-threaded execution: introducing a store to a byte
1318which might not otherwise be stored is not allowed in general.
1319(Specifically, in the case where another thread might write to and read
1320from an address, introducing a store can change a load that may see
1321exactly one write into a load that may see multiple writes.)
1322
1323.. _ordering:
1324
1325Atomic Memory Ordering Constraints
1326----------------------------------
1327
1328Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1329:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1330:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1331an ordering parameter that determines which other atomic instructions on
1332the same address they *synchronize with*. These semantics are borrowed
1333from Java and C++0x, but are somewhat more colloquial. If these
1334descriptions aren't precise enough, check those specs (see spec
1335references in the :doc:`atomics guide <Atomics>`).
1336:ref:`fence <i_fence>` instructions treat these orderings somewhat
1337differently since they don't take an address. See that instruction's
1338documentation for details.
1339
1340For a simpler introduction to the ordering constraints, see the
1341:doc:`Atomics`.
1342
1343``unordered``
1344 The set of values that can be read is governed by the happens-before
1345 partial order. A value cannot be read unless some operation wrote
1346 it. This is intended to provide a guarantee strong enough to model
1347 Java's non-volatile shared variables. This ordering cannot be
1348 specified for read-modify-write operations; it is not strong enough
1349 to make them atomic in any interesting way.
1350``monotonic``
1351 In addition to the guarantees of ``unordered``, there is a single
1352 total order for modifications by ``monotonic`` operations on each
1353 address. All modification orders must be compatible with the
1354 happens-before order. There is no guarantee that the modification
1355 orders can be combined to a global total order for the whole program
1356 (and this often will not be possible). The read in an atomic
1357 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1358 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1359 order immediately before the value it writes. If one atomic read
1360 happens before another atomic read of the same address, the later
1361 read must see the same value or a later value in the address's
1362 modification order. This disallows reordering of ``monotonic`` (or
1363 stronger) operations on the same address. If an address is written
1364 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1365 read that address repeatedly, the other threads must eventually see
1366 the write. This corresponds to the C++0x/C1x
1367 ``memory_order_relaxed``.
1368``acquire``
1369 In addition to the guarantees of ``monotonic``, a
1370 *synchronizes-with* edge may be formed with a ``release`` operation.
1371 This is intended to model C++'s ``memory_order_acquire``.
1372``release``
1373 In addition to the guarantees of ``monotonic``, if this operation
1374 writes a value which is subsequently read by an ``acquire``
1375 operation, it *synchronizes-with* that operation. (This isn't a
1376 complete description; see the C++0x definition of a release
1377 sequence.) This corresponds to the C++0x/C1x
1378 ``memory_order_release``.
1379``acq_rel`` (acquire+release)
1380 Acts as both an ``acquire`` and ``release`` operation on its
1381 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1382``seq_cst`` (sequentially consistent)
1383 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1384 operation which only reads, ``release`` for an operation which only
1385 writes), there is a global total order on all
1386 sequentially-consistent operations on all addresses, which is
1387 consistent with the *happens-before* partial order and with the
1388 modification orders of all the affected addresses. Each
1389 sequentially-consistent read sees the last preceding write to the
1390 same address in this global order. This corresponds to the C++0x/C1x
1391 ``memory_order_seq_cst`` and Java volatile.
1392
1393.. _singlethread:
1394
1395If an atomic operation is marked ``singlethread``, it only *synchronizes
1396with* or participates in modification and seq\_cst total orderings with
1397other operations running in the same thread (for example, in signal
1398handlers).
1399
1400.. _fastmath:
1401
1402Fast-Math Flags
1403---------------
1404
1405LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1406:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1407:ref:`frem <i_frem>`) have the following flags that can set to enable
1408otherwise unsafe floating point operations
1409
1410``nnan``
1411 No NaNs - Allow optimizations to assume the arguments and result are not
1412 NaN. Such optimizations are required to retain defined behavior over
1413 NaNs, but the value of the result is undefined.
1414
1415``ninf``
1416 No Infs - Allow optimizations to assume the arguments and result are not
1417 +/-Inf. Such optimizations are required to retain defined behavior over
1418 +/-Inf, but the value of the result is undefined.
1419
1420``nsz``
1421 No Signed Zeros - Allow optimizations to treat the sign of a zero
1422 argument or result as insignificant.
1423
1424``arcp``
1425 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1426 argument rather than perform division.
1427
1428``fast``
1429 Fast - Allow algebraically equivalent transformations that may
1430 dramatically change results in floating point (e.g. reassociate). This
1431 flag implies all the others.
1432
1433.. _typesystem:
1434
1435Type System
1436===========
1437
1438The LLVM type system is one of the most important features of the
1439intermediate representation. Being typed enables a number of
1440optimizations to be performed on the intermediate representation
1441directly, without having to do extra analyses on the side before the
1442transformation. A strong type system makes it easier to read the
1443generated code and enables novel analyses and transformations that are
1444not feasible to perform on normal three address code representations.
1445
Eli Bendersky88fe6822013-06-07 20:24:43 +00001446.. _typeclassifications:
1447
Sean Silvaf722b002012-12-07 10:36:55 +00001448Type Classifications
1449--------------------
1450
1451The types fall into a few useful classifications:
1452
1453
1454.. list-table::
1455 :header-rows: 1
1456
1457 * - Classification
1458 - Types
1459
1460 * - :ref:`integer <t_integer>`
1461 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1462 ``i64``, ...
1463
1464 * - :ref:`floating point <t_floating>`
1465 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1466 ``ppc_fp128``
1467
1468
1469 * - first class
1470
1471 .. _t_firstclass:
1472
1473 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1474 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1475 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1476 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1477
1478 * - :ref:`primitive <t_primitive>`
1479 - :ref:`label <t_label>`,
1480 :ref:`void <t_void>`,
1481 :ref:`integer <t_integer>`,
1482 :ref:`floating point <t_floating>`,
1483 :ref:`x86mmx <t_x86mmx>`,
1484 :ref:`metadata <t_metadata>`.
1485
1486 * - :ref:`derived <t_derived>`
1487 - :ref:`array <t_array>`,
1488 :ref:`function <t_function>`,
1489 :ref:`pointer <t_pointer>`,
1490 :ref:`structure <t_struct>`,
1491 :ref:`vector <t_vector>`,
1492 :ref:`opaque <t_opaque>`.
1493
1494The :ref:`first class <t_firstclass>` types are perhaps the most important.
1495Values of these types are the only ones which can be produced by
1496instructions.
1497
1498.. _t_primitive:
1499
1500Primitive Types
1501---------------
1502
1503The primitive types are the fundamental building blocks of the LLVM
1504system.
1505
1506.. _t_integer:
1507
1508Integer Type
1509^^^^^^^^^^^^
1510
1511Overview:
1512"""""""""
1513
1514The integer type is a very simple type that simply specifies an
1515arbitrary bit width for the integer type desired. Any bit width from 1
1516bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1517
1518Syntax:
1519"""""""
1520
1521::
1522
1523 iN
1524
1525The number of bits the integer will occupy is specified by the ``N``
1526value.
1527
1528Examples:
1529"""""""""
1530
1531+----------------+------------------------------------------------+
1532| ``i1`` | a single-bit integer. |
1533+----------------+------------------------------------------------+
1534| ``i32`` | a 32-bit integer. |
1535+----------------+------------------------------------------------+
1536| ``i1942652`` | a really big integer of over 1 million bits. |
1537+----------------+------------------------------------------------+
1538
1539.. _t_floating:
1540
1541Floating Point Types
1542^^^^^^^^^^^^^^^^^^^^
1543
1544.. list-table::
1545 :header-rows: 1
1546
1547 * - Type
1548 - Description
1549
1550 * - ``half``
1551 - 16-bit floating point value
1552
1553 * - ``float``
1554 - 32-bit floating point value
1555
1556 * - ``double``
1557 - 64-bit floating point value
1558
1559 * - ``fp128``
1560 - 128-bit floating point value (112-bit mantissa)
1561
1562 * - ``x86_fp80``
1563 - 80-bit floating point value (X87)
1564
1565 * - ``ppc_fp128``
1566 - 128-bit floating point value (two 64-bits)
1567
1568.. _t_x86mmx:
1569
1570X86mmx Type
1571^^^^^^^^^^^
1572
1573Overview:
1574"""""""""
1575
1576The x86mmx type represents a value held in an MMX register on an x86
1577machine. The operations allowed on it are quite limited: parameters and
1578return values, load and store, and bitcast. User-specified MMX
1579instructions are represented as intrinsic or asm calls with arguments
1580and/or results of this type. There are no arrays, vectors or constants
1581of this type.
1582
1583Syntax:
1584"""""""
1585
1586::
1587
1588 x86mmx
1589
1590.. _t_void:
1591
1592Void Type
1593^^^^^^^^^
1594
1595Overview:
1596"""""""""
1597
1598The void type does not represent any value and has no size.
1599
1600Syntax:
1601"""""""
1602
1603::
1604
1605 void
1606
1607.. _t_label:
1608
1609Label Type
1610^^^^^^^^^^
1611
1612Overview:
1613"""""""""
1614
1615The label type represents code labels.
1616
1617Syntax:
1618"""""""
1619
1620::
1621
1622 label
1623
1624.. _t_metadata:
1625
1626Metadata Type
1627^^^^^^^^^^^^^
1628
1629Overview:
1630"""""""""
1631
1632The metadata type represents embedded metadata. No derived types may be
1633created from metadata except for :ref:`function <t_function>` arguments.
1634
1635Syntax:
1636"""""""
1637
1638::
1639
1640 metadata
1641
1642.. _t_derived:
1643
1644Derived Types
1645-------------
1646
1647The real power in LLVM comes from the derived types in the system. This
1648is what allows a programmer to represent arrays, functions, pointers,
1649and other useful types. Each of these types contain one or more element
1650types which may be a primitive type, or another derived type. For
1651example, it is possible to have a two dimensional array, using an array
1652as the element type of another array.
1653
1654.. _t_aggregate:
1655
1656Aggregate Types
1657^^^^^^^^^^^^^^^
1658
1659Aggregate Types are a subset of derived types that can contain multiple
1660member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1661aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1662aggregate types.
1663
1664.. _t_array:
1665
1666Array Type
1667^^^^^^^^^^
1668
1669Overview:
1670"""""""""
1671
1672The array type is a very simple derived type that arranges elements
1673sequentially in memory. The array type requires a size (number of
1674elements) and an underlying data type.
1675
1676Syntax:
1677"""""""
1678
1679::
1680
1681 [<# elements> x <elementtype>]
1682
1683The number of elements is a constant integer value; ``elementtype`` may
1684be any type with a size.
1685
1686Examples:
1687"""""""""
1688
1689+------------------+--------------------------------------+
1690| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1691+------------------+--------------------------------------+
1692| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1693+------------------+--------------------------------------+
1694| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1695+------------------+--------------------------------------+
1696
1697Here are some examples of multidimensional arrays:
1698
1699+-----------------------------+----------------------------------------------------------+
1700| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1701+-----------------------------+----------------------------------------------------------+
1702| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1703+-----------------------------+----------------------------------------------------------+
1704| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1705+-----------------------------+----------------------------------------------------------+
1706
1707There is no restriction on indexing beyond the end of the array implied
1708by a static type (though there are restrictions on indexing beyond the
1709bounds of an allocated object in some cases). This means that
1710single-dimension 'variable sized array' addressing can be implemented in
1711LLVM with a zero length array type. An implementation of 'pascal style
1712arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1713example.
1714
1715.. _t_function:
1716
1717Function Type
1718^^^^^^^^^^^^^
1719
1720Overview:
1721"""""""""
1722
1723The function type can be thought of as a function signature. It consists
1724of a return type and a list of formal parameter types. The return type
1725of a function type is a first class type or a void type.
1726
1727Syntax:
1728"""""""
1729
1730::
1731
1732 <returntype> (<parameter list>)
1733
1734...where '``<parameter list>``' is a comma-separated list of type
1735specifiers. Optionally, the parameter list may include a type ``...``,
1736which indicates that the function takes a variable number of arguments.
1737Variable argument functions can access their arguments with the
1738:ref:`variable argument handling intrinsic <int_varargs>` functions.
1739'``<returntype>``' is any type except :ref:`label <t_label>`.
1740
1741Examples:
1742"""""""""
1743
1744+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1745| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1746+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001747| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001748+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1749| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1750+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1751| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1752+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1753
1754.. _t_struct:
1755
1756Structure Type
1757^^^^^^^^^^^^^^
1758
1759Overview:
1760"""""""""
1761
1762The structure type is used to represent a collection of data members
1763together in memory. The elements of a structure may be any type that has
1764a size.
1765
1766Structures in memory are accessed using '``load``' and '``store``' by
1767getting a pointer to a field with the '``getelementptr``' instruction.
1768Structures in registers are accessed using the '``extractvalue``' and
1769'``insertvalue``' instructions.
1770
1771Structures may optionally be "packed" structures, which indicate that
1772the alignment of the struct is one byte, and that there is no padding
1773between the elements. In non-packed structs, padding between field types
1774is inserted as defined by the DataLayout string in the module, which is
1775required to match what the underlying code generator expects.
1776
1777Structures can either be "literal" or "identified". A literal structure
1778is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1779identified types are always defined at the top level with a name.
1780Literal types are uniqued by their contents and can never be recursive
1781or opaque since there is no way to write one. Identified types can be
1782recursive, can be opaqued, and are never uniqued.
1783
1784Syntax:
1785"""""""
1786
1787::
1788
1789 %T1 = type { <type list> } ; Identified normal struct type
1790 %T2 = type <{ <type list> }> ; Identified packed struct type
1791
1792Examples:
1793"""""""""
1794
1795+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1796| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1797+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001798| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001799+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1800| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1801+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1802
1803.. _t_opaque:
1804
1805Opaque Structure Types
1806^^^^^^^^^^^^^^^^^^^^^^
1807
1808Overview:
1809"""""""""
1810
1811Opaque structure types are used to represent named structure types that
1812do not have a body specified. This corresponds (for example) to the C
1813notion of a forward declared structure.
1814
1815Syntax:
1816"""""""
1817
1818::
1819
1820 %X = type opaque
1821 %52 = type opaque
1822
1823Examples:
1824"""""""""
1825
1826+--------------+-------------------+
1827| ``opaque`` | An opaque type. |
1828+--------------+-------------------+
1829
1830.. _t_pointer:
1831
1832Pointer Type
1833^^^^^^^^^^^^
1834
1835Overview:
1836"""""""""
1837
1838The pointer type is used to specify memory locations. Pointers are
1839commonly used to reference objects in memory.
1840
1841Pointer types may have an optional address space attribute defining the
1842numbered address space where the pointed-to object resides. The default
1843address space is number zero. The semantics of non-zero address spaces
1844are target-specific.
1845
1846Note that LLVM does not permit pointers to void (``void*``) nor does it
1847permit pointers to labels (``label*``). Use ``i8*`` instead.
1848
1849Syntax:
1850"""""""
1851
1852::
1853
1854 <type> *
1855
1856Examples:
1857"""""""""
1858
1859+-------------------------+--------------------------------------------------------------------------------------------------------------+
1860| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1861+-------------------------+--------------------------------------------------------------------------------------------------------------+
1862| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1863+-------------------------+--------------------------------------------------------------------------------------------------------------+
1864| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1865+-------------------------+--------------------------------------------------------------------------------------------------------------+
1866
1867.. _t_vector:
1868
1869Vector Type
1870^^^^^^^^^^^
1871
1872Overview:
1873"""""""""
1874
1875A vector type is a simple derived type that represents a vector of
1876elements. Vector types are used when multiple primitive data are
1877operated in parallel using a single instruction (SIMD). A vector type
1878requires a size (number of elements) and an underlying primitive data
1879type. Vector types are considered :ref:`first class <t_firstclass>`.
1880
1881Syntax:
1882"""""""
1883
1884::
1885
1886 < <# elements> x <elementtype> >
1887
1888The number of elements is a constant integer value larger than 0;
1889elementtype may be any integer or floating point type, or a pointer to
1890these types. Vectors of size zero are not allowed.
1891
1892Examples:
1893"""""""""
1894
1895+-------------------+--------------------------------------------------+
1896| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1897+-------------------+--------------------------------------------------+
1898| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1899+-------------------+--------------------------------------------------+
1900| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1901+-------------------+--------------------------------------------------+
1902| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1903+-------------------+--------------------------------------------------+
1904
1905Constants
1906=========
1907
1908LLVM has several different basic types of constants. This section
1909describes them all and their syntax.
1910
1911Simple Constants
1912----------------
1913
1914**Boolean constants**
1915 The two strings '``true``' and '``false``' are both valid constants
1916 of the ``i1`` type.
1917**Integer constants**
1918 Standard integers (such as '4') are constants of the
1919 :ref:`integer <t_integer>` type. Negative numbers may be used with
1920 integer types.
1921**Floating point constants**
1922 Floating point constants use standard decimal notation (e.g.
1923 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1924 hexadecimal notation (see below). The assembler requires the exact
1925 decimal value of a floating-point constant. For example, the
1926 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1927 decimal in binary. Floating point constants must have a :ref:`floating
1928 point <t_floating>` type.
1929**Null pointer constants**
1930 The identifier '``null``' is recognized as a null pointer constant
1931 and must be of :ref:`pointer type <t_pointer>`.
1932
1933The one non-intuitive notation for constants is the hexadecimal form of
1934floating point constants. For example, the form
1935'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1936than) '``double 4.5e+15``'. The only time hexadecimal floating point
1937constants are required (and the only time that they are generated by the
1938disassembler) is when a floating point constant must be emitted but it
1939cannot be represented as a decimal floating point number in a reasonable
1940number of digits. For example, NaN's, infinities, and other special
1941values are represented in their IEEE hexadecimal format so that assembly
1942and disassembly do not cause any bits to change in the constants.
1943
1944When using the hexadecimal form, constants of types half, float, and
1945double are represented using the 16-digit form shown above (which
1946matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001947must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001948precision, respectively. Hexadecimal format is always used for long
1949double, and there are three forms of long double. The 80-bit format used
1950by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1951128-bit format used by PowerPC (two adjacent doubles) is represented by
1952``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001953represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1954will only work if they match the long double format on your target.
1955The IEEE 16-bit format (half precision) is represented by ``0xH``
1956followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1957(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001958
1959There are no constants of type x86mmx.
1960
Eli Bendersky88fe6822013-06-07 20:24:43 +00001961.. _complexconstants:
1962
Sean Silvaf722b002012-12-07 10:36:55 +00001963Complex Constants
1964-----------------
1965
1966Complex constants are a (potentially recursive) combination of simple
1967constants and smaller complex constants.
1968
1969**Structure constants**
1970 Structure constants are represented with notation similar to
1971 structure type definitions (a comma separated list of elements,
1972 surrounded by braces (``{}``)). For example:
1973 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1974 "``@G = external global i32``". Structure constants must have
1975 :ref:`structure type <t_struct>`, and the number and types of elements
1976 must match those specified by the type.
1977**Array constants**
1978 Array constants are represented with notation similar to array type
1979 definitions (a comma separated list of elements, surrounded by
1980 square brackets (``[]``)). For example:
1981 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1982 :ref:`array type <t_array>`, and the number and types of elements must
1983 match those specified by the type.
1984**Vector constants**
1985 Vector constants are represented with notation similar to vector
1986 type definitions (a comma separated list of elements, surrounded by
1987 less-than/greater-than's (``<>``)). For example:
1988 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1989 must have :ref:`vector type <t_vector>`, and the number and types of
1990 elements must match those specified by the type.
1991**Zero initialization**
1992 The string '``zeroinitializer``' can be used to zero initialize a
1993 value to zero of *any* type, including scalar and
1994 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1995 having to print large zero initializers (e.g. for large arrays) and
1996 is always exactly equivalent to using explicit zero initializers.
1997**Metadata node**
1998 A metadata node is a structure-like constant with :ref:`metadata
1999 type <t_metadata>`. For example:
2000 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2001 constants that are meant to be interpreted as part of the
2002 instruction stream, metadata is a place to attach additional
2003 information such as debug info.
2004
2005Global Variable and Function Addresses
2006--------------------------------------
2007
2008The addresses of :ref:`global variables <globalvars>` and
2009:ref:`functions <functionstructure>` are always implicitly valid
2010(link-time) constants. These constants are explicitly referenced when
2011the :ref:`identifier for the global <identifiers>` is used and always have
2012:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2013file:
2014
2015.. code-block:: llvm
2016
2017 @X = global i32 17
2018 @Y = global i32 42
2019 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2020
2021.. _undefvalues:
2022
2023Undefined Values
2024----------------
2025
2026The string '``undef``' can be used anywhere a constant is expected, and
2027indicates that the user of the value may receive an unspecified
2028bit-pattern. Undefined values may be of any type (other than '``label``'
2029or '``void``') and be used anywhere a constant is permitted.
2030
2031Undefined values are useful because they indicate to the compiler that
2032the program is well defined no matter what value is used. This gives the
2033compiler more freedom to optimize. Here are some examples of
2034(potentially surprising) transformations that are valid (in pseudo IR):
2035
2036.. code-block:: llvm
2037
2038 %A = add %X, undef
2039 %B = sub %X, undef
2040 %C = xor %X, undef
2041 Safe:
2042 %A = undef
2043 %B = undef
2044 %C = undef
2045
2046This is safe because all of the output bits are affected by the undef
2047bits. Any output bit can have a zero or one depending on the input bits.
2048
2049.. code-block:: llvm
2050
2051 %A = or %X, undef
2052 %B = and %X, undef
2053 Safe:
2054 %A = -1
2055 %B = 0
2056 Unsafe:
2057 %A = undef
2058 %B = undef
2059
2060These logical operations have bits that are not always affected by the
2061input. For example, if ``%X`` has a zero bit, then the output of the
2062'``and``' operation will always be a zero for that bit, no matter what
2063the corresponding bit from the '``undef``' is. As such, it is unsafe to
2064optimize or assume that the result of the '``and``' is '``undef``'.
2065However, it is safe to assume that all bits of the '``undef``' could be
20660, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2067all the bits of the '``undef``' operand to the '``or``' could be set,
2068allowing the '``or``' to be folded to -1.
2069
2070.. code-block:: llvm
2071
2072 %A = select undef, %X, %Y
2073 %B = select undef, 42, %Y
2074 %C = select %X, %Y, undef
2075 Safe:
2076 %A = %X (or %Y)
2077 %B = 42 (or %Y)
2078 %C = %Y
2079 Unsafe:
2080 %A = undef
2081 %B = undef
2082 %C = undef
2083
2084This set of examples shows that undefined '``select``' (and conditional
2085branch) conditions can go *either way*, but they have to come from one
2086of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2087both known to have a clear low bit, then ``%A`` would have to have a
2088cleared low bit. However, in the ``%C`` example, the optimizer is
2089allowed to assume that the '``undef``' operand could be the same as
2090``%Y``, allowing the whole '``select``' to be eliminated.
2091
2092.. code-block:: llvm
2093
2094 %A = xor undef, undef
2095
2096 %B = undef
2097 %C = xor %B, %B
2098
2099 %D = undef
2100 %E = icmp lt %D, 4
2101 %F = icmp gte %D, 4
2102
2103 Safe:
2104 %A = undef
2105 %B = undef
2106 %C = undef
2107 %D = undef
2108 %E = undef
2109 %F = undef
2110
2111This example points out that two '``undef``' operands are not
2112necessarily the same. This can be surprising to people (and also matches
2113C semantics) where they assume that "``X^X``" is always zero, even if
2114``X`` is undefined. This isn't true for a number of reasons, but the
2115short answer is that an '``undef``' "variable" can arbitrarily change
2116its value over its "live range". This is true because the variable
2117doesn't actually *have a live range*. Instead, the value is logically
2118read from arbitrary registers that happen to be around when needed, so
2119the value is not necessarily consistent over time. In fact, ``%A`` and
2120``%C`` need to have the same semantics or the core LLVM "replace all
2121uses with" concept would not hold.
2122
2123.. code-block:: llvm
2124
2125 %A = fdiv undef, %X
2126 %B = fdiv %X, undef
2127 Safe:
2128 %A = undef
2129 b: unreachable
2130
2131These examples show the crucial difference between an *undefined value*
2132and *undefined behavior*. An undefined value (like '``undef``') is
2133allowed to have an arbitrary bit-pattern. This means that the ``%A``
2134operation can be constant folded to '``undef``', because the '``undef``'
2135could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2136However, in the second example, we can make a more aggressive
2137assumption: because the ``undef`` is allowed to be an arbitrary value,
2138we are allowed to assume that it could be zero. Since a divide by zero
2139has *undefined behavior*, we are allowed to assume that the operation
2140does not execute at all. This allows us to delete the divide and all
2141code after it. Because the undefined operation "can't happen", the
2142optimizer can assume that it occurs in dead code.
2143
2144.. code-block:: llvm
2145
2146 a: store undef -> %X
2147 b: store %X -> undef
2148 Safe:
2149 a: <deleted>
2150 b: unreachable
2151
2152These examples reiterate the ``fdiv`` example: a store *of* an undefined
2153value can be assumed to not have any effect; we can assume that the
2154value is overwritten with bits that happen to match what was already
2155there. However, a store *to* an undefined location could clobber
2156arbitrary memory, therefore, it has undefined behavior.
2157
2158.. _poisonvalues:
2159
2160Poison Values
2161-------------
2162
2163Poison values are similar to :ref:`undef values <undefvalues>`, however
2164they also represent the fact that an instruction or constant expression
2165which cannot evoke side effects has nevertheless detected a condition
2166which results in undefined behavior.
2167
2168There is currently no way of representing a poison value in the IR; they
2169only exist when produced by operations such as :ref:`add <i_add>` with
2170the ``nsw`` flag.
2171
2172Poison value behavior is defined in terms of value *dependence*:
2173
2174- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2175- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2176 their dynamic predecessor basic block.
2177- Function arguments depend on the corresponding actual argument values
2178 in the dynamic callers of their functions.
2179- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2180 instructions that dynamically transfer control back to them.
2181- :ref:`Invoke <i_invoke>` instructions depend on the
2182 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2183 call instructions that dynamically transfer control back to them.
2184- Non-volatile loads and stores depend on the most recent stores to all
2185 of the referenced memory addresses, following the order in the IR
2186 (including loads and stores implied by intrinsics such as
2187 :ref:`@llvm.memcpy <int_memcpy>`.)
2188- An instruction with externally visible side effects depends on the
2189 most recent preceding instruction with externally visible side
2190 effects, following the order in the IR. (This includes :ref:`volatile
2191 operations <volatile>`.)
2192- An instruction *control-depends* on a :ref:`terminator
2193 instruction <terminators>` if the terminator instruction has
2194 multiple successors and the instruction is always executed when
2195 control transfers to one of the successors, and may not be executed
2196 when control is transferred to another.
2197- Additionally, an instruction also *control-depends* on a terminator
2198 instruction if the set of instructions it otherwise depends on would
2199 be different if the terminator had transferred control to a different
2200 successor.
2201- Dependence is transitive.
2202
2203Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2204with the additional affect that any instruction which has a *dependence*
2205on a poison value has undefined behavior.
2206
2207Here are some examples:
2208
2209.. code-block:: llvm
2210
2211 entry:
2212 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2213 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2214 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2215 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2216
2217 store i32 %poison, i32* @g ; Poison value stored to memory.
2218 %poison2 = load i32* @g ; Poison value loaded back from memory.
2219
2220 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2221
2222 %narrowaddr = bitcast i32* @g to i16*
2223 %wideaddr = bitcast i32* @g to i64*
2224 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2225 %poison4 = load i64* %wideaddr ; Returns a poison value.
2226
2227 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2228 br i1 %cmp, label %true, label %end ; Branch to either destination.
2229
2230 true:
2231 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2232 ; it has undefined behavior.
2233 br label %end
2234
2235 end:
2236 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2237 ; Both edges into this PHI are
2238 ; control-dependent on %cmp, so this
2239 ; always results in a poison value.
2240
2241 store volatile i32 0, i32* @g ; This would depend on the store in %true
2242 ; if %cmp is true, or the store in %entry
2243 ; otherwise, so this is undefined behavior.
2244
2245 br i1 %cmp, label %second_true, label %second_end
2246 ; The same branch again, but this time the
2247 ; true block doesn't have side effects.
2248
2249 second_true:
2250 ; No side effects!
2251 ret void
2252
2253 second_end:
2254 store volatile i32 0, i32* @g ; This time, the instruction always depends
2255 ; on the store in %end. Also, it is
2256 ; control-equivalent to %end, so this is
2257 ; well-defined (ignoring earlier undefined
2258 ; behavior in this example).
2259
2260.. _blockaddress:
2261
2262Addresses of Basic Blocks
2263-------------------------
2264
2265``blockaddress(@function, %block)``
2266
2267The '``blockaddress``' constant computes the address of the specified
2268basic block in the specified function, and always has an ``i8*`` type.
2269Taking the address of the entry block is illegal.
2270
2271This value only has defined behavior when used as an operand to the
2272':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2273against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002274undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002275no label is equal to the null pointer. This may be passed around as an
2276opaque pointer sized value as long as the bits are not inspected. This
2277allows ``ptrtoint`` and arithmetic to be performed on these values so
2278long as the original value is reconstituted before the ``indirectbr``
2279instruction.
2280
2281Finally, some targets may provide defined semantics when using the value
2282as the operand to an inline assembly, but that is target specific.
2283
Eli Bendersky88fe6822013-06-07 20:24:43 +00002284.. _constantexprs:
2285
Sean Silvaf722b002012-12-07 10:36:55 +00002286Constant Expressions
2287--------------------
2288
2289Constant expressions are used to allow expressions involving other
2290constants to be used as constants. Constant expressions may be of any
2291:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2292that does not have side effects (e.g. load and call are not supported).
2293The following is the syntax for constant expressions:
2294
2295``trunc (CST to TYPE)``
2296 Truncate a constant to another type. The bit size of CST must be
2297 larger than the bit size of TYPE. Both types must be integers.
2298``zext (CST to TYPE)``
2299 Zero extend a constant to another type. The bit size of CST must be
2300 smaller than the bit size of TYPE. Both types must be integers.
2301``sext (CST to TYPE)``
2302 Sign extend a constant to another type. The bit size of CST must be
2303 smaller than the bit size of TYPE. Both types must be integers.
2304``fptrunc (CST to TYPE)``
2305 Truncate a floating point constant to another floating point type.
2306 The size of CST must be larger than the size of TYPE. Both types
2307 must be floating point.
2308``fpext (CST to TYPE)``
2309 Floating point extend a constant to another type. The size of CST
2310 must be smaller or equal to the size of TYPE. Both types must be
2311 floating point.
2312``fptoui (CST to TYPE)``
2313 Convert a floating point constant to the corresponding unsigned
2314 integer constant. TYPE must be a scalar or vector integer type. CST
2315 must be of scalar or vector floating point type. Both CST and TYPE
2316 must be scalars, or vectors of the same number of elements. If the
2317 value won't fit in the integer type, the results are undefined.
2318``fptosi (CST to TYPE)``
2319 Convert a floating point constant to the corresponding signed
2320 integer constant. TYPE must be a scalar or vector integer type. CST
2321 must be of scalar or vector floating point type. Both CST and TYPE
2322 must be scalars, or vectors of the same number of elements. If the
2323 value won't fit in the integer type, the results are undefined.
2324``uitofp (CST to TYPE)``
2325 Convert an unsigned integer constant to the corresponding floating
2326 point constant. TYPE must be a scalar or vector floating point type.
2327 CST must be of scalar or vector integer type. Both CST and TYPE must
2328 be scalars, or vectors of the same number of elements. If the value
2329 won't fit in the floating point type, the results are undefined.
2330``sitofp (CST to TYPE)``
2331 Convert a signed integer constant to the corresponding floating
2332 point constant. TYPE must be a scalar or vector floating point type.
2333 CST must be of scalar or vector integer type. Both CST and TYPE must
2334 be scalars, or vectors of the same number of elements. If the value
2335 won't fit in the floating point type, the results are undefined.
2336``ptrtoint (CST to TYPE)``
2337 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002338 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002339 pointer type. The ``CST`` value is zero extended, truncated, or
2340 unchanged to make it fit in ``TYPE``.
2341``inttoptr (CST to TYPE)``
2342 Convert an integer constant to a pointer constant. TYPE must be a
2343 pointer type. CST must be of integer type. The CST value is zero
2344 extended, truncated, or unchanged to make it fit in a pointer size.
2345 This one is *really* dangerous!
2346``bitcast (CST to TYPE)``
2347 Convert a constant, CST, to another TYPE. The constraints of the
2348 operands are the same as those for the :ref:`bitcast
2349 instruction <i_bitcast>`.
2350``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2351 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2352 constants. As with the :ref:`getelementptr <i_getelementptr>`
2353 instruction, the index list may have zero or more indexes, which are
2354 required to make sense for the type of "CSTPTR".
2355``select (COND, VAL1, VAL2)``
2356 Perform the :ref:`select operation <i_select>` on constants.
2357``icmp COND (VAL1, VAL2)``
2358 Performs the :ref:`icmp operation <i_icmp>` on constants.
2359``fcmp COND (VAL1, VAL2)``
2360 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2361``extractelement (VAL, IDX)``
2362 Perform the :ref:`extractelement operation <i_extractelement>` on
2363 constants.
2364``insertelement (VAL, ELT, IDX)``
2365 Perform the :ref:`insertelement operation <i_insertelement>` on
2366 constants.
2367``shufflevector (VEC1, VEC2, IDXMASK)``
2368 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2369 constants.
2370``extractvalue (VAL, IDX0, IDX1, ...)``
2371 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2372 constants. The index list is interpreted in a similar manner as
2373 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2374 least one index value must be specified.
2375``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2376 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2377 The index list is interpreted in a similar manner as indices in a
2378 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2379 value must be specified.
2380``OPCODE (LHS, RHS)``
2381 Perform the specified operation of the LHS and RHS constants. OPCODE
2382 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2383 binary <bitwiseops>` operations. The constraints on operands are
2384 the same as those for the corresponding instruction (e.g. no bitwise
2385 operations on floating point values are allowed).
2386
2387Other Values
2388============
2389
Eli Bendersky88fe6822013-06-07 20:24:43 +00002390.. _inlineasmexprs:
2391
Sean Silvaf722b002012-12-07 10:36:55 +00002392Inline Assembler Expressions
2393----------------------------
2394
2395LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2396Inline Assembly <moduleasm>`) through the use of a special value. This
2397value represents the inline assembler as a string (containing the
2398instructions to emit), a list of operand constraints (stored as a
2399string), a flag that indicates whether or not the inline asm expression
2400has side effects, and a flag indicating whether the function containing
2401the asm needs to align its stack conservatively. An example inline
2402assembler expression is:
2403
2404.. code-block:: llvm
2405
2406 i32 (i32) asm "bswap $0", "=r,r"
2407
2408Inline assembler expressions may **only** be used as the callee operand
2409of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2410Thus, typically we have:
2411
2412.. code-block:: llvm
2413
2414 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2415
2416Inline asms with side effects not visible in the constraint list must be
2417marked as having side effects. This is done through the use of the
2418'``sideeffect``' keyword, like so:
2419
2420.. code-block:: llvm
2421
2422 call void asm sideeffect "eieio", ""()
2423
2424In some cases inline asms will contain code that will not work unless
2425the stack is aligned in some way, such as calls or SSE instructions on
2426x86, yet will not contain code that does that alignment within the asm.
2427The compiler should make conservative assumptions about what the asm
2428might contain and should generate its usual stack alignment code in the
2429prologue if the '``alignstack``' keyword is present:
2430
2431.. code-block:: llvm
2432
2433 call void asm alignstack "eieio", ""()
2434
2435Inline asms also support using non-standard assembly dialects. The
2436assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2437the inline asm is using the Intel dialect. Currently, ATT and Intel are
2438the only supported dialects. An example is:
2439
2440.. code-block:: llvm
2441
2442 call void asm inteldialect "eieio", ""()
2443
2444If multiple keywords appear the '``sideeffect``' keyword must come
2445first, the '``alignstack``' keyword second and the '``inteldialect``'
2446keyword last.
2447
2448Inline Asm Metadata
2449^^^^^^^^^^^^^^^^^^^
2450
2451The call instructions that wrap inline asm nodes may have a
2452"``!srcloc``" MDNode attached to it that contains a list of constant
2453integers. If present, the code generator will use the integer as the
2454location cookie value when report errors through the ``LLVMContext``
2455error reporting mechanisms. This allows a front-end to correlate backend
2456errors that occur with inline asm back to the source code that produced
2457it. For example:
2458
2459.. code-block:: llvm
2460
2461 call void asm sideeffect "something bad", ""(), !srcloc !42
2462 ...
2463 !42 = !{ i32 1234567 }
2464
2465It is up to the front-end to make sense of the magic numbers it places
2466in the IR. If the MDNode contains multiple constants, the code generator
2467will use the one that corresponds to the line of the asm that the error
2468occurs on.
2469
2470.. _metadata:
2471
2472Metadata Nodes and Metadata Strings
2473-----------------------------------
2474
2475LLVM IR allows metadata to be attached to instructions in the program
2476that can convey extra information about the code to the optimizers and
2477code generator. One example application of metadata is source-level
2478debug information. There are two metadata primitives: strings and nodes.
2479All metadata has the ``metadata`` type and is identified in syntax by a
2480preceding exclamation point ('``!``').
2481
2482A metadata string is a string surrounded by double quotes. It can
2483contain any character by escaping non-printable characters with
2484"``\xx``" where "``xx``" is the two digit hex code. For example:
2485"``!"test\00"``".
2486
2487Metadata nodes are represented with notation similar to structure
2488constants (a comma separated list of elements, surrounded by braces and
2489preceded by an exclamation point). Metadata nodes can have any values as
2490their operand. For example:
2491
2492.. code-block:: llvm
2493
2494 !{ metadata !"test\00", i32 10}
2495
2496A :ref:`named metadata <namedmetadatastructure>` is a collection of
2497metadata nodes, which can be looked up in the module symbol table. For
2498example:
2499
2500.. code-block:: llvm
2501
2502 !foo = metadata !{!4, !3}
2503
2504Metadata can be used as function arguments. Here ``llvm.dbg.value``
2505function is using two metadata arguments:
2506
2507.. code-block:: llvm
2508
2509 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2510
2511Metadata can be attached with an instruction. Here metadata ``!21`` is
2512attached to the ``add`` instruction using the ``!dbg`` identifier:
2513
2514.. code-block:: llvm
2515
2516 %indvar.next = add i64 %indvar, 1, !dbg !21
2517
2518More information about specific metadata nodes recognized by the
2519optimizers and code generator is found below.
2520
2521'``tbaa``' Metadata
2522^^^^^^^^^^^^^^^^^^^
2523
2524In LLVM IR, memory does not have types, so LLVM's own type system is not
2525suitable for doing TBAA. Instead, metadata is added to the IR to
2526describe a type system of a higher level language. This can be used to
2527implement typical C/C++ TBAA, but it can also be used to implement
2528custom alias analysis behavior for other languages.
2529
2530The current metadata format is very simple. TBAA metadata nodes have up
2531to three fields, e.g.:
2532
2533.. code-block:: llvm
2534
2535 !0 = metadata !{ metadata !"an example type tree" }
2536 !1 = metadata !{ metadata !"int", metadata !0 }
2537 !2 = metadata !{ metadata !"float", metadata !0 }
2538 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2539
2540The first field is an identity field. It can be any value, usually a
2541metadata string, which uniquely identifies the type. The most important
2542name in the tree is the name of the root node. Two trees with different
2543root node names are entirely disjoint, even if they have leaves with
2544common names.
2545
2546The second field identifies the type's parent node in the tree, or is
2547null or omitted for a root node. A type is considered to alias all of
2548its descendants and all of its ancestors in the tree. Also, a type is
2549considered to alias all types in other trees, so that bitcode produced
2550from multiple front-ends is handled conservatively.
2551
2552If the third field is present, it's an integer which if equal to 1
2553indicates that the type is "constant" (meaning
2554``pointsToConstantMemory`` should return true; see `other useful
2555AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2556
2557'``tbaa.struct``' Metadata
2558^^^^^^^^^^^^^^^^^^^^^^^^^^
2559
2560The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2561aggregate assignment operations in C and similar languages, however it
2562is defined to copy a contiguous region of memory, which is more than
2563strictly necessary for aggregate types which contain holes due to
2564padding. Also, it doesn't contain any TBAA information about the fields
2565of the aggregate.
2566
2567``!tbaa.struct`` metadata can describe which memory subregions in a
2568memcpy are padding and what the TBAA tags of the struct are.
2569
2570The current metadata format is very simple. ``!tbaa.struct`` metadata
2571nodes are a list of operands which are in conceptual groups of three.
2572For each group of three, the first operand gives the byte offset of a
2573field in bytes, the second gives its size in bytes, and the third gives
2574its tbaa tag. e.g.:
2575
2576.. code-block:: llvm
2577
2578 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2579
2580This describes a struct with two fields. The first is at offset 0 bytes
2581with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2582and has size 4 bytes and has tbaa tag !2.
2583
2584Note that the fields need not be contiguous. In this example, there is a
25854 byte gap between the two fields. This gap represents padding which
2586does not carry useful data and need not be preserved.
2587
2588'``fpmath``' Metadata
2589^^^^^^^^^^^^^^^^^^^^^
2590
2591``fpmath`` metadata may be attached to any instruction of floating point
2592type. It can be used to express the maximum acceptable error in the
2593result of that instruction, in ULPs, thus potentially allowing the
2594compiler to use a more efficient but less accurate method of computing
2595it. ULP is defined as follows:
2596
2597 If ``x`` is a real number that lies between two finite consecutive
2598 floating-point numbers ``a`` and ``b``, without being equal to one
2599 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2600 distance between the two non-equal finite floating-point numbers
2601 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2602
2603The metadata node shall consist of a single positive floating point
2604number representing the maximum relative error, for example:
2605
2606.. code-block:: llvm
2607
2608 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2609
2610'``range``' Metadata
2611^^^^^^^^^^^^^^^^^^^^
2612
2613``range`` metadata may be attached only to loads of integer types. It
2614expresses the possible ranges the loaded value is in. The ranges are
2615represented with a flattened list of integers. The loaded value is known
2616to be in the union of the ranges defined by each consecutive pair. Each
2617pair has the following properties:
2618
2619- The type must match the type loaded by the instruction.
2620- The pair ``a,b`` represents the range ``[a,b)``.
2621- Both ``a`` and ``b`` are constants.
2622- The range is allowed to wrap.
2623- The range should not represent the full or empty set. That is,
2624 ``a!=b``.
2625
2626In addition, the pairs must be in signed order of the lower bound and
2627they must be non-contiguous.
2628
2629Examples:
2630
2631.. code-block:: llvm
2632
2633 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2634 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2635 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2636 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2637 ...
2638 !0 = metadata !{ i8 0, i8 2 }
2639 !1 = metadata !{ i8 255, i8 2 }
2640 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2641 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2642
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002643'``llvm.loop``'
2644^^^^^^^^^^^^^^^
2645
2646It is sometimes useful to attach information to loop constructs. Currently,
2647loop metadata is implemented as metadata attached to the branch instruction
2648in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002649guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002650specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002651
2652The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002653itself to avoid merging it with any other identifier metadata, e.g.,
2654during module linkage or function inlining. That is, each loop should refer
2655to their own identification metadata even if they reside in separate functions.
2656The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002657constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002658
2659.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002660
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002661 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002662 !1 = metadata !{ metadata !1 }
2663
Paul Redmondee21b6f2013-05-28 20:00:34 +00002664The loop identifier metadata can be used to specify additional per-loop
2665metadata. Any operands after the first operand can be treated as user-defined
2666metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2667by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002668
Paul Redmondee21b6f2013-05-28 20:00:34 +00002669.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002670
Paul Redmondee21b6f2013-05-28 20:00:34 +00002671 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2672 ...
2673 !0 = metadata !{ metadata !0, metadata !1 }
2674 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002675
2676'``llvm.mem``'
2677^^^^^^^^^^^^^^^
2678
2679Metadata types used to annotate memory accesses with information helpful
2680for optimizations are prefixed with ``llvm.mem``.
2681
2682'``llvm.mem.parallel_loop_access``' Metadata
2683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2684
2685For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002686the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002687also all of the memory accessing instructions in the loop body need to be
2688marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2689is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002690the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002691converted to sequential loops due to optimization passes that are unaware of
2692the parallel semantics and that insert new memory instructions to the loop
2693body.
2694
2695Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002696both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002697metadata types that refer to the same loop identifier metadata.
2698
2699.. code-block:: llvm
2700
2701 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002702 ...
2703 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2704 ...
2705 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2706 ...
2707 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002708
2709 for.end:
2710 ...
2711 !0 = metadata !{ metadata !0 }
2712
2713It is also possible to have nested parallel loops. In that case the
2714memory accesses refer to a list of loop identifier metadata nodes instead of
2715the loop identifier metadata node directly:
2716
2717.. code-block:: llvm
2718
2719 outer.for.body:
2720 ...
2721
2722 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002723 ...
2724 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2725 ...
2726 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2727 ...
2728 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002729
2730 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002731 ...
2732 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2733 ...
2734 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2735 ...
2736 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002737
2738 outer.for.end: ; preds = %for.body
2739 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002740 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2741 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2742 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002743
Paul Redmondee21b6f2013-05-28 20:00:34 +00002744'``llvm.vectorizer``'
2745^^^^^^^^^^^^^^^^^^^^^
2746
2747Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2748vectorization parameters such as vectorization factor and unroll factor.
2749
2750``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2751loop identification metadata.
2752
2753'``llvm.vectorizer.unroll``' Metadata
2754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2755
2756This metadata instructs the loop vectorizer to unroll the specified
2757loop exactly ``N`` times.
2758
2759The first operand is the string ``llvm.vectorizer.unroll`` and the second
2760operand is an integer specifying the unroll factor. For example:
2761
2762.. code-block:: llvm
2763
2764 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2765
2766Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2767loop.
2768
2769If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2770determined automatically.
2771
2772'``llvm.vectorizer.width``' Metadata
2773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2774
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002775This metadata sets the target width of the vectorizer to ``N``. Without
2776this metadata, the vectorizer will choose a width automatically.
2777Regardless of this metadata, the vectorizer will only vectorize loops if
2778it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002779
2780The first operand is the string ``llvm.vectorizer.width`` and the second
2781operand is an integer specifying the width. For example:
2782
2783.. code-block:: llvm
2784
2785 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2786
2787Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2788loop.
2789
2790If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2791automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002792
Sean Silvaf722b002012-12-07 10:36:55 +00002793Module Flags Metadata
2794=====================
2795
2796Information about the module as a whole is difficult to convey to LLVM's
2797subsystems. The LLVM IR isn't sufficient to transmit this information.
2798The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002799this. These flags are in the form of key / value pairs --- much like a
2800dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002801look it up.
2802
2803The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2804Each triplet has the following form:
2805
2806- The first element is a *behavior* flag, which specifies the behavior
2807 when two (or more) modules are merged together, and it encounters two
2808 (or more) metadata with the same ID. The supported behaviors are
2809 described below.
2810- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002811 metadata. Each module may only have one flag entry for each unique ID (not
2812 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002813- The third element is the value of the flag.
2814
2815When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002816``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2817each unique metadata ID string, there will be exactly one entry in the merged
2818modules ``llvm.module.flags`` metadata table, and the value for that entry will
2819be determined by the merge behavior flag, as described below. The only exception
2820is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002821
2822The following behaviors are supported:
2823
2824.. list-table::
2825 :header-rows: 1
2826 :widths: 10 90
2827
2828 * - Value
2829 - Behavior
2830
2831 * - 1
2832 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002833 Emits an error if two values disagree, otherwise the resulting value
2834 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002835
2836 * - 2
2837 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002838 Emits a warning if two values disagree. The result value will be the
2839 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002840
2841 * - 3
2842 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002843 Adds a requirement that another module flag be present and have a
2844 specified value after linking is performed. The value must be a
2845 metadata pair, where the first element of the pair is the ID of the
2846 module flag to be restricted, and the second element of the pair is
2847 the value the module flag should be restricted to. This behavior can
2848 be used to restrict the allowable results (via triggering of an
2849 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002850
2851 * - 4
2852 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002853 Uses the specified value, regardless of the behavior or value of the
2854 other module. If both modules specify **Override**, but the values
2855 differ, an error will be emitted.
2856
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002857 * - 5
2858 - **Append**
2859 Appends the two values, which are required to be metadata nodes.
2860
2861 * - 6
2862 - **AppendUnique**
2863 Appends the two values, which are required to be metadata
2864 nodes. However, duplicate entries in the second list are dropped
2865 during the append operation.
2866
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002867It is an error for a particular unique flag ID to have multiple behaviors,
2868except in the case of **Require** (which adds restrictions on another metadata
2869value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002870
2871An example of module flags:
2872
2873.. code-block:: llvm
2874
2875 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2876 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2877 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2878 !3 = metadata !{ i32 3, metadata !"qux",
2879 metadata !{
2880 metadata !"foo", i32 1
2881 }
2882 }
2883 !llvm.module.flags = !{ !0, !1, !2, !3 }
2884
2885- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2886 if two or more ``!"foo"`` flags are seen is to emit an error if their
2887 values are not equal.
2888
2889- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2890 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002891 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002892
2893- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2894 behavior if two or more ``!"qux"`` flags are seen is to emit a
2895 warning if their values are not equal.
2896
2897- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2898
2899 ::
2900
2901 metadata !{ metadata !"foo", i32 1 }
2902
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002903 The behavior is to emit an error if the ``llvm.module.flags`` does not
2904 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2905 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002906
2907Objective-C Garbage Collection Module Flags Metadata
2908----------------------------------------------------
2909
2910On the Mach-O platform, Objective-C stores metadata about garbage
2911collection in a special section called "image info". The metadata
2912consists of a version number and a bitmask specifying what types of
2913garbage collection are supported (if any) by the file. If two or more
2914modules are linked together their garbage collection metadata needs to
2915be merged rather than appended together.
2916
2917The Objective-C garbage collection module flags metadata consists of the
2918following key-value pairs:
2919
2920.. list-table::
2921 :header-rows: 1
2922 :widths: 30 70
2923
2924 * - Key
2925 - Value
2926
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002927 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002928 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002929
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002930 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002931 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002932 always 0.
2933
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002934 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002935 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002936 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2937 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2938 Objective-C ABI version 2.
2939
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002940 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002941 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002942 not. Valid values are 0, for no garbage collection, and 2, for garbage
2943 collection supported.
2944
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002945 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002946 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002947 If present, its value must be 6. This flag requires that the
2948 ``Objective-C Garbage Collection`` flag have the value 2.
2949
2950Some important flag interactions:
2951
2952- If a module with ``Objective-C Garbage Collection`` set to 0 is
2953 merged with a module with ``Objective-C Garbage Collection`` set to
2954 2, then the resulting module has the
2955 ``Objective-C Garbage Collection`` flag set to 0.
2956- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2957 merged with a module with ``Objective-C GC Only`` set to 6.
2958
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002959Automatic Linker Flags Module Flags Metadata
2960--------------------------------------------
2961
2962Some targets support embedding flags to the linker inside individual object
2963files. Typically this is used in conjunction with language extensions which
2964allow source files to explicitly declare the libraries they depend on, and have
2965these automatically be transmitted to the linker via object files.
2966
2967These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002968using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002969to be ``AppendUnique``, and the value for the key is expected to be a metadata
2970node which should be a list of other metadata nodes, each of which should be a
2971list of metadata strings defining linker options.
2972
2973For example, the following metadata section specifies two separate sets of
2974linker options, presumably to link against ``libz`` and the ``Cocoa``
2975framework::
2976
Michael Liao2faa0f32013-03-06 18:24:34 +00002977 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002978 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002979 metadata !{ metadata !"-lz" },
2980 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002981 !llvm.module.flags = !{ !0 }
2982
2983The metadata encoding as lists of lists of options, as opposed to a collapsed
2984list of options, is chosen so that the IR encoding can use multiple option
2985strings to specify e.g., a single library, while still having that specifier be
2986preserved as an atomic element that can be recognized by a target specific
2987assembly writer or object file emitter.
2988
2989Each individual option is required to be either a valid option for the target's
2990linker, or an option that is reserved by the target specific assembly writer or
2991object file emitter. No other aspect of these options is defined by the IR.
2992
Eli Bendersky88fe6822013-06-07 20:24:43 +00002993.. _intrinsicglobalvariables:
2994
Sean Silvaf722b002012-12-07 10:36:55 +00002995Intrinsic Global Variables
2996==========================
2997
2998LLVM has a number of "magic" global variables that contain data that
2999affect code generation or other IR semantics. These are documented here.
3000All globals of this sort should have a section specified as
3001"``llvm.metadata``". This section and all globals that start with
3002"``llvm.``" are reserved for use by LLVM.
3003
Eli Bendersky88fe6822013-06-07 20:24:43 +00003004.. _gv_llvmused:
3005
Sean Silvaf722b002012-12-07 10:36:55 +00003006The '``llvm.used``' Global Variable
3007-----------------------------------
3008
Rafael Espindolacde25b42013-04-22 14:58:02 +00003009The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00003010:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003011pointers to named global variables, functions and aliases which may optionally
3012have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00003013use of it is:
3014
3015.. code-block:: llvm
3016
3017 @X = global i8 4
3018 @Y = global i32 123
3019
3020 @llvm.used = appending global [2 x i8*] [
3021 i8* @X,
3022 i8* bitcast (i32* @Y to i8*)
3023 ], section "llvm.metadata"
3024
Rafael Espindolacde25b42013-04-22 14:58:02 +00003025If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3026and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003027symbol that it cannot see (which is why they have to be named). For example, if
3028a variable has internal linkage and no references other than that from the
3029``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3030references from inline asms and other things the compiler cannot "see", and
3031corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00003032
3033On some targets, the code generator must emit a directive to the
3034assembler or object file to prevent the assembler and linker from
3035molesting the symbol.
3036
Eli Bendersky88fe6822013-06-07 20:24:43 +00003037.. _gv_llvmcompilerused:
3038
Sean Silvaf722b002012-12-07 10:36:55 +00003039The '``llvm.compiler.used``' Global Variable
3040--------------------------------------------
3041
3042The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3043directive, except that it only prevents the compiler from touching the
3044symbol. On targets that support it, this allows an intelligent linker to
3045optimize references to the symbol without being impeded as it would be
3046by ``@llvm.used``.
3047
3048This is a rare construct that should only be used in rare circumstances,
3049and should not be exposed to source languages.
3050
Eli Bendersky88fe6822013-06-07 20:24:43 +00003051.. _gv_llvmglobalctors:
3052
Sean Silvaf722b002012-12-07 10:36:55 +00003053The '``llvm.global_ctors``' Global Variable
3054-------------------------------------------
3055
3056.. code-block:: llvm
3057
3058 %0 = type { i32, void ()* }
3059 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3060
3061The ``@llvm.global_ctors`` array contains a list of constructor
3062functions and associated priorities. The functions referenced by this
3063array will be called in ascending order of priority (i.e. lowest first)
3064when the module is loaded. The order of functions with the same priority
3065is not defined.
3066
Eli Bendersky88fe6822013-06-07 20:24:43 +00003067.. _llvmglobaldtors:
3068
Sean Silvaf722b002012-12-07 10:36:55 +00003069The '``llvm.global_dtors``' Global Variable
3070-------------------------------------------
3071
3072.. code-block:: llvm
3073
3074 %0 = type { i32, void ()* }
3075 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3076
3077The ``@llvm.global_dtors`` array contains a list of destructor functions
3078and associated priorities. The functions referenced by this array will
3079be called in descending order of priority (i.e. highest first) when the
3080module is loaded. The order of functions with the same priority is not
3081defined.
3082
3083Instruction Reference
3084=====================
3085
3086The LLVM instruction set consists of several different classifications
3087of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3088instructions <binaryops>`, :ref:`bitwise binary
3089instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3090:ref:`other instructions <otherops>`.
3091
3092.. _terminators:
3093
3094Terminator Instructions
3095-----------------------
3096
3097As mentioned :ref:`previously <functionstructure>`, every basic block in a
3098program ends with a "Terminator" instruction, which indicates which
3099block should be executed after the current block is finished. These
3100terminator instructions typically yield a '``void``' value: they produce
3101control flow, not values (the one exception being the
3102':ref:`invoke <i_invoke>`' instruction).
3103
3104The terminator instructions are: ':ref:`ret <i_ret>`',
3105':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3106':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3107':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3108
3109.. _i_ret:
3110
3111'``ret``' Instruction
3112^^^^^^^^^^^^^^^^^^^^^
3113
3114Syntax:
3115"""""""
3116
3117::
3118
3119 ret <type> <value> ; Return a value from a non-void function
3120 ret void ; Return from void function
3121
3122Overview:
3123"""""""""
3124
3125The '``ret``' instruction is used to return control flow (and optionally
3126a value) from a function back to the caller.
3127
3128There are two forms of the '``ret``' instruction: one that returns a
3129value and then causes control flow, and one that just causes control
3130flow to occur.
3131
3132Arguments:
3133""""""""""
3134
3135The '``ret``' instruction optionally accepts a single argument, the
3136return value. The type of the return value must be a ':ref:`first
3137class <t_firstclass>`' type.
3138
3139A function is not :ref:`well formed <wellformed>` if it it has a non-void
3140return type and contains a '``ret``' instruction with no return value or
3141a return value with a type that does not match its type, or if it has a
3142void return type and contains a '``ret``' instruction with a return
3143value.
3144
3145Semantics:
3146""""""""""
3147
3148When the '``ret``' instruction is executed, control flow returns back to
3149the calling function's context. If the caller is a
3150":ref:`call <i_call>`" instruction, execution continues at the
3151instruction after the call. If the caller was an
3152":ref:`invoke <i_invoke>`" instruction, execution continues at the
3153beginning of the "normal" destination block. If the instruction returns
3154a value, that value shall set the call or invoke instruction's return
3155value.
3156
3157Example:
3158""""""""
3159
3160.. code-block:: llvm
3161
3162 ret i32 5 ; Return an integer value of 5
3163 ret void ; Return from a void function
3164 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3165
3166.. _i_br:
3167
3168'``br``' Instruction
3169^^^^^^^^^^^^^^^^^^^^
3170
3171Syntax:
3172"""""""
3173
3174::
3175
3176 br i1 <cond>, label <iftrue>, label <iffalse>
3177 br label <dest> ; Unconditional branch
3178
3179Overview:
3180"""""""""
3181
3182The '``br``' instruction is used to cause control flow to transfer to a
3183different basic block in the current function. There are two forms of
3184this instruction, corresponding to a conditional branch and an
3185unconditional branch.
3186
3187Arguments:
3188""""""""""
3189
3190The conditional branch form of the '``br``' instruction takes a single
3191'``i1``' value and two '``label``' values. The unconditional form of the
3192'``br``' instruction takes a single '``label``' value as a target.
3193
3194Semantics:
3195""""""""""
3196
3197Upon execution of a conditional '``br``' instruction, the '``i1``'
3198argument is evaluated. If the value is ``true``, control flows to the
3199'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3200to the '``iffalse``' ``label`` argument.
3201
3202Example:
3203""""""""
3204
3205.. code-block:: llvm
3206
3207 Test:
3208 %cond = icmp eq i32 %a, %b
3209 br i1 %cond, label %IfEqual, label %IfUnequal
3210 IfEqual:
3211 ret i32 1
3212 IfUnequal:
3213 ret i32 0
3214
3215.. _i_switch:
3216
3217'``switch``' Instruction
3218^^^^^^^^^^^^^^^^^^^^^^^^
3219
3220Syntax:
3221"""""""
3222
3223::
3224
3225 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3226
3227Overview:
3228"""""""""
3229
3230The '``switch``' instruction is used to transfer control flow to one of
3231several different places. It is a generalization of the '``br``'
3232instruction, allowing a branch to occur to one of many possible
3233destinations.
3234
3235Arguments:
3236""""""""""
3237
3238The '``switch``' instruction uses three parameters: an integer
3239comparison value '``value``', a default '``label``' destination, and an
3240array of pairs of comparison value constants and '``label``'s. The table
3241is not allowed to contain duplicate constant entries.
3242
3243Semantics:
3244""""""""""
3245
3246The ``switch`` instruction specifies a table of values and destinations.
3247When the '``switch``' instruction is executed, this table is searched
3248for the given value. If the value is found, control flow is transferred
3249to the corresponding destination; otherwise, control flow is transferred
3250to the default destination.
3251
3252Implementation:
3253"""""""""""""""
3254
3255Depending on properties of the target machine and the particular
3256``switch`` instruction, this instruction may be code generated in
3257different ways. For example, it could be generated as a series of
3258chained conditional branches or with a lookup table.
3259
3260Example:
3261""""""""
3262
3263.. code-block:: llvm
3264
3265 ; Emulate a conditional br instruction
3266 %Val = zext i1 %value to i32
3267 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3268
3269 ; Emulate an unconditional br instruction
3270 switch i32 0, label %dest [ ]
3271
3272 ; Implement a jump table:
3273 switch i32 %val, label %otherwise [ i32 0, label %onzero
3274 i32 1, label %onone
3275 i32 2, label %ontwo ]
3276
3277.. _i_indirectbr:
3278
3279'``indirectbr``' Instruction
3280^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3281
3282Syntax:
3283"""""""
3284
3285::
3286
3287 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3288
3289Overview:
3290"""""""""
3291
3292The '``indirectbr``' instruction implements an indirect branch to a
3293label within the current function, whose address is specified by
3294"``address``". Address must be derived from a
3295:ref:`blockaddress <blockaddress>` constant.
3296
3297Arguments:
3298""""""""""
3299
3300The '``address``' argument is the address of the label to jump to. The
3301rest of the arguments indicate the full set of possible destinations
3302that the address may point to. Blocks are allowed to occur multiple
3303times in the destination list, though this isn't particularly useful.
3304
3305This destination list is required so that dataflow analysis has an
3306accurate understanding of the CFG.
3307
3308Semantics:
3309""""""""""
3310
3311Control transfers to the block specified in the address argument. All
3312possible destination blocks must be listed in the label list, otherwise
3313this instruction has undefined behavior. This implies that jumps to
3314labels defined in other functions have undefined behavior as well.
3315
3316Implementation:
3317"""""""""""""""
3318
3319This is typically implemented with a jump through a register.
3320
3321Example:
3322""""""""
3323
3324.. code-block:: llvm
3325
3326 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3327
3328.. _i_invoke:
3329
3330'``invoke``' Instruction
3331^^^^^^^^^^^^^^^^^^^^^^^^
3332
3333Syntax:
3334"""""""
3335
3336::
3337
3338 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3339 to label <normal label> unwind label <exception label>
3340
3341Overview:
3342"""""""""
3343
3344The '``invoke``' instruction causes control to transfer to a specified
3345function, with the possibility of control flow transfer to either the
3346'``normal``' label or the '``exception``' label. If the callee function
3347returns with the "``ret``" instruction, control flow will return to the
3348"normal" label. If the callee (or any indirect callees) returns via the
3349":ref:`resume <i_resume>`" instruction or other exception handling
3350mechanism, control is interrupted and continued at the dynamically
3351nearest "exception" label.
3352
3353The '``exception``' label is a `landing
3354pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3355'``exception``' label is required to have the
3356":ref:`landingpad <i_landingpad>`" instruction, which contains the
3357information about the behavior of the program after unwinding happens,
3358as its first non-PHI instruction. The restrictions on the
3359"``landingpad``" instruction's tightly couples it to the "``invoke``"
3360instruction, so that the important information contained within the
3361"``landingpad``" instruction can't be lost through normal code motion.
3362
3363Arguments:
3364""""""""""
3365
3366This instruction requires several arguments:
3367
3368#. The optional "cconv" marker indicates which :ref:`calling
3369 convention <callingconv>` the call should use. If none is
3370 specified, the call defaults to using C calling conventions.
3371#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3372 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3373 are valid here.
3374#. '``ptr to function ty``': shall be the signature of the pointer to
3375 function value being invoked. In most cases, this is a direct
3376 function invocation, but indirect ``invoke``'s are just as possible,
3377 branching off an arbitrary pointer to function value.
3378#. '``function ptr val``': An LLVM value containing a pointer to a
3379 function to be invoked.
3380#. '``function args``': argument list whose types match the function
3381 signature argument types and parameter attributes. All arguments must
3382 be of :ref:`first class <t_firstclass>` type. If the function signature
3383 indicates the function accepts a variable number of arguments, the
3384 extra arguments can be specified.
3385#. '``normal label``': the label reached when the called function
3386 executes a '``ret``' instruction.
3387#. '``exception label``': the label reached when a callee returns via
3388 the :ref:`resume <i_resume>` instruction or other exception handling
3389 mechanism.
3390#. The optional :ref:`function attributes <fnattrs>` list. Only
3391 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3392 attributes are valid here.
3393
3394Semantics:
3395""""""""""
3396
3397This instruction is designed to operate as a standard '``call``'
3398instruction in most regards. The primary difference is that it
3399establishes an association with a label, which is used by the runtime
3400library to unwind the stack.
3401
3402This instruction is used in languages with destructors to ensure that
3403proper cleanup is performed in the case of either a ``longjmp`` or a
3404thrown exception. Additionally, this is important for implementation of
3405'``catch``' clauses in high-level languages that support them.
3406
3407For the purposes of the SSA form, the definition of the value returned
3408by the '``invoke``' instruction is deemed to occur on the edge from the
3409current block to the "normal" label. If the callee unwinds then no
3410return value is available.
3411
3412Example:
3413""""""""
3414
3415.. code-block:: llvm
3416
3417 %retval = invoke i32 @Test(i32 15) to label %Continue
3418 unwind label %TestCleanup ; {i32}:retval set
3419 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3420 unwind label %TestCleanup ; {i32}:retval set
3421
3422.. _i_resume:
3423
3424'``resume``' Instruction
3425^^^^^^^^^^^^^^^^^^^^^^^^
3426
3427Syntax:
3428"""""""
3429
3430::
3431
3432 resume <type> <value>
3433
3434Overview:
3435"""""""""
3436
3437The '``resume``' instruction is a terminator instruction that has no
3438successors.
3439
3440Arguments:
3441""""""""""
3442
3443The '``resume``' instruction requires one argument, which must have the
3444same type as the result of any '``landingpad``' instruction in the same
3445function.
3446
3447Semantics:
3448""""""""""
3449
3450The '``resume``' instruction resumes propagation of an existing
3451(in-flight) exception whose unwinding was interrupted with a
3452:ref:`landingpad <i_landingpad>` instruction.
3453
3454Example:
3455""""""""
3456
3457.. code-block:: llvm
3458
3459 resume { i8*, i32 } %exn
3460
3461.. _i_unreachable:
3462
3463'``unreachable``' Instruction
3464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3465
3466Syntax:
3467"""""""
3468
3469::
3470
3471 unreachable
3472
3473Overview:
3474"""""""""
3475
3476The '``unreachable``' instruction has no defined semantics. This
3477instruction is used to inform the optimizer that a particular portion of
3478the code is not reachable. This can be used to indicate that the code
3479after a no-return function cannot be reached, and other facts.
3480
3481Semantics:
3482""""""""""
3483
3484The '``unreachable``' instruction has no defined semantics.
3485
3486.. _binaryops:
3487
3488Binary Operations
3489-----------------
3490
3491Binary operators are used to do most of the computation in a program.
3492They require two operands of the same type, execute an operation on
3493them, and produce a single value. The operands might represent multiple
3494data, as is the case with the :ref:`vector <t_vector>` data type. The
3495result value has the same type as its operands.
3496
3497There are several different binary operators:
3498
3499.. _i_add:
3500
3501'``add``' Instruction
3502^^^^^^^^^^^^^^^^^^^^^
3503
3504Syntax:
3505"""""""
3506
3507::
3508
3509 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3510 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3511 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3512 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3513
3514Overview:
3515"""""""""
3516
3517The '``add``' instruction returns the sum of its two operands.
3518
3519Arguments:
3520""""""""""
3521
3522The two arguments to the '``add``' instruction must be
3523:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3524arguments must have identical types.
3525
3526Semantics:
3527""""""""""
3528
3529The value produced is the integer sum of the two operands.
3530
3531If the sum has unsigned overflow, the result returned is the
3532mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3533the result.
3534
3535Because LLVM integers use a two's complement representation, this
3536instruction is appropriate for both signed and unsigned integers.
3537
3538``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3539respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3540result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3541unsigned and/or signed overflow, respectively, occurs.
3542
3543Example:
3544""""""""
3545
3546.. code-block:: llvm
3547
3548 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3549
3550.. _i_fadd:
3551
3552'``fadd``' Instruction
3553^^^^^^^^^^^^^^^^^^^^^^
3554
3555Syntax:
3556"""""""
3557
3558::
3559
3560 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3561
3562Overview:
3563"""""""""
3564
3565The '``fadd``' instruction returns the sum of its two operands.
3566
3567Arguments:
3568""""""""""
3569
3570The two arguments to the '``fadd``' instruction must be :ref:`floating
3571point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3572Both arguments must have identical types.
3573
3574Semantics:
3575""""""""""
3576
3577The value produced is the floating point sum of the two operands. This
3578instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3579which are optimization hints to enable otherwise unsafe floating point
3580optimizations:
3581
3582Example:
3583""""""""
3584
3585.. code-block:: llvm
3586
3587 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3588
3589'``sub``' Instruction
3590^^^^^^^^^^^^^^^^^^^^^
3591
3592Syntax:
3593"""""""
3594
3595::
3596
3597 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3598 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3599 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3600 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3601
3602Overview:
3603"""""""""
3604
3605The '``sub``' instruction returns the difference of its two operands.
3606
3607Note that the '``sub``' instruction is used to represent the '``neg``'
3608instruction present in most other intermediate representations.
3609
3610Arguments:
3611""""""""""
3612
3613The two arguments to the '``sub``' instruction must be
3614:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3615arguments must have identical types.
3616
3617Semantics:
3618""""""""""
3619
3620The value produced is the integer difference of the two operands.
3621
3622If the difference has unsigned overflow, the result returned is the
3623mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3624the result.
3625
3626Because LLVM integers use a two's complement representation, this
3627instruction is appropriate for both signed and unsigned integers.
3628
3629``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3630respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3631result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3632unsigned and/or signed overflow, respectively, occurs.
3633
3634Example:
3635""""""""
3636
3637.. code-block:: llvm
3638
3639 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3640 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3641
3642.. _i_fsub:
3643
3644'``fsub``' Instruction
3645^^^^^^^^^^^^^^^^^^^^^^
3646
3647Syntax:
3648"""""""
3649
3650::
3651
3652 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3653
3654Overview:
3655"""""""""
3656
3657The '``fsub``' instruction returns the difference of its two operands.
3658
3659Note that the '``fsub``' instruction is used to represent the '``fneg``'
3660instruction present in most other intermediate representations.
3661
3662Arguments:
3663""""""""""
3664
3665The two arguments to the '``fsub``' instruction must be :ref:`floating
3666point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3667Both arguments must have identical types.
3668
3669Semantics:
3670""""""""""
3671
3672The value produced is the floating point difference of the two operands.
3673This instruction can also take any number of :ref:`fast-math
3674flags <fastmath>`, which are optimization hints to enable otherwise
3675unsafe floating point optimizations:
3676
3677Example:
3678""""""""
3679
3680.. code-block:: llvm
3681
3682 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3683 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3684
3685'``mul``' Instruction
3686^^^^^^^^^^^^^^^^^^^^^
3687
3688Syntax:
3689"""""""
3690
3691::
3692
3693 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3694 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3695 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3696 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3697
3698Overview:
3699"""""""""
3700
3701The '``mul``' instruction returns the product of its two operands.
3702
3703Arguments:
3704""""""""""
3705
3706The two arguments to the '``mul``' instruction must be
3707:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3708arguments must have identical types.
3709
3710Semantics:
3711""""""""""
3712
3713The value produced is the integer product of the two operands.
3714
3715If the result of the multiplication has unsigned overflow, the result
3716returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3717bit width of the result.
3718
3719Because LLVM integers use a two's complement representation, and the
3720result is the same width as the operands, this instruction returns the
3721correct result for both signed and unsigned integers. If a full product
3722(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3723sign-extended or zero-extended as appropriate to the width of the full
3724product.
3725
3726``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3727respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3728result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3729unsigned and/or signed overflow, respectively, occurs.
3730
3731Example:
3732""""""""
3733
3734.. code-block:: llvm
3735
3736 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3737
3738.. _i_fmul:
3739
3740'``fmul``' Instruction
3741^^^^^^^^^^^^^^^^^^^^^^
3742
3743Syntax:
3744"""""""
3745
3746::
3747
3748 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3749
3750Overview:
3751"""""""""
3752
3753The '``fmul``' instruction returns the product of its two operands.
3754
3755Arguments:
3756""""""""""
3757
3758The two arguments to the '``fmul``' instruction must be :ref:`floating
3759point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3760Both arguments must have identical types.
3761
3762Semantics:
3763""""""""""
3764
3765The value produced is the floating point product of the two operands.
3766This instruction can also take any number of :ref:`fast-math
3767flags <fastmath>`, which are optimization hints to enable otherwise
3768unsafe floating point optimizations:
3769
3770Example:
3771""""""""
3772
3773.. code-block:: llvm
3774
3775 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3776
3777'``udiv``' Instruction
3778^^^^^^^^^^^^^^^^^^^^^^
3779
3780Syntax:
3781"""""""
3782
3783::
3784
3785 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3786 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3787
3788Overview:
3789"""""""""
3790
3791The '``udiv``' instruction returns the quotient of its two operands.
3792
3793Arguments:
3794""""""""""
3795
3796The two arguments to the '``udiv``' instruction must be
3797:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3798arguments must have identical types.
3799
3800Semantics:
3801""""""""""
3802
3803The value produced is the unsigned integer quotient of the two operands.
3804
3805Note that unsigned integer division and signed integer division are
3806distinct operations; for signed integer division, use '``sdiv``'.
3807
3808Division by zero leads to undefined behavior.
3809
3810If the ``exact`` keyword is present, the result value of the ``udiv`` is
3811a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3812such, "((a udiv exact b) mul b) == a").
3813
3814Example:
3815""""""""
3816
3817.. code-block:: llvm
3818
3819 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3820
3821'``sdiv``' Instruction
3822^^^^^^^^^^^^^^^^^^^^^^
3823
3824Syntax:
3825"""""""
3826
3827::
3828
3829 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3830 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3831
3832Overview:
3833"""""""""
3834
3835The '``sdiv``' instruction returns the quotient of its two operands.
3836
3837Arguments:
3838""""""""""
3839
3840The two arguments to the '``sdiv``' instruction must be
3841:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3842arguments must have identical types.
3843
3844Semantics:
3845""""""""""
3846
3847The value produced is the signed integer quotient of the two operands
3848rounded towards zero.
3849
3850Note that signed integer division and unsigned integer division are
3851distinct operations; for unsigned integer division, use '``udiv``'.
3852
3853Division by zero leads to undefined behavior. Overflow also leads to
3854undefined behavior; this is a rare case, but can occur, for example, by
3855doing a 32-bit division of -2147483648 by -1.
3856
3857If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3858a :ref:`poison value <poisonvalues>` if the result would be rounded.
3859
3860Example:
3861""""""""
3862
3863.. code-block:: llvm
3864
3865 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3866
3867.. _i_fdiv:
3868
3869'``fdiv``' Instruction
3870^^^^^^^^^^^^^^^^^^^^^^
3871
3872Syntax:
3873"""""""
3874
3875::
3876
3877 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3878
3879Overview:
3880"""""""""
3881
3882The '``fdiv``' instruction returns the quotient of its two operands.
3883
3884Arguments:
3885""""""""""
3886
3887The two arguments to the '``fdiv``' instruction must be :ref:`floating
3888point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3889Both arguments must have identical types.
3890
3891Semantics:
3892""""""""""
3893
3894The value produced is the floating point quotient of the two operands.
3895This instruction can also take any number of :ref:`fast-math
3896flags <fastmath>`, which are optimization hints to enable otherwise
3897unsafe floating point optimizations:
3898
3899Example:
3900""""""""
3901
3902.. code-block:: llvm
3903
3904 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3905
3906'``urem``' Instruction
3907^^^^^^^^^^^^^^^^^^^^^^
3908
3909Syntax:
3910"""""""
3911
3912::
3913
3914 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3915
3916Overview:
3917"""""""""
3918
3919The '``urem``' instruction returns the remainder from the unsigned
3920division of its two arguments.
3921
3922Arguments:
3923""""""""""
3924
3925The two arguments to the '``urem``' instruction must be
3926:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3927arguments must have identical types.
3928
3929Semantics:
3930""""""""""
3931
3932This instruction returns the unsigned integer *remainder* of a division.
3933This instruction always performs an unsigned division to get the
3934remainder.
3935
3936Note that unsigned integer remainder and signed integer remainder are
3937distinct operations; for signed integer remainder, use '``srem``'.
3938
3939Taking the remainder of a division by zero leads to undefined behavior.
3940
3941Example:
3942""""""""
3943
3944.. code-block:: llvm
3945
3946 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3947
3948'``srem``' Instruction
3949^^^^^^^^^^^^^^^^^^^^^^
3950
3951Syntax:
3952"""""""
3953
3954::
3955
3956 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3957
3958Overview:
3959"""""""""
3960
3961The '``srem``' instruction returns the remainder from the signed
3962division of its two operands. This instruction can also take
3963:ref:`vector <t_vector>` versions of the values in which case the elements
3964must be integers.
3965
3966Arguments:
3967""""""""""
3968
3969The two arguments to the '``srem``' instruction must be
3970:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3971arguments must have identical types.
3972
3973Semantics:
3974""""""""""
3975
3976This instruction returns the *remainder* of a division (where the result
3977is either zero or has the same sign as the dividend, ``op1``), not the
3978*modulo* operator (where the result is either zero or has the same sign
3979as the divisor, ``op2``) of a value. For more information about the
3980difference, see `The Math
3981Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3982table of how this is implemented in various languages, please see
3983`Wikipedia: modulo
3984operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3985
3986Note that signed integer remainder and unsigned integer remainder are
3987distinct operations; for unsigned integer remainder, use '``urem``'.
3988
3989Taking the remainder of a division by zero leads to undefined behavior.
3990Overflow also leads to undefined behavior; this is a rare case, but can
3991occur, for example, by taking the remainder of a 32-bit division of
3992-2147483648 by -1. (The remainder doesn't actually overflow, but this
3993rule lets srem be implemented using instructions that return both the
3994result of the division and the remainder.)
3995
3996Example:
3997""""""""
3998
3999.. code-block:: llvm
4000
4001 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4002
4003.. _i_frem:
4004
4005'``frem``' Instruction
4006^^^^^^^^^^^^^^^^^^^^^^
4007
4008Syntax:
4009"""""""
4010
4011::
4012
4013 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4014
4015Overview:
4016"""""""""
4017
4018The '``frem``' instruction returns the remainder from the division of
4019its two operands.
4020
4021Arguments:
4022""""""""""
4023
4024The two arguments to the '``frem``' instruction must be :ref:`floating
4025point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4026Both arguments must have identical types.
4027
4028Semantics:
4029""""""""""
4030
4031This instruction returns the *remainder* of a division. The remainder
4032has the same sign as the dividend. This instruction can also take any
4033number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4034to enable otherwise unsafe floating point optimizations:
4035
4036Example:
4037""""""""
4038
4039.. code-block:: llvm
4040
4041 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4042
4043.. _bitwiseops:
4044
4045Bitwise Binary Operations
4046-------------------------
4047
4048Bitwise binary operators are used to do various forms of bit-twiddling
4049in a program. They are generally very efficient instructions and can
4050commonly be strength reduced from other instructions. They require two
4051operands of the same type, execute an operation on them, and produce a
4052single value. The resulting value is the same type as its operands.
4053
4054'``shl``' Instruction
4055^^^^^^^^^^^^^^^^^^^^^
4056
4057Syntax:
4058"""""""
4059
4060::
4061
4062 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4063 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4064 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4065 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4066
4067Overview:
4068"""""""""
4069
4070The '``shl``' instruction returns the first operand shifted to the left
4071a specified number of bits.
4072
4073Arguments:
4074""""""""""
4075
4076Both arguments to the '``shl``' instruction must be the same
4077:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4078'``op2``' is treated as an unsigned value.
4079
4080Semantics:
4081""""""""""
4082
4083The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4084where ``n`` is the width of the result. If ``op2`` is (statically or
4085dynamically) negative or equal to or larger than the number of bits in
4086``op1``, the result is undefined. If the arguments are vectors, each
4087vector element of ``op1`` is shifted by the corresponding shift amount
4088in ``op2``.
4089
4090If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4091value <poisonvalues>` if it shifts out any non-zero bits. If the
4092``nsw`` keyword is present, then the shift produces a :ref:`poison
4093value <poisonvalues>` if it shifts out any bits that disagree with the
4094resultant sign bit. As such, NUW/NSW have the same semantics as they
4095would if the shift were expressed as a mul instruction with the same
4096nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4097
4098Example:
4099""""""""
4100
4101.. code-block:: llvm
4102
4103 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4104 <result> = shl i32 4, 2 ; yields {i32}: 16
4105 <result> = shl i32 1, 10 ; yields {i32}: 1024
4106 <result> = shl i32 1, 32 ; undefined
4107 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4108
4109'``lshr``' Instruction
4110^^^^^^^^^^^^^^^^^^^^^^
4111
4112Syntax:
4113"""""""
4114
4115::
4116
4117 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4118 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4119
4120Overview:
4121"""""""""
4122
4123The '``lshr``' instruction (logical shift right) returns the first
4124operand shifted to the right a specified number of bits with zero fill.
4125
4126Arguments:
4127""""""""""
4128
4129Both arguments to the '``lshr``' instruction must be the same
4130:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4131'``op2``' is treated as an unsigned value.
4132
4133Semantics:
4134""""""""""
4135
4136This instruction always performs a logical shift right operation. The
4137most significant bits of the result will be filled with zero bits after
4138the shift. If ``op2`` is (statically or dynamically) equal to or larger
4139than the number of bits in ``op1``, the result is undefined. If the
4140arguments are vectors, each vector element of ``op1`` is shifted by the
4141corresponding shift amount in ``op2``.
4142
4143If the ``exact`` keyword is present, the result value of the ``lshr`` is
4144a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4145non-zero.
4146
4147Example:
4148""""""""
4149
4150.. code-block:: llvm
4151
4152 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4153 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4154 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004155 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004156 <result> = lshr i32 1, 32 ; undefined
4157 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4158
4159'``ashr``' Instruction
4160^^^^^^^^^^^^^^^^^^^^^^
4161
4162Syntax:
4163"""""""
4164
4165::
4166
4167 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4168 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4169
4170Overview:
4171"""""""""
4172
4173The '``ashr``' instruction (arithmetic shift right) returns the first
4174operand shifted to the right a specified number of bits with sign
4175extension.
4176
4177Arguments:
4178""""""""""
4179
4180Both arguments to the '``ashr``' instruction must be the same
4181:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4182'``op2``' is treated as an unsigned value.
4183
4184Semantics:
4185""""""""""
4186
4187This instruction always performs an arithmetic shift right operation,
4188The most significant bits of the result will be filled with the sign bit
4189of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4190than the number of bits in ``op1``, the result is undefined. If the
4191arguments are vectors, each vector element of ``op1`` is shifted by the
4192corresponding shift amount in ``op2``.
4193
4194If the ``exact`` keyword is present, the result value of the ``ashr`` is
4195a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4196non-zero.
4197
4198Example:
4199""""""""
4200
4201.. code-block:: llvm
4202
4203 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4204 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4205 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4206 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4207 <result> = ashr i32 1, 32 ; undefined
4208 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4209
4210'``and``' Instruction
4211^^^^^^^^^^^^^^^^^^^^^
4212
4213Syntax:
4214"""""""
4215
4216::
4217
4218 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4219
4220Overview:
4221"""""""""
4222
4223The '``and``' instruction returns the bitwise logical and of its two
4224operands.
4225
4226Arguments:
4227""""""""""
4228
4229The two arguments to the '``and``' instruction must be
4230:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4231arguments must have identical types.
4232
4233Semantics:
4234""""""""""
4235
4236The truth table used for the '``and``' instruction is:
4237
4238+-----+-----+-----+
4239| In0 | In1 | Out |
4240+-----+-----+-----+
4241| 0 | 0 | 0 |
4242+-----+-----+-----+
4243| 0 | 1 | 0 |
4244+-----+-----+-----+
4245| 1 | 0 | 0 |
4246+-----+-----+-----+
4247| 1 | 1 | 1 |
4248+-----+-----+-----+
4249
4250Example:
4251""""""""
4252
4253.. code-block:: llvm
4254
4255 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4256 <result> = and i32 15, 40 ; yields {i32}:result = 8
4257 <result> = and i32 4, 8 ; yields {i32}:result = 0
4258
4259'``or``' Instruction
4260^^^^^^^^^^^^^^^^^^^^
4261
4262Syntax:
4263"""""""
4264
4265::
4266
4267 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4268
4269Overview:
4270"""""""""
4271
4272The '``or``' instruction returns the bitwise logical inclusive or of its
4273two operands.
4274
4275Arguments:
4276""""""""""
4277
4278The two arguments to the '``or``' instruction must be
4279:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4280arguments must have identical types.
4281
4282Semantics:
4283""""""""""
4284
4285The truth table used for the '``or``' instruction is:
4286
4287+-----+-----+-----+
4288| In0 | In1 | Out |
4289+-----+-----+-----+
4290| 0 | 0 | 0 |
4291+-----+-----+-----+
4292| 0 | 1 | 1 |
4293+-----+-----+-----+
4294| 1 | 0 | 1 |
4295+-----+-----+-----+
4296| 1 | 1 | 1 |
4297+-----+-----+-----+
4298
4299Example:
4300""""""""
4301
4302::
4303
4304 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4305 <result> = or i32 15, 40 ; yields {i32}:result = 47
4306 <result> = or i32 4, 8 ; yields {i32}:result = 12
4307
4308'``xor``' Instruction
4309^^^^^^^^^^^^^^^^^^^^^
4310
4311Syntax:
4312"""""""
4313
4314::
4315
4316 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4317
4318Overview:
4319"""""""""
4320
4321The '``xor``' instruction returns the bitwise logical exclusive or of
4322its two operands. The ``xor`` is used to implement the "one's
4323complement" operation, which is the "~" operator in C.
4324
4325Arguments:
4326""""""""""
4327
4328The two arguments to the '``xor``' instruction must be
4329:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4330arguments must have identical types.
4331
4332Semantics:
4333""""""""""
4334
4335The truth table used for the '``xor``' instruction is:
4336
4337+-----+-----+-----+
4338| In0 | In1 | Out |
4339+-----+-----+-----+
4340| 0 | 0 | 0 |
4341+-----+-----+-----+
4342| 0 | 1 | 1 |
4343+-----+-----+-----+
4344| 1 | 0 | 1 |
4345+-----+-----+-----+
4346| 1 | 1 | 0 |
4347+-----+-----+-----+
4348
4349Example:
4350""""""""
4351
4352.. code-block:: llvm
4353
4354 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4355 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4356 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4357 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4358
4359Vector Operations
4360-----------------
4361
4362LLVM supports several instructions to represent vector operations in a
4363target-independent manner. These instructions cover the element-access
4364and vector-specific operations needed to process vectors effectively.
4365While LLVM does directly support these vector operations, many
4366sophisticated algorithms will want to use target-specific intrinsics to
4367take full advantage of a specific target.
4368
4369.. _i_extractelement:
4370
4371'``extractelement``' Instruction
4372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4373
4374Syntax:
4375"""""""
4376
4377::
4378
4379 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4380
4381Overview:
4382"""""""""
4383
4384The '``extractelement``' instruction extracts a single scalar element
4385from a vector at a specified index.
4386
4387Arguments:
4388""""""""""
4389
4390The first operand of an '``extractelement``' instruction is a value of
4391:ref:`vector <t_vector>` type. The second operand is an index indicating
4392the position from which to extract the element. The index may be a
4393variable.
4394
4395Semantics:
4396""""""""""
4397
4398The result is a scalar of the same type as the element type of ``val``.
4399Its value is the value at position ``idx`` of ``val``. If ``idx``
4400exceeds the length of ``val``, the results are undefined.
4401
4402Example:
4403""""""""
4404
4405.. code-block:: llvm
4406
4407 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4408
4409.. _i_insertelement:
4410
4411'``insertelement``' Instruction
4412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4413
4414Syntax:
4415"""""""
4416
4417::
4418
4419 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4420
4421Overview:
4422"""""""""
4423
4424The '``insertelement``' instruction inserts a scalar element into a
4425vector at a specified index.
4426
4427Arguments:
4428""""""""""
4429
4430The first operand of an '``insertelement``' instruction is a value of
4431:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4432type must equal the element type of the first operand. The third operand
4433is an index indicating the position at which to insert the value. The
4434index may be a variable.
4435
4436Semantics:
4437""""""""""
4438
4439The result is a vector of the same type as ``val``. Its element values
4440are those of ``val`` except at position ``idx``, where it gets the value
4441``elt``. If ``idx`` exceeds the length of ``val``, the results are
4442undefined.
4443
4444Example:
4445""""""""
4446
4447.. code-block:: llvm
4448
4449 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4450
4451.. _i_shufflevector:
4452
4453'``shufflevector``' Instruction
4454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4455
4456Syntax:
4457"""""""
4458
4459::
4460
4461 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4462
4463Overview:
4464"""""""""
4465
4466The '``shufflevector``' instruction constructs a permutation of elements
4467from two input vectors, returning a vector with the same element type as
4468the input and length that is the same as the shuffle mask.
4469
4470Arguments:
4471""""""""""
4472
4473The first two operands of a '``shufflevector``' instruction are vectors
4474with the same type. The third argument is a shuffle mask whose element
4475type is always 'i32'. The result of the instruction is a vector whose
4476length is the same as the shuffle mask and whose element type is the
4477same as the element type of the first two operands.
4478
4479The shuffle mask operand is required to be a constant vector with either
4480constant integer or undef values.
4481
4482Semantics:
4483""""""""""
4484
4485The elements of the two input vectors are numbered from left to right
4486across both of the vectors. The shuffle mask operand specifies, for each
4487element of the result vector, which element of the two input vectors the
4488result element gets. The element selector may be undef (meaning "don't
4489care") and the second operand may be undef if performing a shuffle from
4490only one vector.
4491
4492Example:
4493""""""""
4494
4495.. code-block:: llvm
4496
4497 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4498 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4499 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4500 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4501 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4502 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4503 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4504 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4505
4506Aggregate Operations
4507--------------------
4508
4509LLVM supports several instructions for working with
4510:ref:`aggregate <t_aggregate>` values.
4511
4512.. _i_extractvalue:
4513
4514'``extractvalue``' Instruction
4515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4516
4517Syntax:
4518"""""""
4519
4520::
4521
4522 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4523
4524Overview:
4525"""""""""
4526
4527The '``extractvalue``' instruction extracts the value of a member field
4528from an :ref:`aggregate <t_aggregate>` value.
4529
4530Arguments:
4531""""""""""
4532
4533The first operand of an '``extractvalue``' instruction is a value of
4534:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4535constant indices to specify which value to extract in a similar manner
4536as indices in a '``getelementptr``' instruction.
4537
4538The major differences to ``getelementptr`` indexing are:
4539
4540- Since the value being indexed is not a pointer, the first index is
4541 omitted and assumed to be zero.
4542- At least one index must be specified.
4543- Not only struct indices but also array indices must be in bounds.
4544
4545Semantics:
4546""""""""""
4547
4548The result is the value at the position in the aggregate specified by
4549the index operands.
4550
4551Example:
4552""""""""
4553
4554.. code-block:: llvm
4555
4556 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4557
4558.. _i_insertvalue:
4559
4560'``insertvalue``' Instruction
4561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4562
4563Syntax:
4564"""""""
4565
4566::
4567
4568 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4569
4570Overview:
4571"""""""""
4572
4573The '``insertvalue``' instruction inserts a value into a member field in
4574an :ref:`aggregate <t_aggregate>` value.
4575
4576Arguments:
4577""""""""""
4578
4579The first operand of an '``insertvalue``' instruction is a value of
4580:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4581a first-class value to insert. The following operands are constant
4582indices indicating the position at which to insert the value in a
4583similar manner as indices in a '``extractvalue``' instruction. The value
4584to insert must have the same type as the value identified by the
4585indices.
4586
4587Semantics:
4588""""""""""
4589
4590The result is an aggregate of the same type as ``val``. Its value is
4591that of ``val`` except that the value at the position specified by the
4592indices is that of ``elt``.
4593
4594Example:
4595""""""""
4596
4597.. code-block:: llvm
4598
4599 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4600 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4601 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4602
4603.. _memoryops:
4604
4605Memory Access and Addressing Operations
4606---------------------------------------
4607
4608A key design point of an SSA-based representation is how it represents
4609memory. In LLVM, no memory locations are in SSA form, which makes things
4610very simple. This section describes how to read, write, and allocate
4611memory in LLVM.
4612
4613.. _i_alloca:
4614
4615'``alloca``' Instruction
4616^^^^^^^^^^^^^^^^^^^^^^^^
4617
4618Syntax:
4619"""""""
4620
4621::
4622
4623 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4624
4625Overview:
4626"""""""""
4627
4628The '``alloca``' instruction allocates memory on the stack frame of the
4629currently executing function, to be automatically released when this
4630function returns to its caller. The object is always allocated in the
4631generic address space (address space zero).
4632
4633Arguments:
4634""""""""""
4635
4636The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4637bytes of memory on the runtime stack, returning a pointer of the
4638appropriate type to the program. If "NumElements" is specified, it is
4639the number of elements allocated, otherwise "NumElements" is defaulted
4640to be one. If a constant alignment is specified, the value result of the
4641allocation is guaranteed to be aligned to at least that boundary. If not
4642specified, or if zero, the target can choose to align the allocation on
4643any convenient boundary compatible with the type.
4644
4645'``type``' may be any sized type.
4646
4647Semantics:
4648""""""""""
4649
4650Memory is allocated; a pointer is returned. The operation is undefined
4651if there is insufficient stack space for the allocation. '``alloca``'d
4652memory is automatically released when the function returns. The
4653'``alloca``' instruction is commonly used to represent automatic
4654variables that must have an address available. When the function returns
4655(either with the ``ret`` or ``resume`` instructions), the memory is
4656reclaimed. Allocating zero bytes is legal, but the result is undefined.
4657The order in which memory is allocated (ie., which way the stack grows)
4658is not specified.
4659
4660Example:
4661""""""""
4662
4663.. code-block:: llvm
4664
4665 %ptr = alloca i32 ; yields {i32*}:ptr
4666 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4667 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4668 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4669
4670.. _i_load:
4671
4672'``load``' Instruction
4673^^^^^^^^^^^^^^^^^^^^^^
4674
4675Syntax:
4676"""""""
4677
4678::
4679
4680 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4681 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4682 !<index> = !{ i32 1 }
4683
4684Overview:
4685"""""""""
4686
4687The '``load``' instruction is used to read from memory.
4688
4689Arguments:
4690""""""""""
4691
Eli Bendersky8c493382013-04-17 20:17:08 +00004692The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004693from which to load. The pointer must point to a :ref:`first
4694class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4695then the optimizer is not allowed to modify the number or order of
4696execution of this ``load`` with other :ref:`volatile
4697operations <volatile>`.
4698
4699If the ``load`` is marked as ``atomic``, it takes an extra
4700:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4701``release`` and ``acq_rel`` orderings are not valid on ``load``
4702instructions. Atomic loads produce :ref:`defined <memmodel>` results
4703when they may see multiple atomic stores. The type of the pointee must
4704be an integer type whose bit width is a power of two greater than or
4705equal to eight and less than or equal to a target-specific size limit.
4706``align`` must be explicitly specified on atomic loads, and the load has
4707undefined behavior if the alignment is not set to a value which is at
4708least the size in bytes of the pointee. ``!nontemporal`` does not have
4709any defined semantics for atomic loads.
4710
4711The optional constant ``align`` argument specifies the alignment of the
4712operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004713or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004714alignment for the target. It is the responsibility of the code emitter
4715to ensure that the alignment information is correct. Overestimating the
4716alignment results in undefined behavior. Underestimating the alignment
4717may produce less efficient code. An alignment of 1 is always safe.
4718
4719The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004720metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004721``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004722metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004723that this load is not expected to be reused in the cache. The code
4724generator may select special instructions to save cache bandwidth, such
4725as the ``MOVNT`` instruction on x86.
4726
4727The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004728metadata name ``<index>`` corresponding to a metadata node with no
4729entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004730instruction tells the optimizer and code generator that this load
4731address points to memory which does not change value during program
4732execution. The optimizer may then move this load around, for example, by
4733hoisting it out of loops using loop invariant code motion.
4734
4735Semantics:
4736""""""""""
4737
4738The location of memory pointed to is loaded. If the value being loaded
4739is of scalar type then the number of bytes read does not exceed the
4740minimum number of bytes needed to hold all bits of the type. For
4741example, loading an ``i24`` reads at most three bytes. When loading a
4742value of a type like ``i20`` with a size that is not an integral number
4743of bytes, the result is undefined if the value was not originally
4744written using a store of the same type.
4745
4746Examples:
4747"""""""""
4748
4749.. code-block:: llvm
4750
4751 %ptr = alloca i32 ; yields {i32*}:ptr
4752 store i32 3, i32* %ptr ; yields {void}
4753 %val = load i32* %ptr ; yields {i32}:val = i32 3
4754
4755.. _i_store:
4756
4757'``store``' Instruction
4758^^^^^^^^^^^^^^^^^^^^^^^
4759
4760Syntax:
4761"""""""
4762
4763::
4764
4765 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4766 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4767
4768Overview:
4769"""""""""
4770
4771The '``store``' instruction is used to write to memory.
4772
4773Arguments:
4774""""""""""
4775
Eli Bendersky8952d902013-04-17 17:17:20 +00004776There are two arguments to the ``store`` instruction: a value to store
4777and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004778operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004779the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004780then the optimizer is not allowed to modify the number or order of
4781execution of this ``store`` with other :ref:`volatile
4782operations <volatile>`.
4783
4784If the ``store`` is marked as ``atomic``, it takes an extra
4785:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4786``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4787instructions. Atomic loads produce :ref:`defined <memmodel>` results
4788when they may see multiple atomic stores. The type of the pointee must
4789be an integer type whose bit width is a power of two greater than or
4790equal to eight and less than or equal to a target-specific size limit.
4791``align`` must be explicitly specified on atomic stores, and the store
4792has undefined behavior if the alignment is not set to a value which is
4793at least the size in bytes of the pointee. ``!nontemporal`` does not
4794have any defined semantics for atomic stores.
4795
Eli Bendersky8952d902013-04-17 17:17:20 +00004796The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004797operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004798or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004799alignment for the target. It is the responsibility of the code emitter
4800to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004801alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004802alignment may produce less efficient code. An alignment of 1 is always
4803safe.
4804
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004805The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004806name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004807value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004808tells the optimizer and code generator that this load is not expected to
4809be reused in the cache. The code generator may select special
4810instructions to save cache bandwidth, such as the MOVNT instruction on
4811x86.
4812
4813Semantics:
4814""""""""""
4815
Eli Bendersky8952d902013-04-17 17:17:20 +00004816The contents of memory are updated to contain ``<value>`` at the
4817location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004818of scalar type then the number of bytes written does not exceed the
4819minimum number of bytes needed to hold all bits of the type. For
4820example, storing an ``i24`` writes at most three bytes. When writing a
4821value of a type like ``i20`` with a size that is not an integral number
4822of bytes, it is unspecified what happens to the extra bits that do not
4823belong to the type, but they will typically be overwritten.
4824
4825Example:
4826""""""""
4827
4828.. code-block:: llvm
4829
4830 %ptr = alloca i32 ; yields {i32*}:ptr
4831 store i32 3, i32* %ptr ; yields {void}
4832 %val = load i32* %ptr ; yields {i32}:val = i32 3
4833
4834.. _i_fence:
4835
4836'``fence``' Instruction
4837^^^^^^^^^^^^^^^^^^^^^^^
4838
4839Syntax:
4840"""""""
4841
4842::
4843
4844 fence [singlethread] <ordering> ; yields {void}
4845
4846Overview:
4847"""""""""
4848
4849The '``fence``' instruction is used to introduce happens-before edges
4850between operations.
4851
4852Arguments:
4853""""""""""
4854
4855'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4856defines what *synchronizes-with* edges they add. They can only be given
4857``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4858
4859Semantics:
4860""""""""""
4861
4862A fence A which has (at least) ``release`` ordering semantics
4863*synchronizes with* a fence B with (at least) ``acquire`` ordering
4864semantics if and only if there exist atomic operations X and Y, both
4865operating on some atomic object M, such that A is sequenced before X, X
4866modifies M (either directly or through some side effect of a sequence
4867headed by X), Y is sequenced before B, and Y observes M. This provides a
4868*happens-before* dependency between A and B. Rather than an explicit
4869``fence``, one (but not both) of the atomic operations X or Y might
4870provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4871still *synchronize-with* the explicit ``fence`` and establish the
4872*happens-before* edge.
4873
4874A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4875``acquire`` and ``release`` semantics specified above, participates in
4876the global program order of other ``seq_cst`` operations and/or fences.
4877
4878The optional ":ref:`singlethread <singlethread>`" argument specifies
4879that the fence only synchronizes with other fences in the same thread.
4880(This is useful for interacting with signal handlers.)
4881
4882Example:
4883""""""""
4884
4885.. code-block:: llvm
4886
4887 fence acquire ; yields {void}
4888 fence singlethread seq_cst ; yields {void}
4889
4890.. _i_cmpxchg:
4891
4892'``cmpxchg``' Instruction
4893^^^^^^^^^^^^^^^^^^^^^^^^^
4894
4895Syntax:
4896"""""""
4897
4898::
4899
4900 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4901
4902Overview:
4903"""""""""
4904
4905The '``cmpxchg``' instruction is used to atomically modify memory. It
4906loads a value in memory and compares it to a given value. If they are
4907equal, it stores a new value into the memory.
4908
4909Arguments:
4910""""""""""
4911
4912There are three arguments to the '``cmpxchg``' instruction: an address
4913to operate on, a value to compare to the value currently be at that
4914address, and a new value to place at that address if the compared values
4915are equal. The type of '<cmp>' must be an integer type whose bit width
4916is a power of two greater than or equal to eight and less than or equal
4917to a target-specific size limit. '<cmp>' and '<new>' must have the same
4918type, and the type of '<pointer>' must be a pointer to that type. If the
4919``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4920to modify the number or order of execution of this ``cmpxchg`` with
4921other :ref:`volatile operations <volatile>`.
4922
4923The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4924synchronizes with other atomic operations.
4925
4926The optional "``singlethread``" argument declares that the ``cmpxchg``
4927is only atomic with respect to code (usually signal handlers) running in
4928the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4929respect to all other code in the system.
4930
4931The pointer passed into cmpxchg must have alignment greater than or
4932equal to the size in memory of the operand.
4933
4934Semantics:
4935""""""""""
4936
4937The contents of memory at the location specified by the '``<pointer>``'
4938operand is read and compared to '``<cmp>``'; if the read value is the
4939equal, '``<new>``' is written. The original value at the location is
4940returned.
4941
4942A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4943of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4944atomic load with an ordering parameter determined by dropping any
4945``release`` part of the ``cmpxchg``'s ordering.
4946
4947Example:
4948""""""""
4949
4950.. code-block:: llvm
4951
4952 entry:
4953 %orig = atomic load i32* %ptr unordered ; yields {i32}
4954 br label %loop
4955
4956 loop:
4957 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4958 %squared = mul i32 %cmp, %cmp
4959 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4960 %success = icmp eq i32 %cmp, %old
4961 br i1 %success, label %done, label %loop
4962
4963 done:
4964 ...
4965
4966.. _i_atomicrmw:
4967
4968'``atomicrmw``' Instruction
4969^^^^^^^^^^^^^^^^^^^^^^^^^^^
4970
4971Syntax:
4972"""""""
4973
4974::
4975
4976 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4977
4978Overview:
4979"""""""""
4980
4981The '``atomicrmw``' instruction is used to atomically modify memory.
4982
4983Arguments:
4984""""""""""
4985
4986There are three arguments to the '``atomicrmw``' instruction: an
4987operation to apply, an address whose value to modify, an argument to the
4988operation. The operation must be one of the following keywords:
4989
4990- xchg
4991- add
4992- sub
4993- and
4994- nand
4995- or
4996- xor
4997- max
4998- min
4999- umax
5000- umin
5001
5002The type of '<value>' must be an integer type whose bit width is a power
5003of two greater than or equal to eight and less than or equal to a
5004target-specific size limit. The type of the '``<pointer>``' operand must
5005be a pointer to that type. If the ``atomicrmw`` is marked as
5006``volatile``, then the optimizer is not allowed to modify the number or
5007order of execution of this ``atomicrmw`` with other :ref:`volatile
5008operations <volatile>`.
5009
5010Semantics:
5011""""""""""
5012
5013The contents of memory at the location specified by the '``<pointer>``'
5014operand are atomically read, modified, and written back. The original
5015value at the location is returned. The modification is specified by the
5016operation argument:
5017
5018- xchg: ``*ptr = val``
5019- add: ``*ptr = *ptr + val``
5020- sub: ``*ptr = *ptr - val``
5021- and: ``*ptr = *ptr & val``
5022- nand: ``*ptr = ~(*ptr & val)``
5023- or: ``*ptr = *ptr | val``
5024- xor: ``*ptr = *ptr ^ val``
5025- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5026- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5027- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5028 comparison)
5029- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5030 comparison)
5031
5032Example:
5033""""""""
5034
5035.. code-block:: llvm
5036
5037 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5038
5039.. _i_getelementptr:
5040
5041'``getelementptr``' Instruction
5042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5043
5044Syntax:
5045"""""""
5046
5047::
5048
5049 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5050 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5051 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5052
5053Overview:
5054"""""""""
5055
5056The '``getelementptr``' instruction is used to get the address of a
5057subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5058address calculation only and does not access memory.
5059
5060Arguments:
5061""""""""""
5062
5063The first argument is always a pointer or a vector of pointers, and
5064forms the basis of the calculation. The remaining arguments are indices
5065that indicate which of the elements of the aggregate object are indexed.
5066The interpretation of each index is dependent on the type being indexed
5067into. The first index always indexes the pointer value given as the
5068first argument, the second index indexes a value of the type pointed to
5069(not necessarily the value directly pointed to, since the first index
5070can be non-zero), etc. The first type indexed into must be a pointer
5071value, subsequent types can be arrays, vectors, and structs. Note that
5072subsequent types being indexed into can never be pointers, since that
5073would require loading the pointer before continuing calculation.
5074
5075The type of each index argument depends on the type it is indexing into.
5076When indexing into a (optionally packed) structure, only ``i32`` integer
5077**constants** are allowed (when using a vector of indices they must all
5078be the **same** ``i32`` integer constant). When indexing into an array,
5079pointer or vector, integers of any width are allowed, and they are not
5080required to be constant. These integers are treated as signed values
5081where relevant.
5082
5083For example, let's consider a C code fragment and how it gets compiled
5084to LLVM:
5085
5086.. code-block:: c
5087
5088 struct RT {
5089 char A;
5090 int B[10][20];
5091 char C;
5092 };
5093 struct ST {
5094 int X;
5095 double Y;
5096 struct RT Z;
5097 };
5098
5099 int *foo(struct ST *s) {
5100 return &s[1].Z.B[5][13];
5101 }
5102
5103The LLVM code generated by Clang is:
5104
5105.. code-block:: llvm
5106
5107 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5108 %struct.ST = type { i32, double, %struct.RT }
5109
5110 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5111 entry:
5112 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5113 ret i32* %arrayidx
5114 }
5115
5116Semantics:
5117""""""""""
5118
5119In the example above, the first index is indexing into the
5120'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5121= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5122indexes into the third element of the structure, yielding a
5123'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5124structure. The third index indexes into the second element of the
5125structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5126dimensions of the array are subscripted into, yielding an '``i32``'
5127type. The '``getelementptr``' instruction returns a pointer to this
5128element, thus computing a value of '``i32*``' type.
5129
5130Note that it is perfectly legal to index partially through a structure,
5131returning a pointer to an inner element. Because of this, the LLVM code
5132for the given testcase is equivalent to:
5133
5134.. code-block:: llvm
5135
5136 define i32* @foo(%struct.ST* %s) {
5137 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5138 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5139 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5140 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5141 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5142 ret i32* %t5
5143 }
5144
5145If the ``inbounds`` keyword is present, the result value of the
5146``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5147pointer is not an *in bounds* address of an allocated object, or if any
5148of the addresses that would be formed by successive addition of the
5149offsets implied by the indices to the base address with infinitely
5150precise signed arithmetic are not an *in bounds* address of that
5151allocated object. The *in bounds* addresses for an allocated object are
5152all the addresses that point into the object, plus the address one byte
5153past the end. In cases where the base is a vector of pointers the
5154``inbounds`` keyword applies to each of the computations element-wise.
5155
5156If the ``inbounds`` keyword is not present, the offsets are added to the
5157base address with silently-wrapping two's complement arithmetic. If the
5158offsets have a different width from the pointer, they are sign-extended
5159or truncated to the width of the pointer. The result value of the
5160``getelementptr`` may be outside the object pointed to by the base
5161pointer. The result value may not necessarily be used to access memory
5162though, even if it happens to point into allocated storage. See the
5163:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5164information.
5165
5166The getelementptr instruction is often confusing. For some more insight
5167into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5168
5169Example:
5170""""""""
5171
5172.. code-block:: llvm
5173
5174 ; yields [12 x i8]*:aptr
5175 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5176 ; yields i8*:vptr
5177 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5178 ; yields i8*:eptr
5179 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5180 ; yields i32*:iptr
5181 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5182
5183In cases where the pointer argument is a vector of pointers, each index
5184must be a vector with the same number of elements. For example:
5185
5186.. code-block:: llvm
5187
5188 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5189
5190Conversion Operations
5191---------------------
5192
5193The instructions in this category are the conversion instructions
5194(casting) which all take a single operand and a type. They perform
5195various bit conversions on the operand.
5196
5197'``trunc .. to``' Instruction
5198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5199
5200Syntax:
5201"""""""
5202
5203::
5204
5205 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5206
5207Overview:
5208"""""""""
5209
5210The '``trunc``' instruction truncates its operand to the type ``ty2``.
5211
5212Arguments:
5213""""""""""
5214
5215The '``trunc``' instruction takes a value to trunc, and a type to trunc
5216it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5217of the same number of integers. The bit size of the ``value`` must be
5218larger than the bit size of the destination type, ``ty2``. Equal sized
5219types are not allowed.
5220
5221Semantics:
5222""""""""""
5223
5224The '``trunc``' instruction truncates the high order bits in ``value``
5225and converts the remaining bits to ``ty2``. Since the source size must
5226be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5227It will always truncate bits.
5228
5229Example:
5230""""""""
5231
5232.. code-block:: llvm
5233
5234 %X = trunc i32 257 to i8 ; yields i8:1
5235 %Y = trunc i32 123 to i1 ; yields i1:true
5236 %Z = trunc i32 122 to i1 ; yields i1:false
5237 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5238
5239'``zext .. to``' Instruction
5240^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5241
5242Syntax:
5243"""""""
5244
5245::
5246
5247 <result> = zext <ty> <value> to <ty2> ; yields ty2
5248
5249Overview:
5250"""""""""
5251
5252The '``zext``' instruction zero extends its operand to type ``ty2``.
5253
5254Arguments:
5255""""""""""
5256
5257The '``zext``' instruction takes a value to cast, and a type to cast it
5258to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5259the same number of integers. The bit size of the ``value`` must be
5260smaller than the bit size of the destination type, ``ty2``.
5261
5262Semantics:
5263""""""""""
5264
5265The ``zext`` fills the high order bits of the ``value`` with zero bits
5266until it reaches the size of the destination type, ``ty2``.
5267
5268When zero extending from i1, the result will always be either 0 or 1.
5269
5270Example:
5271""""""""
5272
5273.. code-block:: llvm
5274
5275 %X = zext i32 257 to i64 ; yields i64:257
5276 %Y = zext i1 true to i32 ; yields i32:1
5277 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5278
5279'``sext .. to``' Instruction
5280^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5281
5282Syntax:
5283"""""""
5284
5285::
5286
5287 <result> = sext <ty> <value> to <ty2> ; yields ty2
5288
5289Overview:
5290"""""""""
5291
5292The '``sext``' sign extends ``value`` to the type ``ty2``.
5293
5294Arguments:
5295""""""""""
5296
5297The '``sext``' instruction takes a value to cast, and a type to cast it
5298to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5299the same number of integers. The bit size of the ``value`` must be
5300smaller than the bit size of the destination type, ``ty2``.
5301
5302Semantics:
5303""""""""""
5304
5305The '``sext``' instruction performs a sign extension by copying the sign
5306bit (highest order bit) of the ``value`` until it reaches the bit size
5307of the type ``ty2``.
5308
5309When sign extending from i1, the extension always results in -1 or 0.
5310
5311Example:
5312""""""""
5313
5314.. code-block:: llvm
5315
5316 %X = sext i8 -1 to i16 ; yields i16 :65535
5317 %Y = sext i1 true to i32 ; yields i32:-1
5318 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5319
5320'``fptrunc .. to``' Instruction
5321^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5322
5323Syntax:
5324"""""""
5325
5326::
5327
5328 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5329
5330Overview:
5331"""""""""
5332
5333The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5334
5335Arguments:
5336""""""""""
5337
5338The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5339value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5340The size of ``value`` must be larger than the size of ``ty2``. This
5341implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5342
5343Semantics:
5344""""""""""
5345
5346The '``fptrunc``' instruction truncates a ``value`` from a larger
5347:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5348point <t_floating>` type. If the value cannot fit within the
5349destination type, ``ty2``, then the results are undefined.
5350
5351Example:
5352""""""""
5353
5354.. code-block:: llvm
5355
5356 %X = fptrunc double 123.0 to float ; yields float:123.0
5357 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5358
5359'``fpext .. to``' Instruction
5360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5361
5362Syntax:
5363"""""""
5364
5365::
5366
5367 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5368
5369Overview:
5370"""""""""
5371
5372The '``fpext``' extends a floating point ``value`` to a larger floating
5373point value.
5374
5375Arguments:
5376""""""""""
5377
5378The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5379``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5380to. The source type must be smaller than the destination type.
5381
5382Semantics:
5383""""""""""
5384
5385The '``fpext``' instruction extends the ``value`` from a smaller
5386:ref:`floating point <t_floating>` type to a larger :ref:`floating
5387point <t_floating>` type. The ``fpext`` cannot be used to make a
5388*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5389*no-op cast* for a floating point cast.
5390
5391Example:
5392""""""""
5393
5394.. code-block:: llvm
5395
5396 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5397 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5398
5399'``fptoui .. to``' Instruction
5400^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5401
5402Syntax:
5403"""""""
5404
5405::
5406
5407 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5408
5409Overview:
5410"""""""""
5411
5412The '``fptoui``' converts a floating point ``value`` to its unsigned
5413integer equivalent of type ``ty2``.
5414
5415Arguments:
5416""""""""""
5417
5418The '``fptoui``' instruction takes a value to cast, which must be a
5419scalar or vector :ref:`floating point <t_floating>` value, and a type to
5420cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5421``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5422type with the same number of elements as ``ty``
5423
5424Semantics:
5425""""""""""
5426
5427The '``fptoui``' instruction converts its :ref:`floating
5428point <t_floating>` operand into the nearest (rounding towards zero)
5429unsigned integer value. If the value cannot fit in ``ty2``, the results
5430are undefined.
5431
5432Example:
5433""""""""
5434
5435.. code-block:: llvm
5436
5437 %X = fptoui double 123.0 to i32 ; yields i32:123
5438 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5439 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5440
5441'``fptosi .. to``' Instruction
5442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5443
5444Syntax:
5445"""""""
5446
5447::
5448
5449 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5450
5451Overview:
5452"""""""""
5453
5454The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5455``value`` to type ``ty2``.
5456
5457Arguments:
5458""""""""""
5459
5460The '``fptosi``' instruction takes a value to cast, which must be a
5461scalar or vector :ref:`floating point <t_floating>` value, and a type to
5462cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5463``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5464type with the same number of elements as ``ty``
5465
5466Semantics:
5467""""""""""
5468
5469The '``fptosi``' instruction converts its :ref:`floating
5470point <t_floating>` operand into the nearest (rounding towards zero)
5471signed integer value. If the value cannot fit in ``ty2``, the results
5472are undefined.
5473
5474Example:
5475""""""""
5476
5477.. code-block:: llvm
5478
5479 %X = fptosi double -123.0 to i32 ; yields i32:-123
5480 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5481 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5482
5483'``uitofp .. to``' Instruction
5484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5485
5486Syntax:
5487"""""""
5488
5489::
5490
5491 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5492
5493Overview:
5494"""""""""
5495
5496The '``uitofp``' instruction regards ``value`` as an unsigned integer
5497and converts that value to the ``ty2`` type.
5498
5499Arguments:
5500""""""""""
5501
5502The '``uitofp``' instruction takes a value to cast, which must be a
5503scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5504``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5505``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5506type with the same number of elements as ``ty``
5507
5508Semantics:
5509""""""""""
5510
5511The '``uitofp``' instruction interprets its operand as an unsigned
5512integer quantity and converts it to the corresponding floating point
5513value. If the value cannot fit in the floating point value, the results
5514are undefined.
5515
5516Example:
5517""""""""
5518
5519.. code-block:: llvm
5520
5521 %X = uitofp i32 257 to float ; yields float:257.0
5522 %Y = uitofp i8 -1 to double ; yields double:255.0
5523
5524'``sitofp .. to``' Instruction
5525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5526
5527Syntax:
5528"""""""
5529
5530::
5531
5532 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5533
5534Overview:
5535"""""""""
5536
5537The '``sitofp``' instruction regards ``value`` as a signed integer and
5538converts that value to the ``ty2`` type.
5539
5540Arguments:
5541""""""""""
5542
5543The '``sitofp``' instruction takes a value to cast, which must be a
5544scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5545``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5546``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5547type with the same number of elements as ``ty``
5548
5549Semantics:
5550""""""""""
5551
5552The '``sitofp``' instruction interprets its operand as a signed integer
5553quantity and converts it to the corresponding floating point value. If
5554the value cannot fit in the floating point value, the results are
5555undefined.
5556
5557Example:
5558""""""""
5559
5560.. code-block:: llvm
5561
5562 %X = sitofp i32 257 to float ; yields float:257.0
5563 %Y = sitofp i8 -1 to double ; yields double:-1.0
5564
5565.. _i_ptrtoint:
5566
5567'``ptrtoint .. to``' Instruction
5568^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5569
5570Syntax:
5571"""""""
5572
5573::
5574
5575 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5576
5577Overview:
5578"""""""""
5579
5580The '``ptrtoint``' instruction converts the pointer or a vector of
5581pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5582
5583Arguments:
5584""""""""""
5585
5586The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5587a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5588type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5589a vector of integers type.
5590
5591Semantics:
5592""""""""""
5593
5594The '``ptrtoint``' instruction converts ``value`` to integer type
5595``ty2`` by interpreting the pointer value as an integer and either
5596truncating or zero extending that value to the size of the integer type.
5597If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5598``value`` is larger than ``ty2`` then a truncation is done. If they are
5599the same size, then nothing is done (*no-op cast*) other than a type
5600change.
5601
5602Example:
5603""""""""
5604
5605.. code-block:: llvm
5606
5607 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5608 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5609 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5610
5611.. _i_inttoptr:
5612
5613'``inttoptr .. to``' Instruction
5614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5615
5616Syntax:
5617"""""""
5618
5619::
5620
5621 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5622
5623Overview:
5624"""""""""
5625
5626The '``inttoptr``' instruction converts an integer ``value`` to a
5627pointer type, ``ty2``.
5628
5629Arguments:
5630""""""""""
5631
5632The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5633cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5634type.
5635
5636Semantics:
5637""""""""""
5638
5639The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5640applying either a zero extension or a truncation depending on the size
5641of the integer ``value``. If ``value`` is larger than the size of a
5642pointer then a truncation is done. If ``value`` is smaller than the size
5643of a pointer then a zero extension is done. If they are the same size,
5644nothing is done (*no-op cast*).
5645
5646Example:
5647""""""""
5648
5649.. code-block:: llvm
5650
5651 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5652 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5653 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5654 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5655
5656.. _i_bitcast:
5657
5658'``bitcast .. to``' Instruction
5659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5660
5661Syntax:
5662"""""""
5663
5664::
5665
5666 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5667
5668Overview:
5669"""""""""
5670
5671The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5672changing any bits.
5673
5674Arguments:
5675""""""""""
5676
5677The '``bitcast``' instruction takes a value to cast, which must be a
5678non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005679also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5680bit sizes of ``value`` and the destination type, ``ty2``, must be
5681identical. If the source type is a pointer, the destination type must
5682also be a pointer of the same size. This instruction supports bitwise
5683conversion of vectors to integers and to vectors of other types (as
5684long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00005685
5686Semantics:
5687""""""""""
5688
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005689The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5690is always a *no-op cast* because no bits change with this
5691conversion. The conversion is done as if the ``value`` had been stored
5692to memory and read back as type ``ty2``. Pointer (or vector of
5693pointers) types may only be converted to other pointer (or vector of
5694pointers) types with this instruction if the pointer sizes are
5695equal. To convert pointers to other types, use the :ref:`inttoptr
5696<i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00005697
5698Example:
5699""""""""
5700
5701.. code-block:: llvm
5702
5703 %X = bitcast i8 255 to i8 ; yields i8 :-1
5704 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5705 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5706 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5707
5708.. _otherops:
5709
5710Other Operations
5711----------------
5712
5713The instructions in this category are the "miscellaneous" instructions,
5714which defy better classification.
5715
5716.. _i_icmp:
5717
5718'``icmp``' Instruction
5719^^^^^^^^^^^^^^^^^^^^^^
5720
5721Syntax:
5722"""""""
5723
5724::
5725
5726 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5727
5728Overview:
5729"""""""""
5730
5731The '``icmp``' instruction returns a boolean value or a vector of
5732boolean values based on comparison of its two integer, integer vector,
5733pointer, or pointer vector operands.
5734
5735Arguments:
5736""""""""""
5737
5738The '``icmp``' instruction takes three operands. The first operand is
5739the condition code indicating the kind of comparison to perform. It is
5740not a value, just a keyword. The possible condition code are:
5741
5742#. ``eq``: equal
5743#. ``ne``: not equal
5744#. ``ugt``: unsigned greater than
5745#. ``uge``: unsigned greater or equal
5746#. ``ult``: unsigned less than
5747#. ``ule``: unsigned less or equal
5748#. ``sgt``: signed greater than
5749#. ``sge``: signed greater or equal
5750#. ``slt``: signed less than
5751#. ``sle``: signed less or equal
5752
5753The remaining two arguments must be :ref:`integer <t_integer>` or
5754:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5755must also be identical types.
5756
5757Semantics:
5758""""""""""
5759
5760The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5761code given as ``cond``. The comparison performed always yields either an
5762:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5763
5764#. ``eq``: yields ``true`` if the operands are equal, ``false``
5765 otherwise. No sign interpretation is necessary or performed.
5766#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5767 otherwise. No sign interpretation is necessary or performed.
5768#. ``ugt``: interprets the operands as unsigned values and yields
5769 ``true`` if ``op1`` is greater than ``op2``.
5770#. ``uge``: interprets the operands as unsigned values and yields
5771 ``true`` if ``op1`` is greater than or equal to ``op2``.
5772#. ``ult``: interprets the operands as unsigned values and yields
5773 ``true`` if ``op1`` is less than ``op2``.
5774#. ``ule``: interprets the operands as unsigned values and yields
5775 ``true`` if ``op1`` is less than or equal to ``op2``.
5776#. ``sgt``: interprets the operands as signed values and yields ``true``
5777 if ``op1`` is greater than ``op2``.
5778#. ``sge``: interprets the operands as signed values and yields ``true``
5779 if ``op1`` is greater than or equal to ``op2``.
5780#. ``slt``: interprets the operands as signed values and yields ``true``
5781 if ``op1`` is less than ``op2``.
5782#. ``sle``: interprets the operands as signed values and yields ``true``
5783 if ``op1`` is less than or equal to ``op2``.
5784
5785If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5786are compared as if they were integers.
5787
5788If the operands are integer vectors, then they are compared element by
5789element. The result is an ``i1`` vector with the same number of elements
5790as the values being compared. Otherwise, the result is an ``i1``.
5791
5792Example:
5793""""""""
5794
5795.. code-block:: llvm
5796
5797 <result> = icmp eq i32 4, 5 ; yields: result=false
5798 <result> = icmp ne float* %X, %X ; yields: result=false
5799 <result> = icmp ult i16 4, 5 ; yields: result=true
5800 <result> = icmp sgt i16 4, 5 ; yields: result=false
5801 <result> = icmp ule i16 -4, 5 ; yields: result=false
5802 <result> = icmp sge i16 4, 5 ; yields: result=false
5803
5804Note that the code generator does not yet support vector types with the
5805``icmp`` instruction.
5806
5807.. _i_fcmp:
5808
5809'``fcmp``' Instruction
5810^^^^^^^^^^^^^^^^^^^^^^
5811
5812Syntax:
5813"""""""
5814
5815::
5816
5817 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5818
5819Overview:
5820"""""""""
5821
5822The '``fcmp``' instruction returns a boolean value or vector of boolean
5823values based on comparison of its operands.
5824
5825If the operands are floating point scalars, then the result type is a
5826boolean (:ref:`i1 <t_integer>`).
5827
5828If the operands are floating point vectors, then the result type is a
5829vector of boolean with the same number of elements as the operands being
5830compared.
5831
5832Arguments:
5833""""""""""
5834
5835The '``fcmp``' instruction takes three operands. The first operand is
5836the condition code indicating the kind of comparison to perform. It is
5837not a value, just a keyword. The possible condition code are:
5838
5839#. ``false``: no comparison, always returns false
5840#. ``oeq``: ordered and equal
5841#. ``ogt``: ordered and greater than
5842#. ``oge``: ordered and greater than or equal
5843#. ``olt``: ordered and less than
5844#. ``ole``: ordered and less than or equal
5845#. ``one``: ordered and not equal
5846#. ``ord``: ordered (no nans)
5847#. ``ueq``: unordered or equal
5848#. ``ugt``: unordered or greater than
5849#. ``uge``: unordered or greater than or equal
5850#. ``ult``: unordered or less than
5851#. ``ule``: unordered or less than or equal
5852#. ``une``: unordered or not equal
5853#. ``uno``: unordered (either nans)
5854#. ``true``: no comparison, always returns true
5855
5856*Ordered* means that neither operand is a QNAN while *unordered* means
5857that either operand may be a QNAN.
5858
5859Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5860point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5861type. They must have identical types.
5862
5863Semantics:
5864""""""""""
5865
5866The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5867condition code given as ``cond``. If the operands are vectors, then the
5868vectors are compared element by element. Each comparison performed
5869always yields an :ref:`i1 <t_integer>` result, as follows:
5870
5871#. ``false``: always yields ``false``, regardless of operands.
5872#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5873 is equal to ``op2``.
5874#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5875 is greater than ``op2``.
5876#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5877 is greater than or equal to ``op2``.
5878#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5879 is less than ``op2``.
5880#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5881 is less than or equal to ``op2``.
5882#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5883 is not equal to ``op2``.
5884#. ``ord``: yields ``true`` if both operands are not a QNAN.
5885#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5886 equal to ``op2``.
5887#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5888 greater than ``op2``.
5889#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5890 greater than or equal to ``op2``.
5891#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5892 less than ``op2``.
5893#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5894 less than or equal to ``op2``.
5895#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5896 not equal to ``op2``.
5897#. ``uno``: yields ``true`` if either operand is a QNAN.
5898#. ``true``: always yields ``true``, regardless of operands.
5899
5900Example:
5901""""""""
5902
5903.. code-block:: llvm
5904
5905 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5906 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5907 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5908 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5909
5910Note that the code generator does not yet support vector types with the
5911``fcmp`` instruction.
5912
5913.. _i_phi:
5914
5915'``phi``' Instruction
5916^^^^^^^^^^^^^^^^^^^^^
5917
5918Syntax:
5919"""""""
5920
5921::
5922
5923 <result> = phi <ty> [ <val0>, <label0>], ...
5924
5925Overview:
5926"""""""""
5927
5928The '``phi``' instruction is used to implement the φ node in the SSA
5929graph representing the function.
5930
5931Arguments:
5932""""""""""
5933
5934The type of the incoming values is specified with the first type field.
5935After this, the '``phi``' instruction takes a list of pairs as
5936arguments, with one pair for each predecessor basic block of the current
5937block. Only values of :ref:`first class <t_firstclass>` type may be used as
5938the value arguments to the PHI node. Only labels may be used as the
5939label arguments.
5940
5941There must be no non-phi instructions between the start of a basic block
5942and the PHI instructions: i.e. PHI instructions must be first in a basic
5943block.
5944
5945For the purposes of the SSA form, the use of each incoming value is
5946deemed to occur on the edge from the corresponding predecessor block to
5947the current block (but after any definition of an '``invoke``'
5948instruction's return value on the same edge).
5949
5950Semantics:
5951""""""""""
5952
5953At runtime, the '``phi``' instruction logically takes on the value
5954specified by the pair corresponding to the predecessor basic block that
5955executed just prior to the current block.
5956
5957Example:
5958""""""""
5959
5960.. code-block:: llvm
5961
5962 Loop: ; Infinite loop that counts from 0 on up...
5963 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5964 %nextindvar = add i32 %indvar, 1
5965 br label %Loop
5966
5967.. _i_select:
5968
5969'``select``' Instruction
5970^^^^^^^^^^^^^^^^^^^^^^^^
5971
5972Syntax:
5973"""""""
5974
5975::
5976
5977 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5978
5979 selty is either i1 or {<N x i1>}
5980
5981Overview:
5982"""""""""
5983
5984The '``select``' instruction is used to choose one value based on a
5985condition, without branching.
5986
5987Arguments:
5988""""""""""
5989
5990The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5991values indicating the condition, and two values of the same :ref:`first
5992class <t_firstclass>` type. If the val1/val2 are vectors and the
5993condition is a scalar, then entire vectors are selected, not individual
5994elements.
5995
5996Semantics:
5997""""""""""
5998
5999If the condition is an i1 and it evaluates to 1, the instruction returns
6000the first value argument; otherwise, it returns the second value
6001argument.
6002
6003If the condition is a vector of i1, then the value arguments must be
6004vectors of the same size, and the selection is done element by element.
6005
6006Example:
6007""""""""
6008
6009.. code-block:: llvm
6010
6011 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6012
6013.. _i_call:
6014
6015'``call``' Instruction
6016^^^^^^^^^^^^^^^^^^^^^^
6017
6018Syntax:
6019"""""""
6020
6021::
6022
6023 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6024
6025Overview:
6026"""""""""
6027
6028The '``call``' instruction represents a simple function call.
6029
6030Arguments:
6031""""""""""
6032
6033This instruction requires several arguments:
6034
6035#. The optional "tail" marker indicates that the callee function does
6036 not access any allocas or varargs in the caller. Note that calls may
6037 be marked "tail" even if they do not occur before a
6038 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6039 function call is eligible for tail call optimization, but `might not
6040 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6041 The code generator may optimize calls marked "tail" with either 1)
6042 automatic `sibling call
6043 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6044 callee have matching signatures, or 2) forced tail call optimization
6045 when the following extra requirements are met:
6046
6047 - Caller and callee both have the calling convention ``fastcc``.
6048 - The call is in tail position (ret immediately follows call and ret
6049 uses value of call or is void).
6050 - Option ``-tailcallopt`` is enabled, or
6051 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6052 - `Platform specific constraints are
6053 met. <CodeGenerator.html#tailcallopt>`_
6054
6055#. The optional "cconv" marker indicates which :ref:`calling
6056 convention <callingconv>` the call should use. If none is
6057 specified, the call defaults to using C calling conventions. The
6058 calling convention of the call must match the calling convention of
6059 the target function, or else the behavior is undefined.
6060#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6061 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6062 are valid here.
6063#. '``ty``': the type of the call instruction itself which is also the
6064 type of the return value. Functions that return no value are marked
6065 ``void``.
6066#. '``fnty``': shall be the signature of the pointer to function value
6067 being invoked. The argument types must match the types implied by
6068 this signature. This type can be omitted if the function is not
6069 varargs and if the function type does not return a pointer to a
6070 function.
6071#. '``fnptrval``': An LLVM value containing a pointer to a function to
6072 be invoked. In most cases, this is a direct function invocation, but
6073 indirect ``call``'s are just as possible, calling an arbitrary pointer
6074 to function value.
6075#. '``function args``': argument list whose types match the function
6076 signature argument types and parameter attributes. All arguments must
6077 be of :ref:`first class <t_firstclass>` type. If the function signature
6078 indicates the function accepts a variable number of arguments, the
6079 extra arguments can be specified.
6080#. The optional :ref:`function attributes <fnattrs>` list. Only
6081 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6082 attributes are valid here.
6083
6084Semantics:
6085""""""""""
6086
6087The '``call``' instruction is used to cause control flow to transfer to
6088a specified function, with its incoming arguments bound to the specified
6089values. Upon a '``ret``' instruction in the called function, control
6090flow continues with the instruction after the function call, and the
6091return value of the function is bound to the result argument.
6092
6093Example:
6094""""""""
6095
6096.. code-block:: llvm
6097
6098 %retval = call i32 @test(i32 %argc)
6099 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6100 %X = tail call i32 @foo() ; yields i32
6101 %Y = tail call fastcc i32 @foo() ; yields i32
6102 call void %foo(i8 97 signext)
6103
6104 %struct.A = type { i32, i8 }
6105 %r = call %struct.A @foo() ; yields { 32, i8 }
6106 %gr = extractvalue %struct.A %r, 0 ; yields i32
6107 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6108 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6109 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6110
6111llvm treats calls to some functions with names and arguments that match
6112the standard C99 library as being the C99 library functions, and may
6113perform optimizations or generate code for them under that assumption.
6114This is something we'd like to change in the future to provide better
6115support for freestanding environments and non-C-based languages.
6116
6117.. _i_va_arg:
6118
6119'``va_arg``' Instruction
6120^^^^^^^^^^^^^^^^^^^^^^^^
6121
6122Syntax:
6123"""""""
6124
6125::
6126
6127 <resultval> = va_arg <va_list*> <arglist>, <argty>
6128
6129Overview:
6130"""""""""
6131
6132The '``va_arg``' instruction is used to access arguments passed through
6133the "variable argument" area of a function call. It is used to implement
6134the ``va_arg`` macro in C.
6135
6136Arguments:
6137""""""""""
6138
6139This instruction takes a ``va_list*`` value and the type of the
6140argument. It returns a value of the specified argument type and
6141increments the ``va_list`` to point to the next argument. The actual
6142type of ``va_list`` is target specific.
6143
6144Semantics:
6145""""""""""
6146
6147The '``va_arg``' instruction loads an argument of the specified type
6148from the specified ``va_list`` and causes the ``va_list`` to point to
6149the next argument. For more information, see the variable argument
6150handling :ref:`Intrinsic Functions <int_varargs>`.
6151
6152It is legal for this instruction to be called in a function which does
6153not take a variable number of arguments, for example, the ``vfprintf``
6154function.
6155
6156``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6157function <intrinsics>` because it takes a type as an argument.
6158
6159Example:
6160""""""""
6161
6162See the :ref:`variable argument processing <int_varargs>` section.
6163
6164Note that the code generator does not yet fully support va\_arg on many
6165targets. Also, it does not currently support va\_arg with aggregate
6166types on any target.
6167
6168.. _i_landingpad:
6169
6170'``landingpad``' Instruction
6171^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6172
6173Syntax:
6174"""""""
6175
6176::
6177
6178 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6179 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6180
6181 <clause> := catch <type> <value>
6182 <clause> := filter <array constant type> <array constant>
6183
6184Overview:
6185"""""""""
6186
6187The '``landingpad``' instruction is used by `LLVM's exception handling
6188system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006189is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006190code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6191defines values supplied by the personality function (``pers_fn``) upon
6192re-entry to the function. The ``resultval`` has the type ``resultty``.
6193
6194Arguments:
6195""""""""""
6196
6197This instruction takes a ``pers_fn`` value. This is the personality
6198function associated with the unwinding mechanism. The optional
6199``cleanup`` flag indicates that the landing pad block is a cleanup.
6200
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006201A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006202contains the global variable representing the "type" that may be caught
6203or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6204clause takes an array constant as its argument. Use
6205"``[0 x i8**] undef``" for a filter which cannot throw. The
6206'``landingpad``' instruction must contain *at least* one ``clause`` or
6207the ``cleanup`` flag.
6208
6209Semantics:
6210""""""""""
6211
6212The '``landingpad``' instruction defines the values which are set by the
6213personality function (``pers_fn``) upon re-entry to the function, and
6214therefore the "result type" of the ``landingpad`` instruction. As with
6215calling conventions, how the personality function results are
6216represented in LLVM IR is target specific.
6217
6218The clauses are applied in order from top to bottom. If two
6219``landingpad`` instructions are merged together through inlining, the
6220clauses from the calling function are appended to the list of clauses.
6221When the call stack is being unwound due to an exception being thrown,
6222the exception is compared against each ``clause`` in turn. If it doesn't
6223match any of the clauses, and the ``cleanup`` flag is not set, then
6224unwinding continues further up the call stack.
6225
6226The ``landingpad`` instruction has several restrictions:
6227
6228- A landing pad block is a basic block which is the unwind destination
6229 of an '``invoke``' instruction.
6230- A landing pad block must have a '``landingpad``' instruction as its
6231 first non-PHI instruction.
6232- There can be only one '``landingpad``' instruction within the landing
6233 pad block.
6234- A basic block that is not a landing pad block may not include a
6235 '``landingpad``' instruction.
6236- All '``landingpad``' instructions in a function must have the same
6237 personality function.
6238
6239Example:
6240""""""""
6241
6242.. code-block:: llvm
6243
6244 ;; A landing pad which can catch an integer.
6245 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6246 catch i8** @_ZTIi
6247 ;; A landing pad that is a cleanup.
6248 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6249 cleanup
6250 ;; A landing pad which can catch an integer and can only throw a double.
6251 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6252 catch i8** @_ZTIi
6253 filter [1 x i8**] [@_ZTId]
6254
6255.. _intrinsics:
6256
6257Intrinsic Functions
6258===================
6259
6260LLVM supports the notion of an "intrinsic function". These functions
6261have well known names and semantics and are required to follow certain
6262restrictions. Overall, these intrinsics represent an extension mechanism
6263for the LLVM language that does not require changing all of the
6264transformations in LLVM when adding to the language (or the bitcode
6265reader/writer, the parser, etc...).
6266
6267Intrinsic function names must all start with an "``llvm.``" prefix. This
6268prefix is reserved in LLVM for intrinsic names; thus, function names may
6269not begin with this prefix. Intrinsic functions must always be external
6270functions: you cannot define the body of intrinsic functions. Intrinsic
6271functions may only be used in call or invoke instructions: it is illegal
6272to take the address of an intrinsic function. Additionally, because
6273intrinsic functions are part of the LLVM language, it is required if any
6274are added that they be documented here.
6275
6276Some intrinsic functions can be overloaded, i.e., the intrinsic
6277represents a family of functions that perform the same operation but on
6278different data types. Because LLVM can represent over 8 million
6279different integer types, overloading is used commonly to allow an
6280intrinsic function to operate on any integer type. One or more of the
6281argument types or the result type can be overloaded to accept any
6282integer type. Argument types may also be defined as exactly matching a
6283previous argument's type or the result type. This allows an intrinsic
6284function which accepts multiple arguments, but needs all of them to be
6285of the same type, to only be overloaded with respect to a single
6286argument or the result.
6287
6288Overloaded intrinsics will have the names of its overloaded argument
6289types encoded into its function name, each preceded by a period. Only
6290those types which are overloaded result in a name suffix. Arguments
6291whose type is matched against another type do not. For example, the
6292``llvm.ctpop`` function can take an integer of any width and returns an
6293integer of exactly the same integer width. This leads to a family of
6294functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6295``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6296overloaded, and only one type suffix is required. Because the argument's
6297type is matched against the return type, it does not require its own
6298name suffix.
6299
6300To learn how to add an intrinsic function, please see the `Extending
6301LLVM Guide <ExtendingLLVM.html>`_.
6302
6303.. _int_varargs:
6304
6305Variable Argument Handling Intrinsics
6306-------------------------------------
6307
6308Variable argument support is defined in LLVM with the
6309:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6310functions. These functions are related to the similarly named macros
6311defined in the ``<stdarg.h>`` header file.
6312
6313All of these functions operate on arguments that use a target-specific
6314value type "``va_list``". The LLVM assembly language reference manual
6315does not define what this type is, so all transformations should be
6316prepared to handle these functions regardless of the type used.
6317
6318This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6319variable argument handling intrinsic functions are used.
6320
6321.. code-block:: llvm
6322
6323 define i32 @test(i32 %X, ...) {
6324 ; Initialize variable argument processing
6325 %ap = alloca i8*
6326 %ap2 = bitcast i8** %ap to i8*
6327 call void @llvm.va_start(i8* %ap2)
6328
6329 ; Read a single integer argument
6330 %tmp = va_arg i8** %ap, i32
6331
6332 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6333 %aq = alloca i8*
6334 %aq2 = bitcast i8** %aq to i8*
6335 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6336 call void @llvm.va_end(i8* %aq2)
6337
6338 ; Stop processing of arguments.
6339 call void @llvm.va_end(i8* %ap2)
6340 ret i32 %tmp
6341 }
6342
6343 declare void @llvm.va_start(i8*)
6344 declare void @llvm.va_copy(i8*, i8*)
6345 declare void @llvm.va_end(i8*)
6346
6347.. _int_va_start:
6348
6349'``llvm.va_start``' Intrinsic
6350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6351
6352Syntax:
6353"""""""
6354
6355::
6356
Nick Lewyckyf7e61562013-09-11 22:04:52 +00006357 declare void @llvm.va_start(i8* <arglist>)
Sean Silvaf722b002012-12-07 10:36:55 +00006358
6359Overview:
6360"""""""""
6361
6362The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6363subsequent use by ``va_arg``.
6364
6365Arguments:
6366""""""""""
6367
6368The argument is a pointer to a ``va_list`` element to initialize.
6369
6370Semantics:
6371""""""""""
6372
6373The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6374available in C. In a target-dependent way, it initializes the
6375``va_list`` element to which the argument points, so that the next call
6376to ``va_arg`` will produce the first variable argument passed to the
6377function. Unlike the C ``va_start`` macro, this intrinsic does not need
6378to know the last argument of the function as the compiler can figure
6379that out.
6380
6381'``llvm.va_end``' Intrinsic
6382^^^^^^^^^^^^^^^^^^^^^^^^^^^
6383
6384Syntax:
6385"""""""
6386
6387::
6388
6389 declare void @llvm.va_end(i8* <arglist>)
6390
6391Overview:
6392"""""""""
6393
6394The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6395initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6396
6397Arguments:
6398""""""""""
6399
6400The argument is a pointer to a ``va_list`` to destroy.
6401
6402Semantics:
6403""""""""""
6404
6405The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6406available in C. In a target-dependent way, it destroys the ``va_list``
6407element to which the argument points. Calls to
6408:ref:`llvm.va_start <int_va_start>` and
6409:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6410``llvm.va_end``.
6411
6412.. _int_va_copy:
6413
6414'``llvm.va_copy``' Intrinsic
6415^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6416
6417Syntax:
6418"""""""
6419
6420::
6421
6422 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6423
6424Overview:
6425"""""""""
6426
6427The '``llvm.va_copy``' intrinsic copies the current argument position
6428from the source argument list to the destination argument list.
6429
6430Arguments:
6431""""""""""
6432
6433The first argument is a pointer to a ``va_list`` element to initialize.
6434The second argument is a pointer to a ``va_list`` element to copy from.
6435
6436Semantics:
6437""""""""""
6438
6439The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6440available in C. In a target-dependent way, it copies the source
6441``va_list`` element into the destination ``va_list`` element. This
6442intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6443arbitrarily complex and require, for example, memory allocation.
6444
6445Accurate Garbage Collection Intrinsics
6446--------------------------------------
6447
6448LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6449(GC) requires the implementation and generation of these intrinsics.
6450These intrinsics allow identification of :ref:`GC roots on the
6451stack <int_gcroot>`, as well as garbage collector implementations that
6452require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6453Front-ends for type-safe garbage collected languages should generate
6454these intrinsics to make use of the LLVM garbage collectors. For more
6455details, see `Accurate Garbage Collection with
6456LLVM <GarbageCollection.html>`_.
6457
6458The garbage collection intrinsics only operate on objects in the generic
6459address space (address space zero).
6460
6461.. _int_gcroot:
6462
6463'``llvm.gcroot``' Intrinsic
6464^^^^^^^^^^^^^^^^^^^^^^^^^^^
6465
6466Syntax:
6467"""""""
6468
6469::
6470
6471 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6472
6473Overview:
6474"""""""""
6475
6476The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6477the code generator, and allows some metadata to be associated with it.
6478
6479Arguments:
6480""""""""""
6481
6482The first argument specifies the address of a stack object that contains
6483the root pointer. The second pointer (which must be either a constant or
6484a global value address) contains the meta-data to be associated with the
6485root.
6486
6487Semantics:
6488""""""""""
6489
6490At runtime, a call to this intrinsic stores a null pointer into the
6491"ptrloc" location. At compile-time, the code generator generates
6492information to allow the runtime to find the pointer at GC safe points.
6493The '``llvm.gcroot``' intrinsic may only be used in a function which
6494:ref:`specifies a GC algorithm <gc>`.
6495
6496.. _int_gcread:
6497
6498'``llvm.gcread``' Intrinsic
6499^^^^^^^^^^^^^^^^^^^^^^^^^^^
6500
6501Syntax:
6502"""""""
6503
6504::
6505
6506 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6507
6508Overview:
6509"""""""""
6510
6511The '``llvm.gcread``' intrinsic identifies reads of references from heap
6512locations, allowing garbage collector implementations that require read
6513barriers.
6514
6515Arguments:
6516""""""""""
6517
6518The second argument is the address to read from, which should be an
6519address allocated from the garbage collector. The first object is a
6520pointer to the start of the referenced object, if needed by the language
6521runtime (otherwise null).
6522
6523Semantics:
6524""""""""""
6525
6526The '``llvm.gcread``' intrinsic has the same semantics as a load
6527instruction, but may be replaced with substantially more complex code by
6528the garbage collector runtime, as needed. The '``llvm.gcread``'
6529intrinsic may only be used in a function which :ref:`specifies a GC
6530algorithm <gc>`.
6531
6532.. _int_gcwrite:
6533
6534'``llvm.gcwrite``' Intrinsic
6535^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6536
6537Syntax:
6538"""""""
6539
6540::
6541
6542 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6543
6544Overview:
6545"""""""""
6546
6547The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6548locations, allowing garbage collector implementations that require write
6549barriers (such as generational or reference counting collectors).
6550
6551Arguments:
6552""""""""""
6553
6554The first argument is the reference to store, the second is the start of
6555the object to store it to, and the third is the address of the field of
6556Obj to store to. If the runtime does not require a pointer to the
6557object, Obj may be null.
6558
6559Semantics:
6560""""""""""
6561
6562The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6563instruction, but may be replaced with substantially more complex code by
6564the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6565intrinsic may only be used in a function which :ref:`specifies a GC
6566algorithm <gc>`.
6567
6568Code Generator Intrinsics
6569-------------------------
6570
6571These intrinsics are provided by LLVM to expose special features that
6572may only be implemented with code generator support.
6573
6574'``llvm.returnaddress``' Intrinsic
6575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6576
6577Syntax:
6578"""""""
6579
6580::
6581
6582 declare i8 *@llvm.returnaddress(i32 <level>)
6583
6584Overview:
6585"""""""""
6586
6587The '``llvm.returnaddress``' intrinsic attempts to compute a
6588target-specific value indicating the return address of the current
6589function or one of its callers.
6590
6591Arguments:
6592""""""""""
6593
6594The argument to this intrinsic indicates which function to return the
6595address for. Zero indicates the calling function, one indicates its
6596caller, etc. The argument is **required** to be a constant integer
6597value.
6598
6599Semantics:
6600""""""""""
6601
6602The '``llvm.returnaddress``' intrinsic either returns a pointer
6603indicating the return address of the specified call frame, or zero if it
6604cannot be identified. The value returned by this intrinsic is likely to
6605be incorrect or 0 for arguments other than zero, so it should only be
6606used for debugging purposes.
6607
6608Note that calling this intrinsic does not prevent function inlining or
6609other aggressive transformations, so the value returned may not be that
6610of the obvious source-language caller.
6611
6612'``llvm.frameaddress``' Intrinsic
6613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6614
6615Syntax:
6616"""""""
6617
6618::
6619
6620 declare i8* @llvm.frameaddress(i32 <level>)
6621
6622Overview:
6623"""""""""
6624
6625The '``llvm.frameaddress``' intrinsic attempts to return the
6626target-specific frame pointer value for the specified stack frame.
6627
6628Arguments:
6629""""""""""
6630
6631The argument to this intrinsic indicates which function to return the
6632frame pointer for. Zero indicates the calling function, one indicates
6633its caller, etc. The argument is **required** to be a constant integer
6634value.
6635
6636Semantics:
6637""""""""""
6638
6639The '``llvm.frameaddress``' intrinsic either returns a pointer
6640indicating the frame address of the specified call frame, or zero if it
6641cannot be identified. The value returned by this intrinsic is likely to
6642be incorrect or 0 for arguments other than zero, so it should only be
6643used for debugging purposes.
6644
6645Note that calling this intrinsic does not prevent function inlining or
6646other aggressive transformations, so the value returned may not be that
6647of the obvious source-language caller.
6648
6649.. _int_stacksave:
6650
6651'``llvm.stacksave``' Intrinsic
6652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6653
6654Syntax:
6655"""""""
6656
6657::
6658
6659 declare i8* @llvm.stacksave()
6660
6661Overview:
6662"""""""""
6663
6664The '``llvm.stacksave``' intrinsic is used to remember the current state
6665of the function stack, for use with
6666:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6667implementing language features like scoped automatic variable sized
6668arrays in C99.
6669
6670Semantics:
6671""""""""""
6672
6673This intrinsic returns a opaque pointer value that can be passed to
6674:ref:`llvm.stackrestore <int_stackrestore>`. When an
6675``llvm.stackrestore`` intrinsic is executed with a value saved from
6676``llvm.stacksave``, it effectively restores the state of the stack to
6677the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6678practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6679were allocated after the ``llvm.stacksave`` was executed.
6680
6681.. _int_stackrestore:
6682
6683'``llvm.stackrestore``' Intrinsic
6684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6685
6686Syntax:
6687"""""""
6688
6689::
6690
6691 declare void @llvm.stackrestore(i8* %ptr)
6692
6693Overview:
6694"""""""""
6695
6696The '``llvm.stackrestore``' intrinsic is used to restore the state of
6697the function stack to the state it was in when the corresponding
6698:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6699useful for implementing language features like scoped automatic variable
6700sized arrays in C99.
6701
6702Semantics:
6703""""""""""
6704
6705See the description for :ref:`llvm.stacksave <int_stacksave>`.
6706
6707'``llvm.prefetch``' Intrinsic
6708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6709
6710Syntax:
6711"""""""
6712
6713::
6714
6715 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6716
6717Overview:
6718"""""""""
6719
6720The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6721insert a prefetch instruction if supported; otherwise, it is a noop.
6722Prefetches have no effect on the behavior of the program but can change
6723its performance characteristics.
6724
6725Arguments:
6726""""""""""
6727
6728``address`` is the address to be prefetched, ``rw`` is the specifier
6729determining if the fetch should be for a read (0) or write (1), and
6730``locality`` is a temporal locality specifier ranging from (0) - no
6731locality, to (3) - extremely local keep in cache. The ``cache type``
6732specifies whether the prefetch is performed on the data (1) or
6733instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6734arguments must be constant integers.
6735
6736Semantics:
6737""""""""""
6738
6739This intrinsic does not modify the behavior of the program. In
6740particular, prefetches cannot trap and do not produce a value. On
6741targets that support this intrinsic, the prefetch can provide hints to
6742the processor cache for better performance.
6743
6744'``llvm.pcmarker``' Intrinsic
6745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6746
6747Syntax:
6748"""""""
6749
6750::
6751
6752 declare void @llvm.pcmarker(i32 <id>)
6753
6754Overview:
6755"""""""""
6756
6757The '``llvm.pcmarker``' intrinsic is a method to export a Program
6758Counter (PC) in a region of code to simulators and other tools. The
6759method is target specific, but it is expected that the marker will use
6760exported symbols to transmit the PC of the marker. The marker makes no
6761guarantees that it will remain with any specific instruction after
6762optimizations. It is possible that the presence of a marker will inhibit
6763optimizations. The intended use is to be inserted after optimizations to
6764allow correlations of simulation runs.
6765
6766Arguments:
6767""""""""""
6768
6769``id`` is a numerical id identifying the marker.
6770
6771Semantics:
6772""""""""""
6773
6774This intrinsic does not modify the behavior of the program. Backends
6775that do not support this intrinsic may ignore it.
6776
6777'``llvm.readcyclecounter``' Intrinsic
6778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6779
6780Syntax:
6781"""""""
6782
6783::
6784
6785 declare i64 @llvm.readcyclecounter()
6786
6787Overview:
6788"""""""""
6789
6790The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6791counter register (or similar low latency, high accuracy clocks) on those
6792targets that support it. On X86, it should map to RDTSC. On Alpha, it
6793should map to RPCC. As the backing counters overflow quickly (on the
6794order of 9 seconds on alpha), this should only be used for small
6795timings.
6796
6797Semantics:
6798""""""""""
6799
6800When directly supported, reading the cycle counter should not modify any
6801memory. Implementations are allowed to either return a application
6802specific value or a system wide value. On backends without support, this
6803is lowered to a constant 0.
6804
Tim Northover5a02fc42013-05-23 19:11:20 +00006805Note that runtime support may be conditional on the privilege-level code is
6806running at and the host platform.
6807
Sean Silvaf722b002012-12-07 10:36:55 +00006808Standard C Library Intrinsics
6809-----------------------------
6810
6811LLVM provides intrinsics for a few important standard C library
6812functions. These intrinsics allow source-language front-ends to pass
6813information about the alignment of the pointer arguments to the code
6814generator, providing opportunity for more efficient code generation.
6815
6816.. _int_memcpy:
6817
6818'``llvm.memcpy``' Intrinsic
6819^^^^^^^^^^^^^^^^^^^^^^^^^^^
6820
6821Syntax:
6822"""""""
6823
6824This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6825integer bit width and for different address spaces. Not all targets
6826support all bit widths however.
6827
6828::
6829
6830 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6831 i32 <len>, i32 <align>, i1 <isvolatile>)
6832 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6833 i64 <len>, i32 <align>, i1 <isvolatile>)
6834
6835Overview:
6836"""""""""
6837
6838The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6839source location to the destination location.
6840
6841Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6842intrinsics do not return a value, takes extra alignment/isvolatile
6843arguments and the pointers can be in specified address spaces.
6844
6845Arguments:
6846""""""""""
6847
6848The first argument is a pointer to the destination, the second is a
6849pointer to the source. The third argument is an integer argument
6850specifying the number of bytes to copy, the fourth argument is the
6851alignment of the source and destination locations, and the fifth is a
6852boolean indicating a volatile access.
6853
6854If the call to this intrinsic has an alignment value that is not 0 or 1,
6855then the caller guarantees that both the source and destination pointers
6856are aligned to that boundary.
6857
6858If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6859a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6860very cleanly specified and it is unwise to depend on it.
6861
6862Semantics:
6863""""""""""
6864
6865The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6866source location to the destination location, which are not allowed to
6867overlap. It copies "len" bytes of memory over. If the argument is known
6868to be aligned to some boundary, this can be specified as the fourth
6869argument, otherwise it should be set to 0 or 1.
6870
6871'``llvm.memmove``' Intrinsic
6872^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6873
6874Syntax:
6875"""""""
6876
6877This is an overloaded intrinsic. You can use llvm.memmove on any integer
6878bit width and for different address space. Not all targets support all
6879bit widths however.
6880
6881::
6882
6883 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6884 i32 <len>, i32 <align>, i1 <isvolatile>)
6885 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6886 i64 <len>, i32 <align>, i1 <isvolatile>)
6887
6888Overview:
6889"""""""""
6890
6891The '``llvm.memmove.*``' intrinsics move a block of memory from the
6892source location to the destination location. It is similar to the
6893'``llvm.memcpy``' intrinsic but allows the two memory locations to
6894overlap.
6895
6896Note that, unlike the standard libc function, the ``llvm.memmove.*``
6897intrinsics do not return a value, takes extra alignment/isvolatile
6898arguments and the pointers can be in specified address spaces.
6899
6900Arguments:
6901""""""""""
6902
6903The first argument is a pointer to the destination, the second is a
6904pointer to the source. The third argument is an integer argument
6905specifying the number of bytes to copy, the fourth argument is the
6906alignment of the source and destination locations, and the fifth is a
6907boolean indicating a volatile access.
6908
6909If the call to this intrinsic has an alignment value that is not 0 or 1,
6910then the caller guarantees that the source and destination pointers are
6911aligned to that boundary.
6912
6913If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6914is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6915not very cleanly specified and it is unwise to depend on it.
6916
6917Semantics:
6918""""""""""
6919
6920The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6921source location to the destination location, which may overlap. It
6922copies "len" bytes of memory over. If the argument is known to be
6923aligned to some boundary, this can be specified as the fourth argument,
6924otherwise it should be set to 0 or 1.
6925
6926'``llvm.memset.*``' Intrinsics
6927^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6928
6929Syntax:
6930"""""""
6931
6932This is an overloaded intrinsic. You can use llvm.memset on any integer
6933bit width and for different address spaces. However, not all targets
6934support all bit widths.
6935
6936::
6937
6938 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6939 i32 <len>, i32 <align>, i1 <isvolatile>)
6940 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6941 i64 <len>, i32 <align>, i1 <isvolatile>)
6942
6943Overview:
6944"""""""""
6945
6946The '``llvm.memset.*``' intrinsics fill a block of memory with a
6947particular byte value.
6948
6949Note that, unlike the standard libc function, the ``llvm.memset``
6950intrinsic does not return a value and takes extra alignment/volatile
6951arguments. Also, the destination can be in an arbitrary address space.
6952
6953Arguments:
6954""""""""""
6955
6956The first argument is a pointer to the destination to fill, the second
6957is the byte value with which to fill it, the third argument is an
6958integer argument specifying the number of bytes to fill, and the fourth
6959argument is the known alignment of the destination location.
6960
6961If the call to this intrinsic has an alignment value that is not 0 or 1,
6962then the caller guarantees that the destination pointer is aligned to
6963that boundary.
6964
6965If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6966a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6967very cleanly specified and it is unwise to depend on it.
6968
6969Semantics:
6970""""""""""
6971
6972The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6973at the destination location. If the argument is known to be aligned to
6974some boundary, this can be specified as the fourth argument, otherwise
6975it should be set to 0 or 1.
6976
6977'``llvm.sqrt.*``' Intrinsic
6978^^^^^^^^^^^^^^^^^^^^^^^^^^^
6979
6980Syntax:
6981"""""""
6982
6983This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6984floating point or vector of floating point type. Not all targets support
6985all types however.
6986
6987::
6988
6989 declare float @llvm.sqrt.f32(float %Val)
6990 declare double @llvm.sqrt.f64(double %Val)
6991 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6992 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6993 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6994
6995Overview:
6996"""""""""
6997
6998The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6999returning the same value as the libm '``sqrt``' functions would. Unlike
7000``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7001negative numbers other than -0.0 (which allows for better optimization,
7002because there is no need to worry about errno being set).
7003``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7004
7005Arguments:
7006""""""""""
7007
7008The argument and return value are floating point numbers of the same
7009type.
7010
7011Semantics:
7012""""""""""
7013
7014This function returns the sqrt of the specified operand if it is a
7015nonnegative floating point number.
7016
7017'``llvm.powi.*``' Intrinsic
7018^^^^^^^^^^^^^^^^^^^^^^^^^^^
7019
7020Syntax:
7021"""""""
7022
7023This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7024floating point or vector of floating point type. Not all targets support
7025all types however.
7026
7027::
7028
7029 declare float @llvm.powi.f32(float %Val, i32 %power)
7030 declare double @llvm.powi.f64(double %Val, i32 %power)
7031 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7032 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7033 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7034
7035Overview:
7036"""""""""
7037
7038The '``llvm.powi.*``' intrinsics return the first operand raised to the
7039specified (positive or negative) power. The order of evaluation of
7040multiplications is not defined. When a vector of floating point type is
7041used, the second argument remains a scalar integer value.
7042
7043Arguments:
7044""""""""""
7045
7046The second argument is an integer power, and the first is a value to
7047raise to that power.
7048
7049Semantics:
7050""""""""""
7051
7052This function returns the first value raised to the second power with an
7053unspecified sequence of rounding operations.
7054
7055'``llvm.sin.*``' Intrinsic
7056^^^^^^^^^^^^^^^^^^^^^^^^^^
7057
7058Syntax:
7059"""""""
7060
7061This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7062floating point or vector of floating point type. Not all targets support
7063all types however.
7064
7065::
7066
7067 declare float @llvm.sin.f32(float %Val)
7068 declare double @llvm.sin.f64(double %Val)
7069 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7070 declare fp128 @llvm.sin.f128(fp128 %Val)
7071 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7072
7073Overview:
7074"""""""""
7075
7076The '``llvm.sin.*``' intrinsics return the sine of the operand.
7077
7078Arguments:
7079""""""""""
7080
7081The argument and return value are floating point numbers of the same
7082type.
7083
7084Semantics:
7085""""""""""
7086
7087This function returns the sine of the specified operand, returning the
7088same values as the libm ``sin`` functions would, and handles error
7089conditions in the same way.
7090
7091'``llvm.cos.*``' Intrinsic
7092^^^^^^^^^^^^^^^^^^^^^^^^^^
7093
7094Syntax:
7095"""""""
7096
7097This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7098floating point or vector of floating point type. Not all targets support
7099all types however.
7100
7101::
7102
7103 declare float @llvm.cos.f32(float %Val)
7104 declare double @llvm.cos.f64(double %Val)
7105 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7106 declare fp128 @llvm.cos.f128(fp128 %Val)
7107 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7108
7109Overview:
7110"""""""""
7111
7112The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7113
7114Arguments:
7115""""""""""
7116
7117The argument and return value are floating point numbers of the same
7118type.
7119
7120Semantics:
7121""""""""""
7122
7123This function returns the cosine of the specified operand, returning the
7124same values as the libm ``cos`` functions would, and handles error
7125conditions in the same way.
7126
7127'``llvm.pow.*``' Intrinsic
7128^^^^^^^^^^^^^^^^^^^^^^^^^^
7129
7130Syntax:
7131"""""""
7132
7133This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7134floating point or vector of floating point type. Not all targets support
7135all types however.
7136
7137::
7138
7139 declare float @llvm.pow.f32(float %Val, float %Power)
7140 declare double @llvm.pow.f64(double %Val, double %Power)
7141 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7142 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7143 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7144
7145Overview:
7146"""""""""
7147
7148The '``llvm.pow.*``' intrinsics return the first operand raised to the
7149specified (positive or negative) power.
7150
7151Arguments:
7152""""""""""
7153
7154The second argument is a floating point power, and the first is a value
7155to raise to that power.
7156
7157Semantics:
7158""""""""""
7159
7160This function returns the first value raised to the second power,
7161returning the same values as the libm ``pow`` functions would, and
7162handles error conditions in the same way.
7163
7164'``llvm.exp.*``' Intrinsic
7165^^^^^^^^^^^^^^^^^^^^^^^^^^
7166
7167Syntax:
7168"""""""
7169
7170This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7171floating point or vector of floating point type. Not all targets support
7172all types however.
7173
7174::
7175
7176 declare float @llvm.exp.f32(float %Val)
7177 declare double @llvm.exp.f64(double %Val)
7178 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7179 declare fp128 @llvm.exp.f128(fp128 %Val)
7180 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7181
7182Overview:
7183"""""""""
7184
7185The '``llvm.exp.*``' intrinsics perform the exp function.
7186
7187Arguments:
7188""""""""""
7189
7190The argument and return value are floating point numbers of the same
7191type.
7192
7193Semantics:
7194""""""""""
7195
7196This function returns the same values as the libm ``exp`` functions
7197would, and handles error conditions in the same way.
7198
7199'``llvm.exp2.*``' Intrinsic
7200^^^^^^^^^^^^^^^^^^^^^^^^^^^
7201
7202Syntax:
7203"""""""
7204
7205This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7206floating point or vector of floating point type. Not all targets support
7207all types however.
7208
7209::
7210
7211 declare float @llvm.exp2.f32(float %Val)
7212 declare double @llvm.exp2.f64(double %Val)
7213 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7214 declare fp128 @llvm.exp2.f128(fp128 %Val)
7215 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7216
7217Overview:
7218"""""""""
7219
7220The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7221
7222Arguments:
7223""""""""""
7224
7225The argument and return value are floating point numbers of the same
7226type.
7227
7228Semantics:
7229""""""""""
7230
7231This function returns the same values as the libm ``exp2`` functions
7232would, and handles error conditions in the same way.
7233
7234'``llvm.log.*``' Intrinsic
7235^^^^^^^^^^^^^^^^^^^^^^^^^^
7236
7237Syntax:
7238"""""""
7239
7240This is an overloaded intrinsic. You can use ``llvm.log`` on any
7241floating point or vector of floating point type. Not all targets support
7242all types however.
7243
7244::
7245
7246 declare float @llvm.log.f32(float %Val)
7247 declare double @llvm.log.f64(double %Val)
7248 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7249 declare fp128 @llvm.log.f128(fp128 %Val)
7250 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7251
7252Overview:
7253"""""""""
7254
7255The '``llvm.log.*``' intrinsics perform the log function.
7256
7257Arguments:
7258""""""""""
7259
7260The argument and return value are floating point numbers of the same
7261type.
7262
7263Semantics:
7264""""""""""
7265
7266This function returns the same values as the libm ``log`` functions
7267would, and handles error conditions in the same way.
7268
7269'``llvm.log10.*``' Intrinsic
7270^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7271
7272Syntax:
7273"""""""
7274
7275This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7276floating point or vector of floating point type. Not all targets support
7277all types however.
7278
7279::
7280
7281 declare float @llvm.log10.f32(float %Val)
7282 declare double @llvm.log10.f64(double %Val)
7283 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7284 declare fp128 @llvm.log10.f128(fp128 %Val)
7285 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7286
7287Overview:
7288"""""""""
7289
7290The '``llvm.log10.*``' intrinsics perform the log10 function.
7291
7292Arguments:
7293""""""""""
7294
7295The argument and return value are floating point numbers of the same
7296type.
7297
7298Semantics:
7299""""""""""
7300
7301This function returns the same values as the libm ``log10`` functions
7302would, and handles error conditions in the same way.
7303
7304'``llvm.log2.*``' Intrinsic
7305^^^^^^^^^^^^^^^^^^^^^^^^^^^
7306
7307Syntax:
7308"""""""
7309
7310This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7311floating point or vector of floating point type. Not all targets support
7312all types however.
7313
7314::
7315
7316 declare float @llvm.log2.f32(float %Val)
7317 declare double @llvm.log2.f64(double %Val)
7318 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7319 declare fp128 @llvm.log2.f128(fp128 %Val)
7320 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7321
7322Overview:
7323"""""""""
7324
7325The '``llvm.log2.*``' intrinsics perform the log2 function.
7326
7327Arguments:
7328""""""""""
7329
7330The argument and return value are floating point numbers of the same
7331type.
7332
7333Semantics:
7334""""""""""
7335
7336This function returns the same values as the libm ``log2`` functions
7337would, and handles error conditions in the same way.
7338
7339'``llvm.fma.*``' Intrinsic
7340^^^^^^^^^^^^^^^^^^^^^^^^^^
7341
7342Syntax:
7343"""""""
7344
7345This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7346floating point or vector of floating point type. Not all targets support
7347all types however.
7348
7349::
7350
7351 declare float @llvm.fma.f32(float %a, float %b, float %c)
7352 declare double @llvm.fma.f64(double %a, double %b, double %c)
7353 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7354 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7355 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7356
7357Overview:
7358"""""""""
7359
7360The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7361operation.
7362
7363Arguments:
7364""""""""""
7365
7366The argument and return value are floating point numbers of the same
7367type.
7368
7369Semantics:
7370""""""""""
7371
7372This function returns the same values as the libm ``fma`` functions
7373would.
7374
7375'``llvm.fabs.*``' Intrinsic
7376^^^^^^^^^^^^^^^^^^^^^^^^^^^
7377
7378Syntax:
7379"""""""
7380
7381This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7382floating point or vector of floating point type. Not all targets support
7383all types however.
7384
7385::
7386
7387 declare float @llvm.fabs.f32(float %Val)
7388 declare double @llvm.fabs.f64(double %Val)
7389 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7390 declare fp128 @llvm.fabs.f128(fp128 %Val)
7391 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7392
7393Overview:
7394"""""""""
7395
7396The '``llvm.fabs.*``' intrinsics return the absolute value of the
7397operand.
7398
7399Arguments:
7400""""""""""
7401
7402The argument and return value are floating point numbers of the same
7403type.
7404
7405Semantics:
7406""""""""""
7407
7408This function returns the same values as the libm ``fabs`` functions
7409would, and handles error conditions in the same way.
7410
Hal Finkel66d1fa62013-08-19 23:35:46 +00007411'``llvm.copysign.*``' Intrinsic
7412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7413
7414Syntax:
7415"""""""
7416
7417This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7418floating point or vector of floating point type. Not all targets support
7419all types however.
7420
7421::
7422
7423 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7424 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7425 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7426 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7427 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7428
7429Overview:
7430"""""""""
7431
7432The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7433first operand and the sign of the second operand.
7434
7435Arguments:
7436""""""""""
7437
7438The arguments and return value are floating point numbers of the same
7439type.
7440
7441Semantics:
7442""""""""""
7443
7444This function returns the same values as the libm ``copysign``
7445functions would, and handles error conditions in the same way.
7446
Sean Silvaf722b002012-12-07 10:36:55 +00007447'``llvm.floor.*``' Intrinsic
7448^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7449
7450Syntax:
7451"""""""
7452
7453This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7454floating point or vector of floating point type. Not all targets support
7455all types however.
7456
7457::
7458
7459 declare float @llvm.floor.f32(float %Val)
7460 declare double @llvm.floor.f64(double %Val)
7461 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7462 declare fp128 @llvm.floor.f128(fp128 %Val)
7463 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7464
7465Overview:
7466"""""""""
7467
7468The '``llvm.floor.*``' intrinsics return the floor of the operand.
7469
7470Arguments:
7471""""""""""
7472
7473The argument and return value are floating point numbers of the same
7474type.
7475
7476Semantics:
7477""""""""""
7478
7479This function returns the same values as the libm ``floor`` functions
7480would, and handles error conditions in the same way.
7481
7482'``llvm.ceil.*``' Intrinsic
7483^^^^^^^^^^^^^^^^^^^^^^^^^^^
7484
7485Syntax:
7486"""""""
7487
7488This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7489floating point or vector of floating point type. Not all targets support
7490all types however.
7491
7492::
7493
7494 declare float @llvm.ceil.f32(float %Val)
7495 declare double @llvm.ceil.f64(double %Val)
7496 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7497 declare fp128 @llvm.ceil.f128(fp128 %Val)
7498 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7499
7500Overview:
7501"""""""""
7502
7503The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7504
7505Arguments:
7506""""""""""
7507
7508The argument and return value are floating point numbers of the same
7509type.
7510
7511Semantics:
7512""""""""""
7513
7514This function returns the same values as the libm ``ceil`` functions
7515would, and handles error conditions in the same way.
7516
7517'``llvm.trunc.*``' Intrinsic
7518^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7519
7520Syntax:
7521"""""""
7522
7523This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7524floating point or vector of floating point type. Not all targets support
7525all types however.
7526
7527::
7528
7529 declare float @llvm.trunc.f32(float %Val)
7530 declare double @llvm.trunc.f64(double %Val)
7531 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7532 declare fp128 @llvm.trunc.f128(fp128 %Val)
7533 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7534
7535Overview:
7536"""""""""
7537
7538The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7539nearest integer not larger in magnitude than the operand.
7540
7541Arguments:
7542""""""""""
7543
7544The argument and return value are floating point numbers of the same
7545type.
7546
7547Semantics:
7548""""""""""
7549
7550This function returns the same values as the libm ``trunc`` functions
7551would, and handles error conditions in the same way.
7552
7553'``llvm.rint.*``' Intrinsic
7554^^^^^^^^^^^^^^^^^^^^^^^^^^^
7555
7556Syntax:
7557"""""""
7558
7559This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7560floating point or vector of floating point type. Not all targets support
7561all types however.
7562
7563::
7564
7565 declare float @llvm.rint.f32(float %Val)
7566 declare double @llvm.rint.f64(double %Val)
7567 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7568 declare fp128 @llvm.rint.f128(fp128 %Val)
7569 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7570
7571Overview:
7572"""""""""
7573
7574The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7575nearest integer. It may raise an inexact floating-point exception if the
7576operand isn't an integer.
7577
7578Arguments:
7579""""""""""
7580
7581The argument and return value are floating point numbers of the same
7582type.
7583
7584Semantics:
7585""""""""""
7586
7587This function returns the same values as the libm ``rint`` functions
7588would, and handles error conditions in the same way.
7589
7590'``llvm.nearbyint.*``' Intrinsic
7591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7592
7593Syntax:
7594"""""""
7595
7596This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7597floating point or vector of floating point type. Not all targets support
7598all types however.
7599
7600::
7601
7602 declare float @llvm.nearbyint.f32(float %Val)
7603 declare double @llvm.nearbyint.f64(double %Val)
7604 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7605 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7606 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7607
7608Overview:
7609"""""""""
7610
7611The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7612nearest integer.
7613
7614Arguments:
7615""""""""""
7616
7617The argument and return value are floating point numbers of the same
7618type.
7619
7620Semantics:
7621""""""""""
7622
7623This function returns the same values as the libm ``nearbyint``
7624functions would, and handles error conditions in the same way.
7625
Hal Finkel41418d12013-08-07 22:49:12 +00007626'``llvm.round.*``' Intrinsic
7627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7628
7629Syntax:
7630"""""""
7631
7632This is an overloaded intrinsic. You can use ``llvm.round`` on any
7633floating point or vector of floating point type. Not all targets support
7634all types however.
7635
7636::
7637
7638 declare float @llvm.round.f32(float %Val)
7639 declare double @llvm.round.f64(double %Val)
7640 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7641 declare fp128 @llvm.round.f128(fp128 %Val)
7642 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7643
7644Overview:
7645"""""""""
7646
7647The '``llvm.round.*``' intrinsics returns the operand rounded to the
7648nearest integer.
7649
7650Arguments:
7651""""""""""
7652
7653The argument and return value are floating point numbers of the same
7654type.
7655
7656Semantics:
7657""""""""""
7658
7659This function returns the same values as the libm ``round``
7660functions would, and handles error conditions in the same way.
7661
Sean Silvaf722b002012-12-07 10:36:55 +00007662Bit Manipulation Intrinsics
7663---------------------------
7664
7665LLVM provides intrinsics for a few important bit manipulation
7666operations. These allow efficient code generation for some algorithms.
7667
7668'``llvm.bswap.*``' Intrinsics
7669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7670
7671Syntax:
7672"""""""
7673
7674This is an overloaded intrinsic function. You can use bswap on any
7675integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7676
7677::
7678
7679 declare i16 @llvm.bswap.i16(i16 <id>)
7680 declare i32 @llvm.bswap.i32(i32 <id>)
7681 declare i64 @llvm.bswap.i64(i64 <id>)
7682
7683Overview:
7684"""""""""
7685
7686The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7687values with an even number of bytes (positive multiple of 16 bits).
7688These are useful for performing operations on data that is not in the
7689target's native byte order.
7690
7691Semantics:
7692""""""""""
7693
7694The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7695and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7696intrinsic returns an i32 value that has the four bytes of the input i32
7697swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7698returned i32 will have its bytes in 3, 2, 1, 0 order. The
7699``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7700concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7701respectively).
7702
7703'``llvm.ctpop.*``' Intrinsic
7704^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7705
7706Syntax:
7707"""""""
7708
7709This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7710bit width, or on any vector with integer elements. Not all targets
7711support all bit widths or vector types, however.
7712
7713::
7714
7715 declare i8 @llvm.ctpop.i8(i8 <src>)
7716 declare i16 @llvm.ctpop.i16(i16 <src>)
7717 declare i32 @llvm.ctpop.i32(i32 <src>)
7718 declare i64 @llvm.ctpop.i64(i64 <src>)
7719 declare i256 @llvm.ctpop.i256(i256 <src>)
7720 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7721
7722Overview:
7723"""""""""
7724
7725The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7726in a value.
7727
7728Arguments:
7729""""""""""
7730
7731The only argument is the value to be counted. The argument may be of any
7732integer type, or a vector with integer elements. The return type must
7733match the argument type.
7734
7735Semantics:
7736""""""""""
7737
7738The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7739each element of a vector.
7740
7741'``llvm.ctlz.*``' Intrinsic
7742^^^^^^^^^^^^^^^^^^^^^^^^^^^
7743
7744Syntax:
7745"""""""
7746
7747This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7748integer bit width, or any vector whose elements are integers. Not all
7749targets support all bit widths or vector types, however.
7750
7751::
7752
7753 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7754 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7755 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7756 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7757 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7758 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7759
7760Overview:
7761"""""""""
7762
7763The '``llvm.ctlz``' family of intrinsic functions counts the number of
7764leading zeros in a variable.
7765
7766Arguments:
7767""""""""""
7768
7769The first argument is the value to be counted. This argument may be of
7770any integer type, or a vectory with integer element type. The return
7771type must match the first argument type.
7772
7773The second argument must be a constant and is a flag to indicate whether
7774the intrinsic should ensure that a zero as the first argument produces a
7775defined result. Historically some architectures did not provide a
7776defined result for zero values as efficiently, and many algorithms are
7777now predicated on avoiding zero-value inputs.
7778
7779Semantics:
7780""""""""""
7781
7782The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7783zeros in a variable, or within each element of the vector. If
7784``src == 0`` then the result is the size in bits of the type of ``src``
7785if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7786``llvm.ctlz(i32 2) = 30``.
7787
7788'``llvm.cttz.*``' Intrinsic
7789^^^^^^^^^^^^^^^^^^^^^^^^^^^
7790
7791Syntax:
7792"""""""
7793
7794This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7795integer bit width, or any vector of integer elements. Not all targets
7796support all bit widths or vector types, however.
7797
7798::
7799
7800 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7801 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7802 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7803 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7804 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7805 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7806
7807Overview:
7808"""""""""
7809
7810The '``llvm.cttz``' family of intrinsic functions counts the number of
7811trailing zeros.
7812
7813Arguments:
7814""""""""""
7815
7816The first argument is the value to be counted. This argument may be of
7817any integer type, or a vectory with integer element type. The return
7818type must match the first argument type.
7819
7820The second argument must be a constant and is a flag to indicate whether
7821the intrinsic should ensure that a zero as the first argument produces a
7822defined result. Historically some architectures did not provide a
7823defined result for zero values as efficiently, and many algorithms are
7824now predicated on avoiding zero-value inputs.
7825
7826Semantics:
7827""""""""""
7828
7829The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7830zeros in a variable, or within each element of a vector. If ``src == 0``
7831then the result is the size in bits of the type of ``src`` if
7832``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7833``llvm.cttz(2) = 1``.
7834
7835Arithmetic with Overflow Intrinsics
7836-----------------------------------
7837
7838LLVM provides intrinsics for some arithmetic with overflow operations.
7839
7840'``llvm.sadd.with.overflow.*``' Intrinsics
7841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7842
7843Syntax:
7844"""""""
7845
7846This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7847on any integer bit width.
7848
7849::
7850
7851 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7852 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7853 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7854
7855Overview:
7856"""""""""
7857
7858The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7859a signed addition of the two arguments, and indicate whether an overflow
7860occurred during the signed summation.
7861
7862Arguments:
7863""""""""""
7864
7865The arguments (%a and %b) and the first element of the result structure
7866may be of integer types of any bit width, but they must have the same
7867bit width. The second element of the result structure must be of type
7868``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7869addition.
7870
7871Semantics:
7872""""""""""
7873
7874The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007875a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007876first element of which is the signed summation, and the second element
7877of which is a bit specifying if the signed summation resulted in an
7878overflow.
7879
7880Examples:
7881"""""""""
7882
7883.. code-block:: llvm
7884
7885 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7886 %sum = extractvalue {i32, i1} %res, 0
7887 %obit = extractvalue {i32, i1} %res, 1
7888 br i1 %obit, label %overflow, label %normal
7889
7890'``llvm.uadd.with.overflow.*``' Intrinsics
7891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7892
7893Syntax:
7894"""""""
7895
7896This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7897on any integer bit width.
7898
7899::
7900
7901 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7902 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7903 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7904
7905Overview:
7906"""""""""
7907
7908The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7909an unsigned addition of the two arguments, and indicate whether a carry
7910occurred during the unsigned summation.
7911
7912Arguments:
7913""""""""""
7914
7915The arguments (%a and %b) and the first element of the result structure
7916may be of integer types of any bit width, but they must have the same
7917bit width. The second element of the result structure must be of type
7918``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7919addition.
7920
7921Semantics:
7922""""""""""
7923
7924The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007925an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007926first element of which is the sum, and the second element of which is a
7927bit specifying if the unsigned summation resulted in a carry.
7928
7929Examples:
7930"""""""""
7931
7932.. code-block:: llvm
7933
7934 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7935 %sum = extractvalue {i32, i1} %res, 0
7936 %obit = extractvalue {i32, i1} %res, 1
7937 br i1 %obit, label %carry, label %normal
7938
7939'``llvm.ssub.with.overflow.*``' Intrinsics
7940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7941
7942Syntax:
7943"""""""
7944
7945This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7946on any integer bit width.
7947
7948::
7949
7950 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7951 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7952 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7953
7954Overview:
7955"""""""""
7956
7957The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7958a signed subtraction of the two arguments, and indicate whether an
7959overflow occurred during the signed subtraction.
7960
7961Arguments:
7962""""""""""
7963
7964The arguments (%a and %b) and the first element of the result structure
7965may be of integer types of any bit width, but they must have the same
7966bit width. The second element of the result structure must be of type
7967``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7968subtraction.
7969
7970Semantics:
7971""""""""""
7972
7973The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007974a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007975first element of which is the subtraction, and the second element of
7976which is a bit specifying if the signed subtraction resulted in an
7977overflow.
7978
7979Examples:
7980"""""""""
7981
7982.. code-block:: llvm
7983
7984 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7985 %sum = extractvalue {i32, i1} %res, 0
7986 %obit = extractvalue {i32, i1} %res, 1
7987 br i1 %obit, label %overflow, label %normal
7988
7989'``llvm.usub.with.overflow.*``' Intrinsics
7990^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7991
7992Syntax:
7993"""""""
7994
7995This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7996on any integer bit width.
7997
7998::
7999
8000 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8001 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8002 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8003
8004Overview:
8005"""""""""
8006
8007The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8008an unsigned subtraction of the two arguments, and indicate whether an
8009overflow occurred during the unsigned subtraction.
8010
8011Arguments:
8012""""""""""
8013
8014The arguments (%a and %b) and the first element of the result structure
8015may be of integer types of any bit width, but they must have the same
8016bit width. The second element of the result structure must be of type
8017``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8018subtraction.
8019
8020Semantics:
8021""""""""""
8022
8023The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008024an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008025the first element of which is the subtraction, and the second element of
8026which is a bit specifying if the unsigned subtraction resulted in an
8027overflow.
8028
8029Examples:
8030"""""""""
8031
8032.. code-block:: llvm
8033
8034 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8035 %sum = extractvalue {i32, i1} %res, 0
8036 %obit = extractvalue {i32, i1} %res, 1
8037 br i1 %obit, label %overflow, label %normal
8038
8039'``llvm.smul.with.overflow.*``' Intrinsics
8040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8041
8042Syntax:
8043"""""""
8044
8045This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8046on any integer bit width.
8047
8048::
8049
8050 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8051 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8052 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8053
8054Overview:
8055"""""""""
8056
8057The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8058a signed multiplication of the two arguments, and indicate whether an
8059overflow occurred during the signed multiplication.
8060
8061Arguments:
8062""""""""""
8063
8064The arguments (%a and %b) and the first element of the result structure
8065may be of integer types of any bit width, but they must have the same
8066bit width. The second element of the result structure must be of type
8067``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8068multiplication.
8069
8070Semantics:
8071""""""""""
8072
8073The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008074a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008075the first element of which is the multiplication, and the second element
8076of which is a bit specifying if the signed multiplication resulted in an
8077overflow.
8078
8079Examples:
8080"""""""""
8081
8082.. code-block:: llvm
8083
8084 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8085 %sum = extractvalue {i32, i1} %res, 0
8086 %obit = extractvalue {i32, i1} %res, 1
8087 br i1 %obit, label %overflow, label %normal
8088
8089'``llvm.umul.with.overflow.*``' Intrinsics
8090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8091
8092Syntax:
8093"""""""
8094
8095This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8096on any integer bit width.
8097
8098::
8099
8100 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8101 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8102 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8103
8104Overview:
8105"""""""""
8106
8107The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8108a unsigned multiplication of the two arguments, and indicate whether an
8109overflow occurred during the unsigned multiplication.
8110
8111Arguments:
8112""""""""""
8113
8114The arguments (%a and %b) and the first element of the result structure
8115may be of integer types of any bit width, but they must have the same
8116bit width. The second element of the result structure must be of type
8117``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8118multiplication.
8119
8120Semantics:
8121""""""""""
8122
8123The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008124an unsigned multiplication of the two arguments. They return a structure ---
8125the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00008126element of which is a bit specifying if the unsigned multiplication
8127resulted in an overflow.
8128
8129Examples:
8130"""""""""
8131
8132.. code-block:: llvm
8133
8134 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8135 %sum = extractvalue {i32, i1} %res, 0
8136 %obit = extractvalue {i32, i1} %res, 1
8137 br i1 %obit, label %overflow, label %normal
8138
8139Specialised Arithmetic Intrinsics
8140---------------------------------
8141
8142'``llvm.fmuladd.*``' Intrinsic
8143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8144
8145Syntax:
8146"""""""
8147
8148::
8149
8150 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8151 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8152
8153Overview:
8154"""""""""
8155
8156The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008157expressions that can be fused if the code generator determines that (a) the
8158target instruction set has support for a fused operation, and (b) that the
8159fused operation is more efficient than the equivalent, separate pair of mul
8160and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008161
8162Arguments:
8163""""""""""
8164
8165The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8166multiplicands, a and b, and an addend c.
8167
8168Semantics:
8169""""""""""
8170
8171The expression:
8172
8173::
8174
8175 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8176
8177is equivalent to the expression a \* b + c, except that rounding will
8178not be performed between the multiplication and addition steps if the
8179code generator fuses the operations. Fusion is not guaranteed, even if
8180the target platform supports it. If a fused multiply-add is required the
8181corresponding llvm.fma.\* intrinsic function should be used instead.
8182
8183Examples:
8184"""""""""
8185
8186.. code-block:: llvm
8187
8188 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8189
8190Half Precision Floating Point Intrinsics
8191----------------------------------------
8192
8193For most target platforms, half precision floating point is a
8194storage-only format. This means that it is a dense encoding (in memory)
8195but does not support computation in the format.
8196
8197This means that code must first load the half-precision floating point
8198value as an i16, then convert it to float with
8199:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8200then be performed on the float value (including extending to double
8201etc). To store the value back to memory, it is first converted to float
8202if needed, then converted to i16 with
8203:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8204i16 value.
8205
8206.. _int_convert_to_fp16:
8207
8208'``llvm.convert.to.fp16``' Intrinsic
8209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8210
8211Syntax:
8212"""""""
8213
8214::
8215
8216 declare i16 @llvm.convert.to.fp16(f32 %a)
8217
8218Overview:
8219"""""""""
8220
8221The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8222from single precision floating point format to half precision floating
8223point format.
8224
8225Arguments:
8226""""""""""
8227
8228The intrinsic function contains single argument - the value to be
8229converted.
8230
8231Semantics:
8232""""""""""
8233
8234The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8235from single precision floating point format to half precision floating
8236point format. The return value is an ``i16`` which contains the
8237converted number.
8238
8239Examples:
8240"""""""""
8241
8242.. code-block:: llvm
8243
8244 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8245 store i16 %res, i16* @x, align 2
8246
8247.. _int_convert_from_fp16:
8248
8249'``llvm.convert.from.fp16``' Intrinsic
8250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8251
8252Syntax:
8253"""""""
8254
8255::
8256
8257 declare f32 @llvm.convert.from.fp16(i16 %a)
8258
8259Overview:
8260"""""""""
8261
8262The '``llvm.convert.from.fp16``' intrinsic function performs a
8263conversion from half precision floating point format to single precision
8264floating point format.
8265
8266Arguments:
8267""""""""""
8268
8269The intrinsic function contains single argument - the value to be
8270converted.
8271
8272Semantics:
8273""""""""""
8274
8275The '``llvm.convert.from.fp16``' intrinsic function performs a
8276conversion from half single precision floating point format to single
8277precision floating point format. The input half-float value is
8278represented by an ``i16`` value.
8279
8280Examples:
8281"""""""""
8282
8283.. code-block:: llvm
8284
8285 %a = load i16* @x, align 2
8286 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8287
8288Debugger Intrinsics
8289-------------------
8290
8291The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8292prefix), are described in the `LLVM Source Level
8293Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8294document.
8295
8296Exception Handling Intrinsics
8297-----------------------------
8298
8299The LLVM exception handling intrinsics (which all start with
8300``llvm.eh.`` prefix), are described in the `LLVM Exception
8301Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8302
8303.. _int_trampoline:
8304
8305Trampoline Intrinsics
8306---------------------
8307
8308These intrinsics make it possible to excise one parameter, marked with
8309the :ref:`nest <nest>` attribute, from a function. The result is a
8310callable function pointer lacking the nest parameter - the caller does
8311not need to provide a value for it. Instead, the value to use is stored
8312in advance in a "trampoline", a block of memory usually allocated on the
8313stack, which also contains code to splice the nest value into the
8314argument list. This is used to implement the GCC nested function address
8315extension.
8316
8317For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8318then the resulting function pointer has signature ``i32 (i32, i32)*``.
8319It can be created as follows:
8320
8321.. code-block:: llvm
8322
8323 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8324 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8325 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8326 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8327 %fp = bitcast i8* %p to i32 (i32, i32)*
8328
8329The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8330``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8331
8332.. _int_it:
8333
8334'``llvm.init.trampoline``' Intrinsic
8335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8336
8337Syntax:
8338"""""""
8339
8340::
8341
8342 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8343
8344Overview:
8345"""""""""
8346
8347This fills the memory pointed to by ``tramp`` with executable code,
8348turning it into a trampoline.
8349
8350Arguments:
8351""""""""""
8352
8353The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8354pointers. The ``tramp`` argument must point to a sufficiently large and
8355sufficiently aligned block of memory; this memory is written to by the
8356intrinsic. Note that the size and the alignment are target-specific -
8357LLVM currently provides no portable way of determining them, so a
8358front-end that generates this intrinsic needs to have some
8359target-specific knowledge. The ``func`` argument must hold a function
8360bitcast to an ``i8*``.
8361
8362Semantics:
8363""""""""""
8364
8365The block of memory pointed to by ``tramp`` is filled with target
8366dependent code, turning it into a function. Then ``tramp`` needs to be
8367passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8368be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8369function's signature is the same as that of ``func`` with any arguments
8370marked with the ``nest`` attribute removed. At most one such ``nest``
8371argument is allowed, and it must be of pointer type. Calling the new
8372function is equivalent to calling ``func`` with the same argument list,
8373but with ``nval`` used for the missing ``nest`` argument. If, after
8374calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8375modified, then the effect of any later call to the returned function
8376pointer is undefined.
8377
8378.. _int_at:
8379
8380'``llvm.adjust.trampoline``' Intrinsic
8381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8382
8383Syntax:
8384"""""""
8385
8386::
8387
8388 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8389
8390Overview:
8391"""""""""
8392
8393This performs any required machine-specific adjustment to the address of
8394a trampoline (passed as ``tramp``).
8395
8396Arguments:
8397""""""""""
8398
8399``tramp`` must point to a block of memory which already has trampoline
8400code filled in by a previous call to
8401:ref:`llvm.init.trampoline <int_it>`.
8402
8403Semantics:
8404""""""""""
8405
8406On some architectures the address of the code to be executed needs to be
8407different to the address where the trampoline is actually stored. This
8408intrinsic returns the executable address corresponding to ``tramp``
8409after performing the required machine specific adjustments. The pointer
8410returned can then be :ref:`bitcast and executed <int_trampoline>`.
8411
8412Memory Use Markers
8413------------------
8414
8415This class of intrinsics exists to information about the lifetime of
8416memory objects and ranges where variables are immutable.
8417
8418'``llvm.lifetime.start``' Intrinsic
8419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8420
8421Syntax:
8422"""""""
8423
8424::
8425
8426 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8427
8428Overview:
8429"""""""""
8430
8431The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8432object's lifetime.
8433
8434Arguments:
8435""""""""""
8436
8437The first argument is a constant integer representing the size of the
8438object, or -1 if it is variable sized. The second argument is a pointer
8439to the object.
8440
8441Semantics:
8442""""""""""
8443
8444This intrinsic indicates that before this point in the code, the value
8445of the memory pointed to by ``ptr`` is dead. This means that it is known
8446to never be used and has an undefined value. A load from the pointer
8447that precedes this intrinsic can be replaced with ``'undef'``.
8448
8449'``llvm.lifetime.end``' Intrinsic
8450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8451
8452Syntax:
8453"""""""
8454
8455::
8456
8457 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8458
8459Overview:
8460"""""""""
8461
8462The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8463object's lifetime.
8464
8465Arguments:
8466""""""""""
8467
8468The first argument is a constant integer representing the size of the
8469object, or -1 if it is variable sized. The second argument is a pointer
8470to the object.
8471
8472Semantics:
8473""""""""""
8474
8475This intrinsic indicates that after this point in the code, the value of
8476the memory pointed to by ``ptr`` is dead. This means that it is known to
8477never be used and has an undefined value. Any stores into the memory
8478object following this intrinsic may be removed as dead.
8479
8480'``llvm.invariant.start``' Intrinsic
8481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8482
8483Syntax:
8484"""""""
8485
8486::
8487
8488 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8489
8490Overview:
8491"""""""""
8492
8493The '``llvm.invariant.start``' intrinsic specifies that the contents of
8494a memory object will not change.
8495
8496Arguments:
8497""""""""""
8498
8499The first argument is a constant integer representing the size of the
8500object, or -1 if it is variable sized. The second argument is a pointer
8501to the object.
8502
8503Semantics:
8504""""""""""
8505
8506This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8507the return value, the referenced memory location is constant and
8508unchanging.
8509
8510'``llvm.invariant.end``' Intrinsic
8511^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8512
8513Syntax:
8514"""""""
8515
8516::
8517
8518 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8519
8520Overview:
8521"""""""""
8522
8523The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8524memory object are mutable.
8525
8526Arguments:
8527""""""""""
8528
8529The first argument is the matching ``llvm.invariant.start`` intrinsic.
8530The second argument is a constant integer representing the size of the
8531object, or -1 if it is variable sized and the third argument is a
8532pointer to the object.
8533
8534Semantics:
8535""""""""""
8536
8537This intrinsic indicates that the memory is mutable again.
8538
8539General Intrinsics
8540------------------
8541
8542This class of intrinsics is designed to be generic and has no specific
8543purpose.
8544
8545'``llvm.var.annotation``' Intrinsic
8546^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8547
8548Syntax:
8549"""""""
8550
8551::
8552
8553 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8554
8555Overview:
8556"""""""""
8557
8558The '``llvm.var.annotation``' intrinsic.
8559
8560Arguments:
8561""""""""""
8562
8563The first argument is a pointer to a value, the second is a pointer to a
8564global string, the third is a pointer to a global string which is the
8565source file name, and the last argument is the line number.
8566
8567Semantics:
8568""""""""""
8569
8570This intrinsic allows annotation of local variables with arbitrary
8571strings. This can be useful for special purpose optimizations that want
8572to look for these annotations. These have no other defined use; they are
8573ignored by code generation and optimization.
8574
Michael Gottesman872b4e52013-03-26 00:34:27 +00008575'``llvm.ptr.annotation.*``' Intrinsic
8576^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8577
8578Syntax:
8579"""""""
8580
8581This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8582pointer to an integer of any width. *NOTE* you must specify an address space for
8583the pointer. The identifier for the default address space is the integer
8584'``0``'.
8585
8586::
8587
8588 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8589 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8590 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8591 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8592 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8593
8594Overview:
8595"""""""""
8596
8597The '``llvm.ptr.annotation``' intrinsic.
8598
8599Arguments:
8600""""""""""
8601
8602The first argument is a pointer to an integer value of arbitrary bitwidth
8603(result of some expression), the second is a pointer to a global string, the
8604third is a pointer to a global string which is the source file name, and the
8605last argument is the line number. It returns the value of the first argument.
8606
8607Semantics:
8608""""""""""
8609
8610This intrinsic allows annotation of a pointer to an integer with arbitrary
8611strings. This can be useful for special purpose optimizations that want to look
8612for these annotations. These have no other defined use; they are ignored by code
8613generation and optimization.
8614
Sean Silvaf722b002012-12-07 10:36:55 +00008615'``llvm.annotation.*``' Intrinsic
8616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8617
8618Syntax:
8619"""""""
8620
8621This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8622any integer bit width.
8623
8624::
8625
8626 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8627 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8628 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8629 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8630 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8631
8632Overview:
8633"""""""""
8634
8635The '``llvm.annotation``' intrinsic.
8636
8637Arguments:
8638""""""""""
8639
8640The first argument is an integer value (result of some expression), the
8641second is a pointer to a global string, the third is a pointer to a
8642global string which is the source file name, and the last argument is
8643the line number. It returns the value of the first argument.
8644
8645Semantics:
8646""""""""""
8647
8648This intrinsic allows annotations to be put on arbitrary expressions
8649with arbitrary strings. This can be useful for special purpose
8650optimizations that want to look for these annotations. These have no
8651other defined use; they are ignored by code generation and optimization.
8652
8653'``llvm.trap``' Intrinsic
8654^^^^^^^^^^^^^^^^^^^^^^^^^
8655
8656Syntax:
8657"""""""
8658
8659::
8660
8661 declare void @llvm.trap() noreturn nounwind
8662
8663Overview:
8664"""""""""
8665
8666The '``llvm.trap``' intrinsic.
8667
8668Arguments:
8669""""""""""
8670
8671None.
8672
8673Semantics:
8674""""""""""
8675
8676This intrinsic is lowered to the target dependent trap instruction. If
8677the target does not have a trap instruction, this intrinsic will be
8678lowered to a call of the ``abort()`` function.
8679
8680'``llvm.debugtrap``' Intrinsic
8681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8682
8683Syntax:
8684"""""""
8685
8686::
8687
8688 declare void @llvm.debugtrap() nounwind
8689
8690Overview:
8691"""""""""
8692
8693The '``llvm.debugtrap``' intrinsic.
8694
8695Arguments:
8696""""""""""
8697
8698None.
8699
8700Semantics:
8701""""""""""
8702
8703This intrinsic is lowered to code which is intended to cause an
8704execution trap with the intention of requesting the attention of a
8705debugger.
8706
8707'``llvm.stackprotector``' Intrinsic
8708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8709
8710Syntax:
8711"""""""
8712
8713::
8714
8715 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8716
8717Overview:
8718"""""""""
8719
8720The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8721onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8722is placed on the stack before local variables.
8723
8724Arguments:
8725""""""""""
8726
8727The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8728The first argument is the value loaded from the stack guard
8729``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8730enough space to hold the value of the guard.
8731
8732Semantics:
8733""""""""""
8734
Michael Gottesman2a64a632013-08-12 18:35:32 +00008735This intrinsic causes the prologue/epilogue inserter to force the position of
8736the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8737to ensure that if a local variable on the stack is overwritten, it will destroy
8738the value of the guard. When the function exits, the guard on the stack is
8739checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8740different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8741calling the ``__stack_chk_fail()`` function.
8742
8743'``llvm.stackprotectorcheck``' Intrinsic
Sean Silvacce63992013-09-09 19:13:28 +00008744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesman2a64a632013-08-12 18:35:32 +00008745
8746Syntax:
8747"""""""
8748
8749::
8750
8751 declare void @llvm.stackprotectorcheck(i8** <guard>)
8752
8753Overview:
8754"""""""""
8755
8756The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman2bf823e2013-08-12 19:44:09 +00008757created stack protector and if they are not equal calls the
Sean Silvaf722b002012-12-07 10:36:55 +00008758``__stack_chk_fail()`` function.
8759
Michael Gottesman2a64a632013-08-12 18:35:32 +00008760Arguments:
8761""""""""""
8762
8763The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8764the variable ``@__stack_chk_guard``.
8765
8766Semantics:
8767""""""""""
8768
8769This intrinsic is provided to perform the stack protector check by comparing
8770``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8771values do not match call the ``__stack_chk_fail()`` function.
8772
8773The reason to provide this as an IR level intrinsic instead of implementing it
8774via other IR operations is that in order to perform this operation at the IR
8775level without an intrinsic, one would need to create additional basic blocks to
8776handle the success/failure cases. This makes it difficult to stop the stack
8777protector check from disrupting sibling tail calls in Codegen. With this
8778intrinsic, we are able to generate the stack protector basic blocks late in
8779codegen after the tail call decision has occured.
8780
Sean Silvaf722b002012-12-07 10:36:55 +00008781'``llvm.objectsize``' Intrinsic
8782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8783
8784Syntax:
8785"""""""
8786
8787::
8788
8789 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8790 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8791
8792Overview:
8793"""""""""
8794
8795The ``llvm.objectsize`` intrinsic is designed to provide information to
8796the optimizers to determine at compile time whether a) an operation
8797(like memcpy) will overflow a buffer that corresponds to an object, or
8798b) that a runtime check for overflow isn't necessary. An object in this
8799context means an allocation of a specific class, structure, array, or
8800other object.
8801
8802Arguments:
8803""""""""""
8804
8805The ``llvm.objectsize`` intrinsic takes two arguments. The first
8806argument is a pointer to or into the ``object``. The second argument is
8807a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8808or -1 (if false) when the object size is unknown. The second argument
8809only accepts constants.
8810
8811Semantics:
8812""""""""""
8813
8814The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8815the size of the object concerned. If the size cannot be determined at
8816compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8817on the ``min`` argument).
8818
8819'``llvm.expect``' Intrinsic
8820^^^^^^^^^^^^^^^^^^^^^^^^^^^
8821
8822Syntax:
8823"""""""
8824
8825::
8826
8827 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8828 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8829
8830Overview:
8831"""""""""
8832
8833The ``llvm.expect`` intrinsic provides information about expected (the
8834most probable) value of ``val``, which can be used by optimizers.
8835
8836Arguments:
8837""""""""""
8838
8839The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8840a value. The second argument is an expected value, this needs to be a
8841constant value, variables are not allowed.
8842
8843Semantics:
8844""""""""""
8845
8846This intrinsic is lowered to the ``val``.
8847
8848'``llvm.donothing``' Intrinsic
8849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8850
8851Syntax:
8852"""""""
8853
8854::
8855
8856 declare void @llvm.donothing() nounwind readnone
8857
8858Overview:
8859"""""""""
8860
8861The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8862only intrinsic that can be called with an invoke instruction.
8863
8864Arguments:
8865""""""""""
8866
8867None.
8868
8869Semantics:
8870""""""""""
8871
8872This intrinsic does nothing, and it's removed by optimizers and ignored
8873by codegen.