blob: e81fda43ce09fae2750310ac78d29c7bc56b5328 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
Sean Silvaf722b002012-12-07 10:36:55 +0000308.. _callingconv:
309
310Calling Conventions
311-------------------
312
313LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
314:ref:`invokes <i_invoke>` can all have an optional calling convention
315specified for the call. The calling convention of any pair of dynamic
316caller/callee must match, or the behavior of the program is undefined.
317The following calling conventions are supported by LLVM, and more may be
318added in the future:
319
320"``ccc``" - The C calling convention
321 This calling convention (the default if no other calling convention
322 is specified) matches the target C calling conventions. This calling
323 convention supports varargs function calls and tolerates some
324 mismatch in the declared prototype and implemented declaration of
325 the function (as does normal C).
326"``fastcc``" - The fast calling convention
327 This calling convention attempts to make calls as fast as possible
328 (e.g. by passing things in registers). This calling convention
329 allows the target to use whatever tricks it wants to produce fast
330 code for the target, without having to conform to an externally
331 specified ABI (Application Binary Interface). `Tail calls can only
332 be optimized when this, the GHC or the HiPE convention is
333 used. <CodeGenerator.html#id80>`_ This calling convention does not
334 support varargs and requires the prototype of all callees to exactly
335 match the prototype of the function definition.
336"``coldcc``" - The cold calling convention
337 This calling convention attempts to make code in the caller as
338 efficient as possible under the assumption that the call is not
339 commonly executed. As such, these calls often preserve all registers
340 so that the call does not break any live ranges in the caller side.
341 This calling convention does not support varargs and requires the
342 prototype of all callees to exactly match the prototype of the
343 function definition.
344"``cc 10``" - GHC convention
345 This calling convention has been implemented specifically for use by
346 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
347 It passes everything in registers, going to extremes to achieve this
348 by disabling callee save registers. This calling convention should
349 not be used lightly but only for specific situations such as an
350 alternative to the *register pinning* performance technique often
351 used when implementing functional programming languages. At the
352 moment only X86 supports this convention and it has the following
353 limitations:
354
355 - On *X86-32* only supports up to 4 bit type parameters. No
356 floating point types are supported.
357 - On *X86-64* only supports up to 10 bit type parameters and 6
358 floating point parameters.
359
360 This calling convention supports `tail call
361 optimization <CodeGenerator.html#id80>`_ but requires both the
362 caller and callee are using it.
363"``cc 11``" - The HiPE calling convention
364 This calling convention has been implemented specifically for use by
365 the `High-Performance Erlang
366 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
367 native code compiler of the `Ericsson's Open Source Erlang/OTP
368 system <http://www.erlang.org/download.shtml>`_. It uses more
369 registers for argument passing than the ordinary C calling
370 convention and defines no callee-saved registers. The calling
371 convention properly supports `tail call
372 optimization <CodeGenerator.html#id80>`_ but requires that both the
373 caller and the callee use it. It uses a *register pinning*
374 mechanism, similar to GHC's convention, for keeping frequently
375 accessed runtime components pinned to specific hardware registers.
376 At the moment only X86 supports this convention (both 32 and 64
377 bit).
378"``cc <n>``" - Numbered convention
379 Any calling convention may be specified by number, allowing
380 target-specific calling conventions to be used. Target specific
381 calling conventions start at 64.
382
383More calling conventions can be added/defined on an as-needed basis, to
384support Pascal conventions or any other well-known target-independent
385convention.
386
Eli Bendersky1de14102013-06-07 19:40:08 +0000387.. _visibilitystyles:
388
Sean Silvaf722b002012-12-07 10:36:55 +0000389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
Eli Bendersky1de14102013-06-07 19:40:08 +0000414.. _namedtypes:
415
Sean Silvaf722b002012-12-07 10:36:55 +0000416Named Types
417-----------
418
419LLVM IR allows you to specify name aliases for certain types. This can
420make it easier to read the IR and make the IR more condensed
421(particularly when recursive types are involved). An example of a name
422specification is:
423
424.. code-block:: llvm
425
426 %mytype = type { %mytype*, i32 }
427
428You may give a name to any :ref:`type <typesystem>` except
429":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
430expected with the syntax "%mytype".
431
432Note that type names are aliases for the structural type that they
433indicate, and that you can therefore specify multiple names for the same
434type. This often leads to confusing behavior when dumping out a .ll
435file. Since LLVM IR uses structural typing, the name is not part of the
436type. When printing out LLVM IR, the printer will pick *one name* to
437render all types of a particular shape. This means that if you have code
438where two different source types end up having the same LLVM type, that
439the dumper will sometimes print the "wrong" or unexpected type. This is
440an important design point and isn't going to change.
441
442.. _globalvars:
443
444Global Variables
445----------------
446
447Global variables define regions of memory allocated at compilation time
448instead of run-time. Global variables may optionally be initialized, may
449have an explicit section to be placed in, and may have an optional
450explicit alignment specified.
451
452A variable may be defined as ``thread_local``, which means that it will
453not be shared by threads (each thread will have a separated copy of the
454variable). Not all targets support thread-local variables. Optionally, a
455TLS model may be specified:
456
457``localdynamic``
458 For variables that are only used within the current shared library.
459``initialexec``
460 For variables in modules that will not be loaded dynamically.
461``localexec``
462 For variables defined in the executable and only used within it.
463
464The models correspond to the ELF TLS models; see `ELF Handling For
465Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
466more information on under which circumstances the different models may
467be used. The target may choose a different TLS model if the specified
468model is not supported, or if a better choice of model can be made.
469
Michael Gottesmanf5735882013-01-31 05:48:48 +0000470A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000471the contents of the variable will **never** be modified (enabling better
472optimization, allowing the global data to be placed in the read-only
473section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000474initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000475variable.
476
477LLVM explicitly allows *declarations* of global variables to be marked
478constant, even if the final definition of the global is not. This
479capability can be used to enable slightly better optimization of the
480program, but requires the language definition to guarantee that
481optimizations based on the 'constantness' are valid for the translation
482units that do not include the definition.
483
484As SSA values, global variables define pointer values that are in scope
485(i.e. they dominate) all basic blocks in the program. Global variables
486always define a pointer to their "content" type because they describe a
487region of memory, and all memory objects in LLVM are accessed through
488pointers.
489
490Global variables can be marked with ``unnamed_addr`` which indicates
491that the address is not significant, only the content. Constants marked
492like this can be merged with other constants if they have the same
493initializer. Note that a constant with significant address *can* be
494merged with a ``unnamed_addr`` constant, the result being a constant
495whose address is significant.
496
497A global variable may be declared to reside in a target-specific
498numbered address space. For targets that support them, address spaces
499may affect how optimizations are performed and/or what target
500instructions are used to access the variable. The default address space
501is zero. The address space qualifier must precede any other attributes.
502
503LLVM allows an explicit section to be specified for globals. If the
504target supports it, it will emit globals to the section specified.
505
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000506By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000507variables defined within the module are not modified from their
508initial values before the start of the global initializer. This is
509true even for variables potentially accessible from outside the
510module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000511``@llvm.used``. This assumption may be suppressed by marking the
512variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000513
Sean Silvaf722b002012-12-07 10:36:55 +0000514An explicit alignment may be specified for a global, which must be a
515power of 2. If not present, or if the alignment is set to zero, the
516alignment of the global is set by the target to whatever it feels
517convenient. If an explicit alignment is specified, the global is forced
518to have exactly that alignment. Targets and optimizers are not allowed
519to over-align the global if the global has an assigned section. In this
520case, the extra alignment could be observable: for example, code could
521assume that the globals are densely packed in their section and try to
522iterate over them as an array, alignment padding would break this
523iteration.
524
525For example, the following defines a global in a numbered address space
526with an initializer, section, and alignment:
527
528.. code-block:: llvm
529
530 @G = addrspace(5) constant float 1.0, section "foo", align 4
531
532The following example defines a thread-local global with the
533``initialexec`` TLS model:
534
535.. code-block:: llvm
536
537 @G = thread_local(initialexec) global i32 0, align 4
538
539.. _functionstructure:
540
541Functions
542---------
543
544LLVM function definitions consist of the "``define``" keyword, an
545optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
546style <visibility>`, an optional :ref:`calling convention <callingconv>`,
547an optional ``unnamed_addr`` attribute, a return type, an optional
548:ref:`parameter attribute <paramattrs>` for the return type, a function
549name, a (possibly empty) argument list (each with optional :ref:`parameter
550attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
551an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000552collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
553curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvaf722b002012-12-07 10:36:55 +0000554
555LLVM function declarations consist of the "``declare``" keyword, an
556optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
557style <visibility>`, an optional :ref:`calling convention <callingconv>`,
558an optional ``unnamed_addr`` attribute, a return type, an optional
559:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000560name, a possibly empty list of arguments, an optional alignment, an optional
561:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvaf722b002012-12-07 10:36:55 +0000562
563A function definition contains a list of basic blocks, forming the CFG
564(Control Flow Graph) for the function. Each basic block may optionally
565start with a label (giving the basic block a symbol table entry),
566contains a list of instructions, and ends with a
567:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000568return). If explicit label is not provided, a block is assigned an
569implicit numbered label, using a next value from the same counter as used
570for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
571function entry block does not have explicit label, it will be assigned
572label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000573
574The first basic block in a function is special in two ways: it is
575immediately executed on entrance to the function, and it is not allowed
576to have predecessor basic blocks (i.e. there can not be any branches to
577the entry block of a function). Because the block can have no
578predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
579
580LLVM allows an explicit section to be specified for functions. If the
581target supports it, it will emit functions to the section specified.
582
583An explicit alignment may be specified for a function. If not present,
584or if the alignment is set to zero, the alignment of the function is set
585by the target to whatever it feels convenient. If an explicit alignment
586is specified, the function is forced to have at least that much
587alignment. All alignments must be a power of 2.
588
589If the ``unnamed_addr`` attribute is given, the address is know to not
590be significant and two identical functions can be merged.
591
592Syntax::
593
594 define [linkage] [visibility]
595 [cconv] [ret attrs]
596 <ResultType> @<FunctionName> ([argument list])
597 [fn Attrs] [section "name"] [align N]
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000598 [gc] [prefix Constant] { ... }
Sean Silvaf722b002012-12-07 10:36:55 +0000599
Eli Bendersky1de14102013-06-07 19:40:08 +0000600.. _langref_aliases:
601
Sean Silvaf722b002012-12-07 10:36:55 +0000602Aliases
603-------
604
605Aliases act as "second name" for the aliasee value (which can be either
606function, global variable, another alias or bitcast of global value).
607Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
608:ref:`visibility style <visibility>`.
609
610Syntax::
611
612 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
613
Rafael Espindolacfa7d812013-10-07 13:57:59 +0000614The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola2def1792013-10-06 15:10:43 +0000615``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
616``linkonce_odr``, ``weak_odr``, ``linkonce_odr_auto_hide``, ``external``. Note
617that some system linkers might not correctly handle dropping a weak symbol that
618is aliased by a non weak alias.
619
Sean Silvaf722b002012-12-07 10:36:55 +0000620.. _namedmetadatastructure:
621
622Named Metadata
623--------------
624
625Named metadata is a collection of metadata. :ref:`Metadata
626nodes <metadata>` (but not metadata strings) are the only valid
627operands for a named metadata.
628
629Syntax::
630
631 ; Some unnamed metadata nodes, which are referenced by the named metadata.
632 !0 = metadata !{metadata !"zero"}
633 !1 = metadata !{metadata !"one"}
634 !2 = metadata !{metadata !"two"}
635 ; A named metadata.
636 !name = !{!0, !1, !2}
637
638.. _paramattrs:
639
640Parameter Attributes
641--------------------
642
643The return type and each parameter of a function type may have a set of
644*parameter attributes* associated with them. Parameter attributes are
645used to communicate additional information about the result or
646parameters of a function. Parameter attributes are considered to be part
647of the function, not of the function type, so functions with different
648parameter attributes can have the same function type.
649
650Parameter attributes are simple keywords that follow the type specified.
651If multiple parameter attributes are needed, they are space separated.
652For example:
653
654.. code-block:: llvm
655
656 declare i32 @printf(i8* noalias nocapture, ...)
657 declare i32 @atoi(i8 zeroext)
658 declare signext i8 @returns_signed_char()
659
660Note that any attributes for the function result (``nounwind``,
661``readonly``) come immediately after the argument list.
662
663Currently, only the following parameter attributes are defined:
664
665``zeroext``
666 This indicates to the code generator that the parameter or return
667 value should be zero-extended to the extent required by the target's
668 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
669 the caller (for a parameter) or the callee (for a return value).
670``signext``
671 This indicates to the code generator that the parameter or return
672 value should be sign-extended to the extent required by the target's
673 ABI (which is usually 32-bits) by the caller (for a parameter) or
674 the callee (for a return value).
675``inreg``
676 This indicates that this parameter or return value should be treated
677 in a special target-dependent fashion during while emitting code for
678 a function call or return (usually, by putting it in a register as
679 opposed to memory, though some targets use it to distinguish between
680 two different kinds of registers). Use of this attribute is
681 target-specific.
682``byval``
683 This indicates that the pointer parameter should really be passed by
684 value to the function. The attribute implies that a hidden copy of
685 the pointee is made between the caller and the callee, so the callee
686 is unable to modify the value in the caller. This attribute is only
687 valid on LLVM pointer arguments. It is generally used to pass
688 structs and arrays by value, but is also valid on pointers to
689 scalars. The copy is considered to belong to the caller not the
690 callee (for example, ``readonly`` functions should not write to
691 ``byval`` parameters). This is not a valid attribute for return
692 values.
693
694 The byval attribute also supports specifying an alignment with the
695 align attribute. It indicates the alignment of the stack slot to
696 form and the known alignment of the pointer specified to the call
697 site. If the alignment is not specified, then the code generator
698 makes a target-specific assumption.
699
700``sret``
701 This indicates that the pointer parameter specifies the address of a
702 structure that is the return value of the function in the source
703 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000704 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000705 not to trap and to be properly aligned. This may only be applied to
706 the first parameter. This is not a valid attribute for return
707 values.
708``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000709 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000710 the argument or return value do not alias pointer values which are
711 not *based* on it, ignoring certain "irrelevant" dependencies. For a
712 call to the parent function, dependencies between memory references
713 from before or after the call and from those during the call are
714 "irrelevant" to the ``noalias`` keyword for the arguments and return
715 value used in that call. The caller shares the responsibility with
716 the callee for ensuring that these requirements are met. For further
717 details, please see the discussion of the NoAlias response in `alias
718 analysis <AliasAnalysis.html#MustMayNo>`_.
719
720 Note that this definition of ``noalias`` is intentionally similar
721 to the definition of ``restrict`` in C99 for function arguments,
722 though it is slightly weaker.
723
724 For function return values, C99's ``restrict`` is not meaningful,
725 while LLVM's ``noalias`` is.
726``nocapture``
727 This indicates that the callee does not make any copies of the
728 pointer that outlive the callee itself. This is not a valid
729 attribute for return values.
730
731.. _nest:
732
733``nest``
734 This indicates that the pointer parameter can be excised using the
735 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000736 attribute for return values and can only be applied to one parameter.
737
738``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000739 This indicates that the function always returns the argument as its return
740 value. This is an optimization hint to the code generator when generating
741 the caller, allowing tail call optimization and omission of register saves
742 and restores in some cases; it is not checked or enforced when generating
743 the callee. The parameter and the function return type must be valid
744 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
745 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000746
747.. _gc:
748
749Garbage Collector Names
750-----------------------
751
752Each function may specify a garbage collector name, which is simply a
753string:
754
755.. code-block:: llvm
756
757 define void @f() gc "name" { ... }
758
759The compiler declares the supported values of *name*. Specifying a
760collector which will cause the compiler to alter its output in order to
761support the named garbage collection algorithm.
762
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000763.. _prefixdata:
764
765Prefix Data
766-----------
767
768Prefix data is data associated with a function which the code generator
769will emit immediately before the function body. The purpose of this feature
770is to allow frontends to associate language-specific runtime metadata with
771specific functions and make it available through the function pointer while
772still allowing the function pointer to be called. To access the data for a
773given function, a program may bitcast the function pointer to a pointer to
774the constant's type. This implies that the IR symbol points to the start
775of the prefix data.
776
777To maintain the semantics of ordinary function calls, the prefix data must
778have a particular format. Specifically, it must begin with a sequence of
779bytes which decode to a sequence of machine instructions, valid for the
780module's target, which transfer control to the point immediately succeeding
781the prefix data, without performing any other visible action. This allows
782the inliner and other passes to reason about the semantics of the function
783definition without needing to reason about the prefix data. Obviously this
784makes the format of the prefix data highly target dependent.
785
Peter Collingbournea4ae4052013-09-23 20:14:21 +0000786Prefix data is laid out as if it were an initializer for a global variable
787of the prefix data's type. No padding is automatically placed between the
788prefix data and the function body. If padding is required, it must be part
789of the prefix data.
790
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000791A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
792which encodes the ``nop`` instruction:
793
794.. code-block:: llvm
795
796 define void @f() prefix i8 144 { ... }
797
798Generally prefix data can be formed by encoding a relative branch instruction
799which skips the metadata, as in this example of valid prefix data for the
800x86_64 architecture, where the first two bytes encode ``jmp .+10``:
801
802.. code-block:: llvm
803
804 %0 = type <{ i8, i8, i8* }>
805
806 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
807
808A function may have prefix data but no body. This has similar semantics
809to the ``available_externally`` linkage in that the data may be used by the
810optimizers but will not be emitted in the object file.
811
Bill Wendling95ce4c22013-02-06 06:52:58 +0000812.. _attrgrp:
813
814Attribute Groups
815----------------
816
817Attribute groups are groups of attributes that are referenced by objects within
818the IR. They are important for keeping ``.ll`` files readable, because a lot of
819functions will use the same set of attributes. In the degenerative case of a
820``.ll`` file that corresponds to a single ``.c`` file, the single attribute
821group will capture the important command line flags used to build that file.
822
823An attribute group is a module-level object. To use an attribute group, an
824object references the attribute group's ID (e.g. ``#37``). An object may refer
825to more than one attribute group. In that situation, the attributes from the
826different groups are merged.
827
828Here is an example of attribute groups for a function that should always be
829inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
830
831.. code-block:: llvm
832
833 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000834 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000835
836 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000837 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000838
839 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
840 define void @f() #0 #1 { ... }
841
Sean Silvaf722b002012-12-07 10:36:55 +0000842.. _fnattrs:
843
844Function Attributes
845-------------------
846
847Function attributes are set to communicate additional information about
848a function. Function attributes are considered to be part of the
849function, not of the function type, so functions with different function
850attributes can have the same function type.
851
852Function attributes are simple keywords that follow the type specified.
853If multiple attributes are needed, they are space separated. For
854example:
855
856.. code-block:: llvm
857
858 define void @f() noinline { ... }
859 define void @f() alwaysinline { ... }
860 define void @f() alwaysinline optsize { ... }
861 define void @f() optsize { ... }
862
Sean Silvaf722b002012-12-07 10:36:55 +0000863``alignstack(<n>)``
864 This attribute indicates that, when emitting the prologue and
865 epilogue, the backend should forcibly align the stack pointer.
866 Specify the desired alignment, which must be a power of two, in
867 parentheses.
868``alwaysinline``
869 This attribute indicates that the inliner should attempt to inline
870 this function into callers whenever possible, ignoring any active
871 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000872``builtin``
873 This indicates that the callee function at a call site should be
874 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000875 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000876 direct calls to functions which are declared with the ``nobuiltin``
877 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000878``cold``
879 This attribute indicates that this function is rarely called. When
880 computing edge weights, basic blocks post-dominated by a cold
881 function call are also considered to be cold; and, thus, given low
882 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000883``inlinehint``
884 This attribute indicates that the source code contained a hint that
885 inlining this function is desirable (such as the "inline" keyword in
886 C/C++). It is just a hint; it imposes no requirements on the
887 inliner.
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000888``minsize``
889 This attribute suggests that optimization passes and code generator
890 passes make choices that keep the code size of this function as small
891 as possible and perform optimizations that may sacrifice runtime
892 performance in order to minimize the size of the generated code.
Sean Silvaf722b002012-12-07 10:36:55 +0000893``naked``
894 This attribute disables prologue / epilogue emission for the
895 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000896``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000897 This indicates that the callee function at a call site is not recognized as
898 a built-in function. LLVM will retain the original call and not replace it
899 with equivalent code based on the semantics of the built-in function, unless
900 the call site uses the ``builtin`` attribute. This is valid at call sites
901 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000902``noduplicate``
903 This attribute indicates that calls to the function cannot be
904 duplicated. A call to a ``noduplicate`` function may be moved
905 within its parent function, but may not be duplicated within
906 its parent function.
907
908 A function containing a ``noduplicate`` call may still
909 be an inlining candidate, provided that the call is not
910 duplicated by inlining. That implies that the function has
911 internal linkage and only has one call site, so the original
912 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000913``noimplicitfloat``
914 This attributes disables implicit floating point instructions.
915``noinline``
916 This attribute indicates that the inliner should never inline this
917 function in any situation. This attribute may not be used together
918 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +0000919``nonlazybind``
920 This attribute suppresses lazy symbol binding for the function. This
921 may make calls to the function faster, at the cost of extra program
922 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +0000923``noredzone``
924 This attribute indicates that the code generator should not use a
925 red zone, even if the target-specific ABI normally permits it.
926``noreturn``
927 This function attribute indicates that the function never returns
928 normally. This produces undefined behavior at runtime if the
929 function ever does dynamically return.
930``nounwind``
931 This function attribute indicates that the function never returns
932 with an unwind or exceptional control flow. If the function does
933 unwind, its runtime behavior is undefined.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000934``optnone``
935 This function attribute indicates that the function is not optimized
936 by any optimization or code generator passes with the
937 exception of interprocedural optimization passes.
938 This attribute cannot be used together with the ``alwaysinline``
939 attribute; this attribute is also incompatible
940 with the ``minsize`` attribute and the ``optsize`` attribute.
941
942 The inliner should never inline this function in any situation.
943 Only functions with the ``alwaysinline`` attribute are valid
944 candidates for inlining inside the body of this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000945``optsize``
946 This attribute suggests that optimization passes and code generator
947 passes make choices that keep the code size of this function low,
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000948 and otherwise do optimizations specifically to reduce code size as
949 long as they do not significantly impact runtime performance.
Sean Silvaf722b002012-12-07 10:36:55 +0000950``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000951 On a function, this attribute indicates that the function computes its
952 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000953 without dereferencing any pointer arguments or otherwise accessing
954 any mutable state (e.g. memory, control registers, etc) visible to
955 caller functions. It does not write through any pointer arguments
956 (including ``byval`` arguments) and never changes any state visible
957 to callers. This means that it cannot unwind exceptions by calling
958 the ``C++`` exception throwing methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000959
960 On an argument, this attribute indicates that the function does not
961 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +0000962 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000963``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000964 On a function, this attribute indicates that the function does not write
965 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000966 modify any state (e.g. memory, control registers, etc) visible to
967 caller functions. It may dereference pointer arguments and read
968 state that may be set in the caller. A readonly function always
969 returns the same value (or unwinds an exception identically) when
970 called with the same set of arguments and global state. It cannot
971 unwind an exception by calling the ``C++`` exception throwing
972 methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000973
974 On an argument, this attribute indicates that the function does not write
975 through this pointer argument, even though it may write to the memory that
976 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000977``returns_twice``
978 This attribute indicates that this function can return twice. The C
979 ``setjmp`` is an example of such a function. The compiler disables
980 some optimizations (like tail calls) in the caller of these
981 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000982``sanitize_address``
983 This attribute indicates that AddressSanitizer checks
984 (dynamic address safety analysis) are enabled for this function.
985``sanitize_memory``
986 This attribute indicates that MemorySanitizer checks (dynamic detection
987 of accesses to uninitialized memory) are enabled for this function.
988``sanitize_thread``
989 This attribute indicates that ThreadSanitizer checks
990 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000991``ssp``
992 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000993 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000994 placed on the stack before the local variables that's checked upon
995 return from the function to see if it has been overwritten. A
996 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000997 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000998
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000999 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1000 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1001 - Calls to alloca() with variable sizes or constant sizes greater than
1002 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +00001003
1004 If a function that has an ``ssp`` attribute is inlined into a
1005 function that doesn't have an ``ssp`` attribute, then the resulting
1006 function will have an ``ssp`` attribute.
1007``sspreq``
1008 This attribute indicates that the function should *always* emit a
1009 stack smashing protector. This overrides the ``ssp`` function
1010 attribute.
1011
1012 If a function that has an ``sspreq`` attribute is inlined into a
1013 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +00001014 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1015 an ``sspreq`` attribute.
1016``sspstrong``
1017 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001018 protector. This attribute causes a strong heuristic to be used when
1019 determining if a function needs stack protectors. The strong heuristic
1020 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001021
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001022 - Arrays of any size and type
1023 - Aggregates containing an array of any size and type.
1024 - Calls to alloca().
1025 - Local variables that have had their address taken.
1026
1027 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +00001028
1029 If a function that has an ``sspstrong`` attribute is inlined into a
1030 function that doesn't have an ``sspstrong`` attribute, then the
1031 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +00001032``uwtable``
1033 This attribute indicates that the ABI being targeted requires that
1034 an unwind table entry be produce for this function even if we can
1035 show that no exceptions passes by it. This is normally the case for
1036 the ELF x86-64 abi, but it can be disabled for some compilation
1037 units.
Sean Silvaf722b002012-12-07 10:36:55 +00001038
1039.. _moduleasm:
1040
1041Module-Level Inline Assembly
1042----------------------------
1043
1044Modules may contain "module-level inline asm" blocks, which corresponds
1045to the GCC "file scope inline asm" blocks. These blocks are internally
1046concatenated by LLVM and treated as a single unit, but may be separated
1047in the ``.ll`` file if desired. The syntax is very simple:
1048
1049.. code-block:: llvm
1050
1051 module asm "inline asm code goes here"
1052 module asm "more can go here"
1053
1054The strings can contain any character by escaping non-printable
1055characters. The escape sequence used is simply "\\xx" where "xx" is the
1056two digit hex code for the number.
1057
1058The inline asm code is simply printed to the machine code .s file when
1059assembly code is generated.
1060
Eli Bendersky1de14102013-06-07 19:40:08 +00001061.. _langref_datalayout:
1062
Sean Silvaf722b002012-12-07 10:36:55 +00001063Data Layout
1064-----------
1065
1066A module may specify a target specific data layout string that specifies
1067how data is to be laid out in memory. The syntax for the data layout is
1068simply:
1069
1070.. code-block:: llvm
1071
1072 target datalayout = "layout specification"
1073
1074The *layout specification* consists of a list of specifications
1075separated by the minus sign character ('-'). Each specification starts
1076with a letter and may include other information after the letter to
1077define some aspect of the data layout. The specifications accepted are
1078as follows:
1079
1080``E``
1081 Specifies that the target lays out data in big-endian form. That is,
1082 the bits with the most significance have the lowest address
1083 location.
1084``e``
1085 Specifies that the target lays out data in little-endian form. That
1086 is, the bits with the least significance have the lowest address
1087 location.
1088``S<size>``
1089 Specifies the natural alignment of the stack in bits. Alignment
1090 promotion of stack variables is limited to the natural stack
1091 alignment to avoid dynamic stack realignment. The stack alignment
1092 must be a multiple of 8-bits. If omitted, the natural stack
1093 alignment defaults to "unspecified", which does not prevent any
1094 alignment promotions.
1095``p[n]:<size>:<abi>:<pref>``
1096 This specifies the *size* of a pointer and its ``<abi>`` and
1097 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1098 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1099 preceding ``:`` should be omitted too. The address space, ``n`` is
1100 optional, and if not specified, denotes the default address space 0.
1101 The value of ``n`` must be in the range [1,2^23).
1102``i<size>:<abi>:<pref>``
1103 This specifies the alignment for an integer type of a given bit
1104 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1105``v<size>:<abi>:<pref>``
1106 This specifies the alignment for a vector type of a given bit
1107 ``<size>``.
1108``f<size>:<abi>:<pref>``
1109 This specifies the alignment for a floating point type of a given bit
1110 ``<size>``. Only values of ``<size>`` that are supported by the target
1111 will work. 32 (float) and 64 (double) are supported on all targets; 80
1112 or 128 (different flavors of long double) are also supported on some
1113 targets.
1114``a<size>:<abi>:<pref>``
1115 This specifies the alignment for an aggregate type of a given bit
1116 ``<size>``.
1117``s<size>:<abi>:<pref>``
1118 This specifies the alignment for a stack object of a given bit
1119 ``<size>``.
1120``n<size1>:<size2>:<size3>...``
1121 This specifies a set of native integer widths for the target CPU in
1122 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1123 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1124 this set are considered to support most general arithmetic operations
1125 efficiently.
1126
1127When constructing the data layout for a given target, LLVM starts with a
1128default set of specifications which are then (possibly) overridden by
1129the specifications in the ``datalayout`` keyword. The default
1130specifications are given in this list:
1131
1132- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00001133- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1134- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1135 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001136- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001137- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1138- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1139- ``i16:16:16`` - i16 is 16-bit aligned
1140- ``i32:32:32`` - i32 is 32-bit aligned
1141- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1142 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001143- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001144- ``f32:32:32`` - float is 32-bit aligned
1145- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001146- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001147- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1148- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001149- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001150
1151When LLVM is determining the alignment for a given type, it uses the
1152following rules:
1153
1154#. If the type sought is an exact match for one of the specifications,
1155 that specification is used.
1156#. If no match is found, and the type sought is an integer type, then
1157 the smallest integer type that is larger than the bitwidth of the
1158 sought type is used. If none of the specifications are larger than
1159 the bitwidth then the largest integer type is used. For example,
1160 given the default specifications above, the i7 type will use the
1161 alignment of i8 (next largest) while both i65 and i256 will use the
1162 alignment of i64 (largest specified).
1163#. If no match is found, and the type sought is a vector type, then the
1164 largest vector type that is smaller than the sought vector type will
1165 be used as a fall back. This happens because <128 x double> can be
1166 implemented in terms of 64 <2 x double>, for example.
1167
1168The function of the data layout string may not be what you expect.
1169Notably, this is not a specification from the frontend of what alignment
1170the code generator should use.
1171
1172Instead, if specified, the target data layout is required to match what
1173the ultimate *code generator* expects. This string is used by the
1174mid-level optimizers to improve code, and this only works if it matches
1175what the ultimate code generator uses. If you would like to generate IR
1176that does not embed this target-specific detail into the IR, then you
1177don't have to specify the string. This will disable some optimizations
1178that require precise layout information, but this also prevents those
1179optimizations from introducing target specificity into the IR.
1180
Bill Wendling4216b992013-10-18 23:41:25 +00001181.. _langref_triple:
1182
1183Target Triple
1184-------------
1185
1186A module may specify a target triple string that describes the target
1187host. The syntax for the target triple is simply:
1188
1189.. code-block:: llvm
1190
1191 target triple = "x86_64-apple-macosx10.7.0"
1192
1193The *target triple* string consists of a series of identifiers delimited
1194by the minus sign character ('-'). The canonical forms are:
1195
1196::
1197
1198 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1199 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1200
1201This information is passed along to the backend so that it generates
1202code for the proper architecture. It's possible to override this on the
1203command line with the ``-mtriple`` command line option.
1204
Sean Silvaf722b002012-12-07 10:36:55 +00001205.. _pointeraliasing:
1206
1207Pointer Aliasing Rules
1208----------------------
1209
1210Any memory access must be done through a pointer value associated with
1211an address range of the memory access, otherwise the behavior is
1212undefined. Pointer values are associated with address ranges according
1213to the following rules:
1214
1215- A pointer value is associated with the addresses associated with any
1216 value it is *based* on.
1217- An address of a global variable is associated with the address range
1218 of the variable's storage.
1219- The result value of an allocation instruction is associated with the
1220 address range of the allocated storage.
1221- A null pointer in the default address-space is associated with no
1222 address.
1223- An integer constant other than zero or a pointer value returned from
1224 a function not defined within LLVM may be associated with address
1225 ranges allocated through mechanisms other than those provided by
1226 LLVM. Such ranges shall not overlap with any ranges of addresses
1227 allocated by mechanisms provided by LLVM.
1228
1229A pointer value is *based* on another pointer value according to the
1230following rules:
1231
1232- A pointer value formed from a ``getelementptr`` operation is *based*
1233 on the first operand of the ``getelementptr``.
1234- The result value of a ``bitcast`` is *based* on the operand of the
1235 ``bitcast``.
1236- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1237 values that contribute (directly or indirectly) to the computation of
1238 the pointer's value.
1239- The "*based* on" relationship is transitive.
1240
1241Note that this definition of *"based"* is intentionally similar to the
1242definition of *"based"* in C99, though it is slightly weaker.
1243
1244LLVM IR does not associate types with memory. The result type of a
1245``load`` merely indicates the size and alignment of the memory from
1246which to load, as well as the interpretation of the value. The first
1247operand type of a ``store`` similarly only indicates the size and
1248alignment of the store.
1249
1250Consequently, type-based alias analysis, aka TBAA, aka
1251``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1252:ref:`Metadata <metadata>` may be used to encode additional information
1253which specialized optimization passes may use to implement type-based
1254alias analysis.
1255
1256.. _volatile:
1257
1258Volatile Memory Accesses
1259------------------------
1260
1261Certain memory accesses, such as :ref:`load <i_load>`'s,
1262:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1263marked ``volatile``. The optimizers must not change the number of
1264volatile operations or change their order of execution relative to other
1265volatile operations. The optimizers *may* change the order of volatile
1266operations relative to non-volatile operations. This is not Java's
1267"volatile" and has no cross-thread synchronization behavior.
1268
Andrew Trick9a6dd022013-01-30 21:19:35 +00001269IR-level volatile loads and stores cannot safely be optimized into
1270llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1271flagged volatile. Likewise, the backend should never split or merge
1272target-legal volatile load/store instructions.
1273
Andrew Trick946317d2013-01-31 00:49:39 +00001274.. admonition:: Rationale
1275
1276 Platforms may rely on volatile loads and stores of natively supported
1277 data width to be executed as single instruction. For example, in C
1278 this holds for an l-value of volatile primitive type with native
1279 hardware support, but not necessarily for aggregate types. The
1280 frontend upholds these expectations, which are intentionally
1281 unspecified in the IR. The rules above ensure that IR transformation
1282 do not violate the frontend's contract with the language.
1283
Sean Silvaf722b002012-12-07 10:36:55 +00001284.. _memmodel:
1285
1286Memory Model for Concurrent Operations
1287--------------------------------------
1288
1289The LLVM IR does not define any way to start parallel threads of
1290execution or to register signal handlers. Nonetheless, there are
1291platform-specific ways to create them, and we define LLVM IR's behavior
1292in their presence. This model is inspired by the C++0x memory model.
1293
1294For a more informal introduction to this model, see the :doc:`Atomics`.
1295
1296We define a *happens-before* partial order as the least partial order
1297that
1298
1299- Is a superset of single-thread program order, and
1300- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1301 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1302 techniques, like pthread locks, thread creation, thread joining,
1303 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1304 Constraints <ordering>`).
1305
1306Note that program order does not introduce *happens-before* edges
1307between a thread and signals executing inside that thread.
1308
1309Every (defined) read operation (load instructions, memcpy, atomic
1310loads/read-modify-writes, etc.) R reads a series of bytes written by
1311(defined) write operations (store instructions, atomic
1312stores/read-modify-writes, memcpy, etc.). For the purposes of this
1313section, initialized globals are considered to have a write of the
1314initializer which is atomic and happens before any other read or write
1315of the memory in question. For each byte of a read R, R\ :sub:`byte`
1316may see any write to the same byte, except:
1317
1318- If write\ :sub:`1` happens before write\ :sub:`2`, and
1319 write\ :sub:`2` happens before R\ :sub:`byte`, then
1320 R\ :sub:`byte` does not see write\ :sub:`1`.
1321- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1322 R\ :sub:`byte` does not see write\ :sub:`3`.
1323
1324Given that definition, R\ :sub:`byte` is defined as follows:
1325
1326- If R is volatile, the result is target-dependent. (Volatile is
1327 supposed to give guarantees which can support ``sig_atomic_t`` in
1328 C/C++, and may be used for accesses to addresses which do not behave
1329 like normal memory. It does not generally provide cross-thread
1330 synchronization.)
1331- Otherwise, if there is no write to the same byte that happens before
1332 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1333- Otherwise, if R\ :sub:`byte` may see exactly one write,
1334 R\ :sub:`byte` returns the value written by that write.
1335- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1336 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1337 Memory Ordering Constraints <ordering>` section for additional
1338 constraints on how the choice is made.
1339- Otherwise R\ :sub:`byte` returns ``undef``.
1340
1341R returns the value composed of the series of bytes it read. This
1342implies that some bytes within the value may be ``undef`` **without**
1343the entire value being ``undef``. Note that this only defines the
1344semantics of the operation; it doesn't mean that targets will emit more
1345than one instruction to read the series of bytes.
1346
1347Note that in cases where none of the atomic intrinsics are used, this
1348model places only one restriction on IR transformations on top of what
1349is required for single-threaded execution: introducing a store to a byte
1350which might not otherwise be stored is not allowed in general.
1351(Specifically, in the case where another thread might write to and read
1352from an address, introducing a store can change a load that may see
1353exactly one write into a load that may see multiple writes.)
1354
1355.. _ordering:
1356
1357Atomic Memory Ordering Constraints
1358----------------------------------
1359
1360Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1361:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1362:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1363an ordering parameter that determines which other atomic instructions on
1364the same address they *synchronize with*. These semantics are borrowed
1365from Java and C++0x, but are somewhat more colloquial. If these
1366descriptions aren't precise enough, check those specs (see spec
1367references in the :doc:`atomics guide <Atomics>`).
1368:ref:`fence <i_fence>` instructions treat these orderings somewhat
1369differently since they don't take an address. See that instruction's
1370documentation for details.
1371
1372For a simpler introduction to the ordering constraints, see the
1373:doc:`Atomics`.
1374
1375``unordered``
1376 The set of values that can be read is governed by the happens-before
1377 partial order. A value cannot be read unless some operation wrote
1378 it. This is intended to provide a guarantee strong enough to model
1379 Java's non-volatile shared variables. This ordering cannot be
1380 specified for read-modify-write operations; it is not strong enough
1381 to make them atomic in any interesting way.
1382``monotonic``
1383 In addition to the guarantees of ``unordered``, there is a single
1384 total order for modifications by ``monotonic`` operations on each
1385 address. All modification orders must be compatible with the
1386 happens-before order. There is no guarantee that the modification
1387 orders can be combined to a global total order for the whole program
1388 (and this often will not be possible). The read in an atomic
1389 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1390 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1391 order immediately before the value it writes. If one atomic read
1392 happens before another atomic read of the same address, the later
1393 read must see the same value or a later value in the address's
1394 modification order. This disallows reordering of ``monotonic`` (or
1395 stronger) operations on the same address. If an address is written
1396 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1397 read that address repeatedly, the other threads must eventually see
1398 the write. This corresponds to the C++0x/C1x
1399 ``memory_order_relaxed``.
1400``acquire``
1401 In addition to the guarantees of ``monotonic``, a
1402 *synchronizes-with* edge may be formed with a ``release`` operation.
1403 This is intended to model C++'s ``memory_order_acquire``.
1404``release``
1405 In addition to the guarantees of ``monotonic``, if this operation
1406 writes a value which is subsequently read by an ``acquire``
1407 operation, it *synchronizes-with* that operation. (This isn't a
1408 complete description; see the C++0x definition of a release
1409 sequence.) This corresponds to the C++0x/C1x
1410 ``memory_order_release``.
1411``acq_rel`` (acquire+release)
1412 Acts as both an ``acquire`` and ``release`` operation on its
1413 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1414``seq_cst`` (sequentially consistent)
1415 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1416 operation which only reads, ``release`` for an operation which only
1417 writes), there is a global total order on all
1418 sequentially-consistent operations on all addresses, which is
1419 consistent with the *happens-before* partial order and with the
1420 modification orders of all the affected addresses. Each
1421 sequentially-consistent read sees the last preceding write to the
1422 same address in this global order. This corresponds to the C++0x/C1x
1423 ``memory_order_seq_cst`` and Java volatile.
1424
1425.. _singlethread:
1426
1427If an atomic operation is marked ``singlethread``, it only *synchronizes
1428with* or participates in modification and seq\_cst total orderings with
1429other operations running in the same thread (for example, in signal
1430handlers).
1431
1432.. _fastmath:
1433
1434Fast-Math Flags
1435---------------
1436
1437LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1438:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1439:ref:`frem <i_frem>`) have the following flags that can set to enable
1440otherwise unsafe floating point operations
1441
1442``nnan``
1443 No NaNs - Allow optimizations to assume the arguments and result are not
1444 NaN. Such optimizations are required to retain defined behavior over
1445 NaNs, but the value of the result is undefined.
1446
1447``ninf``
1448 No Infs - Allow optimizations to assume the arguments and result are not
1449 +/-Inf. Such optimizations are required to retain defined behavior over
1450 +/-Inf, but the value of the result is undefined.
1451
1452``nsz``
1453 No Signed Zeros - Allow optimizations to treat the sign of a zero
1454 argument or result as insignificant.
1455
1456``arcp``
1457 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1458 argument rather than perform division.
1459
1460``fast``
1461 Fast - Allow algebraically equivalent transformations that may
1462 dramatically change results in floating point (e.g. reassociate). This
1463 flag implies all the others.
1464
1465.. _typesystem:
1466
1467Type System
1468===========
1469
1470The LLVM type system is one of the most important features of the
1471intermediate representation. Being typed enables a number of
1472optimizations to be performed on the intermediate representation
1473directly, without having to do extra analyses on the side before the
1474transformation. A strong type system makes it easier to read the
1475generated code and enables novel analyses and transformations that are
1476not feasible to perform on normal three address code representations.
1477
Eli Bendersky88fe6822013-06-07 20:24:43 +00001478.. _typeclassifications:
1479
Sean Silvaf722b002012-12-07 10:36:55 +00001480Type Classifications
1481--------------------
1482
1483The types fall into a few useful classifications:
1484
1485
1486.. list-table::
1487 :header-rows: 1
1488
1489 * - Classification
1490 - Types
1491
1492 * - :ref:`integer <t_integer>`
1493 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1494 ``i64``, ...
1495
1496 * - :ref:`floating point <t_floating>`
1497 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1498 ``ppc_fp128``
1499
1500
1501 * - first class
1502
1503 .. _t_firstclass:
1504
1505 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1506 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1507 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1508 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1509
1510 * - :ref:`primitive <t_primitive>`
1511 - :ref:`label <t_label>`,
1512 :ref:`void <t_void>`,
1513 :ref:`integer <t_integer>`,
1514 :ref:`floating point <t_floating>`,
1515 :ref:`x86mmx <t_x86mmx>`,
1516 :ref:`metadata <t_metadata>`.
1517
1518 * - :ref:`derived <t_derived>`
1519 - :ref:`array <t_array>`,
1520 :ref:`function <t_function>`,
1521 :ref:`pointer <t_pointer>`,
1522 :ref:`structure <t_struct>`,
1523 :ref:`vector <t_vector>`,
1524 :ref:`opaque <t_opaque>`.
1525
1526The :ref:`first class <t_firstclass>` types are perhaps the most important.
1527Values of these types are the only ones which can be produced by
1528instructions.
1529
1530.. _t_primitive:
1531
1532Primitive Types
1533---------------
1534
1535The primitive types are the fundamental building blocks of the LLVM
1536system.
1537
1538.. _t_integer:
1539
1540Integer Type
1541^^^^^^^^^^^^
1542
1543Overview:
1544"""""""""
1545
1546The integer type is a very simple type that simply specifies an
1547arbitrary bit width for the integer type desired. Any bit width from 1
1548bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1549
1550Syntax:
1551"""""""
1552
1553::
1554
1555 iN
1556
1557The number of bits the integer will occupy is specified by the ``N``
1558value.
1559
1560Examples:
1561"""""""""
1562
1563+----------------+------------------------------------------------+
1564| ``i1`` | a single-bit integer. |
1565+----------------+------------------------------------------------+
1566| ``i32`` | a 32-bit integer. |
1567+----------------+------------------------------------------------+
1568| ``i1942652`` | a really big integer of over 1 million bits. |
1569+----------------+------------------------------------------------+
1570
1571.. _t_floating:
1572
1573Floating Point Types
1574^^^^^^^^^^^^^^^^^^^^
1575
1576.. list-table::
1577 :header-rows: 1
1578
1579 * - Type
1580 - Description
1581
1582 * - ``half``
1583 - 16-bit floating point value
1584
1585 * - ``float``
1586 - 32-bit floating point value
1587
1588 * - ``double``
1589 - 64-bit floating point value
1590
1591 * - ``fp128``
1592 - 128-bit floating point value (112-bit mantissa)
1593
1594 * - ``x86_fp80``
1595 - 80-bit floating point value (X87)
1596
1597 * - ``ppc_fp128``
1598 - 128-bit floating point value (two 64-bits)
1599
1600.. _t_x86mmx:
1601
1602X86mmx Type
1603^^^^^^^^^^^
1604
1605Overview:
1606"""""""""
1607
1608The x86mmx type represents a value held in an MMX register on an x86
1609machine. The operations allowed on it are quite limited: parameters and
1610return values, load and store, and bitcast. User-specified MMX
1611instructions are represented as intrinsic or asm calls with arguments
1612and/or results of this type. There are no arrays, vectors or constants
1613of this type.
1614
1615Syntax:
1616"""""""
1617
1618::
1619
1620 x86mmx
1621
1622.. _t_void:
1623
1624Void Type
1625^^^^^^^^^
1626
1627Overview:
1628"""""""""
1629
1630The void type does not represent any value and has no size.
1631
1632Syntax:
1633"""""""
1634
1635::
1636
1637 void
1638
1639.. _t_label:
1640
1641Label Type
1642^^^^^^^^^^
1643
1644Overview:
1645"""""""""
1646
1647The label type represents code labels.
1648
1649Syntax:
1650"""""""
1651
1652::
1653
1654 label
1655
1656.. _t_metadata:
1657
1658Metadata Type
1659^^^^^^^^^^^^^
1660
1661Overview:
1662"""""""""
1663
1664The metadata type represents embedded metadata. No derived types may be
1665created from metadata except for :ref:`function <t_function>` arguments.
1666
1667Syntax:
1668"""""""
1669
1670::
1671
1672 metadata
1673
1674.. _t_derived:
1675
1676Derived Types
1677-------------
1678
1679The real power in LLVM comes from the derived types in the system. This
1680is what allows a programmer to represent arrays, functions, pointers,
1681and other useful types. Each of these types contain one or more element
1682types which may be a primitive type, or another derived type. For
1683example, it is possible to have a two dimensional array, using an array
1684as the element type of another array.
1685
1686.. _t_aggregate:
1687
1688Aggregate Types
1689^^^^^^^^^^^^^^^
1690
1691Aggregate Types are a subset of derived types that can contain multiple
1692member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1693aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1694aggregate types.
1695
1696.. _t_array:
1697
1698Array Type
1699^^^^^^^^^^
1700
1701Overview:
1702"""""""""
1703
1704The array type is a very simple derived type that arranges elements
1705sequentially in memory. The array type requires a size (number of
1706elements) and an underlying data type.
1707
1708Syntax:
1709"""""""
1710
1711::
1712
1713 [<# elements> x <elementtype>]
1714
1715The number of elements is a constant integer value; ``elementtype`` may
1716be any type with a size.
1717
1718Examples:
1719"""""""""
1720
1721+------------------+--------------------------------------+
1722| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1723+------------------+--------------------------------------+
1724| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1725+------------------+--------------------------------------+
1726| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1727+------------------+--------------------------------------+
1728
1729Here are some examples of multidimensional arrays:
1730
1731+-----------------------------+----------------------------------------------------------+
1732| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1733+-----------------------------+----------------------------------------------------------+
1734| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1735+-----------------------------+----------------------------------------------------------+
1736| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1737+-----------------------------+----------------------------------------------------------+
1738
1739There is no restriction on indexing beyond the end of the array implied
1740by a static type (though there are restrictions on indexing beyond the
1741bounds of an allocated object in some cases). This means that
1742single-dimension 'variable sized array' addressing can be implemented in
1743LLVM with a zero length array type. An implementation of 'pascal style
1744arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1745example.
1746
1747.. _t_function:
1748
1749Function Type
1750^^^^^^^^^^^^^
1751
1752Overview:
1753"""""""""
1754
Bill Wendling09f8e132013-10-27 04:19:29 +00001755The function type can be thought of as a function signature. It consists of a
1756return type and a list of formal parameter types. The return type of a function
1757type is a void type or first class type --- except for :ref:`label <t_label>`
1758and :ref:`metadata <t_metadata>` types.
Sean Silvaf722b002012-12-07 10:36:55 +00001759
1760Syntax:
1761"""""""
1762
1763::
1764
1765 <returntype> (<parameter list>)
1766
1767...where '``<parameter list>``' is a comma-separated list of type
Bill Wendling09f8e132013-10-27 04:19:29 +00001768specifiers. Optionally, the parameter list may include a type ``...``, which
1769indicates that the function takes a variable number of arguments. Variable
1770argument functions can access their arguments with the :ref:`variable argument
1771handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1772except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvaf722b002012-12-07 10:36:55 +00001773
1774Examples:
1775"""""""""
1776
1777+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1778| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1779+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001780| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001781+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1782| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1783+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1784| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1785+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1786
1787.. _t_struct:
1788
1789Structure Type
1790^^^^^^^^^^^^^^
1791
1792Overview:
1793"""""""""
1794
1795The structure type is used to represent a collection of data members
1796together in memory. The elements of a structure may be any type that has
1797a size.
1798
1799Structures in memory are accessed using '``load``' and '``store``' by
1800getting a pointer to a field with the '``getelementptr``' instruction.
1801Structures in registers are accessed using the '``extractvalue``' and
1802'``insertvalue``' instructions.
1803
1804Structures may optionally be "packed" structures, which indicate that
1805the alignment of the struct is one byte, and that there is no padding
1806between the elements. In non-packed structs, padding between field types
1807is inserted as defined by the DataLayout string in the module, which is
1808required to match what the underlying code generator expects.
1809
1810Structures can either be "literal" or "identified". A literal structure
1811is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1812identified types are always defined at the top level with a name.
1813Literal types are uniqued by their contents and can never be recursive
1814or opaque since there is no way to write one. Identified types can be
1815recursive, can be opaqued, and are never uniqued.
1816
1817Syntax:
1818"""""""
1819
1820::
1821
1822 %T1 = type { <type list> } ; Identified normal struct type
1823 %T2 = type <{ <type list> }> ; Identified packed struct type
1824
1825Examples:
1826"""""""""
1827
1828+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1829| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1830+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001831| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001832+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1833| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1834+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1835
1836.. _t_opaque:
1837
1838Opaque Structure Types
1839^^^^^^^^^^^^^^^^^^^^^^
1840
1841Overview:
1842"""""""""
1843
1844Opaque structure types are used to represent named structure types that
1845do not have a body specified. This corresponds (for example) to the C
1846notion of a forward declared structure.
1847
1848Syntax:
1849"""""""
1850
1851::
1852
1853 %X = type opaque
1854 %52 = type opaque
1855
1856Examples:
1857"""""""""
1858
1859+--------------+-------------------+
1860| ``opaque`` | An opaque type. |
1861+--------------+-------------------+
1862
1863.. _t_pointer:
1864
1865Pointer Type
1866^^^^^^^^^^^^
1867
1868Overview:
1869"""""""""
1870
1871The pointer type is used to specify memory locations. Pointers are
1872commonly used to reference objects in memory.
1873
1874Pointer types may have an optional address space attribute defining the
1875numbered address space where the pointed-to object resides. The default
1876address space is number zero. The semantics of non-zero address spaces
1877are target-specific.
1878
1879Note that LLVM does not permit pointers to void (``void*``) nor does it
1880permit pointers to labels (``label*``). Use ``i8*`` instead.
1881
1882Syntax:
1883"""""""
1884
1885::
1886
1887 <type> *
1888
1889Examples:
1890"""""""""
1891
1892+-------------------------+--------------------------------------------------------------------------------------------------------------+
1893| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1894+-------------------------+--------------------------------------------------------------------------------------------------------------+
1895| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1896+-------------------------+--------------------------------------------------------------------------------------------------------------+
1897| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1898+-------------------------+--------------------------------------------------------------------------------------------------------------+
1899
1900.. _t_vector:
1901
1902Vector Type
1903^^^^^^^^^^^
1904
1905Overview:
1906"""""""""
1907
1908A vector type is a simple derived type that represents a vector of
1909elements. Vector types are used when multiple primitive data are
1910operated in parallel using a single instruction (SIMD). A vector type
1911requires a size (number of elements) and an underlying primitive data
1912type. Vector types are considered :ref:`first class <t_firstclass>`.
1913
1914Syntax:
1915"""""""
1916
1917::
1918
1919 < <# elements> x <elementtype> >
1920
1921The number of elements is a constant integer value larger than 0;
1922elementtype may be any integer or floating point type, or a pointer to
1923these types. Vectors of size zero are not allowed.
1924
1925Examples:
1926"""""""""
1927
1928+-------------------+--------------------------------------------------+
1929| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1930+-------------------+--------------------------------------------------+
1931| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1932+-------------------+--------------------------------------------------+
1933| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1934+-------------------+--------------------------------------------------+
1935| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1936+-------------------+--------------------------------------------------+
1937
1938Constants
1939=========
1940
1941LLVM has several different basic types of constants. This section
1942describes them all and their syntax.
1943
1944Simple Constants
1945----------------
1946
1947**Boolean constants**
1948 The two strings '``true``' and '``false``' are both valid constants
1949 of the ``i1`` type.
1950**Integer constants**
1951 Standard integers (such as '4') are constants of the
1952 :ref:`integer <t_integer>` type. Negative numbers may be used with
1953 integer types.
1954**Floating point constants**
1955 Floating point constants use standard decimal notation (e.g.
1956 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1957 hexadecimal notation (see below). The assembler requires the exact
1958 decimal value of a floating-point constant. For example, the
1959 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1960 decimal in binary. Floating point constants must have a :ref:`floating
1961 point <t_floating>` type.
1962**Null pointer constants**
1963 The identifier '``null``' is recognized as a null pointer constant
1964 and must be of :ref:`pointer type <t_pointer>`.
1965
1966The one non-intuitive notation for constants is the hexadecimal form of
1967floating point constants. For example, the form
1968'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1969than) '``double 4.5e+15``'. The only time hexadecimal floating point
1970constants are required (and the only time that they are generated by the
1971disassembler) is when a floating point constant must be emitted but it
1972cannot be represented as a decimal floating point number in a reasonable
1973number of digits. For example, NaN's, infinities, and other special
1974values are represented in their IEEE hexadecimal format so that assembly
1975and disassembly do not cause any bits to change in the constants.
1976
1977When using the hexadecimal form, constants of types half, float, and
1978double are represented using the 16-digit form shown above (which
1979matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001980must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001981precision, respectively. Hexadecimal format is always used for long
1982double, and there are three forms of long double. The 80-bit format used
1983by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1984128-bit format used by PowerPC (two adjacent doubles) is represented by
1985``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001986represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1987will only work if they match the long double format on your target.
1988The IEEE 16-bit format (half precision) is represented by ``0xH``
1989followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1990(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001991
1992There are no constants of type x86mmx.
1993
Eli Bendersky88fe6822013-06-07 20:24:43 +00001994.. _complexconstants:
1995
Sean Silvaf722b002012-12-07 10:36:55 +00001996Complex Constants
1997-----------------
1998
1999Complex constants are a (potentially recursive) combination of simple
2000constants and smaller complex constants.
2001
2002**Structure constants**
2003 Structure constants are represented with notation similar to
2004 structure type definitions (a comma separated list of elements,
2005 surrounded by braces (``{}``)). For example:
2006 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2007 "``@G = external global i32``". Structure constants must have
2008 :ref:`structure type <t_struct>`, and the number and types of elements
2009 must match those specified by the type.
2010**Array constants**
2011 Array constants are represented with notation similar to array type
2012 definitions (a comma separated list of elements, surrounded by
2013 square brackets (``[]``)). For example:
2014 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2015 :ref:`array type <t_array>`, and the number and types of elements must
2016 match those specified by the type.
2017**Vector constants**
2018 Vector constants are represented with notation similar to vector
2019 type definitions (a comma separated list of elements, surrounded by
2020 less-than/greater-than's (``<>``)). For example:
2021 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2022 must have :ref:`vector type <t_vector>`, and the number and types of
2023 elements must match those specified by the type.
2024**Zero initialization**
2025 The string '``zeroinitializer``' can be used to zero initialize a
2026 value to zero of *any* type, including scalar and
2027 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2028 having to print large zero initializers (e.g. for large arrays) and
2029 is always exactly equivalent to using explicit zero initializers.
2030**Metadata node**
2031 A metadata node is a structure-like constant with :ref:`metadata
2032 type <t_metadata>`. For example:
2033 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2034 constants that are meant to be interpreted as part of the
2035 instruction stream, metadata is a place to attach additional
2036 information such as debug info.
2037
2038Global Variable and Function Addresses
2039--------------------------------------
2040
2041The addresses of :ref:`global variables <globalvars>` and
2042:ref:`functions <functionstructure>` are always implicitly valid
2043(link-time) constants. These constants are explicitly referenced when
2044the :ref:`identifier for the global <identifiers>` is used and always have
2045:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2046file:
2047
2048.. code-block:: llvm
2049
2050 @X = global i32 17
2051 @Y = global i32 42
2052 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2053
2054.. _undefvalues:
2055
2056Undefined Values
2057----------------
2058
2059The string '``undef``' can be used anywhere a constant is expected, and
2060indicates that the user of the value may receive an unspecified
2061bit-pattern. Undefined values may be of any type (other than '``label``'
2062or '``void``') and be used anywhere a constant is permitted.
2063
2064Undefined values are useful because they indicate to the compiler that
2065the program is well defined no matter what value is used. This gives the
2066compiler more freedom to optimize. Here are some examples of
2067(potentially surprising) transformations that are valid (in pseudo IR):
2068
2069.. code-block:: llvm
2070
2071 %A = add %X, undef
2072 %B = sub %X, undef
2073 %C = xor %X, undef
2074 Safe:
2075 %A = undef
2076 %B = undef
2077 %C = undef
2078
2079This is safe because all of the output bits are affected by the undef
2080bits. Any output bit can have a zero or one depending on the input bits.
2081
2082.. code-block:: llvm
2083
2084 %A = or %X, undef
2085 %B = and %X, undef
2086 Safe:
2087 %A = -1
2088 %B = 0
2089 Unsafe:
2090 %A = undef
2091 %B = undef
2092
2093These logical operations have bits that are not always affected by the
2094input. For example, if ``%X`` has a zero bit, then the output of the
2095'``and``' operation will always be a zero for that bit, no matter what
2096the corresponding bit from the '``undef``' is. As such, it is unsafe to
2097optimize or assume that the result of the '``and``' is '``undef``'.
2098However, it is safe to assume that all bits of the '``undef``' could be
20990, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2100all the bits of the '``undef``' operand to the '``or``' could be set,
2101allowing the '``or``' to be folded to -1.
2102
2103.. code-block:: llvm
2104
2105 %A = select undef, %X, %Y
2106 %B = select undef, 42, %Y
2107 %C = select %X, %Y, undef
2108 Safe:
2109 %A = %X (or %Y)
2110 %B = 42 (or %Y)
2111 %C = %Y
2112 Unsafe:
2113 %A = undef
2114 %B = undef
2115 %C = undef
2116
2117This set of examples shows that undefined '``select``' (and conditional
2118branch) conditions can go *either way*, but they have to come from one
2119of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2120both known to have a clear low bit, then ``%A`` would have to have a
2121cleared low bit. However, in the ``%C`` example, the optimizer is
2122allowed to assume that the '``undef``' operand could be the same as
2123``%Y``, allowing the whole '``select``' to be eliminated.
2124
2125.. code-block:: llvm
2126
2127 %A = xor undef, undef
2128
2129 %B = undef
2130 %C = xor %B, %B
2131
2132 %D = undef
2133 %E = icmp lt %D, 4
2134 %F = icmp gte %D, 4
2135
2136 Safe:
2137 %A = undef
2138 %B = undef
2139 %C = undef
2140 %D = undef
2141 %E = undef
2142 %F = undef
2143
2144This example points out that two '``undef``' operands are not
2145necessarily the same. This can be surprising to people (and also matches
2146C semantics) where they assume that "``X^X``" is always zero, even if
2147``X`` is undefined. This isn't true for a number of reasons, but the
2148short answer is that an '``undef``' "variable" can arbitrarily change
2149its value over its "live range". This is true because the variable
2150doesn't actually *have a live range*. Instead, the value is logically
2151read from arbitrary registers that happen to be around when needed, so
2152the value is not necessarily consistent over time. In fact, ``%A`` and
2153``%C`` need to have the same semantics or the core LLVM "replace all
2154uses with" concept would not hold.
2155
2156.. code-block:: llvm
2157
2158 %A = fdiv undef, %X
2159 %B = fdiv %X, undef
2160 Safe:
2161 %A = undef
2162 b: unreachable
2163
2164These examples show the crucial difference between an *undefined value*
2165and *undefined behavior*. An undefined value (like '``undef``') is
2166allowed to have an arbitrary bit-pattern. This means that the ``%A``
2167operation can be constant folded to '``undef``', because the '``undef``'
2168could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2169However, in the second example, we can make a more aggressive
2170assumption: because the ``undef`` is allowed to be an arbitrary value,
2171we are allowed to assume that it could be zero. Since a divide by zero
2172has *undefined behavior*, we are allowed to assume that the operation
2173does not execute at all. This allows us to delete the divide and all
2174code after it. Because the undefined operation "can't happen", the
2175optimizer can assume that it occurs in dead code.
2176
2177.. code-block:: llvm
2178
2179 a: store undef -> %X
2180 b: store %X -> undef
2181 Safe:
2182 a: <deleted>
2183 b: unreachable
2184
2185These examples reiterate the ``fdiv`` example: a store *of* an undefined
2186value can be assumed to not have any effect; we can assume that the
2187value is overwritten with bits that happen to match what was already
2188there. However, a store *to* an undefined location could clobber
2189arbitrary memory, therefore, it has undefined behavior.
2190
2191.. _poisonvalues:
2192
2193Poison Values
2194-------------
2195
2196Poison values are similar to :ref:`undef values <undefvalues>`, however
2197they also represent the fact that an instruction or constant expression
2198which cannot evoke side effects has nevertheless detected a condition
2199which results in undefined behavior.
2200
2201There is currently no way of representing a poison value in the IR; they
2202only exist when produced by operations such as :ref:`add <i_add>` with
2203the ``nsw`` flag.
2204
2205Poison value behavior is defined in terms of value *dependence*:
2206
2207- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2208- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2209 their dynamic predecessor basic block.
2210- Function arguments depend on the corresponding actual argument values
2211 in the dynamic callers of their functions.
2212- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2213 instructions that dynamically transfer control back to them.
2214- :ref:`Invoke <i_invoke>` instructions depend on the
2215 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2216 call instructions that dynamically transfer control back to them.
2217- Non-volatile loads and stores depend on the most recent stores to all
2218 of the referenced memory addresses, following the order in the IR
2219 (including loads and stores implied by intrinsics such as
2220 :ref:`@llvm.memcpy <int_memcpy>`.)
2221- An instruction with externally visible side effects depends on the
2222 most recent preceding instruction with externally visible side
2223 effects, following the order in the IR. (This includes :ref:`volatile
2224 operations <volatile>`.)
2225- An instruction *control-depends* on a :ref:`terminator
2226 instruction <terminators>` if the terminator instruction has
2227 multiple successors and the instruction is always executed when
2228 control transfers to one of the successors, and may not be executed
2229 when control is transferred to another.
2230- Additionally, an instruction also *control-depends* on a terminator
2231 instruction if the set of instructions it otherwise depends on would
2232 be different if the terminator had transferred control to a different
2233 successor.
2234- Dependence is transitive.
2235
2236Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2237with the additional affect that any instruction which has a *dependence*
2238on a poison value has undefined behavior.
2239
2240Here are some examples:
2241
2242.. code-block:: llvm
2243
2244 entry:
2245 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2246 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2247 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2248 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2249
2250 store i32 %poison, i32* @g ; Poison value stored to memory.
2251 %poison2 = load i32* @g ; Poison value loaded back from memory.
2252
2253 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2254
2255 %narrowaddr = bitcast i32* @g to i16*
2256 %wideaddr = bitcast i32* @g to i64*
2257 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2258 %poison4 = load i64* %wideaddr ; Returns a poison value.
2259
2260 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2261 br i1 %cmp, label %true, label %end ; Branch to either destination.
2262
2263 true:
2264 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2265 ; it has undefined behavior.
2266 br label %end
2267
2268 end:
2269 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2270 ; Both edges into this PHI are
2271 ; control-dependent on %cmp, so this
2272 ; always results in a poison value.
2273
2274 store volatile i32 0, i32* @g ; This would depend on the store in %true
2275 ; if %cmp is true, or the store in %entry
2276 ; otherwise, so this is undefined behavior.
2277
2278 br i1 %cmp, label %second_true, label %second_end
2279 ; The same branch again, but this time the
2280 ; true block doesn't have side effects.
2281
2282 second_true:
2283 ; No side effects!
2284 ret void
2285
2286 second_end:
2287 store volatile i32 0, i32* @g ; This time, the instruction always depends
2288 ; on the store in %end. Also, it is
2289 ; control-equivalent to %end, so this is
2290 ; well-defined (ignoring earlier undefined
2291 ; behavior in this example).
2292
2293.. _blockaddress:
2294
2295Addresses of Basic Blocks
2296-------------------------
2297
2298``blockaddress(@function, %block)``
2299
2300The '``blockaddress``' constant computes the address of the specified
2301basic block in the specified function, and always has an ``i8*`` type.
2302Taking the address of the entry block is illegal.
2303
2304This value only has defined behavior when used as an operand to the
2305':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2306against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002307undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002308no label is equal to the null pointer. This may be passed around as an
2309opaque pointer sized value as long as the bits are not inspected. This
2310allows ``ptrtoint`` and arithmetic to be performed on these values so
2311long as the original value is reconstituted before the ``indirectbr``
2312instruction.
2313
2314Finally, some targets may provide defined semantics when using the value
2315as the operand to an inline assembly, but that is target specific.
2316
Eli Bendersky88fe6822013-06-07 20:24:43 +00002317.. _constantexprs:
2318
Sean Silvaf722b002012-12-07 10:36:55 +00002319Constant Expressions
2320--------------------
2321
2322Constant expressions are used to allow expressions involving other
2323constants to be used as constants. Constant expressions may be of any
2324:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2325that does not have side effects (e.g. load and call are not supported).
2326The following is the syntax for constant expressions:
2327
2328``trunc (CST to TYPE)``
2329 Truncate a constant to another type. The bit size of CST must be
2330 larger than the bit size of TYPE. Both types must be integers.
2331``zext (CST to TYPE)``
2332 Zero extend a constant to another type. The bit size of CST must be
2333 smaller than the bit size of TYPE. Both types must be integers.
2334``sext (CST to TYPE)``
2335 Sign extend a constant to another type. The bit size of CST must be
2336 smaller than the bit size of TYPE. Both types must be integers.
2337``fptrunc (CST to TYPE)``
2338 Truncate a floating point constant to another floating point type.
2339 The size of CST must be larger than the size of TYPE. Both types
2340 must be floating point.
2341``fpext (CST to TYPE)``
2342 Floating point extend a constant to another type. The size of CST
2343 must be smaller or equal to the size of TYPE. Both types must be
2344 floating point.
2345``fptoui (CST to TYPE)``
2346 Convert a floating point constant to the corresponding unsigned
2347 integer constant. TYPE must be a scalar or vector integer type. CST
2348 must be of scalar or vector floating point type. Both CST and TYPE
2349 must be scalars, or vectors of the same number of elements. If the
2350 value won't fit in the integer type, the results are undefined.
2351``fptosi (CST to TYPE)``
2352 Convert a floating point constant to the corresponding signed
2353 integer constant. TYPE must be a scalar or vector integer type. CST
2354 must be of scalar or vector floating point type. Both CST and TYPE
2355 must be scalars, or vectors of the same number of elements. If the
2356 value won't fit in the integer type, the results are undefined.
2357``uitofp (CST to TYPE)``
2358 Convert an unsigned integer constant to the corresponding floating
2359 point constant. TYPE must be a scalar or vector floating point type.
2360 CST must be of scalar or vector integer type. Both CST and TYPE must
2361 be scalars, or vectors of the same number of elements. If the value
2362 won't fit in the floating point type, the results are undefined.
2363``sitofp (CST to TYPE)``
2364 Convert a signed integer constant to the corresponding floating
2365 point constant. TYPE must be a scalar or vector floating point type.
2366 CST must be of scalar or vector integer type. Both CST and TYPE must
2367 be scalars, or vectors of the same number of elements. If the value
2368 won't fit in the floating point type, the results are undefined.
2369``ptrtoint (CST to TYPE)``
2370 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002371 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002372 pointer type. The ``CST`` value is zero extended, truncated, or
2373 unchanged to make it fit in ``TYPE``.
2374``inttoptr (CST to TYPE)``
2375 Convert an integer constant to a pointer constant. TYPE must be a
2376 pointer type. CST must be of integer type. The CST value is zero
2377 extended, truncated, or unchanged to make it fit in a pointer size.
2378 This one is *really* dangerous!
2379``bitcast (CST to TYPE)``
2380 Convert a constant, CST, to another TYPE. The constraints of the
2381 operands are the same as those for the :ref:`bitcast
2382 instruction <i_bitcast>`.
2383``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2384 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2385 constants. As with the :ref:`getelementptr <i_getelementptr>`
2386 instruction, the index list may have zero or more indexes, which are
2387 required to make sense for the type of "CSTPTR".
2388``select (COND, VAL1, VAL2)``
2389 Perform the :ref:`select operation <i_select>` on constants.
2390``icmp COND (VAL1, VAL2)``
2391 Performs the :ref:`icmp operation <i_icmp>` on constants.
2392``fcmp COND (VAL1, VAL2)``
2393 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2394``extractelement (VAL, IDX)``
2395 Perform the :ref:`extractelement operation <i_extractelement>` on
2396 constants.
2397``insertelement (VAL, ELT, IDX)``
2398 Perform the :ref:`insertelement operation <i_insertelement>` on
2399 constants.
2400``shufflevector (VEC1, VEC2, IDXMASK)``
2401 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2402 constants.
2403``extractvalue (VAL, IDX0, IDX1, ...)``
2404 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2405 constants. The index list is interpreted in a similar manner as
2406 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2407 least one index value must be specified.
2408``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2409 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2410 The index list is interpreted in a similar manner as indices in a
2411 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2412 value must be specified.
2413``OPCODE (LHS, RHS)``
2414 Perform the specified operation of the LHS and RHS constants. OPCODE
2415 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2416 binary <bitwiseops>` operations. The constraints on operands are
2417 the same as those for the corresponding instruction (e.g. no bitwise
2418 operations on floating point values are allowed).
2419
2420Other Values
2421============
2422
Eli Bendersky88fe6822013-06-07 20:24:43 +00002423.. _inlineasmexprs:
2424
Sean Silvaf722b002012-12-07 10:36:55 +00002425Inline Assembler Expressions
2426----------------------------
2427
2428LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2429Inline Assembly <moduleasm>`) through the use of a special value. This
2430value represents the inline assembler as a string (containing the
2431instructions to emit), a list of operand constraints (stored as a
2432string), a flag that indicates whether or not the inline asm expression
2433has side effects, and a flag indicating whether the function containing
2434the asm needs to align its stack conservatively. An example inline
2435assembler expression is:
2436
2437.. code-block:: llvm
2438
2439 i32 (i32) asm "bswap $0", "=r,r"
2440
2441Inline assembler expressions may **only** be used as the callee operand
2442of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2443Thus, typically we have:
2444
2445.. code-block:: llvm
2446
2447 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2448
2449Inline asms with side effects not visible in the constraint list must be
2450marked as having side effects. This is done through the use of the
2451'``sideeffect``' keyword, like so:
2452
2453.. code-block:: llvm
2454
2455 call void asm sideeffect "eieio", ""()
2456
2457In some cases inline asms will contain code that will not work unless
2458the stack is aligned in some way, such as calls or SSE instructions on
2459x86, yet will not contain code that does that alignment within the asm.
2460The compiler should make conservative assumptions about what the asm
2461might contain and should generate its usual stack alignment code in the
2462prologue if the '``alignstack``' keyword is present:
2463
2464.. code-block:: llvm
2465
2466 call void asm alignstack "eieio", ""()
2467
2468Inline asms also support using non-standard assembly dialects. The
2469assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2470the inline asm is using the Intel dialect. Currently, ATT and Intel are
2471the only supported dialects. An example is:
2472
2473.. code-block:: llvm
2474
2475 call void asm inteldialect "eieio", ""()
2476
2477If multiple keywords appear the '``sideeffect``' keyword must come
2478first, the '``alignstack``' keyword second and the '``inteldialect``'
2479keyword last.
2480
2481Inline Asm Metadata
2482^^^^^^^^^^^^^^^^^^^
2483
2484The call instructions that wrap inline asm nodes may have a
2485"``!srcloc``" MDNode attached to it that contains a list of constant
2486integers. If present, the code generator will use the integer as the
2487location cookie value when report errors through the ``LLVMContext``
2488error reporting mechanisms. This allows a front-end to correlate backend
2489errors that occur with inline asm back to the source code that produced
2490it. For example:
2491
2492.. code-block:: llvm
2493
2494 call void asm sideeffect "something bad", ""(), !srcloc !42
2495 ...
2496 !42 = !{ i32 1234567 }
2497
2498It is up to the front-end to make sense of the magic numbers it places
2499in the IR. If the MDNode contains multiple constants, the code generator
2500will use the one that corresponds to the line of the asm that the error
2501occurs on.
2502
2503.. _metadata:
2504
2505Metadata Nodes and Metadata Strings
2506-----------------------------------
2507
2508LLVM IR allows metadata to be attached to instructions in the program
2509that can convey extra information about the code to the optimizers and
2510code generator. One example application of metadata is source-level
2511debug information. There are two metadata primitives: strings and nodes.
2512All metadata has the ``metadata`` type and is identified in syntax by a
2513preceding exclamation point ('``!``').
2514
2515A metadata string is a string surrounded by double quotes. It can
2516contain any character by escaping non-printable characters with
2517"``\xx``" where "``xx``" is the two digit hex code. For example:
2518"``!"test\00"``".
2519
2520Metadata nodes are represented with notation similar to structure
2521constants (a comma separated list of elements, surrounded by braces and
2522preceded by an exclamation point). Metadata nodes can have any values as
2523their operand. For example:
2524
2525.. code-block:: llvm
2526
2527 !{ metadata !"test\00", i32 10}
2528
2529A :ref:`named metadata <namedmetadatastructure>` is a collection of
2530metadata nodes, which can be looked up in the module symbol table. For
2531example:
2532
2533.. code-block:: llvm
2534
2535 !foo = metadata !{!4, !3}
2536
2537Metadata can be used as function arguments. Here ``llvm.dbg.value``
2538function is using two metadata arguments:
2539
2540.. code-block:: llvm
2541
2542 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2543
2544Metadata can be attached with an instruction. Here metadata ``!21`` is
2545attached to the ``add`` instruction using the ``!dbg`` identifier:
2546
2547.. code-block:: llvm
2548
2549 %indvar.next = add i64 %indvar, 1, !dbg !21
2550
2551More information about specific metadata nodes recognized by the
2552optimizers and code generator is found below.
2553
2554'``tbaa``' Metadata
2555^^^^^^^^^^^^^^^^^^^
2556
2557In LLVM IR, memory does not have types, so LLVM's own type system is not
2558suitable for doing TBAA. Instead, metadata is added to the IR to
2559describe a type system of a higher level language. This can be used to
2560implement typical C/C++ TBAA, but it can also be used to implement
2561custom alias analysis behavior for other languages.
2562
2563The current metadata format is very simple. TBAA metadata nodes have up
2564to three fields, e.g.:
2565
2566.. code-block:: llvm
2567
2568 !0 = metadata !{ metadata !"an example type tree" }
2569 !1 = metadata !{ metadata !"int", metadata !0 }
2570 !2 = metadata !{ metadata !"float", metadata !0 }
2571 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2572
2573The first field is an identity field. It can be any value, usually a
2574metadata string, which uniquely identifies the type. The most important
2575name in the tree is the name of the root node. Two trees with different
2576root node names are entirely disjoint, even if they have leaves with
2577common names.
2578
2579The second field identifies the type's parent node in the tree, or is
2580null or omitted for a root node. A type is considered to alias all of
2581its descendants and all of its ancestors in the tree. Also, a type is
2582considered to alias all types in other trees, so that bitcode produced
2583from multiple front-ends is handled conservatively.
2584
2585If the third field is present, it's an integer which if equal to 1
2586indicates that the type is "constant" (meaning
2587``pointsToConstantMemory`` should return true; see `other useful
2588AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2589
2590'``tbaa.struct``' Metadata
2591^^^^^^^^^^^^^^^^^^^^^^^^^^
2592
2593The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2594aggregate assignment operations in C and similar languages, however it
2595is defined to copy a contiguous region of memory, which is more than
2596strictly necessary for aggregate types which contain holes due to
2597padding. Also, it doesn't contain any TBAA information about the fields
2598of the aggregate.
2599
2600``!tbaa.struct`` metadata can describe which memory subregions in a
2601memcpy are padding and what the TBAA tags of the struct are.
2602
2603The current metadata format is very simple. ``!tbaa.struct`` metadata
2604nodes are a list of operands which are in conceptual groups of three.
2605For each group of three, the first operand gives the byte offset of a
2606field in bytes, the second gives its size in bytes, and the third gives
2607its tbaa tag. e.g.:
2608
2609.. code-block:: llvm
2610
2611 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2612
2613This describes a struct with two fields. The first is at offset 0 bytes
2614with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2615and has size 4 bytes and has tbaa tag !2.
2616
2617Note that the fields need not be contiguous. In this example, there is a
26184 byte gap between the two fields. This gap represents padding which
2619does not carry useful data and need not be preserved.
2620
2621'``fpmath``' Metadata
2622^^^^^^^^^^^^^^^^^^^^^
2623
2624``fpmath`` metadata may be attached to any instruction of floating point
2625type. It can be used to express the maximum acceptable error in the
2626result of that instruction, in ULPs, thus potentially allowing the
2627compiler to use a more efficient but less accurate method of computing
2628it. ULP is defined as follows:
2629
2630 If ``x`` is a real number that lies between two finite consecutive
2631 floating-point numbers ``a`` and ``b``, without being equal to one
2632 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2633 distance between the two non-equal finite floating-point numbers
2634 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2635
2636The metadata node shall consist of a single positive floating point
2637number representing the maximum relative error, for example:
2638
2639.. code-block:: llvm
2640
2641 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2642
2643'``range``' Metadata
2644^^^^^^^^^^^^^^^^^^^^
2645
2646``range`` metadata may be attached only to loads of integer types. It
2647expresses the possible ranges the loaded value is in. The ranges are
2648represented with a flattened list of integers. The loaded value is known
2649to be in the union of the ranges defined by each consecutive pair. Each
2650pair has the following properties:
2651
2652- The type must match the type loaded by the instruction.
2653- The pair ``a,b`` represents the range ``[a,b)``.
2654- Both ``a`` and ``b`` are constants.
2655- The range is allowed to wrap.
2656- The range should not represent the full or empty set. That is,
2657 ``a!=b``.
2658
2659In addition, the pairs must be in signed order of the lower bound and
2660they must be non-contiguous.
2661
2662Examples:
2663
2664.. code-block:: llvm
2665
2666 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2667 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2668 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2669 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2670 ...
2671 !0 = metadata !{ i8 0, i8 2 }
2672 !1 = metadata !{ i8 255, i8 2 }
2673 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2674 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2675
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002676'``llvm.loop``'
2677^^^^^^^^^^^^^^^
2678
2679It is sometimes useful to attach information to loop constructs. Currently,
2680loop metadata is implemented as metadata attached to the branch instruction
2681in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002682guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002683specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002684
2685The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002686itself to avoid merging it with any other identifier metadata, e.g.,
2687during module linkage or function inlining. That is, each loop should refer
2688to their own identification metadata even if they reside in separate functions.
2689The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002690constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002691
2692.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002693
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002694 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002695 !1 = metadata !{ metadata !1 }
2696
Paul Redmondee21b6f2013-05-28 20:00:34 +00002697The loop identifier metadata can be used to specify additional per-loop
2698metadata. Any operands after the first operand can be treated as user-defined
2699metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2700by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002701
Paul Redmondee21b6f2013-05-28 20:00:34 +00002702.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002703
Paul Redmondee21b6f2013-05-28 20:00:34 +00002704 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2705 ...
2706 !0 = metadata !{ metadata !0, metadata !1 }
2707 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002708
2709'``llvm.mem``'
2710^^^^^^^^^^^^^^^
2711
2712Metadata types used to annotate memory accesses with information helpful
2713for optimizations are prefixed with ``llvm.mem``.
2714
2715'``llvm.mem.parallel_loop_access``' Metadata
2716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2717
2718For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002719the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002720also all of the memory accessing instructions in the loop body need to be
2721marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2722is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002723the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002724converted to sequential loops due to optimization passes that are unaware of
2725the parallel semantics and that insert new memory instructions to the loop
2726body.
2727
2728Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002729both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002730metadata types that refer to the same loop identifier metadata.
2731
2732.. code-block:: llvm
2733
2734 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002735 ...
2736 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2737 ...
2738 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2739 ...
2740 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002741
2742 for.end:
2743 ...
2744 !0 = metadata !{ metadata !0 }
2745
2746It is also possible to have nested parallel loops. In that case the
2747memory accesses refer to a list of loop identifier metadata nodes instead of
2748the loop identifier metadata node directly:
2749
2750.. code-block:: llvm
2751
2752 outer.for.body:
2753 ...
2754
2755 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002756 ...
2757 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2758 ...
2759 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2760 ...
2761 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002762
2763 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002764 ...
2765 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2766 ...
2767 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2768 ...
2769 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002770
2771 outer.for.end: ; preds = %for.body
2772 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002773 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2774 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2775 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002776
Paul Redmondee21b6f2013-05-28 20:00:34 +00002777'``llvm.vectorizer``'
2778^^^^^^^^^^^^^^^^^^^^^
2779
2780Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2781vectorization parameters such as vectorization factor and unroll factor.
2782
2783``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2784loop identification metadata.
2785
2786'``llvm.vectorizer.unroll``' Metadata
2787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2788
2789This metadata instructs the loop vectorizer to unroll the specified
2790loop exactly ``N`` times.
2791
2792The first operand is the string ``llvm.vectorizer.unroll`` and the second
2793operand is an integer specifying the unroll factor. For example:
2794
2795.. code-block:: llvm
2796
2797 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2798
2799Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2800loop.
2801
2802If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2803determined automatically.
2804
2805'``llvm.vectorizer.width``' Metadata
2806^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2807
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002808This metadata sets the target width of the vectorizer to ``N``. Without
2809this metadata, the vectorizer will choose a width automatically.
2810Regardless of this metadata, the vectorizer will only vectorize loops if
2811it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002812
2813The first operand is the string ``llvm.vectorizer.width`` and the second
2814operand is an integer specifying the width. For example:
2815
2816.. code-block:: llvm
2817
2818 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2819
2820Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2821loop.
2822
2823If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2824automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002825
Sean Silvaf722b002012-12-07 10:36:55 +00002826Module Flags Metadata
2827=====================
2828
2829Information about the module as a whole is difficult to convey to LLVM's
2830subsystems. The LLVM IR isn't sufficient to transmit this information.
2831The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002832this. These flags are in the form of key / value pairs --- much like a
2833dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002834look it up.
2835
2836The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2837Each triplet has the following form:
2838
2839- The first element is a *behavior* flag, which specifies the behavior
2840 when two (or more) modules are merged together, and it encounters two
2841 (or more) metadata with the same ID. The supported behaviors are
2842 described below.
2843- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002844 metadata. Each module may only have one flag entry for each unique ID (not
2845 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002846- The third element is the value of the flag.
2847
2848When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002849``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2850each unique metadata ID string, there will be exactly one entry in the merged
2851modules ``llvm.module.flags`` metadata table, and the value for that entry will
2852be determined by the merge behavior flag, as described below. The only exception
2853is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002854
2855The following behaviors are supported:
2856
2857.. list-table::
2858 :header-rows: 1
2859 :widths: 10 90
2860
2861 * - Value
2862 - Behavior
2863
2864 * - 1
2865 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002866 Emits an error if two values disagree, otherwise the resulting value
2867 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002868
2869 * - 2
2870 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002871 Emits a warning if two values disagree. The result value will be the
2872 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002873
2874 * - 3
2875 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002876 Adds a requirement that another module flag be present and have a
2877 specified value after linking is performed. The value must be a
2878 metadata pair, where the first element of the pair is the ID of the
2879 module flag to be restricted, and the second element of the pair is
2880 the value the module flag should be restricted to. This behavior can
2881 be used to restrict the allowable results (via triggering of an
2882 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002883
2884 * - 4
2885 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002886 Uses the specified value, regardless of the behavior or value of the
2887 other module. If both modules specify **Override**, but the values
2888 differ, an error will be emitted.
2889
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002890 * - 5
2891 - **Append**
2892 Appends the two values, which are required to be metadata nodes.
2893
2894 * - 6
2895 - **AppendUnique**
2896 Appends the two values, which are required to be metadata
2897 nodes. However, duplicate entries in the second list are dropped
2898 during the append operation.
2899
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002900It is an error for a particular unique flag ID to have multiple behaviors,
2901except in the case of **Require** (which adds restrictions on another metadata
2902value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002903
2904An example of module flags:
2905
2906.. code-block:: llvm
2907
2908 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2909 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2910 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2911 !3 = metadata !{ i32 3, metadata !"qux",
2912 metadata !{
2913 metadata !"foo", i32 1
2914 }
2915 }
2916 !llvm.module.flags = !{ !0, !1, !2, !3 }
2917
2918- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2919 if two or more ``!"foo"`` flags are seen is to emit an error if their
2920 values are not equal.
2921
2922- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2923 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002924 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002925
2926- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2927 behavior if two or more ``!"qux"`` flags are seen is to emit a
2928 warning if their values are not equal.
2929
2930- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2931
2932 ::
2933
2934 metadata !{ metadata !"foo", i32 1 }
2935
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002936 The behavior is to emit an error if the ``llvm.module.flags`` does not
2937 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2938 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002939
2940Objective-C Garbage Collection Module Flags Metadata
2941----------------------------------------------------
2942
2943On the Mach-O platform, Objective-C stores metadata about garbage
2944collection in a special section called "image info". The metadata
2945consists of a version number and a bitmask specifying what types of
2946garbage collection are supported (if any) by the file. If two or more
2947modules are linked together their garbage collection metadata needs to
2948be merged rather than appended together.
2949
2950The Objective-C garbage collection module flags metadata consists of the
2951following key-value pairs:
2952
2953.. list-table::
2954 :header-rows: 1
2955 :widths: 30 70
2956
2957 * - Key
2958 - Value
2959
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002960 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002961 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002962
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002963 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002964 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002965 always 0.
2966
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002967 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002968 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002969 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2970 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2971 Objective-C ABI version 2.
2972
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002973 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002974 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002975 not. Valid values are 0, for no garbage collection, and 2, for garbage
2976 collection supported.
2977
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002978 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002979 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002980 If present, its value must be 6. This flag requires that the
2981 ``Objective-C Garbage Collection`` flag have the value 2.
2982
2983Some important flag interactions:
2984
2985- If a module with ``Objective-C Garbage Collection`` set to 0 is
2986 merged with a module with ``Objective-C Garbage Collection`` set to
2987 2, then the resulting module has the
2988 ``Objective-C Garbage Collection`` flag set to 0.
2989- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2990 merged with a module with ``Objective-C GC Only`` set to 6.
2991
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002992Automatic Linker Flags Module Flags Metadata
2993--------------------------------------------
2994
2995Some targets support embedding flags to the linker inside individual object
2996files. Typically this is used in conjunction with language extensions which
2997allow source files to explicitly declare the libraries they depend on, and have
2998these automatically be transmitted to the linker via object files.
2999
3000These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00003001using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003002to be ``AppendUnique``, and the value for the key is expected to be a metadata
3003node which should be a list of other metadata nodes, each of which should be a
3004list of metadata strings defining linker options.
3005
3006For example, the following metadata section specifies two separate sets of
3007linker options, presumably to link against ``libz`` and the ``Cocoa``
3008framework::
3009
Michael Liao2faa0f32013-03-06 18:24:34 +00003010 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003011 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00003012 metadata !{ metadata !"-lz" },
3013 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00003014 !llvm.module.flags = !{ !0 }
3015
3016The metadata encoding as lists of lists of options, as opposed to a collapsed
3017list of options, is chosen so that the IR encoding can use multiple option
3018strings to specify e.g., a single library, while still having that specifier be
3019preserved as an atomic element that can be recognized by a target specific
3020assembly writer or object file emitter.
3021
3022Each individual option is required to be either a valid option for the target's
3023linker, or an option that is reserved by the target specific assembly writer or
3024object file emitter. No other aspect of these options is defined by the IR.
3025
Eli Bendersky88fe6822013-06-07 20:24:43 +00003026.. _intrinsicglobalvariables:
3027
Sean Silvaf722b002012-12-07 10:36:55 +00003028Intrinsic Global Variables
3029==========================
3030
3031LLVM has a number of "magic" global variables that contain data that
3032affect code generation or other IR semantics. These are documented here.
3033All globals of this sort should have a section specified as
3034"``llvm.metadata``". This section and all globals that start with
3035"``llvm.``" are reserved for use by LLVM.
3036
Eli Bendersky88fe6822013-06-07 20:24:43 +00003037.. _gv_llvmused:
3038
Sean Silvaf722b002012-12-07 10:36:55 +00003039The '``llvm.used``' Global Variable
3040-----------------------------------
3041
Rafael Espindolacde25b42013-04-22 14:58:02 +00003042The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00003043:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003044pointers to named global variables, functions and aliases which may optionally
3045have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00003046use of it is:
3047
3048.. code-block:: llvm
3049
3050 @X = global i8 4
3051 @Y = global i32 123
3052
3053 @llvm.used = appending global [2 x i8*] [
3054 i8* @X,
3055 i8* bitcast (i32* @Y to i8*)
3056 ], section "llvm.metadata"
3057
Rafael Espindolacde25b42013-04-22 14:58:02 +00003058If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3059and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003060symbol that it cannot see (which is why they have to be named). For example, if
3061a variable has internal linkage and no references other than that from the
3062``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3063references from inline asms and other things the compiler cannot "see", and
3064corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00003065
3066On some targets, the code generator must emit a directive to the
3067assembler or object file to prevent the assembler and linker from
3068molesting the symbol.
3069
Eli Bendersky88fe6822013-06-07 20:24:43 +00003070.. _gv_llvmcompilerused:
3071
Sean Silvaf722b002012-12-07 10:36:55 +00003072The '``llvm.compiler.used``' Global Variable
3073--------------------------------------------
3074
3075The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3076directive, except that it only prevents the compiler from touching the
3077symbol. On targets that support it, this allows an intelligent linker to
3078optimize references to the symbol without being impeded as it would be
3079by ``@llvm.used``.
3080
3081This is a rare construct that should only be used in rare circumstances,
3082and should not be exposed to source languages.
3083
Eli Bendersky88fe6822013-06-07 20:24:43 +00003084.. _gv_llvmglobalctors:
3085
Sean Silvaf722b002012-12-07 10:36:55 +00003086The '``llvm.global_ctors``' Global Variable
3087-------------------------------------------
3088
3089.. code-block:: llvm
3090
3091 %0 = type { i32, void ()* }
3092 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3093
3094The ``@llvm.global_ctors`` array contains a list of constructor
3095functions and associated priorities. The functions referenced by this
3096array will be called in ascending order of priority (i.e. lowest first)
3097when the module is loaded. The order of functions with the same priority
3098is not defined.
3099
Eli Bendersky88fe6822013-06-07 20:24:43 +00003100.. _llvmglobaldtors:
3101
Sean Silvaf722b002012-12-07 10:36:55 +00003102The '``llvm.global_dtors``' Global Variable
3103-------------------------------------------
3104
3105.. code-block:: llvm
3106
3107 %0 = type { i32, void ()* }
3108 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3109
3110The ``@llvm.global_dtors`` array contains a list of destructor functions
3111and associated priorities. The functions referenced by this array will
3112be called in descending order of priority (i.e. highest first) when the
3113module is loaded. The order of functions with the same priority is not
3114defined.
3115
3116Instruction Reference
3117=====================
3118
3119The LLVM instruction set consists of several different classifications
3120of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3121instructions <binaryops>`, :ref:`bitwise binary
3122instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3123:ref:`other instructions <otherops>`.
3124
3125.. _terminators:
3126
3127Terminator Instructions
3128-----------------------
3129
3130As mentioned :ref:`previously <functionstructure>`, every basic block in a
3131program ends with a "Terminator" instruction, which indicates which
3132block should be executed after the current block is finished. These
3133terminator instructions typically yield a '``void``' value: they produce
3134control flow, not values (the one exception being the
3135':ref:`invoke <i_invoke>`' instruction).
3136
3137The terminator instructions are: ':ref:`ret <i_ret>`',
3138':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3139':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3140':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3141
3142.. _i_ret:
3143
3144'``ret``' Instruction
3145^^^^^^^^^^^^^^^^^^^^^
3146
3147Syntax:
3148"""""""
3149
3150::
3151
3152 ret <type> <value> ; Return a value from a non-void function
3153 ret void ; Return from void function
3154
3155Overview:
3156"""""""""
3157
3158The '``ret``' instruction is used to return control flow (and optionally
3159a value) from a function back to the caller.
3160
3161There are two forms of the '``ret``' instruction: one that returns a
3162value and then causes control flow, and one that just causes control
3163flow to occur.
3164
3165Arguments:
3166""""""""""
3167
3168The '``ret``' instruction optionally accepts a single argument, the
3169return value. The type of the return value must be a ':ref:`first
3170class <t_firstclass>`' type.
3171
3172A function is not :ref:`well formed <wellformed>` if it it has a non-void
3173return type and contains a '``ret``' instruction with no return value or
3174a return value with a type that does not match its type, or if it has a
3175void return type and contains a '``ret``' instruction with a return
3176value.
3177
3178Semantics:
3179""""""""""
3180
3181When the '``ret``' instruction is executed, control flow returns back to
3182the calling function's context. If the caller is a
3183":ref:`call <i_call>`" instruction, execution continues at the
3184instruction after the call. If the caller was an
3185":ref:`invoke <i_invoke>`" instruction, execution continues at the
3186beginning of the "normal" destination block. If the instruction returns
3187a value, that value shall set the call or invoke instruction's return
3188value.
3189
3190Example:
3191""""""""
3192
3193.. code-block:: llvm
3194
3195 ret i32 5 ; Return an integer value of 5
3196 ret void ; Return from a void function
3197 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3198
3199.. _i_br:
3200
3201'``br``' Instruction
3202^^^^^^^^^^^^^^^^^^^^
3203
3204Syntax:
3205"""""""
3206
3207::
3208
3209 br i1 <cond>, label <iftrue>, label <iffalse>
3210 br label <dest> ; Unconditional branch
3211
3212Overview:
3213"""""""""
3214
3215The '``br``' instruction is used to cause control flow to transfer to a
3216different basic block in the current function. There are two forms of
3217this instruction, corresponding to a conditional branch and an
3218unconditional branch.
3219
3220Arguments:
3221""""""""""
3222
3223The conditional branch form of the '``br``' instruction takes a single
3224'``i1``' value and two '``label``' values. The unconditional form of the
3225'``br``' instruction takes a single '``label``' value as a target.
3226
3227Semantics:
3228""""""""""
3229
3230Upon execution of a conditional '``br``' instruction, the '``i1``'
3231argument is evaluated. If the value is ``true``, control flows to the
3232'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3233to the '``iffalse``' ``label`` argument.
3234
3235Example:
3236""""""""
3237
3238.. code-block:: llvm
3239
3240 Test:
3241 %cond = icmp eq i32 %a, %b
3242 br i1 %cond, label %IfEqual, label %IfUnequal
3243 IfEqual:
3244 ret i32 1
3245 IfUnequal:
3246 ret i32 0
3247
3248.. _i_switch:
3249
3250'``switch``' Instruction
3251^^^^^^^^^^^^^^^^^^^^^^^^
3252
3253Syntax:
3254"""""""
3255
3256::
3257
3258 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3259
3260Overview:
3261"""""""""
3262
3263The '``switch``' instruction is used to transfer control flow to one of
3264several different places. It is a generalization of the '``br``'
3265instruction, allowing a branch to occur to one of many possible
3266destinations.
3267
3268Arguments:
3269""""""""""
3270
3271The '``switch``' instruction uses three parameters: an integer
3272comparison value '``value``', a default '``label``' destination, and an
3273array of pairs of comparison value constants and '``label``'s. The table
3274is not allowed to contain duplicate constant entries.
3275
3276Semantics:
3277""""""""""
3278
3279The ``switch`` instruction specifies a table of values and destinations.
3280When the '``switch``' instruction is executed, this table is searched
3281for the given value. If the value is found, control flow is transferred
3282to the corresponding destination; otherwise, control flow is transferred
3283to the default destination.
3284
3285Implementation:
3286"""""""""""""""
3287
3288Depending on properties of the target machine and the particular
3289``switch`` instruction, this instruction may be code generated in
3290different ways. For example, it could be generated as a series of
3291chained conditional branches or with a lookup table.
3292
3293Example:
3294""""""""
3295
3296.. code-block:: llvm
3297
3298 ; Emulate a conditional br instruction
3299 %Val = zext i1 %value to i32
3300 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3301
3302 ; Emulate an unconditional br instruction
3303 switch i32 0, label %dest [ ]
3304
3305 ; Implement a jump table:
3306 switch i32 %val, label %otherwise [ i32 0, label %onzero
3307 i32 1, label %onone
3308 i32 2, label %ontwo ]
3309
3310.. _i_indirectbr:
3311
3312'``indirectbr``' Instruction
3313^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3314
3315Syntax:
3316"""""""
3317
3318::
3319
3320 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3321
3322Overview:
3323"""""""""
3324
3325The '``indirectbr``' instruction implements an indirect branch to a
3326label within the current function, whose address is specified by
3327"``address``". Address must be derived from a
3328:ref:`blockaddress <blockaddress>` constant.
3329
3330Arguments:
3331""""""""""
3332
3333The '``address``' argument is the address of the label to jump to. The
3334rest of the arguments indicate the full set of possible destinations
3335that the address may point to. Blocks are allowed to occur multiple
3336times in the destination list, though this isn't particularly useful.
3337
3338This destination list is required so that dataflow analysis has an
3339accurate understanding of the CFG.
3340
3341Semantics:
3342""""""""""
3343
3344Control transfers to the block specified in the address argument. All
3345possible destination blocks must be listed in the label list, otherwise
3346this instruction has undefined behavior. This implies that jumps to
3347labels defined in other functions have undefined behavior as well.
3348
3349Implementation:
3350"""""""""""""""
3351
3352This is typically implemented with a jump through a register.
3353
3354Example:
3355""""""""
3356
3357.. code-block:: llvm
3358
3359 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3360
3361.. _i_invoke:
3362
3363'``invoke``' Instruction
3364^^^^^^^^^^^^^^^^^^^^^^^^
3365
3366Syntax:
3367"""""""
3368
3369::
3370
3371 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3372 to label <normal label> unwind label <exception label>
3373
3374Overview:
3375"""""""""
3376
3377The '``invoke``' instruction causes control to transfer to a specified
3378function, with the possibility of control flow transfer to either the
3379'``normal``' label or the '``exception``' label. If the callee function
3380returns with the "``ret``" instruction, control flow will return to the
3381"normal" label. If the callee (or any indirect callees) returns via the
3382":ref:`resume <i_resume>`" instruction or other exception handling
3383mechanism, control is interrupted and continued at the dynamically
3384nearest "exception" label.
3385
3386The '``exception``' label is a `landing
3387pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3388'``exception``' label is required to have the
3389":ref:`landingpad <i_landingpad>`" instruction, which contains the
3390information about the behavior of the program after unwinding happens,
3391as its first non-PHI instruction. The restrictions on the
3392"``landingpad``" instruction's tightly couples it to the "``invoke``"
3393instruction, so that the important information contained within the
3394"``landingpad``" instruction can't be lost through normal code motion.
3395
3396Arguments:
3397""""""""""
3398
3399This instruction requires several arguments:
3400
3401#. The optional "cconv" marker indicates which :ref:`calling
3402 convention <callingconv>` the call should use. If none is
3403 specified, the call defaults to using C calling conventions.
3404#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3405 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3406 are valid here.
3407#. '``ptr to function ty``': shall be the signature of the pointer to
3408 function value being invoked. In most cases, this is a direct
3409 function invocation, but indirect ``invoke``'s are just as possible,
3410 branching off an arbitrary pointer to function value.
3411#. '``function ptr val``': An LLVM value containing a pointer to a
3412 function to be invoked.
3413#. '``function args``': argument list whose types match the function
3414 signature argument types and parameter attributes. All arguments must
3415 be of :ref:`first class <t_firstclass>` type. If the function signature
3416 indicates the function accepts a variable number of arguments, the
3417 extra arguments can be specified.
3418#. '``normal label``': the label reached when the called function
3419 executes a '``ret``' instruction.
3420#. '``exception label``': the label reached when a callee returns via
3421 the :ref:`resume <i_resume>` instruction or other exception handling
3422 mechanism.
3423#. The optional :ref:`function attributes <fnattrs>` list. Only
3424 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3425 attributes are valid here.
3426
3427Semantics:
3428""""""""""
3429
3430This instruction is designed to operate as a standard '``call``'
3431instruction in most regards. The primary difference is that it
3432establishes an association with a label, which is used by the runtime
3433library to unwind the stack.
3434
3435This instruction is used in languages with destructors to ensure that
3436proper cleanup is performed in the case of either a ``longjmp`` or a
3437thrown exception. Additionally, this is important for implementation of
3438'``catch``' clauses in high-level languages that support them.
3439
3440For the purposes of the SSA form, the definition of the value returned
3441by the '``invoke``' instruction is deemed to occur on the edge from the
3442current block to the "normal" label. If the callee unwinds then no
3443return value is available.
3444
3445Example:
3446""""""""
3447
3448.. code-block:: llvm
3449
3450 %retval = invoke i32 @Test(i32 15) to label %Continue
3451 unwind label %TestCleanup ; {i32}:retval set
3452 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3453 unwind label %TestCleanup ; {i32}:retval set
3454
3455.. _i_resume:
3456
3457'``resume``' Instruction
3458^^^^^^^^^^^^^^^^^^^^^^^^
3459
3460Syntax:
3461"""""""
3462
3463::
3464
3465 resume <type> <value>
3466
3467Overview:
3468"""""""""
3469
3470The '``resume``' instruction is a terminator instruction that has no
3471successors.
3472
3473Arguments:
3474""""""""""
3475
3476The '``resume``' instruction requires one argument, which must have the
3477same type as the result of any '``landingpad``' instruction in the same
3478function.
3479
3480Semantics:
3481""""""""""
3482
3483The '``resume``' instruction resumes propagation of an existing
3484(in-flight) exception whose unwinding was interrupted with a
3485:ref:`landingpad <i_landingpad>` instruction.
3486
3487Example:
3488""""""""
3489
3490.. code-block:: llvm
3491
3492 resume { i8*, i32 } %exn
3493
3494.. _i_unreachable:
3495
3496'``unreachable``' Instruction
3497^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3498
3499Syntax:
3500"""""""
3501
3502::
3503
3504 unreachable
3505
3506Overview:
3507"""""""""
3508
3509The '``unreachable``' instruction has no defined semantics. This
3510instruction is used to inform the optimizer that a particular portion of
3511the code is not reachable. This can be used to indicate that the code
3512after a no-return function cannot be reached, and other facts.
3513
3514Semantics:
3515""""""""""
3516
3517The '``unreachable``' instruction has no defined semantics.
3518
3519.. _binaryops:
3520
3521Binary Operations
3522-----------------
3523
3524Binary operators are used to do most of the computation in a program.
3525They require two operands of the same type, execute an operation on
3526them, and produce a single value. The operands might represent multiple
3527data, as is the case with the :ref:`vector <t_vector>` data type. The
3528result value has the same type as its operands.
3529
3530There are several different binary operators:
3531
3532.. _i_add:
3533
3534'``add``' Instruction
3535^^^^^^^^^^^^^^^^^^^^^
3536
3537Syntax:
3538"""""""
3539
3540::
3541
3542 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3543 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3544 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3545 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3546
3547Overview:
3548"""""""""
3549
3550The '``add``' instruction returns the sum of its two operands.
3551
3552Arguments:
3553""""""""""
3554
3555The two arguments to the '``add``' instruction must be
3556:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3557arguments must have identical types.
3558
3559Semantics:
3560""""""""""
3561
3562The value produced is the integer sum of the two operands.
3563
3564If the sum has unsigned overflow, the result returned is the
3565mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3566the result.
3567
3568Because LLVM integers use a two's complement representation, this
3569instruction is appropriate for both signed and unsigned integers.
3570
3571``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3572respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3573result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3574unsigned and/or signed overflow, respectively, occurs.
3575
3576Example:
3577""""""""
3578
3579.. code-block:: llvm
3580
3581 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3582
3583.. _i_fadd:
3584
3585'``fadd``' Instruction
3586^^^^^^^^^^^^^^^^^^^^^^
3587
3588Syntax:
3589"""""""
3590
3591::
3592
3593 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3594
3595Overview:
3596"""""""""
3597
3598The '``fadd``' instruction returns the sum of its two operands.
3599
3600Arguments:
3601""""""""""
3602
3603The two arguments to the '``fadd``' instruction must be :ref:`floating
3604point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3605Both arguments must have identical types.
3606
3607Semantics:
3608""""""""""
3609
3610The value produced is the floating point sum of the two operands. This
3611instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3612which are optimization hints to enable otherwise unsafe floating point
3613optimizations:
3614
3615Example:
3616""""""""
3617
3618.. code-block:: llvm
3619
3620 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3621
3622'``sub``' Instruction
3623^^^^^^^^^^^^^^^^^^^^^
3624
3625Syntax:
3626"""""""
3627
3628::
3629
3630 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3631 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3632 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3633 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3634
3635Overview:
3636"""""""""
3637
3638The '``sub``' instruction returns the difference of its two operands.
3639
3640Note that the '``sub``' instruction is used to represent the '``neg``'
3641instruction present in most other intermediate representations.
3642
3643Arguments:
3644""""""""""
3645
3646The two arguments to the '``sub``' instruction must be
3647:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3648arguments must have identical types.
3649
3650Semantics:
3651""""""""""
3652
3653The value produced is the integer difference of the two operands.
3654
3655If the difference has unsigned overflow, the result returned is the
3656mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3657the result.
3658
3659Because LLVM integers use a two's complement representation, this
3660instruction is appropriate for both signed and unsigned integers.
3661
3662``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3663respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3664result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3665unsigned and/or signed overflow, respectively, occurs.
3666
3667Example:
3668""""""""
3669
3670.. code-block:: llvm
3671
3672 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3673 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3674
3675.. _i_fsub:
3676
3677'``fsub``' Instruction
3678^^^^^^^^^^^^^^^^^^^^^^
3679
3680Syntax:
3681"""""""
3682
3683::
3684
3685 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3686
3687Overview:
3688"""""""""
3689
3690The '``fsub``' instruction returns the difference of its two operands.
3691
3692Note that the '``fsub``' instruction is used to represent the '``fneg``'
3693instruction present in most other intermediate representations.
3694
3695Arguments:
3696""""""""""
3697
3698The two arguments to the '``fsub``' instruction must be :ref:`floating
3699point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3700Both arguments must have identical types.
3701
3702Semantics:
3703""""""""""
3704
3705The value produced is the floating point difference of the two operands.
3706This instruction can also take any number of :ref:`fast-math
3707flags <fastmath>`, which are optimization hints to enable otherwise
3708unsafe floating point optimizations:
3709
3710Example:
3711""""""""
3712
3713.. code-block:: llvm
3714
3715 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3716 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3717
3718'``mul``' Instruction
3719^^^^^^^^^^^^^^^^^^^^^
3720
3721Syntax:
3722"""""""
3723
3724::
3725
3726 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3727 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3728 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3729 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3730
3731Overview:
3732"""""""""
3733
3734The '``mul``' instruction returns the product of its two operands.
3735
3736Arguments:
3737""""""""""
3738
3739The two arguments to the '``mul``' instruction must be
3740:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3741arguments must have identical types.
3742
3743Semantics:
3744""""""""""
3745
3746The value produced is the integer product of the two operands.
3747
3748If the result of the multiplication has unsigned overflow, the result
3749returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3750bit width of the result.
3751
3752Because LLVM integers use a two's complement representation, and the
3753result is the same width as the operands, this instruction returns the
3754correct result for both signed and unsigned integers. If a full product
3755(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3756sign-extended or zero-extended as appropriate to the width of the full
3757product.
3758
3759``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3760respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3761result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3762unsigned and/or signed overflow, respectively, occurs.
3763
3764Example:
3765""""""""
3766
3767.. code-block:: llvm
3768
3769 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3770
3771.. _i_fmul:
3772
3773'``fmul``' Instruction
3774^^^^^^^^^^^^^^^^^^^^^^
3775
3776Syntax:
3777"""""""
3778
3779::
3780
3781 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3782
3783Overview:
3784"""""""""
3785
3786The '``fmul``' instruction returns the product of its two operands.
3787
3788Arguments:
3789""""""""""
3790
3791The two arguments to the '``fmul``' instruction must be :ref:`floating
3792point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3793Both arguments must have identical types.
3794
3795Semantics:
3796""""""""""
3797
3798The value produced is the floating point product of the two operands.
3799This instruction can also take any number of :ref:`fast-math
3800flags <fastmath>`, which are optimization hints to enable otherwise
3801unsafe floating point optimizations:
3802
3803Example:
3804""""""""
3805
3806.. code-block:: llvm
3807
3808 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3809
3810'``udiv``' Instruction
3811^^^^^^^^^^^^^^^^^^^^^^
3812
3813Syntax:
3814"""""""
3815
3816::
3817
3818 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3819 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3820
3821Overview:
3822"""""""""
3823
3824The '``udiv``' instruction returns the quotient of its two operands.
3825
3826Arguments:
3827""""""""""
3828
3829The two arguments to the '``udiv``' instruction must be
3830:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3831arguments must have identical types.
3832
3833Semantics:
3834""""""""""
3835
3836The value produced is the unsigned integer quotient of the two operands.
3837
3838Note that unsigned integer division and signed integer division are
3839distinct operations; for signed integer division, use '``sdiv``'.
3840
3841Division by zero leads to undefined behavior.
3842
3843If the ``exact`` keyword is present, the result value of the ``udiv`` is
3844a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3845such, "((a udiv exact b) mul b) == a").
3846
3847Example:
3848""""""""
3849
3850.. code-block:: llvm
3851
3852 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3853
3854'``sdiv``' Instruction
3855^^^^^^^^^^^^^^^^^^^^^^
3856
3857Syntax:
3858"""""""
3859
3860::
3861
3862 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3863 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3864
3865Overview:
3866"""""""""
3867
3868The '``sdiv``' instruction returns the quotient of its two operands.
3869
3870Arguments:
3871""""""""""
3872
3873The two arguments to the '``sdiv``' instruction must be
3874:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3875arguments must have identical types.
3876
3877Semantics:
3878""""""""""
3879
3880The value produced is the signed integer quotient of the two operands
3881rounded towards zero.
3882
3883Note that signed integer division and unsigned integer division are
3884distinct operations; for unsigned integer division, use '``udiv``'.
3885
3886Division by zero leads to undefined behavior. Overflow also leads to
3887undefined behavior; this is a rare case, but can occur, for example, by
3888doing a 32-bit division of -2147483648 by -1.
3889
3890If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3891a :ref:`poison value <poisonvalues>` if the result would be rounded.
3892
3893Example:
3894""""""""
3895
3896.. code-block:: llvm
3897
3898 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3899
3900.. _i_fdiv:
3901
3902'``fdiv``' Instruction
3903^^^^^^^^^^^^^^^^^^^^^^
3904
3905Syntax:
3906"""""""
3907
3908::
3909
3910 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3911
3912Overview:
3913"""""""""
3914
3915The '``fdiv``' instruction returns the quotient of its two operands.
3916
3917Arguments:
3918""""""""""
3919
3920The two arguments to the '``fdiv``' instruction must be :ref:`floating
3921point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3922Both arguments must have identical types.
3923
3924Semantics:
3925""""""""""
3926
3927The value produced is the floating point quotient of the two operands.
3928This instruction can also take any number of :ref:`fast-math
3929flags <fastmath>`, which are optimization hints to enable otherwise
3930unsafe floating point optimizations:
3931
3932Example:
3933""""""""
3934
3935.. code-block:: llvm
3936
3937 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3938
3939'``urem``' Instruction
3940^^^^^^^^^^^^^^^^^^^^^^
3941
3942Syntax:
3943"""""""
3944
3945::
3946
3947 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3948
3949Overview:
3950"""""""""
3951
3952The '``urem``' instruction returns the remainder from the unsigned
3953division of its two arguments.
3954
3955Arguments:
3956""""""""""
3957
3958The two arguments to the '``urem``' instruction must be
3959:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3960arguments must have identical types.
3961
3962Semantics:
3963""""""""""
3964
3965This instruction returns the unsigned integer *remainder* of a division.
3966This instruction always performs an unsigned division to get the
3967remainder.
3968
3969Note that unsigned integer remainder and signed integer remainder are
3970distinct operations; for signed integer remainder, use '``srem``'.
3971
3972Taking the remainder of a division by zero leads to undefined behavior.
3973
3974Example:
3975""""""""
3976
3977.. code-block:: llvm
3978
3979 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3980
3981'``srem``' Instruction
3982^^^^^^^^^^^^^^^^^^^^^^
3983
3984Syntax:
3985"""""""
3986
3987::
3988
3989 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3990
3991Overview:
3992"""""""""
3993
3994The '``srem``' instruction returns the remainder from the signed
3995division of its two operands. This instruction can also take
3996:ref:`vector <t_vector>` versions of the values in which case the elements
3997must be integers.
3998
3999Arguments:
4000""""""""""
4001
4002The two arguments to the '``srem``' instruction must be
4003:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4004arguments must have identical types.
4005
4006Semantics:
4007""""""""""
4008
4009This instruction returns the *remainder* of a division (where the result
4010is either zero or has the same sign as the dividend, ``op1``), not the
4011*modulo* operator (where the result is either zero or has the same sign
4012as the divisor, ``op2``) of a value. For more information about the
4013difference, see `The Math
4014Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4015table of how this is implemented in various languages, please see
4016`Wikipedia: modulo
4017operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4018
4019Note that signed integer remainder and unsigned integer remainder are
4020distinct operations; for unsigned integer remainder, use '``urem``'.
4021
4022Taking the remainder of a division by zero leads to undefined behavior.
4023Overflow also leads to undefined behavior; this is a rare case, but can
4024occur, for example, by taking the remainder of a 32-bit division of
4025-2147483648 by -1. (The remainder doesn't actually overflow, but this
4026rule lets srem be implemented using instructions that return both the
4027result of the division and the remainder.)
4028
4029Example:
4030""""""""
4031
4032.. code-block:: llvm
4033
4034 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4035
4036.. _i_frem:
4037
4038'``frem``' Instruction
4039^^^^^^^^^^^^^^^^^^^^^^
4040
4041Syntax:
4042"""""""
4043
4044::
4045
4046 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4047
4048Overview:
4049"""""""""
4050
4051The '``frem``' instruction returns the remainder from the division of
4052its two operands.
4053
4054Arguments:
4055""""""""""
4056
4057The two arguments to the '``frem``' instruction must be :ref:`floating
4058point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4059Both arguments must have identical types.
4060
4061Semantics:
4062""""""""""
4063
4064This instruction returns the *remainder* of a division. The remainder
4065has the same sign as the dividend. This instruction can also take any
4066number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4067to enable otherwise unsafe floating point optimizations:
4068
4069Example:
4070""""""""
4071
4072.. code-block:: llvm
4073
4074 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4075
4076.. _bitwiseops:
4077
4078Bitwise Binary Operations
4079-------------------------
4080
4081Bitwise binary operators are used to do various forms of bit-twiddling
4082in a program. They are generally very efficient instructions and can
4083commonly be strength reduced from other instructions. They require two
4084operands of the same type, execute an operation on them, and produce a
4085single value. The resulting value is the same type as its operands.
4086
4087'``shl``' Instruction
4088^^^^^^^^^^^^^^^^^^^^^
4089
4090Syntax:
4091"""""""
4092
4093::
4094
4095 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4096 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4097 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4098 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4099
4100Overview:
4101"""""""""
4102
4103The '``shl``' instruction returns the first operand shifted to the left
4104a specified number of bits.
4105
4106Arguments:
4107""""""""""
4108
4109Both arguments to the '``shl``' instruction must be the same
4110:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4111'``op2``' is treated as an unsigned value.
4112
4113Semantics:
4114""""""""""
4115
4116The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4117where ``n`` is the width of the result. If ``op2`` is (statically or
4118dynamically) negative or equal to or larger than the number of bits in
4119``op1``, the result is undefined. If the arguments are vectors, each
4120vector element of ``op1`` is shifted by the corresponding shift amount
4121in ``op2``.
4122
4123If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4124value <poisonvalues>` if it shifts out any non-zero bits. If the
4125``nsw`` keyword is present, then the shift produces a :ref:`poison
4126value <poisonvalues>` if it shifts out any bits that disagree with the
4127resultant sign bit. As such, NUW/NSW have the same semantics as they
4128would if the shift were expressed as a mul instruction with the same
4129nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4130
4131Example:
4132""""""""
4133
4134.. code-block:: llvm
4135
4136 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4137 <result> = shl i32 4, 2 ; yields {i32}: 16
4138 <result> = shl i32 1, 10 ; yields {i32}: 1024
4139 <result> = shl i32 1, 32 ; undefined
4140 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4141
4142'``lshr``' Instruction
4143^^^^^^^^^^^^^^^^^^^^^^
4144
4145Syntax:
4146"""""""
4147
4148::
4149
4150 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4151 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4152
4153Overview:
4154"""""""""
4155
4156The '``lshr``' instruction (logical shift right) returns the first
4157operand shifted to the right a specified number of bits with zero fill.
4158
4159Arguments:
4160""""""""""
4161
4162Both arguments to the '``lshr``' instruction must be the same
4163:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4164'``op2``' is treated as an unsigned value.
4165
4166Semantics:
4167""""""""""
4168
4169This instruction always performs a logical shift right operation. The
4170most significant bits of the result will be filled with zero bits after
4171the shift. If ``op2`` is (statically or dynamically) equal to or larger
4172than the number of bits in ``op1``, the result is undefined. If the
4173arguments are vectors, each vector element of ``op1`` is shifted by the
4174corresponding shift amount in ``op2``.
4175
4176If the ``exact`` keyword is present, the result value of the ``lshr`` is
4177a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4178non-zero.
4179
4180Example:
4181""""""""
4182
4183.. code-block:: llvm
4184
4185 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4186 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4187 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004188 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004189 <result> = lshr i32 1, 32 ; undefined
4190 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4191
4192'``ashr``' Instruction
4193^^^^^^^^^^^^^^^^^^^^^^
4194
4195Syntax:
4196"""""""
4197
4198::
4199
4200 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4201 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4202
4203Overview:
4204"""""""""
4205
4206The '``ashr``' instruction (arithmetic shift right) returns the first
4207operand shifted to the right a specified number of bits with sign
4208extension.
4209
4210Arguments:
4211""""""""""
4212
4213Both arguments to the '``ashr``' instruction must be the same
4214:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4215'``op2``' is treated as an unsigned value.
4216
4217Semantics:
4218""""""""""
4219
4220This instruction always performs an arithmetic shift right operation,
4221The most significant bits of the result will be filled with the sign bit
4222of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4223than the number of bits in ``op1``, the result is undefined. If the
4224arguments are vectors, each vector element of ``op1`` is shifted by the
4225corresponding shift amount in ``op2``.
4226
4227If the ``exact`` keyword is present, the result value of the ``ashr`` is
4228a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4229non-zero.
4230
4231Example:
4232""""""""
4233
4234.. code-block:: llvm
4235
4236 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4237 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4238 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4239 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4240 <result> = ashr i32 1, 32 ; undefined
4241 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4242
4243'``and``' Instruction
4244^^^^^^^^^^^^^^^^^^^^^
4245
4246Syntax:
4247"""""""
4248
4249::
4250
4251 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4252
4253Overview:
4254"""""""""
4255
4256The '``and``' instruction returns the bitwise logical and of its two
4257operands.
4258
4259Arguments:
4260""""""""""
4261
4262The two arguments to the '``and``' instruction must be
4263:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4264arguments must have identical types.
4265
4266Semantics:
4267""""""""""
4268
4269The truth table used for the '``and``' instruction is:
4270
4271+-----+-----+-----+
4272| In0 | In1 | Out |
4273+-----+-----+-----+
4274| 0 | 0 | 0 |
4275+-----+-----+-----+
4276| 0 | 1 | 0 |
4277+-----+-----+-----+
4278| 1 | 0 | 0 |
4279+-----+-----+-----+
4280| 1 | 1 | 1 |
4281+-----+-----+-----+
4282
4283Example:
4284""""""""
4285
4286.. code-block:: llvm
4287
4288 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4289 <result> = and i32 15, 40 ; yields {i32}:result = 8
4290 <result> = and i32 4, 8 ; yields {i32}:result = 0
4291
4292'``or``' Instruction
4293^^^^^^^^^^^^^^^^^^^^
4294
4295Syntax:
4296"""""""
4297
4298::
4299
4300 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4301
4302Overview:
4303"""""""""
4304
4305The '``or``' instruction returns the bitwise logical inclusive or of its
4306two operands.
4307
4308Arguments:
4309""""""""""
4310
4311The two arguments to the '``or``' instruction must be
4312:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4313arguments must have identical types.
4314
4315Semantics:
4316""""""""""
4317
4318The truth table used for the '``or``' instruction is:
4319
4320+-----+-----+-----+
4321| In0 | In1 | Out |
4322+-----+-----+-----+
4323| 0 | 0 | 0 |
4324+-----+-----+-----+
4325| 0 | 1 | 1 |
4326+-----+-----+-----+
4327| 1 | 0 | 1 |
4328+-----+-----+-----+
4329| 1 | 1 | 1 |
4330+-----+-----+-----+
4331
4332Example:
4333""""""""
4334
4335::
4336
4337 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4338 <result> = or i32 15, 40 ; yields {i32}:result = 47
4339 <result> = or i32 4, 8 ; yields {i32}:result = 12
4340
4341'``xor``' Instruction
4342^^^^^^^^^^^^^^^^^^^^^
4343
4344Syntax:
4345"""""""
4346
4347::
4348
4349 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4350
4351Overview:
4352"""""""""
4353
4354The '``xor``' instruction returns the bitwise logical exclusive or of
4355its two operands. The ``xor`` is used to implement the "one's
4356complement" operation, which is the "~" operator in C.
4357
4358Arguments:
4359""""""""""
4360
4361The two arguments to the '``xor``' instruction must be
4362:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4363arguments must have identical types.
4364
4365Semantics:
4366""""""""""
4367
4368The truth table used for the '``xor``' instruction is:
4369
4370+-----+-----+-----+
4371| In0 | In1 | Out |
4372+-----+-----+-----+
4373| 0 | 0 | 0 |
4374+-----+-----+-----+
4375| 0 | 1 | 1 |
4376+-----+-----+-----+
4377| 1 | 0 | 1 |
4378+-----+-----+-----+
4379| 1 | 1 | 0 |
4380+-----+-----+-----+
4381
4382Example:
4383""""""""
4384
4385.. code-block:: llvm
4386
4387 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4388 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4389 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4390 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4391
4392Vector Operations
4393-----------------
4394
4395LLVM supports several instructions to represent vector operations in a
4396target-independent manner. These instructions cover the element-access
4397and vector-specific operations needed to process vectors effectively.
4398While LLVM does directly support these vector operations, many
4399sophisticated algorithms will want to use target-specific intrinsics to
4400take full advantage of a specific target.
4401
4402.. _i_extractelement:
4403
4404'``extractelement``' Instruction
4405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4406
4407Syntax:
4408"""""""
4409
4410::
4411
4412 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4413
4414Overview:
4415"""""""""
4416
4417The '``extractelement``' instruction extracts a single scalar element
4418from a vector at a specified index.
4419
4420Arguments:
4421""""""""""
4422
4423The first operand of an '``extractelement``' instruction is a value of
4424:ref:`vector <t_vector>` type. The second operand is an index indicating
4425the position from which to extract the element. The index may be a
4426variable.
4427
4428Semantics:
4429""""""""""
4430
4431The result is a scalar of the same type as the element type of ``val``.
4432Its value is the value at position ``idx`` of ``val``. If ``idx``
4433exceeds the length of ``val``, the results are undefined.
4434
4435Example:
4436""""""""
4437
4438.. code-block:: llvm
4439
4440 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4441
4442.. _i_insertelement:
4443
4444'``insertelement``' Instruction
4445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4446
4447Syntax:
4448"""""""
4449
4450::
4451
4452 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4453
4454Overview:
4455"""""""""
4456
4457The '``insertelement``' instruction inserts a scalar element into a
4458vector at a specified index.
4459
4460Arguments:
4461""""""""""
4462
4463The first operand of an '``insertelement``' instruction is a value of
4464:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4465type must equal the element type of the first operand. The third operand
4466is an index indicating the position at which to insert the value. The
4467index may be a variable.
4468
4469Semantics:
4470""""""""""
4471
4472The result is a vector of the same type as ``val``. Its element values
4473are those of ``val`` except at position ``idx``, where it gets the value
4474``elt``. If ``idx`` exceeds the length of ``val``, the results are
4475undefined.
4476
4477Example:
4478""""""""
4479
4480.. code-block:: llvm
4481
4482 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4483
4484.. _i_shufflevector:
4485
4486'``shufflevector``' Instruction
4487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4488
4489Syntax:
4490"""""""
4491
4492::
4493
4494 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4495
4496Overview:
4497"""""""""
4498
4499The '``shufflevector``' instruction constructs a permutation of elements
4500from two input vectors, returning a vector with the same element type as
4501the input and length that is the same as the shuffle mask.
4502
4503Arguments:
4504""""""""""
4505
4506The first two operands of a '``shufflevector``' instruction are vectors
4507with the same type. The third argument is a shuffle mask whose element
4508type is always 'i32'. The result of the instruction is a vector whose
4509length is the same as the shuffle mask and whose element type is the
4510same as the element type of the first two operands.
4511
4512The shuffle mask operand is required to be a constant vector with either
4513constant integer or undef values.
4514
4515Semantics:
4516""""""""""
4517
4518The elements of the two input vectors are numbered from left to right
4519across both of the vectors. The shuffle mask operand specifies, for each
4520element of the result vector, which element of the two input vectors the
4521result element gets. The element selector may be undef (meaning "don't
4522care") and the second operand may be undef if performing a shuffle from
4523only one vector.
4524
4525Example:
4526""""""""
4527
4528.. code-block:: llvm
4529
4530 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4531 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4532 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4533 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4534 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4535 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4536 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4537 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4538
4539Aggregate Operations
4540--------------------
4541
4542LLVM supports several instructions for working with
4543:ref:`aggregate <t_aggregate>` values.
4544
4545.. _i_extractvalue:
4546
4547'``extractvalue``' Instruction
4548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4549
4550Syntax:
4551"""""""
4552
4553::
4554
4555 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4556
4557Overview:
4558"""""""""
4559
4560The '``extractvalue``' instruction extracts the value of a member field
4561from an :ref:`aggregate <t_aggregate>` value.
4562
4563Arguments:
4564""""""""""
4565
4566The first operand of an '``extractvalue``' instruction is a value of
4567:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4568constant indices to specify which value to extract in a similar manner
4569as indices in a '``getelementptr``' instruction.
4570
4571The major differences to ``getelementptr`` indexing are:
4572
4573- Since the value being indexed is not a pointer, the first index is
4574 omitted and assumed to be zero.
4575- At least one index must be specified.
4576- Not only struct indices but also array indices must be in bounds.
4577
4578Semantics:
4579""""""""""
4580
4581The result is the value at the position in the aggregate specified by
4582the index operands.
4583
4584Example:
4585""""""""
4586
4587.. code-block:: llvm
4588
4589 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4590
4591.. _i_insertvalue:
4592
4593'``insertvalue``' Instruction
4594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4595
4596Syntax:
4597"""""""
4598
4599::
4600
4601 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4602
4603Overview:
4604"""""""""
4605
4606The '``insertvalue``' instruction inserts a value into a member field in
4607an :ref:`aggregate <t_aggregate>` value.
4608
4609Arguments:
4610""""""""""
4611
4612The first operand of an '``insertvalue``' instruction is a value of
4613:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4614a first-class value to insert. The following operands are constant
4615indices indicating the position at which to insert the value in a
4616similar manner as indices in a '``extractvalue``' instruction. The value
4617to insert must have the same type as the value identified by the
4618indices.
4619
4620Semantics:
4621""""""""""
4622
4623The result is an aggregate of the same type as ``val``. Its value is
4624that of ``val`` except that the value at the position specified by the
4625indices is that of ``elt``.
4626
4627Example:
4628""""""""
4629
4630.. code-block:: llvm
4631
4632 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4633 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4634 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4635
4636.. _memoryops:
4637
4638Memory Access and Addressing Operations
4639---------------------------------------
4640
4641A key design point of an SSA-based representation is how it represents
4642memory. In LLVM, no memory locations are in SSA form, which makes things
4643very simple. This section describes how to read, write, and allocate
4644memory in LLVM.
4645
4646.. _i_alloca:
4647
4648'``alloca``' Instruction
4649^^^^^^^^^^^^^^^^^^^^^^^^
4650
4651Syntax:
4652"""""""
4653
4654::
4655
4656 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4657
4658Overview:
4659"""""""""
4660
4661The '``alloca``' instruction allocates memory on the stack frame of the
4662currently executing function, to be automatically released when this
4663function returns to its caller. The object is always allocated in the
4664generic address space (address space zero).
4665
4666Arguments:
4667""""""""""
4668
4669The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4670bytes of memory on the runtime stack, returning a pointer of the
4671appropriate type to the program. If "NumElements" is specified, it is
4672the number of elements allocated, otherwise "NumElements" is defaulted
4673to be one. If a constant alignment is specified, the value result of the
4674allocation is guaranteed to be aligned to at least that boundary. If not
4675specified, or if zero, the target can choose to align the allocation on
4676any convenient boundary compatible with the type.
4677
4678'``type``' may be any sized type.
4679
4680Semantics:
4681""""""""""
4682
4683Memory is allocated; a pointer is returned. The operation is undefined
4684if there is insufficient stack space for the allocation. '``alloca``'d
4685memory is automatically released when the function returns. The
4686'``alloca``' instruction is commonly used to represent automatic
4687variables that must have an address available. When the function returns
4688(either with the ``ret`` or ``resume`` instructions), the memory is
4689reclaimed. Allocating zero bytes is legal, but the result is undefined.
4690The order in which memory is allocated (ie., which way the stack grows)
4691is not specified.
4692
4693Example:
4694""""""""
4695
4696.. code-block:: llvm
4697
4698 %ptr = alloca i32 ; yields {i32*}:ptr
4699 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4700 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4701 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4702
4703.. _i_load:
4704
4705'``load``' Instruction
4706^^^^^^^^^^^^^^^^^^^^^^
4707
4708Syntax:
4709"""""""
4710
4711::
4712
4713 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4714 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4715 !<index> = !{ i32 1 }
4716
4717Overview:
4718"""""""""
4719
4720The '``load``' instruction is used to read from memory.
4721
4722Arguments:
4723""""""""""
4724
Eli Bendersky8c493382013-04-17 20:17:08 +00004725The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004726from which to load. The pointer must point to a :ref:`first
4727class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4728then the optimizer is not allowed to modify the number or order of
4729execution of this ``load`` with other :ref:`volatile
4730operations <volatile>`.
4731
4732If the ``load`` is marked as ``atomic``, it takes an extra
4733:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4734``release`` and ``acq_rel`` orderings are not valid on ``load``
4735instructions. Atomic loads produce :ref:`defined <memmodel>` results
4736when they may see multiple atomic stores. The type of the pointee must
4737be an integer type whose bit width is a power of two greater than or
4738equal to eight and less than or equal to a target-specific size limit.
4739``align`` must be explicitly specified on atomic loads, and the load has
4740undefined behavior if the alignment is not set to a value which is at
4741least the size in bytes of the pointee. ``!nontemporal`` does not have
4742any defined semantics for atomic loads.
4743
4744The optional constant ``align`` argument specifies the alignment of the
4745operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004746or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004747alignment for the target. It is the responsibility of the code emitter
4748to ensure that the alignment information is correct. Overestimating the
4749alignment results in undefined behavior. Underestimating the alignment
4750may produce less efficient code. An alignment of 1 is always safe.
4751
4752The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004753metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004754``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004755metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004756that this load is not expected to be reused in the cache. The code
4757generator may select special instructions to save cache bandwidth, such
4758as the ``MOVNT`` instruction on x86.
4759
4760The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004761metadata name ``<index>`` corresponding to a metadata node with no
4762entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004763instruction tells the optimizer and code generator that this load
4764address points to memory which does not change value during program
4765execution. The optimizer may then move this load around, for example, by
4766hoisting it out of loops using loop invariant code motion.
4767
4768Semantics:
4769""""""""""
4770
4771The location of memory pointed to is loaded. If the value being loaded
4772is of scalar type then the number of bytes read does not exceed the
4773minimum number of bytes needed to hold all bits of the type. For
4774example, loading an ``i24`` reads at most three bytes. When loading a
4775value of a type like ``i20`` with a size that is not an integral number
4776of bytes, the result is undefined if the value was not originally
4777written using a store of the same type.
4778
4779Examples:
4780"""""""""
4781
4782.. code-block:: llvm
4783
4784 %ptr = alloca i32 ; yields {i32*}:ptr
4785 store i32 3, i32* %ptr ; yields {void}
4786 %val = load i32* %ptr ; yields {i32}:val = i32 3
4787
4788.. _i_store:
4789
4790'``store``' Instruction
4791^^^^^^^^^^^^^^^^^^^^^^^
4792
4793Syntax:
4794"""""""
4795
4796::
4797
4798 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4799 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4800
4801Overview:
4802"""""""""
4803
4804The '``store``' instruction is used to write to memory.
4805
4806Arguments:
4807""""""""""
4808
Eli Bendersky8952d902013-04-17 17:17:20 +00004809There are two arguments to the ``store`` instruction: a value to store
4810and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004811operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004812the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004813then the optimizer is not allowed to modify the number or order of
4814execution of this ``store`` with other :ref:`volatile
4815operations <volatile>`.
4816
4817If the ``store`` is marked as ``atomic``, it takes an extra
4818:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4819``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4820instructions. Atomic loads produce :ref:`defined <memmodel>` results
4821when they may see multiple atomic stores. The type of the pointee must
4822be an integer type whose bit width is a power of two greater than or
4823equal to eight and less than or equal to a target-specific size limit.
4824``align`` must be explicitly specified on atomic stores, and the store
4825has undefined behavior if the alignment is not set to a value which is
4826at least the size in bytes of the pointee. ``!nontemporal`` does not
4827have any defined semantics for atomic stores.
4828
Eli Bendersky8952d902013-04-17 17:17:20 +00004829The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004830operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004831or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004832alignment for the target. It is the responsibility of the code emitter
4833to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004834alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004835alignment may produce less efficient code. An alignment of 1 is always
4836safe.
4837
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004838The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004839name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004840value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004841tells the optimizer and code generator that this load is not expected to
4842be reused in the cache. The code generator may select special
4843instructions to save cache bandwidth, such as the MOVNT instruction on
4844x86.
4845
4846Semantics:
4847""""""""""
4848
Eli Bendersky8952d902013-04-17 17:17:20 +00004849The contents of memory are updated to contain ``<value>`` at the
4850location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004851of scalar type then the number of bytes written does not exceed the
4852minimum number of bytes needed to hold all bits of the type. For
4853example, storing an ``i24`` writes at most three bytes. When writing a
4854value of a type like ``i20`` with a size that is not an integral number
4855of bytes, it is unspecified what happens to the extra bits that do not
4856belong to the type, but they will typically be overwritten.
4857
4858Example:
4859""""""""
4860
4861.. code-block:: llvm
4862
4863 %ptr = alloca i32 ; yields {i32*}:ptr
4864 store i32 3, i32* %ptr ; yields {void}
4865 %val = load i32* %ptr ; yields {i32}:val = i32 3
4866
4867.. _i_fence:
4868
4869'``fence``' Instruction
4870^^^^^^^^^^^^^^^^^^^^^^^
4871
4872Syntax:
4873"""""""
4874
4875::
4876
4877 fence [singlethread] <ordering> ; yields {void}
4878
4879Overview:
4880"""""""""
4881
4882The '``fence``' instruction is used to introduce happens-before edges
4883between operations.
4884
4885Arguments:
4886""""""""""
4887
4888'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4889defines what *synchronizes-with* edges they add. They can only be given
4890``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4891
4892Semantics:
4893""""""""""
4894
4895A fence A which has (at least) ``release`` ordering semantics
4896*synchronizes with* a fence B with (at least) ``acquire`` ordering
4897semantics if and only if there exist atomic operations X and Y, both
4898operating on some atomic object M, such that A is sequenced before X, X
4899modifies M (either directly or through some side effect of a sequence
4900headed by X), Y is sequenced before B, and Y observes M. This provides a
4901*happens-before* dependency between A and B. Rather than an explicit
4902``fence``, one (but not both) of the atomic operations X or Y might
4903provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4904still *synchronize-with* the explicit ``fence`` and establish the
4905*happens-before* edge.
4906
4907A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4908``acquire`` and ``release`` semantics specified above, participates in
4909the global program order of other ``seq_cst`` operations and/or fences.
4910
4911The optional ":ref:`singlethread <singlethread>`" argument specifies
4912that the fence only synchronizes with other fences in the same thread.
4913(This is useful for interacting with signal handlers.)
4914
4915Example:
4916""""""""
4917
4918.. code-block:: llvm
4919
4920 fence acquire ; yields {void}
4921 fence singlethread seq_cst ; yields {void}
4922
4923.. _i_cmpxchg:
4924
4925'``cmpxchg``' Instruction
4926^^^^^^^^^^^^^^^^^^^^^^^^^
4927
4928Syntax:
4929"""""""
4930
4931::
4932
4933 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4934
4935Overview:
4936"""""""""
4937
4938The '``cmpxchg``' instruction is used to atomically modify memory. It
4939loads a value in memory and compares it to a given value. If they are
4940equal, it stores a new value into the memory.
4941
4942Arguments:
4943""""""""""
4944
4945There are three arguments to the '``cmpxchg``' instruction: an address
4946to operate on, a value to compare to the value currently be at that
4947address, and a new value to place at that address if the compared values
4948are equal. The type of '<cmp>' must be an integer type whose bit width
4949is a power of two greater than or equal to eight and less than or equal
4950to a target-specific size limit. '<cmp>' and '<new>' must have the same
4951type, and the type of '<pointer>' must be a pointer to that type. If the
4952``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4953to modify the number or order of execution of this ``cmpxchg`` with
4954other :ref:`volatile operations <volatile>`.
4955
4956The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4957synchronizes with other atomic operations.
4958
4959The optional "``singlethread``" argument declares that the ``cmpxchg``
4960is only atomic with respect to code (usually signal handlers) running in
4961the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4962respect to all other code in the system.
4963
4964The pointer passed into cmpxchg must have alignment greater than or
4965equal to the size in memory of the operand.
4966
4967Semantics:
4968""""""""""
4969
4970The contents of memory at the location specified by the '``<pointer>``'
4971operand is read and compared to '``<cmp>``'; if the read value is the
4972equal, '``<new>``' is written. The original value at the location is
4973returned.
4974
4975A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4976of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4977atomic load with an ordering parameter determined by dropping any
4978``release`` part of the ``cmpxchg``'s ordering.
4979
4980Example:
4981""""""""
4982
4983.. code-block:: llvm
4984
4985 entry:
4986 %orig = atomic load i32* %ptr unordered ; yields {i32}
4987 br label %loop
4988
4989 loop:
4990 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4991 %squared = mul i32 %cmp, %cmp
4992 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4993 %success = icmp eq i32 %cmp, %old
4994 br i1 %success, label %done, label %loop
4995
4996 done:
4997 ...
4998
4999.. _i_atomicrmw:
5000
5001'``atomicrmw``' Instruction
5002^^^^^^^^^^^^^^^^^^^^^^^^^^^
5003
5004Syntax:
5005"""""""
5006
5007::
5008
5009 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5010
5011Overview:
5012"""""""""
5013
5014The '``atomicrmw``' instruction is used to atomically modify memory.
5015
5016Arguments:
5017""""""""""
5018
5019There are three arguments to the '``atomicrmw``' instruction: an
5020operation to apply, an address whose value to modify, an argument to the
5021operation. The operation must be one of the following keywords:
5022
5023- xchg
5024- add
5025- sub
5026- and
5027- nand
5028- or
5029- xor
5030- max
5031- min
5032- umax
5033- umin
5034
5035The type of '<value>' must be an integer type whose bit width is a power
5036of two greater than or equal to eight and less than or equal to a
5037target-specific size limit. The type of the '``<pointer>``' operand must
5038be a pointer to that type. If the ``atomicrmw`` is marked as
5039``volatile``, then the optimizer is not allowed to modify the number or
5040order of execution of this ``atomicrmw`` with other :ref:`volatile
5041operations <volatile>`.
5042
5043Semantics:
5044""""""""""
5045
5046The contents of memory at the location specified by the '``<pointer>``'
5047operand are atomically read, modified, and written back. The original
5048value at the location is returned. The modification is specified by the
5049operation argument:
5050
5051- xchg: ``*ptr = val``
5052- add: ``*ptr = *ptr + val``
5053- sub: ``*ptr = *ptr - val``
5054- and: ``*ptr = *ptr & val``
5055- nand: ``*ptr = ~(*ptr & val)``
5056- or: ``*ptr = *ptr | val``
5057- xor: ``*ptr = *ptr ^ val``
5058- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5059- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5060- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5061 comparison)
5062- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5063 comparison)
5064
5065Example:
5066""""""""
5067
5068.. code-block:: llvm
5069
5070 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5071
5072.. _i_getelementptr:
5073
5074'``getelementptr``' Instruction
5075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5076
5077Syntax:
5078"""""""
5079
5080::
5081
5082 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5083 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5084 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5085
5086Overview:
5087"""""""""
5088
5089The '``getelementptr``' instruction is used to get the address of a
5090subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5091address calculation only and does not access memory.
5092
5093Arguments:
5094""""""""""
5095
5096The first argument is always a pointer or a vector of pointers, and
5097forms the basis of the calculation. The remaining arguments are indices
5098that indicate which of the elements of the aggregate object are indexed.
5099The interpretation of each index is dependent on the type being indexed
5100into. The first index always indexes the pointer value given as the
5101first argument, the second index indexes a value of the type pointed to
5102(not necessarily the value directly pointed to, since the first index
5103can be non-zero), etc. The first type indexed into must be a pointer
5104value, subsequent types can be arrays, vectors, and structs. Note that
5105subsequent types being indexed into can never be pointers, since that
5106would require loading the pointer before continuing calculation.
5107
5108The type of each index argument depends on the type it is indexing into.
5109When indexing into a (optionally packed) structure, only ``i32`` integer
5110**constants** are allowed (when using a vector of indices they must all
5111be the **same** ``i32`` integer constant). When indexing into an array,
5112pointer or vector, integers of any width are allowed, and they are not
5113required to be constant. These integers are treated as signed values
5114where relevant.
5115
5116For example, let's consider a C code fragment and how it gets compiled
5117to LLVM:
5118
5119.. code-block:: c
5120
5121 struct RT {
5122 char A;
5123 int B[10][20];
5124 char C;
5125 };
5126 struct ST {
5127 int X;
5128 double Y;
5129 struct RT Z;
5130 };
5131
5132 int *foo(struct ST *s) {
5133 return &s[1].Z.B[5][13];
5134 }
5135
5136The LLVM code generated by Clang is:
5137
5138.. code-block:: llvm
5139
5140 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5141 %struct.ST = type { i32, double, %struct.RT }
5142
5143 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5144 entry:
5145 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5146 ret i32* %arrayidx
5147 }
5148
5149Semantics:
5150""""""""""
5151
5152In the example above, the first index is indexing into the
5153'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5154= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5155indexes into the third element of the structure, yielding a
5156'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5157structure. The third index indexes into the second element of the
5158structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5159dimensions of the array are subscripted into, yielding an '``i32``'
5160type. The '``getelementptr``' instruction returns a pointer to this
5161element, thus computing a value of '``i32*``' type.
5162
5163Note that it is perfectly legal to index partially through a structure,
5164returning a pointer to an inner element. Because of this, the LLVM code
5165for the given testcase is equivalent to:
5166
5167.. code-block:: llvm
5168
5169 define i32* @foo(%struct.ST* %s) {
5170 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5171 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5172 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5173 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5174 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5175 ret i32* %t5
5176 }
5177
5178If the ``inbounds`` keyword is present, the result value of the
5179``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5180pointer is not an *in bounds* address of an allocated object, or if any
5181of the addresses that would be formed by successive addition of the
5182offsets implied by the indices to the base address with infinitely
5183precise signed arithmetic are not an *in bounds* address of that
5184allocated object. The *in bounds* addresses for an allocated object are
5185all the addresses that point into the object, plus the address one byte
5186past the end. In cases where the base is a vector of pointers the
5187``inbounds`` keyword applies to each of the computations element-wise.
5188
5189If the ``inbounds`` keyword is not present, the offsets are added to the
5190base address with silently-wrapping two's complement arithmetic. If the
5191offsets have a different width from the pointer, they are sign-extended
5192or truncated to the width of the pointer. The result value of the
5193``getelementptr`` may be outside the object pointed to by the base
5194pointer. The result value may not necessarily be used to access memory
5195though, even if it happens to point into allocated storage. See the
5196:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5197information.
5198
5199The getelementptr instruction is often confusing. For some more insight
5200into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5201
5202Example:
5203""""""""
5204
5205.. code-block:: llvm
5206
5207 ; yields [12 x i8]*:aptr
5208 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5209 ; yields i8*:vptr
5210 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5211 ; yields i8*:eptr
5212 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5213 ; yields i32*:iptr
5214 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5215
5216In cases where the pointer argument is a vector of pointers, each index
5217must be a vector with the same number of elements. For example:
5218
5219.. code-block:: llvm
5220
5221 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5222
5223Conversion Operations
5224---------------------
5225
5226The instructions in this category are the conversion instructions
5227(casting) which all take a single operand and a type. They perform
5228various bit conversions on the operand.
5229
5230'``trunc .. to``' Instruction
5231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5232
5233Syntax:
5234"""""""
5235
5236::
5237
5238 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5239
5240Overview:
5241"""""""""
5242
5243The '``trunc``' instruction truncates its operand to the type ``ty2``.
5244
5245Arguments:
5246""""""""""
5247
5248The '``trunc``' instruction takes a value to trunc, and a type to trunc
5249it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5250of the same number of integers. The bit size of the ``value`` must be
5251larger than the bit size of the destination type, ``ty2``. Equal sized
5252types are not allowed.
5253
5254Semantics:
5255""""""""""
5256
5257The '``trunc``' instruction truncates the high order bits in ``value``
5258and converts the remaining bits to ``ty2``. Since the source size must
5259be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5260It will always truncate bits.
5261
5262Example:
5263""""""""
5264
5265.. code-block:: llvm
5266
5267 %X = trunc i32 257 to i8 ; yields i8:1
5268 %Y = trunc i32 123 to i1 ; yields i1:true
5269 %Z = trunc i32 122 to i1 ; yields i1:false
5270 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5271
5272'``zext .. to``' Instruction
5273^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5274
5275Syntax:
5276"""""""
5277
5278::
5279
5280 <result> = zext <ty> <value> to <ty2> ; yields ty2
5281
5282Overview:
5283"""""""""
5284
5285The '``zext``' instruction zero extends its operand to type ``ty2``.
5286
5287Arguments:
5288""""""""""
5289
5290The '``zext``' instruction takes a value to cast, and a type to cast it
5291to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5292the same number of integers. The bit size of the ``value`` must be
5293smaller than the bit size of the destination type, ``ty2``.
5294
5295Semantics:
5296""""""""""
5297
5298The ``zext`` fills the high order bits of the ``value`` with zero bits
5299until it reaches the size of the destination type, ``ty2``.
5300
5301When zero extending from i1, the result will always be either 0 or 1.
5302
5303Example:
5304""""""""
5305
5306.. code-block:: llvm
5307
5308 %X = zext i32 257 to i64 ; yields i64:257
5309 %Y = zext i1 true to i32 ; yields i32:1
5310 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5311
5312'``sext .. to``' Instruction
5313^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5314
5315Syntax:
5316"""""""
5317
5318::
5319
5320 <result> = sext <ty> <value> to <ty2> ; yields ty2
5321
5322Overview:
5323"""""""""
5324
5325The '``sext``' sign extends ``value`` to the type ``ty2``.
5326
5327Arguments:
5328""""""""""
5329
5330The '``sext``' instruction takes a value to cast, and a type to cast it
5331to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5332the same number of integers. The bit size of the ``value`` must be
5333smaller than the bit size of the destination type, ``ty2``.
5334
5335Semantics:
5336""""""""""
5337
5338The '``sext``' instruction performs a sign extension by copying the sign
5339bit (highest order bit) of the ``value`` until it reaches the bit size
5340of the type ``ty2``.
5341
5342When sign extending from i1, the extension always results in -1 or 0.
5343
5344Example:
5345""""""""
5346
5347.. code-block:: llvm
5348
5349 %X = sext i8 -1 to i16 ; yields i16 :65535
5350 %Y = sext i1 true to i32 ; yields i32:-1
5351 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5352
5353'``fptrunc .. to``' Instruction
5354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5355
5356Syntax:
5357"""""""
5358
5359::
5360
5361 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5362
5363Overview:
5364"""""""""
5365
5366The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5367
5368Arguments:
5369""""""""""
5370
5371The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5372value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5373The size of ``value`` must be larger than the size of ``ty2``. This
5374implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5375
5376Semantics:
5377""""""""""
5378
5379The '``fptrunc``' instruction truncates a ``value`` from a larger
5380:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5381point <t_floating>` type. If the value cannot fit within the
5382destination type, ``ty2``, then the results are undefined.
5383
5384Example:
5385""""""""
5386
5387.. code-block:: llvm
5388
5389 %X = fptrunc double 123.0 to float ; yields float:123.0
5390 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5391
5392'``fpext .. to``' Instruction
5393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5394
5395Syntax:
5396"""""""
5397
5398::
5399
5400 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5401
5402Overview:
5403"""""""""
5404
5405The '``fpext``' extends a floating point ``value`` to a larger floating
5406point value.
5407
5408Arguments:
5409""""""""""
5410
5411The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5412``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5413to. The source type must be smaller than the destination type.
5414
5415Semantics:
5416""""""""""
5417
5418The '``fpext``' instruction extends the ``value`` from a smaller
5419:ref:`floating point <t_floating>` type to a larger :ref:`floating
5420point <t_floating>` type. The ``fpext`` cannot be used to make a
5421*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5422*no-op cast* for a floating point cast.
5423
5424Example:
5425""""""""
5426
5427.. code-block:: llvm
5428
5429 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5430 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5431
5432'``fptoui .. to``' Instruction
5433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5434
5435Syntax:
5436"""""""
5437
5438::
5439
5440 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5441
5442Overview:
5443"""""""""
5444
5445The '``fptoui``' converts a floating point ``value`` to its unsigned
5446integer equivalent of type ``ty2``.
5447
5448Arguments:
5449""""""""""
5450
5451The '``fptoui``' instruction takes a value to cast, which must be a
5452scalar or vector :ref:`floating point <t_floating>` value, and a type to
5453cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5454``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5455type with the same number of elements as ``ty``
5456
5457Semantics:
5458""""""""""
5459
5460The '``fptoui``' instruction converts its :ref:`floating
5461point <t_floating>` operand into the nearest (rounding towards zero)
5462unsigned integer value. If the value cannot fit in ``ty2``, the results
5463are undefined.
5464
5465Example:
5466""""""""
5467
5468.. code-block:: llvm
5469
5470 %X = fptoui double 123.0 to i32 ; yields i32:123
5471 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5472 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5473
5474'``fptosi .. to``' Instruction
5475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5476
5477Syntax:
5478"""""""
5479
5480::
5481
5482 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5483
5484Overview:
5485"""""""""
5486
5487The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5488``value`` to type ``ty2``.
5489
5490Arguments:
5491""""""""""
5492
5493The '``fptosi``' instruction takes a value to cast, which must be a
5494scalar or vector :ref:`floating point <t_floating>` value, and a type to
5495cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5496``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5497type with the same number of elements as ``ty``
5498
5499Semantics:
5500""""""""""
5501
5502The '``fptosi``' instruction converts its :ref:`floating
5503point <t_floating>` operand into the nearest (rounding towards zero)
5504signed integer value. If the value cannot fit in ``ty2``, the results
5505are undefined.
5506
5507Example:
5508""""""""
5509
5510.. code-block:: llvm
5511
5512 %X = fptosi double -123.0 to i32 ; yields i32:-123
5513 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5514 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5515
5516'``uitofp .. to``' Instruction
5517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5518
5519Syntax:
5520"""""""
5521
5522::
5523
5524 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5525
5526Overview:
5527"""""""""
5528
5529The '``uitofp``' instruction regards ``value`` as an unsigned integer
5530and converts that value to the ``ty2`` type.
5531
5532Arguments:
5533""""""""""
5534
5535The '``uitofp``' instruction takes a value to cast, which must be a
5536scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5537``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5538``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5539type with the same number of elements as ``ty``
5540
5541Semantics:
5542""""""""""
5543
5544The '``uitofp``' instruction interprets its operand as an unsigned
5545integer quantity and converts it to the corresponding floating point
5546value. If the value cannot fit in the floating point value, the results
5547are undefined.
5548
5549Example:
5550""""""""
5551
5552.. code-block:: llvm
5553
5554 %X = uitofp i32 257 to float ; yields float:257.0
5555 %Y = uitofp i8 -1 to double ; yields double:255.0
5556
5557'``sitofp .. to``' Instruction
5558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5559
5560Syntax:
5561"""""""
5562
5563::
5564
5565 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5566
5567Overview:
5568"""""""""
5569
5570The '``sitofp``' instruction regards ``value`` as a signed integer and
5571converts that value to the ``ty2`` type.
5572
5573Arguments:
5574""""""""""
5575
5576The '``sitofp``' instruction takes a value to cast, which must be a
5577scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5578``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5579``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5580type with the same number of elements as ``ty``
5581
5582Semantics:
5583""""""""""
5584
5585The '``sitofp``' instruction interprets its operand as a signed integer
5586quantity and converts it to the corresponding floating point value. If
5587the value cannot fit in the floating point value, the results are
5588undefined.
5589
5590Example:
5591""""""""
5592
5593.. code-block:: llvm
5594
5595 %X = sitofp i32 257 to float ; yields float:257.0
5596 %Y = sitofp i8 -1 to double ; yields double:-1.0
5597
5598.. _i_ptrtoint:
5599
5600'``ptrtoint .. to``' Instruction
5601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5602
5603Syntax:
5604"""""""
5605
5606::
5607
5608 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5609
5610Overview:
5611"""""""""
5612
5613The '``ptrtoint``' instruction converts the pointer or a vector of
5614pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5615
5616Arguments:
5617""""""""""
5618
5619The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5620a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5621type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5622a vector of integers type.
5623
5624Semantics:
5625""""""""""
5626
5627The '``ptrtoint``' instruction converts ``value`` to integer type
5628``ty2`` by interpreting the pointer value as an integer and either
5629truncating or zero extending that value to the size of the integer type.
5630If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5631``value`` is larger than ``ty2`` then a truncation is done. If they are
5632the same size, then nothing is done (*no-op cast*) other than a type
5633change.
5634
5635Example:
5636""""""""
5637
5638.. code-block:: llvm
5639
5640 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5641 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5642 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5643
5644.. _i_inttoptr:
5645
5646'``inttoptr .. to``' Instruction
5647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5648
5649Syntax:
5650"""""""
5651
5652::
5653
5654 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5655
5656Overview:
5657"""""""""
5658
5659The '``inttoptr``' instruction converts an integer ``value`` to a
5660pointer type, ``ty2``.
5661
5662Arguments:
5663""""""""""
5664
5665The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5666cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5667type.
5668
5669Semantics:
5670""""""""""
5671
5672The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5673applying either a zero extension or a truncation depending on the size
5674of the integer ``value``. If ``value`` is larger than the size of a
5675pointer then a truncation is done. If ``value`` is smaller than the size
5676of a pointer then a zero extension is done. If they are the same size,
5677nothing is done (*no-op cast*).
5678
5679Example:
5680""""""""
5681
5682.. code-block:: llvm
5683
5684 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5685 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5686 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5687 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5688
5689.. _i_bitcast:
5690
5691'``bitcast .. to``' Instruction
5692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5693
5694Syntax:
5695"""""""
5696
5697::
5698
5699 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5700
5701Overview:
5702"""""""""
5703
5704The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5705changing any bits.
5706
5707Arguments:
5708""""""""""
5709
5710The '``bitcast``' instruction takes a value to cast, which must be a
5711non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005712also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5713bit sizes of ``value`` and the destination type, ``ty2``, must be
5714identical. If the source type is a pointer, the destination type must
5715also be a pointer of the same size. This instruction supports bitwise
5716conversion of vectors to integers and to vectors of other types (as
5717long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00005718
5719Semantics:
5720""""""""""
5721
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005722The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5723is always a *no-op cast* because no bits change with this
5724conversion. The conversion is done as if the ``value`` had been stored
5725to memory and read back as type ``ty2``. Pointer (or vector of
5726pointers) types may only be converted to other pointer (or vector of
5727pointers) types with this instruction if the pointer sizes are
5728equal. To convert pointers to other types, use the :ref:`inttoptr
5729<i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00005730
5731Example:
5732""""""""
5733
5734.. code-block:: llvm
5735
5736 %X = bitcast i8 255 to i8 ; yields i8 :-1
5737 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5738 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5739 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5740
5741.. _otherops:
5742
5743Other Operations
5744----------------
5745
5746The instructions in this category are the "miscellaneous" instructions,
5747which defy better classification.
5748
5749.. _i_icmp:
5750
5751'``icmp``' Instruction
5752^^^^^^^^^^^^^^^^^^^^^^
5753
5754Syntax:
5755"""""""
5756
5757::
5758
5759 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5760
5761Overview:
5762"""""""""
5763
5764The '``icmp``' instruction returns a boolean value or a vector of
5765boolean values based on comparison of its two integer, integer vector,
5766pointer, or pointer vector operands.
5767
5768Arguments:
5769""""""""""
5770
5771The '``icmp``' instruction takes three operands. The first operand is
5772the condition code indicating the kind of comparison to perform. It is
5773not a value, just a keyword. The possible condition code are:
5774
5775#. ``eq``: equal
5776#. ``ne``: not equal
5777#. ``ugt``: unsigned greater than
5778#. ``uge``: unsigned greater or equal
5779#. ``ult``: unsigned less than
5780#. ``ule``: unsigned less or equal
5781#. ``sgt``: signed greater than
5782#. ``sge``: signed greater or equal
5783#. ``slt``: signed less than
5784#. ``sle``: signed less or equal
5785
5786The remaining two arguments must be :ref:`integer <t_integer>` or
5787:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5788must also be identical types.
5789
5790Semantics:
5791""""""""""
5792
5793The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5794code given as ``cond``. The comparison performed always yields either an
5795:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5796
5797#. ``eq``: yields ``true`` if the operands are equal, ``false``
5798 otherwise. No sign interpretation is necessary or performed.
5799#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5800 otherwise. No sign interpretation is necessary or performed.
5801#. ``ugt``: interprets the operands as unsigned values and yields
5802 ``true`` if ``op1`` is greater than ``op2``.
5803#. ``uge``: interprets the operands as unsigned values and yields
5804 ``true`` if ``op1`` is greater than or equal to ``op2``.
5805#. ``ult``: interprets the operands as unsigned values and yields
5806 ``true`` if ``op1`` is less than ``op2``.
5807#. ``ule``: interprets the operands as unsigned values and yields
5808 ``true`` if ``op1`` is less than or equal to ``op2``.
5809#. ``sgt``: interprets the operands as signed values and yields ``true``
5810 if ``op1`` is greater than ``op2``.
5811#. ``sge``: interprets the operands as signed values and yields ``true``
5812 if ``op1`` is greater than or equal to ``op2``.
5813#. ``slt``: interprets the operands as signed values and yields ``true``
5814 if ``op1`` is less than ``op2``.
5815#. ``sle``: interprets the operands as signed values and yields ``true``
5816 if ``op1`` is less than or equal to ``op2``.
5817
5818If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5819are compared as if they were integers.
5820
5821If the operands are integer vectors, then they are compared element by
5822element. The result is an ``i1`` vector with the same number of elements
5823as the values being compared. Otherwise, the result is an ``i1``.
5824
5825Example:
5826""""""""
5827
5828.. code-block:: llvm
5829
5830 <result> = icmp eq i32 4, 5 ; yields: result=false
5831 <result> = icmp ne float* %X, %X ; yields: result=false
5832 <result> = icmp ult i16 4, 5 ; yields: result=true
5833 <result> = icmp sgt i16 4, 5 ; yields: result=false
5834 <result> = icmp ule i16 -4, 5 ; yields: result=false
5835 <result> = icmp sge i16 4, 5 ; yields: result=false
5836
5837Note that the code generator does not yet support vector types with the
5838``icmp`` instruction.
5839
5840.. _i_fcmp:
5841
5842'``fcmp``' Instruction
5843^^^^^^^^^^^^^^^^^^^^^^
5844
5845Syntax:
5846"""""""
5847
5848::
5849
5850 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5851
5852Overview:
5853"""""""""
5854
5855The '``fcmp``' instruction returns a boolean value or vector of boolean
5856values based on comparison of its operands.
5857
5858If the operands are floating point scalars, then the result type is a
5859boolean (:ref:`i1 <t_integer>`).
5860
5861If the operands are floating point vectors, then the result type is a
5862vector of boolean with the same number of elements as the operands being
5863compared.
5864
5865Arguments:
5866""""""""""
5867
5868The '``fcmp``' instruction takes three operands. The first operand is
5869the condition code indicating the kind of comparison to perform. It is
5870not a value, just a keyword. The possible condition code are:
5871
5872#. ``false``: no comparison, always returns false
5873#. ``oeq``: ordered and equal
5874#. ``ogt``: ordered and greater than
5875#. ``oge``: ordered and greater than or equal
5876#. ``olt``: ordered and less than
5877#. ``ole``: ordered and less than or equal
5878#. ``one``: ordered and not equal
5879#. ``ord``: ordered (no nans)
5880#. ``ueq``: unordered or equal
5881#. ``ugt``: unordered or greater than
5882#. ``uge``: unordered or greater than or equal
5883#. ``ult``: unordered or less than
5884#. ``ule``: unordered or less than or equal
5885#. ``une``: unordered or not equal
5886#. ``uno``: unordered (either nans)
5887#. ``true``: no comparison, always returns true
5888
5889*Ordered* means that neither operand is a QNAN while *unordered* means
5890that either operand may be a QNAN.
5891
5892Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5893point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5894type. They must have identical types.
5895
5896Semantics:
5897""""""""""
5898
5899The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5900condition code given as ``cond``. If the operands are vectors, then the
5901vectors are compared element by element. Each comparison performed
5902always yields an :ref:`i1 <t_integer>` result, as follows:
5903
5904#. ``false``: always yields ``false``, regardless of operands.
5905#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5906 is equal to ``op2``.
5907#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5908 is greater than ``op2``.
5909#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5910 is greater than or equal to ``op2``.
5911#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5912 is less than ``op2``.
5913#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5914 is less than or equal to ``op2``.
5915#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5916 is not equal to ``op2``.
5917#. ``ord``: yields ``true`` if both operands are not a QNAN.
5918#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5919 equal to ``op2``.
5920#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5921 greater than ``op2``.
5922#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5923 greater than or equal to ``op2``.
5924#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5925 less than ``op2``.
5926#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5927 less than or equal to ``op2``.
5928#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5929 not equal to ``op2``.
5930#. ``uno``: yields ``true`` if either operand is a QNAN.
5931#. ``true``: always yields ``true``, regardless of operands.
5932
5933Example:
5934""""""""
5935
5936.. code-block:: llvm
5937
5938 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5939 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5940 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5941 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5942
5943Note that the code generator does not yet support vector types with the
5944``fcmp`` instruction.
5945
5946.. _i_phi:
5947
5948'``phi``' Instruction
5949^^^^^^^^^^^^^^^^^^^^^
5950
5951Syntax:
5952"""""""
5953
5954::
5955
5956 <result> = phi <ty> [ <val0>, <label0>], ...
5957
5958Overview:
5959"""""""""
5960
5961The '``phi``' instruction is used to implement the φ node in the SSA
5962graph representing the function.
5963
5964Arguments:
5965""""""""""
5966
5967The type of the incoming values is specified with the first type field.
5968After this, the '``phi``' instruction takes a list of pairs as
5969arguments, with one pair for each predecessor basic block of the current
5970block. Only values of :ref:`first class <t_firstclass>` type may be used as
5971the value arguments to the PHI node. Only labels may be used as the
5972label arguments.
5973
5974There must be no non-phi instructions between the start of a basic block
5975and the PHI instructions: i.e. PHI instructions must be first in a basic
5976block.
5977
5978For the purposes of the SSA form, the use of each incoming value is
5979deemed to occur on the edge from the corresponding predecessor block to
5980the current block (but after any definition of an '``invoke``'
5981instruction's return value on the same edge).
5982
5983Semantics:
5984""""""""""
5985
5986At runtime, the '``phi``' instruction logically takes on the value
5987specified by the pair corresponding to the predecessor basic block that
5988executed just prior to the current block.
5989
5990Example:
5991""""""""
5992
5993.. code-block:: llvm
5994
5995 Loop: ; Infinite loop that counts from 0 on up...
5996 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5997 %nextindvar = add i32 %indvar, 1
5998 br label %Loop
5999
6000.. _i_select:
6001
6002'``select``' Instruction
6003^^^^^^^^^^^^^^^^^^^^^^^^
6004
6005Syntax:
6006"""""""
6007
6008::
6009
6010 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6011
6012 selty is either i1 or {<N x i1>}
6013
6014Overview:
6015"""""""""
6016
6017The '``select``' instruction is used to choose one value based on a
6018condition, without branching.
6019
6020Arguments:
6021""""""""""
6022
6023The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6024values indicating the condition, and two values of the same :ref:`first
6025class <t_firstclass>` type. If the val1/val2 are vectors and the
6026condition is a scalar, then entire vectors are selected, not individual
6027elements.
6028
6029Semantics:
6030""""""""""
6031
6032If the condition is an i1 and it evaluates to 1, the instruction returns
6033the first value argument; otherwise, it returns the second value
6034argument.
6035
6036If the condition is a vector of i1, then the value arguments must be
6037vectors of the same size, and the selection is done element by element.
6038
6039Example:
6040""""""""
6041
6042.. code-block:: llvm
6043
6044 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6045
6046.. _i_call:
6047
6048'``call``' Instruction
6049^^^^^^^^^^^^^^^^^^^^^^
6050
6051Syntax:
6052"""""""
6053
6054::
6055
6056 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6057
6058Overview:
6059"""""""""
6060
6061The '``call``' instruction represents a simple function call.
6062
6063Arguments:
6064""""""""""
6065
6066This instruction requires several arguments:
6067
6068#. The optional "tail" marker indicates that the callee function does
6069 not access any allocas or varargs in the caller. Note that calls may
6070 be marked "tail" even if they do not occur before a
6071 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6072 function call is eligible for tail call optimization, but `might not
6073 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6074 The code generator may optimize calls marked "tail" with either 1)
6075 automatic `sibling call
6076 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6077 callee have matching signatures, or 2) forced tail call optimization
6078 when the following extra requirements are met:
6079
6080 - Caller and callee both have the calling convention ``fastcc``.
6081 - The call is in tail position (ret immediately follows call and ret
6082 uses value of call or is void).
6083 - Option ``-tailcallopt`` is enabled, or
6084 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6085 - `Platform specific constraints are
6086 met. <CodeGenerator.html#tailcallopt>`_
6087
6088#. The optional "cconv" marker indicates which :ref:`calling
6089 convention <callingconv>` the call should use. If none is
6090 specified, the call defaults to using C calling conventions. The
6091 calling convention of the call must match the calling convention of
6092 the target function, or else the behavior is undefined.
6093#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6094 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6095 are valid here.
6096#. '``ty``': the type of the call instruction itself which is also the
6097 type of the return value. Functions that return no value are marked
6098 ``void``.
6099#. '``fnty``': shall be the signature of the pointer to function value
6100 being invoked. The argument types must match the types implied by
6101 this signature. This type can be omitted if the function is not
6102 varargs and if the function type does not return a pointer to a
6103 function.
6104#. '``fnptrval``': An LLVM value containing a pointer to a function to
6105 be invoked. In most cases, this is a direct function invocation, but
6106 indirect ``call``'s are just as possible, calling an arbitrary pointer
6107 to function value.
6108#. '``function args``': argument list whose types match the function
6109 signature argument types and parameter attributes. All arguments must
6110 be of :ref:`first class <t_firstclass>` type. If the function signature
6111 indicates the function accepts a variable number of arguments, the
6112 extra arguments can be specified.
6113#. The optional :ref:`function attributes <fnattrs>` list. Only
6114 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6115 attributes are valid here.
6116
6117Semantics:
6118""""""""""
6119
6120The '``call``' instruction is used to cause control flow to transfer to
6121a specified function, with its incoming arguments bound to the specified
6122values. Upon a '``ret``' instruction in the called function, control
6123flow continues with the instruction after the function call, and the
6124return value of the function is bound to the result argument.
6125
6126Example:
6127""""""""
6128
6129.. code-block:: llvm
6130
6131 %retval = call i32 @test(i32 %argc)
6132 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6133 %X = tail call i32 @foo() ; yields i32
6134 %Y = tail call fastcc i32 @foo() ; yields i32
6135 call void %foo(i8 97 signext)
6136
6137 %struct.A = type { i32, i8 }
6138 %r = call %struct.A @foo() ; yields { 32, i8 }
6139 %gr = extractvalue %struct.A %r, 0 ; yields i32
6140 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6141 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6142 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6143
6144llvm treats calls to some functions with names and arguments that match
6145the standard C99 library as being the C99 library functions, and may
6146perform optimizations or generate code for them under that assumption.
6147This is something we'd like to change in the future to provide better
6148support for freestanding environments and non-C-based languages.
6149
6150.. _i_va_arg:
6151
6152'``va_arg``' Instruction
6153^^^^^^^^^^^^^^^^^^^^^^^^
6154
6155Syntax:
6156"""""""
6157
6158::
6159
6160 <resultval> = va_arg <va_list*> <arglist>, <argty>
6161
6162Overview:
6163"""""""""
6164
6165The '``va_arg``' instruction is used to access arguments passed through
6166the "variable argument" area of a function call. It is used to implement
6167the ``va_arg`` macro in C.
6168
6169Arguments:
6170""""""""""
6171
6172This instruction takes a ``va_list*`` value and the type of the
6173argument. It returns a value of the specified argument type and
6174increments the ``va_list`` to point to the next argument. The actual
6175type of ``va_list`` is target specific.
6176
6177Semantics:
6178""""""""""
6179
6180The '``va_arg``' instruction loads an argument of the specified type
6181from the specified ``va_list`` and causes the ``va_list`` to point to
6182the next argument. For more information, see the variable argument
6183handling :ref:`Intrinsic Functions <int_varargs>`.
6184
6185It is legal for this instruction to be called in a function which does
6186not take a variable number of arguments, for example, the ``vfprintf``
6187function.
6188
6189``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6190function <intrinsics>` because it takes a type as an argument.
6191
6192Example:
6193""""""""
6194
6195See the :ref:`variable argument processing <int_varargs>` section.
6196
6197Note that the code generator does not yet fully support va\_arg on many
6198targets. Also, it does not currently support va\_arg with aggregate
6199types on any target.
6200
6201.. _i_landingpad:
6202
6203'``landingpad``' Instruction
6204^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6205
6206Syntax:
6207"""""""
6208
6209::
6210
6211 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6212 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6213
6214 <clause> := catch <type> <value>
6215 <clause> := filter <array constant type> <array constant>
6216
6217Overview:
6218"""""""""
6219
6220The '``landingpad``' instruction is used by `LLVM's exception handling
6221system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006222is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006223code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6224defines values supplied by the personality function (``pers_fn``) upon
6225re-entry to the function. The ``resultval`` has the type ``resultty``.
6226
6227Arguments:
6228""""""""""
6229
6230This instruction takes a ``pers_fn`` value. This is the personality
6231function associated with the unwinding mechanism. The optional
6232``cleanup`` flag indicates that the landing pad block is a cleanup.
6233
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006234A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006235contains the global variable representing the "type" that may be caught
6236or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6237clause takes an array constant as its argument. Use
6238"``[0 x i8**] undef``" for a filter which cannot throw. The
6239'``landingpad``' instruction must contain *at least* one ``clause`` or
6240the ``cleanup`` flag.
6241
6242Semantics:
6243""""""""""
6244
6245The '``landingpad``' instruction defines the values which are set by the
6246personality function (``pers_fn``) upon re-entry to the function, and
6247therefore the "result type" of the ``landingpad`` instruction. As with
6248calling conventions, how the personality function results are
6249represented in LLVM IR is target specific.
6250
6251The clauses are applied in order from top to bottom. If two
6252``landingpad`` instructions are merged together through inlining, the
6253clauses from the calling function are appended to the list of clauses.
6254When the call stack is being unwound due to an exception being thrown,
6255the exception is compared against each ``clause`` in turn. If it doesn't
6256match any of the clauses, and the ``cleanup`` flag is not set, then
6257unwinding continues further up the call stack.
6258
6259The ``landingpad`` instruction has several restrictions:
6260
6261- A landing pad block is a basic block which is the unwind destination
6262 of an '``invoke``' instruction.
6263- A landing pad block must have a '``landingpad``' instruction as its
6264 first non-PHI instruction.
6265- There can be only one '``landingpad``' instruction within the landing
6266 pad block.
6267- A basic block that is not a landing pad block may not include a
6268 '``landingpad``' instruction.
6269- All '``landingpad``' instructions in a function must have the same
6270 personality function.
6271
6272Example:
6273""""""""
6274
6275.. code-block:: llvm
6276
6277 ;; A landing pad which can catch an integer.
6278 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6279 catch i8** @_ZTIi
6280 ;; A landing pad that is a cleanup.
6281 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6282 cleanup
6283 ;; A landing pad which can catch an integer and can only throw a double.
6284 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6285 catch i8** @_ZTIi
6286 filter [1 x i8**] [@_ZTId]
6287
6288.. _intrinsics:
6289
6290Intrinsic Functions
6291===================
6292
6293LLVM supports the notion of an "intrinsic function". These functions
6294have well known names and semantics and are required to follow certain
6295restrictions. Overall, these intrinsics represent an extension mechanism
6296for the LLVM language that does not require changing all of the
6297transformations in LLVM when adding to the language (or the bitcode
6298reader/writer, the parser, etc...).
6299
6300Intrinsic function names must all start with an "``llvm.``" prefix. This
6301prefix is reserved in LLVM for intrinsic names; thus, function names may
6302not begin with this prefix. Intrinsic functions must always be external
6303functions: you cannot define the body of intrinsic functions. Intrinsic
6304functions may only be used in call or invoke instructions: it is illegal
6305to take the address of an intrinsic function. Additionally, because
6306intrinsic functions are part of the LLVM language, it is required if any
6307are added that they be documented here.
6308
6309Some intrinsic functions can be overloaded, i.e., the intrinsic
6310represents a family of functions that perform the same operation but on
6311different data types. Because LLVM can represent over 8 million
6312different integer types, overloading is used commonly to allow an
6313intrinsic function to operate on any integer type. One or more of the
6314argument types or the result type can be overloaded to accept any
6315integer type. Argument types may also be defined as exactly matching a
6316previous argument's type or the result type. This allows an intrinsic
6317function which accepts multiple arguments, but needs all of them to be
6318of the same type, to only be overloaded with respect to a single
6319argument or the result.
6320
6321Overloaded intrinsics will have the names of its overloaded argument
6322types encoded into its function name, each preceded by a period. Only
6323those types which are overloaded result in a name suffix. Arguments
6324whose type is matched against another type do not. For example, the
6325``llvm.ctpop`` function can take an integer of any width and returns an
6326integer of exactly the same integer width. This leads to a family of
6327functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6328``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6329overloaded, and only one type suffix is required. Because the argument's
6330type is matched against the return type, it does not require its own
6331name suffix.
6332
6333To learn how to add an intrinsic function, please see the `Extending
6334LLVM Guide <ExtendingLLVM.html>`_.
6335
6336.. _int_varargs:
6337
6338Variable Argument Handling Intrinsics
6339-------------------------------------
6340
6341Variable argument support is defined in LLVM with the
6342:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6343functions. These functions are related to the similarly named macros
6344defined in the ``<stdarg.h>`` header file.
6345
6346All of these functions operate on arguments that use a target-specific
6347value type "``va_list``". The LLVM assembly language reference manual
6348does not define what this type is, so all transformations should be
6349prepared to handle these functions regardless of the type used.
6350
6351This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6352variable argument handling intrinsic functions are used.
6353
6354.. code-block:: llvm
6355
6356 define i32 @test(i32 %X, ...) {
6357 ; Initialize variable argument processing
6358 %ap = alloca i8*
6359 %ap2 = bitcast i8** %ap to i8*
6360 call void @llvm.va_start(i8* %ap2)
6361
6362 ; Read a single integer argument
6363 %tmp = va_arg i8** %ap, i32
6364
6365 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6366 %aq = alloca i8*
6367 %aq2 = bitcast i8** %aq to i8*
6368 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6369 call void @llvm.va_end(i8* %aq2)
6370
6371 ; Stop processing of arguments.
6372 call void @llvm.va_end(i8* %ap2)
6373 ret i32 %tmp
6374 }
6375
6376 declare void @llvm.va_start(i8*)
6377 declare void @llvm.va_copy(i8*, i8*)
6378 declare void @llvm.va_end(i8*)
6379
6380.. _int_va_start:
6381
6382'``llvm.va_start``' Intrinsic
6383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6384
6385Syntax:
6386"""""""
6387
6388::
6389
Nick Lewyckyf7e61562013-09-11 22:04:52 +00006390 declare void @llvm.va_start(i8* <arglist>)
Sean Silvaf722b002012-12-07 10:36:55 +00006391
6392Overview:
6393"""""""""
6394
6395The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6396subsequent use by ``va_arg``.
6397
6398Arguments:
6399""""""""""
6400
6401The argument is a pointer to a ``va_list`` element to initialize.
6402
6403Semantics:
6404""""""""""
6405
6406The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6407available in C. In a target-dependent way, it initializes the
6408``va_list`` element to which the argument points, so that the next call
6409to ``va_arg`` will produce the first variable argument passed to the
6410function. Unlike the C ``va_start`` macro, this intrinsic does not need
6411to know the last argument of the function as the compiler can figure
6412that out.
6413
6414'``llvm.va_end``' Intrinsic
6415^^^^^^^^^^^^^^^^^^^^^^^^^^^
6416
6417Syntax:
6418"""""""
6419
6420::
6421
6422 declare void @llvm.va_end(i8* <arglist>)
6423
6424Overview:
6425"""""""""
6426
6427The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6428initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6429
6430Arguments:
6431""""""""""
6432
6433The argument is a pointer to a ``va_list`` to destroy.
6434
6435Semantics:
6436""""""""""
6437
6438The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6439available in C. In a target-dependent way, it destroys the ``va_list``
6440element to which the argument points. Calls to
6441:ref:`llvm.va_start <int_va_start>` and
6442:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6443``llvm.va_end``.
6444
6445.. _int_va_copy:
6446
6447'``llvm.va_copy``' Intrinsic
6448^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6449
6450Syntax:
6451"""""""
6452
6453::
6454
6455 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6456
6457Overview:
6458"""""""""
6459
6460The '``llvm.va_copy``' intrinsic copies the current argument position
6461from the source argument list to the destination argument list.
6462
6463Arguments:
6464""""""""""
6465
6466The first argument is a pointer to a ``va_list`` element to initialize.
6467The second argument is a pointer to a ``va_list`` element to copy from.
6468
6469Semantics:
6470""""""""""
6471
6472The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6473available in C. In a target-dependent way, it copies the source
6474``va_list`` element into the destination ``va_list`` element. This
6475intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6476arbitrarily complex and require, for example, memory allocation.
6477
6478Accurate Garbage Collection Intrinsics
6479--------------------------------------
6480
6481LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6482(GC) requires the implementation and generation of these intrinsics.
6483These intrinsics allow identification of :ref:`GC roots on the
6484stack <int_gcroot>`, as well as garbage collector implementations that
6485require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6486Front-ends for type-safe garbage collected languages should generate
6487these intrinsics to make use of the LLVM garbage collectors. For more
6488details, see `Accurate Garbage Collection with
6489LLVM <GarbageCollection.html>`_.
6490
6491The garbage collection intrinsics only operate on objects in the generic
6492address space (address space zero).
6493
6494.. _int_gcroot:
6495
6496'``llvm.gcroot``' Intrinsic
6497^^^^^^^^^^^^^^^^^^^^^^^^^^^
6498
6499Syntax:
6500"""""""
6501
6502::
6503
6504 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6505
6506Overview:
6507"""""""""
6508
6509The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6510the code generator, and allows some metadata to be associated with it.
6511
6512Arguments:
6513""""""""""
6514
6515The first argument specifies the address of a stack object that contains
6516the root pointer. The second pointer (which must be either a constant or
6517a global value address) contains the meta-data to be associated with the
6518root.
6519
6520Semantics:
6521""""""""""
6522
6523At runtime, a call to this intrinsic stores a null pointer into the
6524"ptrloc" location. At compile-time, the code generator generates
6525information to allow the runtime to find the pointer at GC safe points.
6526The '``llvm.gcroot``' intrinsic may only be used in a function which
6527:ref:`specifies a GC algorithm <gc>`.
6528
6529.. _int_gcread:
6530
6531'``llvm.gcread``' Intrinsic
6532^^^^^^^^^^^^^^^^^^^^^^^^^^^
6533
6534Syntax:
6535"""""""
6536
6537::
6538
6539 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6540
6541Overview:
6542"""""""""
6543
6544The '``llvm.gcread``' intrinsic identifies reads of references from heap
6545locations, allowing garbage collector implementations that require read
6546barriers.
6547
6548Arguments:
6549""""""""""
6550
6551The second argument is the address to read from, which should be an
6552address allocated from the garbage collector. The first object is a
6553pointer to the start of the referenced object, if needed by the language
6554runtime (otherwise null).
6555
6556Semantics:
6557""""""""""
6558
6559The '``llvm.gcread``' intrinsic has the same semantics as a load
6560instruction, but may be replaced with substantially more complex code by
6561the garbage collector runtime, as needed. The '``llvm.gcread``'
6562intrinsic may only be used in a function which :ref:`specifies a GC
6563algorithm <gc>`.
6564
6565.. _int_gcwrite:
6566
6567'``llvm.gcwrite``' Intrinsic
6568^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6569
6570Syntax:
6571"""""""
6572
6573::
6574
6575 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6576
6577Overview:
6578"""""""""
6579
6580The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6581locations, allowing garbage collector implementations that require write
6582barriers (such as generational or reference counting collectors).
6583
6584Arguments:
6585""""""""""
6586
6587The first argument is the reference to store, the second is the start of
6588the object to store it to, and the third is the address of the field of
6589Obj to store to. If the runtime does not require a pointer to the
6590object, Obj may be null.
6591
6592Semantics:
6593""""""""""
6594
6595The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6596instruction, but may be replaced with substantially more complex code by
6597the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6598intrinsic may only be used in a function which :ref:`specifies a GC
6599algorithm <gc>`.
6600
6601Code Generator Intrinsics
6602-------------------------
6603
6604These intrinsics are provided by LLVM to expose special features that
6605may only be implemented with code generator support.
6606
6607'``llvm.returnaddress``' Intrinsic
6608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6609
6610Syntax:
6611"""""""
6612
6613::
6614
6615 declare i8 *@llvm.returnaddress(i32 <level>)
6616
6617Overview:
6618"""""""""
6619
6620The '``llvm.returnaddress``' intrinsic attempts to compute a
6621target-specific value indicating the return address of the current
6622function or one of its callers.
6623
6624Arguments:
6625""""""""""
6626
6627The argument to this intrinsic indicates which function to return the
6628address for. Zero indicates the calling function, one indicates its
6629caller, etc. The argument is **required** to be a constant integer
6630value.
6631
6632Semantics:
6633""""""""""
6634
6635The '``llvm.returnaddress``' intrinsic either returns a pointer
6636indicating the return address of the specified call frame, or zero if it
6637cannot be identified. The value returned by this intrinsic is likely to
6638be incorrect or 0 for arguments other than zero, so it should only be
6639used for debugging purposes.
6640
6641Note that calling this intrinsic does not prevent function inlining or
6642other aggressive transformations, so the value returned may not be that
6643of the obvious source-language caller.
6644
6645'``llvm.frameaddress``' Intrinsic
6646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6647
6648Syntax:
6649"""""""
6650
6651::
6652
6653 declare i8* @llvm.frameaddress(i32 <level>)
6654
6655Overview:
6656"""""""""
6657
6658The '``llvm.frameaddress``' intrinsic attempts to return the
6659target-specific frame pointer value for the specified stack frame.
6660
6661Arguments:
6662""""""""""
6663
6664The argument to this intrinsic indicates which function to return the
6665frame pointer for. Zero indicates the calling function, one indicates
6666its caller, etc. The argument is **required** to be a constant integer
6667value.
6668
6669Semantics:
6670""""""""""
6671
6672The '``llvm.frameaddress``' intrinsic either returns a pointer
6673indicating the frame address of the specified call frame, or zero if it
6674cannot be identified. The value returned by this intrinsic is likely to
6675be incorrect or 0 for arguments other than zero, so it should only be
6676used for debugging purposes.
6677
6678Note that calling this intrinsic does not prevent function inlining or
6679other aggressive transformations, so the value returned may not be that
6680of the obvious source-language caller.
6681
6682.. _int_stacksave:
6683
6684'``llvm.stacksave``' Intrinsic
6685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6686
6687Syntax:
6688"""""""
6689
6690::
6691
6692 declare i8* @llvm.stacksave()
6693
6694Overview:
6695"""""""""
6696
6697The '``llvm.stacksave``' intrinsic is used to remember the current state
6698of the function stack, for use with
6699:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6700implementing language features like scoped automatic variable sized
6701arrays in C99.
6702
6703Semantics:
6704""""""""""
6705
6706This intrinsic returns a opaque pointer value that can be passed to
6707:ref:`llvm.stackrestore <int_stackrestore>`. When an
6708``llvm.stackrestore`` intrinsic is executed with a value saved from
6709``llvm.stacksave``, it effectively restores the state of the stack to
6710the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6711practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6712were allocated after the ``llvm.stacksave`` was executed.
6713
6714.. _int_stackrestore:
6715
6716'``llvm.stackrestore``' Intrinsic
6717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6718
6719Syntax:
6720"""""""
6721
6722::
6723
6724 declare void @llvm.stackrestore(i8* %ptr)
6725
6726Overview:
6727"""""""""
6728
6729The '``llvm.stackrestore``' intrinsic is used to restore the state of
6730the function stack to the state it was in when the corresponding
6731:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6732useful for implementing language features like scoped automatic variable
6733sized arrays in C99.
6734
6735Semantics:
6736""""""""""
6737
6738See the description for :ref:`llvm.stacksave <int_stacksave>`.
6739
6740'``llvm.prefetch``' Intrinsic
6741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6742
6743Syntax:
6744"""""""
6745
6746::
6747
6748 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6749
6750Overview:
6751"""""""""
6752
6753The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6754insert a prefetch instruction if supported; otherwise, it is a noop.
6755Prefetches have no effect on the behavior of the program but can change
6756its performance characteristics.
6757
6758Arguments:
6759""""""""""
6760
6761``address`` is the address to be prefetched, ``rw`` is the specifier
6762determining if the fetch should be for a read (0) or write (1), and
6763``locality`` is a temporal locality specifier ranging from (0) - no
6764locality, to (3) - extremely local keep in cache. The ``cache type``
6765specifies whether the prefetch is performed on the data (1) or
6766instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6767arguments must be constant integers.
6768
6769Semantics:
6770""""""""""
6771
6772This intrinsic does not modify the behavior of the program. In
6773particular, prefetches cannot trap and do not produce a value. On
6774targets that support this intrinsic, the prefetch can provide hints to
6775the processor cache for better performance.
6776
6777'``llvm.pcmarker``' Intrinsic
6778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6779
6780Syntax:
6781"""""""
6782
6783::
6784
6785 declare void @llvm.pcmarker(i32 <id>)
6786
6787Overview:
6788"""""""""
6789
6790The '``llvm.pcmarker``' intrinsic is a method to export a Program
6791Counter (PC) in a region of code to simulators and other tools. The
6792method is target specific, but it is expected that the marker will use
6793exported symbols to transmit the PC of the marker. The marker makes no
6794guarantees that it will remain with any specific instruction after
6795optimizations. It is possible that the presence of a marker will inhibit
6796optimizations. The intended use is to be inserted after optimizations to
6797allow correlations of simulation runs.
6798
6799Arguments:
6800""""""""""
6801
6802``id`` is a numerical id identifying the marker.
6803
6804Semantics:
6805""""""""""
6806
6807This intrinsic does not modify the behavior of the program. Backends
6808that do not support this intrinsic may ignore it.
6809
6810'``llvm.readcyclecounter``' Intrinsic
6811^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6812
6813Syntax:
6814"""""""
6815
6816::
6817
6818 declare i64 @llvm.readcyclecounter()
6819
6820Overview:
6821"""""""""
6822
6823The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6824counter register (or similar low latency, high accuracy clocks) on those
6825targets that support it. On X86, it should map to RDTSC. On Alpha, it
6826should map to RPCC. As the backing counters overflow quickly (on the
6827order of 9 seconds on alpha), this should only be used for small
6828timings.
6829
6830Semantics:
6831""""""""""
6832
6833When directly supported, reading the cycle counter should not modify any
6834memory. Implementations are allowed to either return a application
6835specific value or a system wide value. On backends without support, this
6836is lowered to a constant 0.
6837
Tim Northover5a02fc42013-05-23 19:11:20 +00006838Note that runtime support may be conditional on the privilege-level code is
6839running at and the host platform.
6840
Sean Silvaf722b002012-12-07 10:36:55 +00006841Standard C Library Intrinsics
6842-----------------------------
6843
6844LLVM provides intrinsics for a few important standard C library
6845functions. These intrinsics allow source-language front-ends to pass
6846information about the alignment of the pointer arguments to the code
6847generator, providing opportunity for more efficient code generation.
6848
6849.. _int_memcpy:
6850
6851'``llvm.memcpy``' Intrinsic
6852^^^^^^^^^^^^^^^^^^^^^^^^^^^
6853
6854Syntax:
6855"""""""
6856
6857This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6858integer bit width and for different address spaces. Not all targets
6859support all bit widths however.
6860
6861::
6862
6863 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6864 i32 <len>, i32 <align>, i1 <isvolatile>)
6865 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6866 i64 <len>, i32 <align>, i1 <isvolatile>)
6867
6868Overview:
6869"""""""""
6870
6871The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6872source location to the destination location.
6873
6874Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6875intrinsics do not return a value, takes extra alignment/isvolatile
6876arguments and the pointers can be in specified address spaces.
6877
6878Arguments:
6879""""""""""
6880
6881The first argument is a pointer to the destination, the second is a
6882pointer to the source. The third argument is an integer argument
6883specifying the number of bytes to copy, the fourth argument is the
6884alignment of the source and destination locations, and the fifth is a
6885boolean indicating a volatile access.
6886
6887If the call to this intrinsic has an alignment value that is not 0 or 1,
6888then the caller guarantees that both the source and destination pointers
6889are aligned to that boundary.
6890
6891If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6892a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6893very cleanly specified and it is unwise to depend on it.
6894
6895Semantics:
6896""""""""""
6897
6898The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6899source location to the destination location, which are not allowed to
6900overlap. It copies "len" bytes of memory over. If the argument is known
6901to be aligned to some boundary, this can be specified as the fourth
Bill Wendlingf47ffe02013-10-18 23:26:55 +00006902argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00006903
6904'``llvm.memmove``' Intrinsic
6905^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6906
6907Syntax:
6908"""""""
6909
6910This is an overloaded intrinsic. You can use llvm.memmove on any integer
6911bit width and for different address space. Not all targets support all
6912bit widths however.
6913
6914::
6915
6916 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6917 i32 <len>, i32 <align>, i1 <isvolatile>)
6918 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6919 i64 <len>, i32 <align>, i1 <isvolatile>)
6920
6921Overview:
6922"""""""""
6923
6924The '``llvm.memmove.*``' intrinsics move a block of memory from the
6925source location to the destination location. It is similar to the
6926'``llvm.memcpy``' intrinsic but allows the two memory locations to
6927overlap.
6928
6929Note that, unlike the standard libc function, the ``llvm.memmove.*``
6930intrinsics do not return a value, takes extra alignment/isvolatile
6931arguments and the pointers can be in specified address spaces.
6932
6933Arguments:
6934""""""""""
6935
6936The first argument is a pointer to the destination, the second is a
6937pointer to the source. The third argument is an integer argument
6938specifying the number of bytes to copy, the fourth argument is the
6939alignment of the source and destination locations, and the fifth is a
6940boolean indicating a volatile access.
6941
6942If the call to this intrinsic has an alignment value that is not 0 or 1,
6943then the caller guarantees that the source and destination pointers are
6944aligned to that boundary.
6945
6946If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6947is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6948not very cleanly specified and it is unwise to depend on it.
6949
6950Semantics:
6951""""""""""
6952
6953The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6954source location to the destination location, which may overlap. It
6955copies "len" bytes of memory over. If the argument is known to be
6956aligned to some boundary, this can be specified as the fourth argument,
Bill Wendlingf47ffe02013-10-18 23:26:55 +00006957otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00006958
6959'``llvm.memset.*``' Intrinsics
6960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6961
6962Syntax:
6963"""""""
6964
6965This is an overloaded intrinsic. You can use llvm.memset on any integer
6966bit width and for different address spaces. However, not all targets
6967support all bit widths.
6968
6969::
6970
6971 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6972 i32 <len>, i32 <align>, i1 <isvolatile>)
6973 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6974 i64 <len>, i32 <align>, i1 <isvolatile>)
6975
6976Overview:
6977"""""""""
6978
6979The '``llvm.memset.*``' intrinsics fill a block of memory with a
6980particular byte value.
6981
6982Note that, unlike the standard libc function, the ``llvm.memset``
6983intrinsic does not return a value and takes extra alignment/volatile
6984arguments. Also, the destination can be in an arbitrary address space.
6985
6986Arguments:
6987""""""""""
6988
6989The first argument is a pointer to the destination to fill, the second
6990is the byte value with which to fill it, the third argument is an
6991integer argument specifying the number of bytes to fill, and the fourth
6992argument is the known alignment of the destination location.
6993
6994If the call to this intrinsic has an alignment value that is not 0 or 1,
6995then the caller guarantees that the destination pointer is aligned to
6996that boundary.
6997
6998If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6999a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7000very cleanly specified and it is unwise to depend on it.
7001
7002Semantics:
7003""""""""""
7004
7005The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7006at the destination location. If the argument is known to be aligned to
7007some boundary, this can be specified as the fourth argument, otherwise
Bill Wendlingf47ffe02013-10-18 23:26:55 +00007008it should be set to 0 or 1 (both meaning no alignment).
Sean Silvaf722b002012-12-07 10:36:55 +00007009
7010'``llvm.sqrt.*``' Intrinsic
7011^^^^^^^^^^^^^^^^^^^^^^^^^^^
7012
7013Syntax:
7014"""""""
7015
7016This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7017floating point or vector of floating point type. Not all targets support
7018all types however.
7019
7020::
7021
7022 declare float @llvm.sqrt.f32(float %Val)
7023 declare double @llvm.sqrt.f64(double %Val)
7024 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7025 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7026 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7027
7028Overview:
7029"""""""""
7030
7031The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7032returning the same value as the libm '``sqrt``' functions would. Unlike
7033``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7034negative numbers other than -0.0 (which allows for better optimization,
7035because there is no need to worry about errno being set).
7036``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7037
7038Arguments:
7039""""""""""
7040
7041The argument and return value are floating point numbers of the same
7042type.
7043
7044Semantics:
7045""""""""""
7046
7047This function returns the sqrt of the specified operand if it is a
7048nonnegative floating point number.
7049
7050'``llvm.powi.*``' Intrinsic
7051^^^^^^^^^^^^^^^^^^^^^^^^^^^
7052
7053Syntax:
7054"""""""
7055
7056This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7057floating point or vector of floating point type. Not all targets support
7058all types however.
7059
7060::
7061
7062 declare float @llvm.powi.f32(float %Val, i32 %power)
7063 declare double @llvm.powi.f64(double %Val, i32 %power)
7064 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7065 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7066 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7067
7068Overview:
7069"""""""""
7070
7071The '``llvm.powi.*``' intrinsics return the first operand raised to the
7072specified (positive or negative) power. The order of evaluation of
7073multiplications is not defined. When a vector of floating point type is
7074used, the second argument remains a scalar integer value.
7075
7076Arguments:
7077""""""""""
7078
7079The second argument is an integer power, and the first is a value to
7080raise to that power.
7081
7082Semantics:
7083""""""""""
7084
7085This function returns the first value raised to the second power with an
7086unspecified sequence of rounding operations.
7087
7088'``llvm.sin.*``' Intrinsic
7089^^^^^^^^^^^^^^^^^^^^^^^^^^
7090
7091Syntax:
7092"""""""
7093
7094This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7095floating point or vector of floating point type. Not all targets support
7096all types however.
7097
7098::
7099
7100 declare float @llvm.sin.f32(float %Val)
7101 declare double @llvm.sin.f64(double %Val)
7102 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7103 declare fp128 @llvm.sin.f128(fp128 %Val)
7104 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7105
7106Overview:
7107"""""""""
7108
7109The '``llvm.sin.*``' intrinsics return the sine of the operand.
7110
7111Arguments:
7112""""""""""
7113
7114The argument and return value are floating point numbers of the same
7115type.
7116
7117Semantics:
7118""""""""""
7119
7120This function returns the sine of the specified operand, returning the
7121same values as the libm ``sin`` functions would, and handles error
7122conditions in the same way.
7123
7124'``llvm.cos.*``' Intrinsic
7125^^^^^^^^^^^^^^^^^^^^^^^^^^
7126
7127Syntax:
7128"""""""
7129
7130This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7131floating point or vector of floating point type. Not all targets support
7132all types however.
7133
7134::
7135
7136 declare float @llvm.cos.f32(float %Val)
7137 declare double @llvm.cos.f64(double %Val)
7138 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7139 declare fp128 @llvm.cos.f128(fp128 %Val)
7140 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7141
7142Overview:
7143"""""""""
7144
7145The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7146
7147Arguments:
7148""""""""""
7149
7150The argument and return value are floating point numbers of the same
7151type.
7152
7153Semantics:
7154""""""""""
7155
7156This function returns the cosine of the specified operand, returning the
7157same values as the libm ``cos`` functions would, and handles error
7158conditions in the same way.
7159
7160'``llvm.pow.*``' Intrinsic
7161^^^^^^^^^^^^^^^^^^^^^^^^^^
7162
7163Syntax:
7164"""""""
7165
7166This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7167floating point or vector of floating point type. Not all targets support
7168all types however.
7169
7170::
7171
7172 declare float @llvm.pow.f32(float %Val, float %Power)
7173 declare double @llvm.pow.f64(double %Val, double %Power)
7174 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7175 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7176 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7177
7178Overview:
7179"""""""""
7180
7181The '``llvm.pow.*``' intrinsics return the first operand raised to the
7182specified (positive or negative) power.
7183
7184Arguments:
7185""""""""""
7186
7187The second argument is a floating point power, and the first is a value
7188to raise to that power.
7189
7190Semantics:
7191""""""""""
7192
7193This function returns the first value raised to the second power,
7194returning the same values as the libm ``pow`` functions would, and
7195handles error conditions in the same way.
7196
7197'``llvm.exp.*``' Intrinsic
7198^^^^^^^^^^^^^^^^^^^^^^^^^^
7199
7200Syntax:
7201"""""""
7202
7203This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7204floating point or vector of floating point type. Not all targets support
7205all types however.
7206
7207::
7208
7209 declare float @llvm.exp.f32(float %Val)
7210 declare double @llvm.exp.f64(double %Val)
7211 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7212 declare fp128 @llvm.exp.f128(fp128 %Val)
7213 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7214
7215Overview:
7216"""""""""
7217
7218The '``llvm.exp.*``' intrinsics perform the exp function.
7219
7220Arguments:
7221""""""""""
7222
7223The argument and return value are floating point numbers of the same
7224type.
7225
7226Semantics:
7227""""""""""
7228
7229This function returns the same values as the libm ``exp`` functions
7230would, and handles error conditions in the same way.
7231
7232'``llvm.exp2.*``' Intrinsic
7233^^^^^^^^^^^^^^^^^^^^^^^^^^^
7234
7235Syntax:
7236"""""""
7237
7238This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7239floating point or vector of floating point type. Not all targets support
7240all types however.
7241
7242::
7243
7244 declare float @llvm.exp2.f32(float %Val)
7245 declare double @llvm.exp2.f64(double %Val)
7246 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7247 declare fp128 @llvm.exp2.f128(fp128 %Val)
7248 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7249
7250Overview:
7251"""""""""
7252
7253The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7254
7255Arguments:
7256""""""""""
7257
7258The argument and return value are floating point numbers of the same
7259type.
7260
7261Semantics:
7262""""""""""
7263
7264This function returns the same values as the libm ``exp2`` functions
7265would, and handles error conditions in the same way.
7266
7267'``llvm.log.*``' Intrinsic
7268^^^^^^^^^^^^^^^^^^^^^^^^^^
7269
7270Syntax:
7271"""""""
7272
7273This is an overloaded intrinsic. You can use ``llvm.log`` on any
7274floating point or vector of floating point type. Not all targets support
7275all types however.
7276
7277::
7278
7279 declare float @llvm.log.f32(float %Val)
7280 declare double @llvm.log.f64(double %Val)
7281 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7282 declare fp128 @llvm.log.f128(fp128 %Val)
7283 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7284
7285Overview:
7286"""""""""
7287
7288The '``llvm.log.*``' intrinsics perform the log function.
7289
7290Arguments:
7291""""""""""
7292
7293The argument and return value are floating point numbers of the same
7294type.
7295
7296Semantics:
7297""""""""""
7298
7299This function returns the same values as the libm ``log`` functions
7300would, and handles error conditions in the same way.
7301
7302'``llvm.log10.*``' Intrinsic
7303^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7304
7305Syntax:
7306"""""""
7307
7308This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7309floating point or vector of floating point type. Not all targets support
7310all types however.
7311
7312::
7313
7314 declare float @llvm.log10.f32(float %Val)
7315 declare double @llvm.log10.f64(double %Val)
7316 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7317 declare fp128 @llvm.log10.f128(fp128 %Val)
7318 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7319
7320Overview:
7321"""""""""
7322
7323The '``llvm.log10.*``' intrinsics perform the log10 function.
7324
7325Arguments:
7326""""""""""
7327
7328The argument and return value are floating point numbers of the same
7329type.
7330
7331Semantics:
7332""""""""""
7333
7334This function returns the same values as the libm ``log10`` functions
7335would, and handles error conditions in the same way.
7336
7337'``llvm.log2.*``' Intrinsic
7338^^^^^^^^^^^^^^^^^^^^^^^^^^^
7339
7340Syntax:
7341"""""""
7342
7343This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7344floating point or vector of floating point type. Not all targets support
7345all types however.
7346
7347::
7348
7349 declare float @llvm.log2.f32(float %Val)
7350 declare double @llvm.log2.f64(double %Val)
7351 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7352 declare fp128 @llvm.log2.f128(fp128 %Val)
7353 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7354
7355Overview:
7356"""""""""
7357
7358The '``llvm.log2.*``' intrinsics perform the log2 function.
7359
7360Arguments:
7361""""""""""
7362
7363The argument and return value are floating point numbers of the same
7364type.
7365
7366Semantics:
7367""""""""""
7368
7369This function returns the same values as the libm ``log2`` functions
7370would, and handles error conditions in the same way.
7371
7372'``llvm.fma.*``' Intrinsic
7373^^^^^^^^^^^^^^^^^^^^^^^^^^
7374
7375Syntax:
7376"""""""
7377
7378This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7379floating point or vector of floating point type. Not all targets support
7380all types however.
7381
7382::
7383
7384 declare float @llvm.fma.f32(float %a, float %b, float %c)
7385 declare double @llvm.fma.f64(double %a, double %b, double %c)
7386 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7387 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7388 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7389
7390Overview:
7391"""""""""
7392
7393The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7394operation.
7395
7396Arguments:
7397""""""""""
7398
7399The argument and return value are floating point numbers of the same
7400type.
7401
7402Semantics:
7403""""""""""
7404
7405This function returns the same values as the libm ``fma`` functions
7406would.
7407
7408'``llvm.fabs.*``' Intrinsic
7409^^^^^^^^^^^^^^^^^^^^^^^^^^^
7410
7411Syntax:
7412"""""""
7413
7414This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7415floating point or vector of floating point type. Not all targets support
7416all types however.
7417
7418::
7419
7420 declare float @llvm.fabs.f32(float %Val)
7421 declare double @llvm.fabs.f64(double %Val)
7422 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7423 declare fp128 @llvm.fabs.f128(fp128 %Val)
7424 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7425
7426Overview:
7427"""""""""
7428
7429The '``llvm.fabs.*``' intrinsics return the absolute value of the
7430operand.
7431
7432Arguments:
7433""""""""""
7434
7435The argument and return value are floating point numbers of the same
7436type.
7437
7438Semantics:
7439""""""""""
7440
7441This function returns the same values as the libm ``fabs`` functions
7442would, and handles error conditions in the same way.
7443
Hal Finkel66d1fa62013-08-19 23:35:46 +00007444'``llvm.copysign.*``' Intrinsic
7445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7446
7447Syntax:
7448"""""""
7449
7450This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7451floating point or vector of floating point type. Not all targets support
7452all types however.
7453
7454::
7455
7456 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7457 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7458 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7459 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7460 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7461
7462Overview:
7463"""""""""
7464
7465The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7466first operand and the sign of the second operand.
7467
7468Arguments:
7469""""""""""
7470
7471The arguments and return value are floating point numbers of the same
7472type.
7473
7474Semantics:
7475""""""""""
7476
7477This function returns the same values as the libm ``copysign``
7478functions would, and handles error conditions in the same way.
7479
Sean Silvaf722b002012-12-07 10:36:55 +00007480'``llvm.floor.*``' Intrinsic
7481^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7482
7483Syntax:
7484"""""""
7485
7486This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7487floating point or vector of floating point type. Not all targets support
7488all types however.
7489
7490::
7491
7492 declare float @llvm.floor.f32(float %Val)
7493 declare double @llvm.floor.f64(double %Val)
7494 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7495 declare fp128 @llvm.floor.f128(fp128 %Val)
7496 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7497
7498Overview:
7499"""""""""
7500
7501The '``llvm.floor.*``' intrinsics return the floor of the operand.
7502
7503Arguments:
7504""""""""""
7505
7506The argument and return value are floating point numbers of the same
7507type.
7508
7509Semantics:
7510""""""""""
7511
7512This function returns the same values as the libm ``floor`` functions
7513would, and handles error conditions in the same way.
7514
7515'``llvm.ceil.*``' Intrinsic
7516^^^^^^^^^^^^^^^^^^^^^^^^^^^
7517
7518Syntax:
7519"""""""
7520
7521This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7522floating point or vector of floating point type. Not all targets support
7523all types however.
7524
7525::
7526
7527 declare float @llvm.ceil.f32(float %Val)
7528 declare double @llvm.ceil.f64(double %Val)
7529 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7530 declare fp128 @llvm.ceil.f128(fp128 %Val)
7531 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7532
7533Overview:
7534"""""""""
7535
7536The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7537
7538Arguments:
7539""""""""""
7540
7541The argument and return value are floating point numbers of the same
7542type.
7543
7544Semantics:
7545""""""""""
7546
7547This function returns the same values as the libm ``ceil`` functions
7548would, and handles error conditions in the same way.
7549
7550'``llvm.trunc.*``' Intrinsic
7551^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7552
7553Syntax:
7554"""""""
7555
7556This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7557floating point or vector of floating point type. Not all targets support
7558all types however.
7559
7560::
7561
7562 declare float @llvm.trunc.f32(float %Val)
7563 declare double @llvm.trunc.f64(double %Val)
7564 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7565 declare fp128 @llvm.trunc.f128(fp128 %Val)
7566 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7567
7568Overview:
7569"""""""""
7570
7571The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7572nearest integer not larger in magnitude than the operand.
7573
7574Arguments:
7575""""""""""
7576
7577The argument and return value are floating point numbers of the same
7578type.
7579
7580Semantics:
7581""""""""""
7582
7583This function returns the same values as the libm ``trunc`` functions
7584would, and handles error conditions in the same way.
7585
7586'``llvm.rint.*``' Intrinsic
7587^^^^^^^^^^^^^^^^^^^^^^^^^^^
7588
7589Syntax:
7590"""""""
7591
7592This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7593floating point or vector of floating point type. Not all targets support
7594all types however.
7595
7596::
7597
7598 declare float @llvm.rint.f32(float %Val)
7599 declare double @llvm.rint.f64(double %Val)
7600 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7601 declare fp128 @llvm.rint.f128(fp128 %Val)
7602 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7603
7604Overview:
7605"""""""""
7606
7607The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7608nearest integer. It may raise an inexact floating-point exception if the
7609operand isn't an integer.
7610
7611Arguments:
7612""""""""""
7613
7614The argument and return value are floating point numbers of the same
7615type.
7616
7617Semantics:
7618""""""""""
7619
7620This function returns the same values as the libm ``rint`` functions
7621would, and handles error conditions in the same way.
7622
7623'``llvm.nearbyint.*``' Intrinsic
7624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7625
7626Syntax:
7627"""""""
7628
7629This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7630floating point or vector of floating point type. Not all targets support
7631all types however.
7632
7633::
7634
7635 declare float @llvm.nearbyint.f32(float %Val)
7636 declare double @llvm.nearbyint.f64(double %Val)
7637 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7638 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7639 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7640
7641Overview:
7642"""""""""
7643
7644The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7645nearest integer.
7646
7647Arguments:
7648""""""""""
7649
7650The argument and return value are floating point numbers of the same
7651type.
7652
7653Semantics:
7654""""""""""
7655
7656This function returns the same values as the libm ``nearbyint``
7657functions would, and handles error conditions in the same way.
7658
Hal Finkel41418d12013-08-07 22:49:12 +00007659'``llvm.round.*``' Intrinsic
7660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7661
7662Syntax:
7663"""""""
7664
7665This is an overloaded intrinsic. You can use ``llvm.round`` on any
7666floating point or vector of floating point type. Not all targets support
7667all types however.
7668
7669::
7670
7671 declare float @llvm.round.f32(float %Val)
7672 declare double @llvm.round.f64(double %Val)
7673 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7674 declare fp128 @llvm.round.f128(fp128 %Val)
7675 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7676
7677Overview:
7678"""""""""
7679
7680The '``llvm.round.*``' intrinsics returns the operand rounded to the
7681nearest integer.
7682
7683Arguments:
7684""""""""""
7685
7686The argument and return value are floating point numbers of the same
7687type.
7688
7689Semantics:
7690""""""""""
7691
7692This function returns the same values as the libm ``round``
7693functions would, and handles error conditions in the same way.
7694
Sean Silvaf722b002012-12-07 10:36:55 +00007695Bit Manipulation Intrinsics
7696---------------------------
7697
7698LLVM provides intrinsics for a few important bit manipulation
7699operations. These allow efficient code generation for some algorithms.
7700
7701'``llvm.bswap.*``' Intrinsics
7702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7703
7704Syntax:
7705"""""""
7706
7707This is an overloaded intrinsic function. You can use bswap on any
7708integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7709
7710::
7711
7712 declare i16 @llvm.bswap.i16(i16 <id>)
7713 declare i32 @llvm.bswap.i32(i32 <id>)
7714 declare i64 @llvm.bswap.i64(i64 <id>)
7715
7716Overview:
7717"""""""""
7718
7719The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7720values with an even number of bytes (positive multiple of 16 bits).
7721These are useful for performing operations on data that is not in the
7722target's native byte order.
7723
7724Semantics:
7725""""""""""
7726
7727The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7728and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7729intrinsic returns an i32 value that has the four bytes of the input i32
7730swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7731returned i32 will have its bytes in 3, 2, 1, 0 order. The
7732``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7733concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7734respectively).
7735
7736'``llvm.ctpop.*``' Intrinsic
7737^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7738
7739Syntax:
7740"""""""
7741
7742This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7743bit width, or on any vector with integer elements. Not all targets
7744support all bit widths or vector types, however.
7745
7746::
7747
7748 declare i8 @llvm.ctpop.i8(i8 <src>)
7749 declare i16 @llvm.ctpop.i16(i16 <src>)
7750 declare i32 @llvm.ctpop.i32(i32 <src>)
7751 declare i64 @llvm.ctpop.i64(i64 <src>)
7752 declare i256 @llvm.ctpop.i256(i256 <src>)
7753 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7754
7755Overview:
7756"""""""""
7757
7758The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7759in a value.
7760
7761Arguments:
7762""""""""""
7763
7764The only argument is the value to be counted. The argument may be of any
7765integer type, or a vector with integer elements. The return type must
7766match the argument type.
7767
7768Semantics:
7769""""""""""
7770
7771The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7772each element of a vector.
7773
7774'``llvm.ctlz.*``' Intrinsic
7775^^^^^^^^^^^^^^^^^^^^^^^^^^^
7776
7777Syntax:
7778"""""""
7779
7780This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7781integer bit width, or any vector whose elements are integers. Not all
7782targets support all bit widths or vector types, however.
7783
7784::
7785
7786 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7787 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7788 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7789 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7790 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7791 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7792
7793Overview:
7794"""""""""
7795
7796The '``llvm.ctlz``' family of intrinsic functions counts the number of
7797leading zeros in a variable.
7798
7799Arguments:
7800""""""""""
7801
7802The first argument is the value to be counted. This argument may be of
7803any integer type, or a vectory with integer element type. The return
7804type must match the first argument type.
7805
7806The second argument must be a constant and is a flag to indicate whether
7807the intrinsic should ensure that a zero as the first argument produces a
7808defined result. Historically some architectures did not provide a
7809defined result for zero values as efficiently, and many algorithms are
7810now predicated on avoiding zero-value inputs.
7811
7812Semantics:
7813""""""""""
7814
7815The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7816zeros in a variable, or within each element of the vector. If
7817``src == 0`` then the result is the size in bits of the type of ``src``
7818if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7819``llvm.ctlz(i32 2) = 30``.
7820
7821'``llvm.cttz.*``' Intrinsic
7822^^^^^^^^^^^^^^^^^^^^^^^^^^^
7823
7824Syntax:
7825"""""""
7826
7827This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7828integer bit width, or any vector of integer elements. Not all targets
7829support all bit widths or vector types, however.
7830
7831::
7832
7833 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7834 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7835 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7836 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7837 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7838 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7839
7840Overview:
7841"""""""""
7842
7843The '``llvm.cttz``' family of intrinsic functions counts the number of
7844trailing zeros.
7845
7846Arguments:
7847""""""""""
7848
7849The first argument is the value to be counted. This argument may be of
7850any integer type, or a vectory with integer element type. The return
7851type must match the first argument type.
7852
7853The second argument must be a constant and is a flag to indicate whether
7854the intrinsic should ensure that a zero as the first argument produces a
7855defined result. Historically some architectures did not provide a
7856defined result for zero values as efficiently, and many algorithms are
7857now predicated on avoiding zero-value inputs.
7858
7859Semantics:
7860""""""""""
7861
7862The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7863zeros in a variable, or within each element of a vector. If ``src == 0``
7864then the result is the size in bits of the type of ``src`` if
7865``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7866``llvm.cttz(2) = 1``.
7867
7868Arithmetic with Overflow Intrinsics
7869-----------------------------------
7870
7871LLVM provides intrinsics for some arithmetic with overflow operations.
7872
7873'``llvm.sadd.with.overflow.*``' Intrinsics
7874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7875
7876Syntax:
7877"""""""
7878
7879This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7880on any integer bit width.
7881
7882::
7883
7884 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7885 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7886 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7887
7888Overview:
7889"""""""""
7890
7891The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7892a signed addition of the two arguments, and indicate whether an overflow
7893occurred during the signed summation.
7894
7895Arguments:
7896""""""""""
7897
7898The arguments (%a and %b) and the first element of the result structure
7899may be of integer types of any bit width, but they must have the same
7900bit width. The second element of the result structure must be of type
7901``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7902addition.
7903
7904Semantics:
7905""""""""""
7906
7907The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007908a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007909first element of which is the signed summation, and the second element
7910of which is a bit specifying if the signed summation resulted in an
7911overflow.
7912
7913Examples:
7914"""""""""
7915
7916.. code-block:: llvm
7917
7918 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7919 %sum = extractvalue {i32, i1} %res, 0
7920 %obit = extractvalue {i32, i1} %res, 1
7921 br i1 %obit, label %overflow, label %normal
7922
7923'``llvm.uadd.with.overflow.*``' Intrinsics
7924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7925
7926Syntax:
7927"""""""
7928
7929This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7930on any integer bit width.
7931
7932::
7933
7934 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7935 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7936 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7937
7938Overview:
7939"""""""""
7940
7941The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7942an unsigned addition of the two arguments, and indicate whether a carry
7943occurred during the unsigned summation.
7944
7945Arguments:
7946""""""""""
7947
7948The arguments (%a and %b) and the first element of the result structure
7949may be of integer types of any bit width, but they must have the same
7950bit width. The second element of the result structure must be of type
7951``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7952addition.
7953
7954Semantics:
7955""""""""""
7956
7957The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007958an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007959first element of which is the sum, and the second element of which is a
7960bit specifying if the unsigned summation resulted in a carry.
7961
7962Examples:
7963"""""""""
7964
7965.. code-block:: llvm
7966
7967 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7968 %sum = extractvalue {i32, i1} %res, 0
7969 %obit = extractvalue {i32, i1} %res, 1
7970 br i1 %obit, label %carry, label %normal
7971
7972'``llvm.ssub.with.overflow.*``' Intrinsics
7973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7974
7975Syntax:
7976"""""""
7977
7978This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7979on any integer bit width.
7980
7981::
7982
7983 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7984 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7985 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7986
7987Overview:
7988"""""""""
7989
7990The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7991a signed subtraction of the two arguments, and indicate whether an
7992overflow occurred during the signed subtraction.
7993
7994Arguments:
7995""""""""""
7996
7997The arguments (%a and %b) and the first element of the result structure
7998may be of integer types of any bit width, but they must have the same
7999bit width. The second element of the result structure must be of type
8000``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8001subtraction.
8002
8003Semantics:
8004""""""""""
8005
8006The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008007a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00008008first element of which is the subtraction, and the second element of
8009which is a bit specifying if the signed subtraction resulted in an
8010overflow.
8011
8012Examples:
8013"""""""""
8014
8015.. code-block:: llvm
8016
8017 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8018 %sum = extractvalue {i32, i1} %res, 0
8019 %obit = extractvalue {i32, i1} %res, 1
8020 br i1 %obit, label %overflow, label %normal
8021
8022'``llvm.usub.with.overflow.*``' Intrinsics
8023^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8024
8025Syntax:
8026"""""""
8027
8028This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8029on any integer bit width.
8030
8031::
8032
8033 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8034 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8035 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8036
8037Overview:
8038"""""""""
8039
8040The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8041an unsigned subtraction of the two arguments, and indicate whether an
8042overflow occurred during the unsigned subtraction.
8043
8044Arguments:
8045""""""""""
8046
8047The arguments (%a and %b) and the first element of the result structure
8048may be of integer types of any bit width, but they must have the same
8049bit width. The second element of the result structure must be of type
8050``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8051subtraction.
8052
8053Semantics:
8054""""""""""
8055
8056The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008057an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008058the first element of which is the subtraction, and the second element of
8059which is a bit specifying if the unsigned subtraction resulted in an
8060overflow.
8061
8062Examples:
8063"""""""""
8064
8065.. code-block:: llvm
8066
8067 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8068 %sum = extractvalue {i32, i1} %res, 0
8069 %obit = extractvalue {i32, i1} %res, 1
8070 br i1 %obit, label %overflow, label %normal
8071
8072'``llvm.smul.with.overflow.*``' Intrinsics
8073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8074
8075Syntax:
8076"""""""
8077
8078This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8079on any integer bit width.
8080
8081::
8082
8083 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8084 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8085 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8086
8087Overview:
8088"""""""""
8089
8090The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8091a signed multiplication of the two arguments, and indicate whether an
8092overflow occurred during the signed multiplication.
8093
8094Arguments:
8095""""""""""
8096
8097The arguments (%a and %b) and the first element of the result structure
8098may be of integer types of any bit width, but they must have the same
8099bit width. The second element of the result structure must be of type
8100``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8101multiplication.
8102
8103Semantics:
8104""""""""""
8105
8106The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008107a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008108the first element of which is the multiplication, and the second element
8109of which is a bit specifying if the signed multiplication resulted in an
8110overflow.
8111
8112Examples:
8113"""""""""
8114
8115.. code-block:: llvm
8116
8117 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8118 %sum = extractvalue {i32, i1} %res, 0
8119 %obit = extractvalue {i32, i1} %res, 1
8120 br i1 %obit, label %overflow, label %normal
8121
8122'``llvm.umul.with.overflow.*``' Intrinsics
8123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8124
8125Syntax:
8126"""""""
8127
8128This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8129on any integer bit width.
8130
8131::
8132
8133 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8134 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8135 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8136
8137Overview:
8138"""""""""
8139
8140The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8141a unsigned multiplication of the two arguments, and indicate whether an
8142overflow occurred during the unsigned multiplication.
8143
8144Arguments:
8145""""""""""
8146
8147The arguments (%a and %b) and the first element of the result structure
8148may be of integer types of any bit width, but they must have the same
8149bit width. The second element of the result structure must be of type
8150``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8151multiplication.
8152
8153Semantics:
8154""""""""""
8155
8156The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008157an unsigned multiplication of the two arguments. They return a structure ---
8158the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00008159element of which is a bit specifying if the unsigned multiplication
8160resulted in an overflow.
8161
8162Examples:
8163"""""""""
8164
8165.. code-block:: llvm
8166
8167 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8168 %sum = extractvalue {i32, i1} %res, 0
8169 %obit = extractvalue {i32, i1} %res, 1
8170 br i1 %obit, label %overflow, label %normal
8171
8172Specialised Arithmetic Intrinsics
8173---------------------------------
8174
8175'``llvm.fmuladd.*``' Intrinsic
8176^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8177
8178Syntax:
8179"""""""
8180
8181::
8182
8183 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8184 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8185
8186Overview:
8187"""""""""
8188
8189The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008190expressions that can be fused if the code generator determines that (a) the
8191target instruction set has support for a fused operation, and (b) that the
8192fused operation is more efficient than the equivalent, separate pair of mul
8193and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008194
8195Arguments:
8196""""""""""
8197
8198The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8199multiplicands, a and b, and an addend c.
8200
8201Semantics:
8202""""""""""
8203
8204The expression:
8205
8206::
8207
8208 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8209
8210is equivalent to the expression a \* b + c, except that rounding will
8211not be performed between the multiplication and addition steps if the
8212code generator fuses the operations. Fusion is not guaranteed, even if
8213the target platform supports it. If a fused multiply-add is required the
8214corresponding llvm.fma.\* intrinsic function should be used instead.
8215
8216Examples:
8217"""""""""
8218
8219.. code-block:: llvm
8220
8221 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8222
8223Half Precision Floating Point Intrinsics
8224----------------------------------------
8225
8226For most target platforms, half precision floating point is a
8227storage-only format. This means that it is a dense encoding (in memory)
8228but does not support computation in the format.
8229
8230This means that code must first load the half-precision floating point
8231value as an i16, then convert it to float with
8232:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8233then be performed on the float value (including extending to double
8234etc). To store the value back to memory, it is first converted to float
8235if needed, then converted to i16 with
8236:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8237i16 value.
8238
8239.. _int_convert_to_fp16:
8240
8241'``llvm.convert.to.fp16``' Intrinsic
8242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8243
8244Syntax:
8245"""""""
8246
8247::
8248
8249 declare i16 @llvm.convert.to.fp16(f32 %a)
8250
8251Overview:
8252"""""""""
8253
8254The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8255from single precision floating point format to half precision floating
8256point format.
8257
8258Arguments:
8259""""""""""
8260
8261The intrinsic function contains single argument - the value to be
8262converted.
8263
8264Semantics:
8265""""""""""
8266
8267The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8268from single precision floating point format to half precision floating
8269point format. The return value is an ``i16`` which contains the
8270converted number.
8271
8272Examples:
8273"""""""""
8274
8275.. code-block:: llvm
8276
8277 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8278 store i16 %res, i16* @x, align 2
8279
8280.. _int_convert_from_fp16:
8281
8282'``llvm.convert.from.fp16``' Intrinsic
8283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8284
8285Syntax:
8286"""""""
8287
8288::
8289
8290 declare f32 @llvm.convert.from.fp16(i16 %a)
8291
8292Overview:
8293"""""""""
8294
8295The '``llvm.convert.from.fp16``' intrinsic function performs a
8296conversion from half precision floating point format to single precision
8297floating point format.
8298
8299Arguments:
8300""""""""""
8301
8302The intrinsic function contains single argument - the value to be
8303converted.
8304
8305Semantics:
8306""""""""""
8307
8308The '``llvm.convert.from.fp16``' intrinsic function performs a
8309conversion from half single precision floating point format to single
8310precision floating point format. The input half-float value is
8311represented by an ``i16`` value.
8312
8313Examples:
8314"""""""""
8315
8316.. code-block:: llvm
8317
8318 %a = load i16* @x, align 2
8319 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8320
8321Debugger Intrinsics
8322-------------------
8323
8324The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8325prefix), are described in the `LLVM Source Level
8326Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8327document.
8328
8329Exception Handling Intrinsics
8330-----------------------------
8331
8332The LLVM exception handling intrinsics (which all start with
8333``llvm.eh.`` prefix), are described in the `LLVM Exception
8334Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8335
8336.. _int_trampoline:
8337
8338Trampoline Intrinsics
8339---------------------
8340
8341These intrinsics make it possible to excise one parameter, marked with
8342the :ref:`nest <nest>` attribute, from a function. The result is a
8343callable function pointer lacking the nest parameter - the caller does
8344not need to provide a value for it. Instead, the value to use is stored
8345in advance in a "trampoline", a block of memory usually allocated on the
8346stack, which also contains code to splice the nest value into the
8347argument list. This is used to implement the GCC nested function address
8348extension.
8349
8350For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8351then the resulting function pointer has signature ``i32 (i32, i32)*``.
8352It can be created as follows:
8353
8354.. code-block:: llvm
8355
8356 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8357 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8358 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8359 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8360 %fp = bitcast i8* %p to i32 (i32, i32)*
8361
8362The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8363``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8364
8365.. _int_it:
8366
8367'``llvm.init.trampoline``' Intrinsic
8368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8369
8370Syntax:
8371"""""""
8372
8373::
8374
8375 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8376
8377Overview:
8378"""""""""
8379
8380This fills the memory pointed to by ``tramp`` with executable code,
8381turning it into a trampoline.
8382
8383Arguments:
8384""""""""""
8385
8386The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8387pointers. The ``tramp`` argument must point to a sufficiently large and
8388sufficiently aligned block of memory; this memory is written to by the
8389intrinsic. Note that the size and the alignment are target-specific -
8390LLVM currently provides no portable way of determining them, so a
8391front-end that generates this intrinsic needs to have some
8392target-specific knowledge. The ``func`` argument must hold a function
8393bitcast to an ``i8*``.
8394
8395Semantics:
8396""""""""""
8397
8398The block of memory pointed to by ``tramp`` is filled with target
8399dependent code, turning it into a function. Then ``tramp`` needs to be
8400passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8401be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8402function's signature is the same as that of ``func`` with any arguments
8403marked with the ``nest`` attribute removed. At most one such ``nest``
8404argument is allowed, and it must be of pointer type. Calling the new
8405function is equivalent to calling ``func`` with the same argument list,
8406but with ``nval`` used for the missing ``nest`` argument. If, after
8407calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8408modified, then the effect of any later call to the returned function
8409pointer is undefined.
8410
8411.. _int_at:
8412
8413'``llvm.adjust.trampoline``' Intrinsic
8414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8415
8416Syntax:
8417"""""""
8418
8419::
8420
8421 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8422
8423Overview:
8424"""""""""
8425
8426This performs any required machine-specific adjustment to the address of
8427a trampoline (passed as ``tramp``).
8428
8429Arguments:
8430""""""""""
8431
8432``tramp`` must point to a block of memory which already has trampoline
8433code filled in by a previous call to
8434:ref:`llvm.init.trampoline <int_it>`.
8435
8436Semantics:
8437""""""""""
8438
8439On some architectures the address of the code to be executed needs to be
8440different to the address where the trampoline is actually stored. This
8441intrinsic returns the executable address corresponding to ``tramp``
8442after performing the required machine specific adjustments. The pointer
8443returned can then be :ref:`bitcast and executed <int_trampoline>`.
8444
8445Memory Use Markers
8446------------------
8447
8448This class of intrinsics exists to information about the lifetime of
8449memory objects and ranges where variables are immutable.
8450
8451'``llvm.lifetime.start``' Intrinsic
8452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8453
8454Syntax:
8455"""""""
8456
8457::
8458
8459 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8460
8461Overview:
8462"""""""""
8463
8464The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8465object's lifetime.
8466
8467Arguments:
8468""""""""""
8469
8470The first argument is a constant integer representing the size of the
8471object, or -1 if it is variable sized. The second argument is a pointer
8472to the object.
8473
8474Semantics:
8475""""""""""
8476
8477This intrinsic indicates that before this point in the code, the value
8478of the memory pointed to by ``ptr`` is dead. This means that it is known
8479to never be used and has an undefined value. A load from the pointer
8480that precedes this intrinsic can be replaced with ``'undef'``.
8481
8482'``llvm.lifetime.end``' Intrinsic
8483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8484
8485Syntax:
8486"""""""
8487
8488::
8489
8490 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8491
8492Overview:
8493"""""""""
8494
8495The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8496object's lifetime.
8497
8498Arguments:
8499""""""""""
8500
8501The first argument is a constant integer representing the size of the
8502object, or -1 if it is variable sized. The second argument is a pointer
8503to the object.
8504
8505Semantics:
8506""""""""""
8507
8508This intrinsic indicates that after this point in the code, the value of
8509the memory pointed to by ``ptr`` is dead. This means that it is known to
8510never be used and has an undefined value. Any stores into the memory
8511object following this intrinsic may be removed as dead.
8512
8513'``llvm.invariant.start``' Intrinsic
8514^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8515
8516Syntax:
8517"""""""
8518
8519::
8520
8521 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8522
8523Overview:
8524"""""""""
8525
8526The '``llvm.invariant.start``' intrinsic specifies that the contents of
8527a memory object will not change.
8528
8529Arguments:
8530""""""""""
8531
8532The first argument is a constant integer representing the size of the
8533object, or -1 if it is variable sized. The second argument is a pointer
8534to the object.
8535
8536Semantics:
8537""""""""""
8538
8539This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8540the return value, the referenced memory location is constant and
8541unchanging.
8542
8543'``llvm.invariant.end``' Intrinsic
8544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8545
8546Syntax:
8547"""""""
8548
8549::
8550
8551 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8552
8553Overview:
8554"""""""""
8555
8556The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8557memory object are mutable.
8558
8559Arguments:
8560""""""""""
8561
8562The first argument is the matching ``llvm.invariant.start`` intrinsic.
8563The second argument is a constant integer representing the size of the
8564object, or -1 if it is variable sized and the third argument is a
8565pointer to the object.
8566
8567Semantics:
8568""""""""""
8569
8570This intrinsic indicates that the memory is mutable again.
8571
8572General Intrinsics
8573------------------
8574
8575This class of intrinsics is designed to be generic and has no specific
8576purpose.
8577
8578'``llvm.var.annotation``' Intrinsic
8579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8580
8581Syntax:
8582"""""""
8583
8584::
8585
8586 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8587
8588Overview:
8589"""""""""
8590
8591The '``llvm.var.annotation``' intrinsic.
8592
8593Arguments:
8594""""""""""
8595
8596The first argument is a pointer to a value, the second is a pointer to a
8597global string, the third is a pointer to a global string which is the
8598source file name, and the last argument is the line number.
8599
8600Semantics:
8601""""""""""
8602
8603This intrinsic allows annotation of local variables with arbitrary
8604strings. This can be useful for special purpose optimizations that want
8605to look for these annotations. These have no other defined use; they are
8606ignored by code generation and optimization.
8607
Michael Gottesman872b4e52013-03-26 00:34:27 +00008608'``llvm.ptr.annotation.*``' Intrinsic
8609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8610
8611Syntax:
8612"""""""
8613
8614This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8615pointer to an integer of any width. *NOTE* you must specify an address space for
8616the pointer. The identifier for the default address space is the integer
8617'``0``'.
8618
8619::
8620
8621 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8622 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8623 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8624 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8625 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8626
8627Overview:
8628"""""""""
8629
8630The '``llvm.ptr.annotation``' intrinsic.
8631
8632Arguments:
8633""""""""""
8634
8635The first argument is a pointer to an integer value of arbitrary bitwidth
8636(result of some expression), the second is a pointer to a global string, the
8637third is a pointer to a global string which is the source file name, and the
8638last argument is the line number. It returns the value of the first argument.
8639
8640Semantics:
8641""""""""""
8642
8643This intrinsic allows annotation of a pointer to an integer with arbitrary
8644strings. This can be useful for special purpose optimizations that want to look
8645for these annotations. These have no other defined use; they are ignored by code
8646generation and optimization.
8647
Sean Silvaf722b002012-12-07 10:36:55 +00008648'``llvm.annotation.*``' Intrinsic
8649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8650
8651Syntax:
8652"""""""
8653
8654This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8655any integer bit width.
8656
8657::
8658
8659 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8660 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8661 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8662 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8663 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8664
8665Overview:
8666"""""""""
8667
8668The '``llvm.annotation``' intrinsic.
8669
8670Arguments:
8671""""""""""
8672
8673The first argument is an integer value (result of some expression), the
8674second is a pointer to a global string, the third is a pointer to a
8675global string which is the source file name, and the last argument is
8676the line number. It returns the value of the first argument.
8677
8678Semantics:
8679""""""""""
8680
8681This intrinsic allows annotations to be put on arbitrary expressions
8682with arbitrary strings. This can be useful for special purpose
8683optimizations that want to look for these annotations. These have no
8684other defined use; they are ignored by code generation and optimization.
8685
8686'``llvm.trap``' Intrinsic
8687^^^^^^^^^^^^^^^^^^^^^^^^^
8688
8689Syntax:
8690"""""""
8691
8692::
8693
8694 declare void @llvm.trap() noreturn nounwind
8695
8696Overview:
8697"""""""""
8698
8699The '``llvm.trap``' intrinsic.
8700
8701Arguments:
8702""""""""""
8703
8704None.
8705
8706Semantics:
8707""""""""""
8708
8709This intrinsic is lowered to the target dependent trap instruction. If
8710the target does not have a trap instruction, this intrinsic will be
8711lowered to a call of the ``abort()`` function.
8712
8713'``llvm.debugtrap``' Intrinsic
8714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8715
8716Syntax:
8717"""""""
8718
8719::
8720
8721 declare void @llvm.debugtrap() nounwind
8722
8723Overview:
8724"""""""""
8725
8726The '``llvm.debugtrap``' intrinsic.
8727
8728Arguments:
8729""""""""""
8730
8731None.
8732
8733Semantics:
8734""""""""""
8735
8736This intrinsic is lowered to code which is intended to cause an
8737execution trap with the intention of requesting the attention of a
8738debugger.
8739
8740'``llvm.stackprotector``' Intrinsic
8741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8742
8743Syntax:
8744"""""""
8745
8746::
8747
8748 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8749
8750Overview:
8751"""""""""
8752
8753The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8754onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8755is placed on the stack before local variables.
8756
8757Arguments:
8758""""""""""
8759
8760The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8761The first argument is the value loaded from the stack guard
8762``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8763enough space to hold the value of the guard.
8764
8765Semantics:
8766""""""""""
8767
Michael Gottesman2a64a632013-08-12 18:35:32 +00008768This intrinsic causes the prologue/epilogue inserter to force the position of
8769the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8770to ensure that if a local variable on the stack is overwritten, it will destroy
8771the value of the guard. When the function exits, the guard on the stack is
8772checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8773different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8774calling the ``__stack_chk_fail()`` function.
8775
8776'``llvm.stackprotectorcheck``' Intrinsic
Sean Silvacce63992013-09-09 19:13:28 +00008777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesman2a64a632013-08-12 18:35:32 +00008778
8779Syntax:
8780"""""""
8781
8782::
8783
8784 declare void @llvm.stackprotectorcheck(i8** <guard>)
8785
8786Overview:
8787"""""""""
8788
8789The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman2bf823e2013-08-12 19:44:09 +00008790created stack protector and if they are not equal calls the
Sean Silvaf722b002012-12-07 10:36:55 +00008791``__stack_chk_fail()`` function.
8792
Michael Gottesman2a64a632013-08-12 18:35:32 +00008793Arguments:
8794""""""""""
8795
8796The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8797the variable ``@__stack_chk_guard``.
8798
8799Semantics:
8800""""""""""
8801
8802This intrinsic is provided to perform the stack protector check by comparing
8803``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8804values do not match call the ``__stack_chk_fail()`` function.
8805
8806The reason to provide this as an IR level intrinsic instead of implementing it
8807via other IR operations is that in order to perform this operation at the IR
8808level without an intrinsic, one would need to create additional basic blocks to
8809handle the success/failure cases. This makes it difficult to stop the stack
8810protector check from disrupting sibling tail calls in Codegen. With this
8811intrinsic, we are able to generate the stack protector basic blocks late in
8812codegen after the tail call decision has occured.
8813
Sean Silvaf722b002012-12-07 10:36:55 +00008814'``llvm.objectsize``' Intrinsic
8815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8816
8817Syntax:
8818"""""""
8819
8820::
8821
8822 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8823 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8824
8825Overview:
8826"""""""""
8827
8828The ``llvm.objectsize`` intrinsic is designed to provide information to
8829the optimizers to determine at compile time whether a) an operation
8830(like memcpy) will overflow a buffer that corresponds to an object, or
8831b) that a runtime check for overflow isn't necessary. An object in this
8832context means an allocation of a specific class, structure, array, or
8833other object.
8834
8835Arguments:
8836""""""""""
8837
8838The ``llvm.objectsize`` intrinsic takes two arguments. The first
8839argument is a pointer to or into the ``object``. The second argument is
8840a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8841or -1 (if false) when the object size is unknown. The second argument
8842only accepts constants.
8843
8844Semantics:
8845""""""""""
8846
8847The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8848the size of the object concerned. If the size cannot be determined at
8849compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8850on the ``min`` argument).
8851
8852'``llvm.expect``' Intrinsic
8853^^^^^^^^^^^^^^^^^^^^^^^^^^^
8854
8855Syntax:
8856"""""""
8857
8858::
8859
8860 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8861 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8862
8863Overview:
8864"""""""""
8865
8866The ``llvm.expect`` intrinsic provides information about expected (the
8867most probable) value of ``val``, which can be used by optimizers.
8868
8869Arguments:
8870""""""""""
8871
8872The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8873a value. The second argument is an expected value, this needs to be a
8874constant value, variables are not allowed.
8875
8876Semantics:
8877""""""""""
8878
8879This intrinsic is lowered to the ``val``.
8880
8881'``llvm.donothing``' Intrinsic
8882^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8883
8884Syntax:
8885"""""""
8886
8887::
8888
8889 declare void @llvm.donothing() nounwind readnone
8890
8891Overview:
8892"""""""""
8893
8894The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8895only intrinsic that can be called with an invoke instruction.
8896
8897Arguments:
8898""""""""""
8899
8900None.
8901
8902Semantics:
8903""""""""""
8904
8905This intrinsic does nothing, and it's removed by optimizers and ignored
8906by codegen.