blob: 815a6f21cd2d8c44ea34eac4c76c1e8297c60146 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohman161ea032009-07-07 17:06:11 +000017// can handle. These classes are reference counted, managed by the const SCEV *
Dan Gohmanf17a25c2007-07-18 16:29:46 +000018// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
Owen Andersone755b092009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000069#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000070#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071#include "llvm/Analysis/LoopInfo.h"
Dan Gohmana7726c32009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000074#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000075#include "llvm/Support/CommandLine.h"
76#include "llvm/Support/Compiler.h"
77#include "llvm/Support/ConstantRange.h"
Edwin Török675d5622009-07-11 20:10:48 +000078#include "llvm/Support/ErrorHandling.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000079#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080#include "llvm/Support/InstIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081#include "llvm/Support/MathExtras.h"
Dan Gohman13058cc2009-04-21 00:47:46 +000082#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000084#include "llvm/ADT/STLExtras.h"
Dan Gohmanb7d04aa2009-07-08 19:23:34 +000085#include "llvm/ADT/SmallPtrSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086#include <algorithm>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087using namespace llvm;
88
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089STATISTIC(NumArrayLenItCounts,
90 "Number of trip counts computed with array length");
91STATISTIC(NumTripCountsComputed,
92 "Number of loops with predictable loop counts");
93STATISTIC(NumTripCountsNotComputed,
94 "Number of loops without predictable loop counts");
95STATISTIC(NumBruteForceTripCountsComputed,
96 "Number of loops with trip counts computed by force");
97
Dan Gohman089efff2008-05-13 00:00:25 +000098static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000099MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
100 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman9bc642f2009-06-24 04:48:43 +0000101 "symbolically execute a constant "
102 "derived loop"),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 cl::init(100));
104
Dan Gohman089efff2008-05-13 00:00:25 +0000105static RegisterPass<ScalarEvolution>
106R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107char ScalarEvolution::ID = 0;
108
109//===----------------------------------------------------------------------===//
110// SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000116
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117SCEV::~SCEV() {}
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000118
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119void SCEV::dump() const {
Dan Gohman13058cc2009-04-21 00:47:46 +0000120 print(errs());
121 errs() << '\n';
122}
123
124void SCEV::print(std::ostream &o) const {
125 raw_os_ostream OS(o);
126 print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127}
128
Dan Gohman7b560c42008-06-18 16:23:07 +0000129bool SCEV::isZero() const {
130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131 return SC->getValue()->isZero();
132 return false;
133}
134
Dan Gohmanf8bc8e82009-05-18 15:22:39 +0000135bool SCEV::isOne() const {
136 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
137 return SC->getValue()->isOne();
138 return false;
139}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140
Dan Gohmanf05118e2009-06-24 00:30:26 +0000141bool SCEV::isAllOnesValue() const {
142 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
143 return SC->getValue()->isAllOnesValue();
144 return false;
145}
146
Owen Andersonb70139d2009-06-22 21:57:23 +0000147SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohmand43a8282009-07-13 20:50:19 +0000148 SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000149
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000150bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Edwin Török675d5622009-07-11 20:10:48 +0000151 LLVM_UNREACHABLE("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000152 return false;
153}
154
155const Type *SCEVCouldNotCompute::getType() const {
Edwin Török675d5622009-07-11 20:10:48 +0000156 LLVM_UNREACHABLE("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 return 0;
158}
159
160bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Edwin Török675d5622009-07-11 20:10:48 +0000161 LLVM_UNREACHABLE("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 return false;
163}
164
Dan Gohman9bc642f2009-06-24 04:48:43 +0000165const SCEV *
166SCEVCouldNotCompute::replaceSymbolicValuesWithConcrete(
167 const SCEV *Sym,
168 const SCEV *Conc,
169 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000170 return this;
171}
172
Dan Gohman13058cc2009-04-21 00:47:46 +0000173void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000174 OS << "***COULDNOTCOMPUTE***";
175}
176
177bool SCEVCouldNotCompute::classof(const SCEV *S) {
178 return S->getSCEVType() == scCouldNotCompute;
179}
180
Dan Gohman161ea032009-07-07 17:06:11 +0000181const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000182 FoldingSetNodeID ID;
183 ID.AddInteger(scConstant);
184 ID.AddPointer(V);
185 void *IP = 0;
186 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
187 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
Dan Gohmand43a8282009-07-13 20:50:19 +0000188 new (S) SCEVConstant(ID, V);
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000189 UniqueSCEVs.InsertNode(S, IP);
190 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191}
192
Dan Gohman161ea032009-07-07 17:06:11 +0000193const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Dan Gohman89f85052007-10-22 18:31:58 +0000194 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000195}
196
Dan Gohman161ea032009-07-07 17:06:11 +0000197const SCEV *
Dan Gohman8fd520a2009-06-15 22:12:54 +0000198ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
199 return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
200}
201
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000202const Type *SCEVConstant::getType() const { return V->getType(); }
203
Dan Gohman13058cc2009-04-21 00:47:46 +0000204void SCEVConstant::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000205 WriteAsOperand(OS, V, false);
206}
207
Dan Gohmand43a8282009-07-13 20:50:19 +0000208SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
209 unsigned SCEVTy, const SCEV *op, const Type *ty)
210 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000211
Dan Gohman2a381532009-04-21 01:25:57 +0000212bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
213 return Op->dominates(BB, DT);
214}
215
Dan Gohmand43a8282009-07-13 20:50:19 +0000216SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
217 const SCEV *op, const Type *ty)
218 : SCEVCastExpr(ID, scTruncate, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000219 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
220 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221 "Cannot truncate non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000222}
223
Dan Gohman13058cc2009-04-21 00:47:46 +0000224void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000225 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000226}
227
Dan Gohmand43a8282009-07-13 20:50:19 +0000228SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
229 const SCEV *op, const Type *ty)
230 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000231 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
232 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000233 "Cannot zero extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000234}
235
Dan Gohman13058cc2009-04-21 00:47:46 +0000236void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000237 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238}
239
Dan Gohmand43a8282009-07-13 20:50:19 +0000240SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
241 const SCEV *op, const Type *ty)
242 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000243 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
244 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000245 "Cannot sign extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000246}
247
Dan Gohman13058cc2009-04-21 00:47:46 +0000248void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000249 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000250}
251
Dan Gohman13058cc2009-04-21 00:47:46 +0000252void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000253 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
254 const char *OpStr = getOperationStr();
255 OS << "(" << *Operands[0];
256 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
257 OS << OpStr << *Operands[i];
258 OS << ")";
259}
260
Dan Gohman9bc642f2009-06-24 04:48:43 +0000261const SCEV *
262SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete(
263 const SCEV *Sym,
264 const SCEV *Conc,
265 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000266 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +0000267 const SCEV *H =
Dan Gohman89f85052007-10-22 18:31:58 +0000268 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000269 if (H != getOperand(i)) {
Dan Gohman161ea032009-07-07 17:06:11 +0000270 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000271 NewOps.reserve(getNumOperands());
272 for (unsigned j = 0; j != i; ++j)
273 NewOps.push_back(getOperand(j));
274 NewOps.push_back(H);
275 for (++i; i != e; ++i)
276 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000277 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278
279 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000280 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000281 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000282 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000283 else if (isa<SCEVSMaxExpr>(this))
284 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000285 else if (isa<SCEVUMaxExpr>(this))
286 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000287 else
Edwin Török675d5622009-07-11 20:10:48 +0000288 LLVM_UNREACHABLE("Unknown commutative expr!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289 }
290 }
291 return this;
292}
293
Dan Gohman72a8a022009-05-07 14:00:19 +0000294bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng98c073b2009-02-17 00:13:06 +0000295 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
296 if (!getOperand(i)->dominates(BB, DT))
297 return false;
298 }
299 return true;
300}
301
Evan Cheng98c073b2009-02-17 00:13:06 +0000302bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
303 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
304}
305
Dan Gohman13058cc2009-04-21 00:47:46 +0000306void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000307 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308}
309
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000310const Type *SCEVUDivExpr::getType() const {
Dan Gohman140f08f2009-05-26 17:44:05 +0000311 // In most cases the types of LHS and RHS will be the same, but in some
312 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
313 // depend on the type for correctness, but handling types carefully can
314 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
315 // a pointer type than the RHS, so use the RHS' type here.
316 return RHS->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000317}
318
Dan Gohman9bc642f2009-06-24 04:48:43 +0000319const SCEV *
320SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym,
321 const SCEV *Conc,
322 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000323 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +0000324 const SCEV *H =
Dan Gohman89f85052007-10-22 18:31:58 +0000325 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000326 if (H != getOperand(i)) {
Dan Gohman161ea032009-07-07 17:06:11 +0000327 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328 NewOps.reserve(getNumOperands());
329 for (unsigned j = 0; j != i; ++j)
330 NewOps.push_back(getOperand(j));
331 NewOps.push_back(H);
332 for (++i; i != e; ++i)
333 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000334 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335
Dan Gohman89f85052007-10-22 18:31:58 +0000336 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337 }
338 }
339 return this;
340}
341
342
343bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000344 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohman2d888d82009-06-26 22:17:21 +0000345 if (!QueryLoop)
346 return false;
347
348 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
349 if (QueryLoop->contains(L->getHeader()))
350 return false;
351
352 // This recurrence is variant w.r.t. QueryLoop if any of its operands
353 // are variant.
354 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
355 if (!getOperand(i)->isLoopInvariant(QueryLoop))
356 return false;
357
358 // Otherwise it's loop-invariant.
359 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000360}
361
Dan Gohman13058cc2009-04-21 00:47:46 +0000362void SCEVAddRecExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000363 OS << "{" << *Operands[0];
364 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
365 OS << ",+," << *Operands[i];
366 OS << "}<" << L->getHeader()->getName() + ">";
367}
368
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000369bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
370 // All non-instruction values are loop invariant. All instructions are loop
371 // invariant if they are not contained in the specified loop.
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000372 // Instructions are never considered invariant in the function body
373 // (null loop) because they are defined within the "loop".
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000374 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000375 return L && !L->contains(I->getParent());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376 return true;
377}
378
Evan Cheng98c073b2009-02-17 00:13:06 +0000379bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
380 if (Instruction *I = dyn_cast<Instruction>(getValue()))
381 return DT->dominates(I->getParent(), BB);
382 return true;
383}
384
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385const Type *SCEVUnknown::getType() const {
386 return V->getType();
387}
388
Dan Gohman13058cc2009-04-21 00:47:46 +0000389void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000390 WriteAsOperand(OS, V, false);
391}
392
393//===----------------------------------------------------------------------===//
394// SCEV Utilities
395//===----------------------------------------------------------------------===//
396
397namespace {
398 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
399 /// than the complexity of the RHS. This comparator is used to canonicalize
400 /// expressions.
Dan Gohman5d486452009-05-07 14:39:04 +0000401 class VISIBILITY_HIDDEN SCEVComplexityCompare {
402 LoopInfo *LI;
403 public:
404 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
405
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000406 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman5d486452009-05-07 14:39:04 +0000407 // Primarily, sort the SCEVs by their getSCEVType().
408 if (LHS->getSCEVType() != RHS->getSCEVType())
409 return LHS->getSCEVType() < RHS->getSCEVType();
410
411 // Aside from the getSCEVType() ordering, the particular ordering
412 // isn't very important except that it's beneficial to be consistent,
413 // so that (a + b) and (b + a) don't end up as different expressions.
414
415 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
416 // not as complete as it could be.
417 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
418 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
419
Dan Gohmand0c01232009-05-19 02:15:55 +0000420 // Order pointer values after integer values. This helps SCEVExpander
421 // form GEPs.
422 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
423 return false;
424 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
425 return true;
426
Dan Gohman5d486452009-05-07 14:39:04 +0000427 // Compare getValueID values.
428 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
429 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
430
431 // Sort arguments by their position.
432 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
433 const Argument *RA = cast<Argument>(RU->getValue());
434 return LA->getArgNo() < RA->getArgNo();
435 }
436
437 // For instructions, compare their loop depth, and their opcode.
438 // This is pretty loose.
439 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
440 Instruction *RV = cast<Instruction>(RU->getValue());
441
442 // Compare loop depths.
443 if (LI->getLoopDepth(LV->getParent()) !=
444 LI->getLoopDepth(RV->getParent()))
445 return LI->getLoopDepth(LV->getParent()) <
446 LI->getLoopDepth(RV->getParent());
447
448 // Compare opcodes.
449 if (LV->getOpcode() != RV->getOpcode())
450 return LV->getOpcode() < RV->getOpcode();
451
452 // Compare the number of operands.
453 if (LV->getNumOperands() != RV->getNumOperands())
454 return LV->getNumOperands() < RV->getNumOperands();
455 }
456
457 return false;
458 }
459
Dan Gohman56fc8f12009-06-14 22:51:25 +0000460 // Compare constant values.
461 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
462 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Nick Lewycky9bb14052009-07-04 17:24:52 +0000463 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
464 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
Dan Gohman56fc8f12009-06-14 22:51:25 +0000465 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
466 }
467
468 // Compare addrec loop depths.
469 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
470 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
471 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
472 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
473 }
Dan Gohman5d486452009-05-07 14:39:04 +0000474
475 // Lexicographically compare n-ary expressions.
476 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
477 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
478 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
479 if (i >= RC->getNumOperands())
480 return false;
481 if (operator()(LC->getOperand(i), RC->getOperand(i)))
482 return true;
483 if (operator()(RC->getOperand(i), LC->getOperand(i)))
484 return false;
485 }
486 return LC->getNumOperands() < RC->getNumOperands();
487 }
488
Dan Gohman6e10db12009-05-07 19:23:21 +0000489 // Lexicographically compare udiv expressions.
490 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
491 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
492 if (operator()(LC->getLHS(), RC->getLHS()))
493 return true;
494 if (operator()(RC->getLHS(), LC->getLHS()))
495 return false;
496 if (operator()(LC->getRHS(), RC->getRHS()))
497 return true;
498 if (operator()(RC->getRHS(), LC->getRHS()))
499 return false;
500 return false;
501 }
502
Dan Gohman5d486452009-05-07 14:39:04 +0000503 // Compare cast expressions by operand.
504 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
505 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
506 return operator()(LC->getOperand(), RC->getOperand());
507 }
508
Edwin Török675d5622009-07-11 20:10:48 +0000509 LLVM_UNREACHABLE("Unknown SCEV kind!");
Dan Gohman5d486452009-05-07 14:39:04 +0000510 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000511 }
512 };
513}
514
515/// GroupByComplexity - Given a list of SCEV objects, order them by their
516/// complexity, and group objects of the same complexity together by value.
517/// When this routine is finished, we know that any duplicates in the vector are
518/// consecutive and that complexity is monotonically increasing.
519///
520/// Note that we go take special precautions to ensure that we get determinstic
521/// results from this routine. In other words, we don't want the results of
522/// this to depend on where the addresses of various SCEV objects happened to
523/// land in memory.
524///
Dan Gohman161ea032009-07-07 17:06:11 +0000525static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman5d486452009-05-07 14:39:04 +0000526 LoopInfo *LI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000527 if (Ops.size() < 2) return; // Noop
528 if (Ops.size() == 2) {
529 // This is the common case, which also happens to be trivially simple.
530 // Special case it.
Dan Gohman5d486452009-05-07 14:39:04 +0000531 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000532 std::swap(Ops[0], Ops[1]);
533 return;
534 }
535
536 // Do the rough sort by complexity.
Dan Gohman5d486452009-05-07 14:39:04 +0000537 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000538
539 // Now that we are sorted by complexity, group elements of the same
540 // complexity. Note that this is, at worst, N^2, but the vector is likely to
541 // be extremely short in practice. Note that we take this approach because we
542 // do not want to depend on the addresses of the objects we are grouping.
543 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000544 const SCEV *S = Ops[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000545 unsigned Complexity = S->getSCEVType();
546
547 // If there are any objects of the same complexity and same value as this
548 // one, group them.
549 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
550 if (Ops[j] == S) { // Found a duplicate.
551 // Move it to immediately after i'th element.
552 std::swap(Ops[i+1], Ops[j]);
553 ++i; // no need to rescan it.
554 if (i == e-2) return; // Done!
555 }
556 }
557 }
558}
559
560
561
562//===----------------------------------------------------------------------===//
563// Simple SCEV method implementations
564//===----------------------------------------------------------------------===//
565
Eli Friedman7489ec92008-08-04 23:49:06 +0000566/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohmanc8a29272009-05-24 23:45:28 +0000567/// Assume, K > 0.
Dan Gohman161ea032009-07-07 17:06:11 +0000568static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Eli Friedman7489ec92008-08-04 23:49:06 +0000569 ScalarEvolution &SE,
Dan Gohman01c2ee72009-04-16 03:18:22 +0000570 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000571 // Handle the simplest case efficiently.
572 if (K == 1)
573 return SE.getTruncateOrZeroExtend(It, ResultTy);
574
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000575 // We are using the following formula for BC(It, K):
576 //
577 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
578 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000579 // Suppose, W is the bitwidth of the return value. We must be prepared for
580 // overflow. Hence, we must assure that the result of our computation is
581 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
582 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000583 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000584 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman9bc642f2009-06-24 04:48:43 +0000585 // is something like the following, where T is the number of factors of 2 in
Eli Friedman7489ec92008-08-04 23:49:06 +0000586 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
587 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000588 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000589 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000590 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000591 // This formula is trivially equivalent to the previous formula. However,
592 // this formula can be implemented much more efficiently. The trick is that
593 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
594 // arithmetic. To do exact division in modular arithmetic, all we have
595 // to do is multiply by the inverse. Therefore, this step can be done at
596 // width W.
Dan Gohman9bc642f2009-06-24 04:48:43 +0000597 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000598 // The next issue is how to safely do the division by 2^T. The way this
599 // is done is by doing the multiplication step at a width of at least W + T
600 // bits. This way, the bottom W+T bits of the product are accurate. Then,
601 // when we perform the division by 2^T (which is equivalent to a right shift
602 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
603 // truncated out after the division by 2^T.
604 //
605 // In comparison to just directly using the first formula, this technique
606 // is much more efficient; using the first formula requires W * K bits,
607 // but this formula less than W + K bits. Also, the first formula requires
608 // a division step, whereas this formula only requires multiplies and shifts.
609 //
610 // It doesn't matter whether the subtraction step is done in the calculation
611 // width or the input iteration count's width; if the subtraction overflows,
612 // the result must be zero anyway. We prefer here to do it in the width of
613 // the induction variable because it helps a lot for certain cases; CodeGen
614 // isn't smart enough to ignore the overflow, which leads to much less
615 // efficient code if the width of the subtraction is wider than the native
616 // register width.
617 //
618 // (It's possible to not widen at all by pulling out factors of 2 before
619 // the multiplication; for example, K=2 can be calculated as
620 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
621 // extra arithmetic, so it's not an obvious win, and it gets
622 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000623
Eli Friedman7489ec92008-08-04 23:49:06 +0000624 // Protection from insane SCEVs; this bound is conservative,
625 // but it probably doesn't matter.
626 if (K > 1000)
Dan Gohman0ad08b02009-04-18 17:58:19 +0000627 return SE.getCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000628
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000629 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000630
Eli Friedman7489ec92008-08-04 23:49:06 +0000631 // Calculate K! / 2^T and T; we divide out the factors of two before
632 // multiplying for calculating K! / 2^T to avoid overflow.
633 // Other overflow doesn't matter because we only care about the bottom
634 // W bits of the result.
635 APInt OddFactorial(W, 1);
636 unsigned T = 1;
637 for (unsigned i = 3; i <= K; ++i) {
638 APInt Mult(W, i);
639 unsigned TwoFactors = Mult.countTrailingZeros();
640 T += TwoFactors;
641 Mult = Mult.lshr(TwoFactors);
642 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000643 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000644
Eli Friedman7489ec92008-08-04 23:49:06 +0000645 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000646 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000647
648 // Calcuate 2^T, at width T+W.
649 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
650
651 // Calculate the multiplicative inverse of K! / 2^T;
652 // this multiplication factor will perform the exact division by
653 // K! / 2^T.
654 APInt Mod = APInt::getSignedMinValue(W+1);
655 APInt MultiplyFactor = OddFactorial.zext(W+1);
656 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
657 MultiplyFactor = MultiplyFactor.trunc(W);
658
659 // Calculate the product, at width T+W
660 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
Dan Gohman161ea032009-07-07 17:06:11 +0000661 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman7489ec92008-08-04 23:49:06 +0000662 for (unsigned i = 1; i != K; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +0000663 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Eli Friedman7489ec92008-08-04 23:49:06 +0000664 Dividend = SE.getMulExpr(Dividend,
665 SE.getTruncateOrZeroExtend(S, CalculationTy));
666 }
667
668 // Divide by 2^T
Dan Gohman161ea032009-07-07 17:06:11 +0000669 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman7489ec92008-08-04 23:49:06 +0000670
671 // Truncate the result, and divide by K! / 2^T.
672
673 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
674 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000675}
676
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000677/// evaluateAtIteration - Return the value of this chain of recurrences at
678/// the specified iteration number. We can evaluate this recurrence by
679/// multiplying each element in the chain by the binomial coefficient
680/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
681///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000682/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000683///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000684/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000685///
Dan Gohman161ea032009-07-07 17:06:11 +0000686const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman89f85052007-10-22 18:31:58 +0000687 ScalarEvolution &SE) const {
Dan Gohman161ea032009-07-07 17:06:11 +0000688 const SCEV *Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000689 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000690 // The computation is correct in the face of overflow provided that the
691 // multiplication is performed _after_ the evaluation of the binomial
692 // coefficient.
Dan Gohman161ea032009-07-07 17:06:11 +0000693 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000694 if (isa<SCEVCouldNotCompute>(Coeff))
695 return Coeff;
696
697 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000698 }
699 return Result;
700}
701
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000702//===----------------------------------------------------------------------===//
703// SCEV Expression folder implementations
704//===----------------------------------------------------------------------===//
705
Dan Gohman161ea032009-07-07 17:06:11 +0000706const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohman9c8abcc2009-05-01 16:44:56 +0000707 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000708 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000709 "This is not a truncating conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000710 assert(isSCEVable(Ty) &&
711 "This is not a conversion to a SCEVable type!");
712 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000713
Dan Gohmand43a8282009-07-13 20:50:19 +0000714 FoldingSetNodeID ID;
715 ID.AddInteger(scTruncate);
716 ID.AddPointer(Op);
717 ID.AddPointer(Ty);
718 void *IP = 0;
719 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
720
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000721 // Fold if the operand is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000722 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman55788cf2009-06-24 00:38:39 +0000723 return getConstant(
724 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000725
Dan Gohman1a5c4992009-04-22 16:20:48 +0000726 // trunc(trunc(x)) --> trunc(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000727 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000728 return getTruncateExpr(ST->getOperand(), Ty);
729
Nick Lewycky37d04642009-04-23 05:15:08 +0000730 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000731 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000732 return getTruncateOrSignExtend(SS->getOperand(), Ty);
733
734 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000735 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000736 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
737
Dan Gohman1c0aa2c2009-06-18 16:24:47 +0000738 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000739 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman161ea032009-07-07 17:06:11 +0000740 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000741 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman45b3b542009-05-08 21:03:19 +0000742 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
743 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 }
745
Dan Gohmand43a8282009-07-13 20:50:19 +0000746 // The cast wasn't folded; create an explicit cast node.
747 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000748 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
749 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +0000750 new (S) SCEVTruncateExpr(ID, Op, Ty);
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000751 UniqueSCEVs.InsertNode(S, IP);
752 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000753}
754
Dan Gohman161ea032009-07-07 17:06:11 +0000755const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohman36d40922009-04-16 19:25:55 +0000756 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000757 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman36d40922009-04-16 19:25:55 +0000758 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000759 assert(isSCEVable(Ty) &&
760 "This is not a conversion to a SCEVable type!");
761 Ty = getEffectiveSCEVType(Ty);
Dan Gohman36d40922009-04-16 19:25:55 +0000762
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000763 // Fold if the operand is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000764 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000765 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000766 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
767 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohman55788cf2009-06-24 00:38:39 +0000768 return getConstant(cast<ConstantInt>(C));
Dan Gohman01c2ee72009-04-16 03:18:22 +0000769 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000770
Dan Gohman1a5c4992009-04-22 16:20:48 +0000771 // zext(zext(x)) --> zext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000772 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000773 return getZeroExtendExpr(SZ->getOperand(), Ty);
774
Dan Gohmana9dba962009-04-27 20:16:15 +0000775 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000776 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000777 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000778 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000779 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000780 if (AR->isAffine()) {
781 // Check whether the backedge-taken count is SCEVCouldNotCompute.
782 // Note that this serves two purposes: It filters out loops that are
783 // simply not analyzable, and it covers the case where this code is
784 // being called from within backedge-taken count analysis, such that
785 // attempting to ask for the backedge-taken count would likely result
786 // in infinite recursion. In the later case, the analysis code will
787 // cope with a conservative value, and it will take care to purge
788 // that value once it has finished.
Nick Lewycky9425be92009-07-11 20:38:25 +0000789 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000790 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000791 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000792 // overflow.
Nick Lewycky9425be92009-07-11 20:38:25 +0000793 const SCEV *Start = AR->getStart();
794 const SCEV *Step = AR->getStepRecurrence(*this);
Dan Gohmana9dba962009-04-27 20:16:15 +0000795
796 // Check whether the backedge-taken count can be losslessly casted to
797 // the addrec's type. The count is always unsigned.
Dan Gohman161ea032009-07-07 17:06:11 +0000798 const SCEV *CastedMaxBECount =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000799 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman161ea032009-07-07 17:06:11 +0000800 const SCEV *RecastedMaxBECount =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000801 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
802 if (MaxBECount == RecastedMaxBECount) {
Nick Lewycky9425be92009-07-11 20:38:25 +0000803 const Type *WideTy =
804 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000805 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman161ea032009-07-07 17:06:11 +0000806 const SCEV *ZMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000807 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000808 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman161ea032009-07-07 17:06:11 +0000809 const SCEV *Add = getAddExpr(Start, ZMul);
810 const SCEV *OperandExtendedAdd =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000811 getAddExpr(getZeroExtendExpr(Start, WideTy),
812 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
813 getZeroExtendExpr(Step, WideTy)));
814 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000815 // Return the expression with the addrec on the outside.
816 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
817 getZeroExtendExpr(Step, Ty),
Nick Lewycky9425be92009-07-11 20:38:25 +0000818 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000819
820 // Similar to above, only this time treat the step value as signed.
821 // This covers loops that count down.
Dan Gohman161ea032009-07-07 17:06:11 +0000822 const SCEV *SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000823 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000824 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000825 Add = getAddExpr(Start, SMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000826 OperandExtendedAdd =
827 getAddExpr(getZeroExtendExpr(Start, WideTy),
828 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
829 getSignExtendExpr(Step, WideTy)));
830 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000831 // Return the expression with the addrec on the outside.
832 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
833 getSignExtendExpr(Step, Ty),
Nick Lewycky9425be92009-07-11 20:38:25 +0000834 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000835 }
836 }
837 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000838
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000839 FoldingSetNodeID ID;
840 ID.AddInteger(scZeroExtend);
841 ID.AddPointer(Op);
842 ID.AddPointer(Ty);
843 void *IP = 0;
844 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
845 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +0000846 new (S) SCEVZeroExtendExpr(ID, Op, Ty);
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000847 UniqueSCEVs.InsertNode(S, IP);
848 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000849}
850
Dan Gohman161ea032009-07-07 17:06:11 +0000851const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmana9dba962009-04-27 20:16:15 +0000852 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000853 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000854 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000855 assert(isSCEVable(Ty) &&
856 "This is not a conversion to a SCEVable type!");
857 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000858
Dan Gohmanc86c0df2009-06-30 20:13:32 +0000859 // Fold if the operand is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000860 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000861 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000862 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
863 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
Dan Gohman55788cf2009-06-24 00:38:39 +0000864 return getConstant(cast<ConstantInt>(C));
Dan Gohman01c2ee72009-04-16 03:18:22 +0000865 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000866
Dan Gohman1a5c4992009-04-22 16:20:48 +0000867 // sext(sext(x)) --> sext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000868 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000869 return getSignExtendExpr(SS->getOperand(), Ty);
870
Dan Gohmana9dba962009-04-27 20:16:15 +0000871 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000872 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000873 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000874 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000875 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000876 if (AR->isAffine()) {
877 // Check whether the backedge-taken count is SCEVCouldNotCompute.
878 // Note that this serves two purposes: It filters out loops that are
879 // simply not analyzable, and it covers the case where this code is
880 // being called from within backedge-taken count analysis, such that
881 // attempting to ask for the backedge-taken count would likely result
882 // in infinite recursion. In the later case, the analysis code will
883 // cope with a conservative value, and it will take care to purge
884 // that value once it has finished.
Nick Lewycky9425be92009-07-11 20:38:25 +0000885 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000886 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000887 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000888 // overflow.
Nick Lewycky9425be92009-07-11 20:38:25 +0000889 const SCEV *Start = AR->getStart();
890 const SCEV *Step = AR->getStepRecurrence(*this);
Dan Gohmana9dba962009-04-27 20:16:15 +0000891
892 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman3ded5b22009-04-29 22:28:28 +0000893 // the addrec's type. The count is always unsigned.
Dan Gohman161ea032009-07-07 17:06:11 +0000894 const SCEV *CastedMaxBECount =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000895 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman161ea032009-07-07 17:06:11 +0000896 const SCEV *RecastedMaxBECount =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000897 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
898 if (MaxBECount == RecastedMaxBECount) {
Nick Lewycky9425be92009-07-11 20:38:25 +0000899 const Type *WideTy =
900 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000901 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman161ea032009-07-07 17:06:11 +0000902 const SCEV *SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000903 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000904 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman161ea032009-07-07 17:06:11 +0000905 const SCEV *Add = getAddExpr(Start, SMul);
906 const SCEV *OperandExtendedAdd =
Dan Gohman3bb37f52009-05-18 15:58:39 +0000907 getAddExpr(getSignExtendExpr(Start, WideTy),
908 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
909 getSignExtendExpr(Step, WideTy)));
910 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000911 // Return the expression with the addrec on the outside.
912 return getAddRecExpr(getSignExtendExpr(Start, Ty),
913 getSignExtendExpr(Step, Ty),
Nick Lewycky9425be92009-07-11 20:38:25 +0000914 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000915 }
916 }
917 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000918
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000919 FoldingSetNodeID ID;
920 ID.AddInteger(scSignExtend);
921 ID.AddPointer(Op);
922 ID.AddPointer(Ty);
923 void *IP = 0;
924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
925 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +0000926 new (S) SCEVSignExtendExpr(ID, Op, Ty);
Dan Gohmanc6475cb2009-06-27 21:21:31 +0000927 UniqueSCEVs.InsertNode(S, IP);
928 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000929}
930
Dan Gohmane1ca7e82009-06-13 15:56:47 +0000931/// getAnyExtendExpr - Return a SCEV for the given operand extended with
932/// unspecified bits out to the given type.
933///
Dan Gohman161ea032009-07-07 17:06:11 +0000934const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmane1ca7e82009-06-13 15:56:47 +0000935 const Type *Ty) {
936 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
937 "This is not an extending conversion!");
938 assert(isSCEVable(Ty) &&
939 "This is not a conversion to a SCEVable type!");
940 Ty = getEffectiveSCEVType(Ty);
941
942 // Sign-extend negative constants.
943 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
944 if (SC->getValue()->getValue().isNegative())
945 return getSignExtendExpr(Op, Ty);
946
947 // Peel off a truncate cast.
948 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman161ea032009-07-07 17:06:11 +0000949 const SCEV *NewOp = T->getOperand();
Dan Gohmane1ca7e82009-06-13 15:56:47 +0000950 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
951 return getAnyExtendExpr(NewOp, Ty);
952 return getTruncateOrNoop(NewOp, Ty);
953 }
954
955 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman161ea032009-07-07 17:06:11 +0000956 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohmane1ca7e82009-06-13 15:56:47 +0000957 if (!isa<SCEVZeroExtendExpr>(ZExt))
958 return ZExt;
959
960 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman161ea032009-07-07 17:06:11 +0000961 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohmane1ca7e82009-06-13 15:56:47 +0000962 if (!isa<SCEVSignExtendExpr>(SExt))
963 return SExt;
964
965 // If the expression is obviously signed, use the sext cast value.
966 if (isa<SCEVSMaxExpr>(Op))
967 return SExt;
968
969 // Absent any other information, use the zext cast value.
970 return ZExt;
971}
972
Dan Gohman27bd4cb2009-06-14 22:58:51 +0000973/// CollectAddOperandsWithScales - Process the given Ops list, which is
974/// a list of operands to be added under the given scale, update the given
975/// map. This is a helper function for getAddRecExpr. As an example of
976/// what it does, given a sequence of operands that would form an add
977/// expression like this:
978///
979/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
980///
981/// where A and B are constants, update the map with these values:
982///
983/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
984///
985/// and add 13 + A*B*29 to AccumulatedConstant.
986/// This will allow getAddRecExpr to produce this:
987///
988/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
989///
990/// This form often exposes folding opportunities that are hidden in
991/// the original operand list.
992///
993/// Return true iff it appears that any interesting folding opportunities
994/// may be exposed. This helps getAddRecExpr short-circuit extra work in
995/// the common case where no interesting opportunities are present, and
996/// is also used as a check to avoid infinite recursion.
997///
998static bool
Dan Gohman161ea032009-07-07 17:06:11 +0000999CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1000 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001001 APInt &AccumulatedConstant,
Dan Gohman161ea032009-07-07 17:06:11 +00001002 const SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001003 const APInt &Scale,
1004 ScalarEvolution &SE) {
1005 bool Interesting = false;
1006
1007 // Iterate over the add operands.
1008 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1009 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1010 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1011 APInt NewScale =
1012 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1013 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1014 // A multiplication of a constant with another add; recurse.
1015 Interesting |=
1016 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1017 cast<SCEVAddExpr>(Mul->getOperand(1))
1018 ->getOperands(),
1019 NewScale, SE);
1020 } else {
1021 // A multiplication of a constant with some other value. Update
1022 // the map.
Dan Gohman161ea032009-07-07 17:06:11 +00001023 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1024 const SCEV *Key = SE.getMulExpr(MulOps);
1025 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman3bf01f02009-06-29 18:25:52 +00001026 M.insert(std::make_pair(Key, NewScale));
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001027 if (Pair.second) {
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001028 NewOps.push_back(Pair.first->first);
1029 } else {
1030 Pair.first->second += NewScale;
1031 // The map already had an entry for this value, which may indicate
1032 // a folding opportunity.
1033 Interesting = true;
1034 }
1035 }
1036 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1037 // Pull a buried constant out to the outside.
1038 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1039 Interesting = true;
1040 AccumulatedConstant += Scale * C->getValue()->getValue();
1041 } else {
1042 // An ordinary operand. Update the map.
Dan Gohman161ea032009-07-07 17:06:11 +00001043 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman3bf01f02009-06-29 18:25:52 +00001044 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001045 if (Pair.second) {
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001046 NewOps.push_back(Pair.first->first);
1047 } else {
1048 Pair.first->second += Scale;
1049 // The map already had an entry for this value, which may indicate
1050 // a folding opportunity.
1051 Interesting = true;
1052 }
1053 }
1054 }
1055
1056 return Interesting;
1057}
1058
1059namespace {
1060 struct APIntCompare {
1061 bool operator()(const APInt &LHS, const APInt &RHS) const {
1062 return LHS.ult(RHS);
1063 }
1064 };
1065}
1066
Dan Gohmanc8a29272009-05-24 23:45:28 +00001067/// getAddExpr - Get a canonical add expression, or something simpler if
1068/// possible.
Dan Gohman161ea032009-07-07 17:06:11 +00001069const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001070 assert(!Ops.empty() && "Cannot get empty add!");
1071 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001072#ifndef NDEBUG
1073 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1074 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1075 getEffectiveSCEVType(Ops[0]->getType()) &&
1076 "SCEVAddExpr operand types don't match!");
1077#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001078
1079 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001080 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001081
1082 // If there are any constants, fold them together.
1083 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001084 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001085 ++Idx;
1086 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001087 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001088 // We found two constants, fold them together!
Dan Gohman02ff9392009-06-14 22:47:23 +00001089 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1090 RHSC->getValue()->getValue());
Dan Gohman68f23e82009-06-14 22:53:57 +00001091 if (Ops.size() == 2) return Ops[0];
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001092 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001093 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001094 }
1095
1096 // If we are left with a constant zero being added, strip it off.
1097 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1098 Ops.erase(Ops.begin());
1099 --Idx;
1100 }
1101 }
1102
1103 if (Ops.size() == 1) return Ops[0];
1104
1105 // Okay, check to see if the same value occurs in the operand list twice. If
1106 // so, merge them together into an multiply expression. Since we sorted the
1107 // list, these values are required to be adjacent.
1108 const Type *Ty = Ops[0]->getType();
1109 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1110 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1111 // Found a match, merge the two values into a multiply, and add any
1112 // remaining values to the result.
Dan Gohman161ea032009-07-07 17:06:11 +00001113 const SCEV *Two = getIntegerSCEV(2, Ty);
1114 const SCEV *Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001115 if (Ops.size() == 2)
1116 return Mul;
1117 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1118 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +00001119 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001120 }
1121
Dan Gohman45b3b542009-05-08 21:03:19 +00001122 // Check for truncates. If all the operands are truncated from the same
1123 // type, see if factoring out the truncate would permit the result to be
1124 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1125 // if the contents of the resulting outer trunc fold to something simple.
1126 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1127 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1128 const Type *DstType = Trunc->getType();
1129 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman161ea032009-07-07 17:06:11 +00001130 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman45b3b542009-05-08 21:03:19 +00001131 bool Ok = true;
1132 // Check all the operands to see if they can be represented in the
1133 // source type of the truncate.
1134 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1135 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1136 if (T->getOperand()->getType() != SrcType) {
1137 Ok = false;
1138 break;
1139 }
1140 LargeOps.push_back(T->getOperand());
1141 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1142 // This could be either sign or zero extension, but sign extension
1143 // is much more likely to be foldable here.
1144 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1145 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman161ea032009-07-07 17:06:11 +00001146 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman45b3b542009-05-08 21:03:19 +00001147 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1148 if (const SCEVTruncateExpr *T =
1149 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1150 if (T->getOperand()->getType() != SrcType) {
1151 Ok = false;
1152 break;
1153 }
1154 LargeMulOps.push_back(T->getOperand());
1155 } else if (const SCEVConstant *C =
1156 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1157 // This could be either sign or zero extension, but sign extension
1158 // is much more likely to be foldable here.
1159 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1160 } else {
1161 Ok = false;
1162 break;
1163 }
1164 }
1165 if (Ok)
1166 LargeOps.push_back(getMulExpr(LargeMulOps));
1167 } else {
1168 Ok = false;
1169 break;
1170 }
1171 }
1172 if (Ok) {
1173 // Evaluate the expression in the larger type.
Dan Gohman161ea032009-07-07 17:06:11 +00001174 const SCEV *Fold = getAddExpr(LargeOps);
Dan Gohman45b3b542009-05-08 21:03:19 +00001175 // If it folds to something simple, use it. Otherwise, don't.
1176 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1177 return getTruncateExpr(Fold, DstType);
1178 }
1179 }
1180
1181 // Skip past any other cast SCEVs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001182 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1183 ++Idx;
1184
1185 // If there are add operands they would be next.
1186 if (Idx < Ops.size()) {
1187 bool DeletedAdd = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001188 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001189 // If we have an add, expand the add operands onto the end of the operands
1190 // list.
1191 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1192 Ops.erase(Ops.begin()+Idx);
1193 DeletedAdd = true;
1194 }
1195
1196 // If we deleted at least one add, we added operands to the end of the list,
1197 // and they are not necessarily sorted. Recurse to resort and resimplify
1198 // any operands we just aquired.
1199 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +00001200 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001201 }
1202
1203 // Skip over the add expression until we get to a multiply.
1204 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1205 ++Idx;
1206
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001207 // Check to see if there are any folding opportunities present with
1208 // operands multiplied by constant values.
1209 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1210 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman161ea032009-07-07 17:06:11 +00001211 DenseMap<const SCEV *, APInt> M;
1212 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001213 APInt AccumulatedConstant(BitWidth, 0);
1214 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1215 Ops, APInt(BitWidth, 1), *this)) {
1216 // Some interesting folding opportunity is present, so its worthwhile to
1217 // re-generate the operands list. Group the operands by constant scale,
1218 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman161ea032009-07-07 17:06:11 +00001219 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1220 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001221 E = NewOps.end(); I != E; ++I)
1222 MulOpLists[M.find(*I)->second].push_back(*I);
1223 // Re-generate the operands list.
1224 Ops.clear();
1225 if (AccumulatedConstant != 0)
1226 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman9bc642f2009-06-24 04:48:43 +00001227 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1228 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001229 if (I->first != 0)
Dan Gohman9bc642f2009-06-24 04:48:43 +00001230 Ops.push_back(getMulExpr(getConstant(I->first),
1231 getAddExpr(I->second)));
Dan Gohman27bd4cb2009-06-14 22:58:51 +00001232 if (Ops.empty())
1233 return getIntegerSCEV(0, Ty);
1234 if (Ops.size() == 1)
1235 return Ops[0];
1236 return getAddExpr(Ops);
1237 }
1238 }
1239
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001240 // If we are adding something to a multiply expression, make sure the
1241 // something is not already an operand of the multiply. If so, merge it into
1242 // the multiply.
1243 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001244 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001245 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001246 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman02ff9392009-06-14 22:47:23 +00001248 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman161ea032009-07-07 17:06:11 +00001250 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001251 if (Mul->getNumOperands() != 2) {
1252 // If the multiply has more than two operands, we must get the
1253 // Y*Z term.
Dan Gohman161ea032009-07-07 17:06:11 +00001254 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001255 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001256 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001257 }
Dan Gohman161ea032009-07-07 17:06:11 +00001258 const SCEV *One = getIntegerSCEV(1, Ty);
1259 const SCEV *AddOne = getAddExpr(InnerMul, One);
1260 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001261 if (Ops.size() == 2) return OuterMul;
1262 if (AddOp < Idx) {
1263 Ops.erase(Ops.begin()+AddOp);
1264 Ops.erase(Ops.begin()+Idx-1);
1265 } else {
1266 Ops.erase(Ops.begin()+Idx);
1267 Ops.erase(Ops.begin()+AddOp-1);
1268 }
1269 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001270 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271 }
1272
1273 // Check this multiply against other multiplies being added together.
1274 for (unsigned OtherMulIdx = Idx+1;
1275 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1276 ++OtherMulIdx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001277 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001278 // If MulOp occurs in OtherMul, we can fold the two multiplies
1279 // together.
1280 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1281 OMulOp != e; ++OMulOp)
1282 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1283 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman161ea032009-07-07 17:06:11 +00001284 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001285 if (Mul->getNumOperands() != 2) {
Dan Gohman9bc642f2009-06-24 04:48:43 +00001286 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1287 Mul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001288 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001289 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001290 }
Dan Gohman161ea032009-07-07 17:06:11 +00001291 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001292 if (OtherMul->getNumOperands() != 2) {
Dan Gohman9bc642f2009-06-24 04:48:43 +00001293 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1294 OtherMul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001295 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001296 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 }
Dan Gohman161ea032009-07-07 17:06:11 +00001298 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1299 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001300 if (Ops.size() == 2) return OuterMul;
1301 Ops.erase(Ops.begin()+Idx);
1302 Ops.erase(Ops.begin()+OtherMulIdx-1);
1303 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001304 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001305 }
1306 }
1307 }
1308 }
1309
1310 // If there are any add recurrences in the operands list, see if any other
1311 // added values are loop invariant. If so, we can fold them into the
1312 // recurrence.
1313 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1314 ++Idx;
1315
1316 // Scan over all recurrences, trying to fold loop invariants into them.
1317 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1318 // Scan all of the other operands to this add and add them to the vector if
1319 // they are loop invariant w.r.t. the recurrence.
Dan Gohman161ea032009-07-07 17:06:11 +00001320 SmallVector<const SCEV *, 8> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001321 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001322 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1323 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1324 LIOps.push_back(Ops[i]);
1325 Ops.erase(Ops.begin()+i);
1326 --i; --e;
1327 }
1328
1329 // If we found some loop invariants, fold them into the recurrence.
1330 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001331 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001332 LIOps.push_back(AddRec->getStart());
1333
Dan Gohman161ea032009-07-07 17:06:11 +00001334 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001335 AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001336 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001337
Dan Gohman161ea032009-07-07 17:06:11 +00001338 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001339 // If all of the other operands were loop invariant, we are done.
1340 if (Ops.size() == 1) return NewRec;
1341
1342 // Otherwise, add the folded AddRec by the non-liv parts.
1343 for (unsigned i = 0;; ++i)
1344 if (Ops[i] == AddRec) {
1345 Ops[i] = NewRec;
1346 break;
1347 }
Dan Gohman89f85052007-10-22 18:31:58 +00001348 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001349 }
1350
1351 // Okay, if there weren't any loop invariants to be folded, check to see if
1352 // there are multiple AddRec's with the same loop induction variable being
1353 // added together. If so, we can fold them.
1354 for (unsigned OtherIdx = Idx+1;
1355 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1356 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001357 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001358 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1359 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman9bc642f2009-06-24 04:48:43 +00001360 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1361 AddRec->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001362 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1363 if (i >= NewOps.size()) {
1364 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1365 OtherAddRec->op_end());
1366 break;
1367 }
Dan Gohman89f85052007-10-22 18:31:58 +00001368 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001369 }
Dan Gohman161ea032009-07-07 17:06:11 +00001370 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001371
1372 if (Ops.size() == 2) return NewAddRec;
1373
1374 Ops.erase(Ops.begin()+Idx);
1375 Ops.erase(Ops.begin()+OtherIdx-1);
1376 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001377 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001378 }
1379 }
1380
1381 // Otherwise couldn't fold anything into this recurrence. Move onto the
1382 // next one.
1383 }
1384
1385 // Okay, it looks like we really DO need an add expr. Check to see if we
1386 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001387 FoldingSetNodeID ID;
1388 ID.AddInteger(scAddExpr);
1389 ID.AddInteger(Ops.size());
1390 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1391 ID.AddPointer(Ops[i]);
1392 void *IP = 0;
1393 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1394 SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001395 new (S) SCEVAddExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001396 UniqueSCEVs.InsertNode(S, IP);
1397 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001398}
1399
1400
Dan Gohmanc8a29272009-05-24 23:45:28 +00001401/// getMulExpr - Get a canonical multiply expression, or something simpler if
1402/// possible.
Dan Gohman161ea032009-07-07 17:06:11 +00001403const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001404 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana77b3d42009-05-18 15:44:58 +00001405#ifndef NDEBUG
1406 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1407 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1408 getEffectiveSCEVType(Ops[0]->getType()) &&
1409 "SCEVMulExpr operand types don't match!");
1410#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001411
1412 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001413 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001414
1415 // If there are any constants, fold them together.
1416 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001417 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001418
1419 // C1*(C2+V) -> C1*C2 + C1*V
1420 if (Ops.size() == 2)
Dan Gohmanc76b5452009-05-04 22:02:23 +00001421 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001422 if (Add->getNumOperands() == 2 &&
1423 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +00001424 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1425 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001426
1427
1428 ++Idx;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001429 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001430 // We found two constants, fold them together!
Dan Gohman9bc642f2009-06-24 04:48:43 +00001431 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001432 RHSC->getValue()->getValue());
1433 Ops[0] = getConstant(Fold);
1434 Ops.erase(Ops.begin()+1); // Erase the folded element
1435 if (Ops.size() == 1) return Ops[0];
1436 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001437 }
1438
1439 // If we are left with a constant one being multiplied, strip it off.
1440 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1441 Ops.erase(Ops.begin());
1442 --Idx;
1443 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1444 // If we have a multiply of zero, it will always be zero.
1445 return Ops[0];
1446 }
1447 }
1448
1449 // Skip over the add expression until we get to a multiply.
1450 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1451 ++Idx;
1452
1453 if (Ops.size() == 1)
1454 return Ops[0];
1455
1456 // If there are mul operands inline them all into this expression.
1457 if (Idx < Ops.size()) {
1458 bool DeletedMul = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001459 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001460 // If we have an mul, expand the mul operands onto the end of the operands
1461 // list.
1462 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1463 Ops.erase(Ops.begin()+Idx);
1464 DeletedMul = true;
1465 }
1466
1467 // If we deleted at least one mul, we added operands to the end of the list,
1468 // and they are not necessarily sorted. Recurse to resort and resimplify
1469 // any operands we just aquired.
1470 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001471 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001472 }
1473
1474 // If there are any add recurrences in the operands list, see if any other
1475 // added values are loop invariant. If so, we can fold them into the
1476 // recurrence.
1477 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1478 ++Idx;
1479
1480 // Scan over all recurrences, trying to fold loop invariants into them.
1481 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1482 // Scan all of the other operands to this mul and add them to the vector if
1483 // they are loop invariant w.r.t. the recurrence.
Dan Gohman161ea032009-07-07 17:06:11 +00001484 SmallVector<const SCEV *, 8> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001485 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001486 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1487 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1488 LIOps.push_back(Ops[i]);
1489 Ops.erase(Ops.begin()+i);
1490 --i; --e;
1491 }
1492
1493 // If we found some loop invariants, fold them into the recurrence.
1494 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001495 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman161ea032009-07-07 17:06:11 +00001496 SmallVector<const SCEV *, 4> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001497 NewOps.reserve(AddRec->getNumOperands());
1498 if (LIOps.size() == 1) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001499 const SCEV *Scale = LIOps[0];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001500 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001501 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001502 } else {
1503 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00001504 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001505 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001506 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001507 }
1508 }
1509
Dan Gohman161ea032009-07-07 17:06:11 +00001510 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001511
1512 // If all of the other operands were loop invariant, we are done.
1513 if (Ops.size() == 1) return NewRec;
1514
1515 // Otherwise, multiply the folded AddRec by the non-liv parts.
1516 for (unsigned i = 0;; ++i)
1517 if (Ops[i] == AddRec) {
1518 Ops[i] = NewRec;
1519 break;
1520 }
Dan Gohman89f85052007-10-22 18:31:58 +00001521 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001522 }
1523
1524 // Okay, if there weren't any loop invariants to be folded, check to see if
1525 // there are multiple AddRec's with the same loop induction variable being
1526 // multiplied together. If so, we can fold them.
1527 for (unsigned OtherIdx = Idx+1;
1528 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1529 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001530 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001531 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1532 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohmanbff6b582009-05-04 22:30:44 +00001533 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman161ea032009-07-07 17:06:11 +00001534 const SCEV *NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001535 G->getStart());
Dan Gohman161ea032009-07-07 17:06:11 +00001536 const SCEV *B = F->getStepRecurrence(*this);
1537 const SCEV *D = G->getStepRecurrence(*this);
1538 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman89f85052007-10-22 18:31:58 +00001539 getMulExpr(G, B),
1540 getMulExpr(B, D));
Dan Gohman161ea032009-07-07 17:06:11 +00001541 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman89f85052007-10-22 18:31:58 +00001542 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001543 if (Ops.size() == 2) return NewAddRec;
1544
1545 Ops.erase(Ops.begin()+Idx);
1546 Ops.erase(Ops.begin()+OtherIdx-1);
1547 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001548 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001549 }
1550 }
1551
1552 // Otherwise couldn't fold anything into this recurrence. Move onto the
1553 // next one.
1554 }
1555
1556 // Okay, it looks like we really DO need an mul expr. Check to see if we
1557 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001558 FoldingSetNodeID ID;
1559 ID.AddInteger(scMulExpr);
1560 ID.AddInteger(Ops.size());
1561 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1562 ID.AddPointer(Ops[i]);
1563 void *IP = 0;
1564 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1565 SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001566 new (S) SCEVMulExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001567 UniqueSCEVs.InsertNode(S, IP);
1568 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001569}
1570
Dan Gohmanc8a29272009-05-24 23:45:28 +00001571/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1572/// possible.
Dan Gohman8c4f20b2009-06-24 14:49:00 +00001573const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1574 const SCEV *RHS) {
Dan Gohmana77b3d42009-05-18 15:44:58 +00001575 assert(getEffectiveSCEVType(LHS->getType()) ==
1576 getEffectiveSCEVType(RHS->getType()) &&
1577 "SCEVUDivExpr operand types don't match!");
1578
Dan Gohmanc76b5452009-05-04 22:02:23 +00001579 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001580 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001581 return LHS; // X udiv 1 --> x
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001582 if (RHSC->isZero())
1583 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001584
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001585 // Determine if the division can be folded into the operands of
1586 // its operands.
1587 // TODO: Generalize this to non-constants by using known-bits information.
1588 const Type *Ty = LHS->getType();
1589 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1590 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1591 // For non-power-of-two values, effectively round the value up to the
1592 // nearest power of two.
1593 if (!RHSC->getValue()->getValue().isPowerOf2())
1594 ++MaxShiftAmt;
1595 const IntegerType *ExtTy =
1596 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1597 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1598 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1599 if (const SCEVConstant *Step =
1600 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1601 if (!Step->getValue()->getValue()
1602 .urem(RHSC->getValue()->getValue()) &&
Dan Gohman14374d32009-05-08 23:11:16 +00001603 getZeroExtendExpr(AR, ExtTy) ==
1604 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1605 getZeroExtendExpr(Step, ExtTy),
1606 AR->getLoop())) {
Dan Gohman161ea032009-07-07 17:06:11 +00001607 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001608 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1609 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1610 return getAddRecExpr(Operands, AR->getLoop());
1611 }
1612 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001613 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohman161ea032009-07-07 17:06:11 +00001614 SmallVector<const SCEV *, 4> Operands;
Dan Gohman14374d32009-05-08 23:11:16 +00001615 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1616 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1617 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001618 // Find an operand that's safely divisible.
1619 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00001620 const SCEV *Op = M->getOperand(i);
1621 const SCEV *Div = getUDivExpr(Op, RHSC);
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001622 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohman161ea032009-07-07 17:06:11 +00001623 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1624 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001625 MOperands.end());
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001626 Operands[i] = Div;
1627 return getMulExpr(Operands);
1628 }
1629 }
Dan Gohman14374d32009-05-08 23:11:16 +00001630 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001631 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001632 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohman161ea032009-07-07 17:06:11 +00001633 SmallVector<const SCEV *, 4> Operands;
Dan Gohman14374d32009-05-08 23:11:16 +00001634 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1635 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1636 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1637 Operands.clear();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001638 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00001639 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001640 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1641 break;
1642 Operands.push_back(Op);
1643 }
1644 if (Operands.size() == A->getNumOperands())
1645 return getAddExpr(Operands);
1646 }
Dan Gohman14374d32009-05-08 23:11:16 +00001647 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001648
1649 // Fold if both operands are constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001650 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001651 Constant *LHSCV = LHSC->getValue();
1652 Constant *RHSCV = RHSC->getValue();
Dan Gohman55788cf2009-06-24 00:38:39 +00001653 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1654 RHSCV)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001655 }
1656 }
1657
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001658 FoldingSetNodeID ID;
1659 ID.AddInteger(scUDivExpr);
1660 ID.AddPointer(LHS);
1661 ID.AddPointer(RHS);
1662 void *IP = 0;
1663 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1664 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001665 new (S) SCEVUDivExpr(ID, LHS, RHS);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001666 UniqueSCEVs.InsertNode(S, IP);
1667 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001668}
1669
1670
Dan Gohmanc8a29272009-05-24 23:45:28 +00001671/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1672/// Simplify the expression as much as possible.
Dan Gohman161ea032009-07-07 17:06:11 +00001673const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1674 const SCEV *Step, const Loop *L) {
1675 SmallVector<const SCEV *, 4> Operands;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001676 Operands.push_back(Start);
Dan Gohmanc76b5452009-05-04 22:02:23 +00001677 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001678 if (StepChrec->getLoop() == L) {
1679 Operands.insert(Operands.end(), StepChrec->op_begin(),
1680 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001681 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001682 }
1683
1684 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001685 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001686}
1687
Dan Gohmanc8a29272009-05-24 23:45:28 +00001688/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1689/// Simplify the expression as much as possible.
Dan Gohman9bc642f2009-06-24 04:48:43 +00001690const SCEV *
Dan Gohman161ea032009-07-07 17:06:11 +00001691ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman9bc642f2009-06-24 04:48:43 +00001692 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001693 if (Operands.size() == 1) return Operands[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001694#ifndef NDEBUG
1695 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1696 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1697 getEffectiveSCEVType(Operands[0]->getType()) &&
1698 "SCEVAddRecExpr operand types don't match!");
1699#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001700
Dan Gohman7b560c42008-06-18 16:23:07 +00001701 if (Operands.back()->isZero()) {
1702 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001703 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001704 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001705
Dan Gohman42936882008-08-08 18:33:12 +00001706 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001707 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman42936882008-08-08 18:33:12 +00001708 const Loop* NestedLoop = NestedAR->getLoop();
1709 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
Dan Gohman161ea032009-07-07 17:06:11 +00001710 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman02ff9392009-06-14 22:47:23 +00001711 NestedAR->op_end());
Dan Gohman42936882008-08-08 18:33:12 +00001712 Operands[0] = NestedAR->getStart();
Dan Gohman08c4c072009-06-26 22:36:20 +00001713 // AddRecs require their operands be loop-invariant with respect to their
1714 // loops. Don't perform this transformation if it would break this
1715 // requirement.
1716 bool AllInvariant = true;
1717 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1718 if (!Operands[i]->isLoopInvariant(L)) {
1719 AllInvariant = false;
1720 break;
1721 }
1722 if (AllInvariant) {
1723 NestedOperands[0] = getAddRecExpr(Operands, L);
1724 AllInvariant = true;
1725 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1726 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1727 AllInvariant = false;
1728 break;
1729 }
1730 if (AllInvariant)
1731 // Ok, both add recurrences are valid after the transformation.
1732 return getAddRecExpr(NestedOperands, NestedLoop);
1733 }
1734 // Reset Operands to its original state.
1735 Operands[0] = NestedAR;
Dan Gohman42936882008-08-08 18:33:12 +00001736 }
1737 }
1738
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001739 FoldingSetNodeID ID;
1740 ID.AddInteger(scAddRecExpr);
1741 ID.AddInteger(Operands.size());
1742 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1743 ID.AddPointer(Operands[i]);
1744 ID.AddPointer(L);
1745 void *IP = 0;
1746 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1747 SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001748 new (S) SCEVAddRecExpr(ID, Operands, L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001749 UniqueSCEVs.InsertNode(S, IP);
1750 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001751}
1752
Dan Gohman8c4f20b2009-06-24 14:49:00 +00001753const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1754 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00001755 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky711640a2007-11-25 22:41:31 +00001756 Ops.push_back(LHS);
1757 Ops.push_back(RHS);
1758 return getSMaxExpr(Ops);
1759}
1760
Dan Gohman161ea032009-07-07 17:06:11 +00001761const SCEV *
1762ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001763 assert(!Ops.empty() && "Cannot get empty smax!");
1764 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001765#ifndef NDEBUG
1766 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1767 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1768 getEffectiveSCEVType(Ops[0]->getType()) &&
1769 "SCEVSMaxExpr operand types don't match!");
1770#endif
Nick Lewycky711640a2007-11-25 22:41:31 +00001771
1772 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001773 GroupByComplexity(Ops, LI);
Nick Lewycky711640a2007-11-25 22:41:31 +00001774
1775 // If there are any constants, fold them together.
1776 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001777 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001778 ++Idx;
1779 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001780 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001781 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001782 ConstantInt *Fold = ConstantInt::get(
Nick Lewycky711640a2007-11-25 22:41:31 +00001783 APIntOps::smax(LHSC->getValue()->getValue(),
1784 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001785 Ops[0] = getConstant(Fold);
1786 Ops.erase(Ops.begin()+1); // Erase the folded element
1787 if (Ops.size() == 1) return Ops[0];
1788 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001789 }
1790
Dan Gohmand156c092009-06-24 14:46:22 +00001791 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky711640a2007-11-25 22:41:31 +00001792 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1793 Ops.erase(Ops.begin());
1794 --Idx;
Dan Gohmand156c092009-06-24 14:46:22 +00001795 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1796 // If we have an smax with a constant maximum-int, it will always be
1797 // maximum-int.
1798 return Ops[0];
Nick Lewycky711640a2007-11-25 22:41:31 +00001799 }
1800 }
1801
1802 if (Ops.size() == 1) return Ops[0];
1803
1804 // Find the first SMax
1805 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1806 ++Idx;
1807
1808 // Check to see if one of the operands is an SMax. If so, expand its operands
1809 // onto our operand list, and recurse to simplify.
1810 if (Idx < Ops.size()) {
1811 bool DeletedSMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001812 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001813 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1814 Ops.erase(Ops.begin()+Idx);
1815 DeletedSMax = true;
1816 }
1817
1818 if (DeletedSMax)
1819 return getSMaxExpr(Ops);
1820 }
1821
1822 // Okay, check to see if the same value occurs in the operand list twice. If
1823 // so, delete one. Since we sorted the list, these values are required to
1824 // be adjacent.
1825 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1826 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1827 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1828 --i; --e;
1829 }
1830
1831 if (Ops.size() == 1) return Ops[0];
1832
1833 assert(!Ops.empty() && "Reduced smax down to nothing!");
1834
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001835 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001836 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001837 FoldingSetNodeID ID;
1838 ID.AddInteger(scSMaxExpr);
1839 ID.AddInteger(Ops.size());
1840 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1841 ID.AddPointer(Ops[i]);
1842 void *IP = 0;
1843 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1844 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001845 new (S) SCEVSMaxExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001846 UniqueSCEVs.InsertNode(S, IP);
1847 return S;
Nick Lewycky711640a2007-11-25 22:41:31 +00001848}
1849
Dan Gohman8c4f20b2009-06-24 14:49:00 +00001850const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1851 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00001852 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001853 Ops.push_back(LHS);
1854 Ops.push_back(RHS);
1855 return getUMaxExpr(Ops);
1856}
1857
Dan Gohman161ea032009-07-07 17:06:11 +00001858const SCEV *
1859ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001860 assert(!Ops.empty() && "Cannot get empty umax!");
1861 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001862#ifndef NDEBUG
1863 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1864 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1865 getEffectiveSCEVType(Ops[0]->getType()) &&
1866 "SCEVUMaxExpr operand types don't match!");
1867#endif
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001868
1869 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001870 GroupByComplexity(Ops, LI);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001871
1872 // If there are any constants, fold them together.
1873 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001874 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001875 ++Idx;
1876 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001877 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001878 // We found two constants, fold them together!
1879 ConstantInt *Fold = ConstantInt::get(
1880 APIntOps::umax(LHSC->getValue()->getValue(),
1881 RHSC->getValue()->getValue()));
1882 Ops[0] = getConstant(Fold);
1883 Ops.erase(Ops.begin()+1); // Erase the folded element
1884 if (Ops.size() == 1) return Ops[0];
1885 LHSC = cast<SCEVConstant>(Ops[0]);
1886 }
1887
Dan Gohmand156c092009-06-24 14:46:22 +00001888 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001889 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1890 Ops.erase(Ops.begin());
1891 --Idx;
Dan Gohmand156c092009-06-24 14:46:22 +00001892 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
1893 // If we have an umax with a constant maximum-int, it will always be
1894 // maximum-int.
1895 return Ops[0];
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001896 }
1897 }
1898
1899 if (Ops.size() == 1) return Ops[0];
1900
1901 // Find the first UMax
1902 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1903 ++Idx;
1904
1905 // Check to see if one of the operands is a UMax. If so, expand its operands
1906 // onto our operand list, and recurse to simplify.
1907 if (Idx < Ops.size()) {
1908 bool DeletedUMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001909 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001910 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1911 Ops.erase(Ops.begin()+Idx);
1912 DeletedUMax = true;
1913 }
1914
1915 if (DeletedUMax)
1916 return getUMaxExpr(Ops);
1917 }
1918
1919 // Okay, check to see if the same value occurs in the operand list twice. If
1920 // so, delete one. Since we sorted the list, these values are required to
1921 // be adjacent.
1922 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1923 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1924 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1925 --i; --e;
1926 }
1927
1928 if (Ops.size() == 1) return Ops[0];
1929
1930 assert(!Ops.empty() && "Reduced umax down to nothing!");
1931
1932 // Okay, it looks like we really DO need a umax expr. Check to see if we
1933 // already have one, otherwise create a new one.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001934 FoldingSetNodeID ID;
1935 ID.AddInteger(scUMaxExpr);
1936 ID.AddInteger(Ops.size());
1937 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1938 ID.AddPointer(Ops[i]);
1939 void *IP = 0;
1940 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1941 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001942 new (S) SCEVUMaxExpr(ID, Ops);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001943 UniqueSCEVs.InsertNode(S, IP);
1944 return S;
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001945}
1946
Dan Gohman8c4f20b2009-06-24 14:49:00 +00001947const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
1948 const SCEV *RHS) {
Dan Gohmand01fff82009-06-22 03:18:45 +00001949 // ~smax(~x, ~y) == smin(x, y).
1950 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1951}
1952
Dan Gohman8c4f20b2009-06-24 14:49:00 +00001953const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
1954 const SCEV *RHS) {
Dan Gohmand01fff82009-06-22 03:18:45 +00001955 // ~umax(~x, ~y) == umin(x, y)
1956 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
1957}
1958
Dan Gohman161ea032009-07-07 17:06:11 +00001959const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman984c78a2009-06-24 00:54:57 +00001960 // Don't attempt to do anything other than create a SCEVUnknown object
1961 // here. createSCEV only calls getUnknown after checking for all other
1962 // interesting possibilities, and any other code that calls getUnknown
1963 // is doing so in order to hide a value from SCEV canonicalization.
1964
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001965 FoldingSetNodeID ID;
1966 ID.AddInteger(scUnknown);
1967 ID.AddPointer(V);
1968 void *IP = 0;
1969 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1970 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
Dan Gohmand43a8282009-07-13 20:50:19 +00001971 new (S) SCEVUnknown(ID, V);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00001972 UniqueSCEVs.InsertNode(S, IP);
1973 return S;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001974}
1975
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001976//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001977// Basic SCEV Analysis and PHI Idiom Recognition Code
1978//
1979
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001980/// isSCEVable - Test if values of the given type are analyzable within
1981/// the SCEV framework. This primarily includes integer types, and it
1982/// can optionally include pointer types if the ScalarEvolution class
1983/// has access to target-specific information.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001984bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001985 // Integers are always SCEVable.
1986 if (Ty->isInteger())
1987 return true;
1988
1989 // Pointers are SCEVable if TargetData information is available
1990 // to provide pointer size information.
1991 if (isa<PointerType>(Ty))
1992 return TD != NULL;
1993
1994 // Otherwise it's not SCEVable.
1995 return false;
1996}
1997
1998/// getTypeSizeInBits - Return the size in bits of the specified type,
1999/// for which isSCEVable must return true.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002000uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002001 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2002
2003 // If we have a TargetData, use it!
2004 if (TD)
2005 return TD->getTypeSizeInBits(Ty);
2006
2007 // Otherwise, we support only integer types.
2008 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
2009 return Ty->getPrimitiveSizeInBits();
2010}
2011
2012/// getEffectiveSCEVType - Return a type with the same bitwidth as
2013/// the given type and which represents how SCEV will treat the given
2014/// type, for which isSCEVable must return true. For pointer types,
2015/// this is the pointer-sized integer type.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002016const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002017 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2018
2019 if (Ty->isInteger())
2020 return Ty;
2021
2022 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2023 return TD->getIntPtrType();
Dan Gohman01c2ee72009-04-16 03:18:22 +00002024}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002025
Dan Gohman161ea032009-07-07 17:06:11 +00002026const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002027 return &CouldNotCompute;
Dan Gohman0ad08b02009-04-18 17:58:19 +00002028}
2029
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002030/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2031/// expression and create a new one.
Dan Gohman161ea032009-07-07 17:06:11 +00002032const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002033 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002034
Dan Gohman161ea032009-07-07 17:06:11 +00002035 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002036 if (I != Scalars.end()) return I->second;
Dan Gohman161ea032009-07-07 17:06:11 +00002037 const SCEV *S = createSCEV(V);
Dan Gohmanbff6b582009-05-04 22:30:44 +00002038 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002039 return S;
2040}
2041
Dan Gohman984c78a2009-06-24 00:54:57 +00002042/// getIntegerSCEV - Given a SCEVable type, create a constant for the
Dan Gohman01c2ee72009-04-16 03:18:22 +00002043/// specified signed integer value and return a SCEV for the constant.
Dan Gohman161ea032009-07-07 17:06:11 +00002044const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
Dan Gohman984c78a2009-06-24 00:54:57 +00002045 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2046 return getConstant(ConstantInt::get(ITy, Val));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002047}
2048
2049/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2050///
Dan Gohman161ea032009-07-07 17:06:11 +00002051const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002052 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson15b39322009-07-13 04:09:18 +00002053 return getConstant(
2054 cast<ConstantInt>(Context->getConstantExprNeg(VC->getValue())));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002055
2056 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002057 Ty = getEffectiveSCEVType(Ty);
2058 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002059}
2060
2061/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman161ea032009-07-07 17:06:11 +00002062const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002063 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohman55788cf2009-06-24 00:38:39 +00002064 return getConstant(cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002065
2066 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002067 Ty = getEffectiveSCEVType(Ty);
Dan Gohman161ea032009-07-07 17:06:11 +00002068 const SCEV *AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002069 return getMinusSCEV(AllOnes, V);
2070}
2071
2072/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2073///
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002074const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2075 const SCEV *RHS) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00002076 // X - Y --> X + -Y
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002077 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman01c2ee72009-04-16 03:18:22 +00002078}
2079
2080/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2081/// input value to the specified type. If the type must be extended, it is zero
2082/// extended.
Dan Gohman161ea032009-07-07 17:06:11 +00002083const SCEV *
2084ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky37d04642009-04-23 05:15:08 +00002085 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00002086 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002087 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2088 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00002089 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002090 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00002091 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002092 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002093 return getTruncateExpr(V, Ty);
2094 return getZeroExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002095}
2096
2097/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2098/// input value to the specified type. If the type must be extended, it is sign
2099/// extended.
Dan Gohman161ea032009-07-07 17:06:11 +00002100const SCEV *
2101ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky37d04642009-04-23 05:15:08 +00002102 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00002103 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002104 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2105 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00002106 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002107 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00002108 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002109 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002110 return getTruncateExpr(V, Ty);
2111 return getSignExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002112}
2113
Dan Gohmanac959332009-05-13 03:46:30 +00002114/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2115/// input value to the specified type. If the type must be extended, it is zero
2116/// extended. The conversion must not be narrowing.
Dan Gohman161ea032009-07-07 17:06:11 +00002117const SCEV *
2118ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002119 const Type *SrcTy = V->getType();
2120 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2121 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2122 "Cannot noop or zero extend with non-integer arguments!");
2123 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2124 "getNoopOrZeroExtend cannot truncate!");
2125 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2126 return V; // No conversion
2127 return getZeroExtendExpr(V, Ty);
2128}
2129
2130/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2131/// input value to the specified type. If the type must be extended, it is sign
2132/// extended. The conversion must not be narrowing.
Dan Gohman161ea032009-07-07 17:06:11 +00002133const SCEV *
2134ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002135 const Type *SrcTy = V->getType();
2136 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2137 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2138 "Cannot noop or sign extend with non-integer arguments!");
2139 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2140 "getNoopOrSignExtend cannot truncate!");
2141 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2142 return V; // No conversion
2143 return getSignExtendExpr(V, Ty);
2144}
2145
Dan Gohmane1ca7e82009-06-13 15:56:47 +00002146/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2147/// the input value to the specified type. If the type must be extended,
2148/// it is extended with unspecified bits. The conversion must not be
2149/// narrowing.
Dan Gohman161ea032009-07-07 17:06:11 +00002150const SCEV *
2151ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohmane1ca7e82009-06-13 15:56:47 +00002152 const Type *SrcTy = V->getType();
2153 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2154 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2155 "Cannot noop or any extend with non-integer arguments!");
2156 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2157 "getNoopOrAnyExtend cannot truncate!");
2158 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2159 return V; // No conversion
2160 return getAnyExtendExpr(V, Ty);
2161}
2162
Dan Gohmanac959332009-05-13 03:46:30 +00002163/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2164/// input value to the specified type. The conversion must not be widening.
Dan Gohman161ea032009-07-07 17:06:11 +00002165const SCEV *
2166ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohmanac959332009-05-13 03:46:30 +00002167 const Type *SrcTy = V->getType();
2168 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2169 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2170 "Cannot truncate or noop with non-integer arguments!");
2171 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2172 "getTruncateOrNoop cannot extend!");
2173 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2174 return V; // No conversion
2175 return getTruncateExpr(V, Ty);
2176}
2177
Dan Gohman8e8b5232009-06-22 00:31:57 +00002178/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2179/// the types using zero-extension, and then perform a umax operation
2180/// with them.
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002181const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2182 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00002183 const SCEV *PromotedLHS = LHS;
2184 const SCEV *PromotedRHS = RHS;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002185
2186 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2187 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2188 else
2189 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2190
2191 return getUMaxExpr(PromotedLHS, PromotedRHS);
2192}
2193
Dan Gohman9e62bb02009-06-22 15:03:27 +00002194/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2195/// the types using zero-extension, and then perform a umin operation
2196/// with them.
Dan Gohman8c4f20b2009-06-24 14:49:00 +00002197const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2198 const SCEV *RHS) {
Dan Gohman161ea032009-07-07 17:06:11 +00002199 const SCEV *PromotedLHS = LHS;
2200 const SCEV *PromotedRHS = RHS;
Dan Gohman9e62bb02009-06-22 15:03:27 +00002201
2202 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2203 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2204 else
2205 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2206
2207 return getUMinExpr(PromotedLHS, PromotedRHS);
2208}
2209
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002210/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2211/// the specified instruction and replaces any references to the symbolic value
2212/// SymName with the specified value. This is used during PHI resolution.
Dan Gohman9bc642f2009-06-24 04:48:43 +00002213void
2214ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction *I,
2215 const SCEV *SymName,
2216 const SCEV *NewVal) {
Dan Gohman161ea032009-07-07 17:06:11 +00002217 std::map<SCEVCallbackVH, const SCEV *>::iterator SI =
Dan Gohmanbff6b582009-05-04 22:30:44 +00002218 Scalars.find(SCEVCallbackVH(I, this));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002219 if (SI == Scalars.end()) return;
2220
Dan Gohman161ea032009-07-07 17:06:11 +00002221 const SCEV *NV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002222 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002223 if (NV == SI->second) return; // No change.
2224
2225 SI->second = NV; // Update the scalars map!
2226
2227 // Any instruction values that use this instruction might also need to be
2228 // updated!
2229 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2230 UI != E; ++UI)
2231 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2232}
2233
2234/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2235/// a loop header, making it a potential recurrence, or it doesn't.
2236///
Dan Gohman161ea032009-07-07 17:06:11 +00002237const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002238 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002239 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002240 if (L->getHeader() == PN->getParent()) {
2241 // If it lives in the loop header, it has two incoming values, one
2242 // from outside the loop, and one from inside.
2243 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2244 unsigned BackEdge = IncomingEdge^1;
2245
2246 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman161ea032009-07-07 17:06:11 +00002247 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002248 assert(Scalars.find(PN) == Scalars.end() &&
2249 "PHI node already processed?");
Dan Gohmanbff6b582009-05-04 22:30:44 +00002250 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002251
2252 // Using this symbolic name for the PHI, analyze the value coming around
2253 // the back-edge.
Dan Gohman161ea032009-07-07 17:06:11 +00002254 const SCEV *BEValue = getSCEV(PN->getIncomingValue(BackEdge));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002255
2256 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2257 // has a special value for the first iteration of the loop.
2258
2259 // If the value coming around the backedge is an add with the symbolic
2260 // value we just inserted, then we found a simple induction variable!
Dan Gohmanc76b5452009-05-04 22:02:23 +00002261 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002262 // If there is a single occurrence of the symbolic value, replace it
2263 // with a recurrence.
2264 unsigned FoundIndex = Add->getNumOperands();
2265 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2266 if (Add->getOperand(i) == SymbolicName)
2267 if (FoundIndex == e) {
2268 FoundIndex = i;
2269 break;
2270 }
2271
2272 if (FoundIndex != Add->getNumOperands()) {
2273 // Create an add with everything but the specified operand.
Dan Gohman161ea032009-07-07 17:06:11 +00002274 SmallVector<const SCEV *, 8> Ops;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002275 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2276 if (i != FoundIndex)
2277 Ops.push_back(Add->getOperand(i));
Dan Gohman161ea032009-07-07 17:06:11 +00002278 const SCEV *Accum = getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002279
2280 // This is not a valid addrec if the step amount is varying each
2281 // loop iteration, but is not itself an addrec in this loop.
2282 if (Accum->isLoopInvariant(L) ||
2283 (isa<SCEVAddRecExpr>(Accum) &&
2284 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohman9bc642f2009-06-24 04:48:43 +00002285 const SCEV *StartVal =
2286 getSCEV(PN->getIncomingValue(IncomingEdge));
2287 const SCEV *PHISCEV =
2288 getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002289
2290 // Okay, for the entire analysis of this edge we assumed the PHI
2291 // to be symbolic. We now need to go back and update all of the
2292 // entries for the scalars that use the PHI (except for the PHI
2293 // itself) to use the new analyzed value instead of the "symbolic"
2294 // value.
2295 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2296 return PHISCEV;
2297 }
2298 }
Dan Gohmanc76b5452009-05-04 22:02:23 +00002299 } else if (const SCEVAddRecExpr *AddRec =
2300 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002301 // Otherwise, this could be a loop like this:
2302 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2303 // In this case, j = {1,+,1} and BEValue is j.
2304 // Because the other in-value of i (0) fits the evolution of BEValue
2305 // i really is an addrec evolution.
2306 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman161ea032009-07-07 17:06:11 +00002307 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002308
2309 // If StartVal = j.start - j.stride, we can use StartVal as the
2310 // initial step of the addrec evolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002311 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman89f85052007-10-22 18:31:58 +00002312 AddRec->getOperand(1))) {
Dan Gohman161ea032009-07-07 17:06:11 +00002313 const SCEV *PHISCEV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002314 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002315
2316 // Okay, for the entire analysis of this edge we assumed the PHI
2317 // to be symbolic. We now need to go back and update all of the
2318 // entries for the scalars that use the PHI (except for the PHI
2319 // itself) to use the new analyzed value instead of the "symbolic"
2320 // value.
2321 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2322 return PHISCEV;
2323 }
2324 }
2325 }
2326
2327 return SymbolicName;
2328 }
2329
2330 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002331 return getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002332}
2333
Dan Gohman509cf4d2009-05-08 20:26:55 +00002334/// createNodeForGEP - Expand GEP instructions into add and multiply
2335/// operations. This allows them to be analyzed by regular SCEV code.
2336///
Dan Gohman161ea032009-07-07 17:06:11 +00002337const SCEV *ScalarEvolution::createNodeForGEP(User *GEP) {
Dan Gohman509cf4d2009-05-08 20:26:55 +00002338
2339 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002340 Value *Base = GEP->getOperand(0);
Dan Gohmand586a4f2009-05-09 00:14:52 +00002341 // Don't attempt to analyze GEPs over unsized objects.
2342 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2343 return getUnknown(GEP);
Dan Gohman161ea032009-07-07 17:06:11 +00002344 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002345 gep_type_iterator GTI = gep_type_begin(GEP);
2346 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2347 E = GEP->op_end();
Dan Gohman509cf4d2009-05-08 20:26:55 +00002348 I != E; ++I) {
2349 Value *Index = *I;
2350 // Compute the (potentially symbolic) offset in bytes for this index.
2351 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2352 // For a struct, add the member offset.
2353 const StructLayout &SL = *TD->getStructLayout(STy);
2354 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2355 uint64_t Offset = SL.getElementOffset(FieldNo);
Nick Lewycky9425be92009-07-11 20:38:25 +00002356 TotalOffset = getAddExpr(TotalOffset,
2357 getIntegerSCEV(Offset, IntPtrTy));
Dan Gohman509cf4d2009-05-08 20:26:55 +00002358 } else {
2359 // For an array, add the element offset, explicitly scaled.
Dan Gohman161ea032009-07-07 17:06:11 +00002360 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman509cf4d2009-05-08 20:26:55 +00002361 if (!isa<PointerType>(LocalOffset->getType()))
2362 // Getelementptr indicies are signed.
Nick Lewycky9425be92009-07-11 20:38:25 +00002363 LocalOffset = getTruncateOrSignExtend(LocalOffset,
2364 IntPtrTy);
Dan Gohman509cf4d2009-05-08 20:26:55 +00002365 LocalOffset =
2366 getMulExpr(LocalOffset,
Nick Lewycky9425be92009-07-11 20:38:25 +00002367 getIntegerSCEV(TD->getTypeAllocSize(*GTI),
2368 IntPtrTy));
Dan Gohman509cf4d2009-05-08 20:26:55 +00002369 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2370 }
2371 }
2372 return getAddExpr(getSCEV(Base), TotalOffset);
2373}
2374
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002375/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2376/// guaranteed to end in (at every loop iteration). It is, at the same time,
2377/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2378/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman6e923a72009-06-19 23:29:04 +00002379uint32_t
Dan Gohman161ea032009-07-07 17:06:11 +00002380ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002381 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00002382 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002383
Dan Gohmanc76b5452009-05-04 22:02:23 +00002384 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman6e923a72009-06-19 23:29:04 +00002385 return std::min(GetMinTrailingZeros(T->getOperand()),
2386 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002387
Dan Gohmanc76b5452009-05-04 22:02:23 +00002388 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002389 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2390 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2391 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002392 }
2393
Dan Gohmanc76b5452009-05-04 22:02:23 +00002394 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman6e923a72009-06-19 23:29:04 +00002395 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2396 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2397 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002398 }
2399
Dan Gohmanc76b5452009-05-04 22:02:23 +00002400 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002401 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002402 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002403 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002404 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002405 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002406 }
2407
Dan Gohmanc76b5452009-05-04 22:02:23 +00002408 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002409 // The result is the sum of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002410 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2411 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002412 for (unsigned i = 1, e = M->getNumOperands();
2413 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002414 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002415 BitWidth);
2416 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002417 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002418
Dan Gohmanc76b5452009-05-04 22:02:23 +00002419 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002420 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002421 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002422 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002423 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002424 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002425 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002426
Dan Gohmanc76b5452009-05-04 22:02:23 +00002427 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewycky711640a2007-11-25 22:41:31 +00002428 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002429 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky711640a2007-11-25 22:41:31 +00002430 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002431 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky711640a2007-11-25 22:41:31 +00002432 return MinOpRes;
2433 }
2434
Dan Gohmanc76b5452009-05-04 22:02:23 +00002435 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002436 // The result is the min of all operands results.
Dan Gohman6e923a72009-06-19 23:29:04 +00002437 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002438 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman6e923a72009-06-19 23:29:04 +00002439 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002440 return MinOpRes;
2441 }
2442
Dan Gohman6e923a72009-06-19 23:29:04 +00002443 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2444 // For a SCEVUnknown, ask ValueTracking.
2445 unsigned BitWidth = getTypeSizeInBits(U->getType());
2446 APInt Mask = APInt::getAllOnesValue(BitWidth);
2447 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2448 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2449 return Zeros.countTrailingOnes();
2450 }
2451
2452 // SCEVUDivExpr
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002453 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002454}
2455
Nick Lewycky9425be92009-07-11 20:38:25 +00002456uint32_t
2457ScalarEvolution::GetMinLeadingZeros(const SCEV *S) {
2458 // TODO: Handle other SCEV expression types here.
Dan Gohman6e923a72009-06-19 23:29:04 +00002459
2460 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Nick Lewycky9425be92009-07-11 20:38:25 +00002461 return C->getValue()->getValue().countLeadingZeros();
Dan Gohman6e923a72009-06-19 23:29:04 +00002462
Nick Lewycky9425be92009-07-11 20:38:25 +00002463 if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
2464 // A zero-extension cast adds zero bits.
2465 return GetMinLeadingZeros(C->getOperand()) +
2466 (getTypeSizeInBits(C->getType()) -
2467 getTypeSizeInBits(C->getOperand()->getType()));
Dan Gohman6e923a72009-06-19 23:29:04 +00002468 }
2469
2470 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2471 // For a SCEVUnknown, ask ValueTracking.
2472 unsigned BitWidth = getTypeSizeInBits(U->getType());
2473 APInt Mask = APInt::getAllOnesValue(BitWidth);
2474 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2475 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Nick Lewycky9425be92009-07-11 20:38:25 +00002476 return Zeros.countLeadingOnes();
Dan Gohman6e923a72009-06-19 23:29:04 +00002477 }
2478
Nick Lewycky9425be92009-07-11 20:38:25 +00002479 return 1;
Dan Gohman6e923a72009-06-19 23:29:04 +00002480}
2481
Nick Lewycky9425be92009-07-11 20:38:25 +00002482uint32_t
2483ScalarEvolution::GetMinSignBits(const SCEV *S) {
2484 // TODO: Handle other SCEV expression types here.
Dan Gohman6e923a72009-06-19 23:29:04 +00002485
Nick Lewycky9425be92009-07-11 20:38:25 +00002486 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
2487 const APInt &A = C->getValue()->getValue();
2488 return A.isNegative() ? A.countLeadingOnes() :
2489 A.countLeadingZeros();
Dan Gohman6e923a72009-06-19 23:29:04 +00002490 }
2491
Nick Lewycky9425be92009-07-11 20:38:25 +00002492 if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
2493 // A sign-extension cast adds sign bits.
2494 return GetMinSignBits(C->getOperand()) +
2495 (getTypeSizeInBits(C->getType()) -
2496 getTypeSizeInBits(C->getOperand()->getType()));
Dan Gohman6e923a72009-06-19 23:29:04 +00002497 }
2498
Nick Lewycky9425be92009-07-11 20:38:25 +00002499 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2500 unsigned BitWidth = getTypeSizeInBits(A->getType());
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002501
Nick Lewycky9425be92009-07-11 20:38:25 +00002502 // Special case decrementing a value (ADD X, -1):
2503 if (const SCEVConstant *CRHS = dyn_cast<SCEVConstant>(A->getOperand(0)))
2504 if (CRHS->isAllOnesValue()) {
2505 SmallVector<const SCEV *, 4> OtherOps(A->op_begin() + 1, A->op_end());
2506 const SCEV *OtherOpsAdd = getAddExpr(OtherOps);
2507 unsigned LZ = GetMinLeadingZeros(OtherOpsAdd);
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002508
Nick Lewycky9425be92009-07-11 20:38:25 +00002509 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2510 // sign bits set.
2511 if (LZ == BitWidth - 1)
2512 return BitWidth;
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002513
Nick Lewycky9425be92009-07-11 20:38:25 +00002514 // If we are subtracting one from a positive number, there is no carry
2515 // out of the result.
2516 if (LZ > 0)
2517 return GetMinSignBits(OtherOpsAdd);
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002518 }
Nick Lewycky9425be92009-07-11 20:38:25 +00002519
2520 // Add can have at most one carry bit. Thus we know that the output
2521 // is, at worst, one more bit than the inputs.
2522 unsigned Min = BitWidth;
2523 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2524 unsigned N = GetMinSignBits(A->getOperand(i));
2525 Min = std::min(Min, N) - 1;
2526 if (Min == 0) return 1;
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002527 }
Nick Lewycky9425be92009-07-11 20:38:25 +00002528 return 1;
Dan Gohman61e0c4c2009-06-24 01:05:09 +00002529 }
2530
Dan Gohman6e923a72009-06-19 23:29:04 +00002531 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2532 // For a SCEVUnknown, ask ValueTracking.
Nick Lewycky9425be92009-07-11 20:38:25 +00002533 return ComputeNumSignBits(U->getValue(), TD);
Dan Gohman6e923a72009-06-19 23:29:04 +00002534 }
2535
Nick Lewycky9425be92009-07-11 20:38:25 +00002536 return 1;
Dan Gohman6e923a72009-06-19 23:29:04 +00002537}
2538
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002539/// createSCEV - We know that there is no SCEV for the specified value.
2540/// Analyze the expression.
2541///
Dan Gohman161ea032009-07-07 17:06:11 +00002542const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002543 if (!isSCEVable(V->getType()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002544 return getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002545
Dan Gohman3996f472008-06-22 19:56:46 +00002546 unsigned Opcode = Instruction::UserOp1;
2547 if (Instruction *I = dyn_cast<Instruction>(V))
2548 Opcode = I->getOpcode();
2549 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2550 Opcode = CE->getOpcode();
Dan Gohman984c78a2009-06-24 00:54:57 +00002551 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2552 return getConstant(CI);
2553 else if (isa<ConstantPointerNull>(V))
2554 return getIntegerSCEV(0, V->getType());
2555 else if (isa<UndefValue>(V))
2556 return getIntegerSCEV(0, V->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002557 else
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002558 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002559
Dan Gohman3996f472008-06-22 19:56:46 +00002560 User *U = cast<User>(V);
2561 switch (Opcode) {
2562 case Instruction::Add:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002563 return getAddExpr(getSCEV(U->getOperand(0)),
2564 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002565 case Instruction::Mul:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002566 return getMulExpr(getSCEV(U->getOperand(0)),
2567 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002568 case Instruction::UDiv:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002569 return getUDivExpr(getSCEV(U->getOperand(0)),
2570 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002571 case Instruction::Sub:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002572 return getMinusSCEV(getSCEV(U->getOperand(0)),
2573 getSCEV(U->getOperand(1)));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002574 case Instruction::And:
2575 // For an expression like x&255 that merely masks off the high bits,
2576 // use zext(trunc(x)) as the SCEV expression.
2577 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002578 if (CI->isNullValue())
2579 return getSCEV(U->getOperand(1));
Dan Gohmanc7ebba12009-04-27 01:41:10 +00002580 if (CI->isAllOnesValue())
2581 return getSCEV(U->getOperand(0));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002582 const APInt &A = CI->getValue();
Dan Gohmana7726c32009-06-16 19:52:01 +00002583
2584 // Instcombine's ShrinkDemandedConstant may strip bits out of
2585 // constants, obscuring what would otherwise be a low-bits mask.
2586 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2587 // knew about to reconstruct a low-bits mask value.
2588 unsigned LZ = A.countLeadingZeros();
2589 unsigned BitWidth = A.getBitWidth();
2590 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2591 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2592 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2593
2594 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2595
Dan Gohmanae1d7dd2009-06-17 23:54:37 +00002596 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman53bf64a2009-04-21 02:26:00 +00002597 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002598 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Dan Gohmana7726c32009-06-16 19:52:01 +00002599 IntegerType::get(BitWidth - LZ)),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002600 U->getType());
Dan Gohman53bf64a2009-04-21 02:26:00 +00002601 }
2602 break;
Dan Gohmana7726c32009-06-16 19:52:01 +00002603
Dan Gohman3996f472008-06-22 19:56:46 +00002604 case Instruction::Or:
2605 // If the RHS of the Or is a constant, we may have something like:
2606 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2607 // optimizations will transparently handle this case.
2608 //
2609 // In order for this transformation to be safe, the LHS must be of the
2610 // form X*(2^n) and the Or constant must be less than 2^n.
2611 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman161ea032009-07-07 17:06:11 +00002612 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman3996f472008-06-22 19:56:46 +00002613 const APInt &CIVal = CI->getValue();
Dan Gohman6e923a72009-06-19 23:29:04 +00002614 if (GetMinTrailingZeros(LHS) >=
Dan Gohman3996f472008-06-22 19:56:46 +00002615 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002616 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002617 }
Dan Gohman3996f472008-06-22 19:56:46 +00002618 break;
2619 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00002620 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00002621 // If the RHS of the xor is a signbit, then this is just an add.
2622 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00002623 if (CI->getValue().isSignBit())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002624 return getAddExpr(getSCEV(U->getOperand(0)),
2625 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002626
2627 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmanc897f752009-05-18 16:17:44 +00002628 if (CI->isAllOnesValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002629 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohmanfc78cff2009-05-18 16:29:04 +00002630
2631 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2632 // This is a variant of the check for xor with -1, and it handles
2633 // the case where instcombine has trimmed non-demanded bits out
2634 // of an xor with -1.
2635 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2636 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2637 if (BO->getOpcode() == Instruction::And &&
2638 LCI->getValue() == CI->getValue())
2639 if (const SCEVZeroExtendExpr *Z =
Dan Gohmane49ae432009-06-17 01:22:39 +00002640 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohmaned1d8bb2009-06-18 00:00:20 +00002641 const Type *UTy = U->getType();
Dan Gohman161ea032009-07-07 17:06:11 +00002642 const SCEV *Z0 = Z->getOperand();
Dan Gohmaned1d8bb2009-06-18 00:00:20 +00002643 const Type *Z0Ty = Z0->getType();
2644 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2645
2646 // If C is a low-bits mask, the zero extend is zerving to
2647 // mask off the high bits. Complement the operand and
2648 // re-apply the zext.
2649 if (APIntOps::isMask(Z0TySize, CI->getValue()))
2650 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2651
2652 // If C is a single bit, it may be in the sign-bit position
2653 // before the zero-extend. In this case, represent the xor
2654 // using an add, which is equivalent, and re-apply the zext.
2655 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2656 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2657 Trunc.isSignBit())
2658 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2659 UTy);
Dan Gohmane49ae432009-06-17 01:22:39 +00002660 }
Dan Gohman3996f472008-06-22 19:56:46 +00002661 }
2662 break;
2663
2664 case Instruction::Shl:
2665 // Turn shift left of a constant amount into a multiply.
2666 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2667 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2668 Constant *X = ConstantInt::get(
2669 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002670 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman3996f472008-06-22 19:56:46 +00002671 }
2672 break;
2673
Nick Lewycky7fd27892008-07-07 06:15:49 +00002674 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00002675 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00002676 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2677 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2678 Constant *X = ConstantInt::get(
2679 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002680 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002681 }
2682 break;
2683
Dan Gohman53bf64a2009-04-21 02:26:00 +00002684 case Instruction::AShr:
2685 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2686 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2687 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2688 if (L->getOpcode() == Instruction::Shl &&
2689 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002690 unsigned BitWidth = getTypeSizeInBits(U->getType());
2691 uint64_t Amt = BitWidth - CI->getZExtValue();
2692 if (Amt == BitWidth)
2693 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2694 if (Amt > BitWidth)
2695 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman53bf64a2009-04-21 02:26:00 +00002696 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002697 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman91ae1e72009-04-25 17:05:40 +00002698 IntegerType::get(Amt)),
Dan Gohman53bf64a2009-04-21 02:26:00 +00002699 U->getType());
2700 }
2701 break;
2702
Dan Gohman3996f472008-06-22 19:56:46 +00002703 case Instruction::Trunc:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002704 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002705
2706 case Instruction::ZExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002707 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002708
2709 case Instruction::SExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002710 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002711
2712 case Instruction::BitCast:
2713 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002714 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman3996f472008-06-22 19:56:46 +00002715 return getSCEV(U->getOperand(0));
2716 break;
2717
Dan Gohman01c2ee72009-04-16 03:18:22 +00002718 case Instruction::IntToPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002719 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002720 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002721 TD->getIntPtrType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00002722
2723 case Instruction::PtrToInt:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002724 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002725 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2726 U->getType());
2727
Dan Gohman509cf4d2009-05-08 20:26:55 +00002728 case Instruction::GetElementPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002729 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002730 return createNodeForGEP(U);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002731
Dan Gohman3996f472008-06-22 19:56:46 +00002732 case Instruction::PHI:
2733 return createNodeForPHI(cast<PHINode>(U));
2734
2735 case Instruction::Select:
2736 // This could be a smax or umax that was lowered earlier.
2737 // Try to recover it.
2738 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2739 Value *LHS = ICI->getOperand(0);
2740 Value *RHS = ICI->getOperand(1);
2741 switch (ICI->getPredicate()) {
2742 case ICmpInst::ICMP_SLT:
2743 case ICmpInst::ICMP_SLE:
2744 std::swap(LHS, RHS);
2745 // fall through
2746 case ICmpInst::ICMP_SGT:
2747 case ICmpInst::ICMP_SGE:
2748 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002749 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002750 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmand01fff82009-06-22 03:18:45 +00002751 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002752 break;
2753 case ICmpInst::ICMP_ULT:
2754 case ICmpInst::ICMP_ULE:
2755 std::swap(LHS, RHS);
2756 // fall through
2757 case ICmpInst::ICMP_UGT:
2758 case ICmpInst::ICMP_UGE:
2759 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002760 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002761 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Dan Gohmand01fff82009-06-22 03:18:45 +00002762 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002763 break;
Dan Gohmanf27dc692009-06-18 20:21:07 +00002764 case ICmpInst::ICMP_NE:
2765 // n != 0 ? n : 1 -> umax(n, 1)
2766 if (LHS == U->getOperand(1) &&
2767 isa<ConstantInt>(U->getOperand(2)) &&
2768 cast<ConstantInt>(U->getOperand(2))->isOne() &&
2769 isa<ConstantInt>(RHS) &&
2770 cast<ConstantInt>(RHS)->isZero())
2771 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2772 break;
2773 case ICmpInst::ICMP_EQ:
2774 // n == 0 ? 1 : n -> umax(n, 1)
2775 if (LHS == U->getOperand(2) &&
2776 isa<ConstantInt>(U->getOperand(1)) &&
2777 cast<ConstantInt>(U->getOperand(1))->isOne() &&
2778 isa<ConstantInt>(RHS) &&
2779 cast<ConstantInt>(RHS)->isZero())
2780 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
2781 break;
Dan Gohman3996f472008-06-22 19:56:46 +00002782 default:
2783 break;
2784 }
2785 }
2786
2787 default: // We cannot analyze this expression.
2788 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002789 }
2790
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002791 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002792}
2793
2794
2795
2796//===----------------------------------------------------------------------===//
2797// Iteration Count Computation Code
2798//
2799
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002800/// getBackedgeTakenCount - If the specified loop has a predictable
2801/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2802/// object. The backedge-taken count is the number of times the loop header
2803/// will be branched to from within the loop. This is one less than the
2804/// trip count of the loop, since it doesn't count the first iteration,
2805/// when the header is branched to from outside the loop.
2806///
2807/// Note that it is not valid to call this method on a loop without a
2808/// loop-invariant backedge-taken count (see
2809/// hasLoopInvariantBackedgeTakenCount).
2810///
Dan Gohman161ea032009-07-07 17:06:11 +00002811const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002812 return getBackedgeTakenInfo(L).Exact;
2813}
2814
2815/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2816/// return the least SCEV value that is known never to be less than the
2817/// actual backedge taken count.
Dan Gohman161ea032009-07-07 17:06:11 +00002818const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002819 return getBackedgeTakenInfo(L).Max;
2820}
2821
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00002822/// PushLoopPHIs - Push PHI nodes in the header of the given loop
2823/// onto the given Worklist.
2824static void
2825PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
2826 BasicBlock *Header = L->getHeader();
2827
2828 // Push all Loop-header PHIs onto the Worklist stack.
2829 for (BasicBlock::iterator I = Header->begin();
2830 PHINode *PN = dyn_cast<PHINode>(I); ++I)
2831 Worklist.push_back(PN);
2832}
2833
2834/// PushDefUseChildren - Push users of the given Instruction
2835/// onto the given Worklist.
2836static void
2837PushDefUseChildren(Instruction *I,
2838 SmallVectorImpl<Instruction *> &Worklist) {
2839 // Push the def-use children onto the Worklist stack.
2840 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2841 UI != UE; ++UI)
2842 Worklist.push_back(cast<Instruction>(UI));
2843}
2844
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002845const ScalarEvolution::BackedgeTakenInfo &
2846ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohmana9dba962009-04-27 20:16:15 +00002847 // Initially insert a CouldNotCompute for this loop. If the insertion
2848 // succeeds, procede to actually compute a backedge-taken count and
2849 // update the value. The temporary CouldNotCompute value tells SCEV
2850 // code elsewhere that it shouldn't attempt to request a new
2851 // backedge-taken count, which could result in infinite recursion.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002852 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohmana9dba962009-04-27 20:16:15 +00002853 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2854 if (Pair.second) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002855 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002856 if (ItCount.Exact != getCouldNotCompute()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002857 assert(ItCount.Exact->isLoopInvariant(L) &&
2858 ItCount.Max->isLoopInvariant(L) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002859 "Computed trip count isn't loop invariant for loop!");
2860 ++NumTripCountsComputed;
Dan Gohmana9dba962009-04-27 20:16:15 +00002861
Dan Gohmana9dba962009-04-27 20:16:15 +00002862 // Update the value in the map.
2863 Pair.first->second = ItCount;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002864 } else {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002865 if (ItCount.Max != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00002866 // Update the value in the map.
2867 Pair.first->second = ItCount;
2868 if (isa<PHINode>(L->getHeader()->begin()))
2869 // Only count loops that have phi nodes as not being computable.
2870 ++NumTripCountsNotComputed;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002871 }
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002872
2873 // Now that we know more about the trip count for this loop, forget any
2874 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00002875 // conservative estimates made without the benefit of trip count
2876 // information. This is similar to the code in
2877 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
2878 // nodes specially.
2879 if (ItCount.hasAnyInfo()) {
2880 SmallVector<Instruction *, 16> Worklist;
2881 PushLoopPHIs(L, Worklist);
2882
2883 SmallPtrSet<Instruction *, 8> Visited;
2884 while (!Worklist.empty()) {
2885 Instruction *I = Worklist.pop_back_val();
2886 if (!Visited.insert(I)) continue;
2887
2888 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
2889 Scalars.find(static_cast<Value *>(I));
2890 if (It != Scalars.end()) {
2891 // SCEVUnknown for a PHI either means that it has an unrecognized
2892 // structure, or it's a PHI that's in the progress of being computed
2893 // by createNodeForPHI. In the former case, additional loop trip count
2894 // information isn't going to change anything. In the later case,
2895 // createNodeForPHI will perform the necessary updates on its own when
2896 // it gets to that point.
2897 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second))
2898 Scalars.erase(It);
2899 ValuesAtScopes.erase(I);
2900 if (PHINode *PN = dyn_cast<PHINode>(I))
2901 ConstantEvolutionLoopExitValue.erase(PN);
2902 }
2903
2904 PushDefUseChildren(I, Worklist);
2905 }
2906 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002907 }
Dan Gohmana9dba962009-04-27 20:16:15 +00002908 return Pair.first->second;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002909}
2910
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002911/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002912/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002913/// ScalarEvolution's ability to compute a trip count, or if the loop
2914/// is deleted.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002915void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002916 BackedgeTakenCounts.erase(L);
Dan Gohman94623022009-05-02 17:43:35 +00002917
Dan Gohmanbff6b582009-05-04 22:30:44 +00002918 SmallVector<Instruction *, 16> Worklist;
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00002919 PushLoopPHIs(L, Worklist);
Dan Gohmanbff6b582009-05-04 22:30:44 +00002920
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00002921 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmanbff6b582009-05-04 22:30:44 +00002922 while (!Worklist.empty()) {
2923 Instruction *I = Worklist.pop_back_val();
Dan Gohmanb7d04aa2009-07-08 19:23:34 +00002924 if (!Visited.insert(I)) continue;
2925
2926 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
2927 Scalars.find(static_cast<Value *>(I));
2928 if (It != Scalars.end()) {
2929 Scalars.erase(It);
2930 ValuesAtScopes.erase(I);
2931 if (PHINode *PN = dyn_cast<PHINode>(I))
2932 ConstantEvolutionLoopExitValue.erase(PN);
2933 }
2934
2935 PushDefUseChildren(I, Worklist);
Dan Gohmanbff6b582009-05-04 22:30:44 +00002936 }
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002937}
2938
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002939/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2940/// of the specified loop will execute.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002941ScalarEvolution::BackedgeTakenInfo
2942ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman8e8b5232009-06-22 00:31:57 +00002943 SmallVector<BasicBlock*, 8> ExitingBlocks;
2944 L->getExitingBlocks(ExitingBlocks);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002945
Dan Gohman8e8b5232009-06-22 00:31:57 +00002946 // Examine all exits and pick the most conservative values.
Dan Gohman161ea032009-07-07 17:06:11 +00002947 const SCEV *BECount = getCouldNotCompute();
2948 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00002949 bool CouldNotComputeBECount = false;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002950 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2951 BackedgeTakenInfo NewBTI =
2952 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002953
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002954 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohman8e8b5232009-06-22 00:31:57 +00002955 // We couldn't compute an exact value for this exit, so
Dan Gohmanc6e8c832009-06-22 21:10:22 +00002956 // we won't be able to compute an exact value for the loop.
Dan Gohman8e8b5232009-06-22 00:31:57 +00002957 CouldNotComputeBECount = true;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002958 BECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00002959 } else if (!CouldNotComputeBECount) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002960 if (BECount == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00002961 BECount = NewBTI.Exact;
Dan Gohman8e8b5232009-06-22 00:31:57 +00002962 else
Dan Gohman423ed6c2009-06-24 01:18:18 +00002963 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohman8e8b5232009-06-22 00:31:57 +00002964 }
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002965 if (MaxBECount == getCouldNotCompute())
Dan Gohman423ed6c2009-06-24 01:18:18 +00002966 MaxBECount = NewBTI.Max;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002967 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman423ed6c2009-06-24 01:18:18 +00002968 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00002969 }
2970
2971 return BackedgeTakenInfo(BECount, MaxBECount);
2972}
2973
2974/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
2975/// of the specified loop will execute if it exits via the specified block.
2976ScalarEvolution::BackedgeTakenInfo
2977ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
2978 BasicBlock *ExitingBlock) {
2979
2980 // Okay, we've chosen an exiting block. See what condition causes us to
2981 // exit at this block.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002982 //
2983 // FIXME: we should be able to handle switch instructions (with a single exit)
2984 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohmanc6475cb2009-06-27 21:21:31 +00002985 if (ExitBr == 0) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002986 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman9bc642f2009-06-24 04:48:43 +00002987
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002988 // At this point, we know we have a conditional branch that determines whether
2989 // the loop is exited. However, we don't know if the branch is executed each
2990 // time through the loop. If not, then the execution count of the branch will
2991 // not be equal to the trip count of the loop.
2992 //
2993 // Currently we check for this by checking to see if the Exit branch goes to
2994 // the loop header. If so, we know it will always execute the same number of
2995 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman8e8b5232009-06-22 00:31:57 +00002996 // loop header. This is common for un-rotated loops.
2997 //
2998 // If both of those tests fail, walk up the unique predecessor chain to the
2999 // header, stopping if there is an edge that doesn't exit the loop. If the
3000 // header is reached, the execution count of the branch will be equal to the
3001 // trip count of the loop.
3002 //
3003 // More extensive analysis could be done to handle more cases here.
3004 //
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003005 if (ExitBr->getSuccessor(0) != L->getHeader() &&
3006 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohman8e8b5232009-06-22 00:31:57 +00003007 ExitBr->getParent() != L->getHeader()) {
3008 // The simple checks failed, try climbing the unique predecessor chain
3009 // up to the header.
3010 bool Ok = false;
3011 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3012 BasicBlock *Pred = BB->getUniquePredecessor();
3013 if (!Pred)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003014 return getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003015 TerminatorInst *PredTerm = Pred->getTerminator();
3016 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3017 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3018 if (PredSucc == BB)
3019 continue;
3020 // If the predecessor has a successor that isn't BB and isn't
3021 // outside the loop, assume the worst.
3022 if (L->contains(PredSucc))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003023 return getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003024 }
3025 if (Pred == L->getHeader()) {
3026 Ok = true;
3027 break;
3028 }
3029 BB = Pred;
3030 }
3031 if (!Ok)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003032 return getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003033 }
3034
3035 // Procede to the next level to examine the exit condition expression.
3036 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3037 ExitBr->getSuccessor(0),
3038 ExitBr->getSuccessor(1));
3039}
3040
3041/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3042/// backedge of the specified loop will execute if its exit condition
3043/// were a conditional branch of ExitCond, TBB, and FBB.
3044ScalarEvolution::BackedgeTakenInfo
3045ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3046 Value *ExitCond,
3047 BasicBlock *TBB,
3048 BasicBlock *FBB) {
Dan Gohman423ed6c2009-06-24 01:18:18 +00003049 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman8e8b5232009-06-22 00:31:57 +00003050 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3051 if (BO->getOpcode() == Instruction::And) {
3052 // Recurse on the operands of the and.
3053 BackedgeTakenInfo BTI0 =
3054 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3055 BackedgeTakenInfo BTI1 =
3056 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman161ea032009-07-07 17:06:11 +00003057 const SCEV *BECount = getCouldNotCompute();
3058 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003059 if (L->contains(TBB)) {
3060 // Both conditions must be true for the loop to continue executing.
3061 // Choose the less conservative count.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003062 if (BTI0.Exact == getCouldNotCompute() ||
3063 BTI1.Exact == getCouldNotCompute())
3064 BECount = getCouldNotCompute();
Dan Gohmanac958b32009-06-22 15:09:28 +00003065 else
3066 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003067 if (BTI0.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003068 MaxBECount = BTI1.Max;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003069 else if (BTI1.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003070 MaxBECount = BTI0.Max;
Dan Gohmanac958b32009-06-22 15:09:28 +00003071 else
3072 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003073 } else {
3074 // Both conditions must be true for the loop to exit.
3075 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003076 if (BTI0.Exact != getCouldNotCompute() &&
3077 BTI1.Exact != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003078 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003079 if (BTI0.Max != getCouldNotCompute() &&
3080 BTI1.Max != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003081 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3082 }
3083
3084 return BackedgeTakenInfo(BECount, MaxBECount);
3085 }
3086 if (BO->getOpcode() == Instruction::Or) {
3087 // Recurse on the operands of the or.
3088 BackedgeTakenInfo BTI0 =
3089 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3090 BackedgeTakenInfo BTI1 =
3091 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman161ea032009-07-07 17:06:11 +00003092 const SCEV *BECount = getCouldNotCompute();
3093 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohman8e8b5232009-06-22 00:31:57 +00003094 if (L->contains(FBB)) {
3095 // Both conditions must be false for the loop to continue executing.
3096 // Choose the less conservative count.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003097 if (BTI0.Exact == getCouldNotCompute() ||
3098 BTI1.Exact == getCouldNotCompute())
3099 BECount = getCouldNotCompute();
Dan Gohmanac958b32009-06-22 15:09:28 +00003100 else
3101 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003102 if (BTI0.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003103 MaxBECount = BTI1.Max;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003104 else if (BTI1.Max == getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003105 MaxBECount = BTI0.Max;
Dan Gohmanac958b32009-06-22 15:09:28 +00003106 else
3107 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003108 } else {
3109 // Both conditions must be false for the loop to exit.
3110 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003111 if (BTI0.Exact != getCouldNotCompute() &&
3112 BTI1.Exact != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003113 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003114 if (BTI0.Max != getCouldNotCompute() &&
3115 BTI1.Max != getCouldNotCompute())
Dan Gohman8e8b5232009-06-22 00:31:57 +00003116 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3117 }
3118
3119 return BackedgeTakenInfo(BECount, MaxBECount);
3120 }
3121 }
3122
3123 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3124 // Procede to the next level to examine the icmp.
3125 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3126 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003127
Eli Friedman459d7292009-05-09 12:32:42 +00003128 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohman8e8b5232009-06-22 00:31:57 +00003129 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3130}
3131
3132/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3133/// backedge of the specified loop will execute if its exit condition
3134/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3135ScalarEvolution::BackedgeTakenInfo
3136ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3137 ICmpInst *ExitCond,
3138 BasicBlock *TBB,
3139 BasicBlock *FBB) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003140
3141 // If the condition was exit on true, convert the condition to exit on false
3142 ICmpInst::Predicate Cond;
Dan Gohman8e8b5232009-06-22 00:31:57 +00003143 if (!L->contains(FBB))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003144 Cond = ExitCond->getPredicate();
3145 else
3146 Cond = ExitCond->getInversePredicate();
3147
3148 // Handle common loops like: for (X = "string"; *X; ++X)
3149 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3150 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohman161ea032009-07-07 17:06:11 +00003151 const SCEV *ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003152 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohman8e8b5232009-06-22 00:31:57 +00003153 if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3154 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3155 return BackedgeTakenInfo(ItCnt,
3156 isa<SCEVConstant>(ItCnt) ? ItCnt :
3157 getConstant(APInt::getMaxValue(BitWidth)-1));
3158 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003159 }
3160
Dan Gohman161ea032009-07-07 17:06:11 +00003161 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3162 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003163
3164 // Try to evaluate any dependencies out of the loop.
Dan Gohmanaff14d62009-05-24 23:25:42 +00003165 LHS = getSCEVAtScope(LHS, L);
3166 RHS = getSCEVAtScope(RHS, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003167
Dan Gohman9bc642f2009-06-24 04:48:43 +00003168 // At this point, we would like to compute how many iterations of the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003169 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00003170 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3171 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003172 std::swap(LHS, RHS);
3173 Cond = ICmpInst::getSwappedPredicate(Cond);
3174 }
3175
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003176 // If we have a comparison of a chrec against a constant, try to use value
3177 // ranges to answer this query.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003178 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3179 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003180 if (AddRec->getLoop() == L) {
Eli Friedman459d7292009-05-09 12:32:42 +00003181 // Form the constant range.
3182 ConstantRange CompRange(
3183 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003184
Dan Gohman161ea032009-07-07 17:06:11 +00003185 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman459d7292009-05-09 12:32:42 +00003186 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003187 }
3188
3189 switch (Cond) {
3190 case ICmpInst::ICMP_NE: { // while (X != Y)
3191 // Convert to: while (X-Y != 0)
Dan Gohman161ea032009-07-07 17:06:11 +00003192 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003193 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3194 break;
3195 }
3196 case ICmpInst::ICMP_EQ: {
3197 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohman161ea032009-07-07 17:06:11 +00003198 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003199 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3200 break;
3201 }
3202 case ICmpInst::ICMP_SLT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003203 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3204 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003205 break;
3206 }
3207 case ICmpInst::ICMP_SGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003208 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3209 getNotSCEV(RHS), L, true);
3210 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00003211 break;
3212 }
3213 case ICmpInst::ICMP_ULT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003214 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3215 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00003216 break;
3217 }
3218 case ICmpInst::ICMP_UGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003219 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3220 getNotSCEV(RHS), L, false);
3221 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003222 break;
3223 }
3224 default:
3225#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003226 errs() << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003227 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohman13058cc2009-04-21 00:47:46 +00003228 errs() << "[unsigned] ";
3229 errs() << *LHS << " "
Dan Gohman9bc642f2009-06-24 04:48:43 +00003230 << Instruction::getOpcodeName(Instruction::ICmp)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003231 << " " << *RHS << "\n";
3232#endif
3233 break;
3234 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003235 return
Dan Gohman8e8b5232009-06-22 00:31:57 +00003236 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003237}
3238
3239static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00003240EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3241 ScalarEvolution &SE) {
Dan Gohman161ea032009-07-07 17:06:11 +00003242 const SCEV *InVal = SE.getConstant(C);
3243 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003244 assert(isa<SCEVConstant>(Val) &&
3245 "Evaluation of SCEV at constant didn't fold correctly?");
3246 return cast<SCEVConstant>(Val)->getValue();
3247}
3248
3249/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3250/// and a GEP expression (missing the pointer index) indexing into it, return
3251/// the addressed element of the initializer or null if the index expression is
3252/// invalid.
3253static Constant *
Owen Anderson15b39322009-07-13 04:09:18 +00003254GetAddressedElementFromGlobal(LLVMContext *Context, GlobalVariable *GV,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003255 const std::vector<ConstantInt*> &Indices) {
3256 Constant *Init = GV->getInitializer();
3257 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3258 uint64_t Idx = Indices[i]->getZExtValue();
3259 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3260 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3261 Init = cast<Constant>(CS->getOperand(Idx));
3262 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3263 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3264 Init = cast<Constant>(CA->getOperand(Idx));
3265 } else if (isa<ConstantAggregateZero>(Init)) {
3266 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3267 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Anderson15b39322009-07-13 04:09:18 +00003268 Init = Context->getNullValue(STy->getElementType(Idx));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003269 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3270 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Anderson15b39322009-07-13 04:09:18 +00003271 Init = Context->getNullValue(ATy->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003272 } else {
Edwin Török675d5622009-07-11 20:10:48 +00003273 LLVM_UNREACHABLE("Unknown constant aggregate type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003274 }
3275 return 0;
3276 } else {
3277 return 0; // Unknown initializer type
3278 }
3279 }
3280 return Init;
3281}
3282
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003283/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3284/// 'icmp op load X, cst', try to see if we can compute the backedge
3285/// execution count.
Dan Gohman9bc642f2009-06-24 04:48:43 +00003286const SCEV *
3287ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3288 LoadInst *LI,
3289 Constant *RHS,
3290 const Loop *L,
3291 ICmpInst::Predicate predicate) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003292 if (LI->isVolatile()) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003293
3294 // Check to see if the loaded pointer is a getelementptr of a global.
3295 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003296 if (!GEP) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003297
3298 // Make sure that it is really a constant global we are gepping, with an
3299 // initializer, and make sure the first IDX is really 0.
3300 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3301 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3302 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3303 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003304 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003305
3306 // Okay, we allow one non-constant index into the GEP instruction.
3307 Value *VarIdx = 0;
3308 std::vector<ConstantInt*> Indexes;
3309 unsigned VarIdxNum = 0;
3310 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3311 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3312 Indexes.push_back(CI);
3313 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003314 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003315 VarIdx = GEP->getOperand(i);
3316 VarIdxNum = i-2;
3317 Indexes.push_back(0);
3318 }
3319
3320 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3321 // Check to see if X is a loop variant variable value now.
Dan Gohman161ea032009-07-07 17:06:11 +00003322 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmanaff14d62009-05-24 23:25:42 +00003323 Idx = getSCEVAtScope(Idx, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003324
3325 // We can only recognize very limited forms of loop index expressions, in
3326 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohmanbff6b582009-05-04 22:30:44 +00003327 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003328 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3329 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3330 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003331 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003332
3333 unsigned MaxSteps = MaxBruteForceIterations;
3334 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3335 ConstantInt *ItCst =
Dan Gohman8fd520a2009-06-15 22:12:54 +00003336 ConstantInt::get(cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003337 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003338
3339 // Form the GEP offset.
3340 Indexes[VarIdxNum] = Val;
3341
Owen Anderson15b39322009-07-13 04:09:18 +00003342 Constant *Result = GetAddressedElementFromGlobal(Context, GV, Indexes);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003343 if (Result == 0) break; // Cannot compute!
3344
3345 // Evaluate the condition for this iteration.
3346 Result = ConstantExpr::getICmp(predicate, Result, RHS);
3347 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
3348 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3349#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003350 errs() << "\n***\n*** Computed loop count " << *ItCst
3351 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3352 << "***\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003353#endif
3354 ++NumArrayLenItCounts;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003355 return getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003356 }
3357 }
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003358 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003359}
3360
3361
3362/// CanConstantFold - Return true if we can constant fold an instruction of the
3363/// specified type, assuming that all operands were constants.
3364static bool CanConstantFold(const Instruction *I) {
3365 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3366 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3367 return true;
3368
3369 if (const CallInst *CI = dyn_cast<CallInst>(I))
3370 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00003371 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003372 return false;
3373}
3374
3375/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3376/// in the loop that V is derived from. We allow arbitrary operations along the
3377/// way, but the operands of an operation must either be constants or a value
3378/// derived from a constant PHI. If this expression does not fit with these
3379/// constraints, return null.
3380static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3381 // If this is not an instruction, or if this is an instruction outside of the
3382 // loop, it can't be derived from a loop PHI.
3383 Instruction *I = dyn_cast<Instruction>(V);
3384 if (I == 0 || !L->contains(I->getParent())) return 0;
3385
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00003386 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003387 if (L->getHeader() == I->getParent())
3388 return PN;
3389 else
3390 // We don't currently keep track of the control flow needed to evaluate
3391 // PHIs, so we cannot handle PHIs inside of loops.
3392 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00003393 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003394
3395 // If we won't be able to constant fold this expression even if the operands
3396 // are constants, return early.
3397 if (!CanConstantFold(I)) return 0;
3398
3399 // Otherwise, we can evaluate this instruction if all of its operands are
3400 // constant or derived from a PHI node themselves.
3401 PHINode *PHI = 0;
3402 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3403 if (!(isa<Constant>(I->getOperand(Op)) ||
3404 isa<GlobalValue>(I->getOperand(Op)))) {
3405 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3406 if (P == 0) return 0; // Not evolving from PHI
3407 if (PHI == 0)
3408 PHI = P;
3409 else if (PHI != P)
3410 return 0; // Evolving from multiple different PHIs.
3411 }
3412
3413 // This is a expression evolving from a constant PHI!
3414 return PHI;
3415}
3416
3417/// EvaluateExpression - Given an expression that passes the
3418/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3419/// in the loop has the value PHIVal. If we can't fold this expression for some
3420/// reason, return null.
3421static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3422 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003423 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00003424 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003425 Instruction *I = cast<Instruction>(V);
Owen Anderson5349f052009-07-06 23:00:19 +00003426 LLVMContext *Context = I->getParent()->getContext();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003427
3428 std::vector<Constant*> Operands;
3429 Operands.resize(I->getNumOperands());
3430
3431 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3432 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3433 if (Operands[i] == 0) return 0;
3434 }
3435
Chris Lattnerd6e56912007-12-10 22:53:04 +00003436 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3437 return ConstantFoldCompareInstOperands(CI->getPredicate(),
Owen Andersond4d90a02009-07-06 18:42:36 +00003438 &Operands[0], Operands.size(),
3439 Context);
Chris Lattnerd6e56912007-12-10 22:53:04 +00003440 else
3441 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Owen Andersond4d90a02009-07-06 18:42:36 +00003442 &Operands[0], Operands.size(),
3443 Context);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003444}
3445
3446/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3447/// in the header of its containing loop, we know the loop executes a
3448/// constant number of times, and the PHI node is just a recurrence
3449/// involving constants, fold it.
Dan Gohman9bc642f2009-06-24 04:48:43 +00003450Constant *
3451ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3452 const APInt& BEs,
3453 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003454 std::map<PHINode*, Constant*>::iterator I =
3455 ConstantEvolutionLoopExitValue.find(PN);
3456 if (I != ConstantEvolutionLoopExitValue.end())
3457 return I->second;
3458
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003459 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003460 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
3461
3462 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3463
3464 // Since the loop is canonicalized, the PHI node must have two entries. One
3465 // entry must be a constant (coming in from outside of the loop), and the
3466 // second must be derived from the same PHI.
3467 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3468 Constant *StartCST =
3469 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3470 if (StartCST == 0)
3471 return RetVal = 0; // Must be a constant.
3472
3473 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3474 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3475 if (PN2 != PN)
3476 return RetVal = 0; // Not derived from same PHI.
3477
3478 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003479 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003480 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3481
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003482 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003483 unsigned IterationNum = 0;
3484 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3485 if (IterationNum == NumIterations)
3486 return RetVal = PHIVal; // Got exit value!
3487
3488 // Compute the value of the PHI node for the next iteration.
3489 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3490 if (NextPHI == PHIVal)
3491 return RetVal = NextPHI; // Stopped evolving!
3492 if (NextPHI == 0)
3493 return 0; // Couldn't evaluate!
3494 PHIVal = NextPHI;
3495 }
3496}
3497
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003498/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003499/// constant number of times (the condition evolves only from constants),
3500/// try to evaluate a few iterations of the loop until we get the exit
3501/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003502/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman9bc642f2009-06-24 04:48:43 +00003503const SCEV *
3504ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3505 Value *Cond,
3506 bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003507 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003508 if (PN == 0) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003509
3510 // Since the loop is canonicalized, the PHI node must have two entries. One
3511 // entry must be a constant (coming in from outside of the loop), and the
3512 // second must be derived from the same PHI.
3513 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3514 Constant *StartCST =
3515 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003516 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003517
3518 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3519 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003520 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003521
3522 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3523 // the loop symbolically to determine when the condition gets a value of
3524 // "ExitWhen".
3525 unsigned IterationNum = 0;
3526 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
3527 for (Constant *PHIVal = StartCST;
3528 IterationNum != MaxIterations; ++IterationNum) {
3529 ConstantInt *CondVal =
3530 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3531
3532 // Couldn't symbolically evaluate.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003533 if (!CondVal) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003534
3535 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003536 ++NumBruteForceTripCountsComputed;
Dan Gohman8fd520a2009-06-15 22:12:54 +00003537 return getConstant(Type::Int32Ty, IterationNum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003538 }
3539
3540 // Compute the value of the PHI node for the next iteration.
3541 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3542 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003543 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003544 PHIVal = NextPHI;
3545 }
3546
3547 // Too many iterations were needed to evaluate.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003548 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003549}
3550
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003551/// getSCEVAtScope - Return a SCEV expression handle for the specified value
3552/// at the specified scope in the program. The L value specifies a loop
3553/// nest to evaluate the expression at, where null is the top-level or a
3554/// specified loop is immediately inside of the loop.
3555///
3556/// This method can be used to compute the exit value for a variable defined
3557/// in a loop by querying what the value will hold in the parent loop.
3558///
Dan Gohmanaff14d62009-05-24 23:25:42 +00003559/// In the case that a relevant loop exit value cannot be computed, the
3560/// original value V is returned.
Dan Gohman161ea032009-07-07 17:06:11 +00003561const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003562 // FIXME: this should be turned into a virtual method on SCEV!
3563
3564 if (isa<SCEVConstant>(V)) return V;
3565
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003566 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003567 // exit value from the loop without using SCEVs.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003568 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003569 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003570 const Loop *LI = (*this->LI)[I->getParent()];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003571 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
3572 if (PHINode *PN = dyn_cast<PHINode>(I))
3573 if (PN->getParent() == LI->getHeader()) {
3574 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003575 // to see if the loop that contains it has a known backedge-taken
3576 // count. If so, we may be able to force computation of the exit
3577 // value.
Dan Gohman161ea032009-07-07 17:06:11 +00003578 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003579 if (const SCEVConstant *BTCC =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003580 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003581 // Okay, we know how many times the containing loop executes. If
3582 // this is a constant evolving PHI node, get the final value at
3583 // the specified iteration number.
3584 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003585 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003586 LI);
Dan Gohman652caf12009-06-29 21:31:18 +00003587 if (RV) return getSCEV(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003588 }
3589 }
3590
3591 // Okay, this is an expression that we cannot symbolically evaluate
3592 // into a SCEV. Check to see if it's possible to symbolically evaluate
3593 // the arguments into constants, and if so, try to constant propagate the
3594 // result. This is particularly useful for computing loop exit values.
3595 if (CanConstantFold(I)) {
Dan Gohmanda0071e2009-05-08 20:47:27 +00003596 // Check to see if we've folded this instruction at this loop before.
3597 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3598 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3599 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3600 if (!Pair.second)
Dan Gohman652caf12009-06-29 21:31:18 +00003601 return Pair.first->second ? &*getSCEV(Pair.first->second) : V;
Dan Gohmanda0071e2009-05-08 20:47:27 +00003602
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003603 std::vector<Constant*> Operands;
3604 Operands.reserve(I->getNumOperands());
3605 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3606 Value *Op = I->getOperand(i);
3607 if (Constant *C = dyn_cast<Constant>(Op)) {
3608 Operands.push_back(C);
3609 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00003610 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00003611 // non-integer and non-pointer, don't even try to analyze them
3612 // with scev techniques.
Dan Gohman5e4eb762009-04-30 16:40:30 +00003613 if (!isSCEVable(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00003614 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00003615
Nick Lewycky9425be92009-07-11 20:38:25 +00003616 const SCEV *OpV = getSCEVAtScope(getSCEV(Op), L);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003617 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00003618 Constant *C = SC->getValue();
3619 if (C->getType() != Op->getType())
3620 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3621 Op->getType(),
3622 false),
3623 C, Op->getType());
3624 Operands.push_back(C);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003625 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00003626 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3627 if (C->getType() != Op->getType())
3628 C =
3629 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3630 Op->getType(),
3631 false),
3632 C, Op->getType());
3633 Operands.push_back(C);
3634 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003635 return V;
3636 } else {
3637 return V;
3638 }
3639 }
3640 }
Dan Gohman9bc642f2009-06-24 04:48:43 +00003641
Chris Lattnerd6e56912007-12-10 22:53:04 +00003642 Constant *C;
3643 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3644 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Owen Andersond4d90a02009-07-06 18:42:36 +00003645 &Operands[0], Operands.size(),
3646 Context);
Chris Lattnerd6e56912007-12-10 22:53:04 +00003647 else
3648 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Owen Andersond4d90a02009-07-06 18:42:36 +00003649 &Operands[0], Operands.size(), Context);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003650 Pair.first->second = C;
Dan Gohman652caf12009-06-29 21:31:18 +00003651 return getSCEV(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003652 }
3653 }
3654
3655 // This is some other type of SCEVUnknown, just return it.
3656 return V;
3657 }
3658
Dan Gohmanc76b5452009-05-04 22:02:23 +00003659 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003660 // Avoid performing the look-up in the common case where the specified
3661 // expression has no loop-variant portions.
3662 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman161ea032009-07-07 17:06:11 +00003663 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003664 if (OpAtScope != Comm->getOperand(i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003665 // Okay, at least one of these operands is loop variant but might be
3666 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman9bc642f2009-06-24 04:48:43 +00003667 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
3668 Comm->op_begin()+i);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003669 NewOps.push_back(OpAtScope);
3670
3671 for (++i; i != e; ++i) {
3672 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003673 NewOps.push_back(OpAtScope);
3674 }
3675 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003676 return getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003677 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003678 return getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003679 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003680 return getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003681 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003682 return getUMaxExpr(NewOps);
Edwin Török675d5622009-07-11 20:10:48 +00003683 LLVM_UNREACHABLE("Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003684 }
3685 }
3686 // If we got here, all operands are loop invariant.
3687 return Comm;
3688 }
3689
Dan Gohmanc76b5452009-05-04 22:02:23 +00003690 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003691 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
3692 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky35b56022009-01-13 09:18:58 +00003693 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3694 return Div; // must be loop invariant
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003695 return getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003696 }
3697
3698 // If this is a loop recurrence for a loop that does not contain L, then we
3699 // are dealing with the final value computed by the loop.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003700 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003701 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3702 // To evaluate this recurrence, we need to know how many times the AddRec
3703 // loop iterates. Compute this now.
Dan Gohman161ea032009-07-07 17:06:11 +00003704 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003705 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003706
Eli Friedman7489ec92008-08-04 23:49:06 +00003707 // Then, evaluate the AddRec.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003708 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003709 }
Dan Gohmanaff14d62009-05-24 23:25:42 +00003710 return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003711 }
3712
Dan Gohmanc76b5452009-05-04 22:02:23 +00003713 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003714 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003715 if (Op == Cast->getOperand())
3716 return Cast; // must be loop invariant
3717 return getZeroExtendExpr(Op, Cast->getType());
3718 }
3719
Dan Gohmanc76b5452009-05-04 22:02:23 +00003720 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003721 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003722 if (Op == Cast->getOperand())
3723 return Cast; // must be loop invariant
3724 return getSignExtendExpr(Op, Cast->getType());
3725 }
3726
Dan Gohmanc76b5452009-05-04 22:02:23 +00003727 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman161ea032009-07-07 17:06:11 +00003728 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003729 if (Op == Cast->getOperand())
3730 return Cast; // must be loop invariant
3731 return getTruncateExpr(Op, Cast->getType());
3732 }
3733
Edwin Török675d5622009-07-11 20:10:48 +00003734 LLVM_UNREACHABLE("Unknown SCEV type!");
Daniel Dunbara95d96c2009-05-18 16:43:04 +00003735 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003736}
3737
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003738/// getSCEVAtScope - This is a convenience function which does
3739/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman161ea032009-07-07 17:06:11 +00003740const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003741 return getSCEVAtScope(getSCEV(V), L);
3742}
3743
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003744/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3745/// following equation:
3746///
3747/// A * X = B (mod N)
3748///
3749/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3750/// A and B isn't important.
3751///
3752/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman161ea032009-07-07 17:06:11 +00003753static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003754 ScalarEvolution &SE) {
3755 uint32_t BW = A.getBitWidth();
3756 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3757 assert(A != 0 && "A must be non-zero.");
3758
3759 // 1. D = gcd(A, N)
3760 //
3761 // The gcd of A and N may have only one prime factor: 2. The number of
3762 // trailing zeros in A is its multiplicity
3763 uint32_t Mult2 = A.countTrailingZeros();
3764 // D = 2^Mult2
3765
3766 // 2. Check if B is divisible by D.
3767 //
3768 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3769 // is not less than multiplicity of this prime factor for D.
3770 if (B.countTrailingZeros() < Mult2)
Dan Gohman0ad08b02009-04-18 17:58:19 +00003771 return SE.getCouldNotCompute();
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003772
3773 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3774 // modulo (N / D).
3775 //
3776 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
3777 // bit width during computations.
3778 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
3779 APInt Mod(BW + 1, 0);
3780 Mod.set(BW - Mult2); // Mod = N / D
3781 APInt I = AD.multiplicativeInverse(Mod);
3782
3783 // 4. Compute the minimum unsigned root of the equation:
3784 // I * (B / D) mod (N / D)
3785 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3786
3787 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3788 // bits.
3789 return SE.getConstant(Result.trunc(BW));
3790}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003791
3792/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3793/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
3794/// might be the same) or two SCEVCouldNotCompute objects.
3795///
Dan Gohman161ea032009-07-07 17:06:11 +00003796static std::pair<const SCEV *,const SCEV *>
Dan Gohman89f85052007-10-22 18:31:58 +00003797SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003798 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00003799 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3800 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3801 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003802
3803 // We currently can only solve this if the coefficients are constants.
3804 if (!LC || !MC || !NC) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003805 const SCEV *CNC = SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003806 return std::make_pair(CNC, CNC);
3807 }
3808
3809 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3810 const APInt &L = LC->getValue()->getValue();
3811 const APInt &M = MC->getValue()->getValue();
3812 const APInt &N = NC->getValue()->getValue();
3813 APInt Two(BitWidth, 2);
3814 APInt Four(BitWidth, 4);
3815
Dan Gohman9bc642f2009-06-24 04:48:43 +00003816 {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003817 using namespace APIntOps;
3818 const APInt& C = L;
3819 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3820 // The B coefficient is M-N/2
3821 APInt B(M);
3822 B -= sdiv(N,Two);
3823
3824 // The A coefficient is N/2
3825 APInt A(N.sdiv(Two));
3826
3827 // Compute the B^2-4ac term.
3828 APInt SqrtTerm(B);
3829 SqrtTerm *= B;
3830 SqrtTerm -= Four * (A * C);
3831
3832 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3833 // integer value or else APInt::sqrt() will assert.
3834 APInt SqrtVal(SqrtTerm.sqrt());
3835
Dan Gohman9bc642f2009-06-24 04:48:43 +00003836 // Compute the two solutions for the quadratic formula.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003837 // The divisions must be performed as signed divisions.
3838 APInt NegB(-B);
3839 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00003840 if (TwoA.isMinValue()) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003841 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky35776692008-11-03 02:43:49 +00003842 return std::make_pair(CNC, CNC);
3843 }
3844
Owen Andersone755b092009-07-06 22:37:39 +00003845 LLVMContext *Context = SE.getContext();
3846
3847 ConstantInt *Solution1 =
3848 Context->getConstantInt((NegB + SqrtVal).sdiv(TwoA));
3849 ConstantInt *Solution2 =
3850 Context->getConstantInt((NegB - SqrtVal).sdiv(TwoA));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003851
Dan Gohman9bc642f2009-06-24 04:48:43 +00003852 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman89f85052007-10-22 18:31:58 +00003853 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003854 } // end APIntOps namespace
3855}
3856
3857/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman0c850912009-06-06 14:37:11 +00003858/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohman161ea032009-07-07 17:06:11 +00003859const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003860 // If the value is a constant
Dan Gohmanc76b5452009-05-04 22:02:23 +00003861 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003862 // If the value is already zero, the branch will execute zero times.
3863 if (C->getValue()->isZero()) return C;
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003864 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003865 }
3866
Dan Gohmanbff6b582009-05-04 22:30:44 +00003867 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003868 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003869 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003870
3871 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003872 // If this is an affine expression, the execution count of this branch is
3873 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003874 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003875 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003876 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003877 // equivalent to:
3878 //
3879 // Step*N = -Start (mod 2^BW)
3880 //
3881 // where BW is the common bit width of Start and Step.
3882
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003883 // Get the initial value for the loop.
Dan Gohman9bc642f2009-06-24 04:48:43 +00003884 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
3885 L->getParentLoop());
3886 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
3887 L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003888
Dan Gohmanc76b5452009-05-04 22:02:23 +00003889 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003890 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003892 // First, handle unitary steps.
3893 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003894 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003895 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
3896 return Start; // N = Start (as unsigned)
3897
3898 // Then, try to solve the above equation provided that Start is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003899 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003900 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003901 -StartC->getValue()->getValue(),
3902 *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003903 }
3904 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3905 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3906 // the quadratic equation to solve it.
Dan Gohman161ea032009-07-07 17:06:11 +00003907 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003908 *this);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003909 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3910 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003911 if (R1) {
3912#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003913 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3914 << " sol#2: " << *R2 << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003915#endif
3916 // Pick the smallest positive root value.
3917 if (ConstantInt *CB =
Owen Andersone755b092009-07-06 22:37:39 +00003918 dyn_cast<ConstantInt>(Context->getConstantExprICmp(ICmpInst::ICMP_ULT,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003919 R1->getValue(), R2->getValue()))) {
3920 if (CB->getZExtValue() == false)
3921 std::swap(R1, R2); // R1 is the minimum root now.
3922
3923 // We can only use this value if the chrec ends up with an exact zero
3924 // value at this index. When solving for "X*X != 5", for example, we
3925 // should not accept a root of 2.
Dan Gohman161ea032009-07-07 17:06:11 +00003926 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohman7b560c42008-06-18 16:23:07 +00003927 if (Val->isZero())
3928 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003929 }
3930 }
3931 }
3932
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003933 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003934}
3935
3936/// HowFarToNonZero - Return the number of times a backedge checking the
3937/// specified value for nonzero will execute. If not computable, return
Dan Gohman0c850912009-06-06 14:37:11 +00003938/// CouldNotCompute
Dan Gohman161ea032009-07-07 17:06:11 +00003939const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003940 // Loops that look like: while (X == 0) are very strange indeed. We don't
3941 // handle them yet except for the trivial case. This could be expanded in the
3942 // future as needed.
3943
3944 // If the value is a constant, check to see if it is known to be non-zero
3945 // already. If so, the backedge will execute zero times.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003946 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00003947 if (!C->getValue()->isNullValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003948 return getIntegerSCEV(0, C->getType());
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003949 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003950 }
3951
3952 // We could implement others, but I really doubt anyone writes loops like
3953 // this, and if they did, they would already be constant folded.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00003954 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003955}
3956
Dan Gohmanab157b22009-05-18 15:36:09 +00003957/// getLoopPredecessor - If the given loop's header has exactly one unique
3958/// predecessor outside the loop, return it. Otherwise return null.
3959///
3960BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3961 BasicBlock *Header = L->getHeader();
3962 BasicBlock *Pred = 0;
3963 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3964 PI != E; ++PI)
3965 if (!L->contains(*PI)) {
3966 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3967 Pred = *PI;
3968 }
3969 return Pred;
3970}
3971
Dan Gohman1cddf972008-09-15 22:18:04 +00003972/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3973/// (which may not be an immediate predecessor) which has exactly one
3974/// successor from which BB is reachable, or null if no such block is
3975/// found.
3976///
3977BasicBlock *
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003978ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman1116ea72009-04-30 20:48:53 +00003979 // If the block has a unique predecessor, then there is no path from the
3980 // predecessor to the block that does not go through the direct edge
3981 // from the predecessor to the block.
Dan Gohman1cddf972008-09-15 22:18:04 +00003982 if (BasicBlock *Pred = BB->getSinglePredecessor())
3983 return Pred;
3984
3985 // A loop's header is defined to be a block that dominates the loop.
Dan Gohmanab157b22009-05-18 15:36:09 +00003986 // If the header has a unique predecessor outside the loop, it must be
3987 // a block that has exactly one successor that can reach the loop.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003988 if (Loop *L = LI->getLoopFor(BB))
Dan Gohmanab157b22009-05-18 15:36:09 +00003989 return getLoopPredecessor(L);
Dan Gohman1cddf972008-09-15 22:18:04 +00003990
3991 return 0;
3992}
3993
Dan Gohmanbc1e3472009-06-20 00:35:32 +00003994/// HasSameValue - SCEV structural equivalence is usually sufficient for
3995/// testing whether two expressions are equal, however for the purposes of
3996/// looking for a condition guarding a loop, it can be useful to be a little
3997/// more general, since a front-end may have replicated the controlling
3998/// expression.
3999///
Dan Gohman161ea032009-07-07 17:06:11 +00004000static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohmanbc1e3472009-06-20 00:35:32 +00004001 // Quick check to see if they are the same SCEV.
4002 if (A == B) return true;
4003
4004 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4005 // two different instructions with the same value. Check for this case.
4006 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4007 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4008 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4009 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4010 if (AI->isIdenticalTo(BI))
4011 return true;
4012
4013 // Otherwise assume they may have a different value.
4014 return false;
4015}
4016
Nick Lewycky9425be92009-07-11 20:38:25 +00004017/// isLoopGuardedByCond - Test whether entry to the loop is protected by
4018/// a conditional between LHS and RHS. This is used to help avoid max
4019/// expressions in loop trip counts.
4020bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4021 ICmpInst::Predicate Pred,
4022 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8b938182009-05-18 16:03:58 +00004023 // Interpret a null as meaning no loop, where there is obviously no guard
4024 // (interprocedural conditions notwithstanding).
4025 if (!L) return false;
4026
Dan Gohmanab157b22009-05-18 15:36:09 +00004027 BasicBlock *Predecessor = getLoopPredecessor(L);
4028 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00004029
Dan Gohmanab157b22009-05-18 15:36:09 +00004030 // Starting at the loop predecessor, climb up the predecessor chain, as long
4031 // as there are predecessors that can be found that have unique successors
Dan Gohman1cddf972008-09-15 22:18:04 +00004032 // leading to the original header.
Dan Gohmanab157b22009-05-18 15:36:09 +00004033 for (; Predecessor;
4034 PredecessorDest = Predecessor,
4035 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00004036
4037 BranchInst *LoopEntryPredicate =
Dan Gohmanab157b22009-05-18 15:36:09 +00004038 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00004039 if (!LoopEntryPredicate ||
4040 LoopEntryPredicate->isUnconditional())
4041 continue;
4042
Dan Gohman423ed6c2009-06-24 01:18:18 +00004043 if (isNecessaryCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4044 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
Dan Gohmanab678fb2008-08-12 20:17:31 +00004045 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00004046 }
4047
Dan Gohmanab678fb2008-08-12 20:17:31 +00004048 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00004049}
4050
Nick Lewycky9425be92009-07-11 20:38:25 +00004051/// isNecessaryCond - Test whether the given CondValue value is a condition
4052/// which is at least as strict as the one described by Pred, LHS, and RHS.
Dan Gohman423ed6c2009-06-24 01:18:18 +00004053bool ScalarEvolution::isNecessaryCond(Value *CondValue,
4054 ICmpInst::Predicate Pred,
4055 const SCEV *LHS, const SCEV *RHS,
4056 bool Inverse) {
4057 // Recursivly handle And and Or conditions.
4058 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4059 if (BO->getOpcode() == Instruction::And) {
4060 if (!Inverse)
4061 return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4062 isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4063 } else if (BO->getOpcode() == Instruction::Or) {
4064 if (Inverse)
4065 return isNecessaryCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4066 isNecessaryCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4067 }
4068 }
4069
4070 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4071 if (!ICI) return false;
4072
4073 // Now that we found a conditional branch that dominates the loop, check to
4074 // see if it is the comparison we are looking for.
4075 Value *PreCondLHS = ICI->getOperand(0);
4076 Value *PreCondRHS = ICI->getOperand(1);
Nick Lewycky9425be92009-07-11 20:38:25 +00004077 ICmpInst::Predicate Cond;
Dan Gohman423ed6c2009-06-24 01:18:18 +00004078 if (Inverse)
Nick Lewycky9425be92009-07-11 20:38:25 +00004079 Cond = ICI->getInversePredicate();
Dan Gohman423ed6c2009-06-24 01:18:18 +00004080 else
Nick Lewycky9425be92009-07-11 20:38:25 +00004081 Cond = ICI->getPredicate();
Dan Gohman423ed6c2009-06-24 01:18:18 +00004082
Nick Lewycky9425be92009-07-11 20:38:25 +00004083 if (Cond == Pred)
Dan Gohman423ed6c2009-06-24 01:18:18 +00004084 ; // An exact match.
Nick Lewycky9425be92009-07-11 20:38:25 +00004085 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
4086 ; // The actual condition is beyond sufficient.
4087 else
Dan Gohman423ed6c2009-06-24 01:18:18 +00004088 // Check a few special cases.
Nick Lewycky9425be92009-07-11 20:38:25 +00004089 switch (Cond) {
Dan Gohman423ed6c2009-06-24 01:18:18 +00004090 case ICmpInst::ICMP_UGT:
4091 if (Pred == ICmpInst::ICMP_ULT) {
4092 std::swap(PreCondLHS, PreCondRHS);
Nick Lewycky9425be92009-07-11 20:38:25 +00004093 Cond = ICmpInst::ICMP_ULT;
Dan Gohman423ed6c2009-06-24 01:18:18 +00004094 break;
4095 }
4096 return false;
4097 case ICmpInst::ICMP_SGT:
4098 if (Pred == ICmpInst::ICMP_SLT) {
4099 std::swap(PreCondLHS, PreCondRHS);
Nick Lewycky9425be92009-07-11 20:38:25 +00004100 Cond = ICmpInst::ICMP_SLT;
Dan Gohman423ed6c2009-06-24 01:18:18 +00004101 break;
4102 }
4103 return false;
4104 case ICmpInst::ICMP_NE:
4105 // Expressions like (x >u 0) are often canonicalized to (x != 0),
4106 // so check for this case by checking if the NE is comparing against
4107 // a minimum or maximum constant.
4108 if (!ICmpInst::isTrueWhenEqual(Pred))
Nick Lewycky9425be92009-07-11 20:38:25 +00004109 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
4110 const APInt &A = CI->getValue();
Dan Gohman423ed6c2009-06-24 01:18:18 +00004111 switch (Pred) {
4112 case ICmpInst::ICMP_SLT:
4113 if (A.isMaxSignedValue()) break;
4114 return false;
4115 case ICmpInst::ICMP_SGT:
4116 if (A.isMinSignedValue()) break;
4117 return false;
4118 case ICmpInst::ICMP_ULT:
4119 if (A.isMaxValue()) break;
4120 return false;
4121 case ICmpInst::ICMP_UGT:
4122 if (A.isMinValue()) break;
4123 return false;
4124 default:
4125 return false;
4126 }
Nick Lewycky9425be92009-07-11 20:38:25 +00004127 Cond = ICmpInst::ICMP_NE;
Dan Gohman423ed6c2009-06-24 01:18:18 +00004128 // NE is symmetric but the original comparison may not be. Swap
4129 // the operands if necessary so that they match below.
4130 if (isa<SCEVConstant>(LHS))
4131 std::swap(PreCondLHS, PreCondRHS);
4132 break;
4133 }
4134 return false;
4135 default:
4136 // We weren't able to reconcile the condition.
4137 return false;
4138 }
4139
Nick Lewycky9425be92009-07-11 20:38:25 +00004140 if (!PreCondLHS->getType()->isInteger()) return false;
Dan Gohman423ed6c2009-06-24 01:18:18 +00004141
Nick Lewycky9425be92009-07-11 20:38:25 +00004142 const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS);
4143 const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS);
4144 return (HasSameValue(LHS, PreCondLHSSCEV) &&
4145 HasSameValue(RHS, PreCondRHSSCEV)) ||
4146 (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
4147 HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)));
Dan Gohman423ed6c2009-06-24 01:18:18 +00004148}
4149
Dan Gohmand2b62c42009-06-21 23:46:38 +00004150/// getBECount - Subtract the end and start values and divide by the step,
4151/// rounding up, to get the number of times the backedge is executed. Return
4152/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman161ea032009-07-07 17:06:11 +00004153const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4154 const SCEV *End,
4155 const SCEV *Step) {
Dan Gohmand2b62c42009-06-21 23:46:38 +00004156 const Type *Ty = Start->getType();
Dan Gohman161ea032009-07-07 17:06:11 +00004157 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4158 const SCEV *Diff = getMinusSCEV(End, Start);
4159 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohmand2b62c42009-06-21 23:46:38 +00004160
4161 // Add an adjustment to the difference between End and Start so that
4162 // the division will effectively round up.
Dan Gohman161ea032009-07-07 17:06:11 +00004163 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohmand2b62c42009-06-21 23:46:38 +00004164
4165 // Check Add for unsigned overflow.
4166 // TODO: More sophisticated things could be done here.
Owen Andersone755b092009-07-06 22:37:39 +00004167 const Type *WideTy = Context->getIntegerType(getTypeSizeInBits(Ty) + 1);
Dan Gohman161ea032009-07-07 17:06:11 +00004168 const SCEV *OperandExtendedAdd =
Dan Gohmand2b62c42009-06-21 23:46:38 +00004169 getAddExpr(getZeroExtendExpr(Diff, WideTy),
4170 getZeroExtendExpr(RoundUp, WideTy));
4171 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004172 return getCouldNotCompute();
Dan Gohmand2b62c42009-06-21 23:46:38 +00004173
4174 return getUDivExpr(Add, Step);
4175}
4176
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004177/// HowManyLessThans - Return the number of times a backedge containing the
4178/// specified less-than comparison will execute. If not computable, return
Dan Gohman0c850912009-06-06 14:37:11 +00004179/// CouldNotCompute.
Dan Gohman9bc642f2009-06-24 04:48:43 +00004180ScalarEvolution::BackedgeTakenInfo
4181ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4182 const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004183 // Only handle: "ADDREC < LoopInvariant".
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004184 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004185
Dan Gohmanbff6b582009-05-04 22:30:44 +00004186 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004187 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004188 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004189
4190 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00004191 // FORNOW: We only support unit strides.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004192 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman161ea032009-07-07 17:06:11 +00004193 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004194
4195 // TODO: handle non-constant strides.
4196 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4197 if (!CStep || CStep->isZero())
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004198 return getCouldNotCompute();
Dan Gohmanf8bc8e82009-05-18 15:22:39 +00004199 if (CStep->isOne()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004200 // With unit stride, the iteration never steps past the limit value.
4201 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4202 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4203 // Test whether a positive iteration iteration can step past the limit
4204 // value and past the maximum value for its type in a single step.
4205 if (isSigned) {
4206 APInt Max = APInt::getSignedMaxValue(BitWidth);
4207 if ((Max - CStep->getValue()->getValue())
4208 .slt(CLimit->getValue()->getValue()))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004209 return getCouldNotCompute();
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004210 } else {
4211 APInt Max = APInt::getMaxValue(BitWidth);
4212 if ((Max - CStep->getValue()->getValue())
4213 .ult(CLimit->getValue()->getValue()))
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004214 return getCouldNotCompute();
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004215 }
4216 } else
4217 // TODO: handle non-constant limit values below.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004218 return getCouldNotCompute();
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004219 } else
4220 // TODO: handle negative strides below.
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004221 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004222
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004223 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4224 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4225 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00004226 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004227
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004228 // First, we get the value of the LHS in the first iteration: n
Dan Gohman161ea032009-07-07 17:06:11 +00004229 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004230
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004231 // Determine the minimum constant start value.
Nick Lewycky9425be92009-07-11 20:38:25 +00004232 const SCEV *MinStart = isa<SCEVConstant>(Start) ? Start :
4233 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
4234 APInt::getMinValue(BitWidth));
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00004235
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004236 // If we know that the condition is true in order to enter the loop,
4237 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohmanc8a29272009-05-24 23:45:28 +00004238 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4239 // the division must round up.
Dan Gohman161ea032009-07-07 17:06:11 +00004240 const SCEV *End = RHS;
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004241 if (!isLoopGuardedByCond(L,
Nick Lewycky9425be92009-07-11 20:38:25 +00004242 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004243 getMinusSCEV(Start, Step), RHS))
4244 End = isSigned ? getSMaxExpr(RHS, Start)
4245 : getUMaxExpr(RHS, Start);
4246
4247 // Determine the maximum constant end value.
Nick Lewycky9425be92009-07-11 20:38:25 +00004248 const SCEV *MaxEnd =
4249 isa<SCEVConstant>(End) ? End :
4250 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
4251 .ashr(GetMinSignBits(End) - 1) :
4252 APInt::getMaxValue(BitWidth)
4253 .lshr(GetMinLeadingZeros(End)));
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004254
4255 // Finally, we subtract these two values and divide, rounding up, to get
4256 // the number of times the backedge is executed.
Dan Gohman161ea032009-07-07 17:06:11 +00004257 const SCEV *BECount = getBECount(Start, End, Step);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004258
4259 // The maximum backedge count is similar, except using the minimum start
4260 // value and the maximum end value.
Dan Gohman161ea032009-07-07 17:06:11 +00004261 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00004262
4263 return BackedgeTakenInfo(BECount, MaxBECount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004264 }
4265
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004266 return getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004267}
4268
4269/// getNumIterationsInRange - Return the number of iterations of this loop that
4270/// produce values in the specified constant range. Another way of looking at
4271/// this is that it returns the first iteration number where the value is not in
4272/// the condition, thus computing the exit count. If the iteration count can't
4273/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman161ea032009-07-07 17:06:11 +00004274const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman9bc642f2009-06-24 04:48:43 +00004275 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004276 if (Range.isFullSet()) // Infinite loop.
Dan Gohman0ad08b02009-04-18 17:58:19 +00004277 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004278
4279 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmanc76b5452009-05-04 22:02:23 +00004280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004281 if (!SC->getValue()->isZero()) {
Dan Gohman161ea032009-07-07 17:06:11 +00004282 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00004283 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
Dan Gohman161ea032009-07-07 17:06:11 +00004284 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanc76b5452009-05-04 22:02:23 +00004285 if (const SCEVAddRecExpr *ShiftedAddRec =
4286 dyn_cast<SCEVAddRecExpr>(Shifted))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004287 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00004288 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004289 // This is strange and shouldn't happen.
Dan Gohman0ad08b02009-04-18 17:58:19 +00004290 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004291 }
4292
4293 // The only time we can solve this is when we have all constant indices.
4294 // Otherwise, we cannot determine the overflow conditions.
4295 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4296 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman0ad08b02009-04-18 17:58:19 +00004297 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004298
4299
4300 // Okay at this point we know that all elements of the chrec are constants and
4301 // that the start element is zero.
4302
4303 // First check to see if the range contains zero. If not, the first
4304 // iteration exits.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00004305 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00004306 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman8fd520a2009-06-15 22:12:54 +00004307 return SE.getIntegerSCEV(0, getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004308
4309 if (isAffine()) {
4310 // If this is an affine expression then we have this situation:
4311 // Solve {0,+,A} in Range === Ax in Range
4312
4313 // We know that zero is in the range. If A is positive then we know that
4314 // the upper value of the range must be the first possible exit value.
4315 // If A is negative then the lower of the range is the last possible loop
4316 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00004317 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004318 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4319 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4320
4321 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00004322 APInt ExitVal = (End + A).udiv(A);
Owen Andersone755b092009-07-06 22:37:39 +00004323 ConstantInt *ExitValue = SE.getContext()->getConstantInt(ExitVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004324
4325 // Evaluate at the exit value. If we really did fall out of the valid
4326 // range, then we computed our trip count, otherwise wrap around or other
4327 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00004328 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004329 if (Range.contains(Val->getValue()))
Dan Gohman0ad08b02009-04-18 17:58:19 +00004330 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004331
4332 // Ensure that the previous value is in the range. This is a sanity check.
4333 assert(Range.contains(
Dan Gohman9bc642f2009-06-24 04:48:43 +00004334 EvaluateConstantChrecAtConstant(this,
Owen Andersone755b092009-07-06 22:37:39 +00004335 SE.getContext()->getConstantInt(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004336 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00004337 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004338 } else if (isQuadratic()) {
4339 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4340 // quadratic equation to solve it. To do this, we must frame our problem in
4341 // terms of figuring out when zero is crossed, instead of when
4342 // Range.getUpper() is crossed.
Dan Gohman161ea032009-07-07 17:06:11 +00004343 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00004344 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman161ea032009-07-07 17:06:11 +00004345 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004346
4347 // Next, solve the constructed addrec
Dan Gohman161ea032009-07-07 17:06:11 +00004348 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00004349 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004350 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4351 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004352 if (R1) {
4353 // Pick the smallest positive root value.
4354 if (ConstantInt *CB =
Owen Andersone755b092009-07-06 22:37:39 +00004355 dyn_cast<ConstantInt>(
4356 SE.getContext()->getConstantExprICmp(ICmpInst::ICMP_ULT,
4357 R1->getValue(), R2->getValue()))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004358 if (CB->getZExtValue() == false)
4359 std::swap(R1, R2); // R1 is the minimum root now.
4360
4361 // Make sure the root is not off by one. The returned iteration should
4362 // not be in the range, but the previous one should be. When solving
4363 // for "X*X < 5", for example, we should not return a root of 2.
4364 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00004365 R1->getValue(),
4366 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004367 if (Range.contains(R1Val->getValue())) {
4368 // The next iteration must be out of the range...
Owen Andersone755b092009-07-06 22:37:39 +00004369 ConstantInt *NextVal =
4370 SE.getContext()->getConstantInt(R1->getValue()->getValue()+1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004371
Dan Gohman89f85052007-10-22 18:31:58 +00004372 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004373 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00004374 return SE.getConstant(NextVal);
Dan Gohman0ad08b02009-04-18 17:58:19 +00004375 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004376 }
4377
4378 // If R1 was not in the range, then it is a good return value. Make
4379 // sure that R1-1 WAS in the range though, just in case.
Owen Andersone755b092009-07-06 22:37:39 +00004380 ConstantInt *NextVal =
4381 SE.getContext()->getConstantInt(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00004382 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004383 if (Range.contains(R1Val->getValue()))
4384 return R1;
Dan Gohman0ad08b02009-04-18 17:58:19 +00004385 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004386 }
4387 }
4388 }
4389
Dan Gohman0ad08b02009-04-18 17:58:19 +00004390 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004391}
4392
4393
4394
4395//===----------------------------------------------------------------------===//
Dan Gohmanbff6b582009-05-04 22:30:44 +00004396// SCEVCallbackVH Class Implementation
4397//===----------------------------------------------------------------------===//
4398
Dan Gohman999d14e2009-05-19 19:22:47 +00004399void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanbff6b582009-05-04 22:30:44 +00004400 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4401 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4402 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004403 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4404 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004405 SE->Scalars.erase(getValPtr());
4406 // this now dangles!
4407}
4408
Dan Gohman999d14e2009-05-19 19:22:47 +00004409void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00004410 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
4411
4412 // Forget all the expressions associated with users of the old value,
4413 // so that future queries will recompute the expressions using the new
4414 // value.
4415 SmallVector<User *, 16> Worklist;
4416 Value *Old = getValPtr();
4417 bool DeleteOld = false;
4418 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4419 UI != UE; ++UI)
4420 Worklist.push_back(*UI);
4421 while (!Worklist.empty()) {
4422 User *U = Worklist.pop_back_val();
4423 // Deleting the Old value will cause this to dangle. Postpone
4424 // that until everything else is done.
4425 if (U == Old) {
4426 DeleteOld = true;
4427 continue;
4428 }
4429 if (PHINode *PN = dyn_cast<PHINode>(U))
4430 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004431 if (Instruction *I = dyn_cast<Instruction>(U))
4432 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004433 if (SE->Scalars.erase(U))
4434 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4435 UI != UE; ++UI)
4436 Worklist.push_back(*UI);
4437 }
4438 if (DeleteOld) {
4439 if (PHINode *PN = dyn_cast<PHINode>(Old))
4440 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00004441 if (Instruction *I = dyn_cast<Instruction>(Old))
4442 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00004443 SE->Scalars.erase(Old);
4444 // this now dangles!
4445 }
4446 // this may dangle!
4447}
4448
Dan Gohman999d14e2009-05-19 19:22:47 +00004449ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohmanbff6b582009-05-04 22:30:44 +00004450 : CallbackVH(V), SE(se) {}
4451
4452//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004453// ScalarEvolution Class Implementation
4454//===----------------------------------------------------------------------===//
4455
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004456ScalarEvolution::ScalarEvolution()
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004457 : FunctionPass(&ID) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004458}
4459
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004460bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004461 this->F = &F;
4462 LI = &getAnalysis<LoopInfo>();
4463 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004464 return false;
4465}
4466
4467void ScalarEvolution::releaseMemory() {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004468 Scalars.clear();
4469 BackedgeTakenCounts.clear();
4470 ConstantEvolutionLoopExitValue.clear();
Dan Gohmanda0071e2009-05-08 20:47:27 +00004471 ValuesAtScopes.clear();
Dan Gohmanc6475cb2009-06-27 21:21:31 +00004472 UniqueSCEVs.clear();
4473 SCEVAllocator.Reset();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004474}
4475
4476void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4477 AU.setPreservesAll();
4478 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00004479}
4480
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004481bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00004482 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004483}
4484
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004485static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004486 const Loop *L) {
4487 // Print all inner loops first
4488 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4489 PrintLoopInfo(OS, SE, *I);
4490
Nick Lewyckye5da1912008-01-02 02:49:20 +00004491 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004492
Devang Patel02451fa2007-08-21 00:31:24 +00004493 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004494 L->getExitBlocks(ExitBlocks);
4495 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00004496 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004497
Dan Gohman76d5a0d2009-02-24 18:55:53 +00004498 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
4499 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004500 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00004501 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004502 }
4503
Nick Lewyckye5da1912008-01-02 02:49:20 +00004504 OS << "\n";
Dan Gohmanb6b9e9e2009-06-24 00:33:16 +00004505 OS << "Loop " << L->getHeader()->getName() << ": ";
4506
4507 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
4508 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
4509 } else {
4510 OS << "Unpredictable max backedge-taken count. ";
4511 }
4512
4513 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004514}
4515
Dan Gohman13058cc2009-04-21 00:47:46 +00004516void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004517 // ScalarEvolution's implementaiton of the print method is to print
4518 // out SCEV values of all instructions that are interesting. Doing
4519 // this potentially causes it to create new SCEV objects though,
4520 // which technically conflicts with the const qualifier. This isn't
Dan Gohmanac2a9d62009-07-10 20:25:29 +00004521 // observable from outside the class though, so casting away the
4522 // const isn't dangerous.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004523 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004524
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004525 OS << "Classifying expressions for: " << F->getName() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004526 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohman43d37e92009-04-30 01:30:18 +00004527 if (isSCEVable(I->getType())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004528 OS << *I;
Dan Gohmanabe991f2008-09-14 17:21:12 +00004529 OS << " --> ";
Dan Gohman161ea032009-07-07 17:06:11 +00004530 const SCEV *SV = SE.getSCEV(&*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004531 SV->print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004532
Dan Gohman8db598a2009-06-19 17:49:54 +00004533 const Loop *L = LI->getLoopFor((*I).getParent());
4534
Dan Gohman161ea032009-07-07 17:06:11 +00004535 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman8db598a2009-06-19 17:49:54 +00004536 if (AtUse != SV) {
4537 OS << " --> ";
4538 AtUse->print(OS);
4539 }
4540
4541 if (L) {
Dan Gohmane5b60842009-06-18 00:37:45 +00004542 OS << "\t\t" "Exits: ";
Dan Gohman161ea032009-07-07 17:06:11 +00004543 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanaff14d62009-05-24 23:25:42 +00004544 if (!ExitValue->isLoopInvariant(L)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004545 OS << "<<Unknown>>";
4546 } else {
4547 OS << *ExitValue;
4548 }
4549 }
4550
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004551 OS << "\n";
4552 }
4553
Dan Gohmanffd36ba2009-04-21 23:15:49 +00004554 OS << "Determining loop execution counts for: " << F->getName() << "\n";
4555 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
4556 PrintLoopInfo(OS, &SE, *I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004557}
Dan Gohman13058cc2009-04-21 00:47:46 +00004558
4559void ScalarEvolution::print(std::ostream &o, const Module *M) const {
4560 raw_os_ostream OS(o);
4561 print(OS, M);
4562}