blob: c6d2c6e085cb5c97e46be8a72bbbdd78fe95a57b [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000030using namespace llvm;
31
32namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000033 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
34 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000035 ///
36 enum TypeClass {
37 cByte, cShort, cInt, cFP, cLong
38 };
39}
40
41/// getClass - Turn a primitive type into a "class" number which is based on the
42/// size of the type, and whether or not it is floating point.
43///
44static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000045 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000046 case Type::SByteTyID:
47 case Type::UByteTyID: return cByte; // Byte operands are class #0
48 case Type::ShortTyID:
49 case Type::UShortTyID: return cShort; // Short operands are class #1
50 case Type::IntTyID:
51 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000052 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000053
54 case Type::FloatTyID:
55 case Type::DoubleTyID: return cFP; // Floating Point is #3
56
57 case Type::LongTyID:
58 case Type::ULongTyID: return cLong; // Longs are class #4
59 default:
60 assert(0 && "Invalid type to getClass!");
61 return cByte; // not reached
62 }
63}
64
65// getClassB - Just like getClass, but treat boolean values as ints.
66static inline TypeClass getClassB(const Type *Ty) {
67 if (Ty == Type::BoolTy) return cInt;
68 return getClass(Ty);
69}
70
71namespace {
72 struct ISel : public FunctionPass, InstVisitor<ISel> {
73 TargetMachine &TM;
74 MachineFunction *F; // The function we are compiling into
75 MachineBasicBlock *BB; // The current MBB we are compiling
76 int VarArgsFrameIndex; // FrameIndex for start of varargs area
77 int ReturnAddressIndex; // FrameIndex for the return address
78
79 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
80
Misha Brukman2834a4d2004-07-07 20:07:22 +000081 // External functions used in the Module
Misha Brukmanf3f63822004-07-08 19:41:16 +000082 Function *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn, *__udivdi3Fn,
83 *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000084
Misha Brukman5dfe3a92004-06-21 16:55:25 +000085 // MBBMap - Mapping between LLVM BB -> Machine BB
86 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
87
88 // AllocaMap - Mapping from fixed sized alloca instructions to the
89 // FrameIndex for the alloca.
90 std::map<AllocaInst*, unsigned> AllocaMap;
91
92 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
93
Misha Brukman2834a4d2004-07-07 20:07:22 +000094 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +000095 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +000096 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +000097 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +000098 Type *l = Type::LongTy;
99 Type *ul = Type::ULongTy;
100 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000101 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000102 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000103 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000105 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000107 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000109 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000110 // long __fixdfdi(double)
111 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
112 // float __floatdisf(long)
113 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
114 // double __floatdidf(long)
115 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000116 return false;
117 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000118
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000119 /// runOnFunction - Top level implementation of instruction selection for
120 /// the entire function.
121 ///
122 bool runOnFunction(Function &Fn) {
123 // First pass over the function, lower any unknown intrinsic functions
124 // with the IntrinsicLowering class.
125 LowerUnknownIntrinsicFunctionCalls(Fn);
126
127 F = &MachineFunction::construct(&Fn, TM);
128
129 // Create all of the machine basic blocks for the function...
130 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
131 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
132
133 BB = &F->front();
134
135 // Set up a frame object for the return address. This is used by the
136 // llvm.returnaddress & llvm.frameaddress intrinisics.
137 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
138
139 // Copy incoming arguments off of the stack...
140 LoadArgumentsToVirtualRegs(Fn);
141
142 // Instruction select everything except PHI nodes
143 visit(Fn);
144
145 // Select the PHI nodes
146 SelectPHINodes();
147
148 RegMap.clear();
149 MBBMap.clear();
150 AllocaMap.clear();
151 F = 0;
152 // We always build a machine code representation for the function
153 return true;
154 }
155
156 virtual const char *getPassName() const {
157 return "PowerPC Simple Instruction Selection";
158 }
159
160 /// visitBasicBlock - This method is called when we are visiting a new basic
161 /// block. This simply creates a new MachineBasicBlock to emit code into
162 /// and adds it to the current MachineFunction. Subsequent visit* for
163 /// instructions will be invoked for all instructions in the basic block.
164 ///
165 void visitBasicBlock(BasicBlock &LLVM_BB) {
166 BB = MBBMap[&LLVM_BB];
167 }
168
169 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
170 /// function, lowering any calls to unknown intrinsic functions into the
171 /// equivalent LLVM code.
172 ///
173 void LowerUnknownIntrinsicFunctionCalls(Function &F);
174
175 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
176 /// from the stack into virtual registers.
177 ///
178 void LoadArgumentsToVirtualRegs(Function &F);
179
180 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
181 /// because we have to generate our sources into the source basic blocks,
182 /// not the current one.
183 ///
184 void SelectPHINodes();
185
186 // Visitation methods for various instructions. These methods simply emit
187 // fixed PowerPC code for each instruction.
188
189 // Control flow operators
190 void visitReturnInst(ReturnInst &RI);
191 void visitBranchInst(BranchInst &BI);
192
193 struct ValueRecord {
194 Value *Val;
195 unsigned Reg;
196 const Type *Ty;
197 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
198 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
199 };
200 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000201 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000202 void visitCallInst(CallInst &I);
203 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
204
205 // Arithmetic operators
206 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
207 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
208 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
209 void visitMul(BinaryOperator &B);
210
211 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
212 void visitRem(BinaryOperator &B) { visitDivRem(B); }
213 void visitDivRem(BinaryOperator &B);
214
215 // Bitwise operators
216 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
217 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
218 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
219
220 // Comparison operators...
221 void visitSetCondInst(SetCondInst &I);
222 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
223 MachineBasicBlock *MBB,
224 MachineBasicBlock::iterator MBBI);
225 void visitSelectInst(SelectInst &SI);
226
227
228 // Memory Instructions
229 void visitLoadInst(LoadInst &I);
230 void visitStoreInst(StoreInst &I);
231 void visitGetElementPtrInst(GetElementPtrInst &I);
232 void visitAllocaInst(AllocaInst &I);
233 void visitMallocInst(MallocInst &I);
234 void visitFreeInst(FreeInst &I);
235
236 // Other operators
237 void visitShiftInst(ShiftInst &I);
238 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
239 void visitCastInst(CastInst &I);
240 void visitVANextInst(VANextInst &I);
241 void visitVAArgInst(VAArgInst &I);
242
243 void visitInstruction(Instruction &I) {
244 std::cerr << "Cannot instruction select: " << I;
245 abort();
246 }
247
248 /// promote32 - Make a value 32-bits wide, and put it somewhere.
249 ///
250 void promote32(unsigned targetReg, const ValueRecord &VR);
251
252 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
253 /// constant expression GEP support.
254 ///
255 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
256 Value *Src, User::op_iterator IdxBegin,
257 User::op_iterator IdxEnd, unsigned TargetReg);
258
259 /// emitCastOperation - Common code shared between visitCastInst and
260 /// constant expression cast support.
261 ///
262 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
263 Value *Src, const Type *DestTy, unsigned TargetReg);
264
265 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
266 /// and constant expression support.
267 ///
268 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
269 MachineBasicBlock::iterator IP,
270 Value *Op0, Value *Op1,
271 unsigned OperatorClass, unsigned TargetReg);
272
273 /// emitBinaryFPOperation - This method handles emission of floating point
274 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
275 void emitBinaryFPOperation(MachineBasicBlock *BB,
276 MachineBasicBlock::iterator IP,
277 Value *Op0, Value *Op1,
278 unsigned OperatorClass, unsigned TargetReg);
279
280 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
281 Value *Op0, Value *Op1, unsigned TargetReg);
282
283 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
284 unsigned DestReg, const Type *DestTy,
285 unsigned Op0Reg, unsigned Op1Reg);
286 void doMultiplyConst(MachineBasicBlock *MBB,
287 MachineBasicBlock::iterator MBBI,
288 unsigned DestReg, const Type *DestTy,
289 unsigned Op0Reg, unsigned Op1Val);
290
291 void emitDivRemOperation(MachineBasicBlock *BB,
292 MachineBasicBlock::iterator IP,
293 Value *Op0, Value *Op1, bool isDiv,
294 unsigned TargetReg);
295
296 /// emitSetCCOperation - Common code shared between visitSetCondInst and
297 /// constant expression support.
298 ///
299 void emitSetCCOperation(MachineBasicBlock *BB,
300 MachineBasicBlock::iterator IP,
301 Value *Op0, Value *Op1, unsigned Opcode,
302 unsigned TargetReg);
303
304 /// emitShiftOperation - Common code shared between visitShiftInst and
305 /// constant expression support.
306 ///
307 void emitShiftOperation(MachineBasicBlock *MBB,
308 MachineBasicBlock::iterator IP,
309 Value *Op, Value *ShiftAmount, bool isLeftShift,
310 const Type *ResultTy, unsigned DestReg);
311
312 /// emitSelectOperation - Common code shared between visitSelectInst and the
313 /// constant expression support.
314 void emitSelectOperation(MachineBasicBlock *MBB,
315 MachineBasicBlock::iterator IP,
316 Value *Cond, Value *TrueVal, Value *FalseVal,
317 unsigned DestReg);
318
319 /// copyConstantToRegister - Output the instructions required to put the
320 /// specified constant into the specified register.
321 ///
322 void copyConstantToRegister(MachineBasicBlock *MBB,
323 MachineBasicBlock::iterator MBBI,
324 Constant *C, unsigned Reg);
325
326 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
327 unsigned LHS, unsigned RHS);
328
329 /// makeAnotherReg - This method returns the next register number we haven't
330 /// yet used.
331 ///
332 /// Long values are handled somewhat specially. They are always allocated
333 /// as pairs of 32 bit integer values. The register number returned is the
334 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
335 /// of the long value.
336 ///
337 unsigned makeAnotherReg(const Type *Ty) {
338 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
339 "Current target doesn't have PPC reg info??");
340 const PowerPCRegisterInfo *MRI =
341 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
342 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
343 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
344 // Create the lower part
345 F->getSSARegMap()->createVirtualRegister(RC);
346 // Create the upper part.
347 return F->getSSARegMap()->createVirtualRegister(RC)-1;
348 }
349
350 // Add the mapping of regnumber => reg class to MachineFunction
351 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
352 return F->getSSARegMap()->createVirtualRegister(RC);
353 }
354
355 /// getReg - This method turns an LLVM value into a register number.
356 ///
357 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
358 unsigned getReg(Value *V) {
359 // Just append to the end of the current bb.
360 MachineBasicBlock::iterator It = BB->end();
361 return getReg(V, BB, It);
362 }
363 unsigned getReg(Value *V, MachineBasicBlock *MBB,
364 MachineBasicBlock::iterator IPt);
365
366 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
367 /// that is to be statically allocated with the initial stack frame
368 /// adjustment.
369 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
370 };
371}
372
373/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
374/// instruction in the entry block, return it. Otherwise, return a null
375/// pointer.
376static AllocaInst *dyn_castFixedAlloca(Value *V) {
377 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
378 BasicBlock *BB = AI->getParent();
379 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
380 return AI;
381 }
382 return 0;
383}
384
385/// getReg - This method turns an LLVM value into a register number.
386///
387unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
388 MachineBasicBlock::iterator IPt) {
389 // If this operand is a constant, emit the code to copy the constant into
390 // the register here...
391 //
392 if (Constant *C = dyn_cast<Constant>(V)) {
393 unsigned Reg = makeAnotherReg(V->getType());
394 copyConstantToRegister(MBB, IPt, C, Reg);
395 return Reg;
396 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Misha Brukman7e5812c2004-06-28 18:20:59 +0000397 // GV is located at PC + distance
Misha Brukman7e5812c2004-06-28 18:20:59 +0000398 unsigned CurPC = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000399 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000400 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman7e5812c2004-06-28 18:20:59 +0000401 // Move PC to destination reg
402 BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
Misha Brukman7e5812c2004-06-28 18:20:59 +0000403 // Move value at PC + distance into return reg
404 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
Misha Brukman911afde2004-06-25 14:50:41 +0000405 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000406 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000407 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000408 return Reg2;
409 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
410 // Do not emit noop casts at all.
411 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
412 return getReg(CI->getOperand(0), MBB, IPt);
413 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
414 unsigned Reg = makeAnotherReg(V->getType());
415 unsigned FI = getFixedSizedAllocaFI(AI);
416 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
417 return Reg;
418 }
419
420 unsigned &Reg = RegMap[V];
421 if (Reg == 0) {
422 Reg = makeAnotherReg(V->getType());
423 RegMap[V] = Reg;
424 }
425
426 return Reg;
427}
428
429/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
430/// that is to be statically allocated with the initial stack frame
431/// adjustment.
432unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
433 // Already computed this?
434 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
435 if (I != AllocaMap.end() && I->first == AI) return I->second;
436
437 const Type *Ty = AI->getAllocatedType();
438 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
439 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
440 TySize *= CUI->getValue(); // Get total allocated size...
441 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
442
443 // Create a new stack object using the frame manager...
444 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
445 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
446 return FrameIdx;
447}
448
449
450/// copyConstantToRegister - Output the instructions required to put the
451/// specified constant into the specified register.
452///
453void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
454 MachineBasicBlock::iterator IP,
455 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000456 if (C->getType()->isIntegral()) {
457 unsigned Class = getClassB(C->getType());
458
459 if (Class == cLong) {
460 // Copy the value into the register pair.
461 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000462 unsigned hiTmp = makeAnotherReg(Type::IntTy);
463 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000464 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0)
465 .addImm(Val >> 48);
466 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
467 .addImm((Val >> 32) & 0xFFFF);
468 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0)
469 .addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000470 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
471 return;
472 }
473
474 assert(Class <= cInt && "Type not handled yet!");
475
476 if (C->getType() == Type::BoolTy) {
Misha Brukman911afde2004-06-25 14:50:41 +0000477 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
478 .addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000479 } else if (Class == cByte || Class == cShort) {
480 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman911afde2004-06-25 14:50:41 +0000481 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
482 .addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000483 } else {
484 ConstantInt *CI = cast<ConstantInt>(C);
485 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
486 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman911afde2004-06-25 14:50:41 +0000487 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
488 .addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000489 } else {
490 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000491 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
492 .addImm(CI->getRawValue() >> 16);
493 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
494 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000495 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000496 }
497 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000498 // We need to spill the constant to memory...
499 MachineConstantPool *CP = F->getConstantPool();
500 unsigned CPI = CP->getConstantPoolIndex(CFP);
501 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000502
Misha Brukmand18a31d2004-07-06 22:51:53 +0000503 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000504
505 // Load addr of constant to reg; constant is located at PC + distance
506 unsigned CurPC = makeAnotherReg(Type::IntTy);
507 unsigned Reg1 = makeAnotherReg(Type::IntTy);
508 unsigned Reg2 = makeAnotherReg(Type::IntTy);
509 // Move PC to destination reg
510 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
511 // Move value at PC + distance into return reg
512 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
513 .addConstantPoolIndex(CPI);
514 BuildMI(*MBB, IP, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
515 .addConstantPoolIndex(CPI);
516
Misha Brukmand18a31d2004-07-06 22:51:53 +0000517 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfc879c32004-07-08 18:02:38 +0000518 BuildMI(*MBB, IP, LoadOpcode, 2, R).addImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000519 } else if (isa<ConstantPointerNull>(C)) {
520 // Copy zero (null pointer) to the register.
521 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
522 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000523 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
524 .addGlobalAddress(CPR->getValue());
525 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
526 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000527 } else {
528 std::cerr << "Offending constant: " << C << "\n";
529 assert(0 && "Type not handled yet!");
530 }
531}
532
533/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
534/// the stack into virtual registers.
535///
536/// FIXME: When we can calculate which args are coming in via registers
537/// source them from there instead.
538void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
539 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
540 unsigned GPR_remaining = 8;
541 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000542 unsigned GPR_idx = 0, FPR_idx = 0;
543 static const unsigned GPR[] = {
544 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
545 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
546 };
547 static const unsigned FPR[] = {
548 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000549 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000550 };
Misha Brukman422791f2004-06-21 17:41:12 +0000551
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000552 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000553
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000554 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
555 bool ArgLive = !I->use_empty();
556 unsigned Reg = ArgLive ? getReg(*I) : 0;
557 int FI; // Frame object index
558
559 switch (getClassB(I->getType())) {
560 case cByte:
561 if (ArgLive) {
562 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000563 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000564 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
565 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000566 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000567 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000568 }
569 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000570 break;
571 case cShort:
572 if (ArgLive) {
573 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000574 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000575 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
576 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000577 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000578 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000579 }
580 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000581 break;
582 case cInt:
583 if (ArgLive) {
584 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000585 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000586 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
587 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000588 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000589 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000590 }
591 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000592 break;
593 case cLong:
594 if (ArgLive) {
595 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000596 if (GPR_remaining > 1) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000597 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
598 .addReg(GPR[GPR_idx]);
599 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
600 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000601 } else {
602 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
603 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
604 }
605 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000606 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000607 if (GPR_remaining > 1) {
608 GPR_remaining--; // uses up 2 GPRs
609 GPR_idx++;
610 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000611 break;
612 case cFP:
613 if (ArgLive) {
614 unsigned Opcode;
615 if (I->getType() == Type::FloatTy) {
616 Opcode = PPC32::LFS;
617 FI = MFI->CreateFixedObject(4, ArgOffset);
618 } else {
619 Opcode = PPC32::LFD;
620 FI = MFI->CreateFixedObject(8, ArgOffset);
621 }
Misha Brukman422791f2004-06-21 17:41:12 +0000622 if (FPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000623 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
624 FPR_remaining--;
625 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000626 } else {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000627 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000628 }
629 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000630 if (I->getType() == Type::DoubleTy) {
631 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000632 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000633 GPR_remaining--; // uses up 2 GPRs
634 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000635 }
636 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000637 break;
638 default:
639 assert(0 && "Unhandled argument type!");
640 }
641 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000642 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000643 GPR_remaining--; // uses up 2 GPRs
644 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000645 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000646 }
647
648 // If the function takes variable number of arguments, add a frame offset for
649 // the start of the first vararg value... this is used to expand
650 // llvm.va_start.
651 if (Fn.getFunctionType()->isVarArg())
652 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
653}
654
655
656/// SelectPHINodes - Insert machine code to generate phis. This is tricky
657/// because we have to generate our sources into the source basic blocks, not
658/// the current one.
659///
660void ISel::SelectPHINodes() {
661 const TargetInstrInfo &TII = *TM.getInstrInfo();
662 const Function &LF = *F->getFunction(); // The LLVM function...
663 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
664 const BasicBlock *BB = I;
665 MachineBasicBlock &MBB = *MBBMap[I];
666
667 // Loop over all of the PHI nodes in the LLVM basic block...
668 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
669 for (BasicBlock::const_iterator I = BB->begin();
670 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
671
672 // Create a new machine instr PHI node, and insert it.
673 unsigned PHIReg = getReg(*PN);
674 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
675 PPC32::PHI, PN->getNumOperands(), PHIReg);
676
677 MachineInstr *LongPhiMI = 0;
678 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
679 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
680 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
681
682 // PHIValues - Map of blocks to incoming virtual registers. We use this
683 // so that we only initialize one incoming value for a particular block,
684 // even if the block has multiple entries in the PHI node.
685 //
686 std::map<MachineBasicBlock*, unsigned> PHIValues;
687
688 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
689 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
690 unsigned ValReg;
691 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
692 PHIValues.lower_bound(PredMBB);
693
694 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
695 // We already inserted an initialization of the register for this
696 // predecessor. Recycle it.
697 ValReg = EntryIt->second;
698
699 } else {
700 // Get the incoming value into a virtual register.
701 //
702 Value *Val = PN->getIncomingValue(i);
703
704 // If this is a constant or GlobalValue, we may have to insert code
705 // into the basic block to compute it into a virtual register.
706 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
707 isa<GlobalValue>(Val)) {
708 // Simple constants get emitted at the end of the basic block,
709 // before any terminator instructions. We "know" that the code to
710 // move a constant into a register will never clobber any flags.
711 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
712 } else {
713 // Because we don't want to clobber any values which might be in
714 // physical registers with the computation of this constant (which
715 // might be arbitrarily complex if it is a constant expression),
716 // just insert the computation at the top of the basic block.
717 MachineBasicBlock::iterator PI = PredMBB->begin();
718
719 // Skip over any PHI nodes though!
720 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
721 ++PI;
722
723 ValReg = getReg(Val, PredMBB, PI);
724 }
725
726 // Remember that we inserted a value for this PHI for this predecessor
727 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
728 }
729
730 PhiMI->addRegOperand(ValReg);
731 PhiMI->addMachineBasicBlockOperand(PredMBB);
732 if (LongPhiMI) {
733 LongPhiMI->addRegOperand(ValReg+1);
734 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
735 }
736 }
737
738 // Now that we emitted all of the incoming values for the PHI node, make
739 // sure to reposition the InsertPoint after the PHI that we just added.
740 // This is needed because we might have inserted a constant into this
741 // block, right after the PHI's which is before the old insert point!
742 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
743 ++PHIInsertPoint;
744 }
745 }
746}
747
748
749// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
750// it into the conditional branch or select instruction which is the only user
751// of the cc instruction. This is the case if the conditional branch is the
752// only user of the setcc, and if the setcc is in the same basic block as the
753// conditional branch. We also don't handle long arguments below, so we reject
754// them here as well.
755//
756static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
757 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
758 if (SCI->hasOneUse()) {
759 Instruction *User = cast<Instruction>(SCI->use_back());
760 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
761 SCI->getParent() == User->getParent() &&
762 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
763 SCI->getOpcode() == Instruction::SetEQ ||
764 SCI->getOpcode() == Instruction::SetNE))
765 return SCI;
766 }
767 return 0;
768}
769
770// Return a fixed numbering for setcc instructions which does not depend on the
771// order of the opcodes.
772//
773static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000774 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000775 default: assert(0 && "Unknown setcc instruction!");
776 case Instruction::SetEQ: return 0;
777 case Instruction::SetNE: return 1;
778 case Instruction::SetLT: return 2;
779 case Instruction::SetGE: return 3;
780 case Instruction::SetGT: return 4;
781 case Instruction::SetLE: return 5;
782 }
783}
784
Misha Brukmane9c65512004-07-06 15:32:44 +0000785static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
786 switch (Opcode) {
787 default: assert(0 && "Unknown setcc instruction!");
788 case Instruction::SetEQ: return PPC32::BEQ;
789 case Instruction::SetNE: return PPC32::BNE;
790 case Instruction::SetLT: return PPC32::BLT;
791 case Instruction::SetGE: return PPC32::BGE;
792 case Instruction::SetGT: return PPC32::BGT;
793 case Instruction::SetLE: return PPC32::BLE;
794 }
795}
796
797static unsigned invertPPCBranchOpcode(unsigned Opcode) {
798 switch (Opcode) {
799 default: assert(0 && "Unknown PPC32 branch opcode!");
800 case PPC32::BEQ: return PPC32::BNE;
801 case PPC32::BNE: return PPC32::BEQ;
802 case PPC32::BLT: return PPC32::BGE;
803 case PPC32::BGE: return PPC32::BLT;
804 case PPC32::BGT: return PPC32::BLE;
805 case PPC32::BLE: return PPC32::BGT;
806 }
807}
808
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000809/// emitUCOM - emits an unordered FP compare.
810void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
811 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000812 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000813}
814
815// EmitComparison - This function emits a comparison of the two operands,
816// returning the extended setcc code to use.
817unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
818 MachineBasicBlock *MBB,
819 MachineBasicBlock::iterator IP) {
820 // The arguments are already supposed to be of the same type.
821 const Type *CompTy = Op0->getType();
822 unsigned Class = getClassB(CompTy);
823 unsigned Op0r = getReg(Op0, MBB, IP);
824
825 // Special case handling of: cmp R, i
826 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000827 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000828 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
829 if (Class == cByte || Class == cShort || Class == cInt) {
830 unsigned Op1v = CI->getRawValue();
831
832 // Mask off any upper bits of the constant, if there are any...
833 Op1v &= (1ULL << (8 << Class)) - 1;
834
Misha Brukman422791f2004-06-21 17:41:12 +0000835 // Compare immediate or promote to reg?
836 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000837 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
838 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000839 } else {
840 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000841 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
842 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000843 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000844 return OpNum;
845 } else {
846 assert(Class == cLong && "Unknown integer class!");
847 unsigned LowCst = CI->getRawValue();
848 unsigned HiCst = CI->getRawValue() >> 32;
849 if (OpNum < 2) { // seteq, setne
850 unsigned LoTmp = Op0r;
851 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000852 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000853 unsigned LoTmp = makeAnotherReg(Type::IntTy);
854 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000855 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
856 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000857 }
858 unsigned HiTmp = Op0r+1;
859 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000860 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000861 unsigned HiTmp = makeAnotherReg(Type::IntTy);
862 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000863 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
864 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000865 }
866 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
867 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
868 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
869 return OpNum;
870 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000871 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000872 std::cerr << "EmitComparison unimplemented: Opnum >= 2\n";
873 abort();
Misha Brukman422791f2004-06-21 17:41:12 +0000874 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000875 }
876 }
877 }
878
879 unsigned Op1r = getReg(Op1, MBB, IP);
880 switch (Class) {
881 default: assert(0 && "Unknown type class!");
882 case cByte:
883 case cShort:
884 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000885 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
886 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000887 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000888
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000889 case cFP:
890 emitUCOM(MBB, IP, Op0r, Op1r);
891 break;
892
893 case cLong:
894 if (OpNum < 2) { // seteq, setne
895 unsigned LoTmp = makeAnotherReg(Type::IntTy);
896 unsigned HiTmp = makeAnotherReg(Type::IntTy);
897 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
898 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
899 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
900 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
901 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
902 break; // Allow the sete or setne to be generated from flags set by OR
903 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000904 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000905 std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n";
906 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000907 return OpNum;
908 }
909 }
910 return OpNum;
911}
912
Misha Brukmand18a31d2004-07-06 22:51:53 +0000913/// visitSetCondInst - emit code to calculate the condition via
914/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000915///
916void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000917 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +0000918 return;
919
Misha Brukman425ff242004-07-01 21:34:10 +0000920 unsigned Op0Reg = getReg(I.getOperand(0));
921 unsigned Op1Reg = getReg(I.getOperand(1));
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000922 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000923 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +0000924 const Type *Ty = I.getOperand (0)->getType();
925
Misha Brukmand18a31d2004-07-06 22:51:53 +0000926 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
927
928 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +0000929 MachineBasicBlock *thisMBB = BB;
930 const BasicBlock *LLVM_BB = BB->getBasicBlock();
931 // thisMBB:
932 // ...
933 // cmpTY cr0, r1, r2
934 // bCC copy1MBB
935 // b copy0MBB
936
937 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
938 // if we could insert other, non-terminator instructions after the
939 // bCC. But MBB->getFirstTerminator() can't understand this.
940 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
941 F->getBasicBlockList().push_back(copy1MBB);
942 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
943 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
944 F->getBasicBlockList().push_back(copy0MBB);
945 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
946 // Update machine-CFG edges
947 BB->addSuccessor(copy1MBB);
948 BB->addSuccessor(copy0MBB);
949
950 // copy0MBB:
951 // %FalseValue = li 0
Misha Brukmane9c65512004-07-06 15:32:44 +0000952 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000953 BB = copy0MBB;
954 unsigned FalseValue = makeAnotherReg(I.getType());
955 BuildMI(BB, PPC32::LI, 1, FalseValue).addZImm(0);
956 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
957 F->getBasicBlockList().push_back(sinkMBB);
958 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
959 // Update machine-CFG edges
960 BB->addSuccessor(sinkMBB);
961
962 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
963 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
964 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
965 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
966
967 // copy1MBB:
968 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +0000969 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000970 BB = copy1MBB;
971 unsigned TrueValue = makeAnotherReg (I.getType ());
972 BuildMI(BB, PPC32::LI, 1, TrueValue).addZImm(1);
973 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
974 // Update machine-CFG edges
975 BB->addSuccessor(sinkMBB);
976
977 // sinkMBB:
978 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
979 // ...
980 BB = sinkMBB;
981 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
982 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000983}
984
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000985void ISel::visitSelectInst(SelectInst &SI) {
986 unsigned DestReg = getReg(SI);
987 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000988 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
989 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000990}
991
992/// emitSelect - Common code shared between visitSelectInst and the constant
993/// expression support.
994/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
995/// no select instruction. FSEL only works for comparisons against zero.
996void ISel::emitSelectOperation(MachineBasicBlock *MBB,
997 MachineBasicBlock::iterator IP,
998 Value *Cond, Value *TrueVal, Value *FalseVal,
999 unsigned DestReg) {
1000 unsigned SelectClass = getClassB(TrueVal->getType());
1001
1002 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1003 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1004
1005 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +00001006 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001007 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001008 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001009 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001010 }
1011
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001012 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +00001013 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
1014 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001015 return;
1016 }
1017
1018 unsigned CondReg = getReg(Cond, MBB, IP);
1019 unsigned numZeros = makeAnotherReg(Type::IntTy);
1020 unsigned falseHi = makeAnotherReg(Type::IntTy);
1021 unsigned falseAll = makeAnotherReg(Type::IntTy);
1022 unsigned trueAll = makeAnotherReg(Type::IntTy);
1023 unsigned Temp1 = makeAnotherReg(Type::IntTy);
1024 unsigned Temp2 = makeAnotherReg(Type::IntTy);
1025
1026 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001027 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
1028 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001029 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
1030 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
1031 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
1032 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
1033 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
1034
1035 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001036 unsigned Temp3 = makeAnotherReg(Type::IntTy);
1037 unsigned Temp4 = makeAnotherReg(Type::IntTy);
1038 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
1039 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
1040 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001041 }
1042
1043 return;
1044}
1045
1046
1047
1048/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1049/// operand, in the specified target register.
1050///
1051void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1052 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1053
1054 Value *Val = VR.Val;
1055 const Type *Ty = VR.Ty;
1056 if (Val) {
1057 if (Constant *C = dyn_cast<Constant>(Val)) {
1058 Val = ConstantExpr::getCast(C, Type::IntTy);
1059 Ty = Type::IntTy;
1060 }
1061
Misha Brukman2fec9902004-06-21 20:22:03 +00001062 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001063 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1064 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1065
1066 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001067 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1068 } else {
1069 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001070 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1071 .addImm(TheVal >> 16);
1072 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1073 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001074 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001075 return;
1076 }
1077 }
1078
1079 // Make sure we have the register number for this value...
1080 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1081
1082 switch (getClassB(Ty)) {
1083 case cByte:
1084 // Extend value into target register (8->32)
1085 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001086 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1087 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001088 else
1089 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1090 break;
1091 case cShort:
1092 // Extend value into target register (16->32)
1093 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001094 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1095 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001096 else
1097 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1098 break;
1099 case cInt:
1100 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001101 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001102 break;
1103 default:
1104 assert(0 && "Unpromotable operand class in promote32");
1105 }
1106}
1107
Misha Brukman2fec9902004-06-21 20:22:03 +00001108/// visitReturnInst - implemented with BLR
1109///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001110void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001111 // Only do the processing if this is a non-void return
1112 if (I.getNumOperands() > 0) {
1113 Value *RetVal = I.getOperand(0);
1114 switch (getClassB(RetVal->getType())) {
1115 case cByte: // integral return values: extend or move into r3 and return
1116 case cShort:
1117 case cInt:
1118 promote32(PPC32::R3, ValueRecord(RetVal));
1119 break;
1120 case cFP: { // Floats & Doubles: Return in f1
1121 unsigned RetReg = getReg(RetVal);
1122 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1123 break;
1124 }
1125 case cLong: {
1126 unsigned RetReg = getReg(RetVal);
1127 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1128 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1129 break;
1130 }
1131 default:
1132 visitInstruction(I);
1133 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001134 }
1135 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1136}
1137
1138// getBlockAfter - Return the basic block which occurs lexically after the
1139// specified one.
1140static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1141 Function::iterator I = BB; ++I; // Get iterator to next block
1142 return I != BB->getParent()->end() ? &*I : 0;
1143}
1144
1145/// visitBranchInst - Handle conditional and unconditional branches here. Note
1146/// that since code layout is frozen at this point, that if we are trying to
1147/// jump to a block that is the immediate successor of the current block, we can
1148/// just make a fall-through (but we don't currently).
1149///
1150void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001151 // Update machine-CFG edges
1152 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1153 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001154 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001155
1156 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001157
Misha Brukman2fec9902004-06-21 20:22:03 +00001158 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001159 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001160 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1161 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001162 }
1163
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001164 // See if we can fold the setcc into the branch itself...
1165 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1166 if (SCI == 0) {
1167 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1168 // computed some other way...
1169 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001170 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001171 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001172 if (BI.getSuccessor(1) == NextBB) {
1173 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001174 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001175 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001176 } else {
Misha Brukmane9c65512004-07-06 15:32:44 +00001177 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001178 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001179
1180 if (BI.getSuccessor(0) != NextBB)
1181 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1182 }
1183 return;
1184 }
1185
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001186 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001187 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001188 MachineBasicBlock::iterator MII = BB->end();
1189 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001190
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001191 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001192 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001193 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001194 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001195 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001196 } else {
1197 // Change to the inverse condition...
1198 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001199 Opcode = invertPPCBranchOpcode(Opcode);
1200 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001201 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001202 }
1203 }
1204}
1205
Misha Brukmanfc879c32004-07-08 18:02:38 +00001206static Constant* minUConstantForValue(uint64_t val) {
1207 if (val <= 1)
1208 return ConstantBool::get(val);
1209 else if (ConstantUInt::isValueValidForType(Type::UShortTy, val))
1210 return ConstantUInt::get(Type::UShortTy, val);
1211 else if (ConstantUInt::isValueValidForType(Type::UIntTy, val))
1212 return ConstantUInt::get(Type::UIntTy, val);
1213 else if (ConstantUInt::isValueValidForType(Type::ULongTy, val))
1214 return ConstantUInt::get(Type::ULongTy, val);
1215
1216 std::cerr << "Value: " << val << " not accepted for any integral type!\n";
1217 abort();
1218}
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001219
1220/// doCall - This emits an abstract call instruction, setting up the arguments
1221/// and the return value as appropriate. For the actual function call itself,
1222/// it inserts the specified CallMI instruction into the stream.
1223///
1224/// FIXME: See Documentation at the following URL for "correct" behavior
1225/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1226void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001227 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001228 // Count how many bytes are to be pushed on the stack...
1229 unsigned NumBytes = 0;
1230
1231 if (!Args.empty()) {
1232 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1233 switch (getClassB(Args[i].Ty)) {
1234 case cByte: case cShort: case cInt:
1235 NumBytes += 4; break;
1236 case cLong:
1237 NumBytes += 8; break;
1238 case cFP:
1239 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1240 break;
1241 default: assert(0 && "Unknown class!");
1242 }
1243
1244 // Adjust the stack pointer for the new arguments...
1245 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1246
1247 // Arguments go on the stack in reverse order, as specified by the ABI.
1248 unsigned ArgOffset = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001249 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001250 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001251 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001252 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1253 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1254 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001255 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001256 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1257 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1258 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001259 };
Misha Brukman422791f2004-06-21 17:41:12 +00001260
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001261 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1262 unsigned ArgReg;
1263 switch (getClassB(Args[i].Ty)) {
1264 case cByte:
1265 case cShort:
1266 // Promote arg to 32 bits wide into a temporary register...
1267 ArgReg = makeAnotherReg(Type::UIntTy);
1268 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001269
1270 // Reg or stack?
1271 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001272 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001273 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001274 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001275 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1276 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001277 }
1278 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001279 case cInt:
1280 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1281
Misha Brukman422791f2004-06-21 17:41:12 +00001282 // Reg or stack?
1283 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001284 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001285 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001286 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001287 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1288 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001289 }
1290 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001291 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001292 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001293
Misha Brukman422791f2004-06-21 17:41:12 +00001294 // Reg or stack?
1295 if (GPR_remaining > 1) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001296 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001297 .addReg(ArgReg);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001298 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001299 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001300 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001301 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1302 .addReg(PPC32::R1);
1303 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1304 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001305 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001306
1307 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001308 GPR_remaining -= 1; // uses up 2 GPRs
1309 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001310 break;
1311 case cFP:
1312 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1313 if (Args[i].Ty == Type::FloatTy) {
Misha Brukmanfc879c32004-07-08 18:02:38 +00001314 assert(!isVarArg && "Cannot pass floats to vararg functions!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001315 // Reg or stack?
1316 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001317 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001318 FPR_remaining--;
1319 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001320 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001321 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1322 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001323 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001324 } else {
1325 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001326 // Reg or stack?
1327 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001328 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001329 FPR_remaining--;
1330 FPR_idx++;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001331 // For vararg functions, must pass doubles via int regs as well
1332 if (isVarArg) {
Misha Brukman0aa97c62004-07-08 18:27:59 +00001333 Value *Val = Args[i].Val;
1334 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Val)) {
1335 union DU {
1336 double FVal;
1337 struct {
1338 uint32_t hi32;
1339 uint32_t lo32;
1340 } UVal;
1341 } U;
1342 U.FVal = CFP->getValue();
1343 if (GPR_remaining > 0) {
1344 Constant *hi32 = minUConstantForValue(U.UVal.hi32);
1345 copyConstantToRegister(BB, BB->end(), hi32, GPR[GPR_idx]);
1346 }
1347 if (GPR_remaining > 1) {
1348 Constant *lo32 = minUConstantForValue(U.UVal.lo32);
1349 copyConstantToRegister(BB, BB->end(), lo32, GPR[GPR_idx+1]);
1350 }
1351 } else {
1352 // Since this is not a constant, we must load it into int regs
1353 // via memory
1354 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1355 .addReg(PPC32::R1);
1356 if (GPR_remaining > 0)
1357 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset)
1358 .addReg(PPC32::R1);
1359 if (GPR_remaining > 1)
1360 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
1361 .addImm(ArgOffset+4).addReg(PPC32::R1);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001362 }
1363 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001364 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001365 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1366 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001367 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001368
Misha Brukman1916bf92004-06-24 21:56:15 +00001369 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukmanfc879c32004-07-08 18:02:38 +00001370 GPR_remaining--; // uses up 2 GPRs
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001371 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001372 }
1373 break;
1374
1375 default: assert(0 && "Unknown class!");
1376 }
1377 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001378 GPR_remaining--;
1379 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001380 }
1381 } else {
1382 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1383 }
1384
1385 BB->push_back(CallMI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001386 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1387
1388 // If there is a return value, scavenge the result from the location the call
1389 // leaves it in...
1390 //
1391 if (Ret.Ty != Type::VoidTy) {
1392 unsigned DestClass = getClassB(Ret.Ty);
1393 switch (DestClass) {
1394 case cByte:
1395 case cShort:
1396 case cInt:
1397 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001398 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001399 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001400 case cFP: // Floating-point return values live in f1
1401 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1402 break;
1403 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001404 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1405 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001406 break;
1407 default: assert(0 && "Unknown class!");
1408 }
1409 }
1410}
1411
1412
1413/// visitCallInst - Push args on stack and do a procedure call instruction.
1414void ISel::visitCallInst(CallInst &CI) {
1415 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001416 Function *F = CI.getCalledFunction();
1417 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001418 // Is it an intrinsic function call?
1419 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1420 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1421 return;
1422 }
1423
1424 // Emit a CALL instruction with PC-relative displacement.
1425 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1426 } else { // Emit an indirect call through the CTR
1427 unsigned Reg = getReg(CI.getCalledValue());
1428 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1429 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1430 }
1431
1432 std::vector<ValueRecord> Args;
1433 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1434 Args.push_back(ValueRecord(CI.getOperand(i)));
1435
1436 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001437 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1438 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001439}
1440
1441
1442/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1443///
1444static Value *dyncastIsNan(Value *V) {
1445 if (CallInst *CI = dyn_cast<CallInst>(V))
1446 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001447 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001448 return CI->getOperand(1);
1449 return 0;
1450}
1451
1452/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1453/// or's whos operands are all calls to the isnan predicate.
1454static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1455 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1456
1457 // Check all uses, which will be or's of isnans if this predicate is true.
1458 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1459 Instruction *I = cast<Instruction>(*UI);
1460 if (I->getOpcode() != Instruction::Or) return false;
1461 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1462 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1463 }
1464
1465 return true;
1466}
1467
1468/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1469/// function, lowering any calls to unknown intrinsic functions into the
1470/// equivalent LLVM code.
1471///
1472void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1473 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1474 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1475 if (CallInst *CI = dyn_cast<CallInst>(I++))
1476 if (Function *F = CI->getCalledFunction())
1477 switch (F->getIntrinsicID()) {
1478 case Intrinsic::not_intrinsic:
1479 case Intrinsic::vastart:
1480 case Intrinsic::vacopy:
1481 case Intrinsic::vaend:
1482 case Intrinsic::returnaddress:
1483 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001484 // FIXME: should lower this ourselves
1485 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001486 // We directly implement these intrinsics
1487 break;
1488 case Intrinsic::readio: {
1489 // On PPC, memory operations are in-order. Lower this intrinsic
1490 // into a volatile load.
1491 Instruction *Before = CI->getPrev();
1492 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1493 CI->replaceAllUsesWith(LI);
1494 BB->getInstList().erase(CI);
1495 break;
1496 }
1497 case Intrinsic::writeio: {
1498 // On PPC, memory operations are in-order. Lower this intrinsic
1499 // into a volatile store.
1500 Instruction *Before = CI->getPrev();
1501 StoreInst *LI = new StoreInst(CI->getOperand(1),
1502 CI->getOperand(2), true, CI);
1503 CI->replaceAllUsesWith(LI);
1504 BB->getInstList().erase(CI);
1505 break;
1506 }
1507 default:
1508 // All other intrinsic calls we must lower.
1509 Instruction *Before = CI->getPrev();
1510 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1511 if (Before) { // Move iterator to instruction after call
1512 I = Before; ++I;
1513 } else {
1514 I = BB->begin();
1515 }
1516 }
1517}
1518
1519void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1520 unsigned TmpReg1, TmpReg2, TmpReg3;
1521 switch (ID) {
1522 case Intrinsic::vastart:
1523 // Get the address of the first vararg value...
1524 TmpReg1 = getReg(CI);
1525 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1526 return;
1527
1528 case Intrinsic::vacopy:
1529 TmpReg1 = getReg(CI);
1530 TmpReg2 = getReg(CI.getOperand(1));
1531 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1532 return;
1533 case Intrinsic::vaend: return;
1534
1535 case Intrinsic::returnaddress:
1536 case Intrinsic::frameaddress:
1537 TmpReg1 = getReg(CI);
1538 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1539 if (ID == Intrinsic::returnaddress) {
1540 // Just load the return address
1541 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1542 ReturnAddressIndex);
1543 } else {
1544 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1545 ReturnAddressIndex, -4, false);
1546 }
1547 } else {
1548 // Values other than zero are not implemented yet.
1549 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1550 }
1551 return;
1552
Misha Brukmana2916ce2004-06-21 17:58:36 +00001553#if 0
1554 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001555 case Intrinsic::isnan:
1556 // If this is only used by 'isunordered' style comparisons, don't emit it.
1557 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1558 TmpReg1 = getReg(CI.getOperand(1));
1559 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001560 TmpReg2 = makeAnotherReg(Type::IntTy);
1561 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001562 TmpReg3 = getReg(CI);
1563 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1564 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001565#endif
1566
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001567 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1568 }
1569}
1570
1571/// visitSimpleBinary - Implement simple binary operators for integral types...
1572/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1573/// Xor.
1574///
1575void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1576 unsigned DestReg = getReg(B);
1577 MachineBasicBlock::iterator MI = BB->end();
1578 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1579 unsigned Class = getClassB(B.getType());
1580
1581 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1582}
1583
1584/// emitBinaryFPOperation - This method handles emission of floating point
1585/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1586void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1587 MachineBasicBlock::iterator IP,
1588 Value *Op0, Value *Op1,
1589 unsigned OperatorClass, unsigned DestReg) {
1590
1591 // Special case: op Reg, <const fp>
1592 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001593 // Create a constant pool entry for this constant.
1594 MachineConstantPool *CP = F->getConstantPool();
1595 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1596 const Type *Ty = Op1->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001597
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001598 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001599 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1600 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001601 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001602
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001603 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1604 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001605 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001606 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001607
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001608 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1609 unsigned Op0r = getReg(Op0, BB, IP);
1610 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1611 return;
1612 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001613
1614 // Special case: R1 = op <const fp>, R2
1615 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1616 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1617 // -0.0 - X === -X
1618 unsigned op1Reg = getReg(Op1, BB, IP);
1619 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1620 return;
1621 } else {
1622 // R1 = op CST, R2 --> R1 = opr R2, CST
1623
1624 // Create a constant pool entry for this constant.
1625 MachineConstantPool *CP = F->getConstantPool();
1626 unsigned CPI = CP->getConstantPoolIndex(CFP);
1627 const Type *Ty = CFP->getType();
1628
1629 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001630 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1631 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001632 };
1633
1634 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001635 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001636 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001637 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1638
1639 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1640 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001641 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001642 return;
1643 }
1644
1645 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001646 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001647 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1648 };
1649
1650 unsigned Opcode = OpcodeTab[OperatorClass];
1651 unsigned Op0r = getReg(Op0, BB, IP);
1652 unsigned Op1r = getReg(Op1, BB, IP);
1653 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1654}
1655
1656/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1657/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1658/// Or, 4 for Xor.
1659///
1660/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1661/// and constant expression support.
1662///
1663void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1664 MachineBasicBlock::iterator IP,
1665 Value *Op0, Value *Op1,
1666 unsigned OperatorClass, unsigned DestReg) {
1667 unsigned Class = getClassB(Op0->getType());
1668
Misha Brukman422791f2004-06-21 17:41:12 +00001669 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001670 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001671 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1672 };
1673 // Otherwise, code generate the full operation with a constant.
1674 static const unsigned BottomTab[] = {
1675 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1676 };
1677 static const unsigned TopTab[] = {
1678 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1679 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001680
1681 if (Class == cFP) {
1682 assert(OperatorClass < 2 && "No logical ops for FP!");
1683 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1684 return;
1685 }
1686
1687 if (Op0->getType() == Type::BoolTy) {
1688 if (OperatorClass == 3)
1689 // If this is an or of two isnan's, emit an FP comparison directly instead
1690 // of or'ing two isnan's together.
1691 if (Value *LHS = dyncastIsNan(Op0))
1692 if (Value *RHS = dyncastIsNan(Op1)) {
1693 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001694 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001695 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001696 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001697 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1698 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001699 return;
1700 }
1701 }
1702
1703 // sub 0, X -> neg X
1704 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1705 if (OperatorClass == 1 && CI->isNullValue()) {
1706 unsigned op1Reg = getReg(Op1, MBB, IP);
1707 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1708
1709 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001710 unsigned zeroes = makeAnotherReg(Type::IntTy);
1711 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001712 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001713 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001714 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1715 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001716 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1717 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001718 }
1719 return;
1720 }
1721
1722 // Special case: op Reg, <const int>
1723 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1724 unsigned Op0r = getReg(Op0, MBB, IP);
1725
1726 // xor X, -1 -> not X
1727 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1728 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1729 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001730 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1731 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001732 return;
1733 }
1734
1735 unsigned Opcode = OpcodeTab[OperatorClass];
1736 unsigned Op1r = getReg(Op1, MBB, IP);
1737
1738 if (Class != cLong) {
1739 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1740 return;
1741 }
1742
1743 // If the constant is zero in the low 32-bits, just copy the low part
1744 // across and apply the normal 32-bit operation to the high parts. There
1745 // will be no carry or borrow into the top.
1746 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1747 if (OperatorClass != 2) // All but and...
1748 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1749 else
1750 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001751 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001752 return;
1753 }
1754
1755 // If this is a long value and the high or low bits have a special
1756 // property, emit some special cases.
1757 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1758
1759 // If this is a logical operation and the top 32-bits are zero, just
1760 // operate on the lower 32.
1761 if (Op1h == 0 && OperatorClass > 1) {
1762 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1763 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001764 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001765 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001766 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001767 return;
1768 }
1769
1770 // TODO: We could handle lots of other special cases here, such as AND'ing
1771 // with 0xFFFFFFFF00000000 -> noop, etc.
1772
Misha Brukman2fec9902004-06-21 20:22:03 +00001773 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1774 .addImm(Op1r);
1775 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1776 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001777 return;
1778 }
1779
1780 unsigned Op0r = getReg(Op0, MBB, IP);
1781 unsigned Op1r = getReg(Op1, MBB, IP);
1782
1783 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001784 unsigned Opcode = OpcodeTab[OperatorClass];
1785 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001786 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001787 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1788 .addImm(Op1r);
1789 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1790 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001791 }
1792 return;
1793}
1794
1795/// doMultiply - Emit appropriate instructions to multiply together the
1796/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1797/// result should be given as DestTy.
1798///
1799void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1800 unsigned DestReg, const Type *DestTy,
1801 unsigned op0Reg, unsigned op1Reg) {
1802 unsigned Class = getClass(DestTy);
1803 switch (Class) {
1804 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001805 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1806 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001807 case cInt:
1808 case cShort:
1809 case cByte:
1810 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1811 return;
1812 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001813 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001814 }
1815}
1816
1817// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1818// returns zero when the input is not exactly a power of two.
1819static unsigned ExactLog2(unsigned Val) {
1820 if (Val == 0 || (Val & (Val-1))) return 0;
1821 unsigned Count = 0;
1822 while (Val != 1) {
1823 Val >>= 1;
1824 ++Count;
1825 }
1826 return Count+1;
1827}
1828
1829
1830/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1831/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001832///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001833void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1834 MachineBasicBlock::iterator IP,
1835 unsigned DestReg, const Type *DestTy,
1836 unsigned op0Reg, unsigned ConstRHS) {
1837 unsigned Class = getClass(DestTy);
1838 // Handle special cases here.
1839 switch (ConstRHS) {
1840 case 0:
1841 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1842 return;
1843 case 1:
1844 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1845 return;
1846 case 2:
1847 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1848 return;
1849 }
1850
1851 // If the element size is exactly a power of 2, use a shift to get it.
1852 if (unsigned Shift = ExactLog2(ConstRHS)) {
1853 switch (Class) {
1854 default: assert(0 && "Unknown class for this function!");
1855 case cByte:
1856 case cShort:
1857 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001858 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1859 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001860 return;
1861 }
1862 }
1863
1864 // Most general case, emit a normal multiply...
1865 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1866 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001867 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1868 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001869 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1870
1871 // Emit a MUL to multiply the register holding the index by
1872 // elementSize, putting the result in OffsetReg.
1873 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1874}
1875
1876void ISel::visitMul(BinaryOperator &I) {
1877 unsigned ResultReg = getReg(I);
1878
1879 Value *Op0 = I.getOperand(0);
1880 Value *Op1 = I.getOperand(1);
1881
1882 MachineBasicBlock::iterator IP = BB->end();
1883 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1884}
1885
1886void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1887 Value *Op0, Value *Op1, unsigned DestReg) {
1888 MachineBasicBlock &BB = *MBB;
1889 TypeClass Class = getClass(Op0->getType());
1890
1891 // Simple scalar multiply?
1892 unsigned Op0Reg = getReg(Op0, &BB, IP);
1893 switch (Class) {
1894 case cByte:
1895 case cShort:
1896 case cInt:
1897 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1898 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1899 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1900 } else {
1901 unsigned Op1Reg = getReg(Op1, &BB, IP);
1902 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1903 }
1904 return;
1905 case cFP:
1906 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1907 return;
1908 case cLong:
1909 break;
1910 }
1911
1912 // Long value. We have to do things the hard way...
1913 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1914 unsigned CLow = CI->getRawValue();
1915 unsigned CHi = CI->getRawValue() >> 32;
1916
1917 if (CLow == 0) {
1918 // If the low part of the constant is all zeros, things are simple.
1919 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1920 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1921 return;
1922 }
1923
1924 // Multiply the two low parts
1925 unsigned OverflowReg = 0;
1926 if (CLow == 1) {
1927 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1928 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001929 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001930 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1931 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001932 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1933 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001934 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1935 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001936 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1937 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001938 }
1939
1940 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1941 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1942
1943 unsigned AHBLplusOverflowReg;
1944 if (OverflowReg) {
1945 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001946 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001947 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1948 } else {
1949 AHBLplusOverflowReg = AHBLReg;
1950 }
1951
1952 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001953 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1954 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001955 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001956 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001957 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1958
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001959 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001960 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1961 }
1962 return;
1963 }
1964
1965 // General 64x64 multiply
1966
1967 unsigned Op1Reg = getReg(Op1, &BB, IP);
1968
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001969 // Multiply the two low parts...
1970 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001971
1972 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001973 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001974
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001975 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001976 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1977
1978 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001979 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
1980 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001981
1982 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1983 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1984
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001985 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001986 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1987}
1988
1989
1990/// visitDivRem - Handle division and remainder instructions... these
1991/// instruction both require the same instructions to be generated, they just
1992/// select the result from a different register. Note that both of these
1993/// instructions work differently for signed and unsigned operands.
1994///
1995void ISel::visitDivRem(BinaryOperator &I) {
1996 unsigned ResultReg = getReg(I);
1997 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1998
1999 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002000 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2001 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002002}
2003
2004void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2005 MachineBasicBlock::iterator IP,
2006 Value *Op0, Value *Op1, bool isDiv,
2007 unsigned ResultReg) {
2008 const Type *Ty = Op0->getType();
2009 unsigned Class = getClass(Ty);
2010 switch (Class) {
2011 case cFP: // Floating point divide
2012 if (isDiv) {
2013 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2014 return;
2015 } else { // Floating point remainder...
2016 unsigned Op0Reg = getReg(Op0, BB, IP);
2017 unsigned Op1Reg = getReg(Op1, BB, IP);
2018 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002019 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002020 std::vector<ValueRecord> Args;
2021 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2022 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002023 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002024 }
2025 return;
2026 case cLong: {
Misha Brukman0aa97c62004-07-08 18:27:59 +00002027 static Function* const Funcs[] =
2028 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002029 unsigned Op0Reg = getReg(Op0, BB, IP);
2030 unsigned Op1Reg = getReg(Op1, BB, IP);
2031 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2032 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002033 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002034
2035 std::vector<ValueRecord> Args;
2036 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2037 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002038 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002039 return;
2040 }
2041 case cByte: case cShort: case cInt:
2042 break; // Small integrals, handled below...
2043 default: assert(0 && "Unknown class!");
2044 }
2045
2046 // Special case signed division by power of 2.
2047 if (isDiv)
2048 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2049 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2050 int V = CI->getValue();
2051
2052 if (V == 1) { // X /s 1 => X
2053 unsigned Op0Reg = getReg(Op0, BB, IP);
2054 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2055 return;
2056 }
2057
2058 if (V == -1) { // X /s -1 => -X
2059 unsigned Op0Reg = getReg(Op0, BB, IP);
2060 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2061 return;
2062 }
2063
2064 bool isNeg = false;
2065 if (V < 0) { // Not a positive power of 2?
2066 V = -V;
2067 isNeg = true; // Maybe it's a negative power of 2.
2068 }
2069 if (unsigned Log = ExactLog2(V)) {
2070 --Log;
2071 unsigned Op0Reg = getReg(Op0, BB, IP);
2072 unsigned TmpReg = makeAnotherReg(Op0->getType());
2073 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002074 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002075 else
2076 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
2077
2078 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00002079 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
2080 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002081
2082 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2083 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
2084
2085 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2086 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
2087
2088 if (isNeg)
2089 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2090 return;
2091 }
2092 }
2093
2094 unsigned Op0Reg = getReg(Op0, BB, IP);
2095 unsigned Op1Reg = getReg(Op1, BB, IP);
2096
2097 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002098 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002099 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002100 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002101 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002102 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002103 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002104 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2105 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2106
2107 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002108 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002109 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002110 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002111 }
2112 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2113 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002114 }
2115}
2116
2117
2118/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2119/// for constant immediate shift values, and for constant immediate
2120/// shift values equal to 1. Even the general case is sort of special,
2121/// because the shift amount has to be in CL, not just any old register.
2122///
2123void ISel::visitShiftInst(ShiftInst &I) {
2124 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002125 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2126 I.getOpcode () == Instruction::Shl, I.getType (),
2127 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002128}
2129
2130/// emitShiftOperation - Common code shared between visitShiftInst and
2131/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002132///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002133void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2134 MachineBasicBlock::iterator IP,
2135 Value *Op, Value *ShiftAmount, bool isLeftShift,
2136 const Type *ResultTy, unsigned DestReg) {
2137 unsigned SrcReg = getReg (Op, MBB, IP);
2138 bool isSigned = ResultTy->isSigned ();
2139 unsigned Class = getClass (ResultTy);
2140
2141 // Longs, as usual, are handled specially...
2142 if (Class == cLong) {
2143 // If we have a constant shift, we can generate much more efficient code
2144 // than otherwise...
2145 //
2146 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2147 unsigned Amount = CUI->getValue();
2148 if (Amount < 32) {
2149 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002150 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002151 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2152 .addImm(Amount).addImm(0).addImm(31-Amount);
2153 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2154 .addImm(Amount).addImm(32-Amount).addImm(31);
2155 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2156 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002157 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002158 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002159 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2160 .addImm(32-Amount).addImm(Amount).addImm(31);
2161 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2162 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2163 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2164 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002165 }
2166 } else { // Shifting more than 32 bits
2167 Amount -= 32;
2168 if (isLeftShift) {
2169 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002170 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2171 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002172 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002173 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2174 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002175 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002176 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002177 } else {
2178 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002179 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002180 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2181 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002182 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002183 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2184 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002185 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002186 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2187 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002188 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002189 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002190 }
2191 }
2192 } else {
2193 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2194 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002195 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2196 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2197 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2198 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2199 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2200
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002201 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002202 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2203 .addImm(32);
2204 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2205 .addReg(ShiftAmountReg);
2206 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2207 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2208 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2209 .addImm(-32);
2210 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2211 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2212 .addReg(TmpReg6);
2213 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2214 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002215 } else {
2216 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002217 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002218 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002219 std::cerr << "Unimplemented: signed right shift\n";
2220 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002221 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002222 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2223 .addImm(32);
2224 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2225 .addReg(ShiftAmountReg);
2226 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2227 .addReg(TmpReg1);
2228 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2229 .addReg(TmpReg3);
2230 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2231 .addImm(-32);
2232 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2233 .addReg(TmpReg5);
2234 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2235 .addReg(TmpReg6);
2236 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2237 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002238 }
2239 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002240 }
2241 return;
2242 }
2243
2244 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2245 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2246 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2247 unsigned Amount = CUI->getValue();
2248
Misha Brukman422791f2004-06-21 17:41:12 +00002249 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002250 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2251 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002252 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002253 if (isSigned) {
2254 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2255 } else {
2256 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2257 .addImm(32-Amount).addImm(Amount).addImm(31);
2258 }
Misha Brukman422791f2004-06-21 17:41:12 +00002259 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002260 } else { // The shift amount is non-constant.
2261 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2262
Misha Brukman422791f2004-06-21 17:41:12 +00002263 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002264 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2265 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002266 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002267 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2268 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002269 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002270 }
2271}
2272
2273
2274/// visitLoadInst - Implement LLVM load instructions
2275///
2276void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002277 static const unsigned Opcodes[] = {
2278 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2279 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002280 unsigned Class = getClassB(I.getType());
2281 unsigned Opcode = Opcodes[Class];
2282 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2283
2284 unsigned DestReg = getReg(I);
2285
2286 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002287 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002288 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002289 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2290 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002291 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002292 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002293 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002294 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002295 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002296
2297 if (Class == cLong) {
2298 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2299 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2300 } else {
2301 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2302 }
2303 }
2304}
2305
2306/// visitStoreInst - Implement LLVM store instructions
2307///
2308void ISel::visitStoreInst(StoreInst &I) {
2309 unsigned ValReg = getReg(I.getOperand(0));
2310 unsigned AddressReg = getReg(I.getOperand(1));
2311
2312 const Type *ValTy = I.getOperand(0)->getType();
2313 unsigned Class = getClassB(ValTy);
2314
2315 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002316 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002317 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002318 return;
2319 }
2320
2321 static const unsigned Opcodes[] = {
2322 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2323 };
2324 unsigned Opcode = Opcodes[Class];
2325 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2326 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2327}
2328
2329
2330/// visitCastInst - Here we have various kinds of copying with or without sign
2331/// extension going on.
2332///
2333void ISel::visitCastInst(CastInst &CI) {
2334 Value *Op = CI.getOperand(0);
2335
2336 unsigned SrcClass = getClassB(Op->getType());
2337 unsigned DestClass = getClassB(CI.getType());
2338 // Noop casts are not emitted: getReg will return the source operand as the
2339 // register to use for any uses of the noop cast.
2340 if (DestClass == SrcClass)
2341 return;
2342
2343 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2344 // of the case are GEP instructions, then the cast does not need to be
2345 // generated explicitly, it will be folded into the GEP.
2346 if (DestClass == cLong && SrcClass == cInt) {
2347 bool AllUsesAreGEPs = true;
2348 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2349 if (!isa<GetElementPtrInst>(*I)) {
2350 AllUsesAreGEPs = false;
2351 break;
2352 }
2353
2354 // No need to codegen this cast if all users are getelementptr instrs...
2355 if (AllUsesAreGEPs) return;
2356 }
2357
2358 unsigned DestReg = getReg(CI);
2359 MachineBasicBlock::iterator MI = BB->end();
2360 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2361}
2362
2363/// emitCastOperation - Common code shared between visitCastInst and constant
2364/// expression cast support.
2365///
2366void ISel::emitCastOperation(MachineBasicBlock *BB,
2367 MachineBasicBlock::iterator IP,
2368 Value *Src, const Type *DestTy,
2369 unsigned DestReg) {
2370 const Type *SrcTy = Src->getType();
2371 unsigned SrcClass = getClassB(SrcTy);
2372 unsigned DestClass = getClassB(DestTy);
2373 unsigned SrcReg = getReg(Src, BB, IP);
2374
2375 // Implement casts to bool by using compare on the operand followed by set if
2376 // not zero on the result.
2377 if (DestTy == Type::BoolTy) {
2378 switch (SrcClass) {
2379 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002380 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002381 case cInt: {
2382 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002383 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2384 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002385 break;
2386 }
2387 case cLong: {
2388 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2389 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2390 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002391 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2392 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002393 break;
2394 }
2395 case cFP:
2396 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002397 // Load -0.0
2398 // Compare
2399 // move to CR1
2400 // Negate -0.0
2401 // Compare
2402 // CROR
2403 // MFCR
2404 // Left-align
2405 // SRA ?
Misha Brukmand18a31d2004-07-06 22:51:53 +00002406 std::cerr << "Cast fp-to-bool not implemented!";
2407 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002408 }
2409 return;
2410 }
2411
2412 // Implement casts between values of the same type class (as determined by
2413 // getClass) by using a register-to-register move.
2414 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002415 if (SrcClass <= cInt) {
2416 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2417 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002418 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2419 } else if (SrcClass == cFP) {
2420 if (SrcTy == Type::FloatTy) { // float -> double
2421 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2422 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2423 } else { // double -> float
2424 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2425 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002426 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002427 }
2428 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002429 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002430 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2431 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002432 } else {
2433 assert(0 && "Cannot handle this type of cast instruction!");
2434 abort();
2435 }
2436 return;
2437 }
2438
2439 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2440 // or zero extension, depending on whether the source type was signed.
2441 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2442 SrcClass < DestClass) {
2443 bool isLong = DestClass == cLong;
2444 if (isLong) DestClass = cInt;
2445
2446 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2447 if (SrcClass < cInt) {
2448 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002449 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002450 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2451 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002452 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002453 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2454 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002455 }
2456 } else {
2457 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2458 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002459
2460 if (isLong) { // Handle upper 32 bits as appropriate...
2461 if (isUnsigned) // Zero out top bits...
2462 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2463 else // Sign extend bottom half...
2464 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2465 }
2466 return;
2467 }
2468
2469 // Special case long -> int ...
2470 if (SrcClass == cLong && DestClass == cInt) {
2471 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2472 return;
2473 }
2474
2475 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2476 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2477 && SrcClass > DestClass) {
2478 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002479 if (isUnsigned) {
2480 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002481 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2482 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002483 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002484 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2485 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002486 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002487 return;
2488 }
2489
2490 // Handle casts from integer to floating point now...
2491 if (DestClass == cFP) {
2492
Misha Brukman422791f2004-06-21 17:41:12 +00002493 // Emit a library call for long to float conversion
2494 if (SrcClass == cLong) {
2495 std::vector<ValueRecord> Args;
2496 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002497 MachineInstr *TheCall =
Misha Brukmanf3f63822004-07-08 19:41:16 +00002498 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(__floatdidfFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002499 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002500 return;
2501 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002502
2503 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002504 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002505 case Type::BoolTyID:
2506 case Type::SByteTyID:
2507 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2508 break;
2509 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002510 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2511 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002512 break;
2513 case Type::ShortTyID:
2514 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2515 break;
2516 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002517 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2518 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002519 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002520 case Type::IntTyID:
2521 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2522 break;
2523 case Type::UIntTyID:
2524 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2525 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002526 default: // No promotion needed...
2527 break;
2528 }
2529
2530 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002531
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002532 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002533 // Also spill room for a special conversion constant
2534 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002535 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2536 int ValueFrameIdx =
2537 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2538
Misha Brukman422791f2004-06-21 17:41:12 +00002539 unsigned constantHi = makeAnotherReg(Type::IntTy);
2540 unsigned constantLo = makeAnotherReg(Type::IntTy);
2541 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2542 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2543
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002544 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002545 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2546 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002547 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002548 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2549 ConstantFrameIndex);
2550 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2551 ConstantFrameIndex, 4);
2552 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2553 ValueFrameIdx);
2554 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2555 ValueFrameIdx, 4);
2556 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2557 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002558 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2559 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2560 } else {
2561 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002562 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2563 .addImm(0x4330);
2564 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2565 .addImm(0x8000);
2566 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2567 ConstantFrameIndex);
2568 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2569 ConstantFrameIndex, 4);
2570 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2571 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002572 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002573 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2574 ValueFrameIdx, 4);
2575 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2576 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002577 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002578 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002579 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002580 return;
2581 }
2582
2583 // Handle casts from floating point to integer now...
2584 if (SrcClass == cFP) {
2585
Misha Brukman422791f2004-06-21 17:41:12 +00002586 // emit library call
2587 if (DestClass == cLong) {
2588 std::vector<ValueRecord> Args;
2589 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002590 MachineInstr *TheCall =
Misha Brukmanf3f63822004-07-08 19:41:16 +00002591 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(__fixdfdiFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002592 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002593 return;
2594 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002595
2596 int ValueFrameIdx =
2597 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2598
Misha Brukman422791f2004-06-21 17:41:12 +00002599 // load into 32 bit value, and then truncate as necessary
2600 // FIXME: This is wrong for unsigned dest types
2601 //if (DestTy->isSigned()) {
2602 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2603 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002604 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2605 .addReg(TempReg), ValueFrameIdx);
2606 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2607 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002608 //} else {
2609 //}
2610
2611 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002612 return;
2613 }
2614
2615 // Anything we haven't handled already, we can't (yet) handle at all.
2616 assert(0 && "Unhandled cast instruction!");
2617 abort();
2618}
2619
2620/// visitVANextInst - Implement the va_next instruction...
2621///
2622void ISel::visitVANextInst(VANextInst &I) {
2623 unsigned VAList = getReg(I.getOperand(0));
2624 unsigned DestReg = getReg(I);
2625
2626 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002627 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002628 default:
2629 std::cerr << I;
2630 assert(0 && "Error: bad type for va_next instruction!");
2631 return;
2632 case Type::PointerTyID:
2633 case Type::UIntTyID:
2634 case Type::IntTyID:
2635 Size = 4;
2636 break;
2637 case Type::ULongTyID:
2638 case Type::LongTyID:
2639 case Type::DoubleTyID:
2640 Size = 8;
2641 break;
2642 }
2643
2644 // Increment the VAList pointer...
2645 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2646}
2647
2648void ISel::visitVAArgInst(VAArgInst &I) {
2649 unsigned VAList = getReg(I.getOperand(0));
2650 unsigned DestReg = getReg(I);
2651
Misha Brukman358829f2004-06-21 17:25:55 +00002652 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002653 default:
2654 std::cerr << I;
2655 assert(0 && "Error: bad type for va_next instruction!");
2656 return;
2657 case Type::PointerTyID:
2658 case Type::UIntTyID:
2659 case Type::IntTyID:
2660 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2661 break;
2662 case Type::ULongTyID:
2663 case Type::LongTyID:
2664 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2665 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2666 break;
2667 case Type::DoubleTyID:
2668 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2669 break;
2670 }
2671}
2672
2673/// visitGetElementPtrInst - instruction-select GEP instructions
2674///
2675void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2676 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002677 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2678 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002679}
2680
2681void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2682 MachineBasicBlock::iterator IP,
2683 Value *Src, User::op_iterator IdxBegin,
2684 User::op_iterator IdxEnd, unsigned TargetReg) {
2685 const TargetData &TD = TM.getTargetData();
2686 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2687 Src = CPR->getValue();
2688
2689 std::vector<Value*> GEPOps;
2690 GEPOps.resize(IdxEnd-IdxBegin+1);
2691 GEPOps[0] = Src;
2692 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2693
2694 std::vector<const Type*> GEPTypes;
2695 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2696 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2697
2698 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002699 while (!GEPOps.empty()) {
2700 if (GEPTypes.empty()) {
2701 // Load the base pointer into a register.
2702 unsigned Reg = getReg(Src, MBB, IP);
2703 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2704 break; // we are now done
2705 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002706 // It's an array or pointer access: [ArraySize x ElementType].
2707 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2708 Value *idx = GEPOps.back();
2709 GEPOps.pop_back(); // Consume a GEP operand
2710 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002711
Misha Brukman2fec9902004-06-21 20:22:03 +00002712 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002713 // operand. Handle this case directly now...
Misha Brukman2fec9902004-06-21 20:22:03 +00002714 if (CastInst *CI = dyn_cast<CastInst>(idx))
2715 if (CI->getOperand(0)->getType() == Type::IntTy ||
2716 CI->getOperand(0)->getType() == Type::UIntTy)
2717 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002718
Misha Brukman2fec9902004-06-21 20:22:03 +00002719 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2720 // must find the size of the pointed-to type (Not coincidentally, the next
2721 // type is the type of the elements in the array).
2722 const Type *ElTy = SqTy->getElementType();
2723 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002724
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002725 if (idx == Constant::getNullValue(idx->getType())) {
2726 // GEP with idx 0 is a no-op
2727 } else if (elementSize == 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002728 // If the element size is 1, we don't have to multiply, just add
2729 unsigned idxReg = getReg(idx, MBB, IP);
2730 unsigned Reg = makeAnotherReg(Type::UIntTy);
2731 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2732 --IP; // Insert the next instruction before this one.
2733 TargetReg = Reg; // Codegen the rest of the GEP into this
2734 } else {
2735 unsigned idxReg = getReg(idx, MBB, IP);
2736 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002737
Misha Brukman2fec9902004-06-21 20:22:03 +00002738 // Make sure we can back the iterator up to point to the first
2739 // instruction emitted.
2740 MachineBasicBlock::iterator BeforeIt = IP;
2741 if (IP == MBB->begin())
2742 BeforeIt = MBB->end();
2743 else
2744 --BeforeIt;
2745 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002746
Misha Brukman2fec9902004-06-21 20:22:03 +00002747 // Emit an ADD to add OffsetReg to the basePtr.
2748 unsigned Reg = makeAnotherReg(Type::UIntTy);
2749 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002750
Misha Brukman2fec9902004-06-21 20:22:03 +00002751 // Step to the first instruction of the multiply.
2752 if (BeforeIt == MBB->end())
2753 IP = MBB->begin();
2754 else
2755 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002756
Misha Brukman2fec9902004-06-21 20:22:03 +00002757 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002758 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002759 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002760}
2761
2762/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2763/// frame manager, otherwise do it the hard way.
2764///
2765void ISel::visitAllocaInst(AllocaInst &I) {
2766 // If this is a fixed size alloca in the entry block for the function, we
2767 // statically stack allocate the space, so we don't need to do anything here.
2768 //
2769 if (dyn_castFixedAlloca(&I)) return;
2770
2771 // Find the data size of the alloca inst's getAllocatedType.
2772 const Type *Ty = I.getAllocatedType();
2773 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2774
2775 // Create a register to hold the temporary result of multiplying the type size
2776 // constant by the variable amount.
2777 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2778 unsigned SrcReg1 = getReg(I.getArraySize());
2779
2780 // TotalSizeReg = mul <numelements>, <TypeSize>
2781 MachineBasicBlock::iterator MBBI = BB->end();
2782 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2783
2784 // AddedSize = add <TotalSizeReg>, 15
2785 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2786 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2787
2788 // AlignedSize = and <AddedSize>, ~15
2789 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002790 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2791 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002792
2793 // Subtract size from stack pointer, thereby allocating some space.
2794 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2795
2796 // Put a pointer to the space into the result register, by copying
2797 // the stack pointer.
2798 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2799
2800 // Inform the Frame Information that we have just allocated a variable-sized
2801 // object.
2802 F->getFrameInfo()->CreateVariableSizedObject();
2803}
2804
2805/// visitMallocInst - Malloc instructions are code generated into direct calls
2806/// to the library malloc.
2807///
2808void ISel::visitMallocInst(MallocInst &I) {
2809 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2810 unsigned Arg;
2811
2812 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2813 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2814 } else {
2815 Arg = makeAnotherReg(Type::UIntTy);
2816 unsigned Op0Reg = getReg(I.getOperand(0));
2817 MachineBasicBlock::iterator MBBI = BB->end();
2818 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2819 }
2820
2821 std::vector<ValueRecord> Args;
2822 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002823 MachineInstr *TheCall =
2824 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002825 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002826}
2827
2828
2829/// visitFreeInst - Free instructions are code gen'd to call the free libc
2830/// function.
2831///
2832void ISel::visitFreeInst(FreeInst &I) {
2833 std::vector<ValueRecord> Args;
2834 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002835 MachineInstr *TheCall =
2836 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002837 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002838}
2839
2840/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2841/// into a machine code representation is a very simple peep-hole fashion. The
2842/// generated code sucks but the implementation is nice and simple.
2843///
2844FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2845 return new ISel(TM);
2846}