blob: e57a6ab75add7315d7dfe50710532c64fdc578e2 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000011#include "llvm/Instructions.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000012#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000013#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000014#include "llvm/Pass.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000015#include "llvm/Intrinsics.h"
Chris Lattner341a9372002-10-29 17:43:55 +000016#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000017#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000018#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000020#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/Target/TargetMachine.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000022#include "llvm/Target/MRegisterInfo.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000023#include "llvm/Support/InstVisitor.h"
Chris Lattner72614082002-10-25 22:55:53 +000024
Chris Lattner333b2fa2002-12-13 10:09:43 +000025/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000026/// instruction at as well as a basic block. This is the version for when you
27/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000028inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000029 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000030 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000031 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000032 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000033 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000034 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000035 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
36}
37
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000038/// BMI - A special BuildMI variant that takes an iterator to insert the
39/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000040inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000041 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000042 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000043 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000045 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000046 return MachineInstrBuilder(MI);
47}
48
Chris Lattner333b2fa2002-12-13 10:09:43 +000049
Chris Lattner72614082002-10-25 22:55:53 +000050namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000051 struct ISel : public FunctionPass, InstVisitor<ISel> {
52 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000053 MachineFunction *F; // The function we are compiling into
54 MachineBasicBlock *BB; // The current MBB we are compiling
55 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
58
Chris Lattner333b2fa2002-12-13 10:09:43 +000059 // MBBMap - Mapping between LLVM BB -> Machine BB
60 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
61
Chris Lattner3e130a22003-01-13 00:32:26 +000062 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000063
64 /// runOnFunction - Top level implementation of instruction selection for
65 /// the entire function.
66 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000067 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000068 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000069
Chris Lattner065faeb2002-12-28 20:24:02 +000070 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000071 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
72 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
73
Chris Lattner14aa7fe2002-12-16 22:54:46 +000074 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000075
Chris Lattnerdbd73722003-05-06 21:32:22 +000076 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000077 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000078
Chris Lattner333b2fa2002-12-13 10:09:43 +000079 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000080 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000081
82 // Select the PHI nodes
83 SelectPHINodes();
84
Chris Lattner72614082002-10-25 22:55:53 +000085 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000087 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000088 return false; // We never modify the LLVM itself.
89 }
90
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000091 virtual const char *getPassName() const {
92 return "X86 Simple Instruction Selection";
93 }
94
Chris Lattner72614082002-10-25 22:55:53 +000095 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000096 /// block. This simply creates a new MachineBasicBlock to emit code into
97 /// and adds it to the current MachineFunction. Subsequent visit* for
98 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000099 ///
100 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000101 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000102 }
103
Chris Lattner065faeb2002-12-28 20:24:02 +0000104 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
105 /// from the stack into virtual registers.
106 ///
107 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000108
109 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
110 /// because we have to generate our sources into the source basic blocks,
111 /// not the current one.
112 ///
113 void SelectPHINodes();
114
Chris Lattner72614082002-10-25 22:55:53 +0000115 // Visitation methods for various instructions. These methods simply emit
116 // fixed X86 code for each instruction.
117 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000118
119 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000120 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000121 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000122
123 struct ValueRecord {
124 unsigned Reg;
125 const Type *Ty;
126 ValueRecord(unsigned R, const Type *T) : Reg(R), Ty(T) {}
127 };
128 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
129 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000130 void visitCallInst(CallInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000131 void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000132
133 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000134 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000135 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
136 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000137 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000138 unsigned DestReg, const Type *DestTy,
139 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000140 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000141
Chris Lattnerf01729e2002-11-02 20:54:46 +0000142 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
143 void visitRem(BinaryOperator &B) { visitDivRem(B); }
144 void visitDivRem(BinaryOperator &B);
145
Chris Lattnere2954c82002-11-02 20:04:26 +0000146 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000147 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
148 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
149 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000150
Chris Lattner6d40c192003-01-16 16:43:00 +0000151 // Comparison operators...
152 void visitSetCondInst(SetCondInst &I);
153 bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000154
155 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000156 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
157 MachineBasicBlock::iterator &MBBI,
158 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000159 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000160 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000161 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000162 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000163 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000164 void visitMallocInst(MallocInst &I);
165 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000166
Chris Lattnere2954c82002-11-02 20:04:26 +0000167 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000168 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000169 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000170 void visitCastInst(CastInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000171 void visitVarArgInst(VarArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000172
173 void visitInstruction(Instruction &I) {
174 std::cerr << "Cannot instruction select: " << I;
175 abort();
176 }
177
Brian Gaeke95780cc2002-12-13 07:56:18 +0000178 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000179 ///
180 void promote32(unsigned targetReg, const ValueRecord &VR);
181
182 /// EmitByteSwap - Byteswap SrcReg into DestReg.
183 ///
184 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000185
Chris Lattner3e130a22003-01-13 00:32:26 +0000186 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
187 /// constant expression GEP support.
188 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000189 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000190 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000191 User::op_iterator IdxEnd, unsigned TargetReg);
192
Chris Lattner548f61d2003-04-23 17:22:12 +0000193 /// emitCastOperation - Common code shared between visitCastInst and
194 /// constant expression cast support.
195 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
196 Value *Src, const Type *DestTy, unsigned TargetReg);
197
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000198 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
199 /// and constant expression support.
200 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
201 MachineBasicBlock::iterator &IP,
202 Value *Op0, Value *Op1,
203 unsigned OperatorClass, unsigned TargetReg);
204
Chris Lattnerc5291f52002-10-27 21:16:59 +0000205 /// copyConstantToRegister - Output the instructions required to put the
206 /// specified constant into the specified register.
207 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000208 void copyConstantToRegister(MachineBasicBlock *MBB,
209 MachineBasicBlock::iterator &MBBI,
210 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000211
Chris Lattner3e130a22003-01-13 00:32:26 +0000212 /// makeAnotherReg - This method returns the next register number we haven't
213 /// yet used.
214 ///
215 /// Long values are handled somewhat specially. They are always allocated
216 /// as pairs of 32 bit integer values. The register number returned is the
217 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
218 /// of the long value.
219 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000220 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000221 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
222 const TargetRegisterClass *RC =
223 TM.getRegisterInfo()->getRegClassForType(Type::IntTy);
224 // Create the lower part
225 F->getSSARegMap()->createVirtualRegister(RC);
226 // Create the upper part.
227 return F->getSSARegMap()->createVirtualRegister(RC)-1;
228 }
229
Chris Lattnerc0812d82002-12-13 06:56:29 +0000230 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner94af4142002-12-25 05:13:53 +0000231 const TargetRegisterClass *RC =
232 TM.getRegisterInfo()->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000233 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000234 }
235
Chris Lattner72614082002-10-25 22:55:53 +0000236 /// getReg - This method turns an LLVM value into a register number. This
237 /// is guaranteed to produce the same register number for a particular value
238 /// every time it is queried.
239 ///
240 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000241 unsigned getReg(Value *V) {
242 // Just append to the end of the current bb.
243 MachineBasicBlock::iterator It = BB->end();
244 return getReg(V, BB, It);
245 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000246 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000247 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000248 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000249 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000250 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000251 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000252 }
Chris Lattner72614082002-10-25 22:55:53 +0000253
Chris Lattner6f8fd252002-10-27 21:23:43 +0000254 // If this operand is a constant, emit the code to copy the constant into
255 // the register here...
256 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000257 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000258 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000259 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000260 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
261 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000262 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000263 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000264 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000265
Chris Lattner72614082002-10-25 22:55:53 +0000266 return Reg;
267 }
Chris Lattner72614082002-10-25 22:55:53 +0000268 };
269}
270
Chris Lattner43189d12002-11-17 20:07:45 +0000271/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
272/// Representation.
273///
274enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000275 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000276};
277
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000278/// getClass - Turn a primitive type into a "class" number which is based on the
279/// size of the type, and whether or not it is floating point.
280///
Chris Lattner43189d12002-11-17 20:07:45 +0000281static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000282 switch (Ty->getPrimitiveID()) {
283 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000284 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000285 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000286 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000287 case Type::IntTyID:
288 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000289 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000290
Chris Lattner94af4142002-12-25 05:13:53 +0000291 case Type::FloatTyID:
292 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000293
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000294 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000295 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000296 default:
297 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000298 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000299 }
300}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000301
Chris Lattner6b993cc2002-12-15 08:02:15 +0000302// getClassB - Just like getClass, but treat boolean values as bytes.
303static inline TypeClass getClassB(const Type *Ty) {
304 if (Ty == Type::BoolTy) return cByte;
305 return getClass(Ty);
306}
307
Chris Lattner06925362002-11-17 21:56:38 +0000308
Chris Lattnerc5291f52002-10-27 21:16:59 +0000309/// copyConstantToRegister - Output the instructions required to put the
310/// specified constant into the specified register.
311///
Chris Lattner8a307e82002-12-16 19:32:50 +0000312void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
313 MachineBasicBlock::iterator &IP,
314 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000315 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000316 unsigned Class = 0;
317 switch (CE->getOpcode()) {
318 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000319 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000320 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000321 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000322 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000323 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000324 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000325
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000326 case Instruction::Xor: ++Class; // FALL THROUGH
327 case Instruction::Or: ++Class; // FALL THROUGH
328 case Instruction::And: ++Class; // FALL THROUGH
329 case Instruction::Sub: ++Class; // FALL THROUGH
330 case Instruction::Add:
331 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
332 Class, R);
333 return;
334
335 default:
336 std::cerr << "Offending expr: " << C << "\n";
337 assert(0 && "Constant expressions not yet handled!\n");
338 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000339 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000340
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000341 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000342 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000343
344 if (Class == cLong) {
345 // Copy the value into the register pair.
346 uint64_t Val;
347 if (C->getType()->isSigned())
348 Val = cast<ConstantSInt>(C)->getValue();
349 else
350 Val = cast<ConstantUInt>(C)->getValue();
351
352 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
353 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
354 return;
355 }
356
Chris Lattner94af4142002-12-25 05:13:53 +0000357 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000358
359 static const unsigned IntegralOpcodeTab[] = {
360 X86::MOVir8, X86::MOVir16, X86::MOVir32
361 };
362
Chris Lattner6b993cc2002-12-15 08:02:15 +0000363 if (C->getType() == Type::BoolTy) {
364 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
365 } else if (C->getType()->isSigned()) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000366 ConstantSInt *CSI = cast<ConstantSInt>(C);
Chris Lattner3e130a22003-01-13 00:32:26 +0000367 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CSI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000368 } else {
369 ConstantUInt *CUI = cast<ConstantUInt>(C);
Brian Gaeke71794c02002-12-13 11:22:48 +0000370 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000371 }
Chris Lattner94af4142002-12-25 05:13:53 +0000372 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
373 double Value = CFP->getValue();
374 if (Value == +0.0)
375 BMI(MBB, IP, X86::FLD0, 0, R);
376 else if (Value == +1.0)
377 BMI(MBB, IP, X86::FLD1, 0, R);
378 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000379 // Otherwise we need to spill the constant to memory...
380 MachineConstantPool *CP = F->getConstantPool();
381 unsigned CPI = CP->getConstantPoolIndex(CFP);
382 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000383 }
384
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000385 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000386 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000387 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000388 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000389 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000390 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000391 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000392 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000393 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000394 }
395}
396
Chris Lattner065faeb2002-12-28 20:24:02 +0000397/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
398/// the stack into virtual registers.
399///
400void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
401 // Emit instructions to load the arguments... On entry to a function on the
402 // X86, the stack frame looks like this:
403 //
404 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000405 // [ESP + 4] -- first argument (leftmost lexically)
406 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000407 // ...
408 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000409 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000410 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000411
412 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
413 unsigned Reg = getReg(*I);
414
Chris Lattner065faeb2002-12-28 20:24:02 +0000415 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000416 switch (getClassB(I->getType())) {
417 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000418 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000419 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
420 break;
421 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000422 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000423 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
424 break;
425 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000426 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000427 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
428 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000429 case cLong:
430 FI = MFI->CreateFixedObject(8, ArgOffset);
431 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
432 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
433 ArgOffset += 4; // longs require 4 additional bytes
434 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000435 case cFP:
436 unsigned Opcode;
437 if (I->getType() == Type::FloatTy) {
438 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000439 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000440 } else {
441 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000442 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000443 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000444 }
445 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
446 break;
447 default:
448 assert(0 && "Unhandled argument type!");
449 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000450 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000451 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000452
453 // If the function takes variable number of arguments, add a frame offset for
454 // the start of the first vararg value... this is used to expand
455 // llvm.va_start.
456 if (Fn.getFunctionType()->isVarArg())
457 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000458}
459
460
Chris Lattner333b2fa2002-12-13 10:09:43 +0000461/// SelectPHINodes - Insert machine code to generate phis. This is tricky
462/// because we have to generate our sources into the source basic blocks, not
463/// the current one.
464///
465void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000466 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000467 const Function &LF = *F->getFunction(); // The LLVM function...
468 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
469 const BasicBlock *BB = I;
470 MachineBasicBlock *MBB = MBBMap[I];
471
472 // Loop over all of the PHI nodes in the LLVM basic block...
473 unsigned NumPHIs = 0;
474 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattner548f61d2003-04-23 17:22:12 +0000475 PHINode *PN = (PHINode*)dyn_cast<PHINode>(I); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000476
Chris Lattner333b2fa2002-12-13 10:09:43 +0000477 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000478 unsigned PHIReg = getReg(*PN);
479 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
480 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
481
482 MachineInstr *LongPhiMI = 0;
483 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
484 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
485 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
486 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000487
Chris Lattnera6e73f12003-05-12 14:22:21 +0000488 // PHIValues - Map of blocks to incoming virtual registers. We use this
489 // so that we only initialize one incoming value for a particular block,
490 // even if the block has multiple entries in the PHI node.
491 //
492 std::map<MachineBasicBlock*, unsigned> PHIValues;
493
Chris Lattner333b2fa2002-12-13 10:09:43 +0000494 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
495 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000496 unsigned ValReg;
497 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
498 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000499
Chris Lattnera6e73f12003-05-12 14:22:21 +0000500 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
501 // We already inserted an initialization of the register for this
502 // predecessor. Recycle it.
503 ValReg = EntryIt->second;
504
505 } else {
506 // Get the incoming value into a virtual register. If it is not
507 // already available in a virtual register, insert the computation
508 // code into PredMBB
509 //
510 MachineBasicBlock::iterator PI = PredMBB->end();
511 while (PI != PredMBB->begin() &&
512 TII.isTerminatorInstr((*(PI-1))->getOpcode()))
513 --PI;
514 ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
515
516 // Remember that we inserted a value for this PHI for this predecessor
517 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
518 }
519
Chris Lattner3e130a22003-01-13 00:32:26 +0000520 PhiMI->addRegOperand(ValReg);
521 PhiMI->addMachineBasicBlockOperand(PredMBB);
522 if (LongPhiMI) {
523 LongPhiMI->addRegOperand(ValReg+1);
524 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
525 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000526 }
527 }
528 }
529}
530
Chris Lattner6d40c192003-01-16 16:43:00 +0000531// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
532// the conditional branch instruction which is the only user of the cc
533// instruction. This is the case if the conditional branch is the only user of
534// the setcc, and if the setcc is in the same basic block as the conditional
535// branch. We also don't handle long arguments below, so we reject them here as
536// well.
537//
538static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
539 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
540 if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
541 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
542 const Type *Ty = SCI->getOperand(0)->getType();
543 if (Ty != Type::LongTy && Ty != Type::ULongTy)
544 return SCI;
545 }
546 return 0;
547}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000548
Chris Lattner6d40c192003-01-16 16:43:00 +0000549// Return a fixed numbering for setcc instructions which does not depend on the
550// order of the opcodes.
551//
552static unsigned getSetCCNumber(unsigned Opcode) {
553 switch(Opcode) {
554 default: assert(0 && "Unknown setcc instruction!");
555 case Instruction::SetEQ: return 0;
556 case Instruction::SetNE: return 1;
557 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000558 case Instruction::SetGE: return 3;
559 case Instruction::SetGT: return 4;
560 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000561 }
562}
Chris Lattner06925362002-11-17 21:56:38 +0000563
Chris Lattner6d40c192003-01-16 16:43:00 +0000564// LLVM -> X86 signed X86 unsigned
565// ----- ---------- ------------
566// seteq -> sete sete
567// setne -> setne setne
568// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000569// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000570// setgt -> setg seta
571// setle -> setle setbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000572static const unsigned SetCCOpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000573 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
574 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
Chris Lattner6d40c192003-01-16 16:43:00 +0000575};
576
577bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1) {
578
Brian Gaeke1749d632002-11-07 17:59:21 +0000579 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000580 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000581 bool isSigned = CompTy->isSigned();
Chris Lattner3e130a22003-01-13 00:32:26 +0000582 unsigned Class = getClassB(CompTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000583 unsigned Op0r = getReg(Op0);
584
585 // Special case handling of: cmp R, i
586 if (Class == cByte || Class == cShort || Class == cInt)
587 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
588 uint64_t Op1v;
589 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
590 Op1v = CSI->getValue();
591 else
592 Op1v = cast<ConstantUInt>(CI)->getValue();
593 // Mask off any upper bits of the constant, if there are any...
594 Op1v &= (1ULL << (8 << Class)) - 1;
595
596 switch (Class) {
597 case cByte: BuildMI(BB, X86::CMPri8, 2).addReg(Op0r).addZImm(Op1v);break;
598 case cShort: BuildMI(BB, X86::CMPri16,2).addReg(Op0r).addZImm(Op1v);break;
599 case cInt: BuildMI(BB, X86::CMPri32,2).addReg(Op0r).addZImm(Op1v);break;
600 default:
601 assert(0 && "Invalid class!");
602 }
603 return isSigned;
604 }
605
606 unsigned Op1r = getReg(Op1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000607 switch (Class) {
608 default: assert(0 && "Unknown type class!");
609 // Emit: cmp <var1>, <var2> (do the comparison). We can
610 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
611 // 32-bit.
612 case cByte:
Chris Lattner333864d2003-06-05 19:30:30 +0000613 BuildMI(BB, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000614 break;
615 case cShort:
Chris Lattner333864d2003-06-05 19:30:30 +0000616 BuildMI(BB, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000617 break;
618 case cInt:
Chris Lattner333864d2003-06-05 19:30:30 +0000619 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000620 break;
621 case cFP:
Chris Lattner333864d2003-06-05 19:30:30 +0000622 BuildMI(BB, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000623 BuildMI(BB, X86::FNSTSWr8, 0);
624 BuildMI(BB, X86::SAHF, 1);
625 isSigned = false; // Compare with unsigned operators
626 break;
627
628 case cLong:
629 if (OpNum < 2) { // seteq, setne
630 unsigned LoTmp = makeAnotherReg(Type::IntTy);
631 unsigned HiTmp = makeAnotherReg(Type::IntTy);
632 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000633 BuildMI(BB, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
634 BuildMI(BB, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000635 BuildMI(BB, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
636 break; // Allow the sete or setne to be generated from flags set by OR
637 } else {
638 // Emit a sequence of code which compares the high and low parts once
639 // each, then uses a conditional move to handle the overflow case. For
640 // example, a setlt for long would generate code like this:
641 //
642 // AL = lo(op1) < lo(op2) // Signedness depends on operands
643 // BL = hi(op1) < hi(op2) // Always unsigned comparison
644 // dest = hi(op1) == hi(op2) ? AL : BL;
645 //
646
Chris Lattner6d40c192003-01-16 16:43:00 +0000647 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000648 // classes! Until then, hardcode registers so that we can deal with their
649 // aliases (because we don't have conditional byte moves).
650 //
Chris Lattner333864d2003-06-05 19:30:30 +0000651 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner6d40c192003-01-16 16:43:00 +0000652 BuildMI(BB, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Chris Lattner333864d2003-06-05 19:30:30 +0000653 BuildMI(BB, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner6d40c192003-01-16 16:43:00 +0000654 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
Chris Lattner3e130a22003-01-13 00:32:26 +0000655 BuildMI(BB, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000656 // NOTE: visitSetCondInst knows that the value is dumped into the BL
657 // register at this point for long values...
658 return isSigned;
Chris Lattner3e130a22003-01-13 00:32:26 +0000659 }
660 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000661 return isSigned;
662}
Chris Lattner3e130a22003-01-13 00:32:26 +0000663
Chris Lattner6d40c192003-01-16 16:43:00 +0000664
665/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
666/// register, then move it to wherever the result should be.
667///
668void ISel::visitSetCondInst(SetCondInst &I) {
669 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
670
671 unsigned OpNum = getSetCCNumber(I.getOpcode());
672 unsigned DestReg = getReg(I);
673 bool isSigned = EmitComparisonGetSignedness(OpNum, I.getOperand(0),
674 I.getOperand(1));
675
676 if (getClassB(I.getOperand(0)->getType()) != cLong || OpNum < 2) {
677 // Handle normal comparisons with a setcc instruction...
678 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, DestReg);
679 } else {
680 // Handle long comparisons by copying the value which is already in BL into
681 // the register we want...
682 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(X86::BL);
683 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000684}
Chris Lattner51b49a92002-11-02 19:45:49 +0000685
Brian Gaekec2505982002-11-30 11:57:28 +0000686/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
687/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000688void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
689 bool isUnsigned = VR.Ty->isUnsigned();
690 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000691 case cByte:
692 // Extend value into target register (8->32)
693 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000694 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000695 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000696 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000697 break;
698 case cShort:
699 // Extend value into target register (16->32)
700 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000701 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000702 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000703 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000704 break;
705 case cInt:
706 // Move value into target register (32->32)
Chris Lattner3e130a22003-01-13 00:32:26 +0000707 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000708 break;
709 default:
710 assert(0 && "Unpromotable operand class in promote32");
711 }
Brian Gaekec2505982002-11-30 11:57:28 +0000712}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000713
Chris Lattner72614082002-10-25 22:55:53 +0000714/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
715/// we have the following possibilities:
716///
717/// ret void: No return value, simply emit a 'ret' instruction
718/// ret sbyte, ubyte : Extend value into EAX and return
719/// ret short, ushort: Extend value into EAX and return
720/// ret int, uint : Move value into EAX and return
721/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000722/// ret long, ulong : Move value into EAX/EDX and return
723/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000724///
Chris Lattner3e130a22003-01-13 00:32:26 +0000725void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000726 if (I.getNumOperands() == 0) {
727 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
728 return;
729 }
730
731 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000732 unsigned RetReg = getReg(RetVal);
733 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000734 case cByte: // integral return values: extend or move into EAX and return
735 case cShort:
736 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000737 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000738 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000739 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000740 break;
741 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000742 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000743 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000744 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000745 break;
746 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000747 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
748 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000749 // Declare that EAX & EDX are live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000750 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000751 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000752 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000753 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000754 }
Chris Lattner43189d12002-11-17 20:07:45 +0000755 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000756 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000757}
758
Chris Lattner55f6fab2003-01-16 18:07:23 +0000759// getBlockAfter - Return the basic block which occurs lexically after the
760// specified one.
761static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
762 Function::iterator I = BB; ++I; // Get iterator to next block
763 return I != BB->getParent()->end() ? &*I : 0;
764}
765
Chris Lattner51b49a92002-11-02 19:45:49 +0000766/// visitBranchInst - Handle conditional and unconditional branches here. Note
767/// that since code layout is frozen at this point, that if we are trying to
768/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000769/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000770///
Chris Lattner94af4142002-12-25 05:13:53 +0000771void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000772 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
773
774 if (!BI.isConditional()) { // Unconditional branch?
775 if (BI.getSuccessor(0) != NextBB)
776 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000777 return;
778 }
779
780 // See if we can fold the setcc into the branch itself...
781 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
782 if (SCI == 0) {
783 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
784 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000785 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000786 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000787 if (BI.getSuccessor(1) == NextBB) {
788 if (BI.getSuccessor(0) != NextBB)
789 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
790 } else {
791 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
792
793 if (BI.getSuccessor(0) != NextBB)
794 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
795 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000796 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000797 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000798
799 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
800 bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
801 SCI->getOperand(1));
802
803 // LLVM -> X86 signed X86 unsigned
804 // ----- ---------- ------------
805 // seteq -> je je
806 // setne -> jne jne
807 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000808 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000809 // setgt -> jg ja
810 // setle -> jle jbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000811 static const unsigned OpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000812 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
813 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
Chris Lattner6d40c192003-01-16 16:43:00 +0000814 };
815
Chris Lattner55f6fab2003-01-16 18:07:23 +0000816 if (BI.getSuccessor(0) != NextBB) {
817 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
818 if (BI.getSuccessor(1) != NextBB)
819 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
820 } else {
821 // Change to the inverse condition...
822 if (BI.getSuccessor(1) != NextBB) {
823 OpNum ^= 1;
824 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
825 }
826 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000827}
828
Chris Lattner3e130a22003-01-13 00:32:26 +0000829
830/// doCall - This emits an abstract call instruction, setting up the arguments
831/// and the return value as appropriate. For the actual function call itself,
832/// it inserts the specified CallMI instruction into the stream.
833///
834void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
835 const std::vector<ValueRecord> &Args) {
836
Chris Lattner065faeb2002-12-28 20:24:02 +0000837 // Count how many bytes are to be pushed on the stack...
838 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000839
Chris Lattner3e130a22003-01-13 00:32:26 +0000840 if (!Args.empty()) {
841 for (unsigned i = 0, e = Args.size(); i != e; ++i)
842 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000843 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000844 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000845 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000846 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000847 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000848 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000849 break;
850 default: assert(0 && "Unknown class!");
851 }
852
853 // Adjust the stack pointer for the new arguments...
854 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
855
856 // Arguments go on the stack in reverse order, as specified by the ABI.
857 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000858 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
859 unsigned ArgReg = Args[i].Reg;
860 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000861 case cByte:
862 case cShort: {
863 // Promote arg to 32 bits wide into a temporary register...
864 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000865 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000866 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
867 X86::ESP, ArgOffset).addReg(R);
868 break;
869 }
870 case cInt:
871 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000872 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000873 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000874 case cLong:
875 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
876 X86::ESP, ArgOffset).addReg(ArgReg);
877 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
878 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
879 ArgOffset += 4; // 8 byte entry, not 4.
880 break;
881
Chris Lattner065faeb2002-12-28 20:24:02 +0000882 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000883 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000884 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000885 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000886 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000887 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
888 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
889 X86::ESP, ArgOffset).addReg(ArgReg);
890 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000891 }
892 break;
893
Chris Lattner3e130a22003-01-13 00:32:26 +0000894 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000895 }
896 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000897 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000898 } else {
899 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000900 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000901
Chris Lattner3e130a22003-01-13 00:32:26 +0000902 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000903
Chris Lattner065faeb2002-12-28 20:24:02 +0000904 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000905
906 // If there is a return value, scavenge the result from the location the call
907 // leaves it in...
908 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000909 if (Ret.Ty != Type::VoidTy) {
910 unsigned DestClass = getClassB(Ret.Ty);
911 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000912 case cByte:
913 case cShort:
914 case cInt: {
915 // Integral results are in %eax, or the appropriate portion
916 // thereof.
917 static const unsigned regRegMove[] = {
918 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
919 };
920 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000921 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000922 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000923 }
Chris Lattner94af4142002-12-25 05:13:53 +0000924 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000925 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000926 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000927 case cLong: // Long values are left in EDX:EAX
928 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
929 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
930 break;
931 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000932 }
Chris Lattnera3243642002-12-04 23:45:28 +0000933 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000934}
Chris Lattner2df035b2002-11-02 19:27:56 +0000935
Chris Lattner3e130a22003-01-13 00:32:26 +0000936
937/// visitCallInst - Push args on stack and do a procedure call instruction.
938void ISel::visitCallInst(CallInst &CI) {
939 MachineInstr *TheCall;
940 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +0000941 // Is it an intrinsic function call?
942 if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
943 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
944 return;
945 }
946
Chris Lattner3e130a22003-01-13 00:32:26 +0000947 // Emit a CALL instruction with PC-relative displacement.
948 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
949 } else { // Emit an indirect call...
950 unsigned Reg = getReg(CI.getCalledValue());
951 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
952 }
953
954 std::vector<ValueRecord> Args;
955 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
956 Args.push_back(ValueRecord(getReg(CI.getOperand(i)),
957 CI.getOperand(i)->getType()));
958
959 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
960 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
961}
962
Chris Lattnereca195e2003-05-08 19:44:13 +0000963void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
964 unsigned TmpReg1, TmpReg2;
965 switch (ID) {
966 case LLVMIntrinsic::va_start:
967 // Get the address of the first vararg value...
968 TmpReg1 = makeAnotherReg(Type::UIntTy);
969 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
970 TmpReg2 = getReg(CI.getOperand(1));
971 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
972 return;
973
974 case LLVMIntrinsic::va_end: return; // Noop on X86
975 case LLVMIntrinsic::va_copy:
976 TmpReg1 = getReg(CI.getOperand(2)); // Get existing va_list
977 TmpReg2 = getReg(CI.getOperand(1)); // Get va_list* to store into
978 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
979 return;
980
Chris Lattnerc151e4f2003-06-29 16:42:32 +0000981 case LLVMIntrinsic::longjmp:
982 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("abort", true);
983 case LLVMIntrinsic::setjmp:
984 return;
Chris Lattnereca195e2003-05-08 19:44:13 +0000985 default: assert(0 && "Unknown intrinsic for X86!");
986 }
987}
988
989
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000990/// visitSimpleBinary - Implement simple binary operators for integral types...
991/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
992/// Xor.
993void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
994 unsigned DestReg = getReg(B);
995 MachineBasicBlock::iterator MI = BB->end();
996 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
997 OperatorClass, DestReg);
998}
Chris Lattner3e130a22003-01-13 00:32:26 +0000999
Chris Lattner68aad932002-11-02 20:13:22 +00001000/// visitSimpleBinary - Implement simple binary operators for integral types...
1001/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
1002/// 4 for Xor.
1003///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001004/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1005/// and constant expression support.
1006void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
1007 MachineBasicBlock::iterator &IP,
1008 Value *Op0, Value *Op1,
1009 unsigned OperatorClass,unsigned TargetReg){
1010 unsigned Class = getClassB(Op0->getType());
Chris Lattner35333e12003-06-05 18:28:55 +00001011 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1012 static const unsigned OpcodeTab[][4] = {
1013 // Arithmetic operators
1014 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1015 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1016
1017 // Bitwise operators
1018 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1019 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1020 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001021 };
Chris Lattner35333e12003-06-05 18:28:55 +00001022
1023 bool isLong = false;
1024 if (Class == cLong) {
1025 isLong = true;
1026 Class = cInt; // Bottom 32 bits are handled just like ints
1027 }
1028
1029 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1030 assert(Opcode && "Floating point arguments to logical inst?");
1031 unsigned Op0r = getReg(Op0, BB, IP);
1032 unsigned Op1r = getReg(Op1, BB, IP);
1033 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
1034
1035 if (isLong) { // Handle the upper 32 bits of long values...
1036 static const unsigned TopTab[] = {
1037 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1038 };
1039 BMI(BB, IP, TopTab[OperatorClass], 2,
1040 TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
1041 }
1042 } else {
1043 // Special case: op Reg, <const>
1044 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1045
1046 static const unsigned OpcodeTab[][3] = {
1047 // Arithmetic operators
1048 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1049 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1050
1051 // Bitwise operators
1052 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1053 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1054 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1055 };
1056
1057 assert(Class < 3 && "General code handles 64-bit integer types!");
1058 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1059 unsigned Op0r = getReg(Op0, BB, IP);
1060 uint64_t Op1v;
1061 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op1C))
1062 Op1v = CSI->getValue();
1063 else
1064 Op1v = cast<ConstantUInt>(Op1C)->getValue();
1065
1066 // Mask off any upper bits of the constant, if there are any...
1067 Op1v &= (1ULL << (8 << Class)) - 1;
1068 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addZImm(Op1v);
Chris Lattner3e130a22003-01-13 00:32:26 +00001069 }
Chris Lattnere2954c82002-11-02 20:04:26 +00001070}
1071
Chris Lattner3e130a22003-01-13 00:32:26 +00001072/// doMultiply - Emit appropriate instructions to multiply together the
1073/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1074/// result should be given as DestTy.
1075///
Chris Lattner8a307e82002-12-16 19:32:50 +00001076void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001077 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001078 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001079 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001080 switch (Class) {
1081 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001082 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001083 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001084 case cInt:
1085 case cShort:
1086 BMI(BB, MBBI, Class == cInt ? X86::IMULr32 : X86::IMULr16, 2, DestReg)
1087 .addReg(op0Reg).addReg(op1Reg);
1088 return;
1089 case cByte:
1090 // Must use the MUL instruction, which forces use of AL...
1091 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1092 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1093 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1094 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001095 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001096 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001097 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001098}
1099
Chris Lattnerca9671d2002-11-02 20:28:58 +00001100/// visitMul - Multiplies are not simple binary operators because they must deal
1101/// with the EAX register explicitly.
1102///
1103void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001104 unsigned Op0Reg = getReg(I.getOperand(0));
1105 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +00001106 unsigned DestReg = getReg(I);
1107
1108 // Simple scalar multiply?
1109 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
1110 MachineBasicBlock::iterator MBBI = BB->end();
1111 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1112 } else {
1113 // Long value. We have to do things the hard way...
1114 // Multiply the two low parts... capturing carry into EDX
1115 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1116 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1117
1118 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1119 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1120 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1121
1122 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001123 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1124 BMI(BB, MBBI, X86::IMULr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001125
1126 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1127 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
1128 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1129
1130 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001131 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1132 BMI(BB, MBBI, X86::IMULr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001133
1134 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1135 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1136 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001137}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001138
Chris Lattner06925362002-11-17 21:56:38 +00001139
Chris Lattnerf01729e2002-11-02 20:54:46 +00001140/// visitDivRem - Handle division and remainder instructions... these
1141/// instruction both require the same instructions to be generated, they just
1142/// select the result from a different register. Note that both of these
1143/// instructions work differently for signed and unsigned operands.
1144///
1145void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001146 unsigned Class = getClass(I.getType());
1147 unsigned Op0Reg = getReg(I.getOperand(0));
1148 unsigned Op1Reg = getReg(I.getOperand(1));
1149 unsigned ResultReg = getReg(I);
1150
1151 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001152 case cFP: // Floating point divide
Chris Lattner94af4142002-12-25 05:13:53 +00001153 if (I.getOpcode() == Instruction::Div)
1154 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001155 else { // Floating point remainder...
1156 MachineInstr *TheCall =
1157 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
1158 std::vector<ValueRecord> Args;
1159 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1160 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1161 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1162 }
Chris Lattner94af4142002-12-25 05:13:53 +00001163 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001164 case cLong: {
1165 static const char *FnName[] =
1166 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1167
1168 unsigned NameIdx = I.getType()->isUnsigned()*2;
1169 NameIdx += I.getOpcode() == Instruction::Div;
1170 MachineInstr *TheCall =
1171 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1172
1173 std::vector<ValueRecord> Args;
1174 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1175 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1176 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1177 return;
1178 }
1179 case cByte: case cShort: case cInt:
1180 break; // Small integerals, handled below...
1181 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001182 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001183
1184 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1185 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001186 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001187 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1188 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1189
1190 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001191 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1192 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001193 };
1194
1195 bool isSigned = I.getType()->isSigned();
1196 unsigned Reg = Regs[Class];
1197 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001198
1199 // Put the first operand into one of the A registers...
1200 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
1201
1202 if (isSigned) {
1203 // Emit a sign extension instruction...
Chris Lattner7b52c032003-06-22 03:31:18 +00001204 unsigned ShiftResult = makeAnotherReg(I.getType());
1205 BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1206 BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001207 } else {
1208 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
1209 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
1210 }
1211
Chris Lattner06925362002-11-17 21:56:38 +00001212 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +00001213 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001214
Chris Lattnerf01729e2002-11-02 20:54:46 +00001215 // Figure out which register we want to pick the result out of...
1216 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
1217
Chris Lattnerf01729e2002-11-02 20:54:46 +00001218 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +00001219 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001220}
Chris Lattnere2954c82002-11-02 20:04:26 +00001221
Chris Lattner06925362002-11-17 21:56:38 +00001222
Brian Gaekea1719c92002-10-31 23:03:59 +00001223/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1224/// for constant immediate shift values, and for constant immediate
1225/// shift values equal to 1. Even the general case is sort of special,
1226/// because the shift amount has to be in CL, not just any old register.
1227///
Chris Lattner3e130a22003-01-13 00:32:26 +00001228void ISel::visitShiftInst(ShiftInst &I) {
1229 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001230 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001231 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001232 bool isSigned = I.getType()->isSigned();
1233 unsigned Class = getClass(I.getType());
1234
1235 static const unsigned ConstantOperand[][4] = {
1236 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1237 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1238 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1239 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1240 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001241
Chris Lattner3e130a22003-01-13 00:32:26 +00001242 static const unsigned NonConstantOperand[][4] = {
1243 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1244 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1245 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1246 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1247 };
Chris Lattner796df732002-11-02 00:44:25 +00001248
Chris Lattner3e130a22003-01-13 00:32:26 +00001249 // Longs, as usual, are handled specially...
1250 if (Class == cLong) {
1251 // If we have a constant shift, we can generate much more efficient code
1252 // than otherwise...
1253 //
1254 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1255 unsigned Amount = CUI->getValue();
1256 if (Amount < 32) {
1257 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1258 if (isLeftShift) {
1259 BuildMI(BB, Opc[3], 3,
1260 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1261 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1262 } else {
1263 BuildMI(BB, Opc[3], 3,
1264 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1265 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1266 }
1267 } else { // Shifting more than 32 bits
1268 Amount -= 32;
1269 if (isLeftShift) {
1270 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1271 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1272 } else {
1273 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1274 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1275 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1276 }
1277 }
1278 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001279 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1280
1281 if (!isLeftShift && isSigned) {
1282 // If this is a SHR of a Long, then we need to do funny sign extension
1283 // stuff. TmpReg gets the value to use as the high-part if we are
1284 // shifting more than 32 bits.
1285 BuildMI(BB, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
1286 } else {
1287 // Other shifts use a fixed zero value if the shift is more than 32
1288 // bits.
1289 BuildMI(BB, X86::MOVir32, 1, TmpReg).addZImm(0);
1290 }
1291
1292 // Initialize CL with the shift amount...
1293 unsigned ShiftAmount = getReg(I.getOperand(1));
1294 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmount);
1295
1296 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1297 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1298 if (isLeftShift) {
1299 // TmpReg2 = shld inHi, inLo
1300 BuildMI(BB, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
1301 // TmpReg3 = shl inLo, CL
1302 BuildMI(BB, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
1303
1304 // Set the flags to indicate whether the shift was by more than 32 bits.
1305 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1306
1307 // DestHi = (>32) ? TmpReg3 : TmpReg2;
1308 BuildMI(BB, X86::CMOVNErr32, 2,
1309 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1310 // DestLo = (>32) ? TmpReg : TmpReg3;
1311 BuildMI(BB, X86::CMOVNErr32, 2, DestReg).addReg(TmpReg3).addReg(TmpReg);
1312 } else {
1313 // TmpReg2 = shrd inLo, inHi
1314 BuildMI(BB, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
1315 // TmpReg3 = s[ah]r inHi, CL
1316 BuildMI(BB, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
1317 .addReg(SrcReg+1);
1318
1319 // Set the flags to indicate whether the shift was by more than 32 bits.
1320 BuildMI(BB, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
1321
1322 // DestLo = (>32) ? TmpReg3 : TmpReg2;
1323 BuildMI(BB, X86::CMOVNErr32, 2,
1324 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1325
1326 // DestHi = (>32) ? TmpReg : TmpReg3;
1327 BuildMI(BB, X86::CMOVNErr32, 2,
1328 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1329 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001330 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001331 return;
1332 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001333
Chris Lattner3e130a22003-01-13 00:32:26 +00001334 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1335 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1336 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001337
Chris Lattner3e130a22003-01-13 00:32:26 +00001338 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1339 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1340 } else { // The shift amount is non-constant.
1341 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001342
Chris Lattner3e130a22003-01-13 00:32:26 +00001343 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1344 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1345 }
1346}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001347
Chris Lattner3e130a22003-01-13 00:32:26 +00001348
1349/// doFPLoad - This method is used to load an FP value from memory using the
1350/// current endianness. NOTE: This method returns a partially constructed load
1351/// instruction which needs to have the memory source filled in still.
1352///
1353MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1354 MachineBasicBlock::iterator &MBBI,
1355 const Type *Ty, unsigned DestReg) {
1356 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1357 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1358
1359 if (TM.getTargetData().isLittleEndian()) // fast path...
1360 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1361
1362 // If we are big-endian, start by creating an LEA instruction to represent the
1363 // address of the memory location to load from...
1364 //
1365 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1366 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1367
1368 // Allocate a temporary stack slot to transform the value into...
1369 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1370
1371 // Perform the bswaps 32 bits at a time...
1372 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1373 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1374 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1375 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1376 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1377 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1378 FrameIdx, Offset).addReg(TmpReg2);
1379
1380 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1381 TmpReg1 = makeAnotherReg(Type::UIntTy);
1382 TmpReg2 = makeAnotherReg(Type::UIntTy);
1383
1384 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1385 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1386 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1387 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1388 }
1389
1390 // Now we can reload the final byteswapped result into the final destination.
1391 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1392 return Result;
1393}
1394
1395/// EmitByteSwap - Byteswap SrcReg into DestReg.
1396///
1397void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1398 // Emit the byte swap instruction...
1399 switch (Class) {
1400 case cByte:
Misha Brukmanbaf06072003-04-22 17:54:23 +00001401 // No byteswap necessary for 8 bit value...
Chris Lattner3e130a22003-01-13 00:32:26 +00001402 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1403 break;
1404 case cInt:
1405 // Use the 32 bit bswap instruction to do a 32 bit swap...
1406 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1407 break;
1408
1409 case cShort:
1410 // For 16 bit we have to use an xchg instruction, because there is no
Misha Brukmanbaf06072003-04-22 17:54:23 +00001411 // 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
Chris Lattner3e130a22003-01-13 00:32:26 +00001412 // into AX to do the xchg.
1413 //
1414 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1415 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1416 .addReg(X86::AH, MOTy::UseAndDef);
1417 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1418 break;
1419 default: assert(0 && "Cannot byteswap this class!");
1420 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001421}
1422
Chris Lattner06925362002-11-17 21:56:38 +00001423
Chris Lattner6fc3c522002-11-17 21:11:55 +00001424/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001425/// instruction. The load and store instructions are the only place where we
1426/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001427///
1428void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001429 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1430 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001431 unsigned SrcAddrReg = getReg(I.getOperand(0));
1432 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001433
Chris Lattner6fc3c522002-11-17 21:11:55 +00001434 unsigned Class = getClass(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001435 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001436 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001437 MachineBasicBlock::iterator MBBI = BB->end();
1438 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001439 return;
1440 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001441 case cLong: case cInt: case cShort: case cByte:
1442 break; // Integers of various sizes handled below
1443 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001444 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001445
Chris Lattnere8f0d922002-12-24 00:03:11 +00001446 // We need to adjust the input pointer if we are emulating a big-endian
1447 // long-pointer target. On these systems, the pointer that we are interested
1448 // in is in the upper part of the eight byte memory image of the pointer. It
1449 // also happens to be byte-swapped, but this will be handled later.
1450 //
1451 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1452 unsigned R = makeAnotherReg(Type::UIntTy);
1453 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1454 SrcAddrReg = R;
1455 }
Chris Lattner94af4142002-12-25 05:13:53 +00001456
Chris Lattnere8f0d922002-12-24 00:03:11 +00001457 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001458 if (!isLittleEndian) // If big endian we need an intermediate stage
1459 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001460
Chris Lattner3e130a22003-01-13 00:32:26 +00001461 static const unsigned Opcode[] = {
1462 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1463 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001464 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1465
Chris Lattner3e130a22003-01-13 00:32:26 +00001466 // Handle long values now...
1467 if (Class == cLong) {
1468 if (isLittleEndian) {
1469 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1470 } else {
1471 EmitByteSwap(IReg+1, DestReg, cInt);
1472 unsigned TempReg = makeAnotherReg(Type::IntTy);
1473 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1474 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001475 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001476 return;
1477 }
1478
1479 if (!isLittleEndian)
1480 EmitByteSwap(IReg, DestReg, Class);
1481}
1482
1483
1484/// doFPStore - This method is used to store an FP value to memory using the
1485/// current endianness.
1486///
1487void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1488 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1489 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1490
1491 if (TM.getTargetData().isLittleEndian()) { // fast path...
1492 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1493 return;
1494 }
1495
1496 // Allocate a temporary stack slot to transform the value into...
1497 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1498 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1499 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1500
1501 // Store the value into a temporary stack slot...
1502 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1503
1504 // Perform the bswaps 32 bits at a time...
1505 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1506 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1507 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1508 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1509 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1510 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1511 DestAddrReg, Offset).addReg(TmpReg2);
1512
1513 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1514 TmpReg1 = makeAnotherReg(Type::UIntTy);
1515 TmpReg2 = makeAnotherReg(Type::UIntTy);
1516
1517 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1518 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1519 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1520 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001521 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001522}
1523
Chris Lattner06925362002-11-17 21:56:38 +00001524
Chris Lattner6fc3c522002-11-17 21:11:55 +00001525/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1526/// instruction.
1527///
1528void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001529 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1530 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001531 unsigned ValReg = getReg(I.getOperand(0));
1532 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001533
Chris Lattner94af4142002-12-25 05:13:53 +00001534 unsigned Class = getClass(I.getOperand(0)->getType());
1535 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001536 case cLong:
1537 if (isLittleEndian) {
1538 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1539 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1540 AddressReg, 4).addReg(ValReg+1);
1541 } else {
1542 unsigned T1 = makeAnotherReg(Type::IntTy);
1543 unsigned T2 = makeAnotherReg(Type::IntTy);
1544 EmitByteSwap(T1, ValReg , cInt);
1545 EmitByteSwap(T2, ValReg+1, cInt);
1546 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1547 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1548 }
Chris Lattner94af4142002-12-25 05:13:53 +00001549 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001550 case cFP:
1551 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1552 return;
1553 case cInt: case cShort: case cByte:
1554 break; // Integers of various sizes handled below
1555 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001556 }
1557
1558 if (!isLittleEndian && hasLongPointers &&
1559 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001560 unsigned R = makeAnotherReg(Type::UIntTy);
1561 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1562 AddressReg = R;
1563 }
1564
Chris Lattner94af4142002-12-25 05:13:53 +00001565 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001566 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1567 EmitByteSwap(R, ValReg, Class);
1568 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001569 }
1570
Chris Lattner94af4142002-12-25 05:13:53 +00001571 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001572 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1573}
1574
1575
Brian Gaekec11232a2002-11-26 10:43:30 +00001576/// visitCastInst - Here we have various kinds of copying with or without
1577/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001578void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001579 Value *Op = CI.getOperand(0);
1580 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1581 // of the case are GEP instructions, then the cast does not need to be
1582 // generated explicitly, it will be folded into the GEP.
1583 if (CI.getType() == Type::LongTy &&
1584 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1585 bool AllUsesAreGEPs = true;
1586 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1587 if (!isa<GetElementPtrInst>(*I)) {
1588 AllUsesAreGEPs = false;
1589 break;
1590 }
1591
1592 // No need to codegen this cast if all users are getelementptr instrs...
1593 if (AllUsesAreGEPs) return;
1594 }
1595
Chris Lattner548f61d2003-04-23 17:22:12 +00001596 unsigned DestReg = getReg(CI);
1597 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001598 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001599}
1600
1601/// emitCastOperation - Common code shared between visitCastInst and
1602/// constant expression cast support.
1603void ISel::emitCastOperation(MachineBasicBlock *BB,
1604 MachineBasicBlock::iterator &IP,
1605 Value *Src, const Type *DestTy,
1606 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001607 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001608 const Type *SrcTy = Src->getType();
1609 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001610 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001611
Chris Lattner3e130a22003-01-13 00:32:26 +00001612 // Implement casts to bool by using compare on the operand followed by set if
1613 // not zero on the result.
1614 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001615 switch (SrcClass) {
1616 case cByte:
1617 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1618 break;
1619 case cShort:
1620 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1621 break;
1622 case cInt:
1623 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1624 break;
1625 case cLong: {
1626 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1627 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1628 break;
1629 }
1630 case cFP:
1631 assert(0 && "FIXME: implement cast FP to bool");
1632 abort();
1633 }
1634
1635 // If the zero flag is not set, then the value is true, set the byte to
1636 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001637 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001638 return;
1639 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001640
1641 static const unsigned RegRegMove[] = {
1642 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1643 };
1644
1645 // Implement casts between values of the same type class (as determined by
1646 // getClass) by using a register-to-register move.
1647 if (SrcClass == DestClass) {
1648 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001649 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001650 } else if (SrcClass == cFP) {
1651 if (SrcTy == Type::FloatTy) { // double -> float
1652 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001653 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001654 } else { // float -> double
1655 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1656 "Unknown cFP member!");
1657 // Truncate from double to float by storing to memory as short, then
1658 // reading it back.
1659 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1660 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Chris Lattner548f61d2003-04-23 17:22:12 +00001661 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1662 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001663 }
1664 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001665 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1666 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001667 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001668 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001669 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001670 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001671 return;
1672 }
1673
1674 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1675 // or zero extension, depending on whether the source type was signed.
1676 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1677 SrcClass < DestClass) {
1678 bool isLong = DestClass == cLong;
1679 if (isLong) DestClass = cInt;
1680
1681 static const unsigned Opc[][4] = {
1682 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1683 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1684 };
1685
1686 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001687 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1688 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001689
1690 if (isLong) { // Handle upper 32 bits as appropriate...
1691 if (isUnsigned) // Zero out top bits...
Chris Lattner548f61d2003-04-23 17:22:12 +00001692 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001693 else // Sign extend bottom half...
Chris Lattner548f61d2003-04-23 17:22:12 +00001694 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001695 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001696 return;
1697 }
1698
1699 // Special case long -> int ...
1700 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001701 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001702 return;
1703 }
1704
1705 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1706 // move out of AX or AL.
1707 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1708 && SrcClass > DestClass) {
1709 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001710 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1711 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001712 return;
1713 }
1714
1715 // Handle casts from integer to floating point now...
1716 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001717 // Promote the integer to a type supported by FLD. We do this because there
1718 // are no unsigned FLD instructions, so we must promote an unsigned value to
1719 // a larger signed value, then use FLD on the larger value.
1720 //
1721 const Type *PromoteType = 0;
1722 unsigned PromoteOpcode;
1723 switch (SrcTy->getPrimitiveID()) {
1724 case Type::BoolTyID:
1725 case Type::SByteTyID:
1726 // We don't have the facilities for directly loading byte sized data from
1727 // memory (even signed). Promote it to 16 bits.
1728 PromoteType = Type::ShortTy;
1729 PromoteOpcode = X86::MOVSXr16r8;
1730 break;
1731 case Type::UByteTyID:
1732 PromoteType = Type::ShortTy;
1733 PromoteOpcode = X86::MOVZXr16r8;
1734 break;
1735 case Type::UShortTyID:
1736 PromoteType = Type::IntTy;
1737 PromoteOpcode = X86::MOVZXr32r16;
1738 break;
1739 case Type::UIntTyID: {
1740 // Make a 64 bit temporary... and zero out the top of it...
1741 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1742 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1743 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1744 SrcTy = Type::LongTy;
1745 SrcClass = cLong;
1746 SrcReg = TmpReg;
1747 break;
1748 }
1749 case Type::ULongTyID:
1750 assert("FIXME: not implemented: cast ulong X to fp type!");
1751 default: // No promotion needed...
1752 break;
1753 }
1754
1755 if (PromoteType) {
1756 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001757 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1758 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001759 SrcTy = PromoteType;
1760 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001761 SrcReg = TmpReg;
1762 }
1763
1764 // Spill the integer to memory and reload it from there...
1765 int FrameIdx =
1766 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1767
1768 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001769 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1770 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001771 FrameIdx, 4).addReg(SrcReg+1);
1772 } else {
1773 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001774 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001775 }
1776
1777 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001778 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001779 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001780 return;
1781 }
1782
1783 // Handle casts from floating point to integer now...
1784 if (SrcClass == cFP) {
1785 // Change the floating point control register to use "round towards zero"
1786 // mode when truncating to an integer value.
1787 //
1788 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001789 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001790
1791 // Load the old value of the high byte of the control word...
1792 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001793 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001794
1795 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001796 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001797
1798 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001799 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001800
1801 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001802 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001803 CWFrameIdx, 1).addReg(HighPartOfCW);
1804
1805 // We don't have the facilities for directly storing byte sized data to
1806 // memory. Promote it to 16 bits. We also must promote unsigned values to
1807 // larger classes because we only have signed FP stores.
1808 unsigned StoreClass = DestClass;
1809 const Type *StoreTy = DestTy;
1810 if (StoreClass == cByte || DestTy->isUnsigned())
1811 switch (StoreClass) {
1812 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1813 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1814 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner9d6d1182003-05-12 21:16:26 +00001815 case cLong:
1816 assert(0 &&"FIXME not implemented: cast FP to unsigned long long");
1817 abort();
Chris Lattner3e130a22003-01-13 00:32:26 +00001818 default: assert(0 && "Unknown store class!");
1819 }
1820
1821 // Spill the integer to memory and reload it from there...
1822 int FrameIdx =
1823 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1824
1825 static const unsigned Op1[] =
1826 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001827 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001828
1829 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001830 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1831 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001832 } else {
1833 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001834 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001835 }
1836
1837 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001838 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001839 return;
1840 }
1841
Brian Gaeked474e9c2002-12-06 10:49:33 +00001842 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001843 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001844 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001845}
Brian Gaekea1719c92002-10-31 23:03:59 +00001846
Chris Lattnereca195e2003-05-08 19:44:13 +00001847/// visitVarArgInst - Implement the va_arg instruction...
1848///
1849void ISel::visitVarArgInst(VarArgInst &I) {
1850 unsigned SrcReg = getReg(I.getOperand(0));
1851 unsigned DestReg = getReg(I);
1852
1853 // Load the va_list into a register...
1854 unsigned VAList = makeAnotherReg(Type::UIntTy);
1855 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, VAList), SrcReg);
1856
1857 unsigned Size;
1858 switch (I.getType()->getPrimitiveID()) {
1859 default:
1860 std::cerr << I;
1861 assert(0 && "Error: bad type for va_arg instruction!");
1862 return;
1863 case Type::PointerTyID:
1864 case Type::UIntTyID:
1865 case Type::IntTyID:
1866 Size = 4;
1867 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1868 break;
1869 case Type::ULongTyID:
1870 case Type::LongTyID:
1871 Size = 8;
1872 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1873 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
1874 break;
1875 case Type::DoubleTyID:
1876 Size = 8;
1877 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
1878 break;
1879 }
1880
1881 // Increment the VAList pointer...
1882 unsigned NextVAList = makeAnotherReg(Type::UIntTy);
1883 BuildMI(BB, X86::ADDri32, 2, NextVAList).addReg(VAList).addZImm(Size);
1884
1885 // Update the VAList in memory...
1886 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), SrcReg).addReg(NextVAList);
1887}
1888
1889
Chris Lattner8a307e82002-12-16 19:32:50 +00001890// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1891// returns zero when the input is not exactly a power of two.
1892static unsigned ExactLog2(unsigned Val) {
1893 if (Val == 0) return 0;
1894 unsigned Count = 0;
1895 while (Val != 1) {
1896 if (Val & 1) return 0;
1897 Val >>= 1;
1898 ++Count;
1899 }
1900 return Count+1;
1901}
1902
Chris Lattner3e130a22003-01-13 00:32:26 +00001903void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1904 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001905 MachineBasicBlock::iterator MI = BB->end();
1906 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001907 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001908}
1909
Brian Gaeke71794c02002-12-13 11:22:48 +00001910void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001911 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001912 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001913 User::op_iterator IdxEnd, unsigned TargetReg) {
1914 const TargetData &TD = TM.getTargetData();
1915 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001916 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001917
Brian Gaeke20244b72002-12-12 15:33:40 +00001918 // GEPs have zero or more indices; we must perform a struct access
1919 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001920 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1921 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001922 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001923 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001924 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001925 // It's a struct access. idx is the index into the structure,
1926 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001927 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
1928 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00001929 && "Funny-looking structure index in GEP");
1930 // Use the TargetData structure to pick out what the layout of
1931 // the structure is in memory. Since the structure index must
1932 // be constant, we can get its value and use it to find the
1933 // right byte offset from the StructLayout class's list of
1934 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00001935 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001936 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
1937 if (FieldOff) {
1938 NextReg = makeAnotherReg(Type::UIntTy);
1939 // Emit an ADD to add FieldOff to the basePtr.
1940 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
1941 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001942 // The next type is the member of the structure selected by the
1943 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00001944 Ty = StTy->getElementTypes()[idxValue];
1945 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001946 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00001947
Brian Gaeke20244b72002-12-12 15:33:40 +00001948 // idx is the index into the array. Unlike with structure
1949 // indices, we may not know its actual value at code-generation
1950 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00001951 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
1952
Chris Lattnerf5854472003-06-21 16:01:24 +00001953 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
1954 // operand on X86. Handle this case directly now...
1955 if (CastInst *CI = dyn_cast<CastInst>(idx))
1956 if (CI->getOperand(0)->getType() == Type::IntTy ||
1957 CI->getOperand(0)->getType() == Type::UIntTy)
1958 idx = CI->getOperand(0);
1959
Chris Lattner3e130a22003-01-13 00:32:26 +00001960 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00001961 // must find the size of the pointed-to type (Not coincidentally, the next
1962 // type is the type of the elements in the array).
1963 Ty = SqTy->getElementType();
1964 unsigned elementSize = TD.getTypeSize(Ty);
1965
1966 // If idxReg is a constant, we don't need to perform the multiply!
1967 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001968 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00001969 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001970 NextReg = makeAnotherReg(Type::UIntTy);
1971 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00001972 }
1973 } else if (elementSize == 1) {
1974 // If the element size is 1, we don't have to multiply, just add
1975 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001976 NextReg = makeAnotherReg(Type::UIntTy);
1977 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001978 } else {
1979 unsigned idxReg = getReg(idx, MBB, IP);
1980 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
1981 if (unsigned Shift = ExactLog2(elementSize)) {
1982 // If the element size is exactly a power of 2, use a shift to get it.
Chris Lattner8a307e82002-12-16 19:32:50 +00001983 BMI(MBB, IP, X86::SHLir32, 2,
1984 OffsetReg).addReg(idxReg).addZImm(Shift-1);
1985 } else {
1986 // Most general case, emit a multiply...
1987 unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
1988 BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
1989
1990 // Emit a MUL to multiply the register holding the index by
1991 // elementSize, putting the result in OffsetReg.
Chris Lattner3e130a22003-01-13 00:32:26 +00001992 doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001993 }
1994 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00001995 NextReg = makeAnotherReg(Type::UIntTy);
1996 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001997 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001998 }
1999 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002000 // one, so we don't need to worry about BaseReg itself, anymore.
2001 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002002 }
2003 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002004 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002005 // put the answer. A 32-bit move should do it, because we are in
2006 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002007 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002008}
2009
2010
Chris Lattner065faeb2002-12-28 20:24:02 +00002011/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2012/// frame manager, otherwise do it the hard way.
2013///
2014void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002015 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002016 const Type *Ty = I.getAllocatedType();
2017 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2018
2019 // If this is a fixed size alloca in the entry block for the function,
2020 // statically stack allocate the space.
2021 //
2022 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2023 if (I.getParent() == I.getParent()->getParent()->begin()) {
2024 TySize *= CUI->getValue(); // Get total allocated size...
2025 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2026
2027 // Create a new stack object using the frame manager...
2028 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2029 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2030 return;
2031 }
2032 }
2033
2034 // Create a register to hold the temporary result of multiplying the type size
2035 // constant by the variable amount.
2036 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2037 unsigned SrcReg1 = getReg(I.getArraySize());
2038 unsigned SizeReg = makeAnotherReg(Type::UIntTy);
2039 BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
2040
2041 // TotalSizeReg = mul <numelements>, <TypeSize>
2042 MachineBasicBlock::iterator MBBI = BB->end();
2043 doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
2044
2045 // AddedSize = add <TotalSizeReg>, 15
2046 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2047 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2048
2049 // AlignedSize = and <AddedSize>, ~15
2050 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2051 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2052
Brian Gaekee48ec012002-12-13 06:46:31 +00002053 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002054 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002055
Brian Gaekee48ec012002-12-13 06:46:31 +00002056 // Put a pointer to the space into the result register, by copying
2057 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002058 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2059
Misha Brukman48196b32003-05-03 02:18:17 +00002060 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002061 // object.
2062 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002063}
Chris Lattner3e130a22003-01-13 00:32:26 +00002064
2065/// visitMallocInst - Malloc instructions are code generated into direct calls
2066/// to the library malloc.
2067///
2068void ISel::visitMallocInst(MallocInst &I) {
2069 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2070 unsigned Arg;
2071
2072 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2073 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2074 } else {
2075 Arg = makeAnotherReg(Type::UIntTy);
2076 unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
2077 unsigned Op1Reg = getReg(I.getOperand(0));
2078 MachineBasicBlock::iterator MBBI = BB->end();
2079 doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
2080
2081
2082 }
2083
2084 std::vector<ValueRecord> Args;
2085 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2086 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2087 1).addExternalSymbol("malloc", true);
2088 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2089}
2090
2091
2092/// visitFreeInst - Free instructions are code gen'd to call the free libc
2093/// function.
2094///
2095void ISel::visitFreeInst(FreeInst &I) {
2096 std::vector<ValueRecord> Args;
2097 Args.push_back(ValueRecord(getReg(I.getOperand(0)),
2098 I.getOperand(0)->getType()));
2099 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
2100 1).addExternalSymbol("free", true);
2101 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2102}
2103
Brian Gaeke20244b72002-12-12 15:33:40 +00002104
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002105/// createSimpleX86InstructionSelector - This pass converts an LLVM function
2106/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002107/// generated code sucks but the implementation is nice and simple.
2108///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002109Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
2110 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002111}