blob: 7612f43f71c465e3ff005b7282de38a153f61d1a [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Owen Andersond13db2c2010-07-21 22:09:45 +0000106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107 "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohman3bf63762010-06-18 19:54:20 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohman3bf63762010-06-18 19:54:20 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohman3bf63762010-06-18 19:54:20 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohman3bf63762010-06-18 19:54:20 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
254 if (next(I) != E)
255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
306 // This recurrence is variant w.r.t. QueryLoop if any of its operands
307 // are variant.
308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309 if (!getOperand(i)->isLoopInvariant(QueryLoop))
310 return false;
311
312 // Otherwise it's loop-invariant.
313 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000314}
315
Dan Gohman39125d82010-02-13 00:19:39 +0000316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318 return DT->dominates(L->getHeader(), BB) &&
319 SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324 // This uses a "dominates" query instead of "properly dominates" query because
325 // the instruction which produces the addrec's value is a PHI, and a PHI
326 // effectively properly dominates its entire containing block.
327 return DT->dominates(L->getHeader(), BB) &&
328 SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000331void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000333 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000335 OS << "}<";
336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341 // All non-instruction values are loop invariant. All instructions are loop
342 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000343 // Instructions are never considered invariant in the function body
344 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000346 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347 return true;
348}
Chris Lattner53e677a2004-04-02 20:23:17 +0000349
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351 if (Instruction *I = dyn_cast<Instruction>(getValue()))
352 return DT->dominates(I->getParent(), BB);
353 return true;
354}
355
Dan Gohman6e70e312009-09-27 15:26:03 +0000356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357 if (Instruction *I = dyn_cast<Instruction>(getValue()))
358 return DT->properlyDominates(I->getParent(), BB);
359 return true;
360}
361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362const Type *SCEVUnknown::getType() const {
363 return V->getType();
364}
Chris Lattner53e677a2004-04-02 20:23:17 +0000365
Dan Gohman0f5efe52010-01-28 02:15:55 +0000366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368 if (VCE->getOpcode() == Instruction::PtrToInt)
369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000370 if (CE->getOpcode() == Instruction::GetElementPtr &&
371 CE->getOperand(0)->isNullValue() &&
372 CE->getNumOperands() == 2)
373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374 if (CI->isOne()) {
375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376 ->getElementType();
377 return true;
378 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000379
380 return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385 if (VCE->getOpcode() == Instruction::PtrToInt)
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 if (CE->getOpcode() == Instruction::GetElementPtr &&
388 CE->getOperand(0)->isNullValue()) {
389 const Type *Ty =
390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391 if (const StructType *STy = dyn_cast<StructType>(Ty))
392 if (!STy->isPacked() &&
393 CE->getNumOperands() == 3 &&
394 CE->getOperand(1)->isNullValue()) {
395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396 if (CI->isOne() &&
397 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000398 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000399 AllocTy = STy->getElementType(1);
400 return true;
401 }
402 }
403 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000404
405 return false;
406}
407
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410 if (VCE->getOpcode() == Instruction::PtrToInt)
411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412 if (CE->getOpcode() == Instruction::GetElementPtr &&
413 CE->getNumOperands() == 3 &&
414 CE->getOperand(0)->isNullValue() &&
415 CE->getOperand(1)->isNullValue()) {
416 const Type *Ty =
417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418 // Ignore vector types here so that ScalarEvolutionExpander doesn't
419 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000420 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000421 CTy = Ty;
422 FieldNo = CE->getOperand(2);
423 return true;
424 }
425 }
426
427 return false;
428}
429
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000430void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000431 const Type *AllocTy;
432 if (isSizeOf(AllocTy)) {
433 OS << "sizeof(" << *AllocTy << ")";
434 return;
435 }
436 if (isAlignOf(AllocTy)) {
437 OS << "alignof(" << *AllocTy << ")";
438 return;
439 }
440
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000442 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000443 if (isOffsetOf(CTy, FieldNo)) {
444 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000445 WriteAsOperand(OS, FieldNo, false);
446 OS << ")";
447 return;
448 }
449
450 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000451 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000452}
453
Chris Lattner8d741b82004-06-20 06:23:15 +0000454//===----------------------------------------------------------------------===//
455// SCEV Utilities
456//===----------------------------------------------------------------------===//
457
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000458static bool CompareTypes(const Type *A, const Type *B) {
459 if (A->getTypeID() != B->getTypeID())
460 return A->getTypeID() < B->getTypeID();
461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462 const IntegerType *BI = cast<IntegerType>(B);
463 return AI->getBitWidth() < BI->getBitWidth();
464 }
465 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466 const PointerType *BI = cast<PointerType>(B);
467 return CompareTypes(AI->getElementType(), BI->getElementType());
468 }
469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470 const ArrayType *BI = cast<ArrayType>(B);
471 if (AI->getNumElements() != BI->getNumElements())
472 return AI->getNumElements() < BI->getNumElements();
473 return CompareTypes(AI->getElementType(), BI->getElementType());
474 }
475 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476 const VectorType *BI = cast<VectorType>(B);
477 if (AI->getNumElements() != BI->getNumElements())
478 return AI->getNumElements() < BI->getNumElements();
479 return CompareTypes(AI->getElementType(), BI->getElementType());
480 }
481 if (const StructType *AI = dyn_cast<StructType>(A)) {
482 const StructType *BI = cast<StructType>(B);
483 if (AI->getNumElements() != BI->getNumElements())
484 return AI->getNumElements() < BI->getNumElements();
485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489 }
490 return false;
491}
492
Chris Lattner8d741b82004-06-20 06:23:15 +0000493namespace {
494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495 /// than the complexity of the RHS. This comparator is used to canonicalize
496 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000497 class SCEVComplexityCompare {
Dan Gohmane72079a2010-07-23 21:18:55 +0000498 const LoopInfo *LI;
Dan Gohman72861302009-05-07 14:39:04 +0000499 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000500 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000501
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000502 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000503 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504 if (LHS == RHS)
505 return false;
506
Dan Gohman72861302009-05-07 14:39:04 +0000507 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000508 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
509 if (LType != RType)
510 return LType < RType;
Dan Gohman72861302009-05-07 14:39:04 +0000511
Dan Gohman3bf63762010-06-18 19:54:20 +0000512 // Aside from the getSCEVType() ordering, the particular ordering
513 // isn't very important except that it's beneficial to be consistent,
514 // so that (a + b) and (b + a) don't end up as different expressions.
515
516 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
517 // not as complete as it could be.
518 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
519 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
520
521 // Order pointer values after integer values. This helps SCEVExpander
522 // form GEPs.
Dan Gohman304a7a62010-07-23 21:20:52 +0000523 bool LIsPointer = LU->getType()->isPointerTy(),
524 RIsPointer = RU->getType()->isPointerTy();
525 if (LIsPointer != RIsPointer)
526 return RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000527
528 // Compare getValueID values.
Dan Gohman304a7a62010-07-23 21:20:52 +0000529 unsigned LID = LU->getValue()->getValueID(),
530 RID = RU->getValue()->getValueID();
531 if (LID != RID)
532 return LID < RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000533
534 // Sort arguments by their position.
535 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
536 const Argument *RA = cast<Argument>(RU->getValue());
537 return LA->getArgNo() < RA->getArgNo();
538 }
539
540 // For instructions, compare their loop depth, and their opcode.
541 // This is pretty loose.
Dan Gohman304a7a62010-07-23 21:20:52 +0000542 if (const Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
543 const Instruction *RV = cast<Instruction>(RU->getValue());
Dan Gohman3bf63762010-06-18 19:54:20 +0000544
545 // Compare loop depths.
Dan Gohman304a7a62010-07-23 21:20:52 +0000546 unsigned LDepth = LI->getLoopDepth(LV->getParent()),
547 RDepth = LI->getLoopDepth(RV->getParent());
548 if (LDepth != RDepth)
549 return LDepth < RDepth;
Dan Gohman3bf63762010-06-18 19:54:20 +0000550
551 // Compare the number of operands.
Dan Gohman304a7a62010-07-23 21:20:52 +0000552 unsigned LNumOps = LV->getNumOperands(),
553 RNumOps = RV->getNumOperands();
554 if (LNumOps != RNumOps)
555 return LNumOps < RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000556 }
557
558 return false;
559 }
560
561 // Compare constant values.
562 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
563 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000564 const ConstantInt *LCC = LC->getValue();
565 const ConstantInt *RCC = RC->getValue();
566 unsigned LBitWidth = LCC->getBitWidth(), RBitWidth = RCC->getBitWidth();
567 if (LBitWidth != RBitWidth)
568 return LBitWidth < RBitWidth;
569 return LCC->getValue().ult(RCC->getValue());
Dan Gohman3bf63762010-06-18 19:54:20 +0000570 }
571
572 // Compare addrec loop depths.
573 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
574 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000575 unsigned LDepth = LA->getLoop()->getLoopDepth(),
576 RDepth = RA->getLoop()->getLoopDepth();
577 if (LDepth != RDepth)
578 return LDepth < RDepth;
Dan Gohman3bf63762010-06-18 19:54:20 +0000579 }
580
581 // Lexicographically compare n-ary expressions.
582 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
583 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
585 for (unsigned i = 0; i != LNumOps; ++i) {
586 if (i >= RNumOps)
Dan Gohman3bf63762010-06-18 19:54:20 +0000587 return false;
Dan Gohman304a7a62010-07-23 21:20:52 +0000588 const SCEV *LOp = LC->getOperand(i), *ROp = RC->getOperand(i);
589 if (operator()(LOp, ROp))
Dan Gohman3bf63762010-06-18 19:54:20 +0000590 return true;
Dan Gohman304a7a62010-07-23 21:20:52 +0000591 if (operator()(ROp, LOp))
Dan Gohman3bf63762010-06-18 19:54:20 +0000592 return false;
593 }
Dan Gohman304a7a62010-07-23 21:20:52 +0000594 return LNumOps < RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000595 }
596
597 // Lexicographically compare udiv expressions.
598 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
599 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000600 const SCEV *LL = LC->getLHS(), *LR = LC->getRHS(),
601 *RL = RC->getLHS(), *RR = RC->getRHS();
602 if (operator()(LL, RL))
Dan Gohman3bf63762010-06-18 19:54:20 +0000603 return true;
Dan Gohman304a7a62010-07-23 21:20:52 +0000604 if (operator()(RL, LL))
Dan Gohman3bf63762010-06-18 19:54:20 +0000605 return false;
Dan Gohman304a7a62010-07-23 21:20:52 +0000606 if (operator()(LR, RR))
Dan Gohman3bf63762010-06-18 19:54:20 +0000607 return true;
Dan Gohman304a7a62010-07-23 21:20:52 +0000608 if (operator()(RR, LR))
Dan Gohman3bf63762010-06-18 19:54:20 +0000609 return false;
610 return false;
611 }
612
613 // Compare cast expressions by operand.
614 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
615 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
616 return operator()(LC->getOperand(), RC->getOperand());
617 }
618
619 llvm_unreachable("Unknown SCEV kind!");
620 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000621 }
622 };
623}
624
625/// GroupByComplexity - Given a list of SCEV objects, order them by their
626/// complexity, and group objects of the same complexity together by value.
627/// When this routine is finished, we know that any duplicates in the vector are
628/// consecutive and that complexity is monotonically increasing.
629///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000630/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000631/// results from this routine. In other words, we don't want the results of
632/// this to depend on where the addresses of various SCEV objects happened to
633/// land in memory.
634///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000635static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000636 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000637 if (Ops.size() < 2) return; // Noop
638 if (Ops.size() == 2) {
639 // This is the common case, which also happens to be trivially simple.
640 // Special case it.
Dan Gohman3bf63762010-06-18 19:54:20 +0000641 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000642 std::swap(Ops[0], Ops[1]);
643 return;
644 }
645
Dan Gohman3bf63762010-06-18 19:54:20 +0000646 // Do the rough sort by complexity.
647 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
648
649 // Now that we are sorted by complexity, group elements of the same
650 // complexity. Note that this is, at worst, N^2, but the vector is likely to
651 // be extremely short in practice. Note that we take this approach because we
652 // do not want to depend on the addresses of the objects we are grouping.
653 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
654 const SCEV *S = Ops[i];
655 unsigned Complexity = S->getSCEVType();
656
657 // If there are any objects of the same complexity and same value as this
658 // one, group them.
659 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
660 if (Ops[j] == S) { // Found a duplicate.
661 // Move it to immediately after i'th element.
662 std::swap(Ops[i+1], Ops[j]);
663 ++i; // no need to rescan it.
664 if (i == e-2) return; // Done!
665 }
666 }
667 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000668}
669
Chris Lattner53e677a2004-04-02 20:23:17 +0000670
Chris Lattner53e677a2004-04-02 20:23:17 +0000671
672//===----------------------------------------------------------------------===//
673// Simple SCEV method implementations
674//===----------------------------------------------------------------------===//
675
Eli Friedmanb42a6262008-08-04 23:49:06 +0000676/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000677/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000678static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000679 ScalarEvolution &SE,
680 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000681 // Handle the simplest case efficiently.
682 if (K == 1)
683 return SE.getTruncateOrZeroExtend(It, ResultTy);
684
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000685 // We are using the following formula for BC(It, K):
686 //
687 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
688 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000689 // Suppose, W is the bitwidth of the return value. We must be prepared for
690 // overflow. Hence, we must assure that the result of our computation is
691 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
692 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000693 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000694 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000695 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000696 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
697 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000698 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000699 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000700 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000701 // This formula is trivially equivalent to the previous formula. However,
702 // this formula can be implemented much more efficiently. The trick is that
703 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
704 // arithmetic. To do exact division in modular arithmetic, all we have
705 // to do is multiply by the inverse. Therefore, this step can be done at
706 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000707 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000708 // The next issue is how to safely do the division by 2^T. The way this
709 // is done is by doing the multiplication step at a width of at least W + T
710 // bits. This way, the bottom W+T bits of the product are accurate. Then,
711 // when we perform the division by 2^T (which is equivalent to a right shift
712 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
713 // truncated out after the division by 2^T.
714 //
715 // In comparison to just directly using the first formula, this technique
716 // is much more efficient; using the first formula requires W * K bits,
717 // but this formula less than W + K bits. Also, the first formula requires
718 // a division step, whereas this formula only requires multiplies and shifts.
719 //
720 // It doesn't matter whether the subtraction step is done in the calculation
721 // width or the input iteration count's width; if the subtraction overflows,
722 // the result must be zero anyway. We prefer here to do it in the width of
723 // the induction variable because it helps a lot for certain cases; CodeGen
724 // isn't smart enough to ignore the overflow, which leads to much less
725 // efficient code if the width of the subtraction is wider than the native
726 // register width.
727 //
728 // (It's possible to not widen at all by pulling out factors of 2 before
729 // the multiplication; for example, K=2 can be calculated as
730 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
731 // extra arithmetic, so it's not an obvious win, and it gets
732 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000733
Eli Friedmanb42a6262008-08-04 23:49:06 +0000734 // Protection from insane SCEVs; this bound is conservative,
735 // but it probably doesn't matter.
736 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000737 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000738
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000739 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000740
Eli Friedmanb42a6262008-08-04 23:49:06 +0000741 // Calculate K! / 2^T and T; we divide out the factors of two before
742 // multiplying for calculating K! / 2^T to avoid overflow.
743 // Other overflow doesn't matter because we only care about the bottom
744 // W bits of the result.
745 APInt OddFactorial(W, 1);
746 unsigned T = 1;
747 for (unsigned i = 3; i <= K; ++i) {
748 APInt Mult(W, i);
749 unsigned TwoFactors = Mult.countTrailingZeros();
750 T += TwoFactors;
751 Mult = Mult.lshr(TwoFactors);
752 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000753 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000754
Eli Friedmanb42a6262008-08-04 23:49:06 +0000755 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000756 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000757
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000758 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000759 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
760
761 // Calculate the multiplicative inverse of K! / 2^T;
762 // this multiplication factor will perform the exact division by
763 // K! / 2^T.
764 APInt Mod = APInt::getSignedMinValue(W+1);
765 APInt MultiplyFactor = OddFactorial.zext(W+1);
766 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
767 MultiplyFactor = MultiplyFactor.trunc(W);
768
769 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000770 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
771 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000772 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000773 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000774 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000775 Dividend = SE.getMulExpr(Dividend,
776 SE.getTruncateOrZeroExtend(S, CalculationTy));
777 }
778
779 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000780 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000781
782 // Truncate the result, and divide by K! / 2^T.
783
784 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
785 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000786}
787
Chris Lattner53e677a2004-04-02 20:23:17 +0000788/// evaluateAtIteration - Return the value of this chain of recurrences at
789/// the specified iteration number. We can evaluate this recurrence by
790/// multiplying each element in the chain by the binomial coefficient
791/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
792///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000793/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000794///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000795/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000796///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000797const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000798 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000799 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000800 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000801 // The computation is correct in the face of overflow provided that the
802 // multiplication is performed _after_ the evaluation of the binomial
803 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000804 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000805 if (isa<SCEVCouldNotCompute>(Coeff))
806 return Coeff;
807
808 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000809 }
810 return Result;
811}
812
Chris Lattner53e677a2004-04-02 20:23:17 +0000813//===----------------------------------------------------------------------===//
814// SCEV Expression folder implementations
815//===----------------------------------------------------------------------===//
816
Dan Gohman0bba49c2009-07-07 17:06:11 +0000817const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000818 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000819 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000820 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000821 assert(isSCEVable(Ty) &&
822 "This is not a conversion to a SCEVable type!");
823 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000824
Dan Gohmanc050fd92009-07-13 20:50:19 +0000825 FoldingSetNodeID ID;
826 ID.AddInteger(scTruncate);
827 ID.AddPointer(Op);
828 ID.AddPointer(Ty);
829 void *IP = 0;
830 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
831
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000832 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000833 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000834 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000835 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
836 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000837
Dan Gohman20900ca2009-04-22 16:20:48 +0000838 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000839 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000840 return getTruncateExpr(ST->getOperand(), Ty);
841
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000842 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000843 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000844 return getTruncateOrSignExtend(SS->getOperand(), Ty);
845
846 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000847 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000848 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
849
Dan Gohman6864db62009-06-18 16:24:47 +0000850 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000851 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000852 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000853 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000854 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
855 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000856 }
857
Dan Gohmanf53462d2010-07-15 20:02:11 +0000858 // As a special case, fold trunc(undef) to undef. We don't want to
859 // know too much about SCEVUnknowns, but this special case is handy
860 // and harmless.
861 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
862 if (isa<UndefValue>(U->getValue()))
863 return getSCEV(UndefValue::get(Ty));
864
Dan Gohman420ab912010-06-25 18:47:08 +0000865 // The cast wasn't folded; create an explicit cast node. We can reuse
866 // the existing insert position since if we get here, we won't have
867 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000868 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
869 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000870 UniqueSCEVs.InsertNode(S, IP);
871 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000872}
873
Dan Gohman0bba49c2009-07-07 17:06:11 +0000874const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000875 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000876 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000877 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000878 assert(isSCEVable(Ty) &&
879 "This is not a conversion to a SCEVable type!");
880 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000881
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000882 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000883 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
884 return getConstant(
885 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
886 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000887
Dan Gohman20900ca2009-04-22 16:20:48 +0000888 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000889 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000890 return getZeroExtendExpr(SZ->getOperand(), Ty);
891
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000892 // Before doing any expensive analysis, check to see if we've already
893 // computed a SCEV for this Op and Ty.
894 FoldingSetNodeID ID;
895 ID.AddInteger(scZeroExtend);
896 ID.AddPointer(Op);
897 ID.AddPointer(Ty);
898 void *IP = 0;
899 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
900
Dan Gohman01ecca22009-04-27 20:16:15 +0000901 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000902 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000903 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000904 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000906 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000907 const SCEV *Start = AR->getStart();
908 const SCEV *Step = AR->getStepRecurrence(*this);
909 unsigned BitWidth = getTypeSizeInBits(AR->getType());
910 const Loop *L = AR->getLoop();
911
Dan Gohmaneb490a72009-07-25 01:22:26 +0000912 // If we have special knowledge that this addrec won't overflow,
913 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000914 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000915 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
916 getZeroExtendExpr(Step, Ty),
917 L);
918
Dan Gohman01ecca22009-04-27 20:16:15 +0000919 // Check whether the backedge-taken count is SCEVCouldNotCompute.
920 // Note that this serves two purposes: It filters out loops that are
921 // simply not analyzable, and it covers the case where this code is
922 // being called from within backedge-taken count analysis, such that
923 // attempting to ask for the backedge-taken count would likely result
924 // in infinite recursion. In the later case, the analysis code will
925 // cope with a conservative value, and it will take care to purge
926 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000927 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000928 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000929 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000930 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000931
932 // Check whether the backedge-taken count can be losslessly casted to
933 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000934 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000935 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000936 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000937 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
938 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000939 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000940 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000941 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000942 const SCEV *Add = getAddExpr(Start, ZMul);
943 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000944 getAddExpr(getZeroExtendExpr(Start, WideTy),
945 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
946 getZeroExtendExpr(Step, WideTy)));
947 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000948 // Return the expression with the addrec on the outside.
949 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
950 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000951 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000952
953 // Similar to above, only this time treat the step value as signed.
954 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000955 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000956 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000957 OperandExtendedAdd =
958 getAddExpr(getZeroExtendExpr(Start, WideTy),
959 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
960 getSignExtendExpr(Step, WideTy)));
961 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000962 // Return the expression with the addrec on the outside.
963 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000965 L);
966 }
967
968 // If the backedge is guarded by a comparison with the pre-inc value
969 // the addrec is safe. Also, if the entry is guarded by a comparison
970 // with the start value and the backedge is guarded by a comparison
971 // with the post-inc value, the addrec is safe.
972 if (isKnownPositive(Step)) {
973 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
974 getUnsignedRange(Step).getUnsignedMax());
975 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000976 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000977 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
978 AR->getPostIncExpr(*this), N)))
979 // Return the expression with the addrec on the outside.
980 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
981 getZeroExtendExpr(Step, Ty),
982 L);
983 } else if (isKnownNegative(Step)) {
984 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
985 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000986 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
987 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000988 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
989 AR->getPostIncExpr(*this), N)))
990 // Return the expression with the addrec on the outside.
991 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
992 getSignExtendExpr(Step, Ty),
993 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000994 }
995 }
996 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000997
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000998 // The cast wasn't folded; create an explicit cast node.
999 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001000 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001001 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1002 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001003 UniqueSCEVs.InsertNode(S, IP);
1004 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001005}
1006
Dan Gohman0bba49c2009-07-07 17:06:11 +00001007const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001008 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001009 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001010 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001011 assert(isSCEVable(Ty) &&
1012 "This is not a conversion to a SCEVable type!");
1013 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001014
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001015 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001016 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1017 return getConstant(
1018 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1019 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001020
Dan Gohman20900ca2009-04-22 16:20:48 +00001021 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001022 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001023 return getSignExtendExpr(SS->getOperand(), Ty);
1024
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001025 // Before doing any expensive analysis, check to see if we've already
1026 // computed a SCEV for this Op and Ty.
1027 FoldingSetNodeID ID;
1028 ID.AddInteger(scSignExtend);
1029 ID.AddPointer(Op);
1030 ID.AddPointer(Ty);
1031 void *IP = 0;
1032 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1033
Dan Gohman01ecca22009-04-27 20:16:15 +00001034 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001035 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001036 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001037 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001038 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001039 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001040 const SCEV *Start = AR->getStart();
1041 const SCEV *Step = AR->getStepRecurrence(*this);
1042 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1043 const Loop *L = AR->getLoop();
1044
Dan Gohmaneb490a72009-07-25 01:22:26 +00001045 // If we have special knowledge that this addrec won't overflow,
1046 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001047 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001048 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1049 getSignExtendExpr(Step, Ty),
1050 L);
1051
Dan Gohman01ecca22009-04-27 20:16:15 +00001052 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1053 // Note that this serves two purposes: It filters out loops that are
1054 // simply not analyzable, and it covers the case where this code is
1055 // being called from within backedge-taken count analysis, such that
1056 // attempting to ask for the backedge-taken count would likely result
1057 // in infinite recursion. In the later case, the analysis code will
1058 // cope with a conservative value, and it will take care to purge
1059 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001060 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001061 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001062 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001063 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001064
1065 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001066 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001067 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001068 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001069 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001070 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1071 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001072 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001073 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001074 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001075 const SCEV *Add = getAddExpr(Start, SMul);
1076 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001077 getAddExpr(getSignExtendExpr(Start, WideTy),
1078 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1079 getSignExtendExpr(Step, WideTy)));
1080 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001081 // Return the expression with the addrec on the outside.
1082 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1083 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001084 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001085
1086 // Similar to above, only this time treat the step value as unsigned.
1087 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001088 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001089 Add = getAddExpr(Start, UMul);
1090 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001091 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001092 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1093 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001094 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001095 // Return the expression with the addrec on the outside.
1096 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1097 getZeroExtendExpr(Step, Ty),
1098 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001099 }
1100
1101 // If the backedge is guarded by a comparison with the pre-inc value
1102 // the addrec is safe. Also, if the entry is guarded by a comparison
1103 // with the start value and the backedge is guarded by a comparison
1104 // with the post-inc value, the addrec is safe.
1105 if (isKnownPositive(Step)) {
1106 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1107 getSignedRange(Step).getSignedMax());
1108 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001109 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001110 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1111 AR->getPostIncExpr(*this), N)))
1112 // Return the expression with the addrec on the outside.
1113 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1114 getSignExtendExpr(Step, Ty),
1115 L);
1116 } else if (isKnownNegative(Step)) {
1117 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1118 getSignedRange(Step).getSignedMin());
1119 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001120 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001121 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1122 AR->getPostIncExpr(*this), N)))
1123 // Return the expression with the addrec on the outside.
1124 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1125 getSignExtendExpr(Step, Ty),
1126 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001127 }
1128 }
1129 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001130
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001131 // The cast wasn't folded; create an explicit cast node.
1132 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001133 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001134 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1135 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001136 UniqueSCEVs.InsertNode(S, IP);
1137 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001138}
1139
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001140/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1141/// unspecified bits out to the given type.
1142///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001143const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001144 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001145 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1146 "This is not an extending conversion!");
1147 assert(isSCEVable(Ty) &&
1148 "This is not a conversion to a SCEVable type!");
1149 Ty = getEffectiveSCEVType(Ty);
1150
1151 // Sign-extend negative constants.
1152 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1153 if (SC->getValue()->getValue().isNegative())
1154 return getSignExtendExpr(Op, Ty);
1155
1156 // Peel off a truncate cast.
1157 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001158 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001159 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1160 return getAnyExtendExpr(NewOp, Ty);
1161 return getTruncateOrNoop(NewOp, Ty);
1162 }
1163
1164 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001165 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001166 if (!isa<SCEVZeroExtendExpr>(ZExt))
1167 return ZExt;
1168
1169 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001170 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001171 if (!isa<SCEVSignExtendExpr>(SExt))
1172 return SExt;
1173
Dan Gohmana10756e2010-01-21 02:09:26 +00001174 // Force the cast to be folded into the operands of an addrec.
1175 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1176 SmallVector<const SCEV *, 4> Ops;
1177 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1178 I != E; ++I)
1179 Ops.push_back(getAnyExtendExpr(*I, Ty));
1180 return getAddRecExpr(Ops, AR->getLoop());
1181 }
1182
Dan Gohmanf53462d2010-07-15 20:02:11 +00001183 // As a special case, fold anyext(undef) to undef. We don't want to
1184 // know too much about SCEVUnknowns, but this special case is handy
1185 // and harmless.
1186 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1187 if (isa<UndefValue>(U->getValue()))
1188 return getSCEV(UndefValue::get(Ty));
1189
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001190 // If the expression is obviously signed, use the sext cast value.
1191 if (isa<SCEVSMaxExpr>(Op))
1192 return SExt;
1193
1194 // Absent any other information, use the zext cast value.
1195 return ZExt;
1196}
1197
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001198/// CollectAddOperandsWithScales - Process the given Ops list, which is
1199/// a list of operands to be added under the given scale, update the given
1200/// map. This is a helper function for getAddRecExpr. As an example of
1201/// what it does, given a sequence of operands that would form an add
1202/// expression like this:
1203///
1204/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1205///
1206/// where A and B are constants, update the map with these values:
1207///
1208/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1209///
1210/// and add 13 + A*B*29 to AccumulatedConstant.
1211/// This will allow getAddRecExpr to produce this:
1212///
1213/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1214///
1215/// This form often exposes folding opportunities that are hidden in
1216/// the original operand list.
1217///
1218/// Return true iff it appears that any interesting folding opportunities
1219/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1220/// the common case where no interesting opportunities are present, and
1221/// is also used as a check to avoid infinite recursion.
1222///
1223static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001224CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1225 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001226 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001227 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001228 const APInt &Scale,
1229 ScalarEvolution &SE) {
1230 bool Interesting = false;
1231
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001232 // Iterate over the add operands. They are sorted, with constants first.
1233 unsigned i = 0;
1234 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1235 ++i;
1236 // Pull a buried constant out to the outside.
1237 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1238 Interesting = true;
1239 AccumulatedConstant += Scale * C->getValue()->getValue();
1240 }
1241
1242 // Next comes everything else. We're especially interested in multiplies
1243 // here, but they're in the middle, so just visit the rest with one loop.
1244 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001245 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1246 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1247 APInt NewScale =
1248 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1249 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1250 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001251 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001252 Interesting |=
1253 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001254 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001255 NewScale, SE);
1256 } else {
1257 // A multiplication of a constant with some other value. Update
1258 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001259 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1260 const SCEV *Key = SE.getMulExpr(MulOps);
1261 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001262 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001263 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001264 NewOps.push_back(Pair.first->first);
1265 } else {
1266 Pair.first->second += NewScale;
1267 // The map already had an entry for this value, which may indicate
1268 // a folding opportunity.
1269 Interesting = true;
1270 }
1271 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001272 } else {
1273 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001274 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001275 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001276 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001277 NewOps.push_back(Pair.first->first);
1278 } else {
1279 Pair.first->second += Scale;
1280 // The map already had an entry for this value, which may indicate
1281 // a folding opportunity.
1282 Interesting = true;
1283 }
1284 }
1285 }
1286
1287 return Interesting;
1288}
1289
1290namespace {
1291 struct APIntCompare {
1292 bool operator()(const APInt &LHS, const APInt &RHS) const {
1293 return LHS.ult(RHS);
1294 }
1295 };
1296}
1297
Dan Gohman6c0866c2009-05-24 23:45:28 +00001298/// getAddExpr - Get a canonical add expression, or something simpler if
1299/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001300const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1301 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001302 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001303 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001304#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001305 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001306 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001307 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001308 "SCEVAddExpr operand types don't match!");
1309#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001310
Dan Gohmana10756e2010-01-21 02:09:26 +00001311 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1312 if (!HasNUW && HasNSW) {
1313 bool All = true;
1314 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1315 if (!isKnownNonNegative(Ops[i])) {
1316 All = false;
1317 break;
1318 }
1319 if (All) HasNUW = true;
1320 }
1321
Chris Lattner53e677a2004-04-02 20:23:17 +00001322 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001323 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001324
1325 // If there are any constants, fold them together.
1326 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001327 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001328 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001329 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001330 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001331 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001332 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1333 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001334 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001335 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001336 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001337 }
1338
1339 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001340 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001341 Ops.erase(Ops.begin());
1342 --Idx;
1343 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001344
Dan Gohmanbca091d2010-04-12 23:08:18 +00001345 if (Ops.size() == 1) return Ops[0];
1346 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001347
Chris Lattner53e677a2004-04-02 20:23:17 +00001348 // Okay, check to see if the same value occurs in the operand list twice. If
1349 // so, merge them together into an multiply expression. Since we sorted the
1350 // list, these values are required to be adjacent.
1351 const Type *Ty = Ops[0]->getType();
1352 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1353 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1354 // Found a match, merge the two values into a multiply, and add any
1355 // remaining values to the result.
Dan Gohmandeff6212010-05-03 22:09:21 +00001356 const SCEV *Two = getConstant(Ty, 2);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001357 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001358 if (Ops.size() == 2)
1359 return Mul;
1360 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1361 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001362 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001363 }
1364
Dan Gohman728c7f32009-05-08 21:03:19 +00001365 // Check for truncates. If all the operands are truncated from the same
1366 // type, see if factoring out the truncate would permit the result to be
1367 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1368 // if the contents of the resulting outer trunc fold to something simple.
1369 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1370 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1371 const Type *DstType = Trunc->getType();
1372 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001373 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001374 bool Ok = true;
1375 // Check all the operands to see if they can be represented in the
1376 // source type of the truncate.
1377 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1378 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1379 if (T->getOperand()->getType() != SrcType) {
1380 Ok = false;
1381 break;
1382 }
1383 LargeOps.push_back(T->getOperand());
1384 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001385 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001386 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001387 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001388 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1389 if (const SCEVTruncateExpr *T =
1390 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1391 if (T->getOperand()->getType() != SrcType) {
1392 Ok = false;
1393 break;
1394 }
1395 LargeMulOps.push_back(T->getOperand());
1396 } else if (const SCEVConstant *C =
1397 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001398 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001399 } else {
1400 Ok = false;
1401 break;
1402 }
1403 }
1404 if (Ok)
1405 LargeOps.push_back(getMulExpr(LargeMulOps));
1406 } else {
1407 Ok = false;
1408 break;
1409 }
1410 }
1411 if (Ok) {
1412 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001413 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001414 // If it folds to something simple, use it. Otherwise, don't.
1415 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1416 return getTruncateExpr(Fold, DstType);
1417 }
1418 }
1419
1420 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001421 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1422 ++Idx;
1423
1424 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001425 if (Idx < Ops.size()) {
1426 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001427 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001428 // If we have an add, expand the add operands onto the end of the operands
1429 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001430 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001431 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001432 DeletedAdd = true;
1433 }
1434
1435 // If we deleted at least one add, we added operands to the end of the list,
1436 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001437 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001438 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001439 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001440 }
1441
1442 // Skip over the add expression until we get to a multiply.
1443 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1444 ++Idx;
1445
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001446 // Check to see if there are any folding opportunities present with
1447 // operands multiplied by constant values.
1448 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1449 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001450 DenseMap<const SCEV *, APInt> M;
1451 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001452 APInt AccumulatedConstant(BitWidth, 0);
1453 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001454 Ops.data(), Ops.size(),
1455 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001456 // Some interesting folding opportunity is present, so its worthwhile to
1457 // re-generate the operands list. Group the operands by constant scale,
1458 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001459 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1460 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001461 E = NewOps.end(); I != E; ++I)
1462 MulOpLists[M.find(*I)->second].push_back(*I);
1463 // Re-generate the operands list.
1464 Ops.clear();
1465 if (AccumulatedConstant != 0)
1466 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001467 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1468 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001469 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001470 Ops.push_back(getMulExpr(getConstant(I->first),
1471 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001472 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001473 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001474 if (Ops.size() == 1)
1475 return Ops[0];
1476 return getAddExpr(Ops);
1477 }
1478 }
1479
Chris Lattner53e677a2004-04-02 20:23:17 +00001480 // If we are adding something to a multiply expression, make sure the
1481 // something is not already an operand of the multiply. If so, merge it into
1482 // the multiply.
1483 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001484 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001485 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001486 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001487 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001488 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001489 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001490 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001491 if (Mul->getNumOperands() != 2) {
1492 // If the multiply has more than two operands, we must get the
1493 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001494 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001495 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001496 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001497 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001498 const SCEV *One = getConstant(Ty, 1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001499 const SCEV *AddOne = getAddExpr(InnerMul, One);
1500 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 if (Ops.size() == 2) return OuterMul;
1502 if (AddOp < Idx) {
1503 Ops.erase(Ops.begin()+AddOp);
1504 Ops.erase(Ops.begin()+Idx-1);
1505 } else {
1506 Ops.erase(Ops.begin()+Idx);
1507 Ops.erase(Ops.begin()+AddOp-1);
1508 }
1509 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001510 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001511 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001512
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 // Check this multiply against other multiplies being added together.
1514 for (unsigned OtherMulIdx = Idx+1;
1515 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1516 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001517 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001518 // If MulOp occurs in OtherMul, we can fold the two multiplies
1519 // together.
1520 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1521 OMulOp != e; ++OMulOp)
1522 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1523 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001524 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001525 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001526 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1527 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001528 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001529 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001530 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001531 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001532 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001533 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1534 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001535 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001536 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001537 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001538 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1539 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001540 if (Ops.size() == 2) return OuterMul;
1541 Ops.erase(Ops.begin()+Idx);
1542 Ops.erase(Ops.begin()+OtherMulIdx-1);
1543 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001544 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001545 }
1546 }
1547 }
1548 }
1549
1550 // If there are any add recurrences in the operands list, see if any other
1551 // added values are loop invariant. If so, we can fold them into the
1552 // recurrence.
1553 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1554 ++Idx;
1555
1556 // Scan over all recurrences, trying to fold loop invariants into them.
1557 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1558 // Scan all of the other operands to this add and add them to the vector if
1559 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001560 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001561 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001562 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001563 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001564 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001565 LIOps.push_back(Ops[i]);
1566 Ops.erase(Ops.begin()+i);
1567 --i; --e;
1568 }
1569
1570 // If we found some loop invariants, fold them into the recurrence.
1571 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001572 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001573 LIOps.push_back(AddRec->getStart());
1574
Dan Gohman0bba49c2009-07-07 17:06:11 +00001575 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001576 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001577 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001578
Dan Gohmanb9f96512010-06-30 07:16:37 +00001579 // Build the new addrec. Propagate the NUW and NSW flags if both the
1580 // outer add and the inner addrec are guaranteed to have no overflow.
1581 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1582 HasNUW && AddRec->hasNoUnsignedWrap(),
1583 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001584
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 // If all of the other operands were loop invariant, we are done.
1586 if (Ops.size() == 1) return NewRec;
1587
1588 // Otherwise, add the folded AddRec by the non-liv parts.
1589 for (unsigned i = 0;; ++i)
1590 if (Ops[i] == AddRec) {
1591 Ops[i] = NewRec;
1592 break;
1593 }
Dan Gohman246b2562007-10-22 18:31:58 +00001594 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001595 }
1596
1597 // Okay, if there weren't any loop invariants to be folded, check to see if
1598 // there are multiple AddRec's with the same loop induction variable being
1599 // added together. If so, we can fold them.
1600 for (unsigned OtherIdx = Idx+1;
1601 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1602 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001603 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001604 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001605 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001606 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1607 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001608 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1609 if (i >= NewOps.size()) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001610 NewOps.append(OtherAddRec->op_begin()+i,
Chris Lattner53e677a2004-04-02 20:23:17 +00001611 OtherAddRec->op_end());
1612 break;
1613 }
Dan Gohman246b2562007-10-22 18:31:58 +00001614 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001615 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001616 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001617
1618 if (Ops.size() == 2) return NewAddRec;
1619
1620 Ops.erase(Ops.begin()+Idx);
1621 Ops.erase(Ops.begin()+OtherIdx-1);
1622 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001623 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001624 }
1625 }
1626
1627 // Otherwise couldn't fold anything into this recurrence. Move onto the
1628 // next one.
1629 }
1630
1631 // Okay, it looks like we really DO need an add expr. Check to see if we
1632 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001633 FoldingSetNodeID ID;
1634 ID.AddInteger(scAddExpr);
1635 ID.AddInteger(Ops.size());
1636 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1637 ID.AddPointer(Ops[i]);
1638 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001639 SCEVAddExpr *S =
1640 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1641 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001642 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1643 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001644 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1645 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001646 UniqueSCEVs.InsertNode(S, IP);
1647 }
Dan Gohman3645b012009-10-09 00:10:36 +00001648 if (HasNUW) S->setHasNoUnsignedWrap(true);
1649 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001650 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001651}
1652
Dan Gohman6c0866c2009-05-24 23:45:28 +00001653/// getMulExpr - Get a canonical multiply expression, or something simpler if
1654/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001655const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1656 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001657 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001658 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001659#ifndef NDEBUG
1660 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1661 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1662 getEffectiveSCEVType(Ops[0]->getType()) &&
1663 "SCEVMulExpr operand types don't match!");
1664#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001665
Dan Gohmana10756e2010-01-21 02:09:26 +00001666 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1667 if (!HasNUW && HasNSW) {
1668 bool All = true;
1669 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1670 if (!isKnownNonNegative(Ops[i])) {
1671 All = false;
1672 break;
1673 }
1674 if (All) HasNUW = true;
1675 }
1676
Chris Lattner53e677a2004-04-02 20:23:17 +00001677 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001678 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001679
1680 // If there are any constants, fold them together.
1681 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001682 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001683
1684 // C1*(C2+V) -> C1*C2 + C1*V
1685 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001686 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001687 if (Add->getNumOperands() == 2 &&
1688 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001689 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1690 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001691
Chris Lattner53e677a2004-04-02 20:23:17 +00001692 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001693 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001694 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001695 ConstantInt *Fold = ConstantInt::get(getContext(),
1696 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001697 RHSC->getValue()->getValue());
1698 Ops[0] = getConstant(Fold);
1699 Ops.erase(Ops.begin()+1); // Erase the folded element
1700 if (Ops.size() == 1) return Ops[0];
1701 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001702 }
1703
1704 // If we are left with a constant one being multiplied, strip it off.
1705 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1706 Ops.erase(Ops.begin());
1707 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001708 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001709 // If we have a multiply of zero, it will always be zero.
1710 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001711 } else if (Ops[0]->isAllOnesValue()) {
1712 // If we have a mul by -1 of an add, try distributing the -1 among the
1713 // add operands.
1714 if (Ops.size() == 2)
1715 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1716 SmallVector<const SCEV *, 4> NewOps;
1717 bool AnyFolded = false;
1718 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1719 I != E; ++I) {
1720 const SCEV *Mul = getMulExpr(Ops[0], *I);
1721 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1722 NewOps.push_back(Mul);
1723 }
1724 if (AnyFolded)
1725 return getAddExpr(NewOps);
1726 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001727 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001728
1729 if (Ops.size() == 1)
1730 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001731 }
1732
1733 // Skip over the add expression until we get to a multiply.
1734 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1735 ++Idx;
1736
Chris Lattner53e677a2004-04-02 20:23:17 +00001737 // If there are mul operands inline them all into this expression.
1738 if (Idx < Ops.size()) {
1739 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001740 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001741 // If we have an mul, expand the mul operands onto the end of the operands
1742 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001743 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001744 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001745 DeletedMul = true;
1746 }
1747
1748 // If we deleted at least one mul, we added operands to the end of the list,
1749 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001750 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001751 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001752 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001753 }
1754
1755 // If there are any add recurrences in the operands list, see if any other
1756 // added values are loop invariant. If so, we can fold them into the
1757 // recurrence.
1758 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1759 ++Idx;
1760
1761 // Scan over all recurrences, trying to fold loop invariants into them.
1762 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1763 // Scan all of the other operands to this mul and add them to the vector if
1764 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001765 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001766 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001767 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1768 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1769 LIOps.push_back(Ops[i]);
1770 Ops.erase(Ops.begin()+i);
1771 --i; --e;
1772 }
1773
1774 // If we found some loop invariants, fold them into the recurrence.
1775 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001776 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001777 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001778 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001779 const SCEV *Scale = getMulExpr(LIOps);
1780 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1781 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001782
Dan Gohmanb9f96512010-06-30 07:16:37 +00001783 // Build the new addrec. Propagate the NUW and NSW flags if both the
1784 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohmana10756e2010-01-21 02:09:26 +00001785 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1786 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001787 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001788
1789 // If all of the other operands were loop invariant, we are done.
1790 if (Ops.size() == 1) return NewRec;
1791
1792 // Otherwise, multiply the folded AddRec by the non-liv parts.
1793 for (unsigned i = 0;; ++i)
1794 if (Ops[i] == AddRec) {
1795 Ops[i] = NewRec;
1796 break;
1797 }
Dan Gohman246b2562007-10-22 18:31:58 +00001798 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001799 }
1800
1801 // Okay, if there weren't any loop invariants to be folded, check to see if
1802 // there are multiple AddRec's with the same loop induction variable being
1803 // multiplied together. If so, we can fold them.
1804 for (unsigned OtherIdx = Idx+1;
1805 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1806 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001807 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001808 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1809 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001810 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001811 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001812 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001813 const SCEV *B = F->getStepRecurrence(*this);
1814 const SCEV *D = G->getStepRecurrence(*this);
1815 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001816 getMulExpr(G, B),
1817 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001818 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001819 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001820 if (Ops.size() == 2) return NewAddRec;
1821
1822 Ops.erase(Ops.begin()+Idx);
1823 Ops.erase(Ops.begin()+OtherIdx-1);
1824 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001825 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001826 }
1827 }
1828
1829 // Otherwise couldn't fold anything into this recurrence. Move onto the
1830 // next one.
1831 }
1832
1833 // Okay, it looks like we really DO need an mul expr. Check to see if we
1834 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001835 FoldingSetNodeID ID;
1836 ID.AddInteger(scMulExpr);
1837 ID.AddInteger(Ops.size());
1838 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1839 ID.AddPointer(Ops[i]);
1840 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001841 SCEVMulExpr *S =
1842 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1843 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001844 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1845 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001846 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1847 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001848 UniqueSCEVs.InsertNode(S, IP);
1849 }
Dan Gohman3645b012009-10-09 00:10:36 +00001850 if (HasNUW) S->setHasNoUnsignedWrap(true);
1851 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001852 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001853}
1854
Andreas Bolka8a11c982009-08-07 22:55:26 +00001855/// getUDivExpr - Get a canonical unsigned division expression, or something
1856/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001857const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1858 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001859 assert(getEffectiveSCEVType(LHS->getType()) ==
1860 getEffectiveSCEVType(RHS->getType()) &&
1861 "SCEVUDivExpr operand types don't match!");
1862
Dan Gohman622ed672009-05-04 22:02:23 +00001863 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001864 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001865 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001866 // If the denominator is zero, the result of the udiv is undefined. Don't
1867 // try to analyze it, because the resolution chosen here may differ from
1868 // the resolution chosen in other parts of the compiler.
1869 if (!RHSC->getValue()->isZero()) {
1870 // Determine if the division can be folded into the operands of
1871 // its operands.
1872 // TODO: Generalize this to non-constants by using known-bits information.
1873 const Type *Ty = LHS->getType();
1874 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1875 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1876 // For non-power-of-two values, effectively round the value up to the
1877 // nearest power of two.
1878 if (!RHSC->getValue()->getValue().isPowerOf2())
1879 ++MaxShiftAmt;
1880 const IntegerType *ExtTy =
1881 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1882 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1883 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1884 if (const SCEVConstant *Step =
1885 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1886 if (!Step->getValue()->getValue()
1887 .urem(RHSC->getValue()->getValue()) &&
1888 getZeroExtendExpr(AR, ExtTy) ==
1889 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1890 getZeroExtendExpr(Step, ExtTy),
1891 AR->getLoop())) {
1892 SmallVector<const SCEV *, 4> Operands;
1893 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1894 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1895 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001896 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001897 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1898 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1899 SmallVector<const SCEV *, 4> Operands;
1900 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1901 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1902 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1903 // Find an operand that's safely divisible.
1904 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1905 const SCEV *Op = M->getOperand(i);
1906 const SCEV *Div = getUDivExpr(Op, RHSC);
1907 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1908 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1909 M->op_end());
1910 Operands[i] = Div;
1911 return getMulExpr(Operands);
1912 }
1913 }
Dan Gohman185cf032009-05-08 20:18:49 +00001914 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001915 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1916 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1917 SmallVector<const SCEV *, 4> Operands;
1918 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1919 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1920 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1921 Operands.clear();
1922 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1923 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1924 if (isa<SCEVUDivExpr>(Op) ||
1925 getMulExpr(Op, RHS) != A->getOperand(i))
1926 break;
1927 Operands.push_back(Op);
1928 }
1929 if (Operands.size() == A->getNumOperands())
1930 return getAddExpr(Operands);
1931 }
1932 }
Dan Gohman185cf032009-05-08 20:18:49 +00001933
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001934 // Fold if both operands are constant.
1935 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1936 Constant *LHSCV = LHSC->getValue();
1937 Constant *RHSCV = RHSC->getValue();
1938 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1939 RHSCV)));
1940 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001941 }
1942 }
1943
Dan Gohman1c343752009-06-27 21:21:31 +00001944 FoldingSetNodeID ID;
1945 ID.AddInteger(scUDivExpr);
1946 ID.AddPointer(LHS);
1947 ID.AddPointer(RHS);
1948 void *IP = 0;
1949 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001950 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1951 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001952 UniqueSCEVs.InsertNode(S, IP);
1953 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001954}
1955
1956
Dan Gohman6c0866c2009-05-24 23:45:28 +00001957/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1958/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001959const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001960 const SCEV *Step, const Loop *L,
1961 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001962 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001963 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001964 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001965 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001966 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001967 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001968 }
1969
1970 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001971 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001972}
1973
Dan Gohman6c0866c2009-05-24 23:45:28 +00001974/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1975/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001976const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001977ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001978 const Loop *L,
1979 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001980 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001981#ifndef NDEBUG
1982 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1983 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1984 getEffectiveSCEVType(Operands[0]->getType()) &&
1985 "SCEVAddRecExpr operand types don't match!");
1986#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001987
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001988 if (Operands.back()->isZero()) {
1989 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001990 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001991 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001992
Dan Gohmanbc028532010-02-19 18:49:22 +00001993 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1994 // use that information to infer NUW and NSW flags. However, computing a
1995 // BE count requires calling getAddRecExpr, so we may not yet have a
1996 // meaningful BE count at this point (and if we don't, we'd be stuck
1997 // with a SCEVCouldNotCompute as the cached BE count).
1998
Dan Gohmana10756e2010-01-21 02:09:26 +00001999 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2000 if (!HasNUW && HasNSW) {
2001 bool All = true;
2002 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2003 if (!isKnownNonNegative(Operands[i])) {
2004 All = false;
2005 break;
2006 }
2007 if (All) HasNUW = true;
2008 }
2009
Dan Gohmand9cc7492008-08-08 18:33:12 +00002010 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002011 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002012 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00002013 if (L->contains(NestedLoop->getHeader()) ?
2014 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2015 (!NestedLoop->contains(L->getHeader()) &&
2016 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002017 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002018 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002019 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002020 // AddRecs require their operands be loop-invariant with respect to their
2021 // loops. Don't perform this transformation if it would break this
2022 // requirement.
2023 bool AllInvariant = true;
2024 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2025 if (!Operands[i]->isLoopInvariant(L)) {
2026 AllInvariant = false;
2027 break;
2028 }
2029 if (AllInvariant) {
2030 NestedOperands[0] = getAddRecExpr(Operands, L);
2031 AllInvariant = true;
2032 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2033 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2034 AllInvariant = false;
2035 break;
2036 }
2037 if (AllInvariant)
2038 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002039 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002040 }
2041 // Reset Operands to its original state.
2042 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002043 }
2044 }
2045
Dan Gohman67847532010-01-19 22:27:22 +00002046 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2047 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002048 FoldingSetNodeID ID;
2049 ID.AddInteger(scAddRecExpr);
2050 ID.AddInteger(Operands.size());
2051 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2052 ID.AddPointer(Operands[i]);
2053 ID.AddPointer(L);
2054 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002055 SCEVAddRecExpr *S =
2056 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2057 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002058 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2059 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002060 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2061 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002062 UniqueSCEVs.InsertNode(S, IP);
2063 }
Dan Gohman3645b012009-10-09 00:10:36 +00002064 if (HasNUW) S->setHasNoUnsignedWrap(true);
2065 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002066 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002067}
2068
Dan Gohman9311ef62009-06-24 14:49:00 +00002069const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2070 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002071 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002072 Ops.push_back(LHS);
2073 Ops.push_back(RHS);
2074 return getSMaxExpr(Ops);
2075}
2076
Dan Gohman0bba49c2009-07-07 17:06:11 +00002077const SCEV *
2078ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002079 assert(!Ops.empty() && "Cannot get empty smax!");
2080 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002081#ifndef NDEBUG
2082 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2083 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2084 getEffectiveSCEVType(Ops[0]->getType()) &&
2085 "SCEVSMaxExpr operand types don't match!");
2086#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002087
2088 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002089 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002090
2091 // If there are any constants, fold them together.
2092 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002093 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002094 ++Idx;
2095 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002096 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002097 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002098 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002099 APIntOps::smax(LHSC->getValue()->getValue(),
2100 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002101 Ops[0] = getConstant(Fold);
2102 Ops.erase(Ops.begin()+1); // Erase the folded element
2103 if (Ops.size() == 1) return Ops[0];
2104 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002105 }
2106
Dan Gohmane5aceed2009-06-24 14:46:22 +00002107 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002108 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2109 Ops.erase(Ops.begin());
2110 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002111 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2112 // If we have an smax with a constant maximum-int, it will always be
2113 // maximum-int.
2114 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002115 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002116
Dan Gohman3ab13122010-04-13 16:49:23 +00002117 if (Ops.size() == 1) return Ops[0];
2118 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002119
2120 // Find the first SMax
2121 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2122 ++Idx;
2123
2124 // Check to see if one of the operands is an SMax. If so, expand its operands
2125 // onto our operand list, and recurse to simplify.
2126 if (Idx < Ops.size()) {
2127 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002128 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002129 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002130 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002131 DeletedSMax = true;
2132 }
2133
2134 if (DeletedSMax)
2135 return getSMaxExpr(Ops);
2136 }
2137
2138 // Okay, check to see if the same value occurs in the operand list twice. If
2139 // so, delete one. Since we sorted the list, these values are required to
2140 // be adjacent.
2141 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002142 // X smax Y smax Y --> X smax Y
2143 // X smax Y --> X, if X is always greater than Y
2144 if (Ops[i] == Ops[i+1] ||
2145 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2146 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2147 --i; --e;
2148 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002149 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2150 --i; --e;
2151 }
2152
2153 if (Ops.size() == 1) return Ops[0];
2154
2155 assert(!Ops.empty() && "Reduced smax down to nothing!");
2156
Nick Lewycky3e630762008-02-20 06:48:22 +00002157 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002158 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002159 FoldingSetNodeID ID;
2160 ID.AddInteger(scSMaxExpr);
2161 ID.AddInteger(Ops.size());
2162 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2163 ID.AddPointer(Ops[i]);
2164 void *IP = 0;
2165 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002166 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2167 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002168 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2169 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002170 UniqueSCEVs.InsertNode(S, IP);
2171 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002172}
2173
Dan Gohman9311ef62009-06-24 14:49:00 +00002174const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2175 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002176 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002177 Ops.push_back(LHS);
2178 Ops.push_back(RHS);
2179 return getUMaxExpr(Ops);
2180}
2181
Dan Gohman0bba49c2009-07-07 17:06:11 +00002182const SCEV *
2183ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002184 assert(!Ops.empty() && "Cannot get empty umax!");
2185 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002186#ifndef NDEBUG
2187 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2188 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2189 getEffectiveSCEVType(Ops[0]->getType()) &&
2190 "SCEVUMaxExpr operand types don't match!");
2191#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002192
2193 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002194 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002195
2196 // If there are any constants, fold them together.
2197 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002198 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002199 ++Idx;
2200 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002201 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002202 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002203 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002204 APIntOps::umax(LHSC->getValue()->getValue(),
2205 RHSC->getValue()->getValue()));
2206 Ops[0] = getConstant(Fold);
2207 Ops.erase(Ops.begin()+1); // Erase the folded element
2208 if (Ops.size() == 1) return Ops[0];
2209 LHSC = cast<SCEVConstant>(Ops[0]);
2210 }
2211
Dan Gohmane5aceed2009-06-24 14:46:22 +00002212 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002213 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2214 Ops.erase(Ops.begin());
2215 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002216 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2217 // If we have an umax with a constant maximum-int, it will always be
2218 // maximum-int.
2219 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002220 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002221
Dan Gohman3ab13122010-04-13 16:49:23 +00002222 if (Ops.size() == 1) return Ops[0];
2223 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002224
2225 // Find the first UMax
2226 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2227 ++Idx;
2228
2229 // Check to see if one of the operands is a UMax. If so, expand its operands
2230 // onto our operand list, and recurse to simplify.
2231 if (Idx < Ops.size()) {
2232 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002233 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002234 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002235 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002236 DeletedUMax = true;
2237 }
2238
2239 if (DeletedUMax)
2240 return getUMaxExpr(Ops);
2241 }
2242
2243 // Okay, check to see if the same value occurs in the operand list twice. If
2244 // so, delete one. Since we sorted the list, these values are required to
2245 // be adjacent.
2246 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002247 // X umax Y umax Y --> X umax Y
2248 // X umax Y --> X, if X is always greater than Y
2249 if (Ops[i] == Ops[i+1] ||
2250 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2251 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2252 --i; --e;
2253 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002254 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2255 --i; --e;
2256 }
2257
2258 if (Ops.size() == 1) return Ops[0];
2259
2260 assert(!Ops.empty() && "Reduced umax down to nothing!");
2261
2262 // Okay, it looks like we really DO need a umax expr. Check to see if we
2263 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002264 FoldingSetNodeID ID;
2265 ID.AddInteger(scUMaxExpr);
2266 ID.AddInteger(Ops.size());
2267 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2268 ID.AddPointer(Ops[i]);
2269 void *IP = 0;
2270 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002271 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2272 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002273 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2274 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002275 UniqueSCEVs.InsertNode(S, IP);
2276 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002277}
2278
Dan Gohman9311ef62009-06-24 14:49:00 +00002279const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2280 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002281 // ~smax(~x, ~y) == smin(x, y).
2282 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2283}
2284
Dan Gohman9311ef62009-06-24 14:49:00 +00002285const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2286 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002287 // ~umax(~x, ~y) == umin(x, y)
2288 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2289}
2290
Dan Gohman4f8eea82010-02-01 18:27:38 +00002291const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002292 // If we have TargetData, we can bypass creating a target-independent
2293 // constant expression and then folding it back into a ConstantInt.
2294 // This is just a compile-time optimization.
2295 if (TD)
2296 return getConstant(TD->getIntPtrType(getContext()),
2297 TD->getTypeAllocSize(AllocTy));
2298
Dan Gohman4f8eea82010-02-01 18:27:38 +00002299 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2300 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002301 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2302 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002303 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2304 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2305}
2306
2307const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2308 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2309 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002310 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2311 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002312 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2313 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2314}
2315
2316const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2317 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002318 // If we have TargetData, we can bypass creating a target-independent
2319 // constant expression and then folding it back into a ConstantInt.
2320 // This is just a compile-time optimization.
2321 if (TD)
2322 return getConstant(TD->getIntPtrType(getContext()),
2323 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2324
Dan Gohman0f5efe52010-01-28 02:15:55 +00002325 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2326 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002327 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2328 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002329 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002330 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002331}
2332
Dan Gohman4f8eea82010-02-01 18:27:38 +00002333const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2334 Constant *FieldNo) {
2335 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002336 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002337 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2338 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002339 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002340 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002341}
2342
Dan Gohman0bba49c2009-07-07 17:06:11 +00002343const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002344 // Don't attempt to do anything other than create a SCEVUnknown object
2345 // here. createSCEV only calls getUnknown after checking for all other
2346 // interesting possibilities, and any other code that calls getUnknown
2347 // is doing so in order to hide a value from SCEV canonicalization.
2348
Dan Gohman1c343752009-06-27 21:21:31 +00002349 FoldingSetNodeID ID;
2350 ID.AddInteger(scUnknown);
2351 ID.AddPointer(V);
2352 void *IP = 0;
2353 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +00002354 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002355 UniqueSCEVs.InsertNode(S, IP);
2356 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002357}
2358
Chris Lattner53e677a2004-04-02 20:23:17 +00002359//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002360// Basic SCEV Analysis and PHI Idiom Recognition Code
2361//
2362
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002363/// isSCEVable - Test if values of the given type are analyzable within
2364/// the SCEV framework. This primarily includes integer types, and it
2365/// can optionally include pointer types if the ScalarEvolution class
2366/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002367bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002368 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002369 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002370}
2371
2372/// getTypeSizeInBits - Return the size in bits of the specified type,
2373/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002374uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002375 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2376
2377 // If we have a TargetData, use it!
2378 if (TD)
2379 return TD->getTypeSizeInBits(Ty);
2380
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002381 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002382 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002383 return Ty->getPrimitiveSizeInBits();
2384
2385 // The only other support type is pointer. Without TargetData, conservatively
2386 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002387 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002388 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002389}
2390
2391/// getEffectiveSCEVType - Return a type with the same bitwidth as
2392/// the given type and which represents how SCEV will treat the given
2393/// type, for which isSCEVable must return true. For pointer types,
2394/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002395const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002396 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2397
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002398 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002399 return Ty;
2400
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002401 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002402 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002403 if (TD) return TD->getIntPtrType(getContext());
2404
2405 // Without TargetData, conservatively assume pointers are 64-bit.
2406 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002407}
Chris Lattner53e677a2004-04-02 20:23:17 +00002408
Dan Gohman0bba49c2009-07-07 17:06:11 +00002409const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002410 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002411}
2412
Chris Lattner53e677a2004-04-02 20:23:17 +00002413/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2414/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002415const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002416 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002417
Dan Gohman0bba49c2009-07-07 17:06:11 +00002418 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002419 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002420 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002421 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002422 return S;
2423}
2424
Dan Gohman2d1be872009-04-16 03:18:22 +00002425/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2426///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002427const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002428 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002429 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002430 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002431
2432 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002433 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002434 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002435 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002436}
2437
2438/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002439const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002440 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002441 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002442 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002443
2444 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002445 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002446 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002447 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002448 return getMinusSCEV(AllOnes, V);
2449}
2450
2451/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2452///
Dan Gohman9311ef62009-06-24 14:49:00 +00002453const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2454 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002455 // Fast path: X - X --> 0.
2456 if (LHS == RHS)
2457 return getConstant(LHS->getType(), 0);
2458
Dan Gohman2d1be872009-04-16 03:18:22 +00002459 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002460 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002461}
2462
2463/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2464/// input value to the specified type. If the type must be extended, it is zero
2465/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002466const SCEV *
2467ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002468 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002469 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002470 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2471 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002472 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002473 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002474 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002475 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002476 return getTruncateExpr(V, Ty);
2477 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002478}
2479
2480/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2481/// input value to the specified type. If the type must be extended, it is sign
2482/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002483const SCEV *
2484ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002485 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002486 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002487 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2488 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002489 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002490 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002491 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002492 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002493 return getTruncateExpr(V, Ty);
2494 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002495}
2496
Dan Gohman467c4302009-05-13 03:46:30 +00002497/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2498/// input value to the specified type. If the type must be extended, it is zero
2499/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002500const SCEV *
2501ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002502 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002503 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2504 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002505 "Cannot noop or zero extend with non-integer arguments!");
2506 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2507 "getNoopOrZeroExtend cannot truncate!");
2508 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2509 return V; // No conversion
2510 return getZeroExtendExpr(V, Ty);
2511}
2512
2513/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2514/// input value to the specified type. If the type must be extended, it is sign
2515/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002516const SCEV *
2517ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002518 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002519 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2520 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002521 "Cannot noop or sign extend with non-integer arguments!");
2522 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2523 "getNoopOrSignExtend cannot truncate!");
2524 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2525 return V; // No conversion
2526 return getSignExtendExpr(V, Ty);
2527}
2528
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002529/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2530/// the input value to the specified type. If the type must be extended,
2531/// it is extended with unspecified bits. The conversion must not be
2532/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002533const SCEV *
2534ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002535 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002536 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2537 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002538 "Cannot noop or any extend with non-integer arguments!");
2539 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2540 "getNoopOrAnyExtend cannot truncate!");
2541 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2542 return V; // No conversion
2543 return getAnyExtendExpr(V, Ty);
2544}
2545
Dan Gohman467c4302009-05-13 03:46:30 +00002546/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2547/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002548const SCEV *
2549ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002550 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002551 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2552 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002553 "Cannot truncate or noop with non-integer arguments!");
2554 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2555 "getTruncateOrNoop cannot extend!");
2556 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2557 return V; // No conversion
2558 return getTruncateExpr(V, Ty);
2559}
2560
Dan Gohmana334aa72009-06-22 00:31:57 +00002561/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2562/// the types using zero-extension, and then perform a umax operation
2563/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002564const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2565 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002566 const SCEV *PromotedLHS = LHS;
2567 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002568
2569 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2570 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2571 else
2572 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2573
2574 return getUMaxExpr(PromotedLHS, PromotedRHS);
2575}
2576
Dan Gohmanc9759e82009-06-22 15:03:27 +00002577/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2578/// the types using zero-extension, and then perform a umin operation
2579/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002580const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2581 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002582 const SCEV *PromotedLHS = LHS;
2583 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002584
2585 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2586 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2587 else
2588 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2589
2590 return getUMinExpr(PromotedLHS, PromotedRHS);
2591}
2592
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002593/// PushDefUseChildren - Push users of the given Instruction
2594/// onto the given Worklist.
2595static void
2596PushDefUseChildren(Instruction *I,
2597 SmallVectorImpl<Instruction *> &Worklist) {
2598 // Push the def-use children onto the Worklist stack.
2599 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2600 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002601 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002602}
2603
2604/// ForgetSymbolicValue - This looks up computed SCEV values for all
2605/// instructions that depend on the given instruction and removes them from
2606/// the Scalars map if they reference SymName. This is used during PHI
2607/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002608void
Dan Gohman85669632010-02-25 06:57:05 +00002609ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002610 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002611 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002612
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002613 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002614 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002615 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002616 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002617 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002618
Dan Gohman5d984912009-12-18 01:14:11 +00002619 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002620 Scalars.find(static_cast<Value *>(I));
2621 if (It != Scalars.end()) {
2622 // Short-circuit the def-use traversal if the symbolic name
2623 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002624 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002625 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002626
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002627 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002628 // structure, it's a PHI that's in the progress of being computed
2629 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2630 // additional loop trip count information isn't going to change anything.
2631 // In the second case, createNodeForPHI will perform the necessary
2632 // updates on its own when it gets to that point. In the third, we do
2633 // want to forget the SCEVUnknown.
2634 if (!isa<PHINode>(I) ||
2635 !isa<SCEVUnknown>(It->second) ||
2636 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002637 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002638 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002639 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002640 }
2641
2642 PushDefUseChildren(I, Worklist);
2643 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002644}
Chris Lattner53e677a2004-04-02 20:23:17 +00002645
2646/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2647/// a loop header, making it a potential recurrence, or it doesn't.
2648///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002649const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002650 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2651 if (L->getHeader() == PN->getParent()) {
2652 // The loop may have multiple entrances or multiple exits; we can analyze
2653 // this phi as an addrec if it has a unique entry value and a unique
2654 // backedge value.
2655 Value *BEValueV = 0, *StartValueV = 0;
2656 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2657 Value *V = PN->getIncomingValue(i);
2658 if (L->contains(PN->getIncomingBlock(i))) {
2659 if (!BEValueV) {
2660 BEValueV = V;
2661 } else if (BEValueV != V) {
2662 BEValueV = 0;
2663 break;
2664 }
2665 } else if (!StartValueV) {
2666 StartValueV = V;
2667 } else if (StartValueV != V) {
2668 StartValueV = 0;
2669 break;
2670 }
2671 }
2672 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002673 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002674 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002675 assert(Scalars.find(PN) == Scalars.end() &&
2676 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002677 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002678
2679 // Using this symbolic name for the PHI, analyze the value coming around
2680 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002681 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002682
2683 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2684 // has a special value for the first iteration of the loop.
2685
2686 // If the value coming around the backedge is an add with the symbolic
2687 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002688 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002689 // If there is a single occurrence of the symbolic value, replace it
2690 // with a recurrence.
2691 unsigned FoundIndex = Add->getNumOperands();
2692 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2693 if (Add->getOperand(i) == SymbolicName)
2694 if (FoundIndex == e) {
2695 FoundIndex = i;
2696 break;
2697 }
2698
2699 if (FoundIndex != Add->getNumOperands()) {
2700 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002701 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002702 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2703 if (i != FoundIndex)
2704 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002705 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002706
2707 // This is not a valid addrec if the step amount is varying each
2708 // loop iteration, but is not itself an addrec in this loop.
2709 if (Accum->isLoopInvariant(L) ||
2710 (isa<SCEVAddRecExpr>(Accum) &&
2711 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002712 bool HasNUW = false;
2713 bool HasNSW = false;
2714
2715 // If the increment doesn't overflow, then neither the addrec nor
2716 // the post-increment will overflow.
2717 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2718 if (OBO->hasNoUnsignedWrap())
2719 HasNUW = true;
2720 if (OBO->hasNoSignedWrap())
2721 HasNSW = true;
2722 }
2723
Dan Gohman27dead42010-04-12 07:49:36 +00002724 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002725 const SCEV *PHISCEV =
2726 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002727
Dan Gohmana10756e2010-01-21 02:09:26 +00002728 // Since the no-wrap flags are on the increment, they apply to the
2729 // post-incremented value as well.
2730 if (Accum->isLoopInvariant(L))
2731 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2732 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002733
2734 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002735 // to be symbolic. We now need to go back and purge all of the
2736 // entries for the scalars that use the symbolic expression.
2737 ForgetSymbolicName(PN, SymbolicName);
2738 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002739 return PHISCEV;
2740 }
2741 }
Dan Gohman622ed672009-05-04 22:02:23 +00002742 } else if (const SCEVAddRecExpr *AddRec =
2743 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002744 // Otherwise, this could be a loop like this:
2745 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2746 // In this case, j = {1,+,1} and BEValue is j.
2747 // Because the other in-value of i (0) fits the evolution of BEValue
2748 // i really is an addrec evolution.
2749 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002750 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002751
2752 // If StartVal = j.start - j.stride, we can use StartVal as the
2753 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002754 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002755 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002756 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002757 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002758
2759 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002760 // to be symbolic. We now need to go back and purge all of the
2761 // entries for the scalars that use the symbolic expression.
2762 ForgetSymbolicName(PN, SymbolicName);
2763 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002764 return PHISCEV;
2765 }
2766 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002767 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002768 }
Dan Gohman27dead42010-04-12 07:49:36 +00002769 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002770
Dan Gohman85669632010-02-25 06:57:05 +00002771 // If the PHI has a single incoming value, follow that value, unless the
2772 // PHI's incoming blocks are in a different loop, in which case doing so
2773 // risks breaking LCSSA form. Instcombine would normally zap these, but
2774 // it doesn't have DominatorTree information, so it may miss cases.
2775 if (Value *V = PN->hasConstantValue(DT)) {
2776 bool AllSameLoop = true;
2777 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2778 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2779 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2780 AllSameLoop = false;
2781 break;
2782 }
2783 if (AllSameLoop)
2784 return getSCEV(V);
2785 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002786
Chris Lattner53e677a2004-04-02 20:23:17 +00002787 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002788 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002789}
2790
Dan Gohman26466c02009-05-08 20:26:55 +00002791/// createNodeForGEP - Expand GEP instructions into add and multiply
2792/// operations. This allows them to be analyzed by regular SCEV code.
2793///
Dan Gohmand281ed22009-12-18 02:09:29 +00002794const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002795
Dan Gohmanb9f96512010-06-30 07:16:37 +00002796 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2797 // Add expression, because the Instruction may be guarded by control flow
2798 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002799 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002800
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002801 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002802 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002803 // Don't attempt to analyze GEPs over unsized objects.
2804 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2805 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002806 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002807 gep_type_iterator GTI = gep_type_begin(GEP);
2808 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2809 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002810 I != E; ++I) {
2811 Value *Index = *I;
2812 // Compute the (potentially symbolic) offset in bytes for this index.
2813 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2814 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002815 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002816 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2817
Dan Gohmanb9f96512010-06-30 07:16:37 +00002818 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002819 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002820 } else {
2821 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002822 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2823 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002824 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002825 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2826
Dan Gohmanb9f96512010-06-30 07:16:37 +00002827 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002828 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002829
2830 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002831 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002832 }
2833 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002834
2835 // Get the SCEV for the GEP base.
2836 const SCEV *BaseS = getSCEV(Base);
2837
Dan Gohmanb9f96512010-06-30 07:16:37 +00002838 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002839 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002840}
2841
Nick Lewycky83bb0052007-11-22 07:59:40 +00002842/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2843/// guaranteed to end in (at every loop iteration). It is, at the same time,
2844/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2845/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002846uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002847ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002848 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002849 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002850
Dan Gohman622ed672009-05-04 22:02:23 +00002851 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002852 return std::min(GetMinTrailingZeros(T->getOperand()),
2853 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002854
Dan Gohman622ed672009-05-04 22:02:23 +00002855 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002856 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2857 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2858 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002859 }
2860
Dan Gohman622ed672009-05-04 22:02:23 +00002861 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002862 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2863 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2864 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002865 }
2866
Dan Gohman622ed672009-05-04 22:02:23 +00002867 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002868 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002869 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002870 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002871 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002872 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002873 }
2874
Dan Gohman622ed672009-05-04 22:02:23 +00002875 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002876 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002877 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2878 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002879 for (unsigned i = 1, e = M->getNumOperands();
2880 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002881 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002882 BitWidth);
2883 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002884 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002885
Dan Gohman622ed672009-05-04 22:02:23 +00002886 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002887 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002888 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002889 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002890 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002891 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002892 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002893
Dan Gohman622ed672009-05-04 22:02:23 +00002894 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002895 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002896 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002897 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002898 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002899 return MinOpRes;
2900 }
2901
Dan Gohman622ed672009-05-04 22:02:23 +00002902 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002903 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002904 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002905 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002906 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002907 return MinOpRes;
2908 }
2909
Dan Gohman2c364ad2009-06-19 23:29:04 +00002910 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2911 // For a SCEVUnknown, ask ValueTracking.
2912 unsigned BitWidth = getTypeSizeInBits(U->getType());
2913 APInt Mask = APInt::getAllOnesValue(BitWidth);
2914 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2915 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2916 return Zeros.countTrailingOnes();
2917 }
2918
2919 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002920 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002921}
Chris Lattner53e677a2004-04-02 20:23:17 +00002922
Dan Gohman85b05a22009-07-13 21:35:55 +00002923/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2924///
2925ConstantRange
2926ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002927
2928 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002929 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002930
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002931 unsigned BitWidth = getTypeSizeInBits(S->getType());
2932 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2933
2934 // If the value has known zeros, the maximum unsigned value will have those
2935 // known zeros as well.
2936 uint32_t TZ = GetMinTrailingZeros(S);
2937 if (TZ != 0)
2938 ConservativeResult =
2939 ConstantRange(APInt::getMinValue(BitWidth),
2940 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2941
Dan Gohman85b05a22009-07-13 21:35:55 +00002942 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2943 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2944 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2945 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002946 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002947 }
2948
2949 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2950 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2951 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2952 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002953 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002954 }
2955
2956 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2957 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2958 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2959 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002960 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002961 }
2962
2963 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2964 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2965 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2966 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002967 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002968 }
2969
2970 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2971 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2972 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002973 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002974 }
2975
2976 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2977 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002978 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002979 }
2980
2981 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2982 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002983 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002984 }
2985
2986 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2987 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002988 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002989 }
2990
Dan Gohman85b05a22009-07-13 21:35:55 +00002991 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002992 // If there's no unsigned wrap, the value will never be less than its
2993 // initial value.
2994 if (AddRec->hasNoUnsignedWrap())
2995 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00002996 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002997 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00002998 ConservativeResult.intersectWith(
2999 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003000
3001 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003002 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003003 const Type *Ty = AddRec->getType();
3004 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003005 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3006 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003007 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3008
3009 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003010 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003011
3012 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003013 ConstantRange StepRange = getSignedRange(Step);
3014 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3015 ConstantRange EndRange =
3016 StartRange.add(MaxBECountRange.multiply(StepRange));
3017
3018 // Check for overflow. This must be done with ConstantRange arithmetic
3019 // because we could be called from within the ScalarEvolution overflow
3020 // checking code.
3021 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3022 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3023 ConstantRange ExtMaxBECountRange =
3024 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3025 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3026 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3027 ExtEndRange)
3028 return ConservativeResult;
3029
Dan Gohman85b05a22009-07-13 21:35:55 +00003030 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3031 EndRange.getUnsignedMin());
3032 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3033 EndRange.getUnsignedMax());
3034 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003035 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003036 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003037 }
3038 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003039
3040 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003041 }
3042
3043 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3044 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003045 APInt Mask = APInt::getAllOnesValue(BitWidth);
3046 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3047 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003048 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003049 return ConservativeResult;
3050 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003051 }
3052
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003053 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003054}
3055
Dan Gohman85b05a22009-07-13 21:35:55 +00003056/// getSignedRange - Determine the signed range for a particular SCEV.
3057///
3058ConstantRange
3059ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003060
Dan Gohman85b05a22009-07-13 21:35:55 +00003061 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3062 return ConstantRange(C->getValue()->getValue());
3063
Dan Gohman52fddd32010-01-26 04:40:18 +00003064 unsigned BitWidth = getTypeSizeInBits(S->getType());
3065 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3066
3067 // If the value has known zeros, the maximum signed value will have those
3068 // known zeros as well.
3069 uint32_t TZ = GetMinTrailingZeros(S);
3070 if (TZ != 0)
3071 ConservativeResult =
3072 ConstantRange(APInt::getSignedMinValue(BitWidth),
3073 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3074
Dan Gohman85b05a22009-07-13 21:35:55 +00003075 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3076 ConstantRange X = getSignedRange(Add->getOperand(0));
3077 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3078 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003079 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003080 }
3081
Dan Gohman85b05a22009-07-13 21:35:55 +00003082 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3083 ConstantRange X = getSignedRange(Mul->getOperand(0));
3084 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3085 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003086 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003087 }
3088
Dan Gohman85b05a22009-07-13 21:35:55 +00003089 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3090 ConstantRange X = getSignedRange(SMax->getOperand(0));
3091 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3092 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003093 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003094 }
Dan Gohman62849c02009-06-24 01:05:09 +00003095
Dan Gohman85b05a22009-07-13 21:35:55 +00003096 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3097 ConstantRange X = getSignedRange(UMax->getOperand(0));
3098 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3099 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003100 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003101 }
Dan Gohman62849c02009-06-24 01:05:09 +00003102
Dan Gohman85b05a22009-07-13 21:35:55 +00003103 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3104 ConstantRange X = getSignedRange(UDiv->getLHS());
3105 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003106 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003107 }
Dan Gohman62849c02009-06-24 01:05:09 +00003108
Dan Gohman85b05a22009-07-13 21:35:55 +00003109 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3110 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003111 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003112 }
3113
3114 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3115 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003116 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003117 }
3118
3119 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3120 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003121 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003122 }
3123
Dan Gohman85b05a22009-07-13 21:35:55 +00003124 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003125 // If there's no signed wrap, and all the operands have the same sign or
3126 // zero, the value won't ever change sign.
3127 if (AddRec->hasNoSignedWrap()) {
3128 bool AllNonNeg = true;
3129 bool AllNonPos = true;
3130 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3131 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3132 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3133 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003134 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003135 ConservativeResult = ConservativeResult.intersectWith(
3136 ConstantRange(APInt(BitWidth, 0),
3137 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003138 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003139 ConservativeResult = ConservativeResult.intersectWith(
3140 ConstantRange(APInt::getSignedMinValue(BitWidth),
3141 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003142 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003143
3144 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003145 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003146 const Type *Ty = AddRec->getType();
3147 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003148 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3149 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003150 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3151
3152 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003153 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003154
3155 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003156 ConstantRange StepRange = getSignedRange(Step);
3157 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3158 ConstantRange EndRange =
3159 StartRange.add(MaxBECountRange.multiply(StepRange));
3160
3161 // Check for overflow. This must be done with ConstantRange arithmetic
3162 // because we could be called from within the ScalarEvolution overflow
3163 // checking code.
3164 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3165 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3166 ConstantRange ExtMaxBECountRange =
3167 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3168 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3169 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3170 ExtEndRange)
3171 return ConservativeResult;
3172
Dan Gohman85b05a22009-07-13 21:35:55 +00003173 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3174 EndRange.getSignedMin());
3175 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3176 EndRange.getSignedMax());
3177 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003178 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003179 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003180 }
Dan Gohman62849c02009-06-24 01:05:09 +00003181 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003182
3183 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003184 }
3185
Dan Gohman2c364ad2009-06-19 23:29:04 +00003186 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3187 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003188 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003189 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003190 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3191 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003192 return ConservativeResult;
3193 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003194 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003195 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003196 }
3197
Dan Gohman52fddd32010-01-26 04:40:18 +00003198 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003199}
3200
Chris Lattner53e677a2004-04-02 20:23:17 +00003201/// createSCEV - We know that there is no SCEV for the specified value.
3202/// Analyze the expression.
3203///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003204const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003205 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003206 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003207
Dan Gohman6c459a22008-06-22 19:56:46 +00003208 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003209 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003210 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003211
3212 // Don't attempt to analyze instructions in blocks that aren't
3213 // reachable. Such instructions don't matter, and they aren't required
3214 // to obey basic rules for definitions dominating uses which this
3215 // analysis depends on.
3216 if (!DT->isReachableFromEntry(I->getParent()))
3217 return getUnknown(V);
3218 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003219 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003220 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3221 return getConstant(CI);
3222 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003223 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003224 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3225 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003226 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003227 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003228
Dan Gohmanca178902009-07-17 20:47:02 +00003229 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003230 switch (Opcode) {
Dan Gohman70eff632010-06-30 17:27:11 +00003231 case Instruction::Add:
3232 return getAddExpr(getSCEV(U->getOperand(0)),
3233 getSCEV(U->getOperand(1)));
3234 case Instruction::Mul:
3235 return getMulExpr(getSCEV(U->getOperand(0)),
3236 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003237 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003238 return getUDivExpr(getSCEV(U->getOperand(0)),
3239 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003240 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003241 return getMinusSCEV(getSCEV(U->getOperand(0)),
3242 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003243 case Instruction::And:
3244 // For an expression like x&255 that merely masks off the high bits,
3245 // use zext(trunc(x)) as the SCEV expression.
3246 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003247 if (CI->isNullValue())
3248 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003249 if (CI->isAllOnesValue())
3250 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003251 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003252
3253 // Instcombine's ShrinkDemandedConstant may strip bits out of
3254 // constants, obscuring what would otherwise be a low-bits mask.
3255 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3256 // knew about to reconstruct a low-bits mask value.
3257 unsigned LZ = A.countLeadingZeros();
3258 unsigned BitWidth = A.getBitWidth();
3259 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3260 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3261 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3262
3263 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3264
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003265 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003266 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003267 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003268 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003269 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003270 }
3271 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003272
Dan Gohman6c459a22008-06-22 19:56:46 +00003273 case Instruction::Or:
3274 // If the RHS of the Or is a constant, we may have something like:
3275 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3276 // optimizations will transparently handle this case.
3277 //
3278 // In order for this transformation to be safe, the LHS must be of the
3279 // form X*(2^n) and the Or constant must be less than 2^n.
3280 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003281 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003282 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003283 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003284 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3285 // Build a plain add SCEV.
3286 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3287 // If the LHS of the add was an addrec and it has no-wrap flags,
3288 // transfer the no-wrap flags, since an or won't introduce a wrap.
3289 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3290 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3291 if (OldAR->hasNoUnsignedWrap())
3292 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3293 if (OldAR->hasNoSignedWrap())
3294 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3295 }
3296 return S;
3297 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003298 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003299 break;
3300 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003301 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003302 // If the RHS of the xor is a signbit, then this is just an add.
3303 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003304 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003305 return getAddExpr(getSCEV(U->getOperand(0)),
3306 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003307
3308 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003309 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003310 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003311
3312 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3313 // This is a variant of the check for xor with -1, and it handles
3314 // the case where instcombine has trimmed non-demanded bits out
3315 // of an xor with -1.
3316 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3317 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3318 if (BO->getOpcode() == Instruction::And &&
3319 LCI->getValue() == CI->getValue())
3320 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003321 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003322 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003323 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003324 const Type *Z0Ty = Z0->getType();
3325 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3326
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003327 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003328 // mask off the high bits. Complement the operand and
3329 // re-apply the zext.
3330 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3331 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3332
3333 // If C is a single bit, it may be in the sign-bit position
3334 // before the zero-extend. In this case, represent the xor
3335 // using an add, which is equivalent, and re-apply the zext.
3336 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3337 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3338 Trunc.isSignBit())
3339 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3340 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003341 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003342 }
3343 break;
3344
3345 case Instruction::Shl:
3346 // Turn shift left of a constant amount into a multiply.
3347 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003348 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003349
3350 // If the shift count is not less than the bitwidth, the result of
3351 // the shift is undefined. Don't try to analyze it, because the
3352 // resolution chosen here may differ from the resolution chosen in
3353 // other parts of the compiler.
3354 if (SA->getValue().uge(BitWidth))
3355 break;
3356
Owen Andersoneed707b2009-07-24 23:12:02 +00003357 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003358 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003359 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003360 }
3361 break;
3362
Nick Lewycky01eaf802008-07-07 06:15:49 +00003363 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003364 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003365 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003366 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003367
3368 // If the shift count is not less than the bitwidth, the result of
3369 // the shift is undefined. Don't try to analyze it, because the
3370 // resolution chosen here may differ from the resolution chosen in
3371 // other parts of the compiler.
3372 if (SA->getValue().uge(BitWidth))
3373 break;
3374
Owen Andersoneed707b2009-07-24 23:12:02 +00003375 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003376 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003377 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003378 }
3379 break;
3380
Dan Gohman4ee29af2009-04-21 02:26:00 +00003381 case Instruction::AShr:
3382 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3383 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003384 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003385 if (L->getOpcode() == Instruction::Shl &&
3386 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003387 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3388
3389 // If the shift count is not less than the bitwidth, the result of
3390 // the shift is undefined. Don't try to analyze it, because the
3391 // resolution chosen here may differ from the resolution chosen in
3392 // other parts of the compiler.
3393 if (CI->getValue().uge(BitWidth))
3394 break;
3395
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003396 uint64_t Amt = BitWidth - CI->getZExtValue();
3397 if (Amt == BitWidth)
3398 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003399 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003400 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003401 IntegerType::get(getContext(),
3402 Amt)),
3403 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003404 }
3405 break;
3406
Dan Gohman6c459a22008-06-22 19:56:46 +00003407 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003408 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003409
3410 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003411 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003412
3413 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003414 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003415
3416 case Instruction::BitCast:
3417 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003418 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003419 return getSCEV(U->getOperand(0));
3420 break;
3421
Dan Gohman4f8eea82010-02-01 18:27:38 +00003422 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3423 // lead to pointer expressions which cannot safely be expanded to GEPs,
3424 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3425 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003426
Dan Gohman26466c02009-05-08 20:26:55 +00003427 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003428 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003429
Dan Gohman6c459a22008-06-22 19:56:46 +00003430 case Instruction::PHI:
3431 return createNodeForPHI(cast<PHINode>(U));
3432
3433 case Instruction::Select:
3434 // This could be a smax or umax that was lowered earlier.
3435 // Try to recover it.
3436 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3437 Value *LHS = ICI->getOperand(0);
3438 Value *RHS = ICI->getOperand(1);
3439 switch (ICI->getPredicate()) {
3440 case ICmpInst::ICMP_SLT:
3441 case ICmpInst::ICMP_SLE:
3442 std::swap(LHS, RHS);
3443 // fall through
3444 case ICmpInst::ICMP_SGT:
3445 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003446 // a >s b ? a+x : b+x -> smax(a, b)+x
3447 // a >s b ? b+x : a+x -> smin(a, b)+x
3448 if (LHS->getType() == U->getType()) {
3449 const SCEV *LS = getSCEV(LHS);
3450 const SCEV *RS = getSCEV(RHS);
3451 const SCEV *LA = getSCEV(U->getOperand(1));
3452 const SCEV *RA = getSCEV(U->getOperand(2));
3453 const SCEV *LDiff = getMinusSCEV(LA, LS);
3454 const SCEV *RDiff = getMinusSCEV(RA, RS);
3455 if (LDiff == RDiff)
3456 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3457 LDiff = getMinusSCEV(LA, RS);
3458 RDiff = getMinusSCEV(RA, LS);
3459 if (LDiff == RDiff)
3460 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3461 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003462 break;
3463 case ICmpInst::ICMP_ULT:
3464 case ICmpInst::ICMP_ULE:
3465 std::swap(LHS, RHS);
3466 // fall through
3467 case ICmpInst::ICMP_UGT:
3468 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003469 // a >u b ? a+x : b+x -> umax(a, b)+x
3470 // a >u b ? b+x : a+x -> umin(a, b)+x
3471 if (LHS->getType() == U->getType()) {
3472 const SCEV *LS = getSCEV(LHS);
3473 const SCEV *RS = getSCEV(RHS);
3474 const SCEV *LA = getSCEV(U->getOperand(1));
3475 const SCEV *RA = getSCEV(U->getOperand(2));
3476 const SCEV *LDiff = getMinusSCEV(LA, LS);
3477 const SCEV *RDiff = getMinusSCEV(RA, RS);
3478 if (LDiff == RDiff)
3479 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3480 LDiff = getMinusSCEV(LA, RS);
3481 RDiff = getMinusSCEV(RA, LS);
3482 if (LDiff == RDiff)
3483 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3484 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003485 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003486 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003487 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3488 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003489 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003490 cast<ConstantInt>(RHS)->isZero()) {
3491 const SCEV *One = getConstant(LHS->getType(), 1);
3492 const SCEV *LS = getSCEV(LHS);
3493 const SCEV *LA = getSCEV(U->getOperand(1));
3494 const SCEV *RA = getSCEV(U->getOperand(2));
3495 const SCEV *LDiff = getMinusSCEV(LA, LS);
3496 const SCEV *RDiff = getMinusSCEV(RA, One);
3497 if (LDiff == RDiff)
3498 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3499 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003500 break;
3501 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003502 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3503 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003504 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003505 cast<ConstantInt>(RHS)->isZero()) {
3506 const SCEV *One = getConstant(LHS->getType(), 1);
3507 const SCEV *LS = getSCEV(LHS);
3508 const SCEV *LA = getSCEV(U->getOperand(1));
3509 const SCEV *RA = getSCEV(U->getOperand(2));
3510 const SCEV *LDiff = getMinusSCEV(LA, One);
3511 const SCEV *RDiff = getMinusSCEV(RA, LS);
3512 if (LDiff == RDiff)
3513 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3514 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003515 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003516 default:
3517 break;
3518 }
3519 }
3520
3521 default: // We cannot analyze this expression.
3522 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003523 }
3524
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003525 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003526}
3527
3528
3529
3530//===----------------------------------------------------------------------===//
3531// Iteration Count Computation Code
3532//
3533
Dan Gohman46bdfb02009-02-24 18:55:53 +00003534/// getBackedgeTakenCount - If the specified loop has a predictable
3535/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3536/// object. The backedge-taken count is the number of times the loop header
3537/// will be branched to from within the loop. This is one less than the
3538/// trip count of the loop, since it doesn't count the first iteration,
3539/// when the header is branched to from outside the loop.
3540///
3541/// Note that it is not valid to call this method on a loop without a
3542/// loop-invariant backedge-taken count (see
3543/// hasLoopInvariantBackedgeTakenCount).
3544///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003545const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003546 return getBackedgeTakenInfo(L).Exact;
3547}
3548
3549/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3550/// return the least SCEV value that is known never to be less than the
3551/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003552const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003553 return getBackedgeTakenInfo(L).Max;
3554}
3555
Dan Gohman59ae6b92009-07-08 19:23:34 +00003556/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3557/// onto the given Worklist.
3558static void
3559PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3560 BasicBlock *Header = L->getHeader();
3561
3562 // Push all Loop-header PHIs onto the Worklist stack.
3563 for (BasicBlock::iterator I = Header->begin();
3564 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3565 Worklist.push_back(PN);
3566}
3567
Dan Gohmana1af7572009-04-30 20:47:05 +00003568const ScalarEvolution::BackedgeTakenInfo &
3569ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003570 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003571 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003572 // update the value. The temporary CouldNotCompute value tells SCEV
3573 // code elsewhere that it shouldn't attempt to request a new
3574 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003575 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003576 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3577 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003578 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3579 if (BECount.Exact != getCouldNotCompute()) {
3580 assert(BECount.Exact->isLoopInvariant(L) &&
3581 BECount.Max->isLoopInvariant(L) &&
3582 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003583 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003584
Dan Gohman01ecca22009-04-27 20:16:15 +00003585 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003586 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003587 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003588 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003589 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003590 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003591 if (isa<PHINode>(L->getHeader()->begin()))
3592 // Only count loops that have phi nodes as not being computable.
3593 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003594 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003595
3596 // Now that we know more about the trip count for this loop, forget any
3597 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003598 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003599 // information. This is similar to the code in forgetLoop, except that
3600 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003601 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003602 SmallVector<Instruction *, 16> Worklist;
3603 PushLoopPHIs(L, Worklist);
3604
3605 SmallPtrSet<Instruction *, 8> Visited;
3606 while (!Worklist.empty()) {
3607 Instruction *I = Worklist.pop_back_val();
3608 if (!Visited.insert(I)) continue;
3609
Dan Gohman5d984912009-12-18 01:14:11 +00003610 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003611 Scalars.find(static_cast<Value *>(I));
3612 if (It != Scalars.end()) {
3613 // SCEVUnknown for a PHI either means that it has an unrecognized
3614 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003615 // by createNodeForPHI. In the former case, additional loop trip
3616 // count information isn't going to change anything. In the later
3617 // case, createNodeForPHI will perform the necessary updates on its
3618 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003619 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3620 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003621 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003622 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003623 if (PHINode *PN = dyn_cast<PHINode>(I))
3624 ConstantEvolutionLoopExitValue.erase(PN);
3625 }
3626
3627 PushDefUseChildren(I, Worklist);
3628 }
3629 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003630 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003631 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003632}
3633
Dan Gohman4c7279a2009-10-31 15:04:55 +00003634/// forgetLoop - This method should be called by the client when it has
3635/// changed a loop in a way that may effect ScalarEvolution's ability to
3636/// compute a trip count, or if the loop is deleted.
3637void ScalarEvolution::forgetLoop(const Loop *L) {
3638 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003639 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003640
Dan Gohman4c7279a2009-10-31 15:04:55 +00003641 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003642 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003643 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003644
Dan Gohman59ae6b92009-07-08 19:23:34 +00003645 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003646 while (!Worklist.empty()) {
3647 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003648 if (!Visited.insert(I)) continue;
3649
Dan Gohman5d984912009-12-18 01:14:11 +00003650 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003651 Scalars.find(static_cast<Value *>(I));
3652 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003653 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003654 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003655 if (PHINode *PN = dyn_cast<PHINode>(I))
3656 ConstantEvolutionLoopExitValue.erase(PN);
3657 }
3658
3659 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003660 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003661}
3662
Eric Christophere6cbfa62010-07-29 01:25:38 +00003663/// forgetValue - This method should be called by the client when it has
3664/// changed a value in a way that may effect its value, or which may
3665/// disconnect it from a def-use chain linking it to a loop.
3666void ScalarEvolution::forgetValue(Value *V) {
3667 // If there's a SCEVUnknown tying this value into the SCEV
3668 // space, remove it from the folding set map. The SCEVUnknown
3669 // object and any other SCEV objects which reference it
3670 // (transitively) remain allocated, effectively leaked until
3671 // the underlying BumpPtrAllocator is freed.
3672 //
Dan Gohman81f91212010-07-28 01:09:07 +00003673 // This permits SCEV pointers to be used as keys in maps
3674 // such as the ValuesAtScopes map.
3675 FoldingSetNodeID ID;
3676 ID.AddInteger(scUnknown);
3677 ID.AddPointer(V);
3678 void *IP;
3679 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3680 UniqueSCEVs.RemoveNode(S);
3681
Eric Christophere6cbfa62010-07-29 01:25:38 +00003682 // This isn't necessary, but we might as well remove the
3683 // value from the ValuesAtScopes map too.
3684 ValuesAtScopes.erase(S);
Dan Gohman81f91212010-07-28 01:09:07 +00003685 }
3686
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003687 Instruction *I = dyn_cast<Instruction>(V);
3688 if (!I) return;
3689
3690 // Drop information about expressions based on loop-header PHIs.
3691 SmallVector<Instruction *, 16> Worklist;
3692 Worklist.push_back(I);
3693
3694 SmallPtrSet<Instruction *, 8> Visited;
3695 while (!Worklist.empty()) {
3696 I = Worklist.pop_back_val();
3697 if (!Visited.insert(I)) continue;
3698
3699 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3700 Scalars.find(static_cast<Value *>(I));
3701 if (It != Scalars.end()) {
3702 ValuesAtScopes.erase(It->second);
3703 Scalars.erase(It);
3704 if (PHINode *PN = dyn_cast<PHINode>(I))
3705 ConstantEvolutionLoopExitValue.erase(PN);
3706 }
3707
3708 PushDefUseChildren(I, Worklist);
3709 }
3710}
3711
Dan Gohman46bdfb02009-02-24 18:55:53 +00003712/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3713/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003714ScalarEvolution::BackedgeTakenInfo
3715ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003716 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003717 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003718
Dan Gohmana334aa72009-06-22 00:31:57 +00003719 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003720 const SCEV *BECount = getCouldNotCompute();
3721 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003722 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003723 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3724 BackedgeTakenInfo NewBTI =
3725 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003726
Dan Gohman1c343752009-06-27 21:21:31 +00003727 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003728 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003729 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003730 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003731 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003732 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003733 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003734 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003735 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003736 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003737 }
Dan Gohman1c343752009-06-27 21:21:31 +00003738 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003739 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003740 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003741 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003742 }
3743
3744 return BackedgeTakenInfo(BECount, MaxBECount);
3745}
3746
3747/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3748/// of the specified loop will execute if it exits via the specified block.
3749ScalarEvolution::BackedgeTakenInfo
3750ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3751 BasicBlock *ExitingBlock) {
3752
3753 // Okay, we've chosen an exiting block. See what condition causes us to
3754 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003755 //
3756 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003757 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003758 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003759 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003760
Chris Lattner8b0e3602007-01-07 02:24:26 +00003761 // At this point, we know we have a conditional branch that determines whether
3762 // the loop is exited. However, we don't know if the branch is executed each
3763 // time through the loop. If not, then the execution count of the branch will
3764 // not be equal to the trip count of the loop.
3765 //
3766 // Currently we check for this by checking to see if the Exit branch goes to
3767 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003768 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003769 // loop header. This is common for un-rotated loops.
3770 //
3771 // If both of those tests fail, walk up the unique predecessor chain to the
3772 // header, stopping if there is an edge that doesn't exit the loop. If the
3773 // header is reached, the execution count of the branch will be equal to the
3774 // trip count of the loop.
3775 //
3776 // More extensive analysis could be done to handle more cases here.
3777 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003778 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003779 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003780 ExitBr->getParent() != L->getHeader()) {
3781 // The simple checks failed, try climbing the unique predecessor chain
3782 // up to the header.
3783 bool Ok = false;
3784 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3785 BasicBlock *Pred = BB->getUniquePredecessor();
3786 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003787 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003788 TerminatorInst *PredTerm = Pred->getTerminator();
3789 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3790 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3791 if (PredSucc == BB)
3792 continue;
3793 // If the predecessor has a successor that isn't BB and isn't
3794 // outside the loop, assume the worst.
3795 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003796 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003797 }
3798 if (Pred == L->getHeader()) {
3799 Ok = true;
3800 break;
3801 }
3802 BB = Pred;
3803 }
3804 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003805 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003806 }
3807
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003808 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003809 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3810 ExitBr->getSuccessor(0),
3811 ExitBr->getSuccessor(1));
3812}
3813
3814/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3815/// backedge of the specified loop will execute if its exit condition
3816/// were a conditional branch of ExitCond, TBB, and FBB.
3817ScalarEvolution::BackedgeTakenInfo
3818ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3819 Value *ExitCond,
3820 BasicBlock *TBB,
3821 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003822 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003823 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3824 if (BO->getOpcode() == Instruction::And) {
3825 // Recurse on the operands of the and.
3826 BackedgeTakenInfo BTI0 =
3827 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3828 BackedgeTakenInfo BTI1 =
3829 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003830 const SCEV *BECount = getCouldNotCompute();
3831 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003832 if (L->contains(TBB)) {
3833 // Both conditions must be true for the loop to continue executing.
3834 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003835 if (BTI0.Exact == getCouldNotCompute() ||
3836 BTI1.Exact == getCouldNotCompute())
3837 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003838 else
3839 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003840 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003841 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003842 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003843 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003844 else
3845 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003846 } else {
3847 // Both conditions must be true for the loop to exit.
3848 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003849 if (BTI0.Exact != getCouldNotCompute() &&
3850 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003851 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003852 if (BTI0.Max != getCouldNotCompute() &&
3853 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003854 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3855 }
3856
3857 return BackedgeTakenInfo(BECount, MaxBECount);
3858 }
3859 if (BO->getOpcode() == Instruction::Or) {
3860 // Recurse on the operands of the or.
3861 BackedgeTakenInfo BTI0 =
3862 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3863 BackedgeTakenInfo BTI1 =
3864 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003865 const SCEV *BECount = getCouldNotCompute();
3866 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003867 if (L->contains(FBB)) {
3868 // Both conditions must be false for the loop to continue executing.
3869 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003870 if (BTI0.Exact == getCouldNotCompute() ||
3871 BTI1.Exact == getCouldNotCompute())
3872 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003873 else
3874 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003875 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003876 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003877 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003878 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003879 else
3880 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003881 } else {
3882 // Both conditions must be false for the loop to exit.
3883 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003884 if (BTI0.Exact != getCouldNotCompute() &&
3885 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003886 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003887 if (BTI0.Max != getCouldNotCompute() &&
3888 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003889 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3890 }
3891
3892 return BackedgeTakenInfo(BECount, MaxBECount);
3893 }
3894 }
3895
3896 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003897 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003898 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3899 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003900
Dan Gohman00cb5b72010-02-19 18:12:07 +00003901 // Check for a constant condition. These are normally stripped out by
3902 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3903 // preserve the CFG and is temporarily leaving constant conditions
3904 // in place.
3905 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3906 if (L->contains(FBB) == !CI->getZExtValue())
3907 // The backedge is always taken.
3908 return getCouldNotCompute();
3909 else
3910 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003911 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003912 }
3913
Eli Friedman361e54d2009-05-09 12:32:42 +00003914 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003915 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3916}
3917
3918/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3919/// backedge of the specified loop will execute if its exit condition
3920/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3921ScalarEvolution::BackedgeTakenInfo
3922ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3923 ICmpInst *ExitCond,
3924 BasicBlock *TBB,
3925 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003926
Reid Spencere4d87aa2006-12-23 06:05:41 +00003927 // If the condition was exit on true, convert the condition to exit on false
3928 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003929 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003930 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003931 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003932 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003933
3934 // Handle common loops like: for (X = "string"; *X; ++X)
3935 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3936 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003937 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003938 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003939 if (ItCnt.hasAnyInfo())
3940 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003941 }
3942
Dan Gohman0bba49c2009-07-07 17:06:11 +00003943 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3944 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003945
3946 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003947 LHS = getSCEVAtScope(LHS, L);
3948 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003949
Dan Gohman64a845e2009-06-24 04:48:43 +00003950 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003951 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003952 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3953 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003954 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003955 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003956 }
3957
Dan Gohman03557dc2010-05-03 16:35:17 +00003958 // Simplify the operands before analyzing them.
3959 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3960
Chris Lattner53e677a2004-04-02 20:23:17 +00003961 // If we have a comparison of a chrec against a constant, try to use value
3962 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003963 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3964 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003965 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003966 // Form the constant range.
3967 ConstantRange CompRange(
3968 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003969
Dan Gohman0bba49c2009-07-07 17:06:11 +00003970 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003971 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003972 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003973
Chris Lattner53e677a2004-04-02 20:23:17 +00003974 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003975 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003976 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003977 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3978 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003979 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003980 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003981 case ICmpInst::ICMP_EQ: { // while (X == Y)
3982 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003983 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3984 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003985 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003986 }
3987 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003988 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3989 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003990 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003991 }
3992 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003993 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3994 getNotSCEV(RHS), L, true);
3995 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003996 break;
3997 }
3998 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003999 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4000 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004001 break;
4002 }
4003 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004004 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4005 getNotSCEV(RHS), L, false);
4006 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004007 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004008 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004009 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004010#if 0
David Greene25e0e872009-12-23 22:18:14 +00004011 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004012 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004013 dbgs() << "[unsigned] ";
4014 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004015 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004016 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004017#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004018 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004019 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004020 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004021 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004022}
4023
Chris Lattner673e02b2004-10-12 01:49:27 +00004024static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004025EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4026 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004027 const SCEV *InVal = SE.getConstant(C);
4028 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004029 assert(isa<SCEVConstant>(Val) &&
4030 "Evaluation of SCEV at constant didn't fold correctly?");
4031 return cast<SCEVConstant>(Val)->getValue();
4032}
4033
4034/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4035/// and a GEP expression (missing the pointer index) indexing into it, return
4036/// the addressed element of the initializer or null if the index expression is
4037/// invalid.
4038static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004039GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004040 const std::vector<ConstantInt*> &Indices) {
4041 Constant *Init = GV->getInitializer();
4042 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004043 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004044 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4045 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4046 Init = cast<Constant>(CS->getOperand(Idx));
4047 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4048 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4049 Init = cast<Constant>(CA->getOperand(Idx));
4050 } else if (isa<ConstantAggregateZero>(Init)) {
4051 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4052 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004053 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004054 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4055 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004056 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004057 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004058 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004059 }
4060 return 0;
4061 } else {
4062 return 0; // Unknown initializer type
4063 }
4064 }
4065 return Init;
4066}
4067
Dan Gohman46bdfb02009-02-24 18:55:53 +00004068/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4069/// 'icmp op load X, cst', try to see if we can compute the backedge
4070/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004071ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004072ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4073 LoadInst *LI,
4074 Constant *RHS,
4075 const Loop *L,
4076 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004077 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004078
4079 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004080 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004081 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004082 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004083
4084 // Make sure that it is really a constant global we are gepping, with an
4085 // initializer, and make sure the first IDX is really 0.
4086 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004087 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004088 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4089 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004090 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004091
4092 // Okay, we allow one non-constant index into the GEP instruction.
4093 Value *VarIdx = 0;
4094 std::vector<ConstantInt*> Indexes;
4095 unsigned VarIdxNum = 0;
4096 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4097 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4098 Indexes.push_back(CI);
4099 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004100 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004101 VarIdx = GEP->getOperand(i);
4102 VarIdxNum = i-2;
4103 Indexes.push_back(0);
4104 }
4105
4106 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4107 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004108 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004109 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004110
4111 // We can only recognize very limited forms of loop index expressions, in
4112 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004113 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004114 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4115 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4116 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004117 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004118
4119 unsigned MaxSteps = MaxBruteForceIterations;
4120 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004121 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004122 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004123 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004124
4125 // Form the GEP offset.
4126 Indexes[VarIdxNum] = Val;
4127
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004128 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004129 if (Result == 0) break; // Cannot compute!
4130
4131 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004132 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004133 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004134 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004135#if 0
David Greene25e0e872009-12-23 22:18:14 +00004136 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004137 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4138 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004139#endif
4140 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004141 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004142 }
4143 }
Dan Gohman1c343752009-06-27 21:21:31 +00004144 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004145}
4146
4147
Chris Lattner3221ad02004-04-17 22:58:41 +00004148/// CanConstantFold - Return true if we can constant fold an instruction of the
4149/// specified type, assuming that all operands were constants.
4150static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004151 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004152 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4153 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004154
Chris Lattner3221ad02004-04-17 22:58:41 +00004155 if (const CallInst *CI = dyn_cast<CallInst>(I))
4156 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004157 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004158 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004159}
4160
Chris Lattner3221ad02004-04-17 22:58:41 +00004161/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4162/// in the loop that V is derived from. We allow arbitrary operations along the
4163/// way, but the operands of an operation must either be constants or a value
4164/// derived from a constant PHI. If this expression does not fit with these
4165/// constraints, return null.
4166static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4167 // If this is not an instruction, or if this is an instruction outside of the
4168 // loop, it can't be derived from a loop PHI.
4169 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004170 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004171
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004172 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004173 if (L->getHeader() == I->getParent())
4174 return PN;
4175 else
4176 // We don't currently keep track of the control flow needed to evaluate
4177 // PHIs, so we cannot handle PHIs inside of loops.
4178 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004179 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004180
4181 // If we won't be able to constant fold this expression even if the operands
4182 // are constants, return early.
4183 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004184
Chris Lattner3221ad02004-04-17 22:58:41 +00004185 // Otherwise, we can evaluate this instruction if all of its operands are
4186 // constant or derived from a PHI node themselves.
4187 PHINode *PHI = 0;
4188 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004189 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004190 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4191 if (P == 0) return 0; // Not evolving from PHI
4192 if (PHI == 0)
4193 PHI = P;
4194 else if (PHI != P)
4195 return 0; // Evolving from multiple different PHIs.
4196 }
4197
4198 // This is a expression evolving from a constant PHI!
4199 return PHI;
4200}
4201
4202/// EvaluateExpression - Given an expression that passes the
4203/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4204/// in the loop has the value PHIVal. If we can't fold this expression for some
4205/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004206static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4207 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004208 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004209 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004210 Instruction *I = cast<Instruction>(V);
4211
Dan Gohman9d4588f2010-06-22 13:15:46 +00004212 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004213
4214 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004215 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004216 if (Operands[i] == 0) return 0;
4217 }
4218
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004219 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004220 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004221 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004222 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004223 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004224}
4225
4226/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4227/// in the header of its containing loop, we know the loop executes a
4228/// constant number of times, and the PHI node is just a recurrence
4229/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004230Constant *
4231ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004232 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004233 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004234 std::map<PHINode*, Constant*>::iterator I =
4235 ConstantEvolutionLoopExitValue.find(PN);
4236 if (I != ConstantEvolutionLoopExitValue.end())
4237 return I->second;
4238
Dan Gohmane0567812010-04-08 23:03:40 +00004239 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004240 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4241
4242 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4243
4244 // Since the loop is canonicalized, the PHI node must have two entries. One
4245 // entry must be a constant (coming in from outside of the loop), and the
4246 // second must be derived from the same PHI.
4247 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4248 Constant *StartCST =
4249 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4250 if (StartCST == 0)
4251 return RetVal = 0; // Must be a constant.
4252
4253 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004254 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4255 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004256 return RetVal = 0; // Not derived from same PHI.
4257
4258 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004259 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004260 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004261
Dan Gohman46bdfb02009-02-24 18:55:53 +00004262 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004263 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004264 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4265 if (IterationNum == NumIterations)
4266 return RetVal = PHIVal; // Got exit value!
4267
4268 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004269 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004270 if (NextPHI == PHIVal)
4271 return RetVal = NextPHI; // Stopped evolving!
4272 if (NextPHI == 0)
4273 return 0; // Couldn't evaluate!
4274 PHIVal = NextPHI;
4275 }
4276}
4277
Dan Gohman07ad19b2009-07-27 16:09:48 +00004278/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004279/// constant number of times (the condition evolves only from constants),
4280/// try to evaluate a few iterations of the loop until we get the exit
4281/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004282/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004283const SCEV *
4284ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4285 Value *Cond,
4286 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004287 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004288 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004289
Dan Gohmanb92654d2010-06-19 14:17:24 +00004290 // If the loop is canonicalized, the PHI will have exactly two entries.
4291 // That's the only form we support here.
4292 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4293
4294 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004295 // second must be derived from the same PHI.
4296 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4297 Constant *StartCST =
4298 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004299 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004300
4301 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004302 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4303 !isa<Constant>(BEValue))
4304 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004305
4306 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4307 // the loop symbolically to determine when the condition gets a value of
4308 // "ExitWhen".
4309 unsigned IterationNum = 0;
4310 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4311 for (Constant *PHIVal = StartCST;
4312 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004313 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004314 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004315
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004316 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004317 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004318
Reid Spencere8019bb2007-03-01 07:25:48 +00004319 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004320 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004321 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004322 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004323
Chris Lattner3221ad02004-04-17 22:58:41 +00004324 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004325 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004326 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004327 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004328 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004329 }
4330
4331 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004332 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004333}
4334
Dan Gohmane7125f42009-09-03 15:00:26 +00004335/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004336/// at the specified scope in the program. The L value specifies a loop
4337/// nest to evaluate the expression at, where null is the top-level or a
4338/// specified loop is immediately inside of the loop.
4339///
4340/// This method can be used to compute the exit value for a variable defined
4341/// in a loop by querying what the value will hold in the parent loop.
4342///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004343/// In the case that a relevant loop exit value cannot be computed, the
4344/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004345const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004346 // Check to see if we've folded this expression at this loop before.
4347 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4348 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4349 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4350 if (!Pair.second)
4351 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004352
Dan Gohman42214892009-08-31 21:15:23 +00004353 // Otherwise compute it.
4354 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004355 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004356 return C;
4357}
4358
4359const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004360 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004361
Nick Lewycky3e630762008-02-20 06:48:22 +00004362 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004363 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004364 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004365 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004366 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004367 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4368 if (PHINode *PN = dyn_cast<PHINode>(I))
4369 if (PN->getParent() == LI->getHeader()) {
4370 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004371 // to see if the loop that contains it has a known backedge-taken
4372 // count. If so, we may be able to force computation of the exit
4373 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004374 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004375 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004376 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004377 // Okay, we know how many times the containing loop executes. If
4378 // this is a constant evolving PHI node, get the final value at
4379 // the specified iteration number.
4380 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004381 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004382 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004383 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004384 }
4385 }
4386
Reid Spencer09906f32006-12-04 21:33:23 +00004387 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004388 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004389 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004390 // result. This is particularly useful for computing loop exit values.
4391 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004392 SmallVector<Constant *, 4> Operands;
4393 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004394 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4395 Value *Op = I->getOperand(i);
4396 if (Constant *C = dyn_cast<Constant>(Op)) {
4397 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004398 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004399 }
Dan Gohman11046452010-06-29 23:43:06 +00004400
4401 // If any of the operands is non-constant and if they are
4402 // non-integer and non-pointer, don't even try to analyze them
4403 // with scev techniques.
4404 if (!isSCEVable(Op->getType()))
4405 return V;
4406
4407 const SCEV *OrigV = getSCEV(Op);
4408 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4409 MadeImprovement |= OrigV != OpV;
4410
4411 Constant *C = 0;
4412 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4413 C = SC->getValue();
4414 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4415 C = dyn_cast<Constant>(SU->getValue());
4416 if (!C) return V;
4417 if (C->getType() != Op->getType())
4418 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4419 Op->getType(),
4420 false),
4421 C, Op->getType());
4422 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004423 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004424
Dan Gohman11046452010-06-29 23:43:06 +00004425 // Check to see if getSCEVAtScope actually made an improvement.
4426 if (MadeImprovement) {
4427 Constant *C = 0;
4428 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4429 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4430 Operands[0], Operands[1], TD);
4431 else
4432 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4433 &Operands[0], Operands.size(), TD);
4434 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004435 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004436 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004437 }
4438 }
4439
4440 // This is some other type of SCEVUnknown, just return it.
4441 return V;
4442 }
4443
Dan Gohman622ed672009-05-04 22:02:23 +00004444 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004445 // Avoid performing the look-up in the common case where the specified
4446 // expression has no loop-variant portions.
4447 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004448 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004449 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004450 // Okay, at least one of these operands is loop variant but might be
4451 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004452 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4453 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004454 NewOps.push_back(OpAtScope);
4455
4456 for (++i; i != e; ++i) {
4457 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004458 NewOps.push_back(OpAtScope);
4459 }
4460 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004461 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004462 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004463 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004464 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004465 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004466 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004467 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004468 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004469 }
4470 }
4471 // If we got here, all operands are loop invariant.
4472 return Comm;
4473 }
4474
Dan Gohman622ed672009-05-04 22:02:23 +00004475 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004476 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4477 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004478 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4479 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004480 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004481 }
4482
4483 // If this is a loop recurrence for a loop that does not contain L, then we
4484 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004485 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004486 // First, attempt to evaluate each operand.
4487 // Avoid performing the look-up in the common case where the specified
4488 // expression has no loop-variant portions.
4489 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4490 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4491 if (OpAtScope == AddRec->getOperand(i))
4492 continue;
4493
4494 // Okay, at least one of these operands is loop variant but might be
4495 // foldable. Build a new instance of the folded commutative expression.
4496 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4497 AddRec->op_begin()+i);
4498 NewOps.push_back(OpAtScope);
4499 for (++i; i != e; ++i)
4500 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4501
4502 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4503 break;
4504 }
4505
4506 // If the scope is outside the addrec's loop, evaluate it by using the
4507 // loop exit value of the addrec.
4508 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004509 // To evaluate this recurrence, we need to know how many times the AddRec
4510 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004511 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004512 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004513
Eli Friedmanb42a6262008-08-04 23:49:06 +00004514 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004515 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004516 }
Dan Gohman11046452010-06-29 23:43:06 +00004517
Dan Gohmand594e6f2009-05-24 23:25:42 +00004518 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004519 }
4520
Dan Gohman622ed672009-05-04 22:02:23 +00004521 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004522 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004523 if (Op == Cast->getOperand())
4524 return Cast; // must be loop invariant
4525 return getZeroExtendExpr(Op, Cast->getType());
4526 }
4527
Dan Gohman622ed672009-05-04 22:02:23 +00004528 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004529 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004530 if (Op == Cast->getOperand())
4531 return Cast; // must be loop invariant
4532 return getSignExtendExpr(Op, Cast->getType());
4533 }
4534
Dan Gohman622ed672009-05-04 22:02:23 +00004535 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004536 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004537 if (Op == Cast->getOperand())
4538 return Cast; // must be loop invariant
4539 return getTruncateExpr(Op, Cast->getType());
4540 }
4541
Torok Edwinc23197a2009-07-14 16:55:14 +00004542 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004543 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004544}
4545
Dan Gohman66a7e852009-05-08 20:38:54 +00004546/// getSCEVAtScope - This is a convenience function which does
4547/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004548const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004549 return getSCEVAtScope(getSCEV(V), L);
4550}
4551
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004552/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4553/// following equation:
4554///
4555/// A * X = B (mod N)
4556///
4557/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4558/// A and B isn't important.
4559///
4560/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004561static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004562 ScalarEvolution &SE) {
4563 uint32_t BW = A.getBitWidth();
4564 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4565 assert(A != 0 && "A must be non-zero.");
4566
4567 // 1. D = gcd(A, N)
4568 //
4569 // The gcd of A and N may have only one prime factor: 2. The number of
4570 // trailing zeros in A is its multiplicity
4571 uint32_t Mult2 = A.countTrailingZeros();
4572 // D = 2^Mult2
4573
4574 // 2. Check if B is divisible by D.
4575 //
4576 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4577 // is not less than multiplicity of this prime factor for D.
4578 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004579 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004580
4581 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4582 // modulo (N / D).
4583 //
4584 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4585 // bit width during computations.
4586 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4587 APInt Mod(BW + 1, 0);
4588 Mod.set(BW - Mult2); // Mod = N / D
4589 APInt I = AD.multiplicativeInverse(Mod);
4590
4591 // 4. Compute the minimum unsigned root of the equation:
4592 // I * (B / D) mod (N / D)
4593 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4594
4595 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4596 // bits.
4597 return SE.getConstant(Result.trunc(BW));
4598}
Chris Lattner53e677a2004-04-02 20:23:17 +00004599
4600/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4601/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4602/// might be the same) or two SCEVCouldNotCompute objects.
4603///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004604static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004605SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004606 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004607 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4608 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4609 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004610
Chris Lattner53e677a2004-04-02 20:23:17 +00004611 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004612 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004613 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004614 return std::make_pair(CNC, CNC);
4615 }
4616
Reid Spencere8019bb2007-03-01 07:25:48 +00004617 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004618 const APInt &L = LC->getValue()->getValue();
4619 const APInt &M = MC->getValue()->getValue();
4620 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004621 APInt Two(BitWidth, 2);
4622 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004623
Dan Gohman64a845e2009-06-24 04:48:43 +00004624 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004625 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004626 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004627 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4628 // The B coefficient is M-N/2
4629 APInt B(M);
4630 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004631
Reid Spencere8019bb2007-03-01 07:25:48 +00004632 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004633 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004634
Reid Spencere8019bb2007-03-01 07:25:48 +00004635 // Compute the B^2-4ac term.
4636 APInt SqrtTerm(B);
4637 SqrtTerm *= B;
4638 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004639
Reid Spencere8019bb2007-03-01 07:25:48 +00004640 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4641 // integer value or else APInt::sqrt() will assert.
4642 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004643
Dan Gohman64a845e2009-06-24 04:48:43 +00004644 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004645 // The divisions must be performed as signed divisions.
4646 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004647 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004648 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004649 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004650 return std::make_pair(CNC, CNC);
4651 }
4652
Owen Andersone922c022009-07-22 00:24:57 +00004653 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004654
4655 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004656 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004657 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004658 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004659
Dan Gohman64a845e2009-06-24 04:48:43 +00004660 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004661 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004662 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004663}
4664
4665/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004666/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004667ScalarEvolution::BackedgeTakenInfo
4668ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004669 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004670 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004671 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004672 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004673 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004674 }
4675
Dan Gohman35738ac2009-05-04 22:30:44 +00004676 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004677 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004678 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004679
4680 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004681 // If this is an affine expression, the execution count of this branch is
4682 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004683 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004684 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004685 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004686 // equivalent to:
4687 //
4688 // Step*N = -Start (mod 2^BW)
4689 //
4690 // where BW is the common bit width of Start and Step.
4691
Chris Lattner53e677a2004-04-02 20:23:17 +00004692 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004693 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4694 L->getParentLoop());
4695 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4696 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004697
Dan Gohman622ed672009-05-04 22:02:23 +00004698 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004699 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004700
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004701 // First, handle unitary steps.
4702 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004703 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004704 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4705 return Start; // N = Start (as unsigned)
4706
4707 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004708 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004709 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004710 -StartC->getValue()->getValue(),
4711 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004712 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004713 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004714 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4715 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004716 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004717 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004718 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4719 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004720 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004721#if 0
David Greene25e0e872009-12-23 22:18:14 +00004722 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004723 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004724#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004725 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004726 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004727 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004728 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004729 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004730 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004731
Chris Lattner53e677a2004-04-02 20:23:17 +00004732 // We can only use this value if the chrec ends up with an exact zero
4733 // value at this index. When solving for "X*X != 5", for example, we
4734 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004735 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004736 if (Val->isZero())
4737 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004738 }
4739 }
4740 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004741
Dan Gohman1c343752009-06-27 21:21:31 +00004742 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004743}
4744
4745/// HowFarToNonZero - Return the number of times a backedge checking the
4746/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004747/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004748ScalarEvolution::BackedgeTakenInfo
4749ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004750 // Loops that look like: while (X == 0) are very strange indeed. We don't
4751 // handle them yet except for the trivial case. This could be expanded in the
4752 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004753
Chris Lattner53e677a2004-04-02 20:23:17 +00004754 // If the value is a constant, check to see if it is known to be non-zero
4755 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004756 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004757 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004758 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004759 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004760 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004761
Chris Lattner53e677a2004-04-02 20:23:17 +00004762 // We could implement others, but I really doubt anyone writes loops like
4763 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004764 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004765}
4766
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004767/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4768/// (which may not be an immediate predecessor) which has exactly one
4769/// successor from which BB is reachable, or null if no such block is
4770/// found.
4771///
Dan Gohman005752b2010-04-15 16:19:08 +00004772std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004773ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004774 // If the block has a unique predecessor, then there is no path from the
4775 // predecessor to the block that does not go through the direct edge
4776 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004777 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004778 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004779
4780 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004781 // If the header has a unique predecessor outside the loop, it must be
4782 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004783 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004784 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004785
Dan Gohman005752b2010-04-15 16:19:08 +00004786 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004787}
4788
Dan Gohman763bad12009-06-20 00:35:32 +00004789/// HasSameValue - SCEV structural equivalence is usually sufficient for
4790/// testing whether two expressions are equal, however for the purposes of
4791/// looking for a condition guarding a loop, it can be useful to be a little
4792/// more general, since a front-end may have replicated the controlling
4793/// expression.
4794///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004795static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004796 // Quick check to see if they are the same SCEV.
4797 if (A == B) return true;
4798
4799 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4800 // two different instructions with the same value. Check for this case.
4801 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4802 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4803 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4804 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004805 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004806 return true;
4807
4808 // Otherwise assume they may have a different value.
4809 return false;
4810}
4811
Dan Gohmane9796502010-04-24 01:28:42 +00004812/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4813/// predicate Pred. Return true iff any changes were made.
4814///
4815bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4816 const SCEV *&LHS, const SCEV *&RHS) {
4817 bool Changed = false;
4818
4819 // Canonicalize a constant to the right side.
4820 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4821 // Check for both operands constant.
4822 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4823 if (ConstantExpr::getICmp(Pred,
4824 LHSC->getValue(),
4825 RHSC->getValue())->isNullValue())
4826 goto trivially_false;
4827 else
4828 goto trivially_true;
4829 }
4830 // Otherwise swap the operands to put the constant on the right.
4831 std::swap(LHS, RHS);
4832 Pred = ICmpInst::getSwappedPredicate(Pred);
4833 Changed = true;
4834 }
4835
4836 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004837 // addrec's loop, put the addrec on the left. Also make a dominance check,
4838 // as both operands could be addrecs loop-invariant in each other's loop.
4839 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4840 const Loop *L = AR->getLoop();
4841 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004842 std::swap(LHS, RHS);
4843 Pred = ICmpInst::getSwappedPredicate(Pred);
4844 Changed = true;
4845 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004846 }
Dan Gohmane9796502010-04-24 01:28:42 +00004847
4848 // If there's a constant operand, canonicalize comparisons with boundary
4849 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4850 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4851 const APInt &RA = RC->getValue()->getValue();
4852 switch (Pred) {
4853 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4854 case ICmpInst::ICMP_EQ:
4855 case ICmpInst::ICMP_NE:
4856 break;
4857 case ICmpInst::ICMP_UGE:
4858 if ((RA - 1).isMinValue()) {
4859 Pred = ICmpInst::ICMP_NE;
4860 RHS = getConstant(RA - 1);
4861 Changed = true;
4862 break;
4863 }
4864 if (RA.isMaxValue()) {
4865 Pred = ICmpInst::ICMP_EQ;
4866 Changed = true;
4867 break;
4868 }
4869 if (RA.isMinValue()) goto trivially_true;
4870
4871 Pred = ICmpInst::ICMP_UGT;
4872 RHS = getConstant(RA - 1);
4873 Changed = true;
4874 break;
4875 case ICmpInst::ICMP_ULE:
4876 if ((RA + 1).isMaxValue()) {
4877 Pred = ICmpInst::ICMP_NE;
4878 RHS = getConstant(RA + 1);
4879 Changed = true;
4880 break;
4881 }
4882 if (RA.isMinValue()) {
4883 Pred = ICmpInst::ICMP_EQ;
4884 Changed = true;
4885 break;
4886 }
4887 if (RA.isMaxValue()) goto trivially_true;
4888
4889 Pred = ICmpInst::ICMP_ULT;
4890 RHS = getConstant(RA + 1);
4891 Changed = true;
4892 break;
4893 case ICmpInst::ICMP_SGE:
4894 if ((RA - 1).isMinSignedValue()) {
4895 Pred = ICmpInst::ICMP_NE;
4896 RHS = getConstant(RA - 1);
4897 Changed = true;
4898 break;
4899 }
4900 if (RA.isMaxSignedValue()) {
4901 Pred = ICmpInst::ICMP_EQ;
4902 Changed = true;
4903 break;
4904 }
4905 if (RA.isMinSignedValue()) goto trivially_true;
4906
4907 Pred = ICmpInst::ICMP_SGT;
4908 RHS = getConstant(RA - 1);
4909 Changed = true;
4910 break;
4911 case ICmpInst::ICMP_SLE:
4912 if ((RA + 1).isMaxSignedValue()) {
4913 Pred = ICmpInst::ICMP_NE;
4914 RHS = getConstant(RA + 1);
4915 Changed = true;
4916 break;
4917 }
4918 if (RA.isMinSignedValue()) {
4919 Pred = ICmpInst::ICMP_EQ;
4920 Changed = true;
4921 break;
4922 }
4923 if (RA.isMaxSignedValue()) goto trivially_true;
4924
4925 Pred = ICmpInst::ICMP_SLT;
4926 RHS = getConstant(RA + 1);
4927 Changed = true;
4928 break;
4929 case ICmpInst::ICMP_UGT:
4930 if (RA.isMinValue()) {
4931 Pred = ICmpInst::ICMP_NE;
4932 Changed = true;
4933 break;
4934 }
4935 if ((RA + 1).isMaxValue()) {
4936 Pred = ICmpInst::ICMP_EQ;
4937 RHS = getConstant(RA + 1);
4938 Changed = true;
4939 break;
4940 }
4941 if (RA.isMaxValue()) goto trivially_false;
4942 break;
4943 case ICmpInst::ICMP_ULT:
4944 if (RA.isMaxValue()) {
4945 Pred = ICmpInst::ICMP_NE;
4946 Changed = true;
4947 break;
4948 }
4949 if ((RA - 1).isMinValue()) {
4950 Pred = ICmpInst::ICMP_EQ;
4951 RHS = getConstant(RA - 1);
4952 Changed = true;
4953 break;
4954 }
4955 if (RA.isMinValue()) goto trivially_false;
4956 break;
4957 case ICmpInst::ICMP_SGT:
4958 if (RA.isMinSignedValue()) {
4959 Pred = ICmpInst::ICMP_NE;
4960 Changed = true;
4961 break;
4962 }
4963 if ((RA + 1).isMaxSignedValue()) {
4964 Pred = ICmpInst::ICMP_EQ;
4965 RHS = getConstant(RA + 1);
4966 Changed = true;
4967 break;
4968 }
4969 if (RA.isMaxSignedValue()) goto trivially_false;
4970 break;
4971 case ICmpInst::ICMP_SLT:
4972 if (RA.isMaxSignedValue()) {
4973 Pred = ICmpInst::ICMP_NE;
4974 Changed = true;
4975 break;
4976 }
4977 if ((RA - 1).isMinSignedValue()) {
4978 Pred = ICmpInst::ICMP_EQ;
4979 RHS = getConstant(RA - 1);
4980 Changed = true;
4981 break;
4982 }
4983 if (RA.isMinSignedValue()) goto trivially_false;
4984 break;
4985 }
4986 }
4987
4988 // Check for obvious equality.
4989 if (HasSameValue(LHS, RHS)) {
4990 if (ICmpInst::isTrueWhenEqual(Pred))
4991 goto trivially_true;
4992 if (ICmpInst::isFalseWhenEqual(Pred))
4993 goto trivially_false;
4994 }
4995
Dan Gohman03557dc2010-05-03 16:35:17 +00004996 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4997 // adding or subtracting 1 from one of the operands.
4998 switch (Pred) {
4999 case ICmpInst::ICMP_SLE:
5000 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5001 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5002 /*HasNUW=*/false, /*HasNSW=*/true);
5003 Pred = ICmpInst::ICMP_SLT;
5004 Changed = true;
5005 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005006 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005007 /*HasNUW=*/false, /*HasNSW=*/true);
5008 Pred = ICmpInst::ICMP_SLT;
5009 Changed = true;
5010 }
5011 break;
5012 case ICmpInst::ICMP_SGE:
5013 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005014 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005015 /*HasNUW=*/false, /*HasNSW=*/true);
5016 Pred = ICmpInst::ICMP_SGT;
5017 Changed = true;
5018 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5019 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5020 /*HasNUW=*/false, /*HasNSW=*/true);
5021 Pred = ICmpInst::ICMP_SGT;
5022 Changed = true;
5023 }
5024 break;
5025 case ICmpInst::ICMP_ULE:
5026 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005027 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005028 /*HasNUW=*/true, /*HasNSW=*/false);
5029 Pred = ICmpInst::ICMP_ULT;
5030 Changed = true;
5031 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005032 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005033 /*HasNUW=*/true, /*HasNSW=*/false);
5034 Pred = ICmpInst::ICMP_ULT;
5035 Changed = true;
5036 }
5037 break;
5038 case ICmpInst::ICMP_UGE:
5039 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005040 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005041 /*HasNUW=*/true, /*HasNSW=*/false);
5042 Pred = ICmpInst::ICMP_UGT;
5043 Changed = true;
5044 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005045 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005046 /*HasNUW=*/true, /*HasNSW=*/false);
5047 Pred = ICmpInst::ICMP_UGT;
5048 Changed = true;
5049 }
5050 break;
5051 default:
5052 break;
5053 }
5054
Dan Gohmane9796502010-04-24 01:28:42 +00005055 // TODO: More simplifications are possible here.
5056
5057 return Changed;
5058
5059trivially_true:
5060 // Return 0 == 0.
5061 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5062 Pred = ICmpInst::ICMP_EQ;
5063 return true;
5064
5065trivially_false:
5066 // Return 0 != 0.
5067 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5068 Pred = ICmpInst::ICMP_NE;
5069 return true;
5070}
5071
Dan Gohman85b05a22009-07-13 21:35:55 +00005072bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5073 return getSignedRange(S).getSignedMax().isNegative();
5074}
5075
5076bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5077 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5078}
5079
5080bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5081 return !getSignedRange(S).getSignedMin().isNegative();
5082}
5083
5084bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5085 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5086}
5087
5088bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5089 return isKnownNegative(S) || isKnownPositive(S);
5090}
5091
5092bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5093 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005094 // Canonicalize the inputs first.
5095 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5096
Dan Gohman53c66ea2010-04-11 22:16:48 +00005097 // If LHS or RHS is an addrec, check to see if the condition is true in
5098 // every iteration of the loop.
5099 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5100 if (isLoopEntryGuardedByCond(
5101 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5102 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005103 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005104 return true;
5105 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5106 if (isLoopEntryGuardedByCond(
5107 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5108 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005109 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005110 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005111
Dan Gohman53c66ea2010-04-11 22:16:48 +00005112 // Otherwise see what can be done with known constant ranges.
5113 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5114}
5115
5116bool
5117ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5118 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005119 if (HasSameValue(LHS, RHS))
5120 return ICmpInst::isTrueWhenEqual(Pred);
5121
Dan Gohman53c66ea2010-04-11 22:16:48 +00005122 // This code is split out from isKnownPredicate because it is called from
5123 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005124 switch (Pred) {
5125 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005126 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005127 break;
5128 case ICmpInst::ICMP_SGT:
5129 Pred = ICmpInst::ICMP_SLT;
5130 std::swap(LHS, RHS);
5131 case ICmpInst::ICMP_SLT: {
5132 ConstantRange LHSRange = getSignedRange(LHS);
5133 ConstantRange RHSRange = getSignedRange(RHS);
5134 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5135 return true;
5136 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5137 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005138 break;
5139 }
5140 case ICmpInst::ICMP_SGE:
5141 Pred = ICmpInst::ICMP_SLE;
5142 std::swap(LHS, RHS);
5143 case ICmpInst::ICMP_SLE: {
5144 ConstantRange LHSRange = getSignedRange(LHS);
5145 ConstantRange RHSRange = getSignedRange(RHS);
5146 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5147 return true;
5148 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5149 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005150 break;
5151 }
5152 case ICmpInst::ICMP_UGT:
5153 Pred = ICmpInst::ICMP_ULT;
5154 std::swap(LHS, RHS);
5155 case ICmpInst::ICMP_ULT: {
5156 ConstantRange LHSRange = getUnsignedRange(LHS);
5157 ConstantRange RHSRange = getUnsignedRange(RHS);
5158 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5159 return true;
5160 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5161 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005162 break;
5163 }
5164 case ICmpInst::ICMP_UGE:
5165 Pred = ICmpInst::ICMP_ULE;
5166 std::swap(LHS, RHS);
5167 case ICmpInst::ICMP_ULE: {
5168 ConstantRange LHSRange = getUnsignedRange(LHS);
5169 ConstantRange RHSRange = getUnsignedRange(RHS);
5170 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5171 return true;
5172 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5173 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005174 break;
5175 }
5176 case ICmpInst::ICMP_NE: {
5177 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5178 return true;
5179 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5180 return true;
5181
5182 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5183 if (isKnownNonZero(Diff))
5184 return true;
5185 break;
5186 }
5187 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005188 // The check at the top of the function catches the case where
5189 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005190 break;
5191 }
5192 return false;
5193}
5194
5195/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5196/// protected by a conditional between LHS and RHS. This is used to
5197/// to eliminate casts.
5198bool
5199ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5200 ICmpInst::Predicate Pred,
5201 const SCEV *LHS, const SCEV *RHS) {
5202 // Interpret a null as meaning no loop, where there is obviously no guard
5203 // (interprocedural conditions notwithstanding).
5204 if (!L) return true;
5205
5206 BasicBlock *Latch = L->getLoopLatch();
5207 if (!Latch)
5208 return false;
5209
5210 BranchInst *LoopContinuePredicate =
5211 dyn_cast<BranchInst>(Latch->getTerminator());
5212 if (!LoopContinuePredicate ||
5213 LoopContinuePredicate->isUnconditional())
5214 return false;
5215
Dan Gohman0f4b2852009-07-21 23:03:19 +00005216 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5217 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005218}
5219
Dan Gohman3948d0b2010-04-11 19:27:13 +00005220/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005221/// by a conditional between LHS and RHS. This is used to help avoid max
5222/// expressions in loop trip counts, and to eliminate casts.
5223bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005224ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5225 ICmpInst::Predicate Pred,
5226 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005227 // Interpret a null as meaning no loop, where there is obviously no guard
5228 // (interprocedural conditions notwithstanding).
5229 if (!L) return false;
5230
Dan Gohman859b4822009-05-18 15:36:09 +00005231 // Starting at the loop predecessor, climb up the predecessor chain, as long
5232 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005233 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005234 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005235 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005236 Pair.first;
5237 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005238
5239 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005240 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005241 if (!LoopEntryPredicate ||
5242 LoopEntryPredicate->isUnconditional())
5243 continue;
5244
Dan Gohman0f4b2852009-07-21 23:03:19 +00005245 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
Dan Gohman005752b2010-04-15 16:19:08 +00005246 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005247 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005248 }
5249
Dan Gohman38372182008-08-12 20:17:31 +00005250 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005251}
5252
Dan Gohman0f4b2852009-07-21 23:03:19 +00005253/// isImpliedCond - Test whether the condition described by Pred, LHS,
5254/// and RHS is true whenever the given Cond value evaluates to true.
5255bool ScalarEvolution::isImpliedCond(Value *CondValue,
5256 ICmpInst::Predicate Pred,
5257 const SCEV *LHS, const SCEV *RHS,
5258 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005259 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005260 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5261 if (BO->getOpcode() == Instruction::And) {
5262 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005263 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5264 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005265 } else if (BO->getOpcode() == Instruction::Or) {
5266 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005267 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5268 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005269 }
5270 }
5271
5272 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5273 if (!ICI) return false;
5274
Dan Gohman85b05a22009-07-13 21:35:55 +00005275 // Bail if the ICmp's operands' types are wider than the needed type
5276 // before attempting to call getSCEV on them. This avoids infinite
5277 // recursion, since the analysis of widening casts can require loop
5278 // exit condition information for overflow checking, which would
5279 // lead back here.
5280 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005281 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005282 return false;
5283
Dan Gohman0f4b2852009-07-21 23:03:19 +00005284 // Now that we found a conditional branch that dominates the loop, check to
5285 // see if it is the comparison we are looking for.
5286 ICmpInst::Predicate FoundPred;
5287 if (Inverse)
5288 FoundPred = ICI->getInversePredicate();
5289 else
5290 FoundPred = ICI->getPredicate();
5291
5292 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5293 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005294
5295 // Balance the types. The case where FoundLHS' type is wider than
5296 // LHS' type is checked for above.
5297 if (getTypeSizeInBits(LHS->getType()) >
5298 getTypeSizeInBits(FoundLHS->getType())) {
5299 if (CmpInst::isSigned(Pred)) {
5300 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5301 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5302 } else {
5303 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5304 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5305 }
5306 }
5307
Dan Gohman0f4b2852009-07-21 23:03:19 +00005308 // Canonicalize the query to match the way instcombine will have
5309 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005310 if (SimplifyICmpOperands(Pred, LHS, RHS))
5311 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005312 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005313 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5314 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005315 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005316
5317 // Check to see if we can make the LHS or RHS match.
5318 if (LHS == FoundRHS || RHS == FoundLHS) {
5319 if (isa<SCEVConstant>(RHS)) {
5320 std::swap(FoundLHS, FoundRHS);
5321 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5322 } else {
5323 std::swap(LHS, RHS);
5324 Pred = ICmpInst::getSwappedPredicate(Pred);
5325 }
5326 }
5327
5328 // Check whether the found predicate is the same as the desired predicate.
5329 if (FoundPred == Pred)
5330 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5331
5332 // Check whether swapping the found predicate makes it the same as the
5333 // desired predicate.
5334 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5335 if (isa<SCEVConstant>(RHS))
5336 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5337 else
5338 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5339 RHS, LHS, FoundLHS, FoundRHS);
5340 }
5341
5342 // Check whether the actual condition is beyond sufficient.
5343 if (FoundPred == ICmpInst::ICMP_EQ)
5344 if (ICmpInst::isTrueWhenEqual(Pred))
5345 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5346 return true;
5347 if (Pred == ICmpInst::ICMP_NE)
5348 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5349 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5350 return true;
5351
5352 // Otherwise assume the worst.
5353 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005354}
5355
Dan Gohman0f4b2852009-07-21 23:03:19 +00005356/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005357/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005358/// and FoundRHS is true.
5359bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5360 const SCEV *LHS, const SCEV *RHS,
5361 const SCEV *FoundLHS,
5362 const SCEV *FoundRHS) {
5363 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5364 FoundLHS, FoundRHS) ||
5365 // ~x < ~y --> x > y
5366 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5367 getNotSCEV(FoundRHS),
5368 getNotSCEV(FoundLHS));
5369}
5370
5371/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005372/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005373/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005374bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005375ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5376 const SCEV *LHS, const SCEV *RHS,
5377 const SCEV *FoundLHS,
5378 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005379 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005380 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5381 case ICmpInst::ICMP_EQ:
5382 case ICmpInst::ICMP_NE:
5383 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5384 return true;
5385 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005386 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005387 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005388 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5389 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005390 return true;
5391 break;
5392 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005393 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005394 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5395 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005396 return true;
5397 break;
5398 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005399 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005400 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5401 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005402 return true;
5403 break;
5404 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005405 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005406 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5407 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005408 return true;
5409 break;
5410 }
5411
5412 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005413}
5414
Dan Gohman51f53b72009-06-21 23:46:38 +00005415/// getBECount - Subtract the end and start values and divide by the step,
5416/// rounding up, to get the number of times the backedge is executed. Return
5417/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005418const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005419 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005420 const SCEV *Step,
5421 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005422 assert(!isKnownNegative(Step) &&
5423 "This code doesn't handle negative strides yet!");
5424
Dan Gohman51f53b72009-06-21 23:46:38 +00005425 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005426 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005427 const SCEV *Diff = getMinusSCEV(End, Start);
5428 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005429
5430 // Add an adjustment to the difference between End and Start so that
5431 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005432 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005433
Dan Gohman1f96e672009-09-17 18:05:20 +00005434 if (!NoWrap) {
5435 // Check Add for unsigned overflow.
5436 // TODO: More sophisticated things could be done here.
5437 const Type *WideTy = IntegerType::get(getContext(),
5438 getTypeSizeInBits(Ty) + 1);
5439 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5440 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5441 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5442 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5443 return getCouldNotCompute();
5444 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005445
5446 return getUDivExpr(Add, Step);
5447}
5448
Chris Lattnerdb25de42005-08-15 23:33:51 +00005449/// HowManyLessThans - Return the number of times a backedge containing the
5450/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005451/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005452ScalarEvolution::BackedgeTakenInfo
5453ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5454 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005455 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005456 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005457
Dan Gohman35738ac2009-05-04 22:30:44 +00005458 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005459 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005460 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005461
Dan Gohman1f96e672009-09-17 18:05:20 +00005462 // Check to see if we have a flag which makes analysis easy.
5463 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5464 AddRec->hasNoUnsignedWrap();
5465
Chris Lattnerdb25de42005-08-15 23:33:51 +00005466 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005467 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005468 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005469
Dan Gohman52fddd32010-01-26 04:40:18 +00005470 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005471 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005472 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005473 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005474 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005475 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005476 // value and past the maximum value for its type in a single step.
5477 // Note that it's not sufficient to check NoWrap here, because even
5478 // though the value after a wrap is undefined, it's not undefined
5479 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005480 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005481 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005482 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005483 if (isSigned) {
5484 APInt Max = APInt::getSignedMaxValue(BitWidth);
5485 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5486 .slt(getSignedRange(RHS).getSignedMax()))
5487 return getCouldNotCompute();
5488 } else {
5489 APInt Max = APInt::getMaxValue(BitWidth);
5490 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5491 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5492 return getCouldNotCompute();
5493 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005494 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005495 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005496 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005497
Dan Gohmana1af7572009-04-30 20:47:05 +00005498 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5499 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5500 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005501 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005502
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005503 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005504 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005505
Dan Gohmana1af7572009-04-30 20:47:05 +00005506 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005507 const SCEV *MinStart = getConstant(isSigned ?
5508 getSignedRange(Start).getSignedMin() :
5509 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005510
Dan Gohmana1af7572009-04-30 20:47:05 +00005511 // If we know that the condition is true in order to enter the loop,
5512 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005513 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5514 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005515 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005516 if (!isLoopEntryGuardedByCond(L,
5517 isSigned ? ICmpInst::ICMP_SLT :
5518 ICmpInst::ICMP_ULT,
5519 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005520 End = isSigned ? getSMaxExpr(RHS, Start)
5521 : getUMaxExpr(RHS, Start);
5522
5523 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005524 const SCEV *MaxEnd = getConstant(isSigned ?
5525 getSignedRange(End).getSignedMax() :
5526 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005527
Dan Gohman52fddd32010-01-26 04:40:18 +00005528 // If MaxEnd is within a step of the maximum integer value in its type,
5529 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005530 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005531 // compute the correct value.
5532 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005533 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005534 MaxEnd = isSigned ?
5535 getSMinExpr(MaxEnd,
5536 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5537 StepMinusOne)) :
5538 getUMinExpr(MaxEnd,
5539 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5540 StepMinusOne));
5541
Dan Gohmana1af7572009-04-30 20:47:05 +00005542 // Finally, we subtract these two values and divide, rounding up, to get
5543 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005544 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005545
5546 // The maximum backedge count is similar, except using the minimum start
5547 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005548 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005549
5550 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005551 }
5552
Dan Gohman1c343752009-06-27 21:21:31 +00005553 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005554}
5555
Chris Lattner53e677a2004-04-02 20:23:17 +00005556/// getNumIterationsInRange - Return the number of iterations of this loop that
5557/// produce values in the specified constant range. Another way of looking at
5558/// this is that it returns the first iteration number where the value is not in
5559/// the condition, thus computing the exit count. If the iteration count can't
5560/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005561const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005562 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005563 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005564 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005565
5566 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005567 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005568 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005569 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005570 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005571 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005572 if (const SCEVAddRecExpr *ShiftedAddRec =
5573 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005574 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005575 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005576 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005577 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005578 }
5579
5580 // The only time we can solve this is when we have all constant indices.
5581 // Otherwise, we cannot determine the overflow conditions.
5582 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5583 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005584 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005585
5586
5587 // Okay at this point we know that all elements of the chrec are constants and
5588 // that the start element is zero.
5589
5590 // First check to see if the range contains zero. If not, the first
5591 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005592 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005593 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005594 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005595
Chris Lattner53e677a2004-04-02 20:23:17 +00005596 if (isAffine()) {
5597 // If this is an affine expression then we have this situation:
5598 // Solve {0,+,A} in Range === Ax in Range
5599
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005600 // We know that zero is in the range. If A is positive then we know that
5601 // the upper value of the range must be the first possible exit value.
5602 // If A is negative then the lower of the range is the last possible loop
5603 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005604 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005605 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5606 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005607
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005608 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005609 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005610 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005611
5612 // Evaluate at the exit value. If we really did fall out of the valid
5613 // range, then we computed our trip count, otherwise wrap around or other
5614 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005615 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005616 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005617 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005618
5619 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005620 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005621 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005622 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005623 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005624 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005625 } else if (isQuadratic()) {
5626 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5627 // quadratic equation to solve it. To do this, we must frame our problem in
5628 // terms of figuring out when zero is crossed, instead of when
5629 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005630 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005631 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005632 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005633
5634 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005635 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005636 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005637 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5638 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005639 if (R1) {
5640 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005641 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005642 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005643 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005644 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005645 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005646
Chris Lattner53e677a2004-04-02 20:23:17 +00005647 // Make sure the root is not off by one. The returned iteration should
5648 // not be in the range, but the previous one should be. When solving
5649 // for "X*X < 5", for example, we should not return a root of 2.
5650 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005651 R1->getValue(),
5652 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005653 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005654 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005655 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005656 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005657
Dan Gohman246b2562007-10-22 18:31:58 +00005658 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005659 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005660 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005661 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005662 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005663
Chris Lattner53e677a2004-04-02 20:23:17 +00005664 // If R1 was not in the range, then it is a good return value. Make
5665 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005666 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005667 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005668 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005669 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005670 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005671 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005672 }
5673 }
5674 }
5675
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005676 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005677}
5678
5679
5680
5681//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005682// SCEVCallbackVH Class Implementation
5683//===----------------------------------------------------------------------===//
5684
Dan Gohman1959b752009-05-19 19:22:47 +00005685void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005686 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005687 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5688 SE->ConstantEvolutionLoopExitValue.erase(PN);
5689 SE->Scalars.erase(getValPtr());
5690 // this now dangles!
5691}
5692
Dan Gohman81f91212010-07-28 01:09:07 +00005693void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005694 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005695
Dan Gohman81f91212010-07-28 01:09:07 +00005696 Value *Old = getValPtr();
5697
Eric Christophere6cbfa62010-07-29 01:25:38 +00005698 // If there's a SCEVUnknown tying this value into the SCEV
5699 // space, replace the SCEVUnknown's value with the new value
5700 // for the benefit of any SCEVs still referencing it, and
5701 // and remove it from the folding set map so that new scevs
5702 // don't reference it.
5703 FoldingSetNodeID ID;
5704 ID.AddInteger(scUnknown);
5705 ID.AddPointer(Old);
5706 void *IP;
5707 if (SCEVUnknown *S = cast_or_null<SCEVUnknown>(
5708 SE->UniqueSCEVs.FindNodeOrInsertPos(ID, IP))) {
5709 S->V = V;
5710 SE->UniqueSCEVs.RemoveNode(S);
5711 SE->ValuesAtScopes.erase(S);
5712 }
Dan Gohman81f91212010-07-28 01:09:07 +00005713
Dan Gohman35738ac2009-05-04 22:30:44 +00005714 // Forget all the expressions associated with users of the old value,
5715 // so that future queries will recompute the expressions using the new
5716 // value.
5717 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005718 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005719 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5720 UI != UE; ++UI)
5721 Worklist.push_back(*UI);
5722 while (!Worklist.empty()) {
5723 User *U = Worklist.pop_back_val();
5724 // Deleting the Old value will cause this to dangle. Postpone
5725 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005726 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005727 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005728 if (!Visited.insert(U))
5729 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005730 if (PHINode *PN = dyn_cast<PHINode>(U))
5731 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005732 SE->Scalars.erase(U);
5733 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5734 UI != UE; ++UI)
5735 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005736 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005737 // Delete the Old value.
5738 if (PHINode *PN = dyn_cast<PHINode>(Old))
5739 SE->ConstantEvolutionLoopExitValue.erase(PN);
5740 SE->Scalars.erase(Old);
5741 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005742}
5743
Dan Gohman1959b752009-05-19 19:22:47 +00005744ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005745 : CallbackVH(V), SE(se) {}
5746
5747//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005748// ScalarEvolution Class Implementation
5749//===----------------------------------------------------------------------===//
5750
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005751ScalarEvolution::ScalarEvolution()
Dan Gohman3bf63762010-06-18 19:54:20 +00005752 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005753}
5754
Chris Lattner53e677a2004-04-02 20:23:17 +00005755bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005756 this->F = &F;
5757 LI = &getAnalysis<LoopInfo>();
5758 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005759 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005760 return false;
5761}
5762
5763void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005764 Scalars.clear();
5765 BackedgeTakenCounts.clear();
5766 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005767 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005768 UniqueSCEVs.clear();
5769 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005770}
5771
5772void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5773 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005774 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005775 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005776}
5777
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005778bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005779 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005780}
5781
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005782static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005783 const Loop *L) {
5784 // Print all inner loops first
5785 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5786 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005787
Dan Gohman30733292010-01-09 18:17:45 +00005788 OS << "Loop ";
5789 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5790 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005791
Dan Gohman5d984912009-12-18 01:14:11 +00005792 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005793 L->getExitBlocks(ExitBlocks);
5794 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005795 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005796
Dan Gohman46bdfb02009-02-24 18:55:53 +00005797 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5798 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005799 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005800 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005801 }
5802
Dan Gohman30733292010-01-09 18:17:45 +00005803 OS << "\n"
5804 "Loop ";
5805 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5806 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005807
5808 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5809 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5810 } else {
5811 OS << "Unpredictable max backedge-taken count. ";
5812 }
5813
5814 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005815}
5816
Dan Gohman5d984912009-12-18 01:14:11 +00005817void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005818 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005819 // out SCEV values of all instructions that are interesting. Doing
5820 // this potentially causes it to create new SCEV objects though,
5821 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005822 // observable from outside the class though, so casting away the
5823 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005824 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005825
Dan Gohman30733292010-01-09 18:17:45 +00005826 OS << "Classifying expressions for: ";
5827 WriteAsOperand(OS, F, /*PrintType=*/false);
5828 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005829 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005830 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005831 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005832 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005833 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005834 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005835
Dan Gohman0c689c52009-06-19 17:49:54 +00005836 const Loop *L = LI->getLoopFor((*I).getParent());
5837
Dan Gohman0bba49c2009-07-07 17:06:11 +00005838 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005839 if (AtUse != SV) {
5840 OS << " --> ";
5841 AtUse->print(OS);
5842 }
5843
5844 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005845 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005846 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005847 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005848 OS << "<<Unknown>>";
5849 } else {
5850 OS << *ExitValue;
5851 }
5852 }
5853
Chris Lattner53e677a2004-04-02 20:23:17 +00005854 OS << "\n";
5855 }
5856
Dan Gohman30733292010-01-09 18:17:45 +00005857 OS << "Determining loop execution counts for: ";
5858 WriteAsOperand(OS, F, /*PrintType=*/false);
5859 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005860 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5861 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005862}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005863