blob: 1ca60d8daf0e6efb0e73f9ebfc5c36430de4f23b [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
Sean Silvaf722b002012-12-07 10:36:55 +0000308.. _callingconv:
309
310Calling Conventions
311-------------------
312
313LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
314:ref:`invokes <i_invoke>` can all have an optional calling convention
315specified for the call. The calling convention of any pair of dynamic
316caller/callee must match, or the behavior of the program is undefined.
317The following calling conventions are supported by LLVM, and more may be
318added in the future:
319
320"``ccc``" - The C calling convention
321 This calling convention (the default if no other calling convention
322 is specified) matches the target C calling conventions. This calling
323 convention supports varargs function calls and tolerates some
324 mismatch in the declared prototype and implemented declaration of
325 the function (as does normal C).
326"``fastcc``" - The fast calling convention
327 This calling convention attempts to make calls as fast as possible
328 (e.g. by passing things in registers). This calling convention
329 allows the target to use whatever tricks it wants to produce fast
330 code for the target, without having to conform to an externally
331 specified ABI (Application Binary Interface). `Tail calls can only
332 be optimized when this, the GHC or the HiPE convention is
333 used. <CodeGenerator.html#id80>`_ This calling convention does not
334 support varargs and requires the prototype of all callees to exactly
335 match the prototype of the function definition.
336"``coldcc``" - The cold calling convention
337 This calling convention attempts to make code in the caller as
338 efficient as possible under the assumption that the call is not
339 commonly executed. As such, these calls often preserve all registers
340 so that the call does not break any live ranges in the caller side.
341 This calling convention does not support varargs and requires the
342 prototype of all callees to exactly match the prototype of the
343 function definition.
344"``cc 10``" - GHC convention
345 This calling convention has been implemented specifically for use by
346 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
347 It passes everything in registers, going to extremes to achieve this
348 by disabling callee save registers. This calling convention should
349 not be used lightly but only for specific situations such as an
350 alternative to the *register pinning* performance technique often
351 used when implementing functional programming languages. At the
352 moment only X86 supports this convention and it has the following
353 limitations:
354
355 - On *X86-32* only supports up to 4 bit type parameters. No
356 floating point types are supported.
357 - On *X86-64* only supports up to 10 bit type parameters and 6
358 floating point parameters.
359
360 This calling convention supports `tail call
361 optimization <CodeGenerator.html#id80>`_ but requires both the
362 caller and callee are using it.
363"``cc 11``" - The HiPE calling convention
364 This calling convention has been implemented specifically for use by
365 the `High-Performance Erlang
366 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
367 native code compiler of the `Ericsson's Open Source Erlang/OTP
368 system <http://www.erlang.org/download.shtml>`_. It uses more
369 registers for argument passing than the ordinary C calling
370 convention and defines no callee-saved registers. The calling
371 convention properly supports `tail call
372 optimization <CodeGenerator.html#id80>`_ but requires that both the
373 caller and the callee use it. It uses a *register pinning*
374 mechanism, similar to GHC's convention, for keeping frequently
375 accessed runtime components pinned to specific hardware registers.
376 At the moment only X86 supports this convention (both 32 and 64
377 bit).
378"``cc <n>``" - Numbered convention
379 Any calling convention may be specified by number, allowing
380 target-specific calling conventions to be used. Target specific
381 calling conventions start at 64.
382
383More calling conventions can be added/defined on an as-needed basis, to
384support Pascal conventions or any other well-known target-independent
385convention.
386
Eli Bendersky1de14102013-06-07 19:40:08 +0000387.. _visibilitystyles:
388
Sean Silvaf722b002012-12-07 10:36:55 +0000389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
Eli Bendersky1de14102013-06-07 19:40:08 +0000414.. _namedtypes:
415
Sean Silvaf722b002012-12-07 10:36:55 +0000416Named Types
417-----------
418
419LLVM IR allows you to specify name aliases for certain types. This can
420make it easier to read the IR and make the IR more condensed
421(particularly when recursive types are involved). An example of a name
422specification is:
423
424.. code-block:: llvm
425
426 %mytype = type { %mytype*, i32 }
427
428You may give a name to any :ref:`type <typesystem>` except
429":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
430expected with the syntax "%mytype".
431
432Note that type names are aliases for the structural type that they
433indicate, and that you can therefore specify multiple names for the same
434type. This often leads to confusing behavior when dumping out a .ll
435file. Since LLVM IR uses structural typing, the name is not part of the
436type. When printing out LLVM IR, the printer will pick *one name* to
437render all types of a particular shape. This means that if you have code
438where two different source types end up having the same LLVM type, that
439the dumper will sometimes print the "wrong" or unexpected type. This is
440an important design point and isn't going to change.
441
442.. _globalvars:
443
444Global Variables
445----------------
446
447Global variables define regions of memory allocated at compilation time
448instead of run-time. Global variables may optionally be initialized, may
449have an explicit section to be placed in, and may have an optional
450explicit alignment specified.
451
452A variable may be defined as ``thread_local``, which means that it will
453not be shared by threads (each thread will have a separated copy of the
454variable). Not all targets support thread-local variables. Optionally, a
455TLS model may be specified:
456
457``localdynamic``
458 For variables that are only used within the current shared library.
459``initialexec``
460 For variables in modules that will not be loaded dynamically.
461``localexec``
462 For variables defined in the executable and only used within it.
463
464The models correspond to the ELF TLS models; see `ELF Handling For
465Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
466more information on under which circumstances the different models may
467be used. The target may choose a different TLS model if the specified
468model is not supported, or if a better choice of model can be made.
469
Michael Gottesmanf5735882013-01-31 05:48:48 +0000470A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000471the contents of the variable will **never** be modified (enabling better
472optimization, allowing the global data to be placed in the read-only
473section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000474initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000475variable.
476
477LLVM explicitly allows *declarations* of global variables to be marked
478constant, even if the final definition of the global is not. This
479capability can be used to enable slightly better optimization of the
480program, but requires the language definition to guarantee that
481optimizations based on the 'constantness' are valid for the translation
482units that do not include the definition.
483
484As SSA values, global variables define pointer values that are in scope
485(i.e. they dominate) all basic blocks in the program. Global variables
486always define a pointer to their "content" type because they describe a
487region of memory, and all memory objects in LLVM are accessed through
488pointers.
489
490Global variables can be marked with ``unnamed_addr`` which indicates
491that the address is not significant, only the content. Constants marked
492like this can be merged with other constants if they have the same
493initializer. Note that a constant with significant address *can* be
494merged with a ``unnamed_addr`` constant, the result being a constant
495whose address is significant.
496
497A global variable may be declared to reside in a target-specific
498numbered address space. For targets that support them, address spaces
499may affect how optimizations are performed and/or what target
500instructions are used to access the variable. The default address space
501is zero. The address space qualifier must precede any other attributes.
502
503LLVM allows an explicit section to be specified for globals. If the
504target supports it, it will emit globals to the section specified.
505
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000506By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000507variables defined within the module are not modified from their
508initial values before the start of the global initializer. This is
509true even for variables potentially accessible from outside the
510module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000511``@llvm.used``. This assumption may be suppressed by marking the
512variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000513
Sean Silvaf722b002012-12-07 10:36:55 +0000514An explicit alignment may be specified for a global, which must be a
515power of 2. If not present, or if the alignment is set to zero, the
516alignment of the global is set by the target to whatever it feels
517convenient. If an explicit alignment is specified, the global is forced
518to have exactly that alignment. Targets and optimizers are not allowed
519to over-align the global if the global has an assigned section. In this
520case, the extra alignment could be observable: for example, code could
521assume that the globals are densely packed in their section and try to
522iterate over them as an array, alignment padding would break this
523iteration.
524
525For example, the following defines a global in a numbered address space
526with an initializer, section, and alignment:
527
528.. code-block:: llvm
529
530 @G = addrspace(5) constant float 1.0, section "foo", align 4
531
532The following example defines a thread-local global with the
533``initialexec`` TLS model:
534
535.. code-block:: llvm
536
537 @G = thread_local(initialexec) global i32 0, align 4
538
539.. _functionstructure:
540
541Functions
542---------
543
544LLVM function definitions consist of the "``define``" keyword, an
545optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
546style <visibility>`, an optional :ref:`calling convention <callingconv>`,
547an optional ``unnamed_addr`` attribute, a return type, an optional
548:ref:`parameter attribute <paramattrs>` for the return type, a function
549name, a (possibly empty) argument list (each with optional :ref:`parameter
550attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
551an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000552collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
553curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvaf722b002012-12-07 10:36:55 +0000554
555LLVM function declarations consist of the "``declare``" keyword, an
556optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
557style <visibility>`, an optional :ref:`calling convention <callingconv>`,
558an optional ``unnamed_addr`` attribute, a return type, an optional
559:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000560name, a possibly empty list of arguments, an optional alignment, an optional
561:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvaf722b002012-12-07 10:36:55 +0000562
563A function definition contains a list of basic blocks, forming the CFG
564(Control Flow Graph) for the function. Each basic block may optionally
565start with a label (giving the basic block a symbol table entry),
566contains a list of instructions, and ends with a
567:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000568return). If explicit label is not provided, a block is assigned an
569implicit numbered label, using a next value from the same counter as used
570for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
571function entry block does not have explicit label, it will be assigned
572label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000573
574The first basic block in a function is special in two ways: it is
575immediately executed on entrance to the function, and it is not allowed
576to have predecessor basic blocks (i.e. there can not be any branches to
577the entry block of a function). Because the block can have no
578predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
579
580LLVM allows an explicit section to be specified for functions. If the
581target supports it, it will emit functions to the section specified.
582
583An explicit alignment may be specified for a function. If not present,
584or if the alignment is set to zero, the alignment of the function is set
585by the target to whatever it feels convenient. If an explicit alignment
586is specified, the function is forced to have at least that much
587alignment. All alignments must be a power of 2.
588
589If the ``unnamed_addr`` attribute is given, the address is know to not
590be significant and two identical functions can be merged.
591
592Syntax::
593
594 define [linkage] [visibility]
595 [cconv] [ret attrs]
596 <ResultType> @<FunctionName> ([argument list])
597 [fn Attrs] [section "name"] [align N]
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000598 [gc] [prefix Constant] { ... }
Sean Silvaf722b002012-12-07 10:36:55 +0000599
Eli Bendersky1de14102013-06-07 19:40:08 +0000600.. _langref_aliases:
601
Sean Silvaf722b002012-12-07 10:36:55 +0000602Aliases
603-------
604
605Aliases act as "second name" for the aliasee value (which can be either
606function, global variable, another alias or bitcast of global value).
607Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
608:ref:`visibility style <visibility>`.
609
610Syntax::
611
612 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
613
Rafael Espindolacfa7d812013-10-07 13:57:59 +0000614The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola2def1792013-10-06 15:10:43 +0000615``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
616``linkonce_odr``, ``weak_odr``, ``linkonce_odr_auto_hide``, ``external``. Note
617that some system linkers might not correctly handle dropping a weak symbol that
618is aliased by a non weak alias.
619
Sean Silvaf722b002012-12-07 10:36:55 +0000620.. _namedmetadatastructure:
621
622Named Metadata
623--------------
624
625Named metadata is a collection of metadata. :ref:`Metadata
626nodes <metadata>` (but not metadata strings) are the only valid
627operands for a named metadata.
628
629Syntax::
630
631 ; Some unnamed metadata nodes, which are referenced by the named metadata.
632 !0 = metadata !{metadata !"zero"}
633 !1 = metadata !{metadata !"one"}
634 !2 = metadata !{metadata !"two"}
635 ; A named metadata.
636 !name = !{!0, !1, !2}
637
638.. _paramattrs:
639
640Parameter Attributes
641--------------------
642
643The return type and each parameter of a function type may have a set of
644*parameter attributes* associated with them. Parameter attributes are
645used to communicate additional information about the result or
646parameters of a function. Parameter attributes are considered to be part
647of the function, not of the function type, so functions with different
648parameter attributes can have the same function type.
649
650Parameter attributes are simple keywords that follow the type specified.
651If multiple parameter attributes are needed, they are space separated.
652For example:
653
654.. code-block:: llvm
655
656 declare i32 @printf(i8* noalias nocapture, ...)
657 declare i32 @atoi(i8 zeroext)
658 declare signext i8 @returns_signed_char()
659
660Note that any attributes for the function result (``nounwind``,
661``readonly``) come immediately after the argument list.
662
663Currently, only the following parameter attributes are defined:
664
665``zeroext``
666 This indicates to the code generator that the parameter or return
667 value should be zero-extended to the extent required by the target's
668 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
669 the caller (for a parameter) or the callee (for a return value).
670``signext``
671 This indicates to the code generator that the parameter or return
672 value should be sign-extended to the extent required by the target's
673 ABI (which is usually 32-bits) by the caller (for a parameter) or
674 the callee (for a return value).
675``inreg``
676 This indicates that this parameter or return value should be treated
677 in a special target-dependent fashion during while emitting code for
678 a function call or return (usually, by putting it in a register as
679 opposed to memory, though some targets use it to distinguish between
680 two different kinds of registers). Use of this attribute is
681 target-specific.
682``byval``
683 This indicates that the pointer parameter should really be passed by
684 value to the function. The attribute implies that a hidden copy of
685 the pointee is made between the caller and the callee, so the callee
686 is unable to modify the value in the caller. This attribute is only
687 valid on LLVM pointer arguments. It is generally used to pass
688 structs and arrays by value, but is also valid on pointers to
689 scalars. The copy is considered to belong to the caller not the
690 callee (for example, ``readonly`` functions should not write to
691 ``byval`` parameters). This is not a valid attribute for return
692 values.
693
694 The byval attribute also supports specifying an alignment with the
695 align attribute. It indicates the alignment of the stack slot to
696 form and the known alignment of the pointer specified to the call
697 site. If the alignment is not specified, then the code generator
698 makes a target-specific assumption.
699
700``sret``
701 This indicates that the pointer parameter specifies the address of a
702 structure that is the return value of the function in the source
703 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000704 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000705 not to trap and to be properly aligned. This may only be applied to
706 the first parameter. This is not a valid attribute for return
707 values.
708``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000709 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000710 the argument or return value do not alias pointer values which are
711 not *based* on it, ignoring certain "irrelevant" dependencies. For a
712 call to the parent function, dependencies between memory references
713 from before or after the call and from those during the call are
714 "irrelevant" to the ``noalias`` keyword for the arguments and return
715 value used in that call. The caller shares the responsibility with
716 the callee for ensuring that these requirements are met. For further
717 details, please see the discussion of the NoAlias response in `alias
718 analysis <AliasAnalysis.html#MustMayNo>`_.
719
720 Note that this definition of ``noalias`` is intentionally similar
721 to the definition of ``restrict`` in C99 for function arguments,
722 though it is slightly weaker.
723
724 For function return values, C99's ``restrict`` is not meaningful,
725 while LLVM's ``noalias`` is.
726``nocapture``
727 This indicates that the callee does not make any copies of the
728 pointer that outlive the callee itself. This is not a valid
729 attribute for return values.
730
731.. _nest:
732
733``nest``
734 This indicates that the pointer parameter can be excised using the
735 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000736 attribute for return values and can only be applied to one parameter.
737
738``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000739 This indicates that the function always returns the argument as its return
740 value. This is an optimization hint to the code generator when generating
741 the caller, allowing tail call optimization and omission of register saves
742 and restores in some cases; it is not checked or enforced when generating
743 the callee. The parameter and the function return type must be valid
744 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
745 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000746
747.. _gc:
748
749Garbage Collector Names
750-----------------------
751
752Each function may specify a garbage collector name, which is simply a
753string:
754
755.. code-block:: llvm
756
757 define void @f() gc "name" { ... }
758
759The compiler declares the supported values of *name*. Specifying a
760collector which will cause the compiler to alter its output in order to
761support the named garbage collection algorithm.
762
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000763.. _prefixdata:
764
765Prefix Data
766-----------
767
768Prefix data is data associated with a function which the code generator
769will emit immediately before the function body. The purpose of this feature
770is to allow frontends to associate language-specific runtime metadata with
771specific functions and make it available through the function pointer while
772still allowing the function pointer to be called. To access the data for a
773given function, a program may bitcast the function pointer to a pointer to
774the constant's type. This implies that the IR symbol points to the start
775of the prefix data.
776
777To maintain the semantics of ordinary function calls, the prefix data must
778have a particular format. Specifically, it must begin with a sequence of
779bytes which decode to a sequence of machine instructions, valid for the
780module's target, which transfer control to the point immediately succeeding
781the prefix data, without performing any other visible action. This allows
782the inliner and other passes to reason about the semantics of the function
783definition without needing to reason about the prefix data. Obviously this
784makes the format of the prefix data highly target dependent.
785
Peter Collingbournea4ae4052013-09-23 20:14:21 +0000786Prefix data is laid out as if it were an initializer for a global variable
787of the prefix data's type. No padding is automatically placed between the
788prefix data and the function body. If padding is required, it must be part
789of the prefix data.
790
Peter Collingbourne1e3037f2013-09-16 01:08:15 +0000791A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
792which encodes the ``nop`` instruction:
793
794.. code-block:: llvm
795
796 define void @f() prefix i8 144 { ... }
797
798Generally prefix data can be formed by encoding a relative branch instruction
799which skips the metadata, as in this example of valid prefix data for the
800x86_64 architecture, where the first two bytes encode ``jmp .+10``:
801
802.. code-block:: llvm
803
804 %0 = type <{ i8, i8, i8* }>
805
806 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
807
808A function may have prefix data but no body. This has similar semantics
809to the ``available_externally`` linkage in that the data may be used by the
810optimizers but will not be emitted in the object file.
811
Bill Wendling95ce4c22013-02-06 06:52:58 +0000812.. _attrgrp:
813
814Attribute Groups
815----------------
816
817Attribute groups are groups of attributes that are referenced by objects within
818the IR. They are important for keeping ``.ll`` files readable, because a lot of
819functions will use the same set of attributes. In the degenerative case of a
820``.ll`` file that corresponds to a single ``.c`` file, the single attribute
821group will capture the important command line flags used to build that file.
822
823An attribute group is a module-level object. To use an attribute group, an
824object references the attribute group's ID (e.g. ``#37``). An object may refer
825to more than one attribute group. In that situation, the attributes from the
826different groups are merged.
827
828Here is an example of attribute groups for a function that should always be
829inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
830
831.. code-block:: llvm
832
833 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000834 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000835
836 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000837 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000838
839 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
840 define void @f() #0 #1 { ... }
841
Sean Silvaf722b002012-12-07 10:36:55 +0000842.. _fnattrs:
843
844Function Attributes
845-------------------
846
847Function attributes are set to communicate additional information about
848a function. Function attributes are considered to be part of the
849function, not of the function type, so functions with different function
850attributes can have the same function type.
851
852Function attributes are simple keywords that follow the type specified.
853If multiple attributes are needed, they are space separated. For
854example:
855
856.. code-block:: llvm
857
858 define void @f() noinline { ... }
859 define void @f() alwaysinline { ... }
860 define void @f() alwaysinline optsize { ... }
861 define void @f() optsize { ... }
862
Sean Silvaf722b002012-12-07 10:36:55 +0000863``alignstack(<n>)``
864 This attribute indicates that, when emitting the prologue and
865 epilogue, the backend should forcibly align the stack pointer.
866 Specify the desired alignment, which must be a power of two, in
867 parentheses.
868``alwaysinline``
869 This attribute indicates that the inliner should attempt to inline
870 this function into callers whenever possible, ignoring any active
871 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000872``builtin``
873 This indicates that the callee function at a call site should be
874 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000875 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000876 direct calls to functions which are declared with the ``nobuiltin``
877 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000878``cold``
879 This attribute indicates that this function is rarely called. When
880 computing edge weights, basic blocks post-dominated by a cold
881 function call are also considered to be cold; and, thus, given low
882 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000883``inlinehint``
884 This attribute indicates that the source code contained a hint that
885 inlining this function is desirable (such as the "inline" keyword in
886 C/C++). It is just a hint; it imposes no requirements on the
887 inliner.
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000888``minsize``
889 This attribute suggests that optimization passes and code generator
890 passes make choices that keep the code size of this function as small
891 as possible and perform optimizations that may sacrifice runtime
892 performance in order to minimize the size of the generated code.
Sean Silvaf722b002012-12-07 10:36:55 +0000893``naked``
894 This attribute disables prologue / epilogue emission for the
895 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000896``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000897 This indicates that the callee function at a call site is not recognized as
898 a built-in function. LLVM will retain the original call and not replace it
899 with equivalent code based on the semantics of the built-in function, unless
900 the call site uses the ``builtin`` attribute. This is valid at call sites
901 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000902``noduplicate``
903 This attribute indicates that calls to the function cannot be
904 duplicated. A call to a ``noduplicate`` function may be moved
905 within its parent function, but may not be duplicated within
906 its parent function.
907
908 A function containing a ``noduplicate`` call may still
909 be an inlining candidate, provided that the call is not
910 duplicated by inlining. That implies that the function has
911 internal linkage and only has one call site, so the original
912 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000913``noimplicitfloat``
914 This attributes disables implicit floating point instructions.
915``noinline``
916 This attribute indicates that the inliner should never inline this
917 function in any situation. This attribute may not be used together
918 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +0000919``nonlazybind``
920 This attribute suppresses lazy symbol binding for the function. This
921 may make calls to the function faster, at the cost of extra program
922 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +0000923``noredzone``
924 This attribute indicates that the code generator should not use a
925 red zone, even if the target-specific ABI normally permits it.
926``noreturn``
927 This function attribute indicates that the function never returns
928 normally. This produces undefined behavior at runtime if the
929 function ever does dynamically return.
930``nounwind``
931 This function attribute indicates that the function never returns
932 with an unwind or exceptional control flow. If the function does
933 unwind, its runtime behavior is undefined.
Andrea Di Biagio5768bb82013-08-23 11:53:55 +0000934``optnone``
935 This function attribute indicates that the function is not optimized
936 by any optimization or code generator passes with the
937 exception of interprocedural optimization passes.
938 This attribute cannot be used together with the ``alwaysinline``
939 attribute; this attribute is also incompatible
940 with the ``minsize`` attribute and the ``optsize`` attribute.
941
942 The inliner should never inline this function in any situation.
943 Only functions with the ``alwaysinline`` attribute are valid
944 candidates for inlining inside the body of this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000945``optsize``
946 This attribute suggests that optimization passes and code generator
947 passes make choices that keep the code size of this function low,
Andrea Di Biagio1edaeb62013-08-09 18:42:18 +0000948 and otherwise do optimizations specifically to reduce code size as
949 long as they do not significantly impact runtime performance.
Sean Silvaf722b002012-12-07 10:36:55 +0000950``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000951 On a function, this attribute indicates that the function computes its
952 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000953 without dereferencing any pointer arguments or otherwise accessing
954 any mutable state (e.g. memory, control registers, etc) visible to
955 caller functions. It does not write through any pointer arguments
956 (including ``byval`` arguments) and never changes any state visible
957 to callers. This means that it cannot unwind exceptions by calling
958 the ``C++`` exception throwing methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000959
960 On an argument, this attribute indicates that the function does not
961 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +0000962 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000963``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000964 On a function, this attribute indicates that the function does not write
965 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000966 modify any state (e.g. memory, control registers, etc) visible to
967 caller functions. It may dereference pointer arguments and read
968 state that may be set in the caller. A readonly function always
969 returns the same value (or unwinds an exception identically) when
970 called with the same set of arguments and global state. It cannot
971 unwind an exception by calling the ``C++`` exception throwing
972 methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000973
974 On an argument, this attribute indicates that the function does not write
975 through this pointer argument, even though it may write to the memory that
976 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000977``returns_twice``
978 This attribute indicates that this function can return twice. The C
979 ``setjmp`` is an example of such a function. The compiler disables
980 some optimizations (like tail calls) in the caller of these
981 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000982``sanitize_address``
983 This attribute indicates that AddressSanitizer checks
984 (dynamic address safety analysis) are enabled for this function.
985``sanitize_memory``
986 This attribute indicates that MemorySanitizer checks (dynamic detection
987 of accesses to uninitialized memory) are enabled for this function.
988``sanitize_thread``
989 This attribute indicates that ThreadSanitizer checks
990 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000991``ssp``
992 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000993 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000994 placed on the stack before the local variables that's checked upon
995 return from the function to see if it has been overwritten. A
996 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000997 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000998
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000999 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1000 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1001 - Calls to alloca() with variable sizes or constant sizes greater than
1002 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +00001003
1004 If a function that has an ``ssp`` attribute is inlined into a
1005 function that doesn't have an ``ssp`` attribute, then the resulting
1006 function will have an ``ssp`` attribute.
1007``sspreq``
1008 This attribute indicates that the function should *always* emit a
1009 stack smashing protector. This overrides the ``ssp`` function
1010 attribute.
1011
1012 If a function that has an ``sspreq`` attribute is inlined into a
1013 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +00001014 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1015 an ``sspreq`` attribute.
1016``sspstrong``
1017 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001018 protector. This attribute causes a strong heuristic to be used when
1019 determining if a function needs stack protectors. The strong heuristic
1020 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +00001021
Bill Wendlinge4957fb2013-01-23 06:43:53 +00001022 - Arrays of any size and type
1023 - Aggregates containing an array of any size and type.
1024 - Calls to alloca().
1025 - Local variables that have had their address taken.
1026
1027 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +00001028
1029 If a function that has an ``sspstrong`` attribute is inlined into a
1030 function that doesn't have an ``sspstrong`` attribute, then the
1031 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +00001032``uwtable``
1033 This attribute indicates that the ABI being targeted requires that
1034 an unwind table entry be produce for this function even if we can
1035 show that no exceptions passes by it. This is normally the case for
1036 the ELF x86-64 abi, but it can be disabled for some compilation
1037 units.
Sean Silvaf722b002012-12-07 10:36:55 +00001038
1039.. _moduleasm:
1040
1041Module-Level Inline Assembly
1042----------------------------
1043
1044Modules may contain "module-level inline asm" blocks, which corresponds
1045to the GCC "file scope inline asm" blocks. These blocks are internally
1046concatenated by LLVM and treated as a single unit, but may be separated
1047in the ``.ll`` file if desired. The syntax is very simple:
1048
1049.. code-block:: llvm
1050
1051 module asm "inline asm code goes here"
1052 module asm "more can go here"
1053
1054The strings can contain any character by escaping non-printable
1055characters. The escape sequence used is simply "\\xx" where "xx" is the
1056two digit hex code for the number.
1057
1058The inline asm code is simply printed to the machine code .s file when
1059assembly code is generated.
1060
Eli Bendersky1de14102013-06-07 19:40:08 +00001061.. _langref_datalayout:
1062
Sean Silvaf722b002012-12-07 10:36:55 +00001063Data Layout
1064-----------
1065
1066A module may specify a target specific data layout string that specifies
1067how data is to be laid out in memory. The syntax for the data layout is
1068simply:
1069
1070.. code-block:: llvm
1071
1072 target datalayout = "layout specification"
1073
1074The *layout specification* consists of a list of specifications
1075separated by the minus sign character ('-'). Each specification starts
1076with a letter and may include other information after the letter to
1077define some aspect of the data layout. The specifications accepted are
1078as follows:
1079
1080``E``
1081 Specifies that the target lays out data in big-endian form. That is,
1082 the bits with the most significance have the lowest address
1083 location.
1084``e``
1085 Specifies that the target lays out data in little-endian form. That
1086 is, the bits with the least significance have the lowest address
1087 location.
1088``S<size>``
1089 Specifies the natural alignment of the stack in bits. Alignment
1090 promotion of stack variables is limited to the natural stack
1091 alignment to avoid dynamic stack realignment. The stack alignment
1092 must be a multiple of 8-bits. If omitted, the natural stack
1093 alignment defaults to "unspecified", which does not prevent any
1094 alignment promotions.
1095``p[n]:<size>:<abi>:<pref>``
1096 This specifies the *size* of a pointer and its ``<abi>`` and
1097 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1098 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1099 preceding ``:`` should be omitted too. The address space, ``n`` is
1100 optional, and if not specified, denotes the default address space 0.
1101 The value of ``n`` must be in the range [1,2^23).
1102``i<size>:<abi>:<pref>``
1103 This specifies the alignment for an integer type of a given bit
1104 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1105``v<size>:<abi>:<pref>``
1106 This specifies the alignment for a vector type of a given bit
1107 ``<size>``.
1108``f<size>:<abi>:<pref>``
1109 This specifies the alignment for a floating point type of a given bit
1110 ``<size>``. Only values of ``<size>`` that are supported by the target
1111 will work. 32 (float) and 64 (double) are supported on all targets; 80
1112 or 128 (different flavors of long double) are also supported on some
1113 targets.
1114``a<size>:<abi>:<pref>``
1115 This specifies the alignment for an aggregate type of a given bit
1116 ``<size>``.
1117``s<size>:<abi>:<pref>``
1118 This specifies the alignment for a stack object of a given bit
1119 ``<size>``.
1120``n<size1>:<size2>:<size3>...``
1121 This specifies a set of native integer widths for the target CPU in
1122 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1123 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1124 this set are considered to support most general arithmetic operations
1125 efficiently.
1126
1127When constructing the data layout for a given target, LLVM starts with a
1128default set of specifications which are then (possibly) overridden by
1129the specifications in the ``datalayout`` keyword. The default
1130specifications are given in this list:
1131
1132- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00001133- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1134- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1135 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001136- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001137- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1138- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1139- ``i16:16:16`` - i16 is 16-bit aligned
1140- ``i32:32:32`` - i32 is 32-bit aligned
1141- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1142 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001143- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001144- ``f32:32:32`` - float is 32-bit aligned
1145- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001146- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001147- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1148- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001149- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001150
1151When LLVM is determining the alignment for a given type, it uses the
1152following rules:
1153
1154#. If the type sought is an exact match for one of the specifications,
1155 that specification is used.
1156#. If no match is found, and the type sought is an integer type, then
1157 the smallest integer type that is larger than the bitwidth of the
1158 sought type is used. If none of the specifications are larger than
1159 the bitwidth then the largest integer type is used. For example,
1160 given the default specifications above, the i7 type will use the
1161 alignment of i8 (next largest) while both i65 and i256 will use the
1162 alignment of i64 (largest specified).
1163#. If no match is found, and the type sought is a vector type, then the
1164 largest vector type that is smaller than the sought vector type will
1165 be used as a fall back. This happens because <128 x double> can be
1166 implemented in terms of 64 <2 x double>, for example.
1167
1168The function of the data layout string may not be what you expect.
1169Notably, this is not a specification from the frontend of what alignment
1170the code generator should use.
1171
1172Instead, if specified, the target data layout is required to match what
1173the ultimate *code generator* expects. This string is used by the
1174mid-level optimizers to improve code, and this only works if it matches
1175what the ultimate code generator uses. If you would like to generate IR
1176that does not embed this target-specific detail into the IR, then you
1177don't have to specify the string. This will disable some optimizations
1178that require precise layout information, but this also prevents those
1179optimizations from introducing target specificity into the IR.
1180
1181.. _pointeraliasing:
1182
1183Pointer Aliasing Rules
1184----------------------
1185
1186Any memory access must be done through a pointer value associated with
1187an address range of the memory access, otherwise the behavior is
1188undefined. Pointer values are associated with address ranges according
1189to the following rules:
1190
1191- A pointer value is associated with the addresses associated with any
1192 value it is *based* on.
1193- An address of a global variable is associated with the address range
1194 of the variable's storage.
1195- The result value of an allocation instruction is associated with the
1196 address range of the allocated storage.
1197- A null pointer in the default address-space is associated with no
1198 address.
1199- An integer constant other than zero or a pointer value returned from
1200 a function not defined within LLVM may be associated with address
1201 ranges allocated through mechanisms other than those provided by
1202 LLVM. Such ranges shall not overlap with any ranges of addresses
1203 allocated by mechanisms provided by LLVM.
1204
1205A pointer value is *based* on another pointer value according to the
1206following rules:
1207
1208- A pointer value formed from a ``getelementptr`` operation is *based*
1209 on the first operand of the ``getelementptr``.
1210- The result value of a ``bitcast`` is *based* on the operand of the
1211 ``bitcast``.
1212- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1213 values that contribute (directly or indirectly) to the computation of
1214 the pointer's value.
1215- The "*based* on" relationship is transitive.
1216
1217Note that this definition of *"based"* is intentionally similar to the
1218definition of *"based"* in C99, though it is slightly weaker.
1219
1220LLVM IR does not associate types with memory. The result type of a
1221``load`` merely indicates the size and alignment of the memory from
1222which to load, as well as the interpretation of the value. The first
1223operand type of a ``store`` similarly only indicates the size and
1224alignment of the store.
1225
1226Consequently, type-based alias analysis, aka TBAA, aka
1227``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1228:ref:`Metadata <metadata>` may be used to encode additional information
1229which specialized optimization passes may use to implement type-based
1230alias analysis.
1231
1232.. _volatile:
1233
1234Volatile Memory Accesses
1235------------------------
1236
1237Certain memory accesses, such as :ref:`load <i_load>`'s,
1238:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1239marked ``volatile``. The optimizers must not change the number of
1240volatile operations or change their order of execution relative to other
1241volatile operations. The optimizers *may* change the order of volatile
1242operations relative to non-volatile operations. This is not Java's
1243"volatile" and has no cross-thread synchronization behavior.
1244
Andrew Trick9a6dd022013-01-30 21:19:35 +00001245IR-level volatile loads and stores cannot safely be optimized into
1246llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1247flagged volatile. Likewise, the backend should never split or merge
1248target-legal volatile load/store instructions.
1249
Andrew Trick946317d2013-01-31 00:49:39 +00001250.. admonition:: Rationale
1251
1252 Platforms may rely on volatile loads and stores of natively supported
1253 data width to be executed as single instruction. For example, in C
1254 this holds for an l-value of volatile primitive type with native
1255 hardware support, but not necessarily for aggregate types. The
1256 frontend upholds these expectations, which are intentionally
1257 unspecified in the IR. The rules above ensure that IR transformation
1258 do not violate the frontend's contract with the language.
1259
Sean Silvaf722b002012-12-07 10:36:55 +00001260.. _memmodel:
1261
1262Memory Model for Concurrent Operations
1263--------------------------------------
1264
1265The LLVM IR does not define any way to start parallel threads of
1266execution or to register signal handlers. Nonetheless, there are
1267platform-specific ways to create them, and we define LLVM IR's behavior
1268in their presence. This model is inspired by the C++0x memory model.
1269
1270For a more informal introduction to this model, see the :doc:`Atomics`.
1271
1272We define a *happens-before* partial order as the least partial order
1273that
1274
1275- Is a superset of single-thread program order, and
1276- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1277 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1278 techniques, like pthread locks, thread creation, thread joining,
1279 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1280 Constraints <ordering>`).
1281
1282Note that program order does not introduce *happens-before* edges
1283between a thread and signals executing inside that thread.
1284
1285Every (defined) read operation (load instructions, memcpy, atomic
1286loads/read-modify-writes, etc.) R reads a series of bytes written by
1287(defined) write operations (store instructions, atomic
1288stores/read-modify-writes, memcpy, etc.). For the purposes of this
1289section, initialized globals are considered to have a write of the
1290initializer which is atomic and happens before any other read or write
1291of the memory in question. For each byte of a read R, R\ :sub:`byte`
1292may see any write to the same byte, except:
1293
1294- If write\ :sub:`1` happens before write\ :sub:`2`, and
1295 write\ :sub:`2` happens before R\ :sub:`byte`, then
1296 R\ :sub:`byte` does not see write\ :sub:`1`.
1297- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1298 R\ :sub:`byte` does not see write\ :sub:`3`.
1299
1300Given that definition, R\ :sub:`byte` is defined as follows:
1301
1302- If R is volatile, the result is target-dependent. (Volatile is
1303 supposed to give guarantees which can support ``sig_atomic_t`` in
1304 C/C++, and may be used for accesses to addresses which do not behave
1305 like normal memory. It does not generally provide cross-thread
1306 synchronization.)
1307- Otherwise, if there is no write to the same byte that happens before
1308 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1309- Otherwise, if R\ :sub:`byte` may see exactly one write,
1310 R\ :sub:`byte` returns the value written by that write.
1311- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1312 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1313 Memory Ordering Constraints <ordering>` section for additional
1314 constraints on how the choice is made.
1315- Otherwise R\ :sub:`byte` returns ``undef``.
1316
1317R returns the value composed of the series of bytes it read. This
1318implies that some bytes within the value may be ``undef`` **without**
1319the entire value being ``undef``. Note that this only defines the
1320semantics of the operation; it doesn't mean that targets will emit more
1321than one instruction to read the series of bytes.
1322
1323Note that in cases where none of the atomic intrinsics are used, this
1324model places only one restriction on IR transformations on top of what
1325is required for single-threaded execution: introducing a store to a byte
1326which might not otherwise be stored is not allowed in general.
1327(Specifically, in the case where another thread might write to and read
1328from an address, introducing a store can change a load that may see
1329exactly one write into a load that may see multiple writes.)
1330
1331.. _ordering:
1332
1333Atomic Memory Ordering Constraints
1334----------------------------------
1335
1336Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1337:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1338:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1339an ordering parameter that determines which other atomic instructions on
1340the same address they *synchronize with*. These semantics are borrowed
1341from Java and C++0x, but are somewhat more colloquial. If these
1342descriptions aren't precise enough, check those specs (see spec
1343references in the :doc:`atomics guide <Atomics>`).
1344:ref:`fence <i_fence>` instructions treat these orderings somewhat
1345differently since they don't take an address. See that instruction's
1346documentation for details.
1347
1348For a simpler introduction to the ordering constraints, see the
1349:doc:`Atomics`.
1350
1351``unordered``
1352 The set of values that can be read is governed by the happens-before
1353 partial order. A value cannot be read unless some operation wrote
1354 it. This is intended to provide a guarantee strong enough to model
1355 Java's non-volatile shared variables. This ordering cannot be
1356 specified for read-modify-write operations; it is not strong enough
1357 to make them atomic in any interesting way.
1358``monotonic``
1359 In addition to the guarantees of ``unordered``, there is a single
1360 total order for modifications by ``monotonic`` operations on each
1361 address. All modification orders must be compatible with the
1362 happens-before order. There is no guarantee that the modification
1363 orders can be combined to a global total order for the whole program
1364 (and this often will not be possible). The read in an atomic
1365 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1366 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1367 order immediately before the value it writes. If one atomic read
1368 happens before another atomic read of the same address, the later
1369 read must see the same value or a later value in the address's
1370 modification order. This disallows reordering of ``monotonic`` (or
1371 stronger) operations on the same address. If an address is written
1372 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1373 read that address repeatedly, the other threads must eventually see
1374 the write. This corresponds to the C++0x/C1x
1375 ``memory_order_relaxed``.
1376``acquire``
1377 In addition to the guarantees of ``monotonic``, a
1378 *synchronizes-with* edge may be formed with a ``release`` operation.
1379 This is intended to model C++'s ``memory_order_acquire``.
1380``release``
1381 In addition to the guarantees of ``monotonic``, if this operation
1382 writes a value which is subsequently read by an ``acquire``
1383 operation, it *synchronizes-with* that operation. (This isn't a
1384 complete description; see the C++0x definition of a release
1385 sequence.) This corresponds to the C++0x/C1x
1386 ``memory_order_release``.
1387``acq_rel`` (acquire+release)
1388 Acts as both an ``acquire`` and ``release`` operation on its
1389 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1390``seq_cst`` (sequentially consistent)
1391 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1392 operation which only reads, ``release`` for an operation which only
1393 writes), there is a global total order on all
1394 sequentially-consistent operations on all addresses, which is
1395 consistent with the *happens-before* partial order and with the
1396 modification orders of all the affected addresses. Each
1397 sequentially-consistent read sees the last preceding write to the
1398 same address in this global order. This corresponds to the C++0x/C1x
1399 ``memory_order_seq_cst`` and Java volatile.
1400
1401.. _singlethread:
1402
1403If an atomic operation is marked ``singlethread``, it only *synchronizes
1404with* or participates in modification and seq\_cst total orderings with
1405other operations running in the same thread (for example, in signal
1406handlers).
1407
1408.. _fastmath:
1409
1410Fast-Math Flags
1411---------------
1412
1413LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1414:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1415:ref:`frem <i_frem>`) have the following flags that can set to enable
1416otherwise unsafe floating point operations
1417
1418``nnan``
1419 No NaNs - Allow optimizations to assume the arguments and result are not
1420 NaN. Such optimizations are required to retain defined behavior over
1421 NaNs, but the value of the result is undefined.
1422
1423``ninf``
1424 No Infs - Allow optimizations to assume the arguments and result are not
1425 +/-Inf. Such optimizations are required to retain defined behavior over
1426 +/-Inf, but the value of the result is undefined.
1427
1428``nsz``
1429 No Signed Zeros - Allow optimizations to treat the sign of a zero
1430 argument or result as insignificant.
1431
1432``arcp``
1433 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1434 argument rather than perform division.
1435
1436``fast``
1437 Fast - Allow algebraically equivalent transformations that may
1438 dramatically change results in floating point (e.g. reassociate). This
1439 flag implies all the others.
1440
1441.. _typesystem:
1442
1443Type System
1444===========
1445
1446The LLVM type system is one of the most important features of the
1447intermediate representation. Being typed enables a number of
1448optimizations to be performed on the intermediate representation
1449directly, without having to do extra analyses on the side before the
1450transformation. A strong type system makes it easier to read the
1451generated code and enables novel analyses and transformations that are
1452not feasible to perform on normal three address code representations.
1453
Eli Bendersky88fe6822013-06-07 20:24:43 +00001454.. _typeclassifications:
1455
Sean Silvaf722b002012-12-07 10:36:55 +00001456Type Classifications
1457--------------------
1458
1459The types fall into a few useful classifications:
1460
1461
1462.. list-table::
1463 :header-rows: 1
1464
1465 * - Classification
1466 - Types
1467
1468 * - :ref:`integer <t_integer>`
1469 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1470 ``i64``, ...
1471
1472 * - :ref:`floating point <t_floating>`
1473 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1474 ``ppc_fp128``
1475
1476
1477 * - first class
1478
1479 .. _t_firstclass:
1480
1481 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1482 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1483 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1484 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1485
1486 * - :ref:`primitive <t_primitive>`
1487 - :ref:`label <t_label>`,
1488 :ref:`void <t_void>`,
1489 :ref:`integer <t_integer>`,
1490 :ref:`floating point <t_floating>`,
1491 :ref:`x86mmx <t_x86mmx>`,
1492 :ref:`metadata <t_metadata>`.
1493
1494 * - :ref:`derived <t_derived>`
1495 - :ref:`array <t_array>`,
1496 :ref:`function <t_function>`,
1497 :ref:`pointer <t_pointer>`,
1498 :ref:`structure <t_struct>`,
1499 :ref:`vector <t_vector>`,
1500 :ref:`opaque <t_opaque>`.
1501
1502The :ref:`first class <t_firstclass>` types are perhaps the most important.
1503Values of these types are the only ones which can be produced by
1504instructions.
1505
1506.. _t_primitive:
1507
1508Primitive Types
1509---------------
1510
1511The primitive types are the fundamental building blocks of the LLVM
1512system.
1513
1514.. _t_integer:
1515
1516Integer Type
1517^^^^^^^^^^^^
1518
1519Overview:
1520"""""""""
1521
1522The integer type is a very simple type that simply specifies an
1523arbitrary bit width for the integer type desired. Any bit width from 1
1524bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1525
1526Syntax:
1527"""""""
1528
1529::
1530
1531 iN
1532
1533The number of bits the integer will occupy is specified by the ``N``
1534value.
1535
1536Examples:
1537"""""""""
1538
1539+----------------+------------------------------------------------+
1540| ``i1`` | a single-bit integer. |
1541+----------------+------------------------------------------------+
1542| ``i32`` | a 32-bit integer. |
1543+----------------+------------------------------------------------+
1544| ``i1942652`` | a really big integer of over 1 million bits. |
1545+----------------+------------------------------------------------+
1546
1547.. _t_floating:
1548
1549Floating Point Types
1550^^^^^^^^^^^^^^^^^^^^
1551
1552.. list-table::
1553 :header-rows: 1
1554
1555 * - Type
1556 - Description
1557
1558 * - ``half``
1559 - 16-bit floating point value
1560
1561 * - ``float``
1562 - 32-bit floating point value
1563
1564 * - ``double``
1565 - 64-bit floating point value
1566
1567 * - ``fp128``
1568 - 128-bit floating point value (112-bit mantissa)
1569
1570 * - ``x86_fp80``
1571 - 80-bit floating point value (X87)
1572
1573 * - ``ppc_fp128``
1574 - 128-bit floating point value (two 64-bits)
1575
1576.. _t_x86mmx:
1577
1578X86mmx Type
1579^^^^^^^^^^^
1580
1581Overview:
1582"""""""""
1583
1584The x86mmx type represents a value held in an MMX register on an x86
1585machine. The operations allowed on it are quite limited: parameters and
1586return values, load and store, and bitcast. User-specified MMX
1587instructions are represented as intrinsic or asm calls with arguments
1588and/or results of this type. There are no arrays, vectors or constants
1589of this type.
1590
1591Syntax:
1592"""""""
1593
1594::
1595
1596 x86mmx
1597
1598.. _t_void:
1599
1600Void Type
1601^^^^^^^^^
1602
1603Overview:
1604"""""""""
1605
1606The void type does not represent any value and has no size.
1607
1608Syntax:
1609"""""""
1610
1611::
1612
1613 void
1614
1615.. _t_label:
1616
1617Label Type
1618^^^^^^^^^^
1619
1620Overview:
1621"""""""""
1622
1623The label type represents code labels.
1624
1625Syntax:
1626"""""""
1627
1628::
1629
1630 label
1631
1632.. _t_metadata:
1633
1634Metadata Type
1635^^^^^^^^^^^^^
1636
1637Overview:
1638"""""""""
1639
1640The metadata type represents embedded metadata. No derived types may be
1641created from metadata except for :ref:`function <t_function>` arguments.
1642
1643Syntax:
1644"""""""
1645
1646::
1647
1648 metadata
1649
1650.. _t_derived:
1651
1652Derived Types
1653-------------
1654
1655The real power in LLVM comes from the derived types in the system. This
1656is what allows a programmer to represent arrays, functions, pointers,
1657and other useful types. Each of these types contain one or more element
1658types which may be a primitive type, or another derived type. For
1659example, it is possible to have a two dimensional array, using an array
1660as the element type of another array.
1661
1662.. _t_aggregate:
1663
1664Aggregate Types
1665^^^^^^^^^^^^^^^
1666
1667Aggregate Types are a subset of derived types that can contain multiple
1668member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1669aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1670aggregate types.
1671
1672.. _t_array:
1673
1674Array Type
1675^^^^^^^^^^
1676
1677Overview:
1678"""""""""
1679
1680The array type is a very simple derived type that arranges elements
1681sequentially in memory. The array type requires a size (number of
1682elements) and an underlying data type.
1683
1684Syntax:
1685"""""""
1686
1687::
1688
1689 [<# elements> x <elementtype>]
1690
1691The number of elements is a constant integer value; ``elementtype`` may
1692be any type with a size.
1693
1694Examples:
1695"""""""""
1696
1697+------------------+--------------------------------------+
1698| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1699+------------------+--------------------------------------+
1700| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1701+------------------+--------------------------------------+
1702| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1703+------------------+--------------------------------------+
1704
1705Here are some examples of multidimensional arrays:
1706
1707+-----------------------------+----------------------------------------------------------+
1708| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1709+-----------------------------+----------------------------------------------------------+
1710| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1711+-----------------------------+----------------------------------------------------------+
1712| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1713+-----------------------------+----------------------------------------------------------+
1714
1715There is no restriction on indexing beyond the end of the array implied
1716by a static type (though there are restrictions on indexing beyond the
1717bounds of an allocated object in some cases). This means that
1718single-dimension 'variable sized array' addressing can be implemented in
1719LLVM with a zero length array type. An implementation of 'pascal style
1720arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1721example.
1722
1723.. _t_function:
1724
1725Function Type
1726^^^^^^^^^^^^^
1727
1728Overview:
1729"""""""""
1730
1731The function type can be thought of as a function signature. It consists
1732of a return type and a list of formal parameter types. The return type
1733of a function type is a first class type or a void type.
1734
1735Syntax:
1736"""""""
1737
1738::
1739
1740 <returntype> (<parameter list>)
1741
1742...where '``<parameter list>``' is a comma-separated list of type
1743specifiers. Optionally, the parameter list may include a type ``...``,
1744which indicates that the function takes a variable number of arguments.
1745Variable argument functions can access their arguments with the
1746:ref:`variable argument handling intrinsic <int_varargs>` functions.
1747'``<returntype>``' is any type except :ref:`label <t_label>`.
1748
1749Examples:
1750"""""""""
1751
1752+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1753| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1754+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001755| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001756+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1757| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1758+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1759| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1760+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1761
1762.. _t_struct:
1763
1764Structure Type
1765^^^^^^^^^^^^^^
1766
1767Overview:
1768"""""""""
1769
1770The structure type is used to represent a collection of data members
1771together in memory. The elements of a structure may be any type that has
1772a size.
1773
1774Structures in memory are accessed using '``load``' and '``store``' by
1775getting a pointer to a field with the '``getelementptr``' instruction.
1776Structures in registers are accessed using the '``extractvalue``' and
1777'``insertvalue``' instructions.
1778
1779Structures may optionally be "packed" structures, which indicate that
1780the alignment of the struct is one byte, and that there is no padding
1781between the elements. In non-packed structs, padding between field types
1782is inserted as defined by the DataLayout string in the module, which is
1783required to match what the underlying code generator expects.
1784
1785Structures can either be "literal" or "identified". A literal structure
1786is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1787identified types are always defined at the top level with a name.
1788Literal types are uniqued by their contents and can never be recursive
1789or opaque since there is no way to write one. Identified types can be
1790recursive, can be opaqued, and are never uniqued.
1791
1792Syntax:
1793"""""""
1794
1795::
1796
1797 %T1 = type { <type list> } ; Identified normal struct type
1798 %T2 = type <{ <type list> }> ; Identified packed struct type
1799
1800Examples:
1801"""""""""
1802
1803+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1804| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1805+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001806| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001807+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1808| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1809+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1810
1811.. _t_opaque:
1812
1813Opaque Structure Types
1814^^^^^^^^^^^^^^^^^^^^^^
1815
1816Overview:
1817"""""""""
1818
1819Opaque structure types are used to represent named structure types that
1820do not have a body specified. This corresponds (for example) to the C
1821notion of a forward declared structure.
1822
1823Syntax:
1824"""""""
1825
1826::
1827
1828 %X = type opaque
1829 %52 = type opaque
1830
1831Examples:
1832"""""""""
1833
1834+--------------+-------------------+
1835| ``opaque`` | An opaque type. |
1836+--------------+-------------------+
1837
1838.. _t_pointer:
1839
1840Pointer Type
1841^^^^^^^^^^^^
1842
1843Overview:
1844"""""""""
1845
1846The pointer type is used to specify memory locations. Pointers are
1847commonly used to reference objects in memory.
1848
1849Pointer types may have an optional address space attribute defining the
1850numbered address space where the pointed-to object resides. The default
1851address space is number zero. The semantics of non-zero address spaces
1852are target-specific.
1853
1854Note that LLVM does not permit pointers to void (``void*``) nor does it
1855permit pointers to labels (``label*``). Use ``i8*`` instead.
1856
1857Syntax:
1858"""""""
1859
1860::
1861
1862 <type> *
1863
1864Examples:
1865"""""""""
1866
1867+-------------------------+--------------------------------------------------------------------------------------------------------------+
1868| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1869+-------------------------+--------------------------------------------------------------------------------------------------------------+
1870| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1871+-------------------------+--------------------------------------------------------------------------------------------------------------+
1872| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1873+-------------------------+--------------------------------------------------------------------------------------------------------------+
1874
1875.. _t_vector:
1876
1877Vector Type
1878^^^^^^^^^^^
1879
1880Overview:
1881"""""""""
1882
1883A vector type is a simple derived type that represents a vector of
1884elements. Vector types are used when multiple primitive data are
1885operated in parallel using a single instruction (SIMD). A vector type
1886requires a size (number of elements) and an underlying primitive data
1887type. Vector types are considered :ref:`first class <t_firstclass>`.
1888
1889Syntax:
1890"""""""
1891
1892::
1893
1894 < <# elements> x <elementtype> >
1895
1896The number of elements is a constant integer value larger than 0;
1897elementtype may be any integer or floating point type, or a pointer to
1898these types. Vectors of size zero are not allowed.
1899
1900Examples:
1901"""""""""
1902
1903+-------------------+--------------------------------------------------+
1904| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1905+-------------------+--------------------------------------------------+
1906| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1907+-------------------+--------------------------------------------------+
1908| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1909+-------------------+--------------------------------------------------+
1910| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1911+-------------------+--------------------------------------------------+
1912
1913Constants
1914=========
1915
1916LLVM has several different basic types of constants. This section
1917describes them all and their syntax.
1918
1919Simple Constants
1920----------------
1921
1922**Boolean constants**
1923 The two strings '``true``' and '``false``' are both valid constants
1924 of the ``i1`` type.
1925**Integer constants**
1926 Standard integers (such as '4') are constants of the
1927 :ref:`integer <t_integer>` type. Negative numbers may be used with
1928 integer types.
1929**Floating point constants**
1930 Floating point constants use standard decimal notation (e.g.
1931 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1932 hexadecimal notation (see below). The assembler requires the exact
1933 decimal value of a floating-point constant. For example, the
1934 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1935 decimal in binary. Floating point constants must have a :ref:`floating
1936 point <t_floating>` type.
1937**Null pointer constants**
1938 The identifier '``null``' is recognized as a null pointer constant
1939 and must be of :ref:`pointer type <t_pointer>`.
1940
1941The one non-intuitive notation for constants is the hexadecimal form of
1942floating point constants. For example, the form
1943'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1944than) '``double 4.5e+15``'. The only time hexadecimal floating point
1945constants are required (and the only time that they are generated by the
1946disassembler) is when a floating point constant must be emitted but it
1947cannot be represented as a decimal floating point number in a reasonable
1948number of digits. For example, NaN's, infinities, and other special
1949values are represented in their IEEE hexadecimal format so that assembly
1950and disassembly do not cause any bits to change in the constants.
1951
1952When using the hexadecimal form, constants of types half, float, and
1953double are represented using the 16-digit form shown above (which
1954matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001955must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001956precision, respectively. Hexadecimal format is always used for long
1957double, and there are three forms of long double. The 80-bit format used
1958by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1959128-bit format used by PowerPC (two adjacent doubles) is represented by
1960``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001961represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1962will only work if they match the long double format on your target.
1963The IEEE 16-bit format (half precision) is represented by ``0xH``
1964followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1965(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001966
1967There are no constants of type x86mmx.
1968
Eli Bendersky88fe6822013-06-07 20:24:43 +00001969.. _complexconstants:
1970
Sean Silvaf722b002012-12-07 10:36:55 +00001971Complex Constants
1972-----------------
1973
1974Complex constants are a (potentially recursive) combination of simple
1975constants and smaller complex constants.
1976
1977**Structure constants**
1978 Structure constants are represented with notation similar to
1979 structure type definitions (a comma separated list of elements,
1980 surrounded by braces (``{}``)). For example:
1981 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1982 "``@G = external global i32``". Structure constants must have
1983 :ref:`structure type <t_struct>`, and the number and types of elements
1984 must match those specified by the type.
1985**Array constants**
1986 Array constants are represented with notation similar to array type
1987 definitions (a comma separated list of elements, surrounded by
1988 square brackets (``[]``)). For example:
1989 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1990 :ref:`array type <t_array>`, and the number and types of elements must
1991 match those specified by the type.
1992**Vector constants**
1993 Vector constants are represented with notation similar to vector
1994 type definitions (a comma separated list of elements, surrounded by
1995 less-than/greater-than's (``<>``)). For example:
1996 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1997 must have :ref:`vector type <t_vector>`, and the number and types of
1998 elements must match those specified by the type.
1999**Zero initialization**
2000 The string '``zeroinitializer``' can be used to zero initialize a
2001 value to zero of *any* type, including scalar and
2002 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2003 having to print large zero initializers (e.g. for large arrays) and
2004 is always exactly equivalent to using explicit zero initializers.
2005**Metadata node**
2006 A metadata node is a structure-like constant with :ref:`metadata
2007 type <t_metadata>`. For example:
2008 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2009 constants that are meant to be interpreted as part of the
2010 instruction stream, metadata is a place to attach additional
2011 information such as debug info.
2012
2013Global Variable and Function Addresses
2014--------------------------------------
2015
2016The addresses of :ref:`global variables <globalvars>` and
2017:ref:`functions <functionstructure>` are always implicitly valid
2018(link-time) constants. These constants are explicitly referenced when
2019the :ref:`identifier for the global <identifiers>` is used and always have
2020:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2021file:
2022
2023.. code-block:: llvm
2024
2025 @X = global i32 17
2026 @Y = global i32 42
2027 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2028
2029.. _undefvalues:
2030
2031Undefined Values
2032----------------
2033
2034The string '``undef``' can be used anywhere a constant is expected, and
2035indicates that the user of the value may receive an unspecified
2036bit-pattern. Undefined values may be of any type (other than '``label``'
2037or '``void``') and be used anywhere a constant is permitted.
2038
2039Undefined values are useful because they indicate to the compiler that
2040the program is well defined no matter what value is used. This gives the
2041compiler more freedom to optimize. Here are some examples of
2042(potentially surprising) transformations that are valid (in pseudo IR):
2043
2044.. code-block:: llvm
2045
2046 %A = add %X, undef
2047 %B = sub %X, undef
2048 %C = xor %X, undef
2049 Safe:
2050 %A = undef
2051 %B = undef
2052 %C = undef
2053
2054This is safe because all of the output bits are affected by the undef
2055bits. Any output bit can have a zero or one depending on the input bits.
2056
2057.. code-block:: llvm
2058
2059 %A = or %X, undef
2060 %B = and %X, undef
2061 Safe:
2062 %A = -1
2063 %B = 0
2064 Unsafe:
2065 %A = undef
2066 %B = undef
2067
2068These logical operations have bits that are not always affected by the
2069input. For example, if ``%X`` has a zero bit, then the output of the
2070'``and``' operation will always be a zero for that bit, no matter what
2071the corresponding bit from the '``undef``' is. As such, it is unsafe to
2072optimize or assume that the result of the '``and``' is '``undef``'.
2073However, it is safe to assume that all bits of the '``undef``' could be
20740, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2075all the bits of the '``undef``' operand to the '``or``' could be set,
2076allowing the '``or``' to be folded to -1.
2077
2078.. code-block:: llvm
2079
2080 %A = select undef, %X, %Y
2081 %B = select undef, 42, %Y
2082 %C = select %X, %Y, undef
2083 Safe:
2084 %A = %X (or %Y)
2085 %B = 42 (or %Y)
2086 %C = %Y
2087 Unsafe:
2088 %A = undef
2089 %B = undef
2090 %C = undef
2091
2092This set of examples shows that undefined '``select``' (and conditional
2093branch) conditions can go *either way*, but they have to come from one
2094of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2095both known to have a clear low bit, then ``%A`` would have to have a
2096cleared low bit. However, in the ``%C`` example, the optimizer is
2097allowed to assume that the '``undef``' operand could be the same as
2098``%Y``, allowing the whole '``select``' to be eliminated.
2099
2100.. code-block:: llvm
2101
2102 %A = xor undef, undef
2103
2104 %B = undef
2105 %C = xor %B, %B
2106
2107 %D = undef
2108 %E = icmp lt %D, 4
2109 %F = icmp gte %D, 4
2110
2111 Safe:
2112 %A = undef
2113 %B = undef
2114 %C = undef
2115 %D = undef
2116 %E = undef
2117 %F = undef
2118
2119This example points out that two '``undef``' operands are not
2120necessarily the same. This can be surprising to people (and also matches
2121C semantics) where they assume that "``X^X``" is always zero, even if
2122``X`` is undefined. This isn't true for a number of reasons, but the
2123short answer is that an '``undef``' "variable" can arbitrarily change
2124its value over its "live range". This is true because the variable
2125doesn't actually *have a live range*. Instead, the value is logically
2126read from arbitrary registers that happen to be around when needed, so
2127the value is not necessarily consistent over time. In fact, ``%A`` and
2128``%C`` need to have the same semantics or the core LLVM "replace all
2129uses with" concept would not hold.
2130
2131.. code-block:: llvm
2132
2133 %A = fdiv undef, %X
2134 %B = fdiv %X, undef
2135 Safe:
2136 %A = undef
2137 b: unreachable
2138
2139These examples show the crucial difference between an *undefined value*
2140and *undefined behavior*. An undefined value (like '``undef``') is
2141allowed to have an arbitrary bit-pattern. This means that the ``%A``
2142operation can be constant folded to '``undef``', because the '``undef``'
2143could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2144However, in the second example, we can make a more aggressive
2145assumption: because the ``undef`` is allowed to be an arbitrary value,
2146we are allowed to assume that it could be zero. Since a divide by zero
2147has *undefined behavior*, we are allowed to assume that the operation
2148does not execute at all. This allows us to delete the divide and all
2149code after it. Because the undefined operation "can't happen", the
2150optimizer can assume that it occurs in dead code.
2151
2152.. code-block:: llvm
2153
2154 a: store undef -> %X
2155 b: store %X -> undef
2156 Safe:
2157 a: <deleted>
2158 b: unreachable
2159
2160These examples reiterate the ``fdiv`` example: a store *of* an undefined
2161value can be assumed to not have any effect; we can assume that the
2162value is overwritten with bits that happen to match what was already
2163there. However, a store *to* an undefined location could clobber
2164arbitrary memory, therefore, it has undefined behavior.
2165
2166.. _poisonvalues:
2167
2168Poison Values
2169-------------
2170
2171Poison values are similar to :ref:`undef values <undefvalues>`, however
2172they also represent the fact that an instruction or constant expression
2173which cannot evoke side effects has nevertheless detected a condition
2174which results in undefined behavior.
2175
2176There is currently no way of representing a poison value in the IR; they
2177only exist when produced by operations such as :ref:`add <i_add>` with
2178the ``nsw`` flag.
2179
2180Poison value behavior is defined in terms of value *dependence*:
2181
2182- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2183- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2184 their dynamic predecessor basic block.
2185- Function arguments depend on the corresponding actual argument values
2186 in the dynamic callers of their functions.
2187- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2188 instructions that dynamically transfer control back to them.
2189- :ref:`Invoke <i_invoke>` instructions depend on the
2190 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2191 call instructions that dynamically transfer control back to them.
2192- Non-volatile loads and stores depend on the most recent stores to all
2193 of the referenced memory addresses, following the order in the IR
2194 (including loads and stores implied by intrinsics such as
2195 :ref:`@llvm.memcpy <int_memcpy>`.)
2196- An instruction with externally visible side effects depends on the
2197 most recent preceding instruction with externally visible side
2198 effects, following the order in the IR. (This includes :ref:`volatile
2199 operations <volatile>`.)
2200- An instruction *control-depends* on a :ref:`terminator
2201 instruction <terminators>` if the terminator instruction has
2202 multiple successors and the instruction is always executed when
2203 control transfers to one of the successors, and may not be executed
2204 when control is transferred to another.
2205- Additionally, an instruction also *control-depends* on a terminator
2206 instruction if the set of instructions it otherwise depends on would
2207 be different if the terminator had transferred control to a different
2208 successor.
2209- Dependence is transitive.
2210
2211Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2212with the additional affect that any instruction which has a *dependence*
2213on a poison value has undefined behavior.
2214
2215Here are some examples:
2216
2217.. code-block:: llvm
2218
2219 entry:
2220 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2221 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2222 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2223 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2224
2225 store i32 %poison, i32* @g ; Poison value stored to memory.
2226 %poison2 = load i32* @g ; Poison value loaded back from memory.
2227
2228 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2229
2230 %narrowaddr = bitcast i32* @g to i16*
2231 %wideaddr = bitcast i32* @g to i64*
2232 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2233 %poison4 = load i64* %wideaddr ; Returns a poison value.
2234
2235 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2236 br i1 %cmp, label %true, label %end ; Branch to either destination.
2237
2238 true:
2239 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2240 ; it has undefined behavior.
2241 br label %end
2242
2243 end:
2244 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2245 ; Both edges into this PHI are
2246 ; control-dependent on %cmp, so this
2247 ; always results in a poison value.
2248
2249 store volatile i32 0, i32* @g ; This would depend on the store in %true
2250 ; if %cmp is true, or the store in %entry
2251 ; otherwise, so this is undefined behavior.
2252
2253 br i1 %cmp, label %second_true, label %second_end
2254 ; The same branch again, but this time the
2255 ; true block doesn't have side effects.
2256
2257 second_true:
2258 ; No side effects!
2259 ret void
2260
2261 second_end:
2262 store volatile i32 0, i32* @g ; This time, the instruction always depends
2263 ; on the store in %end. Also, it is
2264 ; control-equivalent to %end, so this is
2265 ; well-defined (ignoring earlier undefined
2266 ; behavior in this example).
2267
2268.. _blockaddress:
2269
2270Addresses of Basic Blocks
2271-------------------------
2272
2273``blockaddress(@function, %block)``
2274
2275The '``blockaddress``' constant computes the address of the specified
2276basic block in the specified function, and always has an ``i8*`` type.
2277Taking the address of the entry block is illegal.
2278
2279This value only has defined behavior when used as an operand to the
2280':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2281against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002282undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002283no label is equal to the null pointer. This may be passed around as an
2284opaque pointer sized value as long as the bits are not inspected. This
2285allows ``ptrtoint`` and arithmetic to be performed on these values so
2286long as the original value is reconstituted before the ``indirectbr``
2287instruction.
2288
2289Finally, some targets may provide defined semantics when using the value
2290as the operand to an inline assembly, but that is target specific.
2291
Eli Bendersky88fe6822013-06-07 20:24:43 +00002292.. _constantexprs:
2293
Sean Silvaf722b002012-12-07 10:36:55 +00002294Constant Expressions
2295--------------------
2296
2297Constant expressions are used to allow expressions involving other
2298constants to be used as constants. Constant expressions may be of any
2299:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2300that does not have side effects (e.g. load and call are not supported).
2301The following is the syntax for constant expressions:
2302
2303``trunc (CST to TYPE)``
2304 Truncate a constant to another type. The bit size of CST must be
2305 larger than the bit size of TYPE. Both types must be integers.
2306``zext (CST to TYPE)``
2307 Zero extend a constant to another type. The bit size of CST must be
2308 smaller than the bit size of TYPE. Both types must be integers.
2309``sext (CST to TYPE)``
2310 Sign extend a constant to another type. The bit size of CST must be
2311 smaller than the bit size of TYPE. Both types must be integers.
2312``fptrunc (CST to TYPE)``
2313 Truncate a floating point constant to another floating point type.
2314 The size of CST must be larger than the size of TYPE. Both types
2315 must be floating point.
2316``fpext (CST to TYPE)``
2317 Floating point extend a constant to another type. The size of CST
2318 must be smaller or equal to the size of TYPE. Both types must be
2319 floating point.
2320``fptoui (CST to TYPE)``
2321 Convert a floating point constant to the corresponding unsigned
2322 integer constant. TYPE must be a scalar or vector integer type. CST
2323 must be of scalar or vector floating point type. Both CST and TYPE
2324 must be scalars, or vectors of the same number of elements. If the
2325 value won't fit in the integer type, the results are undefined.
2326``fptosi (CST to TYPE)``
2327 Convert a floating point constant to the corresponding signed
2328 integer constant. TYPE must be a scalar or vector integer type. CST
2329 must be of scalar or vector floating point type. Both CST and TYPE
2330 must be scalars, or vectors of the same number of elements. If the
2331 value won't fit in the integer type, the results are undefined.
2332``uitofp (CST to TYPE)``
2333 Convert an unsigned integer constant to the corresponding floating
2334 point constant. TYPE must be a scalar or vector floating point type.
2335 CST must be of scalar or vector integer type. Both CST and TYPE must
2336 be scalars, or vectors of the same number of elements. If the value
2337 won't fit in the floating point type, the results are undefined.
2338``sitofp (CST to TYPE)``
2339 Convert a signed integer constant to the corresponding floating
2340 point constant. TYPE must be a scalar or vector floating point type.
2341 CST must be of scalar or vector integer type. Both CST and TYPE must
2342 be scalars, or vectors of the same number of elements. If the value
2343 won't fit in the floating point type, the results are undefined.
2344``ptrtoint (CST to TYPE)``
2345 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002346 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002347 pointer type. The ``CST`` value is zero extended, truncated, or
2348 unchanged to make it fit in ``TYPE``.
2349``inttoptr (CST to TYPE)``
2350 Convert an integer constant to a pointer constant. TYPE must be a
2351 pointer type. CST must be of integer type. The CST value is zero
2352 extended, truncated, or unchanged to make it fit in a pointer size.
2353 This one is *really* dangerous!
2354``bitcast (CST to TYPE)``
2355 Convert a constant, CST, to another TYPE. The constraints of the
2356 operands are the same as those for the :ref:`bitcast
2357 instruction <i_bitcast>`.
2358``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2359 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2360 constants. As with the :ref:`getelementptr <i_getelementptr>`
2361 instruction, the index list may have zero or more indexes, which are
2362 required to make sense for the type of "CSTPTR".
2363``select (COND, VAL1, VAL2)``
2364 Perform the :ref:`select operation <i_select>` on constants.
2365``icmp COND (VAL1, VAL2)``
2366 Performs the :ref:`icmp operation <i_icmp>` on constants.
2367``fcmp COND (VAL1, VAL2)``
2368 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2369``extractelement (VAL, IDX)``
2370 Perform the :ref:`extractelement operation <i_extractelement>` on
2371 constants.
2372``insertelement (VAL, ELT, IDX)``
2373 Perform the :ref:`insertelement operation <i_insertelement>` on
2374 constants.
2375``shufflevector (VEC1, VEC2, IDXMASK)``
2376 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2377 constants.
2378``extractvalue (VAL, IDX0, IDX1, ...)``
2379 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2380 constants. The index list is interpreted in a similar manner as
2381 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2382 least one index value must be specified.
2383``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2384 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2385 The index list is interpreted in a similar manner as indices in a
2386 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2387 value must be specified.
2388``OPCODE (LHS, RHS)``
2389 Perform the specified operation of the LHS and RHS constants. OPCODE
2390 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2391 binary <bitwiseops>` operations. The constraints on operands are
2392 the same as those for the corresponding instruction (e.g. no bitwise
2393 operations on floating point values are allowed).
2394
2395Other Values
2396============
2397
Eli Bendersky88fe6822013-06-07 20:24:43 +00002398.. _inlineasmexprs:
2399
Sean Silvaf722b002012-12-07 10:36:55 +00002400Inline Assembler Expressions
2401----------------------------
2402
2403LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2404Inline Assembly <moduleasm>`) through the use of a special value. This
2405value represents the inline assembler as a string (containing the
2406instructions to emit), a list of operand constraints (stored as a
2407string), a flag that indicates whether or not the inline asm expression
2408has side effects, and a flag indicating whether the function containing
2409the asm needs to align its stack conservatively. An example inline
2410assembler expression is:
2411
2412.. code-block:: llvm
2413
2414 i32 (i32) asm "bswap $0", "=r,r"
2415
2416Inline assembler expressions may **only** be used as the callee operand
2417of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2418Thus, typically we have:
2419
2420.. code-block:: llvm
2421
2422 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2423
2424Inline asms with side effects not visible in the constraint list must be
2425marked as having side effects. This is done through the use of the
2426'``sideeffect``' keyword, like so:
2427
2428.. code-block:: llvm
2429
2430 call void asm sideeffect "eieio", ""()
2431
2432In some cases inline asms will contain code that will not work unless
2433the stack is aligned in some way, such as calls or SSE instructions on
2434x86, yet will not contain code that does that alignment within the asm.
2435The compiler should make conservative assumptions about what the asm
2436might contain and should generate its usual stack alignment code in the
2437prologue if the '``alignstack``' keyword is present:
2438
2439.. code-block:: llvm
2440
2441 call void asm alignstack "eieio", ""()
2442
2443Inline asms also support using non-standard assembly dialects. The
2444assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2445the inline asm is using the Intel dialect. Currently, ATT and Intel are
2446the only supported dialects. An example is:
2447
2448.. code-block:: llvm
2449
2450 call void asm inteldialect "eieio", ""()
2451
2452If multiple keywords appear the '``sideeffect``' keyword must come
2453first, the '``alignstack``' keyword second and the '``inteldialect``'
2454keyword last.
2455
2456Inline Asm Metadata
2457^^^^^^^^^^^^^^^^^^^
2458
2459The call instructions that wrap inline asm nodes may have a
2460"``!srcloc``" MDNode attached to it that contains a list of constant
2461integers. If present, the code generator will use the integer as the
2462location cookie value when report errors through the ``LLVMContext``
2463error reporting mechanisms. This allows a front-end to correlate backend
2464errors that occur with inline asm back to the source code that produced
2465it. For example:
2466
2467.. code-block:: llvm
2468
2469 call void asm sideeffect "something bad", ""(), !srcloc !42
2470 ...
2471 !42 = !{ i32 1234567 }
2472
2473It is up to the front-end to make sense of the magic numbers it places
2474in the IR. If the MDNode contains multiple constants, the code generator
2475will use the one that corresponds to the line of the asm that the error
2476occurs on.
2477
2478.. _metadata:
2479
2480Metadata Nodes and Metadata Strings
2481-----------------------------------
2482
2483LLVM IR allows metadata to be attached to instructions in the program
2484that can convey extra information about the code to the optimizers and
2485code generator. One example application of metadata is source-level
2486debug information. There are two metadata primitives: strings and nodes.
2487All metadata has the ``metadata`` type and is identified in syntax by a
2488preceding exclamation point ('``!``').
2489
2490A metadata string is a string surrounded by double quotes. It can
2491contain any character by escaping non-printable characters with
2492"``\xx``" where "``xx``" is the two digit hex code. For example:
2493"``!"test\00"``".
2494
2495Metadata nodes are represented with notation similar to structure
2496constants (a comma separated list of elements, surrounded by braces and
2497preceded by an exclamation point). Metadata nodes can have any values as
2498their operand. For example:
2499
2500.. code-block:: llvm
2501
2502 !{ metadata !"test\00", i32 10}
2503
2504A :ref:`named metadata <namedmetadatastructure>` is a collection of
2505metadata nodes, which can be looked up in the module symbol table. For
2506example:
2507
2508.. code-block:: llvm
2509
2510 !foo = metadata !{!4, !3}
2511
2512Metadata can be used as function arguments. Here ``llvm.dbg.value``
2513function is using two metadata arguments:
2514
2515.. code-block:: llvm
2516
2517 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2518
2519Metadata can be attached with an instruction. Here metadata ``!21`` is
2520attached to the ``add`` instruction using the ``!dbg`` identifier:
2521
2522.. code-block:: llvm
2523
2524 %indvar.next = add i64 %indvar, 1, !dbg !21
2525
2526More information about specific metadata nodes recognized by the
2527optimizers and code generator is found below.
2528
2529'``tbaa``' Metadata
2530^^^^^^^^^^^^^^^^^^^
2531
2532In LLVM IR, memory does not have types, so LLVM's own type system is not
2533suitable for doing TBAA. Instead, metadata is added to the IR to
2534describe a type system of a higher level language. This can be used to
2535implement typical C/C++ TBAA, but it can also be used to implement
2536custom alias analysis behavior for other languages.
2537
2538The current metadata format is very simple. TBAA metadata nodes have up
2539to three fields, e.g.:
2540
2541.. code-block:: llvm
2542
2543 !0 = metadata !{ metadata !"an example type tree" }
2544 !1 = metadata !{ metadata !"int", metadata !0 }
2545 !2 = metadata !{ metadata !"float", metadata !0 }
2546 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2547
2548The first field is an identity field. It can be any value, usually a
2549metadata string, which uniquely identifies the type. The most important
2550name in the tree is the name of the root node. Two trees with different
2551root node names are entirely disjoint, even if they have leaves with
2552common names.
2553
2554The second field identifies the type's parent node in the tree, or is
2555null or omitted for a root node. A type is considered to alias all of
2556its descendants and all of its ancestors in the tree. Also, a type is
2557considered to alias all types in other trees, so that bitcode produced
2558from multiple front-ends is handled conservatively.
2559
2560If the third field is present, it's an integer which if equal to 1
2561indicates that the type is "constant" (meaning
2562``pointsToConstantMemory`` should return true; see `other useful
2563AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2564
2565'``tbaa.struct``' Metadata
2566^^^^^^^^^^^^^^^^^^^^^^^^^^
2567
2568The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2569aggregate assignment operations in C and similar languages, however it
2570is defined to copy a contiguous region of memory, which is more than
2571strictly necessary for aggregate types which contain holes due to
2572padding. Also, it doesn't contain any TBAA information about the fields
2573of the aggregate.
2574
2575``!tbaa.struct`` metadata can describe which memory subregions in a
2576memcpy are padding and what the TBAA tags of the struct are.
2577
2578The current metadata format is very simple. ``!tbaa.struct`` metadata
2579nodes are a list of operands which are in conceptual groups of three.
2580For each group of three, the first operand gives the byte offset of a
2581field in bytes, the second gives its size in bytes, and the third gives
2582its tbaa tag. e.g.:
2583
2584.. code-block:: llvm
2585
2586 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2587
2588This describes a struct with two fields. The first is at offset 0 bytes
2589with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2590and has size 4 bytes and has tbaa tag !2.
2591
2592Note that the fields need not be contiguous. In this example, there is a
25934 byte gap between the two fields. This gap represents padding which
2594does not carry useful data and need not be preserved.
2595
2596'``fpmath``' Metadata
2597^^^^^^^^^^^^^^^^^^^^^
2598
2599``fpmath`` metadata may be attached to any instruction of floating point
2600type. It can be used to express the maximum acceptable error in the
2601result of that instruction, in ULPs, thus potentially allowing the
2602compiler to use a more efficient but less accurate method of computing
2603it. ULP is defined as follows:
2604
2605 If ``x`` is a real number that lies between two finite consecutive
2606 floating-point numbers ``a`` and ``b``, without being equal to one
2607 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2608 distance between the two non-equal finite floating-point numbers
2609 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2610
2611The metadata node shall consist of a single positive floating point
2612number representing the maximum relative error, for example:
2613
2614.. code-block:: llvm
2615
2616 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2617
2618'``range``' Metadata
2619^^^^^^^^^^^^^^^^^^^^
2620
2621``range`` metadata may be attached only to loads of integer types. It
2622expresses the possible ranges the loaded value is in. The ranges are
2623represented with a flattened list of integers. The loaded value is known
2624to be in the union of the ranges defined by each consecutive pair. Each
2625pair has the following properties:
2626
2627- The type must match the type loaded by the instruction.
2628- The pair ``a,b`` represents the range ``[a,b)``.
2629- Both ``a`` and ``b`` are constants.
2630- The range is allowed to wrap.
2631- The range should not represent the full or empty set. That is,
2632 ``a!=b``.
2633
2634In addition, the pairs must be in signed order of the lower bound and
2635they must be non-contiguous.
2636
2637Examples:
2638
2639.. code-block:: llvm
2640
2641 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2642 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2643 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2644 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2645 ...
2646 !0 = metadata !{ i8 0, i8 2 }
2647 !1 = metadata !{ i8 255, i8 2 }
2648 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2649 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2650
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002651'``llvm.loop``'
2652^^^^^^^^^^^^^^^
2653
2654It is sometimes useful to attach information to loop constructs. Currently,
2655loop metadata is implemented as metadata attached to the branch instruction
2656in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002657guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002658specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002659
2660The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002661itself to avoid merging it with any other identifier metadata, e.g.,
2662during module linkage or function inlining. That is, each loop should refer
2663to their own identification metadata even if they reside in separate functions.
2664The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002665constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002666
2667.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002668
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002669 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002670 !1 = metadata !{ metadata !1 }
2671
Paul Redmondee21b6f2013-05-28 20:00:34 +00002672The loop identifier metadata can be used to specify additional per-loop
2673metadata. Any operands after the first operand can be treated as user-defined
2674metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2675by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002676
Paul Redmondee21b6f2013-05-28 20:00:34 +00002677.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002678
Paul Redmondee21b6f2013-05-28 20:00:34 +00002679 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2680 ...
2681 !0 = metadata !{ metadata !0, metadata !1 }
2682 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002683
2684'``llvm.mem``'
2685^^^^^^^^^^^^^^^
2686
2687Metadata types used to annotate memory accesses with information helpful
2688for optimizations are prefixed with ``llvm.mem``.
2689
2690'``llvm.mem.parallel_loop_access``' Metadata
2691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2692
2693For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002694the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002695also all of the memory accessing instructions in the loop body need to be
2696marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2697is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002698the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002699converted to sequential loops due to optimization passes that are unaware of
2700the parallel semantics and that insert new memory instructions to the loop
2701body.
2702
2703Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002704both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002705metadata types that refer to the same loop identifier metadata.
2706
2707.. code-block:: llvm
2708
2709 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002710 ...
2711 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2712 ...
2713 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2714 ...
2715 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002716
2717 for.end:
2718 ...
2719 !0 = metadata !{ metadata !0 }
2720
2721It is also possible to have nested parallel loops. In that case the
2722memory accesses refer to a list of loop identifier metadata nodes instead of
2723the loop identifier metadata node directly:
2724
2725.. code-block:: llvm
2726
2727 outer.for.body:
2728 ...
2729
2730 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002731 ...
2732 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2733 ...
2734 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2735 ...
2736 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002737
2738 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002739 ...
2740 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2741 ...
2742 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2743 ...
2744 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002745
2746 outer.for.end: ; preds = %for.body
2747 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002748 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2749 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2750 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002751
Paul Redmondee21b6f2013-05-28 20:00:34 +00002752'``llvm.vectorizer``'
2753^^^^^^^^^^^^^^^^^^^^^
2754
2755Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2756vectorization parameters such as vectorization factor and unroll factor.
2757
2758``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2759loop identification metadata.
2760
2761'``llvm.vectorizer.unroll``' Metadata
2762^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2763
2764This metadata instructs the loop vectorizer to unroll the specified
2765loop exactly ``N`` times.
2766
2767The first operand is the string ``llvm.vectorizer.unroll`` and the second
2768operand is an integer specifying the unroll factor. For example:
2769
2770.. code-block:: llvm
2771
2772 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2773
2774Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2775loop.
2776
2777If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2778determined automatically.
2779
2780'``llvm.vectorizer.width``' Metadata
2781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2782
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002783This metadata sets the target width of the vectorizer to ``N``. Without
2784this metadata, the vectorizer will choose a width automatically.
2785Regardless of this metadata, the vectorizer will only vectorize loops if
2786it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002787
2788The first operand is the string ``llvm.vectorizer.width`` and the second
2789operand is an integer specifying the width. For example:
2790
2791.. code-block:: llvm
2792
2793 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2794
2795Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2796loop.
2797
2798If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2799automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002800
Sean Silvaf722b002012-12-07 10:36:55 +00002801Module Flags Metadata
2802=====================
2803
2804Information about the module as a whole is difficult to convey to LLVM's
2805subsystems. The LLVM IR isn't sufficient to transmit this information.
2806The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002807this. These flags are in the form of key / value pairs --- much like a
2808dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002809look it up.
2810
2811The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2812Each triplet has the following form:
2813
2814- The first element is a *behavior* flag, which specifies the behavior
2815 when two (or more) modules are merged together, and it encounters two
2816 (or more) metadata with the same ID. The supported behaviors are
2817 described below.
2818- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002819 metadata. Each module may only have one flag entry for each unique ID (not
2820 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002821- The third element is the value of the flag.
2822
2823When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002824``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2825each unique metadata ID string, there will be exactly one entry in the merged
2826modules ``llvm.module.flags`` metadata table, and the value for that entry will
2827be determined by the merge behavior flag, as described below. The only exception
2828is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002829
2830The following behaviors are supported:
2831
2832.. list-table::
2833 :header-rows: 1
2834 :widths: 10 90
2835
2836 * - Value
2837 - Behavior
2838
2839 * - 1
2840 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002841 Emits an error if two values disagree, otherwise the resulting value
2842 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002843
2844 * - 2
2845 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002846 Emits a warning if two values disagree. The result value will be the
2847 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002848
2849 * - 3
2850 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002851 Adds a requirement that another module flag be present and have a
2852 specified value after linking is performed. The value must be a
2853 metadata pair, where the first element of the pair is the ID of the
2854 module flag to be restricted, and the second element of the pair is
2855 the value the module flag should be restricted to. This behavior can
2856 be used to restrict the allowable results (via triggering of an
2857 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002858
2859 * - 4
2860 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002861 Uses the specified value, regardless of the behavior or value of the
2862 other module. If both modules specify **Override**, but the values
2863 differ, an error will be emitted.
2864
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002865 * - 5
2866 - **Append**
2867 Appends the two values, which are required to be metadata nodes.
2868
2869 * - 6
2870 - **AppendUnique**
2871 Appends the two values, which are required to be metadata
2872 nodes. However, duplicate entries in the second list are dropped
2873 during the append operation.
2874
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002875It is an error for a particular unique flag ID to have multiple behaviors,
2876except in the case of **Require** (which adds restrictions on another metadata
2877value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002878
2879An example of module flags:
2880
2881.. code-block:: llvm
2882
2883 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2884 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2885 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2886 !3 = metadata !{ i32 3, metadata !"qux",
2887 metadata !{
2888 metadata !"foo", i32 1
2889 }
2890 }
2891 !llvm.module.flags = !{ !0, !1, !2, !3 }
2892
2893- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2894 if two or more ``!"foo"`` flags are seen is to emit an error if their
2895 values are not equal.
2896
2897- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2898 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002899 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002900
2901- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2902 behavior if two or more ``!"qux"`` flags are seen is to emit a
2903 warning if their values are not equal.
2904
2905- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2906
2907 ::
2908
2909 metadata !{ metadata !"foo", i32 1 }
2910
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002911 The behavior is to emit an error if the ``llvm.module.flags`` does not
2912 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2913 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002914
2915Objective-C Garbage Collection Module Flags Metadata
2916----------------------------------------------------
2917
2918On the Mach-O platform, Objective-C stores metadata about garbage
2919collection in a special section called "image info". The metadata
2920consists of a version number and a bitmask specifying what types of
2921garbage collection are supported (if any) by the file. If two or more
2922modules are linked together their garbage collection metadata needs to
2923be merged rather than appended together.
2924
2925The Objective-C garbage collection module flags metadata consists of the
2926following key-value pairs:
2927
2928.. list-table::
2929 :header-rows: 1
2930 :widths: 30 70
2931
2932 * - Key
2933 - Value
2934
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002935 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002936 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002937
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002938 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002939 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002940 always 0.
2941
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002942 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002943 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002944 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2945 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2946 Objective-C ABI version 2.
2947
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002948 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002949 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002950 not. Valid values are 0, for no garbage collection, and 2, for garbage
2951 collection supported.
2952
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002953 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002954 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002955 If present, its value must be 6. This flag requires that the
2956 ``Objective-C Garbage Collection`` flag have the value 2.
2957
2958Some important flag interactions:
2959
2960- If a module with ``Objective-C Garbage Collection`` set to 0 is
2961 merged with a module with ``Objective-C Garbage Collection`` set to
2962 2, then the resulting module has the
2963 ``Objective-C Garbage Collection`` flag set to 0.
2964- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2965 merged with a module with ``Objective-C GC Only`` set to 6.
2966
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002967Automatic Linker Flags Module Flags Metadata
2968--------------------------------------------
2969
2970Some targets support embedding flags to the linker inside individual object
2971files. Typically this is used in conjunction with language extensions which
2972allow source files to explicitly declare the libraries they depend on, and have
2973these automatically be transmitted to the linker via object files.
2974
2975These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002976using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002977to be ``AppendUnique``, and the value for the key is expected to be a metadata
2978node which should be a list of other metadata nodes, each of which should be a
2979list of metadata strings defining linker options.
2980
2981For example, the following metadata section specifies two separate sets of
2982linker options, presumably to link against ``libz`` and the ``Cocoa``
2983framework::
2984
Michael Liao2faa0f32013-03-06 18:24:34 +00002985 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002986 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002987 metadata !{ metadata !"-lz" },
2988 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002989 !llvm.module.flags = !{ !0 }
2990
2991The metadata encoding as lists of lists of options, as opposed to a collapsed
2992list of options, is chosen so that the IR encoding can use multiple option
2993strings to specify e.g., a single library, while still having that specifier be
2994preserved as an atomic element that can be recognized by a target specific
2995assembly writer or object file emitter.
2996
2997Each individual option is required to be either a valid option for the target's
2998linker, or an option that is reserved by the target specific assembly writer or
2999object file emitter. No other aspect of these options is defined by the IR.
3000
Eli Bendersky88fe6822013-06-07 20:24:43 +00003001.. _intrinsicglobalvariables:
3002
Sean Silvaf722b002012-12-07 10:36:55 +00003003Intrinsic Global Variables
3004==========================
3005
3006LLVM has a number of "magic" global variables that contain data that
3007affect code generation or other IR semantics. These are documented here.
3008All globals of this sort should have a section specified as
3009"``llvm.metadata``". This section and all globals that start with
3010"``llvm.``" are reserved for use by LLVM.
3011
Eli Bendersky88fe6822013-06-07 20:24:43 +00003012.. _gv_llvmused:
3013
Sean Silvaf722b002012-12-07 10:36:55 +00003014The '``llvm.used``' Global Variable
3015-----------------------------------
3016
Rafael Espindolacde25b42013-04-22 14:58:02 +00003017The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00003018:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003019pointers to named global variables, functions and aliases which may optionally
3020have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00003021use of it is:
3022
3023.. code-block:: llvm
3024
3025 @X = global i8 4
3026 @Y = global i32 123
3027
3028 @llvm.used = appending global [2 x i8*] [
3029 i8* @X,
3030 i8* bitcast (i32* @Y to i8*)
3031 ], section "llvm.metadata"
3032
Rafael Espindolacde25b42013-04-22 14:58:02 +00003033If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3034and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00003035symbol that it cannot see (which is why they have to be named). For example, if
3036a variable has internal linkage and no references other than that from the
3037``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3038references from inline asms and other things the compiler cannot "see", and
3039corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00003040
3041On some targets, the code generator must emit a directive to the
3042assembler or object file to prevent the assembler and linker from
3043molesting the symbol.
3044
Eli Bendersky88fe6822013-06-07 20:24:43 +00003045.. _gv_llvmcompilerused:
3046
Sean Silvaf722b002012-12-07 10:36:55 +00003047The '``llvm.compiler.used``' Global Variable
3048--------------------------------------------
3049
3050The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3051directive, except that it only prevents the compiler from touching the
3052symbol. On targets that support it, this allows an intelligent linker to
3053optimize references to the symbol without being impeded as it would be
3054by ``@llvm.used``.
3055
3056This is a rare construct that should only be used in rare circumstances,
3057and should not be exposed to source languages.
3058
Eli Bendersky88fe6822013-06-07 20:24:43 +00003059.. _gv_llvmglobalctors:
3060
Sean Silvaf722b002012-12-07 10:36:55 +00003061The '``llvm.global_ctors``' Global Variable
3062-------------------------------------------
3063
3064.. code-block:: llvm
3065
3066 %0 = type { i32, void ()* }
3067 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3068
3069The ``@llvm.global_ctors`` array contains a list of constructor
3070functions and associated priorities. The functions referenced by this
3071array will be called in ascending order of priority (i.e. lowest first)
3072when the module is loaded. The order of functions with the same priority
3073is not defined.
3074
Eli Bendersky88fe6822013-06-07 20:24:43 +00003075.. _llvmglobaldtors:
3076
Sean Silvaf722b002012-12-07 10:36:55 +00003077The '``llvm.global_dtors``' Global Variable
3078-------------------------------------------
3079
3080.. code-block:: llvm
3081
3082 %0 = type { i32, void ()* }
3083 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3084
3085The ``@llvm.global_dtors`` array contains a list of destructor functions
3086and associated priorities. The functions referenced by this array will
3087be called in descending order of priority (i.e. highest first) when the
3088module is loaded. The order of functions with the same priority is not
3089defined.
3090
3091Instruction Reference
3092=====================
3093
3094The LLVM instruction set consists of several different classifications
3095of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3096instructions <binaryops>`, :ref:`bitwise binary
3097instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3098:ref:`other instructions <otherops>`.
3099
3100.. _terminators:
3101
3102Terminator Instructions
3103-----------------------
3104
3105As mentioned :ref:`previously <functionstructure>`, every basic block in a
3106program ends with a "Terminator" instruction, which indicates which
3107block should be executed after the current block is finished. These
3108terminator instructions typically yield a '``void``' value: they produce
3109control flow, not values (the one exception being the
3110':ref:`invoke <i_invoke>`' instruction).
3111
3112The terminator instructions are: ':ref:`ret <i_ret>`',
3113':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3114':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3115':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3116
3117.. _i_ret:
3118
3119'``ret``' Instruction
3120^^^^^^^^^^^^^^^^^^^^^
3121
3122Syntax:
3123"""""""
3124
3125::
3126
3127 ret <type> <value> ; Return a value from a non-void function
3128 ret void ; Return from void function
3129
3130Overview:
3131"""""""""
3132
3133The '``ret``' instruction is used to return control flow (and optionally
3134a value) from a function back to the caller.
3135
3136There are two forms of the '``ret``' instruction: one that returns a
3137value and then causes control flow, and one that just causes control
3138flow to occur.
3139
3140Arguments:
3141""""""""""
3142
3143The '``ret``' instruction optionally accepts a single argument, the
3144return value. The type of the return value must be a ':ref:`first
3145class <t_firstclass>`' type.
3146
3147A function is not :ref:`well formed <wellformed>` if it it has a non-void
3148return type and contains a '``ret``' instruction with no return value or
3149a return value with a type that does not match its type, or if it has a
3150void return type and contains a '``ret``' instruction with a return
3151value.
3152
3153Semantics:
3154""""""""""
3155
3156When the '``ret``' instruction is executed, control flow returns back to
3157the calling function's context. If the caller is a
3158":ref:`call <i_call>`" instruction, execution continues at the
3159instruction after the call. If the caller was an
3160":ref:`invoke <i_invoke>`" instruction, execution continues at the
3161beginning of the "normal" destination block. If the instruction returns
3162a value, that value shall set the call or invoke instruction's return
3163value.
3164
3165Example:
3166""""""""
3167
3168.. code-block:: llvm
3169
3170 ret i32 5 ; Return an integer value of 5
3171 ret void ; Return from a void function
3172 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3173
3174.. _i_br:
3175
3176'``br``' Instruction
3177^^^^^^^^^^^^^^^^^^^^
3178
3179Syntax:
3180"""""""
3181
3182::
3183
3184 br i1 <cond>, label <iftrue>, label <iffalse>
3185 br label <dest> ; Unconditional branch
3186
3187Overview:
3188"""""""""
3189
3190The '``br``' instruction is used to cause control flow to transfer to a
3191different basic block in the current function. There are two forms of
3192this instruction, corresponding to a conditional branch and an
3193unconditional branch.
3194
3195Arguments:
3196""""""""""
3197
3198The conditional branch form of the '``br``' instruction takes a single
3199'``i1``' value and two '``label``' values. The unconditional form of the
3200'``br``' instruction takes a single '``label``' value as a target.
3201
3202Semantics:
3203""""""""""
3204
3205Upon execution of a conditional '``br``' instruction, the '``i1``'
3206argument is evaluated. If the value is ``true``, control flows to the
3207'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3208to the '``iffalse``' ``label`` argument.
3209
3210Example:
3211""""""""
3212
3213.. code-block:: llvm
3214
3215 Test:
3216 %cond = icmp eq i32 %a, %b
3217 br i1 %cond, label %IfEqual, label %IfUnequal
3218 IfEqual:
3219 ret i32 1
3220 IfUnequal:
3221 ret i32 0
3222
3223.. _i_switch:
3224
3225'``switch``' Instruction
3226^^^^^^^^^^^^^^^^^^^^^^^^
3227
3228Syntax:
3229"""""""
3230
3231::
3232
3233 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3234
3235Overview:
3236"""""""""
3237
3238The '``switch``' instruction is used to transfer control flow to one of
3239several different places. It is a generalization of the '``br``'
3240instruction, allowing a branch to occur to one of many possible
3241destinations.
3242
3243Arguments:
3244""""""""""
3245
3246The '``switch``' instruction uses three parameters: an integer
3247comparison value '``value``', a default '``label``' destination, and an
3248array of pairs of comparison value constants and '``label``'s. The table
3249is not allowed to contain duplicate constant entries.
3250
3251Semantics:
3252""""""""""
3253
3254The ``switch`` instruction specifies a table of values and destinations.
3255When the '``switch``' instruction is executed, this table is searched
3256for the given value. If the value is found, control flow is transferred
3257to the corresponding destination; otherwise, control flow is transferred
3258to the default destination.
3259
3260Implementation:
3261"""""""""""""""
3262
3263Depending on properties of the target machine and the particular
3264``switch`` instruction, this instruction may be code generated in
3265different ways. For example, it could be generated as a series of
3266chained conditional branches or with a lookup table.
3267
3268Example:
3269""""""""
3270
3271.. code-block:: llvm
3272
3273 ; Emulate a conditional br instruction
3274 %Val = zext i1 %value to i32
3275 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3276
3277 ; Emulate an unconditional br instruction
3278 switch i32 0, label %dest [ ]
3279
3280 ; Implement a jump table:
3281 switch i32 %val, label %otherwise [ i32 0, label %onzero
3282 i32 1, label %onone
3283 i32 2, label %ontwo ]
3284
3285.. _i_indirectbr:
3286
3287'``indirectbr``' Instruction
3288^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3289
3290Syntax:
3291"""""""
3292
3293::
3294
3295 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3296
3297Overview:
3298"""""""""
3299
3300The '``indirectbr``' instruction implements an indirect branch to a
3301label within the current function, whose address is specified by
3302"``address``". Address must be derived from a
3303:ref:`blockaddress <blockaddress>` constant.
3304
3305Arguments:
3306""""""""""
3307
3308The '``address``' argument is the address of the label to jump to. The
3309rest of the arguments indicate the full set of possible destinations
3310that the address may point to. Blocks are allowed to occur multiple
3311times in the destination list, though this isn't particularly useful.
3312
3313This destination list is required so that dataflow analysis has an
3314accurate understanding of the CFG.
3315
3316Semantics:
3317""""""""""
3318
3319Control transfers to the block specified in the address argument. All
3320possible destination blocks must be listed in the label list, otherwise
3321this instruction has undefined behavior. This implies that jumps to
3322labels defined in other functions have undefined behavior as well.
3323
3324Implementation:
3325"""""""""""""""
3326
3327This is typically implemented with a jump through a register.
3328
3329Example:
3330""""""""
3331
3332.. code-block:: llvm
3333
3334 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3335
3336.. _i_invoke:
3337
3338'``invoke``' Instruction
3339^^^^^^^^^^^^^^^^^^^^^^^^
3340
3341Syntax:
3342"""""""
3343
3344::
3345
3346 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3347 to label <normal label> unwind label <exception label>
3348
3349Overview:
3350"""""""""
3351
3352The '``invoke``' instruction causes control to transfer to a specified
3353function, with the possibility of control flow transfer to either the
3354'``normal``' label or the '``exception``' label. If the callee function
3355returns with the "``ret``" instruction, control flow will return to the
3356"normal" label. If the callee (or any indirect callees) returns via the
3357":ref:`resume <i_resume>`" instruction or other exception handling
3358mechanism, control is interrupted and continued at the dynamically
3359nearest "exception" label.
3360
3361The '``exception``' label is a `landing
3362pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3363'``exception``' label is required to have the
3364":ref:`landingpad <i_landingpad>`" instruction, which contains the
3365information about the behavior of the program after unwinding happens,
3366as its first non-PHI instruction. The restrictions on the
3367"``landingpad``" instruction's tightly couples it to the "``invoke``"
3368instruction, so that the important information contained within the
3369"``landingpad``" instruction can't be lost through normal code motion.
3370
3371Arguments:
3372""""""""""
3373
3374This instruction requires several arguments:
3375
3376#. The optional "cconv" marker indicates which :ref:`calling
3377 convention <callingconv>` the call should use. If none is
3378 specified, the call defaults to using C calling conventions.
3379#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3380 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3381 are valid here.
3382#. '``ptr to function ty``': shall be the signature of the pointer to
3383 function value being invoked. In most cases, this is a direct
3384 function invocation, but indirect ``invoke``'s are just as possible,
3385 branching off an arbitrary pointer to function value.
3386#. '``function ptr val``': An LLVM value containing a pointer to a
3387 function to be invoked.
3388#. '``function args``': argument list whose types match the function
3389 signature argument types and parameter attributes. All arguments must
3390 be of :ref:`first class <t_firstclass>` type. If the function signature
3391 indicates the function accepts a variable number of arguments, the
3392 extra arguments can be specified.
3393#. '``normal label``': the label reached when the called function
3394 executes a '``ret``' instruction.
3395#. '``exception label``': the label reached when a callee returns via
3396 the :ref:`resume <i_resume>` instruction or other exception handling
3397 mechanism.
3398#. The optional :ref:`function attributes <fnattrs>` list. Only
3399 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3400 attributes are valid here.
3401
3402Semantics:
3403""""""""""
3404
3405This instruction is designed to operate as a standard '``call``'
3406instruction in most regards. The primary difference is that it
3407establishes an association with a label, which is used by the runtime
3408library to unwind the stack.
3409
3410This instruction is used in languages with destructors to ensure that
3411proper cleanup is performed in the case of either a ``longjmp`` or a
3412thrown exception. Additionally, this is important for implementation of
3413'``catch``' clauses in high-level languages that support them.
3414
3415For the purposes of the SSA form, the definition of the value returned
3416by the '``invoke``' instruction is deemed to occur on the edge from the
3417current block to the "normal" label. If the callee unwinds then no
3418return value is available.
3419
3420Example:
3421""""""""
3422
3423.. code-block:: llvm
3424
3425 %retval = invoke i32 @Test(i32 15) to label %Continue
3426 unwind label %TestCleanup ; {i32}:retval set
3427 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3428 unwind label %TestCleanup ; {i32}:retval set
3429
3430.. _i_resume:
3431
3432'``resume``' Instruction
3433^^^^^^^^^^^^^^^^^^^^^^^^
3434
3435Syntax:
3436"""""""
3437
3438::
3439
3440 resume <type> <value>
3441
3442Overview:
3443"""""""""
3444
3445The '``resume``' instruction is a terminator instruction that has no
3446successors.
3447
3448Arguments:
3449""""""""""
3450
3451The '``resume``' instruction requires one argument, which must have the
3452same type as the result of any '``landingpad``' instruction in the same
3453function.
3454
3455Semantics:
3456""""""""""
3457
3458The '``resume``' instruction resumes propagation of an existing
3459(in-flight) exception whose unwinding was interrupted with a
3460:ref:`landingpad <i_landingpad>` instruction.
3461
3462Example:
3463""""""""
3464
3465.. code-block:: llvm
3466
3467 resume { i8*, i32 } %exn
3468
3469.. _i_unreachable:
3470
3471'``unreachable``' Instruction
3472^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3473
3474Syntax:
3475"""""""
3476
3477::
3478
3479 unreachable
3480
3481Overview:
3482"""""""""
3483
3484The '``unreachable``' instruction has no defined semantics. This
3485instruction is used to inform the optimizer that a particular portion of
3486the code is not reachable. This can be used to indicate that the code
3487after a no-return function cannot be reached, and other facts.
3488
3489Semantics:
3490""""""""""
3491
3492The '``unreachable``' instruction has no defined semantics.
3493
3494.. _binaryops:
3495
3496Binary Operations
3497-----------------
3498
3499Binary operators are used to do most of the computation in a program.
3500They require two operands of the same type, execute an operation on
3501them, and produce a single value. The operands might represent multiple
3502data, as is the case with the :ref:`vector <t_vector>` data type. The
3503result value has the same type as its operands.
3504
3505There are several different binary operators:
3506
3507.. _i_add:
3508
3509'``add``' Instruction
3510^^^^^^^^^^^^^^^^^^^^^
3511
3512Syntax:
3513"""""""
3514
3515::
3516
3517 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3518 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3519 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3520 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3521
3522Overview:
3523"""""""""
3524
3525The '``add``' instruction returns the sum of its two operands.
3526
3527Arguments:
3528""""""""""
3529
3530The two arguments to the '``add``' instruction must be
3531:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3532arguments must have identical types.
3533
3534Semantics:
3535""""""""""
3536
3537The value produced is the integer sum of the two operands.
3538
3539If the sum has unsigned overflow, the result returned is the
3540mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3541the result.
3542
3543Because LLVM integers use a two's complement representation, this
3544instruction is appropriate for both signed and unsigned integers.
3545
3546``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3547respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3548result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3549unsigned and/or signed overflow, respectively, occurs.
3550
3551Example:
3552""""""""
3553
3554.. code-block:: llvm
3555
3556 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3557
3558.. _i_fadd:
3559
3560'``fadd``' Instruction
3561^^^^^^^^^^^^^^^^^^^^^^
3562
3563Syntax:
3564"""""""
3565
3566::
3567
3568 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3569
3570Overview:
3571"""""""""
3572
3573The '``fadd``' instruction returns the sum of its two operands.
3574
3575Arguments:
3576""""""""""
3577
3578The two arguments to the '``fadd``' instruction must be :ref:`floating
3579point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3580Both arguments must have identical types.
3581
3582Semantics:
3583""""""""""
3584
3585The value produced is the floating point sum of the two operands. This
3586instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3587which are optimization hints to enable otherwise unsafe floating point
3588optimizations:
3589
3590Example:
3591""""""""
3592
3593.. code-block:: llvm
3594
3595 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3596
3597'``sub``' Instruction
3598^^^^^^^^^^^^^^^^^^^^^
3599
3600Syntax:
3601"""""""
3602
3603::
3604
3605 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3606 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3607 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3608 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3609
3610Overview:
3611"""""""""
3612
3613The '``sub``' instruction returns the difference of its two operands.
3614
3615Note that the '``sub``' instruction is used to represent the '``neg``'
3616instruction present in most other intermediate representations.
3617
3618Arguments:
3619""""""""""
3620
3621The two arguments to the '``sub``' instruction must be
3622:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3623arguments must have identical types.
3624
3625Semantics:
3626""""""""""
3627
3628The value produced is the integer difference of the two operands.
3629
3630If the difference has unsigned overflow, the result returned is the
3631mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3632the result.
3633
3634Because LLVM integers use a two's complement representation, this
3635instruction is appropriate for both signed and unsigned integers.
3636
3637``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3638respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3639result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3640unsigned and/or signed overflow, respectively, occurs.
3641
3642Example:
3643""""""""
3644
3645.. code-block:: llvm
3646
3647 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3648 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3649
3650.. _i_fsub:
3651
3652'``fsub``' Instruction
3653^^^^^^^^^^^^^^^^^^^^^^
3654
3655Syntax:
3656"""""""
3657
3658::
3659
3660 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3661
3662Overview:
3663"""""""""
3664
3665The '``fsub``' instruction returns the difference of its two operands.
3666
3667Note that the '``fsub``' instruction is used to represent the '``fneg``'
3668instruction present in most other intermediate representations.
3669
3670Arguments:
3671""""""""""
3672
3673The two arguments to the '``fsub``' instruction must be :ref:`floating
3674point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3675Both arguments must have identical types.
3676
3677Semantics:
3678""""""""""
3679
3680The value produced is the floating point difference of the two operands.
3681This instruction can also take any number of :ref:`fast-math
3682flags <fastmath>`, which are optimization hints to enable otherwise
3683unsafe floating point optimizations:
3684
3685Example:
3686""""""""
3687
3688.. code-block:: llvm
3689
3690 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3691 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3692
3693'``mul``' Instruction
3694^^^^^^^^^^^^^^^^^^^^^
3695
3696Syntax:
3697"""""""
3698
3699::
3700
3701 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3702 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3703 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3704 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3705
3706Overview:
3707"""""""""
3708
3709The '``mul``' instruction returns the product of its two operands.
3710
3711Arguments:
3712""""""""""
3713
3714The two arguments to the '``mul``' instruction must be
3715:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3716arguments must have identical types.
3717
3718Semantics:
3719""""""""""
3720
3721The value produced is the integer product of the two operands.
3722
3723If the result of the multiplication has unsigned overflow, the result
3724returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3725bit width of the result.
3726
3727Because LLVM integers use a two's complement representation, and the
3728result is the same width as the operands, this instruction returns the
3729correct result for both signed and unsigned integers. If a full product
3730(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3731sign-extended or zero-extended as appropriate to the width of the full
3732product.
3733
3734``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3735respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3736result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3737unsigned and/or signed overflow, respectively, occurs.
3738
3739Example:
3740""""""""
3741
3742.. code-block:: llvm
3743
3744 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3745
3746.. _i_fmul:
3747
3748'``fmul``' Instruction
3749^^^^^^^^^^^^^^^^^^^^^^
3750
3751Syntax:
3752"""""""
3753
3754::
3755
3756 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3757
3758Overview:
3759"""""""""
3760
3761The '``fmul``' instruction returns the product of its two operands.
3762
3763Arguments:
3764""""""""""
3765
3766The two arguments to the '``fmul``' instruction must be :ref:`floating
3767point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3768Both arguments must have identical types.
3769
3770Semantics:
3771""""""""""
3772
3773The value produced is the floating point product of the two operands.
3774This instruction can also take any number of :ref:`fast-math
3775flags <fastmath>`, which are optimization hints to enable otherwise
3776unsafe floating point optimizations:
3777
3778Example:
3779""""""""
3780
3781.. code-block:: llvm
3782
3783 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3784
3785'``udiv``' Instruction
3786^^^^^^^^^^^^^^^^^^^^^^
3787
3788Syntax:
3789"""""""
3790
3791::
3792
3793 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3794 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3795
3796Overview:
3797"""""""""
3798
3799The '``udiv``' instruction returns the quotient of its two operands.
3800
3801Arguments:
3802""""""""""
3803
3804The two arguments to the '``udiv``' instruction must be
3805:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3806arguments must have identical types.
3807
3808Semantics:
3809""""""""""
3810
3811The value produced is the unsigned integer quotient of the two operands.
3812
3813Note that unsigned integer division and signed integer division are
3814distinct operations; for signed integer division, use '``sdiv``'.
3815
3816Division by zero leads to undefined behavior.
3817
3818If the ``exact`` keyword is present, the result value of the ``udiv`` is
3819a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3820such, "((a udiv exact b) mul b) == a").
3821
3822Example:
3823""""""""
3824
3825.. code-block:: llvm
3826
3827 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3828
3829'``sdiv``' Instruction
3830^^^^^^^^^^^^^^^^^^^^^^
3831
3832Syntax:
3833"""""""
3834
3835::
3836
3837 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3838 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3839
3840Overview:
3841"""""""""
3842
3843The '``sdiv``' instruction returns the quotient of its two operands.
3844
3845Arguments:
3846""""""""""
3847
3848The two arguments to the '``sdiv``' instruction must be
3849:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3850arguments must have identical types.
3851
3852Semantics:
3853""""""""""
3854
3855The value produced is the signed integer quotient of the two operands
3856rounded towards zero.
3857
3858Note that signed integer division and unsigned integer division are
3859distinct operations; for unsigned integer division, use '``udiv``'.
3860
3861Division by zero leads to undefined behavior. Overflow also leads to
3862undefined behavior; this is a rare case, but can occur, for example, by
3863doing a 32-bit division of -2147483648 by -1.
3864
3865If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3866a :ref:`poison value <poisonvalues>` if the result would be rounded.
3867
3868Example:
3869""""""""
3870
3871.. code-block:: llvm
3872
3873 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3874
3875.. _i_fdiv:
3876
3877'``fdiv``' Instruction
3878^^^^^^^^^^^^^^^^^^^^^^
3879
3880Syntax:
3881"""""""
3882
3883::
3884
3885 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3886
3887Overview:
3888"""""""""
3889
3890The '``fdiv``' instruction returns the quotient of its two operands.
3891
3892Arguments:
3893""""""""""
3894
3895The two arguments to the '``fdiv``' instruction must be :ref:`floating
3896point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3897Both arguments must have identical types.
3898
3899Semantics:
3900""""""""""
3901
3902The value produced is the floating point quotient of the two operands.
3903This instruction can also take any number of :ref:`fast-math
3904flags <fastmath>`, which are optimization hints to enable otherwise
3905unsafe floating point optimizations:
3906
3907Example:
3908""""""""
3909
3910.. code-block:: llvm
3911
3912 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3913
3914'``urem``' Instruction
3915^^^^^^^^^^^^^^^^^^^^^^
3916
3917Syntax:
3918"""""""
3919
3920::
3921
3922 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3923
3924Overview:
3925"""""""""
3926
3927The '``urem``' instruction returns the remainder from the unsigned
3928division of its two arguments.
3929
3930Arguments:
3931""""""""""
3932
3933The two arguments to the '``urem``' instruction must be
3934:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3935arguments must have identical types.
3936
3937Semantics:
3938""""""""""
3939
3940This instruction returns the unsigned integer *remainder* of a division.
3941This instruction always performs an unsigned division to get the
3942remainder.
3943
3944Note that unsigned integer remainder and signed integer remainder are
3945distinct operations; for signed integer remainder, use '``srem``'.
3946
3947Taking the remainder of a division by zero leads to undefined behavior.
3948
3949Example:
3950""""""""
3951
3952.. code-block:: llvm
3953
3954 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3955
3956'``srem``' Instruction
3957^^^^^^^^^^^^^^^^^^^^^^
3958
3959Syntax:
3960"""""""
3961
3962::
3963
3964 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3965
3966Overview:
3967"""""""""
3968
3969The '``srem``' instruction returns the remainder from the signed
3970division of its two operands. This instruction can also take
3971:ref:`vector <t_vector>` versions of the values in which case the elements
3972must be integers.
3973
3974Arguments:
3975""""""""""
3976
3977The two arguments to the '``srem``' instruction must be
3978:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3979arguments must have identical types.
3980
3981Semantics:
3982""""""""""
3983
3984This instruction returns the *remainder* of a division (where the result
3985is either zero or has the same sign as the dividend, ``op1``), not the
3986*modulo* operator (where the result is either zero or has the same sign
3987as the divisor, ``op2``) of a value. For more information about the
3988difference, see `The Math
3989Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3990table of how this is implemented in various languages, please see
3991`Wikipedia: modulo
3992operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3993
3994Note that signed integer remainder and unsigned integer remainder are
3995distinct operations; for unsigned integer remainder, use '``urem``'.
3996
3997Taking the remainder of a division by zero leads to undefined behavior.
3998Overflow also leads to undefined behavior; this is a rare case, but can
3999occur, for example, by taking the remainder of a 32-bit division of
4000-2147483648 by -1. (The remainder doesn't actually overflow, but this
4001rule lets srem be implemented using instructions that return both the
4002result of the division and the remainder.)
4003
4004Example:
4005""""""""
4006
4007.. code-block:: llvm
4008
4009 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4010
4011.. _i_frem:
4012
4013'``frem``' Instruction
4014^^^^^^^^^^^^^^^^^^^^^^
4015
4016Syntax:
4017"""""""
4018
4019::
4020
4021 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4022
4023Overview:
4024"""""""""
4025
4026The '``frem``' instruction returns the remainder from the division of
4027its two operands.
4028
4029Arguments:
4030""""""""""
4031
4032The two arguments to the '``frem``' instruction must be :ref:`floating
4033point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4034Both arguments must have identical types.
4035
4036Semantics:
4037""""""""""
4038
4039This instruction returns the *remainder* of a division. The remainder
4040has the same sign as the dividend. This instruction can also take any
4041number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4042to enable otherwise unsafe floating point optimizations:
4043
4044Example:
4045""""""""
4046
4047.. code-block:: llvm
4048
4049 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4050
4051.. _bitwiseops:
4052
4053Bitwise Binary Operations
4054-------------------------
4055
4056Bitwise binary operators are used to do various forms of bit-twiddling
4057in a program. They are generally very efficient instructions and can
4058commonly be strength reduced from other instructions. They require two
4059operands of the same type, execute an operation on them, and produce a
4060single value. The resulting value is the same type as its operands.
4061
4062'``shl``' Instruction
4063^^^^^^^^^^^^^^^^^^^^^
4064
4065Syntax:
4066"""""""
4067
4068::
4069
4070 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4071 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4072 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4073 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4074
4075Overview:
4076"""""""""
4077
4078The '``shl``' instruction returns the first operand shifted to the left
4079a specified number of bits.
4080
4081Arguments:
4082""""""""""
4083
4084Both arguments to the '``shl``' instruction must be the same
4085:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4086'``op2``' is treated as an unsigned value.
4087
4088Semantics:
4089""""""""""
4090
4091The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4092where ``n`` is the width of the result. If ``op2`` is (statically or
4093dynamically) negative or equal to or larger than the number of bits in
4094``op1``, the result is undefined. If the arguments are vectors, each
4095vector element of ``op1`` is shifted by the corresponding shift amount
4096in ``op2``.
4097
4098If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4099value <poisonvalues>` if it shifts out any non-zero bits. If the
4100``nsw`` keyword is present, then the shift produces a :ref:`poison
4101value <poisonvalues>` if it shifts out any bits that disagree with the
4102resultant sign bit. As such, NUW/NSW have the same semantics as they
4103would if the shift were expressed as a mul instruction with the same
4104nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4105
4106Example:
4107""""""""
4108
4109.. code-block:: llvm
4110
4111 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4112 <result> = shl i32 4, 2 ; yields {i32}: 16
4113 <result> = shl i32 1, 10 ; yields {i32}: 1024
4114 <result> = shl i32 1, 32 ; undefined
4115 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4116
4117'``lshr``' Instruction
4118^^^^^^^^^^^^^^^^^^^^^^
4119
4120Syntax:
4121"""""""
4122
4123::
4124
4125 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4126 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4127
4128Overview:
4129"""""""""
4130
4131The '``lshr``' instruction (logical shift right) returns the first
4132operand shifted to the right a specified number of bits with zero fill.
4133
4134Arguments:
4135""""""""""
4136
4137Both arguments to the '``lshr``' instruction must be the same
4138:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4139'``op2``' is treated as an unsigned value.
4140
4141Semantics:
4142""""""""""
4143
4144This instruction always performs a logical shift right operation. The
4145most significant bits of the result will be filled with zero bits after
4146the shift. If ``op2`` is (statically or dynamically) equal to or larger
4147than the number of bits in ``op1``, the result is undefined. If the
4148arguments are vectors, each vector element of ``op1`` is shifted by the
4149corresponding shift amount in ``op2``.
4150
4151If the ``exact`` keyword is present, the result value of the ``lshr`` is
4152a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4153non-zero.
4154
4155Example:
4156""""""""
4157
4158.. code-block:: llvm
4159
4160 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4161 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4162 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004163 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004164 <result> = lshr i32 1, 32 ; undefined
4165 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4166
4167'``ashr``' Instruction
4168^^^^^^^^^^^^^^^^^^^^^^
4169
4170Syntax:
4171"""""""
4172
4173::
4174
4175 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4176 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4177
4178Overview:
4179"""""""""
4180
4181The '``ashr``' instruction (arithmetic shift right) returns the first
4182operand shifted to the right a specified number of bits with sign
4183extension.
4184
4185Arguments:
4186""""""""""
4187
4188Both arguments to the '``ashr``' instruction must be the same
4189:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4190'``op2``' is treated as an unsigned value.
4191
4192Semantics:
4193""""""""""
4194
4195This instruction always performs an arithmetic shift right operation,
4196The most significant bits of the result will be filled with the sign bit
4197of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4198than the number of bits in ``op1``, the result is undefined. If the
4199arguments are vectors, each vector element of ``op1`` is shifted by the
4200corresponding shift amount in ``op2``.
4201
4202If the ``exact`` keyword is present, the result value of the ``ashr`` is
4203a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4204non-zero.
4205
4206Example:
4207""""""""
4208
4209.. code-block:: llvm
4210
4211 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4212 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4213 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4214 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4215 <result> = ashr i32 1, 32 ; undefined
4216 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4217
4218'``and``' Instruction
4219^^^^^^^^^^^^^^^^^^^^^
4220
4221Syntax:
4222"""""""
4223
4224::
4225
4226 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4227
4228Overview:
4229"""""""""
4230
4231The '``and``' instruction returns the bitwise logical and of its two
4232operands.
4233
4234Arguments:
4235""""""""""
4236
4237The two arguments to the '``and``' instruction must be
4238:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4239arguments must have identical types.
4240
4241Semantics:
4242""""""""""
4243
4244The truth table used for the '``and``' instruction is:
4245
4246+-----+-----+-----+
4247| In0 | In1 | Out |
4248+-----+-----+-----+
4249| 0 | 0 | 0 |
4250+-----+-----+-----+
4251| 0 | 1 | 0 |
4252+-----+-----+-----+
4253| 1 | 0 | 0 |
4254+-----+-----+-----+
4255| 1 | 1 | 1 |
4256+-----+-----+-----+
4257
4258Example:
4259""""""""
4260
4261.. code-block:: llvm
4262
4263 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4264 <result> = and i32 15, 40 ; yields {i32}:result = 8
4265 <result> = and i32 4, 8 ; yields {i32}:result = 0
4266
4267'``or``' Instruction
4268^^^^^^^^^^^^^^^^^^^^
4269
4270Syntax:
4271"""""""
4272
4273::
4274
4275 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4276
4277Overview:
4278"""""""""
4279
4280The '``or``' instruction returns the bitwise logical inclusive or of its
4281two operands.
4282
4283Arguments:
4284""""""""""
4285
4286The two arguments to the '``or``' instruction must be
4287:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4288arguments must have identical types.
4289
4290Semantics:
4291""""""""""
4292
4293The truth table used for the '``or``' instruction is:
4294
4295+-----+-----+-----+
4296| In0 | In1 | Out |
4297+-----+-----+-----+
4298| 0 | 0 | 0 |
4299+-----+-----+-----+
4300| 0 | 1 | 1 |
4301+-----+-----+-----+
4302| 1 | 0 | 1 |
4303+-----+-----+-----+
4304| 1 | 1 | 1 |
4305+-----+-----+-----+
4306
4307Example:
4308""""""""
4309
4310::
4311
4312 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4313 <result> = or i32 15, 40 ; yields {i32}:result = 47
4314 <result> = or i32 4, 8 ; yields {i32}:result = 12
4315
4316'``xor``' Instruction
4317^^^^^^^^^^^^^^^^^^^^^
4318
4319Syntax:
4320"""""""
4321
4322::
4323
4324 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4325
4326Overview:
4327"""""""""
4328
4329The '``xor``' instruction returns the bitwise logical exclusive or of
4330its two operands. The ``xor`` is used to implement the "one's
4331complement" operation, which is the "~" operator in C.
4332
4333Arguments:
4334""""""""""
4335
4336The two arguments to the '``xor``' instruction must be
4337:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4338arguments must have identical types.
4339
4340Semantics:
4341""""""""""
4342
4343The truth table used for the '``xor``' instruction is:
4344
4345+-----+-----+-----+
4346| In0 | In1 | Out |
4347+-----+-----+-----+
4348| 0 | 0 | 0 |
4349+-----+-----+-----+
4350| 0 | 1 | 1 |
4351+-----+-----+-----+
4352| 1 | 0 | 1 |
4353+-----+-----+-----+
4354| 1 | 1 | 0 |
4355+-----+-----+-----+
4356
4357Example:
4358""""""""
4359
4360.. code-block:: llvm
4361
4362 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4363 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4364 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4365 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4366
4367Vector Operations
4368-----------------
4369
4370LLVM supports several instructions to represent vector operations in a
4371target-independent manner. These instructions cover the element-access
4372and vector-specific operations needed to process vectors effectively.
4373While LLVM does directly support these vector operations, many
4374sophisticated algorithms will want to use target-specific intrinsics to
4375take full advantage of a specific target.
4376
4377.. _i_extractelement:
4378
4379'``extractelement``' Instruction
4380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4381
4382Syntax:
4383"""""""
4384
4385::
4386
4387 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4388
4389Overview:
4390"""""""""
4391
4392The '``extractelement``' instruction extracts a single scalar element
4393from a vector at a specified index.
4394
4395Arguments:
4396""""""""""
4397
4398The first operand of an '``extractelement``' instruction is a value of
4399:ref:`vector <t_vector>` type. The second operand is an index indicating
4400the position from which to extract the element. The index may be a
4401variable.
4402
4403Semantics:
4404""""""""""
4405
4406The result is a scalar of the same type as the element type of ``val``.
4407Its value is the value at position ``idx`` of ``val``. If ``idx``
4408exceeds the length of ``val``, the results are undefined.
4409
4410Example:
4411""""""""
4412
4413.. code-block:: llvm
4414
4415 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4416
4417.. _i_insertelement:
4418
4419'``insertelement``' Instruction
4420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4421
4422Syntax:
4423"""""""
4424
4425::
4426
4427 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4428
4429Overview:
4430"""""""""
4431
4432The '``insertelement``' instruction inserts a scalar element into a
4433vector at a specified index.
4434
4435Arguments:
4436""""""""""
4437
4438The first operand of an '``insertelement``' instruction is a value of
4439:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4440type must equal the element type of the first operand. The third operand
4441is an index indicating the position at which to insert the value. The
4442index may be a variable.
4443
4444Semantics:
4445""""""""""
4446
4447The result is a vector of the same type as ``val``. Its element values
4448are those of ``val`` except at position ``idx``, where it gets the value
4449``elt``. If ``idx`` exceeds the length of ``val``, the results are
4450undefined.
4451
4452Example:
4453""""""""
4454
4455.. code-block:: llvm
4456
4457 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4458
4459.. _i_shufflevector:
4460
4461'``shufflevector``' Instruction
4462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4463
4464Syntax:
4465"""""""
4466
4467::
4468
4469 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4470
4471Overview:
4472"""""""""
4473
4474The '``shufflevector``' instruction constructs a permutation of elements
4475from two input vectors, returning a vector with the same element type as
4476the input and length that is the same as the shuffle mask.
4477
4478Arguments:
4479""""""""""
4480
4481The first two operands of a '``shufflevector``' instruction are vectors
4482with the same type. The third argument is a shuffle mask whose element
4483type is always 'i32'. The result of the instruction is a vector whose
4484length is the same as the shuffle mask and whose element type is the
4485same as the element type of the first two operands.
4486
4487The shuffle mask operand is required to be a constant vector with either
4488constant integer or undef values.
4489
4490Semantics:
4491""""""""""
4492
4493The elements of the two input vectors are numbered from left to right
4494across both of the vectors. The shuffle mask operand specifies, for each
4495element of the result vector, which element of the two input vectors the
4496result element gets. The element selector may be undef (meaning "don't
4497care") and the second operand may be undef if performing a shuffle from
4498only one vector.
4499
4500Example:
4501""""""""
4502
4503.. code-block:: llvm
4504
4505 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4506 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4507 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4508 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4509 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4510 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4511 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4512 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4513
4514Aggregate Operations
4515--------------------
4516
4517LLVM supports several instructions for working with
4518:ref:`aggregate <t_aggregate>` values.
4519
4520.. _i_extractvalue:
4521
4522'``extractvalue``' Instruction
4523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4524
4525Syntax:
4526"""""""
4527
4528::
4529
4530 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4531
4532Overview:
4533"""""""""
4534
4535The '``extractvalue``' instruction extracts the value of a member field
4536from an :ref:`aggregate <t_aggregate>` value.
4537
4538Arguments:
4539""""""""""
4540
4541The first operand of an '``extractvalue``' instruction is a value of
4542:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4543constant indices to specify which value to extract in a similar manner
4544as indices in a '``getelementptr``' instruction.
4545
4546The major differences to ``getelementptr`` indexing are:
4547
4548- Since the value being indexed is not a pointer, the first index is
4549 omitted and assumed to be zero.
4550- At least one index must be specified.
4551- Not only struct indices but also array indices must be in bounds.
4552
4553Semantics:
4554""""""""""
4555
4556The result is the value at the position in the aggregate specified by
4557the index operands.
4558
4559Example:
4560""""""""
4561
4562.. code-block:: llvm
4563
4564 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4565
4566.. _i_insertvalue:
4567
4568'``insertvalue``' Instruction
4569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4570
4571Syntax:
4572"""""""
4573
4574::
4575
4576 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4577
4578Overview:
4579"""""""""
4580
4581The '``insertvalue``' instruction inserts a value into a member field in
4582an :ref:`aggregate <t_aggregate>` value.
4583
4584Arguments:
4585""""""""""
4586
4587The first operand of an '``insertvalue``' instruction is a value of
4588:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4589a first-class value to insert. The following operands are constant
4590indices indicating the position at which to insert the value in a
4591similar manner as indices in a '``extractvalue``' instruction. The value
4592to insert must have the same type as the value identified by the
4593indices.
4594
4595Semantics:
4596""""""""""
4597
4598The result is an aggregate of the same type as ``val``. Its value is
4599that of ``val`` except that the value at the position specified by the
4600indices is that of ``elt``.
4601
4602Example:
4603""""""""
4604
4605.. code-block:: llvm
4606
4607 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4608 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4609 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4610
4611.. _memoryops:
4612
4613Memory Access and Addressing Operations
4614---------------------------------------
4615
4616A key design point of an SSA-based representation is how it represents
4617memory. In LLVM, no memory locations are in SSA form, which makes things
4618very simple. This section describes how to read, write, and allocate
4619memory in LLVM.
4620
4621.. _i_alloca:
4622
4623'``alloca``' Instruction
4624^^^^^^^^^^^^^^^^^^^^^^^^
4625
4626Syntax:
4627"""""""
4628
4629::
4630
4631 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4632
4633Overview:
4634"""""""""
4635
4636The '``alloca``' instruction allocates memory on the stack frame of the
4637currently executing function, to be automatically released when this
4638function returns to its caller. The object is always allocated in the
4639generic address space (address space zero).
4640
4641Arguments:
4642""""""""""
4643
4644The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4645bytes of memory on the runtime stack, returning a pointer of the
4646appropriate type to the program. If "NumElements" is specified, it is
4647the number of elements allocated, otherwise "NumElements" is defaulted
4648to be one. If a constant alignment is specified, the value result of the
4649allocation is guaranteed to be aligned to at least that boundary. If not
4650specified, or if zero, the target can choose to align the allocation on
4651any convenient boundary compatible with the type.
4652
4653'``type``' may be any sized type.
4654
4655Semantics:
4656""""""""""
4657
4658Memory is allocated; a pointer is returned. The operation is undefined
4659if there is insufficient stack space for the allocation. '``alloca``'d
4660memory is automatically released when the function returns. The
4661'``alloca``' instruction is commonly used to represent automatic
4662variables that must have an address available. When the function returns
4663(either with the ``ret`` or ``resume`` instructions), the memory is
4664reclaimed. Allocating zero bytes is legal, but the result is undefined.
4665The order in which memory is allocated (ie., which way the stack grows)
4666is not specified.
4667
4668Example:
4669""""""""
4670
4671.. code-block:: llvm
4672
4673 %ptr = alloca i32 ; yields {i32*}:ptr
4674 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4675 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4676 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4677
4678.. _i_load:
4679
4680'``load``' Instruction
4681^^^^^^^^^^^^^^^^^^^^^^
4682
4683Syntax:
4684"""""""
4685
4686::
4687
4688 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4689 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4690 !<index> = !{ i32 1 }
4691
4692Overview:
4693"""""""""
4694
4695The '``load``' instruction is used to read from memory.
4696
4697Arguments:
4698""""""""""
4699
Eli Bendersky8c493382013-04-17 20:17:08 +00004700The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004701from which to load. The pointer must point to a :ref:`first
4702class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4703then the optimizer is not allowed to modify the number or order of
4704execution of this ``load`` with other :ref:`volatile
4705operations <volatile>`.
4706
4707If the ``load`` is marked as ``atomic``, it takes an extra
4708:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4709``release`` and ``acq_rel`` orderings are not valid on ``load``
4710instructions. Atomic loads produce :ref:`defined <memmodel>` results
4711when they may see multiple atomic stores. The type of the pointee must
4712be an integer type whose bit width is a power of two greater than or
4713equal to eight and less than or equal to a target-specific size limit.
4714``align`` must be explicitly specified on atomic loads, and the load has
4715undefined behavior if the alignment is not set to a value which is at
4716least the size in bytes of the pointee. ``!nontemporal`` does not have
4717any defined semantics for atomic loads.
4718
4719The optional constant ``align`` argument specifies the alignment of the
4720operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004721or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004722alignment for the target. It is the responsibility of the code emitter
4723to ensure that the alignment information is correct. Overestimating the
4724alignment results in undefined behavior. Underestimating the alignment
4725may produce less efficient code. An alignment of 1 is always safe.
4726
4727The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004728metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004729``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004730metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004731that this load is not expected to be reused in the cache. The code
4732generator may select special instructions to save cache bandwidth, such
4733as the ``MOVNT`` instruction on x86.
4734
4735The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004736metadata name ``<index>`` corresponding to a metadata node with no
4737entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004738instruction tells the optimizer and code generator that this load
4739address points to memory which does not change value during program
4740execution. The optimizer may then move this load around, for example, by
4741hoisting it out of loops using loop invariant code motion.
4742
4743Semantics:
4744""""""""""
4745
4746The location of memory pointed to is loaded. If the value being loaded
4747is of scalar type then the number of bytes read does not exceed the
4748minimum number of bytes needed to hold all bits of the type. For
4749example, loading an ``i24`` reads at most three bytes. When loading a
4750value of a type like ``i20`` with a size that is not an integral number
4751of bytes, the result is undefined if the value was not originally
4752written using a store of the same type.
4753
4754Examples:
4755"""""""""
4756
4757.. code-block:: llvm
4758
4759 %ptr = alloca i32 ; yields {i32*}:ptr
4760 store i32 3, i32* %ptr ; yields {void}
4761 %val = load i32* %ptr ; yields {i32}:val = i32 3
4762
4763.. _i_store:
4764
4765'``store``' Instruction
4766^^^^^^^^^^^^^^^^^^^^^^^
4767
4768Syntax:
4769"""""""
4770
4771::
4772
4773 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4774 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4775
4776Overview:
4777"""""""""
4778
4779The '``store``' instruction is used to write to memory.
4780
4781Arguments:
4782""""""""""
4783
Eli Bendersky8952d902013-04-17 17:17:20 +00004784There are two arguments to the ``store`` instruction: a value to store
4785and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004786operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004787the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004788then the optimizer is not allowed to modify the number or order of
4789execution of this ``store`` with other :ref:`volatile
4790operations <volatile>`.
4791
4792If the ``store`` is marked as ``atomic``, it takes an extra
4793:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4794``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4795instructions. Atomic loads produce :ref:`defined <memmodel>` results
4796when they may see multiple atomic stores. The type of the pointee must
4797be an integer type whose bit width is a power of two greater than or
4798equal to eight and less than or equal to a target-specific size limit.
4799``align`` must be explicitly specified on atomic stores, and the store
4800has undefined behavior if the alignment is not set to a value which is
4801at least the size in bytes of the pointee. ``!nontemporal`` does not
4802have any defined semantics for atomic stores.
4803
Eli Bendersky8952d902013-04-17 17:17:20 +00004804The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004805operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004806or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004807alignment for the target. It is the responsibility of the code emitter
4808to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004809alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004810alignment may produce less efficient code. An alignment of 1 is always
4811safe.
4812
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004813The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004814name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004815value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004816tells the optimizer and code generator that this load is not expected to
4817be reused in the cache. The code generator may select special
4818instructions to save cache bandwidth, such as the MOVNT instruction on
4819x86.
4820
4821Semantics:
4822""""""""""
4823
Eli Bendersky8952d902013-04-17 17:17:20 +00004824The contents of memory are updated to contain ``<value>`` at the
4825location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004826of scalar type then the number of bytes written does not exceed the
4827minimum number of bytes needed to hold all bits of the type. For
4828example, storing an ``i24`` writes at most three bytes. When writing a
4829value of a type like ``i20`` with a size that is not an integral number
4830of bytes, it is unspecified what happens to the extra bits that do not
4831belong to the type, but they will typically be overwritten.
4832
4833Example:
4834""""""""
4835
4836.. code-block:: llvm
4837
4838 %ptr = alloca i32 ; yields {i32*}:ptr
4839 store i32 3, i32* %ptr ; yields {void}
4840 %val = load i32* %ptr ; yields {i32}:val = i32 3
4841
4842.. _i_fence:
4843
4844'``fence``' Instruction
4845^^^^^^^^^^^^^^^^^^^^^^^
4846
4847Syntax:
4848"""""""
4849
4850::
4851
4852 fence [singlethread] <ordering> ; yields {void}
4853
4854Overview:
4855"""""""""
4856
4857The '``fence``' instruction is used to introduce happens-before edges
4858between operations.
4859
4860Arguments:
4861""""""""""
4862
4863'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4864defines what *synchronizes-with* edges they add. They can only be given
4865``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4866
4867Semantics:
4868""""""""""
4869
4870A fence A which has (at least) ``release`` ordering semantics
4871*synchronizes with* a fence B with (at least) ``acquire`` ordering
4872semantics if and only if there exist atomic operations X and Y, both
4873operating on some atomic object M, such that A is sequenced before X, X
4874modifies M (either directly or through some side effect of a sequence
4875headed by X), Y is sequenced before B, and Y observes M. This provides a
4876*happens-before* dependency between A and B. Rather than an explicit
4877``fence``, one (but not both) of the atomic operations X or Y might
4878provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4879still *synchronize-with* the explicit ``fence`` and establish the
4880*happens-before* edge.
4881
4882A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4883``acquire`` and ``release`` semantics specified above, participates in
4884the global program order of other ``seq_cst`` operations and/or fences.
4885
4886The optional ":ref:`singlethread <singlethread>`" argument specifies
4887that the fence only synchronizes with other fences in the same thread.
4888(This is useful for interacting with signal handlers.)
4889
4890Example:
4891""""""""
4892
4893.. code-block:: llvm
4894
4895 fence acquire ; yields {void}
4896 fence singlethread seq_cst ; yields {void}
4897
4898.. _i_cmpxchg:
4899
4900'``cmpxchg``' Instruction
4901^^^^^^^^^^^^^^^^^^^^^^^^^
4902
4903Syntax:
4904"""""""
4905
4906::
4907
4908 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4909
4910Overview:
4911"""""""""
4912
4913The '``cmpxchg``' instruction is used to atomically modify memory. It
4914loads a value in memory and compares it to a given value. If they are
4915equal, it stores a new value into the memory.
4916
4917Arguments:
4918""""""""""
4919
4920There are three arguments to the '``cmpxchg``' instruction: an address
4921to operate on, a value to compare to the value currently be at that
4922address, and a new value to place at that address if the compared values
4923are equal. The type of '<cmp>' must be an integer type whose bit width
4924is a power of two greater than or equal to eight and less than or equal
4925to a target-specific size limit. '<cmp>' and '<new>' must have the same
4926type, and the type of '<pointer>' must be a pointer to that type. If the
4927``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4928to modify the number or order of execution of this ``cmpxchg`` with
4929other :ref:`volatile operations <volatile>`.
4930
4931The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4932synchronizes with other atomic operations.
4933
4934The optional "``singlethread``" argument declares that the ``cmpxchg``
4935is only atomic with respect to code (usually signal handlers) running in
4936the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4937respect to all other code in the system.
4938
4939The pointer passed into cmpxchg must have alignment greater than or
4940equal to the size in memory of the operand.
4941
4942Semantics:
4943""""""""""
4944
4945The contents of memory at the location specified by the '``<pointer>``'
4946operand is read and compared to '``<cmp>``'; if the read value is the
4947equal, '``<new>``' is written. The original value at the location is
4948returned.
4949
4950A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4951of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4952atomic load with an ordering parameter determined by dropping any
4953``release`` part of the ``cmpxchg``'s ordering.
4954
4955Example:
4956""""""""
4957
4958.. code-block:: llvm
4959
4960 entry:
4961 %orig = atomic load i32* %ptr unordered ; yields {i32}
4962 br label %loop
4963
4964 loop:
4965 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4966 %squared = mul i32 %cmp, %cmp
4967 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4968 %success = icmp eq i32 %cmp, %old
4969 br i1 %success, label %done, label %loop
4970
4971 done:
4972 ...
4973
4974.. _i_atomicrmw:
4975
4976'``atomicrmw``' Instruction
4977^^^^^^^^^^^^^^^^^^^^^^^^^^^
4978
4979Syntax:
4980"""""""
4981
4982::
4983
4984 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4985
4986Overview:
4987"""""""""
4988
4989The '``atomicrmw``' instruction is used to atomically modify memory.
4990
4991Arguments:
4992""""""""""
4993
4994There are three arguments to the '``atomicrmw``' instruction: an
4995operation to apply, an address whose value to modify, an argument to the
4996operation. The operation must be one of the following keywords:
4997
4998- xchg
4999- add
5000- sub
5001- and
5002- nand
5003- or
5004- xor
5005- max
5006- min
5007- umax
5008- umin
5009
5010The type of '<value>' must be an integer type whose bit width is a power
5011of two greater than or equal to eight and less than or equal to a
5012target-specific size limit. The type of the '``<pointer>``' operand must
5013be a pointer to that type. If the ``atomicrmw`` is marked as
5014``volatile``, then the optimizer is not allowed to modify the number or
5015order of execution of this ``atomicrmw`` with other :ref:`volatile
5016operations <volatile>`.
5017
5018Semantics:
5019""""""""""
5020
5021The contents of memory at the location specified by the '``<pointer>``'
5022operand are atomically read, modified, and written back. The original
5023value at the location is returned. The modification is specified by the
5024operation argument:
5025
5026- xchg: ``*ptr = val``
5027- add: ``*ptr = *ptr + val``
5028- sub: ``*ptr = *ptr - val``
5029- and: ``*ptr = *ptr & val``
5030- nand: ``*ptr = ~(*ptr & val)``
5031- or: ``*ptr = *ptr | val``
5032- xor: ``*ptr = *ptr ^ val``
5033- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5034- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5035- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5036 comparison)
5037- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5038 comparison)
5039
5040Example:
5041""""""""
5042
5043.. code-block:: llvm
5044
5045 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5046
5047.. _i_getelementptr:
5048
5049'``getelementptr``' Instruction
5050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5051
5052Syntax:
5053"""""""
5054
5055::
5056
5057 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5058 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5059 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5060
5061Overview:
5062"""""""""
5063
5064The '``getelementptr``' instruction is used to get the address of a
5065subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5066address calculation only and does not access memory.
5067
5068Arguments:
5069""""""""""
5070
5071The first argument is always a pointer or a vector of pointers, and
5072forms the basis of the calculation. The remaining arguments are indices
5073that indicate which of the elements of the aggregate object are indexed.
5074The interpretation of each index is dependent on the type being indexed
5075into. The first index always indexes the pointer value given as the
5076first argument, the second index indexes a value of the type pointed to
5077(not necessarily the value directly pointed to, since the first index
5078can be non-zero), etc. The first type indexed into must be a pointer
5079value, subsequent types can be arrays, vectors, and structs. Note that
5080subsequent types being indexed into can never be pointers, since that
5081would require loading the pointer before continuing calculation.
5082
5083The type of each index argument depends on the type it is indexing into.
5084When indexing into a (optionally packed) structure, only ``i32`` integer
5085**constants** are allowed (when using a vector of indices they must all
5086be the **same** ``i32`` integer constant). When indexing into an array,
5087pointer or vector, integers of any width are allowed, and they are not
5088required to be constant. These integers are treated as signed values
5089where relevant.
5090
5091For example, let's consider a C code fragment and how it gets compiled
5092to LLVM:
5093
5094.. code-block:: c
5095
5096 struct RT {
5097 char A;
5098 int B[10][20];
5099 char C;
5100 };
5101 struct ST {
5102 int X;
5103 double Y;
5104 struct RT Z;
5105 };
5106
5107 int *foo(struct ST *s) {
5108 return &s[1].Z.B[5][13];
5109 }
5110
5111The LLVM code generated by Clang is:
5112
5113.. code-block:: llvm
5114
5115 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5116 %struct.ST = type { i32, double, %struct.RT }
5117
5118 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5119 entry:
5120 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5121 ret i32* %arrayidx
5122 }
5123
5124Semantics:
5125""""""""""
5126
5127In the example above, the first index is indexing into the
5128'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5129= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5130indexes into the third element of the structure, yielding a
5131'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5132structure. The third index indexes into the second element of the
5133structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5134dimensions of the array are subscripted into, yielding an '``i32``'
5135type. The '``getelementptr``' instruction returns a pointer to this
5136element, thus computing a value of '``i32*``' type.
5137
5138Note that it is perfectly legal to index partially through a structure,
5139returning a pointer to an inner element. Because of this, the LLVM code
5140for the given testcase is equivalent to:
5141
5142.. code-block:: llvm
5143
5144 define i32* @foo(%struct.ST* %s) {
5145 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5146 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5147 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5148 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5149 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5150 ret i32* %t5
5151 }
5152
5153If the ``inbounds`` keyword is present, the result value of the
5154``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5155pointer is not an *in bounds* address of an allocated object, or if any
5156of the addresses that would be formed by successive addition of the
5157offsets implied by the indices to the base address with infinitely
5158precise signed arithmetic are not an *in bounds* address of that
5159allocated object. The *in bounds* addresses for an allocated object are
5160all the addresses that point into the object, plus the address one byte
5161past the end. In cases where the base is a vector of pointers the
5162``inbounds`` keyword applies to each of the computations element-wise.
5163
5164If the ``inbounds`` keyword is not present, the offsets are added to the
5165base address with silently-wrapping two's complement arithmetic. If the
5166offsets have a different width from the pointer, they are sign-extended
5167or truncated to the width of the pointer. The result value of the
5168``getelementptr`` may be outside the object pointed to by the base
5169pointer. The result value may not necessarily be used to access memory
5170though, even if it happens to point into allocated storage. See the
5171:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5172information.
5173
5174The getelementptr instruction is often confusing. For some more insight
5175into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5176
5177Example:
5178""""""""
5179
5180.. code-block:: llvm
5181
5182 ; yields [12 x i8]*:aptr
5183 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5184 ; yields i8*:vptr
5185 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5186 ; yields i8*:eptr
5187 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5188 ; yields i32*:iptr
5189 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5190
5191In cases where the pointer argument is a vector of pointers, each index
5192must be a vector with the same number of elements. For example:
5193
5194.. code-block:: llvm
5195
5196 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5197
5198Conversion Operations
5199---------------------
5200
5201The instructions in this category are the conversion instructions
5202(casting) which all take a single operand and a type. They perform
5203various bit conversions on the operand.
5204
5205'``trunc .. to``' Instruction
5206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5207
5208Syntax:
5209"""""""
5210
5211::
5212
5213 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5214
5215Overview:
5216"""""""""
5217
5218The '``trunc``' instruction truncates its operand to the type ``ty2``.
5219
5220Arguments:
5221""""""""""
5222
5223The '``trunc``' instruction takes a value to trunc, and a type to trunc
5224it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5225of the same number of integers. The bit size of the ``value`` must be
5226larger than the bit size of the destination type, ``ty2``. Equal sized
5227types are not allowed.
5228
5229Semantics:
5230""""""""""
5231
5232The '``trunc``' instruction truncates the high order bits in ``value``
5233and converts the remaining bits to ``ty2``. Since the source size must
5234be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5235It will always truncate bits.
5236
5237Example:
5238""""""""
5239
5240.. code-block:: llvm
5241
5242 %X = trunc i32 257 to i8 ; yields i8:1
5243 %Y = trunc i32 123 to i1 ; yields i1:true
5244 %Z = trunc i32 122 to i1 ; yields i1:false
5245 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5246
5247'``zext .. to``' Instruction
5248^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5249
5250Syntax:
5251"""""""
5252
5253::
5254
5255 <result> = zext <ty> <value> to <ty2> ; yields ty2
5256
5257Overview:
5258"""""""""
5259
5260The '``zext``' instruction zero extends its operand to type ``ty2``.
5261
5262Arguments:
5263""""""""""
5264
5265The '``zext``' instruction takes a value to cast, and a type to cast it
5266to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5267the same number of integers. The bit size of the ``value`` must be
5268smaller than the bit size of the destination type, ``ty2``.
5269
5270Semantics:
5271""""""""""
5272
5273The ``zext`` fills the high order bits of the ``value`` with zero bits
5274until it reaches the size of the destination type, ``ty2``.
5275
5276When zero extending from i1, the result will always be either 0 or 1.
5277
5278Example:
5279""""""""
5280
5281.. code-block:: llvm
5282
5283 %X = zext i32 257 to i64 ; yields i64:257
5284 %Y = zext i1 true to i32 ; yields i32:1
5285 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5286
5287'``sext .. to``' Instruction
5288^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5289
5290Syntax:
5291"""""""
5292
5293::
5294
5295 <result> = sext <ty> <value> to <ty2> ; yields ty2
5296
5297Overview:
5298"""""""""
5299
5300The '``sext``' sign extends ``value`` to the type ``ty2``.
5301
5302Arguments:
5303""""""""""
5304
5305The '``sext``' instruction takes a value to cast, and a type to cast it
5306to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5307the same number of integers. The bit size of the ``value`` must be
5308smaller than the bit size of the destination type, ``ty2``.
5309
5310Semantics:
5311""""""""""
5312
5313The '``sext``' instruction performs a sign extension by copying the sign
5314bit (highest order bit) of the ``value`` until it reaches the bit size
5315of the type ``ty2``.
5316
5317When sign extending from i1, the extension always results in -1 or 0.
5318
5319Example:
5320""""""""
5321
5322.. code-block:: llvm
5323
5324 %X = sext i8 -1 to i16 ; yields i16 :65535
5325 %Y = sext i1 true to i32 ; yields i32:-1
5326 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5327
5328'``fptrunc .. to``' Instruction
5329^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5330
5331Syntax:
5332"""""""
5333
5334::
5335
5336 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5337
5338Overview:
5339"""""""""
5340
5341The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5342
5343Arguments:
5344""""""""""
5345
5346The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5347value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5348The size of ``value`` must be larger than the size of ``ty2``. This
5349implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5350
5351Semantics:
5352""""""""""
5353
5354The '``fptrunc``' instruction truncates a ``value`` from a larger
5355:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5356point <t_floating>` type. If the value cannot fit within the
5357destination type, ``ty2``, then the results are undefined.
5358
5359Example:
5360""""""""
5361
5362.. code-block:: llvm
5363
5364 %X = fptrunc double 123.0 to float ; yields float:123.0
5365 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5366
5367'``fpext .. to``' Instruction
5368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5369
5370Syntax:
5371"""""""
5372
5373::
5374
5375 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5376
5377Overview:
5378"""""""""
5379
5380The '``fpext``' extends a floating point ``value`` to a larger floating
5381point value.
5382
5383Arguments:
5384""""""""""
5385
5386The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5387``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5388to. The source type must be smaller than the destination type.
5389
5390Semantics:
5391""""""""""
5392
5393The '``fpext``' instruction extends the ``value`` from a smaller
5394:ref:`floating point <t_floating>` type to a larger :ref:`floating
5395point <t_floating>` type. The ``fpext`` cannot be used to make a
5396*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5397*no-op cast* for a floating point cast.
5398
5399Example:
5400""""""""
5401
5402.. code-block:: llvm
5403
5404 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5405 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5406
5407'``fptoui .. to``' Instruction
5408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5409
5410Syntax:
5411"""""""
5412
5413::
5414
5415 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5416
5417Overview:
5418"""""""""
5419
5420The '``fptoui``' converts a floating point ``value`` to its unsigned
5421integer equivalent of type ``ty2``.
5422
5423Arguments:
5424""""""""""
5425
5426The '``fptoui``' instruction takes a value to cast, which must be a
5427scalar or vector :ref:`floating point <t_floating>` value, and a type to
5428cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5429``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5430type with the same number of elements as ``ty``
5431
5432Semantics:
5433""""""""""
5434
5435The '``fptoui``' instruction converts its :ref:`floating
5436point <t_floating>` operand into the nearest (rounding towards zero)
5437unsigned integer value. If the value cannot fit in ``ty2``, the results
5438are undefined.
5439
5440Example:
5441""""""""
5442
5443.. code-block:: llvm
5444
5445 %X = fptoui double 123.0 to i32 ; yields i32:123
5446 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5447 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5448
5449'``fptosi .. to``' Instruction
5450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5451
5452Syntax:
5453"""""""
5454
5455::
5456
5457 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5458
5459Overview:
5460"""""""""
5461
5462The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5463``value`` to type ``ty2``.
5464
5465Arguments:
5466""""""""""
5467
5468The '``fptosi``' instruction takes a value to cast, which must be a
5469scalar or vector :ref:`floating point <t_floating>` value, and a type to
5470cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5471``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5472type with the same number of elements as ``ty``
5473
5474Semantics:
5475""""""""""
5476
5477The '``fptosi``' instruction converts its :ref:`floating
5478point <t_floating>` operand into the nearest (rounding towards zero)
5479signed integer value. If the value cannot fit in ``ty2``, the results
5480are undefined.
5481
5482Example:
5483""""""""
5484
5485.. code-block:: llvm
5486
5487 %X = fptosi double -123.0 to i32 ; yields i32:-123
5488 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5489 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5490
5491'``uitofp .. to``' Instruction
5492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5493
5494Syntax:
5495"""""""
5496
5497::
5498
5499 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5500
5501Overview:
5502"""""""""
5503
5504The '``uitofp``' instruction regards ``value`` as an unsigned integer
5505and converts that value to the ``ty2`` type.
5506
5507Arguments:
5508""""""""""
5509
5510The '``uitofp``' instruction takes a value to cast, which must be a
5511scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5512``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5513``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5514type with the same number of elements as ``ty``
5515
5516Semantics:
5517""""""""""
5518
5519The '``uitofp``' instruction interprets its operand as an unsigned
5520integer quantity and converts it to the corresponding floating point
5521value. If the value cannot fit in the floating point value, the results
5522are undefined.
5523
5524Example:
5525""""""""
5526
5527.. code-block:: llvm
5528
5529 %X = uitofp i32 257 to float ; yields float:257.0
5530 %Y = uitofp i8 -1 to double ; yields double:255.0
5531
5532'``sitofp .. to``' Instruction
5533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5534
5535Syntax:
5536"""""""
5537
5538::
5539
5540 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5541
5542Overview:
5543"""""""""
5544
5545The '``sitofp``' instruction regards ``value`` as a signed integer and
5546converts that value to the ``ty2`` type.
5547
5548Arguments:
5549""""""""""
5550
5551The '``sitofp``' instruction takes a value to cast, which must be a
5552scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5553``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5554``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5555type with the same number of elements as ``ty``
5556
5557Semantics:
5558""""""""""
5559
5560The '``sitofp``' instruction interprets its operand as a signed integer
5561quantity and converts it to the corresponding floating point value. If
5562the value cannot fit in the floating point value, the results are
5563undefined.
5564
5565Example:
5566""""""""
5567
5568.. code-block:: llvm
5569
5570 %X = sitofp i32 257 to float ; yields float:257.0
5571 %Y = sitofp i8 -1 to double ; yields double:-1.0
5572
5573.. _i_ptrtoint:
5574
5575'``ptrtoint .. to``' Instruction
5576^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5577
5578Syntax:
5579"""""""
5580
5581::
5582
5583 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5584
5585Overview:
5586"""""""""
5587
5588The '``ptrtoint``' instruction converts the pointer or a vector of
5589pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5590
5591Arguments:
5592""""""""""
5593
5594The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5595a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5596type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5597a vector of integers type.
5598
5599Semantics:
5600""""""""""
5601
5602The '``ptrtoint``' instruction converts ``value`` to integer type
5603``ty2`` by interpreting the pointer value as an integer and either
5604truncating or zero extending that value to the size of the integer type.
5605If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5606``value`` is larger than ``ty2`` then a truncation is done. If they are
5607the same size, then nothing is done (*no-op cast*) other than a type
5608change.
5609
5610Example:
5611""""""""
5612
5613.. code-block:: llvm
5614
5615 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5616 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5617 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5618
5619.. _i_inttoptr:
5620
5621'``inttoptr .. to``' Instruction
5622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5623
5624Syntax:
5625"""""""
5626
5627::
5628
5629 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5630
5631Overview:
5632"""""""""
5633
5634The '``inttoptr``' instruction converts an integer ``value`` to a
5635pointer type, ``ty2``.
5636
5637Arguments:
5638""""""""""
5639
5640The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5641cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5642type.
5643
5644Semantics:
5645""""""""""
5646
5647The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5648applying either a zero extension or a truncation depending on the size
5649of the integer ``value``. If ``value`` is larger than the size of a
5650pointer then a truncation is done. If ``value`` is smaller than the size
5651of a pointer then a zero extension is done. If they are the same size,
5652nothing is done (*no-op cast*).
5653
5654Example:
5655""""""""
5656
5657.. code-block:: llvm
5658
5659 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5660 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5661 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5662 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5663
5664.. _i_bitcast:
5665
5666'``bitcast .. to``' Instruction
5667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5668
5669Syntax:
5670"""""""
5671
5672::
5673
5674 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5675
5676Overview:
5677"""""""""
5678
5679The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5680changing any bits.
5681
5682Arguments:
5683""""""""""
5684
5685The '``bitcast``' instruction takes a value to cast, which must be a
5686non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005687also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5688bit sizes of ``value`` and the destination type, ``ty2``, must be
5689identical. If the source type is a pointer, the destination type must
5690also be a pointer of the same size. This instruction supports bitwise
5691conversion of vectors to integers and to vectors of other types (as
5692long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00005693
5694Semantics:
5695""""""""""
5696
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005697The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5698is always a *no-op cast* because no bits change with this
5699conversion. The conversion is done as if the ``value`` had been stored
5700to memory and read back as type ``ty2``. Pointer (or vector of
5701pointers) types may only be converted to other pointer (or vector of
5702pointers) types with this instruction if the pointer sizes are
5703equal. To convert pointers to other types, use the :ref:`inttoptr
5704<i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00005705
5706Example:
5707""""""""
5708
5709.. code-block:: llvm
5710
5711 %X = bitcast i8 255 to i8 ; yields i8 :-1
5712 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5713 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5714 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5715
5716.. _otherops:
5717
5718Other Operations
5719----------------
5720
5721The instructions in this category are the "miscellaneous" instructions,
5722which defy better classification.
5723
5724.. _i_icmp:
5725
5726'``icmp``' Instruction
5727^^^^^^^^^^^^^^^^^^^^^^
5728
5729Syntax:
5730"""""""
5731
5732::
5733
5734 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5735
5736Overview:
5737"""""""""
5738
5739The '``icmp``' instruction returns a boolean value or a vector of
5740boolean values based on comparison of its two integer, integer vector,
5741pointer, or pointer vector operands.
5742
5743Arguments:
5744""""""""""
5745
5746The '``icmp``' instruction takes three operands. The first operand is
5747the condition code indicating the kind of comparison to perform. It is
5748not a value, just a keyword. The possible condition code are:
5749
5750#. ``eq``: equal
5751#. ``ne``: not equal
5752#. ``ugt``: unsigned greater than
5753#. ``uge``: unsigned greater or equal
5754#. ``ult``: unsigned less than
5755#. ``ule``: unsigned less or equal
5756#. ``sgt``: signed greater than
5757#. ``sge``: signed greater or equal
5758#. ``slt``: signed less than
5759#. ``sle``: signed less or equal
5760
5761The remaining two arguments must be :ref:`integer <t_integer>` or
5762:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5763must also be identical types.
5764
5765Semantics:
5766""""""""""
5767
5768The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5769code given as ``cond``. The comparison performed always yields either an
5770:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5771
5772#. ``eq``: yields ``true`` if the operands are equal, ``false``
5773 otherwise. No sign interpretation is necessary or performed.
5774#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5775 otherwise. No sign interpretation is necessary or performed.
5776#. ``ugt``: interprets the operands as unsigned values and yields
5777 ``true`` if ``op1`` is greater than ``op2``.
5778#. ``uge``: interprets the operands as unsigned values and yields
5779 ``true`` if ``op1`` is greater than or equal to ``op2``.
5780#. ``ult``: interprets the operands as unsigned values and yields
5781 ``true`` if ``op1`` is less than ``op2``.
5782#. ``ule``: interprets the operands as unsigned values and yields
5783 ``true`` if ``op1`` is less than or equal to ``op2``.
5784#. ``sgt``: interprets the operands as signed values and yields ``true``
5785 if ``op1`` is greater than ``op2``.
5786#. ``sge``: interprets the operands as signed values and yields ``true``
5787 if ``op1`` is greater than or equal to ``op2``.
5788#. ``slt``: interprets the operands as signed values and yields ``true``
5789 if ``op1`` is less than ``op2``.
5790#. ``sle``: interprets the operands as signed values and yields ``true``
5791 if ``op1`` is less than or equal to ``op2``.
5792
5793If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5794are compared as if they were integers.
5795
5796If the operands are integer vectors, then they are compared element by
5797element. The result is an ``i1`` vector with the same number of elements
5798as the values being compared. Otherwise, the result is an ``i1``.
5799
5800Example:
5801""""""""
5802
5803.. code-block:: llvm
5804
5805 <result> = icmp eq i32 4, 5 ; yields: result=false
5806 <result> = icmp ne float* %X, %X ; yields: result=false
5807 <result> = icmp ult i16 4, 5 ; yields: result=true
5808 <result> = icmp sgt i16 4, 5 ; yields: result=false
5809 <result> = icmp ule i16 -4, 5 ; yields: result=false
5810 <result> = icmp sge i16 4, 5 ; yields: result=false
5811
5812Note that the code generator does not yet support vector types with the
5813``icmp`` instruction.
5814
5815.. _i_fcmp:
5816
5817'``fcmp``' Instruction
5818^^^^^^^^^^^^^^^^^^^^^^
5819
5820Syntax:
5821"""""""
5822
5823::
5824
5825 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5826
5827Overview:
5828"""""""""
5829
5830The '``fcmp``' instruction returns a boolean value or vector of boolean
5831values based on comparison of its operands.
5832
5833If the operands are floating point scalars, then the result type is a
5834boolean (:ref:`i1 <t_integer>`).
5835
5836If the operands are floating point vectors, then the result type is a
5837vector of boolean with the same number of elements as the operands being
5838compared.
5839
5840Arguments:
5841""""""""""
5842
5843The '``fcmp``' instruction takes three operands. The first operand is
5844the condition code indicating the kind of comparison to perform. It is
5845not a value, just a keyword. The possible condition code are:
5846
5847#. ``false``: no comparison, always returns false
5848#. ``oeq``: ordered and equal
5849#. ``ogt``: ordered and greater than
5850#. ``oge``: ordered and greater than or equal
5851#. ``olt``: ordered and less than
5852#. ``ole``: ordered and less than or equal
5853#. ``one``: ordered and not equal
5854#. ``ord``: ordered (no nans)
5855#. ``ueq``: unordered or equal
5856#. ``ugt``: unordered or greater than
5857#. ``uge``: unordered or greater than or equal
5858#. ``ult``: unordered or less than
5859#. ``ule``: unordered or less than or equal
5860#. ``une``: unordered or not equal
5861#. ``uno``: unordered (either nans)
5862#. ``true``: no comparison, always returns true
5863
5864*Ordered* means that neither operand is a QNAN while *unordered* means
5865that either operand may be a QNAN.
5866
5867Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5868point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5869type. They must have identical types.
5870
5871Semantics:
5872""""""""""
5873
5874The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5875condition code given as ``cond``. If the operands are vectors, then the
5876vectors are compared element by element. Each comparison performed
5877always yields an :ref:`i1 <t_integer>` result, as follows:
5878
5879#. ``false``: always yields ``false``, regardless of operands.
5880#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5881 is equal to ``op2``.
5882#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5883 is greater than ``op2``.
5884#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5885 is greater than or equal to ``op2``.
5886#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5887 is less than ``op2``.
5888#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5889 is less than or equal to ``op2``.
5890#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5891 is not equal to ``op2``.
5892#. ``ord``: yields ``true`` if both operands are not a QNAN.
5893#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5894 equal to ``op2``.
5895#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5896 greater than ``op2``.
5897#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5898 greater than or equal to ``op2``.
5899#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5900 less than ``op2``.
5901#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5902 less than or equal to ``op2``.
5903#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5904 not equal to ``op2``.
5905#. ``uno``: yields ``true`` if either operand is a QNAN.
5906#. ``true``: always yields ``true``, regardless of operands.
5907
5908Example:
5909""""""""
5910
5911.. code-block:: llvm
5912
5913 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5914 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5915 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5916 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5917
5918Note that the code generator does not yet support vector types with the
5919``fcmp`` instruction.
5920
5921.. _i_phi:
5922
5923'``phi``' Instruction
5924^^^^^^^^^^^^^^^^^^^^^
5925
5926Syntax:
5927"""""""
5928
5929::
5930
5931 <result> = phi <ty> [ <val0>, <label0>], ...
5932
5933Overview:
5934"""""""""
5935
5936The '``phi``' instruction is used to implement the φ node in the SSA
5937graph representing the function.
5938
5939Arguments:
5940""""""""""
5941
5942The type of the incoming values is specified with the first type field.
5943After this, the '``phi``' instruction takes a list of pairs as
5944arguments, with one pair for each predecessor basic block of the current
5945block. Only values of :ref:`first class <t_firstclass>` type may be used as
5946the value arguments to the PHI node. Only labels may be used as the
5947label arguments.
5948
5949There must be no non-phi instructions between the start of a basic block
5950and the PHI instructions: i.e. PHI instructions must be first in a basic
5951block.
5952
5953For the purposes of the SSA form, the use of each incoming value is
5954deemed to occur on the edge from the corresponding predecessor block to
5955the current block (but after any definition of an '``invoke``'
5956instruction's return value on the same edge).
5957
5958Semantics:
5959""""""""""
5960
5961At runtime, the '``phi``' instruction logically takes on the value
5962specified by the pair corresponding to the predecessor basic block that
5963executed just prior to the current block.
5964
5965Example:
5966""""""""
5967
5968.. code-block:: llvm
5969
5970 Loop: ; Infinite loop that counts from 0 on up...
5971 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5972 %nextindvar = add i32 %indvar, 1
5973 br label %Loop
5974
5975.. _i_select:
5976
5977'``select``' Instruction
5978^^^^^^^^^^^^^^^^^^^^^^^^
5979
5980Syntax:
5981"""""""
5982
5983::
5984
5985 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5986
5987 selty is either i1 or {<N x i1>}
5988
5989Overview:
5990"""""""""
5991
5992The '``select``' instruction is used to choose one value based on a
5993condition, without branching.
5994
5995Arguments:
5996""""""""""
5997
5998The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5999values indicating the condition, and two values of the same :ref:`first
6000class <t_firstclass>` type. If the val1/val2 are vectors and the
6001condition is a scalar, then entire vectors are selected, not individual
6002elements.
6003
6004Semantics:
6005""""""""""
6006
6007If the condition is an i1 and it evaluates to 1, the instruction returns
6008the first value argument; otherwise, it returns the second value
6009argument.
6010
6011If the condition is a vector of i1, then the value arguments must be
6012vectors of the same size, and the selection is done element by element.
6013
6014Example:
6015""""""""
6016
6017.. code-block:: llvm
6018
6019 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6020
6021.. _i_call:
6022
6023'``call``' Instruction
6024^^^^^^^^^^^^^^^^^^^^^^
6025
6026Syntax:
6027"""""""
6028
6029::
6030
6031 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6032
6033Overview:
6034"""""""""
6035
6036The '``call``' instruction represents a simple function call.
6037
6038Arguments:
6039""""""""""
6040
6041This instruction requires several arguments:
6042
6043#. The optional "tail" marker indicates that the callee function does
6044 not access any allocas or varargs in the caller. Note that calls may
6045 be marked "tail" even if they do not occur before a
6046 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6047 function call is eligible for tail call optimization, but `might not
6048 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6049 The code generator may optimize calls marked "tail" with either 1)
6050 automatic `sibling call
6051 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6052 callee have matching signatures, or 2) forced tail call optimization
6053 when the following extra requirements are met:
6054
6055 - Caller and callee both have the calling convention ``fastcc``.
6056 - The call is in tail position (ret immediately follows call and ret
6057 uses value of call or is void).
6058 - Option ``-tailcallopt`` is enabled, or
6059 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6060 - `Platform specific constraints are
6061 met. <CodeGenerator.html#tailcallopt>`_
6062
6063#. The optional "cconv" marker indicates which :ref:`calling
6064 convention <callingconv>` the call should use. If none is
6065 specified, the call defaults to using C calling conventions. The
6066 calling convention of the call must match the calling convention of
6067 the target function, or else the behavior is undefined.
6068#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6069 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6070 are valid here.
6071#. '``ty``': the type of the call instruction itself which is also the
6072 type of the return value. Functions that return no value are marked
6073 ``void``.
6074#. '``fnty``': shall be the signature of the pointer to function value
6075 being invoked. The argument types must match the types implied by
6076 this signature. This type can be omitted if the function is not
6077 varargs and if the function type does not return a pointer to a
6078 function.
6079#. '``fnptrval``': An LLVM value containing a pointer to a function to
6080 be invoked. In most cases, this is a direct function invocation, but
6081 indirect ``call``'s are just as possible, calling an arbitrary pointer
6082 to function value.
6083#. '``function args``': argument list whose types match the function
6084 signature argument types and parameter attributes. All arguments must
6085 be of :ref:`first class <t_firstclass>` type. If the function signature
6086 indicates the function accepts a variable number of arguments, the
6087 extra arguments can be specified.
6088#. The optional :ref:`function attributes <fnattrs>` list. Only
6089 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6090 attributes are valid here.
6091
6092Semantics:
6093""""""""""
6094
6095The '``call``' instruction is used to cause control flow to transfer to
6096a specified function, with its incoming arguments bound to the specified
6097values. Upon a '``ret``' instruction in the called function, control
6098flow continues with the instruction after the function call, and the
6099return value of the function is bound to the result argument.
6100
6101Example:
6102""""""""
6103
6104.. code-block:: llvm
6105
6106 %retval = call i32 @test(i32 %argc)
6107 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6108 %X = tail call i32 @foo() ; yields i32
6109 %Y = tail call fastcc i32 @foo() ; yields i32
6110 call void %foo(i8 97 signext)
6111
6112 %struct.A = type { i32, i8 }
6113 %r = call %struct.A @foo() ; yields { 32, i8 }
6114 %gr = extractvalue %struct.A %r, 0 ; yields i32
6115 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6116 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6117 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6118
6119llvm treats calls to some functions with names and arguments that match
6120the standard C99 library as being the C99 library functions, and may
6121perform optimizations or generate code for them under that assumption.
6122This is something we'd like to change in the future to provide better
6123support for freestanding environments and non-C-based languages.
6124
6125.. _i_va_arg:
6126
6127'``va_arg``' Instruction
6128^^^^^^^^^^^^^^^^^^^^^^^^
6129
6130Syntax:
6131"""""""
6132
6133::
6134
6135 <resultval> = va_arg <va_list*> <arglist>, <argty>
6136
6137Overview:
6138"""""""""
6139
6140The '``va_arg``' instruction is used to access arguments passed through
6141the "variable argument" area of a function call. It is used to implement
6142the ``va_arg`` macro in C.
6143
6144Arguments:
6145""""""""""
6146
6147This instruction takes a ``va_list*`` value and the type of the
6148argument. It returns a value of the specified argument type and
6149increments the ``va_list`` to point to the next argument. The actual
6150type of ``va_list`` is target specific.
6151
6152Semantics:
6153""""""""""
6154
6155The '``va_arg``' instruction loads an argument of the specified type
6156from the specified ``va_list`` and causes the ``va_list`` to point to
6157the next argument. For more information, see the variable argument
6158handling :ref:`Intrinsic Functions <int_varargs>`.
6159
6160It is legal for this instruction to be called in a function which does
6161not take a variable number of arguments, for example, the ``vfprintf``
6162function.
6163
6164``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6165function <intrinsics>` because it takes a type as an argument.
6166
6167Example:
6168""""""""
6169
6170See the :ref:`variable argument processing <int_varargs>` section.
6171
6172Note that the code generator does not yet fully support va\_arg on many
6173targets. Also, it does not currently support va\_arg with aggregate
6174types on any target.
6175
6176.. _i_landingpad:
6177
6178'``landingpad``' Instruction
6179^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6180
6181Syntax:
6182"""""""
6183
6184::
6185
6186 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6187 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6188
6189 <clause> := catch <type> <value>
6190 <clause> := filter <array constant type> <array constant>
6191
6192Overview:
6193"""""""""
6194
6195The '``landingpad``' instruction is used by `LLVM's exception handling
6196system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006197is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006198code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6199defines values supplied by the personality function (``pers_fn``) upon
6200re-entry to the function. The ``resultval`` has the type ``resultty``.
6201
6202Arguments:
6203""""""""""
6204
6205This instruction takes a ``pers_fn`` value. This is the personality
6206function associated with the unwinding mechanism. The optional
6207``cleanup`` flag indicates that the landing pad block is a cleanup.
6208
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006209A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006210contains the global variable representing the "type" that may be caught
6211or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6212clause takes an array constant as its argument. Use
6213"``[0 x i8**] undef``" for a filter which cannot throw. The
6214'``landingpad``' instruction must contain *at least* one ``clause`` or
6215the ``cleanup`` flag.
6216
6217Semantics:
6218""""""""""
6219
6220The '``landingpad``' instruction defines the values which are set by the
6221personality function (``pers_fn``) upon re-entry to the function, and
6222therefore the "result type" of the ``landingpad`` instruction. As with
6223calling conventions, how the personality function results are
6224represented in LLVM IR is target specific.
6225
6226The clauses are applied in order from top to bottom. If two
6227``landingpad`` instructions are merged together through inlining, the
6228clauses from the calling function are appended to the list of clauses.
6229When the call stack is being unwound due to an exception being thrown,
6230the exception is compared against each ``clause`` in turn. If it doesn't
6231match any of the clauses, and the ``cleanup`` flag is not set, then
6232unwinding continues further up the call stack.
6233
6234The ``landingpad`` instruction has several restrictions:
6235
6236- A landing pad block is a basic block which is the unwind destination
6237 of an '``invoke``' instruction.
6238- A landing pad block must have a '``landingpad``' instruction as its
6239 first non-PHI instruction.
6240- There can be only one '``landingpad``' instruction within the landing
6241 pad block.
6242- A basic block that is not a landing pad block may not include a
6243 '``landingpad``' instruction.
6244- All '``landingpad``' instructions in a function must have the same
6245 personality function.
6246
6247Example:
6248""""""""
6249
6250.. code-block:: llvm
6251
6252 ;; A landing pad which can catch an integer.
6253 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6254 catch i8** @_ZTIi
6255 ;; A landing pad that is a cleanup.
6256 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6257 cleanup
6258 ;; A landing pad which can catch an integer and can only throw a double.
6259 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6260 catch i8** @_ZTIi
6261 filter [1 x i8**] [@_ZTId]
6262
6263.. _intrinsics:
6264
6265Intrinsic Functions
6266===================
6267
6268LLVM supports the notion of an "intrinsic function". These functions
6269have well known names and semantics and are required to follow certain
6270restrictions. Overall, these intrinsics represent an extension mechanism
6271for the LLVM language that does not require changing all of the
6272transformations in LLVM when adding to the language (or the bitcode
6273reader/writer, the parser, etc...).
6274
6275Intrinsic function names must all start with an "``llvm.``" prefix. This
6276prefix is reserved in LLVM for intrinsic names; thus, function names may
6277not begin with this prefix. Intrinsic functions must always be external
6278functions: you cannot define the body of intrinsic functions. Intrinsic
6279functions may only be used in call or invoke instructions: it is illegal
6280to take the address of an intrinsic function. Additionally, because
6281intrinsic functions are part of the LLVM language, it is required if any
6282are added that they be documented here.
6283
6284Some intrinsic functions can be overloaded, i.e., the intrinsic
6285represents a family of functions that perform the same operation but on
6286different data types. Because LLVM can represent over 8 million
6287different integer types, overloading is used commonly to allow an
6288intrinsic function to operate on any integer type. One or more of the
6289argument types or the result type can be overloaded to accept any
6290integer type. Argument types may also be defined as exactly matching a
6291previous argument's type or the result type. This allows an intrinsic
6292function which accepts multiple arguments, but needs all of them to be
6293of the same type, to only be overloaded with respect to a single
6294argument or the result.
6295
6296Overloaded intrinsics will have the names of its overloaded argument
6297types encoded into its function name, each preceded by a period. Only
6298those types which are overloaded result in a name suffix. Arguments
6299whose type is matched against another type do not. For example, the
6300``llvm.ctpop`` function can take an integer of any width and returns an
6301integer of exactly the same integer width. This leads to a family of
6302functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6303``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6304overloaded, and only one type suffix is required. Because the argument's
6305type is matched against the return type, it does not require its own
6306name suffix.
6307
6308To learn how to add an intrinsic function, please see the `Extending
6309LLVM Guide <ExtendingLLVM.html>`_.
6310
6311.. _int_varargs:
6312
6313Variable Argument Handling Intrinsics
6314-------------------------------------
6315
6316Variable argument support is defined in LLVM with the
6317:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6318functions. These functions are related to the similarly named macros
6319defined in the ``<stdarg.h>`` header file.
6320
6321All of these functions operate on arguments that use a target-specific
6322value type "``va_list``". The LLVM assembly language reference manual
6323does not define what this type is, so all transformations should be
6324prepared to handle these functions regardless of the type used.
6325
6326This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6327variable argument handling intrinsic functions are used.
6328
6329.. code-block:: llvm
6330
6331 define i32 @test(i32 %X, ...) {
6332 ; Initialize variable argument processing
6333 %ap = alloca i8*
6334 %ap2 = bitcast i8** %ap to i8*
6335 call void @llvm.va_start(i8* %ap2)
6336
6337 ; Read a single integer argument
6338 %tmp = va_arg i8** %ap, i32
6339
6340 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6341 %aq = alloca i8*
6342 %aq2 = bitcast i8** %aq to i8*
6343 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6344 call void @llvm.va_end(i8* %aq2)
6345
6346 ; Stop processing of arguments.
6347 call void @llvm.va_end(i8* %ap2)
6348 ret i32 %tmp
6349 }
6350
6351 declare void @llvm.va_start(i8*)
6352 declare void @llvm.va_copy(i8*, i8*)
6353 declare void @llvm.va_end(i8*)
6354
6355.. _int_va_start:
6356
6357'``llvm.va_start``' Intrinsic
6358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6359
6360Syntax:
6361"""""""
6362
6363::
6364
Nick Lewyckyf7e61562013-09-11 22:04:52 +00006365 declare void @llvm.va_start(i8* <arglist>)
Sean Silvaf722b002012-12-07 10:36:55 +00006366
6367Overview:
6368"""""""""
6369
6370The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6371subsequent use by ``va_arg``.
6372
6373Arguments:
6374""""""""""
6375
6376The argument is a pointer to a ``va_list`` element to initialize.
6377
6378Semantics:
6379""""""""""
6380
6381The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6382available in C. In a target-dependent way, it initializes the
6383``va_list`` element to which the argument points, so that the next call
6384to ``va_arg`` will produce the first variable argument passed to the
6385function. Unlike the C ``va_start`` macro, this intrinsic does not need
6386to know the last argument of the function as the compiler can figure
6387that out.
6388
6389'``llvm.va_end``' Intrinsic
6390^^^^^^^^^^^^^^^^^^^^^^^^^^^
6391
6392Syntax:
6393"""""""
6394
6395::
6396
6397 declare void @llvm.va_end(i8* <arglist>)
6398
6399Overview:
6400"""""""""
6401
6402The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6403initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6404
6405Arguments:
6406""""""""""
6407
6408The argument is a pointer to a ``va_list`` to destroy.
6409
6410Semantics:
6411""""""""""
6412
6413The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6414available in C. In a target-dependent way, it destroys the ``va_list``
6415element to which the argument points. Calls to
6416:ref:`llvm.va_start <int_va_start>` and
6417:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6418``llvm.va_end``.
6419
6420.. _int_va_copy:
6421
6422'``llvm.va_copy``' Intrinsic
6423^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6424
6425Syntax:
6426"""""""
6427
6428::
6429
6430 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6431
6432Overview:
6433"""""""""
6434
6435The '``llvm.va_copy``' intrinsic copies the current argument position
6436from the source argument list to the destination argument list.
6437
6438Arguments:
6439""""""""""
6440
6441The first argument is a pointer to a ``va_list`` element to initialize.
6442The second argument is a pointer to a ``va_list`` element to copy from.
6443
6444Semantics:
6445""""""""""
6446
6447The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6448available in C. In a target-dependent way, it copies the source
6449``va_list`` element into the destination ``va_list`` element. This
6450intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6451arbitrarily complex and require, for example, memory allocation.
6452
6453Accurate Garbage Collection Intrinsics
6454--------------------------------------
6455
6456LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6457(GC) requires the implementation and generation of these intrinsics.
6458These intrinsics allow identification of :ref:`GC roots on the
6459stack <int_gcroot>`, as well as garbage collector implementations that
6460require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6461Front-ends for type-safe garbage collected languages should generate
6462these intrinsics to make use of the LLVM garbage collectors. For more
6463details, see `Accurate Garbage Collection with
6464LLVM <GarbageCollection.html>`_.
6465
6466The garbage collection intrinsics only operate on objects in the generic
6467address space (address space zero).
6468
6469.. _int_gcroot:
6470
6471'``llvm.gcroot``' Intrinsic
6472^^^^^^^^^^^^^^^^^^^^^^^^^^^
6473
6474Syntax:
6475"""""""
6476
6477::
6478
6479 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6480
6481Overview:
6482"""""""""
6483
6484The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6485the code generator, and allows some metadata to be associated with it.
6486
6487Arguments:
6488""""""""""
6489
6490The first argument specifies the address of a stack object that contains
6491the root pointer. The second pointer (which must be either a constant or
6492a global value address) contains the meta-data to be associated with the
6493root.
6494
6495Semantics:
6496""""""""""
6497
6498At runtime, a call to this intrinsic stores a null pointer into the
6499"ptrloc" location. At compile-time, the code generator generates
6500information to allow the runtime to find the pointer at GC safe points.
6501The '``llvm.gcroot``' intrinsic may only be used in a function which
6502:ref:`specifies a GC algorithm <gc>`.
6503
6504.. _int_gcread:
6505
6506'``llvm.gcread``' Intrinsic
6507^^^^^^^^^^^^^^^^^^^^^^^^^^^
6508
6509Syntax:
6510"""""""
6511
6512::
6513
6514 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6515
6516Overview:
6517"""""""""
6518
6519The '``llvm.gcread``' intrinsic identifies reads of references from heap
6520locations, allowing garbage collector implementations that require read
6521barriers.
6522
6523Arguments:
6524""""""""""
6525
6526The second argument is the address to read from, which should be an
6527address allocated from the garbage collector. The first object is a
6528pointer to the start of the referenced object, if needed by the language
6529runtime (otherwise null).
6530
6531Semantics:
6532""""""""""
6533
6534The '``llvm.gcread``' intrinsic has the same semantics as a load
6535instruction, but may be replaced with substantially more complex code by
6536the garbage collector runtime, as needed. The '``llvm.gcread``'
6537intrinsic may only be used in a function which :ref:`specifies a GC
6538algorithm <gc>`.
6539
6540.. _int_gcwrite:
6541
6542'``llvm.gcwrite``' Intrinsic
6543^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6544
6545Syntax:
6546"""""""
6547
6548::
6549
6550 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6551
6552Overview:
6553"""""""""
6554
6555The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6556locations, allowing garbage collector implementations that require write
6557barriers (such as generational or reference counting collectors).
6558
6559Arguments:
6560""""""""""
6561
6562The first argument is the reference to store, the second is the start of
6563the object to store it to, and the third is the address of the field of
6564Obj to store to. If the runtime does not require a pointer to the
6565object, Obj may be null.
6566
6567Semantics:
6568""""""""""
6569
6570The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6571instruction, but may be replaced with substantially more complex code by
6572the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6573intrinsic may only be used in a function which :ref:`specifies a GC
6574algorithm <gc>`.
6575
6576Code Generator Intrinsics
6577-------------------------
6578
6579These intrinsics are provided by LLVM to expose special features that
6580may only be implemented with code generator support.
6581
6582'``llvm.returnaddress``' Intrinsic
6583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6584
6585Syntax:
6586"""""""
6587
6588::
6589
6590 declare i8 *@llvm.returnaddress(i32 <level>)
6591
6592Overview:
6593"""""""""
6594
6595The '``llvm.returnaddress``' intrinsic attempts to compute a
6596target-specific value indicating the return address of the current
6597function or one of its callers.
6598
6599Arguments:
6600""""""""""
6601
6602The argument to this intrinsic indicates which function to return the
6603address for. Zero indicates the calling function, one indicates its
6604caller, etc. The argument is **required** to be a constant integer
6605value.
6606
6607Semantics:
6608""""""""""
6609
6610The '``llvm.returnaddress``' intrinsic either returns a pointer
6611indicating the return address of the specified call frame, or zero if it
6612cannot be identified. The value returned by this intrinsic is likely to
6613be incorrect or 0 for arguments other than zero, so it should only be
6614used for debugging purposes.
6615
6616Note that calling this intrinsic does not prevent function inlining or
6617other aggressive transformations, so the value returned may not be that
6618of the obvious source-language caller.
6619
6620'``llvm.frameaddress``' Intrinsic
6621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6622
6623Syntax:
6624"""""""
6625
6626::
6627
6628 declare i8* @llvm.frameaddress(i32 <level>)
6629
6630Overview:
6631"""""""""
6632
6633The '``llvm.frameaddress``' intrinsic attempts to return the
6634target-specific frame pointer value for the specified stack frame.
6635
6636Arguments:
6637""""""""""
6638
6639The argument to this intrinsic indicates which function to return the
6640frame pointer for. Zero indicates the calling function, one indicates
6641its caller, etc. The argument is **required** to be a constant integer
6642value.
6643
6644Semantics:
6645""""""""""
6646
6647The '``llvm.frameaddress``' intrinsic either returns a pointer
6648indicating the frame address of the specified call frame, or zero if it
6649cannot be identified. The value returned by this intrinsic is likely to
6650be incorrect or 0 for arguments other than zero, so it should only be
6651used for debugging purposes.
6652
6653Note that calling this intrinsic does not prevent function inlining or
6654other aggressive transformations, so the value returned may not be that
6655of the obvious source-language caller.
6656
6657.. _int_stacksave:
6658
6659'``llvm.stacksave``' Intrinsic
6660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6661
6662Syntax:
6663"""""""
6664
6665::
6666
6667 declare i8* @llvm.stacksave()
6668
6669Overview:
6670"""""""""
6671
6672The '``llvm.stacksave``' intrinsic is used to remember the current state
6673of the function stack, for use with
6674:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6675implementing language features like scoped automatic variable sized
6676arrays in C99.
6677
6678Semantics:
6679""""""""""
6680
6681This intrinsic returns a opaque pointer value that can be passed to
6682:ref:`llvm.stackrestore <int_stackrestore>`. When an
6683``llvm.stackrestore`` intrinsic is executed with a value saved from
6684``llvm.stacksave``, it effectively restores the state of the stack to
6685the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6686practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6687were allocated after the ``llvm.stacksave`` was executed.
6688
6689.. _int_stackrestore:
6690
6691'``llvm.stackrestore``' Intrinsic
6692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6693
6694Syntax:
6695"""""""
6696
6697::
6698
6699 declare void @llvm.stackrestore(i8* %ptr)
6700
6701Overview:
6702"""""""""
6703
6704The '``llvm.stackrestore``' intrinsic is used to restore the state of
6705the function stack to the state it was in when the corresponding
6706:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6707useful for implementing language features like scoped automatic variable
6708sized arrays in C99.
6709
6710Semantics:
6711""""""""""
6712
6713See the description for :ref:`llvm.stacksave <int_stacksave>`.
6714
6715'``llvm.prefetch``' Intrinsic
6716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6717
6718Syntax:
6719"""""""
6720
6721::
6722
6723 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6724
6725Overview:
6726"""""""""
6727
6728The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6729insert a prefetch instruction if supported; otherwise, it is a noop.
6730Prefetches have no effect on the behavior of the program but can change
6731its performance characteristics.
6732
6733Arguments:
6734""""""""""
6735
6736``address`` is the address to be prefetched, ``rw`` is the specifier
6737determining if the fetch should be for a read (0) or write (1), and
6738``locality`` is a temporal locality specifier ranging from (0) - no
6739locality, to (3) - extremely local keep in cache. The ``cache type``
6740specifies whether the prefetch is performed on the data (1) or
6741instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6742arguments must be constant integers.
6743
6744Semantics:
6745""""""""""
6746
6747This intrinsic does not modify the behavior of the program. In
6748particular, prefetches cannot trap and do not produce a value. On
6749targets that support this intrinsic, the prefetch can provide hints to
6750the processor cache for better performance.
6751
6752'``llvm.pcmarker``' Intrinsic
6753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6754
6755Syntax:
6756"""""""
6757
6758::
6759
6760 declare void @llvm.pcmarker(i32 <id>)
6761
6762Overview:
6763"""""""""
6764
6765The '``llvm.pcmarker``' intrinsic is a method to export a Program
6766Counter (PC) in a region of code to simulators and other tools. The
6767method is target specific, but it is expected that the marker will use
6768exported symbols to transmit the PC of the marker. The marker makes no
6769guarantees that it will remain with any specific instruction after
6770optimizations. It is possible that the presence of a marker will inhibit
6771optimizations. The intended use is to be inserted after optimizations to
6772allow correlations of simulation runs.
6773
6774Arguments:
6775""""""""""
6776
6777``id`` is a numerical id identifying the marker.
6778
6779Semantics:
6780""""""""""
6781
6782This intrinsic does not modify the behavior of the program. Backends
6783that do not support this intrinsic may ignore it.
6784
6785'``llvm.readcyclecounter``' Intrinsic
6786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6787
6788Syntax:
6789"""""""
6790
6791::
6792
6793 declare i64 @llvm.readcyclecounter()
6794
6795Overview:
6796"""""""""
6797
6798The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6799counter register (or similar low latency, high accuracy clocks) on those
6800targets that support it. On X86, it should map to RDTSC. On Alpha, it
6801should map to RPCC. As the backing counters overflow quickly (on the
6802order of 9 seconds on alpha), this should only be used for small
6803timings.
6804
6805Semantics:
6806""""""""""
6807
6808When directly supported, reading the cycle counter should not modify any
6809memory. Implementations are allowed to either return a application
6810specific value or a system wide value. On backends without support, this
6811is lowered to a constant 0.
6812
Tim Northover5a02fc42013-05-23 19:11:20 +00006813Note that runtime support may be conditional on the privilege-level code is
6814running at and the host platform.
6815
Sean Silvaf722b002012-12-07 10:36:55 +00006816Standard C Library Intrinsics
6817-----------------------------
6818
6819LLVM provides intrinsics for a few important standard C library
6820functions. These intrinsics allow source-language front-ends to pass
6821information about the alignment of the pointer arguments to the code
6822generator, providing opportunity for more efficient code generation.
6823
6824.. _int_memcpy:
6825
6826'``llvm.memcpy``' Intrinsic
6827^^^^^^^^^^^^^^^^^^^^^^^^^^^
6828
6829Syntax:
6830"""""""
6831
6832This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6833integer bit width and for different address spaces. Not all targets
6834support all bit widths however.
6835
6836::
6837
6838 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6839 i32 <len>, i32 <align>, i1 <isvolatile>)
6840 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6841 i64 <len>, i32 <align>, i1 <isvolatile>)
6842
6843Overview:
6844"""""""""
6845
6846The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6847source location to the destination location.
6848
6849Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6850intrinsics do not return a value, takes extra alignment/isvolatile
6851arguments and the pointers can be in specified address spaces.
6852
6853Arguments:
6854""""""""""
6855
6856The first argument is a pointer to the destination, the second is a
6857pointer to the source. The third argument is an integer argument
6858specifying the number of bytes to copy, the fourth argument is the
6859alignment of the source and destination locations, and the fifth is a
6860boolean indicating a volatile access.
6861
6862If the call to this intrinsic has an alignment value that is not 0 or 1,
6863then the caller guarantees that both the source and destination pointers
6864are aligned to that boundary.
6865
6866If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6867a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6868very cleanly specified and it is unwise to depend on it.
6869
6870Semantics:
6871""""""""""
6872
6873The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6874source location to the destination location, which are not allowed to
6875overlap. It copies "len" bytes of memory over. If the argument is known
6876to be aligned to some boundary, this can be specified as the fourth
6877argument, otherwise it should be set to 0 or 1.
6878
6879'``llvm.memmove``' Intrinsic
6880^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6881
6882Syntax:
6883"""""""
6884
6885This is an overloaded intrinsic. You can use llvm.memmove on any integer
6886bit width and for different address space. Not all targets support all
6887bit widths however.
6888
6889::
6890
6891 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6892 i32 <len>, i32 <align>, i1 <isvolatile>)
6893 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6894 i64 <len>, i32 <align>, i1 <isvolatile>)
6895
6896Overview:
6897"""""""""
6898
6899The '``llvm.memmove.*``' intrinsics move a block of memory from the
6900source location to the destination location. It is similar to the
6901'``llvm.memcpy``' intrinsic but allows the two memory locations to
6902overlap.
6903
6904Note that, unlike the standard libc function, the ``llvm.memmove.*``
6905intrinsics do not return a value, takes extra alignment/isvolatile
6906arguments and the pointers can be in specified address spaces.
6907
6908Arguments:
6909""""""""""
6910
6911The first argument is a pointer to the destination, the second is a
6912pointer to the source. The third argument is an integer argument
6913specifying the number of bytes to copy, the fourth argument is the
6914alignment of the source and destination locations, and the fifth is a
6915boolean indicating a volatile access.
6916
6917If the call to this intrinsic has an alignment value that is not 0 or 1,
6918then the caller guarantees that the source and destination pointers are
6919aligned to that boundary.
6920
6921If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6922is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6923not very cleanly specified and it is unwise to depend on it.
6924
6925Semantics:
6926""""""""""
6927
6928The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6929source location to the destination location, which may overlap. It
6930copies "len" bytes of memory over. If the argument is known to be
6931aligned to some boundary, this can be specified as the fourth argument,
6932otherwise it should be set to 0 or 1.
6933
6934'``llvm.memset.*``' Intrinsics
6935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6936
6937Syntax:
6938"""""""
6939
6940This is an overloaded intrinsic. You can use llvm.memset on any integer
6941bit width and for different address spaces. However, not all targets
6942support all bit widths.
6943
6944::
6945
6946 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6947 i32 <len>, i32 <align>, i1 <isvolatile>)
6948 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6949 i64 <len>, i32 <align>, i1 <isvolatile>)
6950
6951Overview:
6952"""""""""
6953
6954The '``llvm.memset.*``' intrinsics fill a block of memory with a
6955particular byte value.
6956
6957Note that, unlike the standard libc function, the ``llvm.memset``
6958intrinsic does not return a value and takes extra alignment/volatile
6959arguments. Also, the destination can be in an arbitrary address space.
6960
6961Arguments:
6962""""""""""
6963
6964The first argument is a pointer to the destination to fill, the second
6965is the byte value with which to fill it, the third argument is an
6966integer argument specifying the number of bytes to fill, and the fourth
6967argument is the known alignment of the destination location.
6968
6969If the call to this intrinsic has an alignment value that is not 0 or 1,
6970then the caller guarantees that the destination pointer is aligned to
6971that boundary.
6972
6973If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6974a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6975very cleanly specified and it is unwise to depend on it.
6976
6977Semantics:
6978""""""""""
6979
6980The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6981at the destination location. If the argument is known to be aligned to
6982some boundary, this can be specified as the fourth argument, otherwise
6983it should be set to 0 or 1.
6984
6985'``llvm.sqrt.*``' Intrinsic
6986^^^^^^^^^^^^^^^^^^^^^^^^^^^
6987
6988Syntax:
6989"""""""
6990
6991This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6992floating point or vector of floating point type. Not all targets support
6993all types however.
6994
6995::
6996
6997 declare float @llvm.sqrt.f32(float %Val)
6998 declare double @llvm.sqrt.f64(double %Val)
6999 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7000 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7001 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7002
7003Overview:
7004"""""""""
7005
7006The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7007returning the same value as the libm '``sqrt``' functions would. Unlike
7008``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7009negative numbers other than -0.0 (which allows for better optimization,
7010because there is no need to worry about errno being set).
7011``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7012
7013Arguments:
7014""""""""""
7015
7016The argument and return value are floating point numbers of the same
7017type.
7018
7019Semantics:
7020""""""""""
7021
7022This function returns the sqrt of the specified operand if it is a
7023nonnegative floating point number.
7024
7025'``llvm.powi.*``' Intrinsic
7026^^^^^^^^^^^^^^^^^^^^^^^^^^^
7027
7028Syntax:
7029"""""""
7030
7031This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7032floating point or vector of floating point type. Not all targets support
7033all types however.
7034
7035::
7036
7037 declare float @llvm.powi.f32(float %Val, i32 %power)
7038 declare double @llvm.powi.f64(double %Val, i32 %power)
7039 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7040 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7041 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7042
7043Overview:
7044"""""""""
7045
7046The '``llvm.powi.*``' intrinsics return the first operand raised to the
7047specified (positive or negative) power. The order of evaluation of
7048multiplications is not defined. When a vector of floating point type is
7049used, the second argument remains a scalar integer value.
7050
7051Arguments:
7052""""""""""
7053
7054The second argument is an integer power, and the first is a value to
7055raise to that power.
7056
7057Semantics:
7058""""""""""
7059
7060This function returns the first value raised to the second power with an
7061unspecified sequence of rounding operations.
7062
7063'``llvm.sin.*``' Intrinsic
7064^^^^^^^^^^^^^^^^^^^^^^^^^^
7065
7066Syntax:
7067"""""""
7068
7069This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7070floating point or vector of floating point type. Not all targets support
7071all types however.
7072
7073::
7074
7075 declare float @llvm.sin.f32(float %Val)
7076 declare double @llvm.sin.f64(double %Val)
7077 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7078 declare fp128 @llvm.sin.f128(fp128 %Val)
7079 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7080
7081Overview:
7082"""""""""
7083
7084The '``llvm.sin.*``' intrinsics return the sine of the operand.
7085
7086Arguments:
7087""""""""""
7088
7089The argument and return value are floating point numbers of the same
7090type.
7091
7092Semantics:
7093""""""""""
7094
7095This function returns the sine of the specified operand, returning the
7096same values as the libm ``sin`` functions would, and handles error
7097conditions in the same way.
7098
7099'``llvm.cos.*``' Intrinsic
7100^^^^^^^^^^^^^^^^^^^^^^^^^^
7101
7102Syntax:
7103"""""""
7104
7105This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7106floating point or vector of floating point type. Not all targets support
7107all types however.
7108
7109::
7110
7111 declare float @llvm.cos.f32(float %Val)
7112 declare double @llvm.cos.f64(double %Val)
7113 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7114 declare fp128 @llvm.cos.f128(fp128 %Val)
7115 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7116
7117Overview:
7118"""""""""
7119
7120The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7121
7122Arguments:
7123""""""""""
7124
7125The argument and return value are floating point numbers of the same
7126type.
7127
7128Semantics:
7129""""""""""
7130
7131This function returns the cosine of the specified operand, returning the
7132same values as the libm ``cos`` functions would, and handles error
7133conditions in the same way.
7134
7135'``llvm.pow.*``' Intrinsic
7136^^^^^^^^^^^^^^^^^^^^^^^^^^
7137
7138Syntax:
7139"""""""
7140
7141This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7142floating point or vector of floating point type. Not all targets support
7143all types however.
7144
7145::
7146
7147 declare float @llvm.pow.f32(float %Val, float %Power)
7148 declare double @llvm.pow.f64(double %Val, double %Power)
7149 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7150 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7151 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7152
7153Overview:
7154"""""""""
7155
7156The '``llvm.pow.*``' intrinsics return the first operand raised to the
7157specified (positive or negative) power.
7158
7159Arguments:
7160""""""""""
7161
7162The second argument is a floating point power, and the first is a value
7163to raise to that power.
7164
7165Semantics:
7166""""""""""
7167
7168This function returns the first value raised to the second power,
7169returning the same values as the libm ``pow`` functions would, and
7170handles error conditions in the same way.
7171
7172'``llvm.exp.*``' Intrinsic
7173^^^^^^^^^^^^^^^^^^^^^^^^^^
7174
7175Syntax:
7176"""""""
7177
7178This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7179floating point or vector of floating point type. Not all targets support
7180all types however.
7181
7182::
7183
7184 declare float @llvm.exp.f32(float %Val)
7185 declare double @llvm.exp.f64(double %Val)
7186 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7187 declare fp128 @llvm.exp.f128(fp128 %Val)
7188 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7189
7190Overview:
7191"""""""""
7192
7193The '``llvm.exp.*``' intrinsics perform the exp function.
7194
7195Arguments:
7196""""""""""
7197
7198The argument and return value are floating point numbers of the same
7199type.
7200
7201Semantics:
7202""""""""""
7203
7204This function returns the same values as the libm ``exp`` functions
7205would, and handles error conditions in the same way.
7206
7207'``llvm.exp2.*``' Intrinsic
7208^^^^^^^^^^^^^^^^^^^^^^^^^^^
7209
7210Syntax:
7211"""""""
7212
7213This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7214floating point or vector of floating point type. Not all targets support
7215all types however.
7216
7217::
7218
7219 declare float @llvm.exp2.f32(float %Val)
7220 declare double @llvm.exp2.f64(double %Val)
7221 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7222 declare fp128 @llvm.exp2.f128(fp128 %Val)
7223 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7224
7225Overview:
7226"""""""""
7227
7228The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7229
7230Arguments:
7231""""""""""
7232
7233The argument and return value are floating point numbers of the same
7234type.
7235
7236Semantics:
7237""""""""""
7238
7239This function returns the same values as the libm ``exp2`` functions
7240would, and handles error conditions in the same way.
7241
7242'``llvm.log.*``' Intrinsic
7243^^^^^^^^^^^^^^^^^^^^^^^^^^
7244
7245Syntax:
7246"""""""
7247
7248This is an overloaded intrinsic. You can use ``llvm.log`` on any
7249floating point or vector of floating point type. Not all targets support
7250all types however.
7251
7252::
7253
7254 declare float @llvm.log.f32(float %Val)
7255 declare double @llvm.log.f64(double %Val)
7256 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7257 declare fp128 @llvm.log.f128(fp128 %Val)
7258 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7259
7260Overview:
7261"""""""""
7262
7263The '``llvm.log.*``' intrinsics perform the log function.
7264
7265Arguments:
7266""""""""""
7267
7268The argument and return value are floating point numbers of the same
7269type.
7270
7271Semantics:
7272""""""""""
7273
7274This function returns the same values as the libm ``log`` functions
7275would, and handles error conditions in the same way.
7276
7277'``llvm.log10.*``' Intrinsic
7278^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7279
7280Syntax:
7281"""""""
7282
7283This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7284floating point or vector of floating point type. Not all targets support
7285all types however.
7286
7287::
7288
7289 declare float @llvm.log10.f32(float %Val)
7290 declare double @llvm.log10.f64(double %Val)
7291 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7292 declare fp128 @llvm.log10.f128(fp128 %Val)
7293 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7294
7295Overview:
7296"""""""""
7297
7298The '``llvm.log10.*``' intrinsics perform the log10 function.
7299
7300Arguments:
7301""""""""""
7302
7303The argument and return value are floating point numbers of the same
7304type.
7305
7306Semantics:
7307""""""""""
7308
7309This function returns the same values as the libm ``log10`` functions
7310would, and handles error conditions in the same way.
7311
7312'``llvm.log2.*``' Intrinsic
7313^^^^^^^^^^^^^^^^^^^^^^^^^^^
7314
7315Syntax:
7316"""""""
7317
7318This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7319floating point or vector of floating point type. Not all targets support
7320all types however.
7321
7322::
7323
7324 declare float @llvm.log2.f32(float %Val)
7325 declare double @llvm.log2.f64(double %Val)
7326 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7327 declare fp128 @llvm.log2.f128(fp128 %Val)
7328 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7329
7330Overview:
7331"""""""""
7332
7333The '``llvm.log2.*``' intrinsics perform the log2 function.
7334
7335Arguments:
7336""""""""""
7337
7338The argument and return value are floating point numbers of the same
7339type.
7340
7341Semantics:
7342""""""""""
7343
7344This function returns the same values as the libm ``log2`` functions
7345would, and handles error conditions in the same way.
7346
7347'``llvm.fma.*``' Intrinsic
7348^^^^^^^^^^^^^^^^^^^^^^^^^^
7349
7350Syntax:
7351"""""""
7352
7353This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7354floating point or vector of floating point type. Not all targets support
7355all types however.
7356
7357::
7358
7359 declare float @llvm.fma.f32(float %a, float %b, float %c)
7360 declare double @llvm.fma.f64(double %a, double %b, double %c)
7361 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7362 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7363 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7364
7365Overview:
7366"""""""""
7367
7368The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7369operation.
7370
7371Arguments:
7372""""""""""
7373
7374The argument and return value are floating point numbers of the same
7375type.
7376
7377Semantics:
7378""""""""""
7379
7380This function returns the same values as the libm ``fma`` functions
7381would.
7382
7383'``llvm.fabs.*``' Intrinsic
7384^^^^^^^^^^^^^^^^^^^^^^^^^^^
7385
7386Syntax:
7387"""""""
7388
7389This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7390floating point or vector of floating point type. Not all targets support
7391all types however.
7392
7393::
7394
7395 declare float @llvm.fabs.f32(float %Val)
7396 declare double @llvm.fabs.f64(double %Val)
7397 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7398 declare fp128 @llvm.fabs.f128(fp128 %Val)
7399 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7400
7401Overview:
7402"""""""""
7403
7404The '``llvm.fabs.*``' intrinsics return the absolute value of the
7405operand.
7406
7407Arguments:
7408""""""""""
7409
7410The argument and return value are floating point numbers of the same
7411type.
7412
7413Semantics:
7414""""""""""
7415
7416This function returns the same values as the libm ``fabs`` functions
7417would, and handles error conditions in the same way.
7418
Hal Finkel66d1fa62013-08-19 23:35:46 +00007419'``llvm.copysign.*``' Intrinsic
7420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7421
7422Syntax:
7423"""""""
7424
7425This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7426floating point or vector of floating point type. Not all targets support
7427all types however.
7428
7429::
7430
7431 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7432 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7433 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7434 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7435 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7436
7437Overview:
7438"""""""""
7439
7440The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7441first operand and the sign of the second operand.
7442
7443Arguments:
7444""""""""""
7445
7446The arguments and return value are floating point numbers of the same
7447type.
7448
7449Semantics:
7450""""""""""
7451
7452This function returns the same values as the libm ``copysign``
7453functions would, and handles error conditions in the same way.
7454
Sean Silvaf722b002012-12-07 10:36:55 +00007455'``llvm.floor.*``' Intrinsic
7456^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7457
7458Syntax:
7459"""""""
7460
7461This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7462floating point or vector of floating point type. Not all targets support
7463all types however.
7464
7465::
7466
7467 declare float @llvm.floor.f32(float %Val)
7468 declare double @llvm.floor.f64(double %Val)
7469 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7470 declare fp128 @llvm.floor.f128(fp128 %Val)
7471 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7472
7473Overview:
7474"""""""""
7475
7476The '``llvm.floor.*``' intrinsics return the floor of the operand.
7477
7478Arguments:
7479""""""""""
7480
7481The argument and return value are floating point numbers of the same
7482type.
7483
7484Semantics:
7485""""""""""
7486
7487This function returns the same values as the libm ``floor`` functions
7488would, and handles error conditions in the same way.
7489
7490'``llvm.ceil.*``' Intrinsic
7491^^^^^^^^^^^^^^^^^^^^^^^^^^^
7492
7493Syntax:
7494"""""""
7495
7496This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7497floating point or vector of floating point type. Not all targets support
7498all types however.
7499
7500::
7501
7502 declare float @llvm.ceil.f32(float %Val)
7503 declare double @llvm.ceil.f64(double %Val)
7504 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7505 declare fp128 @llvm.ceil.f128(fp128 %Val)
7506 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7507
7508Overview:
7509"""""""""
7510
7511The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7512
7513Arguments:
7514""""""""""
7515
7516The argument and return value are floating point numbers of the same
7517type.
7518
7519Semantics:
7520""""""""""
7521
7522This function returns the same values as the libm ``ceil`` functions
7523would, and handles error conditions in the same way.
7524
7525'``llvm.trunc.*``' Intrinsic
7526^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7527
7528Syntax:
7529"""""""
7530
7531This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7532floating point or vector of floating point type. Not all targets support
7533all types however.
7534
7535::
7536
7537 declare float @llvm.trunc.f32(float %Val)
7538 declare double @llvm.trunc.f64(double %Val)
7539 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7540 declare fp128 @llvm.trunc.f128(fp128 %Val)
7541 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7542
7543Overview:
7544"""""""""
7545
7546The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7547nearest integer not larger in magnitude than the operand.
7548
7549Arguments:
7550""""""""""
7551
7552The argument and return value are floating point numbers of the same
7553type.
7554
7555Semantics:
7556""""""""""
7557
7558This function returns the same values as the libm ``trunc`` functions
7559would, and handles error conditions in the same way.
7560
7561'``llvm.rint.*``' Intrinsic
7562^^^^^^^^^^^^^^^^^^^^^^^^^^^
7563
7564Syntax:
7565"""""""
7566
7567This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7568floating point or vector of floating point type. Not all targets support
7569all types however.
7570
7571::
7572
7573 declare float @llvm.rint.f32(float %Val)
7574 declare double @llvm.rint.f64(double %Val)
7575 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7576 declare fp128 @llvm.rint.f128(fp128 %Val)
7577 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7578
7579Overview:
7580"""""""""
7581
7582The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7583nearest integer. It may raise an inexact floating-point exception if the
7584operand isn't an integer.
7585
7586Arguments:
7587""""""""""
7588
7589The argument and return value are floating point numbers of the same
7590type.
7591
7592Semantics:
7593""""""""""
7594
7595This function returns the same values as the libm ``rint`` functions
7596would, and handles error conditions in the same way.
7597
7598'``llvm.nearbyint.*``' Intrinsic
7599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7600
7601Syntax:
7602"""""""
7603
7604This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7605floating point or vector of floating point type. Not all targets support
7606all types however.
7607
7608::
7609
7610 declare float @llvm.nearbyint.f32(float %Val)
7611 declare double @llvm.nearbyint.f64(double %Val)
7612 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7613 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7614 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7615
7616Overview:
7617"""""""""
7618
7619The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7620nearest integer.
7621
7622Arguments:
7623""""""""""
7624
7625The argument and return value are floating point numbers of the same
7626type.
7627
7628Semantics:
7629""""""""""
7630
7631This function returns the same values as the libm ``nearbyint``
7632functions would, and handles error conditions in the same way.
7633
Hal Finkel41418d12013-08-07 22:49:12 +00007634'``llvm.round.*``' Intrinsic
7635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7636
7637Syntax:
7638"""""""
7639
7640This is an overloaded intrinsic. You can use ``llvm.round`` on any
7641floating point or vector of floating point type. Not all targets support
7642all types however.
7643
7644::
7645
7646 declare float @llvm.round.f32(float %Val)
7647 declare double @llvm.round.f64(double %Val)
7648 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7649 declare fp128 @llvm.round.f128(fp128 %Val)
7650 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7651
7652Overview:
7653"""""""""
7654
7655The '``llvm.round.*``' intrinsics returns the operand rounded to the
7656nearest integer.
7657
7658Arguments:
7659""""""""""
7660
7661The argument and return value are floating point numbers of the same
7662type.
7663
7664Semantics:
7665""""""""""
7666
7667This function returns the same values as the libm ``round``
7668functions would, and handles error conditions in the same way.
7669
Sean Silvaf722b002012-12-07 10:36:55 +00007670Bit Manipulation Intrinsics
7671---------------------------
7672
7673LLVM provides intrinsics for a few important bit manipulation
7674operations. These allow efficient code generation for some algorithms.
7675
7676'``llvm.bswap.*``' Intrinsics
7677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7678
7679Syntax:
7680"""""""
7681
7682This is an overloaded intrinsic function. You can use bswap on any
7683integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7684
7685::
7686
7687 declare i16 @llvm.bswap.i16(i16 <id>)
7688 declare i32 @llvm.bswap.i32(i32 <id>)
7689 declare i64 @llvm.bswap.i64(i64 <id>)
7690
7691Overview:
7692"""""""""
7693
7694The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7695values with an even number of bytes (positive multiple of 16 bits).
7696These are useful for performing operations on data that is not in the
7697target's native byte order.
7698
7699Semantics:
7700""""""""""
7701
7702The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7703and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7704intrinsic returns an i32 value that has the four bytes of the input i32
7705swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7706returned i32 will have its bytes in 3, 2, 1, 0 order. The
7707``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7708concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7709respectively).
7710
7711'``llvm.ctpop.*``' Intrinsic
7712^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7713
7714Syntax:
7715"""""""
7716
7717This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7718bit width, or on any vector with integer elements. Not all targets
7719support all bit widths or vector types, however.
7720
7721::
7722
7723 declare i8 @llvm.ctpop.i8(i8 <src>)
7724 declare i16 @llvm.ctpop.i16(i16 <src>)
7725 declare i32 @llvm.ctpop.i32(i32 <src>)
7726 declare i64 @llvm.ctpop.i64(i64 <src>)
7727 declare i256 @llvm.ctpop.i256(i256 <src>)
7728 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7729
7730Overview:
7731"""""""""
7732
7733The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7734in a value.
7735
7736Arguments:
7737""""""""""
7738
7739The only argument is the value to be counted. The argument may be of any
7740integer type, or a vector with integer elements. The return type must
7741match the argument type.
7742
7743Semantics:
7744""""""""""
7745
7746The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7747each element of a vector.
7748
7749'``llvm.ctlz.*``' Intrinsic
7750^^^^^^^^^^^^^^^^^^^^^^^^^^^
7751
7752Syntax:
7753"""""""
7754
7755This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7756integer bit width, or any vector whose elements are integers. Not all
7757targets support all bit widths or vector types, however.
7758
7759::
7760
7761 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7762 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7763 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7764 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7765 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7766 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7767
7768Overview:
7769"""""""""
7770
7771The '``llvm.ctlz``' family of intrinsic functions counts the number of
7772leading zeros in a variable.
7773
7774Arguments:
7775""""""""""
7776
7777The first argument is the value to be counted. This argument may be of
7778any integer type, or a vectory with integer element type. The return
7779type must match the first argument type.
7780
7781The second argument must be a constant and is a flag to indicate whether
7782the intrinsic should ensure that a zero as the first argument produces a
7783defined result. Historically some architectures did not provide a
7784defined result for zero values as efficiently, and many algorithms are
7785now predicated on avoiding zero-value inputs.
7786
7787Semantics:
7788""""""""""
7789
7790The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7791zeros in a variable, or within each element of the vector. If
7792``src == 0`` then the result is the size in bits of the type of ``src``
7793if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7794``llvm.ctlz(i32 2) = 30``.
7795
7796'``llvm.cttz.*``' Intrinsic
7797^^^^^^^^^^^^^^^^^^^^^^^^^^^
7798
7799Syntax:
7800"""""""
7801
7802This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7803integer bit width, or any vector of integer elements. Not all targets
7804support all bit widths or vector types, however.
7805
7806::
7807
7808 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7809 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7810 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7811 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7812 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7813 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7814
7815Overview:
7816"""""""""
7817
7818The '``llvm.cttz``' family of intrinsic functions counts the number of
7819trailing zeros.
7820
7821Arguments:
7822""""""""""
7823
7824The first argument is the value to be counted. This argument may be of
7825any integer type, or a vectory with integer element type. The return
7826type must match the first argument type.
7827
7828The second argument must be a constant and is a flag to indicate whether
7829the intrinsic should ensure that a zero as the first argument produces a
7830defined result. Historically some architectures did not provide a
7831defined result for zero values as efficiently, and many algorithms are
7832now predicated on avoiding zero-value inputs.
7833
7834Semantics:
7835""""""""""
7836
7837The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7838zeros in a variable, or within each element of a vector. If ``src == 0``
7839then the result is the size in bits of the type of ``src`` if
7840``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7841``llvm.cttz(2) = 1``.
7842
7843Arithmetic with Overflow Intrinsics
7844-----------------------------------
7845
7846LLVM provides intrinsics for some arithmetic with overflow operations.
7847
7848'``llvm.sadd.with.overflow.*``' Intrinsics
7849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7850
7851Syntax:
7852"""""""
7853
7854This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7855on any integer bit width.
7856
7857::
7858
7859 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7860 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7861 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7862
7863Overview:
7864"""""""""
7865
7866The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7867a signed addition of the two arguments, and indicate whether an overflow
7868occurred during the signed summation.
7869
7870Arguments:
7871""""""""""
7872
7873The arguments (%a and %b) and the first element of the result structure
7874may be of integer types of any bit width, but they must have the same
7875bit width. The second element of the result structure must be of type
7876``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7877addition.
7878
7879Semantics:
7880""""""""""
7881
7882The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007883a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007884first element of which is the signed summation, and the second element
7885of which is a bit specifying if the signed summation resulted in an
7886overflow.
7887
7888Examples:
7889"""""""""
7890
7891.. code-block:: llvm
7892
7893 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7894 %sum = extractvalue {i32, i1} %res, 0
7895 %obit = extractvalue {i32, i1} %res, 1
7896 br i1 %obit, label %overflow, label %normal
7897
7898'``llvm.uadd.with.overflow.*``' Intrinsics
7899^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7900
7901Syntax:
7902"""""""
7903
7904This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7905on any integer bit width.
7906
7907::
7908
7909 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7910 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7911 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7912
7913Overview:
7914"""""""""
7915
7916The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7917an unsigned addition of the two arguments, and indicate whether a carry
7918occurred during the unsigned summation.
7919
7920Arguments:
7921""""""""""
7922
7923The arguments (%a and %b) and the first element of the result structure
7924may be of integer types of any bit width, but they must have the same
7925bit width. The second element of the result structure must be of type
7926``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7927addition.
7928
7929Semantics:
7930""""""""""
7931
7932The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007933an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007934first element of which is the sum, and the second element of which is a
7935bit specifying if the unsigned summation resulted in a carry.
7936
7937Examples:
7938"""""""""
7939
7940.. code-block:: llvm
7941
7942 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7943 %sum = extractvalue {i32, i1} %res, 0
7944 %obit = extractvalue {i32, i1} %res, 1
7945 br i1 %obit, label %carry, label %normal
7946
7947'``llvm.ssub.with.overflow.*``' Intrinsics
7948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7949
7950Syntax:
7951"""""""
7952
7953This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7954on any integer bit width.
7955
7956::
7957
7958 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7959 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7960 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7961
7962Overview:
7963"""""""""
7964
7965The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7966a signed subtraction of the two arguments, and indicate whether an
7967overflow occurred during the signed subtraction.
7968
7969Arguments:
7970""""""""""
7971
7972The arguments (%a and %b) and the first element of the result structure
7973may be of integer types of any bit width, but they must have the same
7974bit width. The second element of the result structure must be of type
7975``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7976subtraction.
7977
7978Semantics:
7979""""""""""
7980
7981The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007982a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007983first element of which is the subtraction, and the second element of
7984which is a bit specifying if the signed subtraction resulted in an
7985overflow.
7986
7987Examples:
7988"""""""""
7989
7990.. code-block:: llvm
7991
7992 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7993 %sum = extractvalue {i32, i1} %res, 0
7994 %obit = extractvalue {i32, i1} %res, 1
7995 br i1 %obit, label %overflow, label %normal
7996
7997'``llvm.usub.with.overflow.*``' Intrinsics
7998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7999
8000Syntax:
8001"""""""
8002
8003This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8004on any integer bit width.
8005
8006::
8007
8008 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8009 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8010 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8011
8012Overview:
8013"""""""""
8014
8015The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8016an unsigned subtraction of the two arguments, and indicate whether an
8017overflow occurred during the unsigned subtraction.
8018
8019Arguments:
8020""""""""""
8021
8022The arguments (%a and %b) and the first element of the result structure
8023may be of integer types of any bit width, but they must have the same
8024bit width. The second element of the result structure must be of type
8025``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8026subtraction.
8027
8028Semantics:
8029""""""""""
8030
8031The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008032an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008033the first element of which is the subtraction, and the second element of
8034which is a bit specifying if the unsigned subtraction resulted in an
8035overflow.
8036
8037Examples:
8038"""""""""
8039
8040.. code-block:: llvm
8041
8042 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8043 %sum = extractvalue {i32, i1} %res, 0
8044 %obit = extractvalue {i32, i1} %res, 1
8045 br i1 %obit, label %overflow, label %normal
8046
8047'``llvm.smul.with.overflow.*``' Intrinsics
8048^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8049
8050Syntax:
8051"""""""
8052
8053This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8054on any integer bit width.
8055
8056::
8057
8058 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8059 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8060 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8061
8062Overview:
8063"""""""""
8064
8065The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8066a signed multiplication of the two arguments, and indicate whether an
8067overflow occurred during the signed multiplication.
8068
8069Arguments:
8070""""""""""
8071
8072The arguments (%a and %b) and the first element of the result structure
8073may be of integer types of any bit width, but they must have the same
8074bit width. The second element of the result structure must be of type
8075``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8076multiplication.
8077
8078Semantics:
8079""""""""""
8080
8081The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008082a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00008083the first element of which is the multiplication, and the second element
8084of which is a bit specifying if the signed multiplication resulted in an
8085overflow.
8086
8087Examples:
8088"""""""""
8089
8090.. code-block:: llvm
8091
8092 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8093 %sum = extractvalue {i32, i1} %res, 0
8094 %obit = extractvalue {i32, i1} %res, 1
8095 br i1 %obit, label %overflow, label %normal
8096
8097'``llvm.umul.with.overflow.*``' Intrinsics
8098^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8099
8100Syntax:
8101"""""""
8102
8103This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8104on any integer bit width.
8105
8106::
8107
8108 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8109 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8110 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8111
8112Overview:
8113"""""""""
8114
8115The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8116a unsigned multiplication of the two arguments, and indicate whether an
8117overflow occurred during the unsigned multiplication.
8118
8119Arguments:
8120""""""""""
8121
8122The arguments (%a and %b) and the first element of the result structure
8123may be of integer types of any bit width, but they must have the same
8124bit width. The second element of the result structure must be of type
8125``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8126multiplication.
8127
8128Semantics:
8129""""""""""
8130
8131The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00008132an unsigned multiplication of the two arguments. They return a structure ---
8133the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00008134element of which is a bit specifying if the unsigned multiplication
8135resulted in an overflow.
8136
8137Examples:
8138"""""""""
8139
8140.. code-block:: llvm
8141
8142 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8143 %sum = extractvalue {i32, i1} %res, 0
8144 %obit = extractvalue {i32, i1} %res, 1
8145 br i1 %obit, label %overflow, label %normal
8146
8147Specialised Arithmetic Intrinsics
8148---------------------------------
8149
8150'``llvm.fmuladd.*``' Intrinsic
8151^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8152
8153Syntax:
8154"""""""
8155
8156::
8157
8158 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8159 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8160
8161Overview:
8162"""""""""
8163
8164The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008165expressions that can be fused if the code generator determines that (a) the
8166target instruction set has support for a fused operation, and (b) that the
8167fused operation is more efficient than the equivalent, separate pair of mul
8168and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008169
8170Arguments:
8171""""""""""
8172
8173The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8174multiplicands, a and b, and an addend c.
8175
8176Semantics:
8177""""""""""
8178
8179The expression:
8180
8181::
8182
8183 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8184
8185is equivalent to the expression a \* b + c, except that rounding will
8186not be performed between the multiplication and addition steps if the
8187code generator fuses the operations. Fusion is not guaranteed, even if
8188the target platform supports it. If a fused multiply-add is required the
8189corresponding llvm.fma.\* intrinsic function should be used instead.
8190
8191Examples:
8192"""""""""
8193
8194.. code-block:: llvm
8195
8196 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8197
8198Half Precision Floating Point Intrinsics
8199----------------------------------------
8200
8201For most target platforms, half precision floating point is a
8202storage-only format. This means that it is a dense encoding (in memory)
8203but does not support computation in the format.
8204
8205This means that code must first load the half-precision floating point
8206value as an i16, then convert it to float with
8207:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8208then be performed on the float value (including extending to double
8209etc). To store the value back to memory, it is first converted to float
8210if needed, then converted to i16 with
8211:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8212i16 value.
8213
8214.. _int_convert_to_fp16:
8215
8216'``llvm.convert.to.fp16``' Intrinsic
8217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8218
8219Syntax:
8220"""""""
8221
8222::
8223
8224 declare i16 @llvm.convert.to.fp16(f32 %a)
8225
8226Overview:
8227"""""""""
8228
8229The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8230from single precision floating point format to half precision floating
8231point format.
8232
8233Arguments:
8234""""""""""
8235
8236The intrinsic function contains single argument - the value to be
8237converted.
8238
8239Semantics:
8240""""""""""
8241
8242The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8243from single precision floating point format to half precision floating
8244point format. The return value is an ``i16`` which contains the
8245converted number.
8246
8247Examples:
8248"""""""""
8249
8250.. code-block:: llvm
8251
8252 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8253 store i16 %res, i16* @x, align 2
8254
8255.. _int_convert_from_fp16:
8256
8257'``llvm.convert.from.fp16``' Intrinsic
8258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8259
8260Syntax:
8261"""""""
8262
8263::
8264
8265 declare f32 @llvm.convert.from.fp16(i16 %a)
8266
8267Overview:
8268"""""""""
8269
8270The '``llvm.convert.from.fp16``' intrinsic function performs a
8271conversion from half precision floating point format to single precision
8272floating point format.
8273
8274Arguments:
8275""""""""""
8276
8277The intrinsic function contains single argument - the value to be
8278converted.
8279
8280Semantics:
8281""""""""""
8282
8283The '``llvm.convert.from.fp16``' intrinsic function performs a
8284conversion from half single precision floating point format to single
8285precision floating point format. The input half-float value is
8286represented by an ``i16`` value.
8287
8288Examples:
8289"""""""""
8290
8291.. code-block:: llvm
8292
8293 %a = load i16* @x, align 2
8294 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8295
8296Debugger Intrinsics
8297-------------------
8298
8299The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8300prefix), are described in the `LLVM Source Level
8301Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8302document.
8303
8304Exception Handling Intrinsics
8305-----------------------------
8306
8307The LLVM exception handling intrinsics (which all start with
8308``llvm.eh.`` prefix), are described in the `LLVM Exception
8309Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8310
8311.. _int_trampoline:
8312
8313Trampoline Intrinsics
8314---------------------
8315
8316These intrinsics make it possible to excise one parameter, marked with
8317the :ref:`nest <nest>` attribute, from a function. The result is a
8318callable function pointer lacking the nest parameter - the caller does
8319not need to provide a value for it. Instead, the value to use is stored
8320in advance in a "trampoline", a block of memory usually allocated on the
8321stack, which also contains code to splice the nest value into the
8322argument list. This is used to implement the GCC nested function address
8323extension.
8324
8325For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8326then the resulting function pointer has signature ``i32 (i32, i32)*``.
8327It can be created as follows:
8328
8329.. code-block:: llvm
8330
8331 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8332 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8333 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8334 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8335 %fp = bitcast i8* %p to i32 (i32, i32)*
8336
8337The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8338``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8339
8340.. _int_it:
8341
8342'``llvm.init.trampoline``' Intrinsic
8343^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8344
8345Syntax:
8346"""""""
8347
8348::
8349
8350 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8351
8352Overview:
8353"""""""""
8354
8355This fills the memory pointed to by ``tramp`` with executable code,
8356turning it into a trampoline.
8357
8358Arguments:
8359""""""""""
8360
8361The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8362pointers. The ``tramp`` argument must point to a sufficiently large and
8363sufficiently aligned block of memory; this memory is written to by the
8364intrinsic. Note that the size and the alignment are target-specific -
8365LLVM currently provides no portable way of determining them, so a
8366front-end that generates this intrinsic needs to have some
8367target-specific knowledge. The ``func`` argument must hold a function
8368bitcast to an ``i8*``.
8369
8370Semantics:
8371""""""""""
8372
8373The block of memory pointed to by ``tramp`` is filled with target
8374dependent code, turning it into a function. Then ``tramp`` needs to be
8375passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8376be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8377function's signature is the same as that of ``func`` with any arguments
8378marked with the ``nest`` attribute removed. At most one such ``nest``
8379argument is allowed, and it must be of pointer type. Calling the new
8380function is equivalent to calling ``func`` with the same argument list,
8381but with ``nval`` used for the missing ``nest`` argument. If, after
8382calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8383modified, then the effect of any later call to the returned function
8384pointer is undefined.
8385
8386.. _int_at:
8387
8388'``llvm.adjust.trampoline``' Intrinsic
8389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8390
8391Syntax:
8392"""""""
8393
8394::
8395
8396 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8397
8398Overview:
8399"""""""""
8400
8401This performs any required machine-specific adjustment to the address of
8402a trampoline (passed as ``tramp``).
8403
8404Arguments:
8405""""""""""
8406
8407``tramp`` must point to a block of memory which already has trampoline
8408code filled in by a previous call to
8409:ref:`llvm.init.trampoline <int_it>`.
8410
8411Semantics:
8412""""""""""
8413
8414On some architectures the address of the code to be executed needs to be
8415different to the address where the trampoline is actually stored. This
8416intrinsic returns the executable address corresponding to ``tramp``
8417after performing the required machine specific adjustments. The pointer
8418returned can then be :ref:`bitcast and executed <int_trampoline>`.
8419
8420Memory Use Markers
8421------------------
8422
8423This class of intrinsics exists to information about the lifetime of
8424memory objects and ranges where variables are immutable.
8425
8426'``llvm.lifetime.start``' Intrinsic
8427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8428
8429Syntax:
8430"""""""
8431
8432::
8433
8434 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8435
8436Overview:
8437"""""""""
8438
8439The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8440object's lifetime.
8441
8442Arguments:
8443""""""""""
8444
8445The first argument is a constant integer representing the size of the
8446object, or -1 if it is variable sized. The second argument is a pointer
8447to the object.
8448
8449Semantics:
8450""""""""""
8451
8452This intrinsic indicates that before this point in the code, the value
8453of the memory pointed to by ``ptr`` is dead. This means that it is known
8454to never be used and has an undefined value. A load from the pointer
8455that precedes this intrinsic can be replaced with ``'undef'``.
8456
8457'``llvm.lifetime.end``' Intrinsic
8458^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8459
8460Syntax:
8461"""""""
8462
8463::
8464
8465 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8466
8467Overview:
8468"""""""""
8469
8470The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8471object's lifetime.
8472
8473Arguments:
8474""""""""""
8475
8476The first argument is a constant integer representing the size of the
8477object, or -1 if it is variable sized. The second argument is a pointer
8478to the object.
8479
8480Semantics:
8481""""""""""
8482
8483This intrinsic indicates that after this point in the code, the value of
8484the memory pointed to by ``ptr`` is dead. This means that it is known to
8485never be used and has an undefined value. Any stores into the memory
8486object following this intrinsic may be removed as dead.
8487
8488'``llvm.invariant.start``' Intrinsic
8489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8490
8491Syntax:
8492"""""""
8493
8494::
8495
8496 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8497
8498Overview:
8499"""""""""
8500
8501The '``llvm.invariant.start``' intrinsic specifies that the contents of
8502a memory object will not change.
8503
8504Arguments:
8505""""""""""
8506
8507The first argument is a constant integer representing the size of the
8508object, or -1 if it is variable sized. The second argument is a pointer
8509to the object.
8510
8511Semantics:
8512""""""""""
8513
8514This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8515the return value, the referenced memory location is constant and
8516unchanging.
8517
8518'``llvm.invariant.end``' Intrinsic
8519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8520
8521Syntax:
8522"""""""
8523
8524::
8525
8526 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8527
8528Overview:
8529"""""""""
8530
8531The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8532memory object are mutable.
8533
8534Arguments:
8535""""""""""
8536
8537The first argument is the matching ``llvm.invariant.start`` intrinsic.
8538The second argument is a constant integer representing the size of the
8539object, or -1 if it is variable sized and the third argument is a
8540pointer to the object.
8541
8542Semantics:
8543""""""""""
8544
8545This intrinsic indicates that the memory is mutable again.
8546
8547General Intrinsics
8548------------------
8549
8550This class of intrinsics is designed to be generic and has no specific
8551purpose.
8552
8553'``llvm.var.annotation``' Intrinsic
8554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8555
8556Syntax:
8557"""""""
8558
8559::
8560
8561 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8562
8563Overview:
8564"""""""""
8565
8566The '``llvm.var.annotation``' intrinsic.
8567
8568Arguments:
8569""""""""""
8570
8571The first argument is a pointer to a value, the second is a pointer to a
8572global string, the third is a pointer to a global string which is the
8573source file name, and the last argument is the line number.
8574
8575Semantics:
8576""""""""""
8577
8578This intrinsic allows annotation of local variables with arbitrary
8579strings. This can be useful for special purpose optimizations that want
8580to look for these annotations. These have no other defined use; they are
8581ignored by code generation and optimization.
8582
Michael Gottesman872b4e52013-03-26 00:34:27 +00008583'``llvm.ptr.annotation.*``' Intrinsic
8584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8585
8586Syntax:
8587"""""""
8588
8589This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8590pointer to an integer of any width. *NOTE* you must specify an address space for
8591the pointer. The identifier for the default address space is the integer
8592'``0``'.
8593
8594::
8595
8596 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8597 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8598 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8599 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8600 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8601
8602Overview:
8603"""""""""
8604
8605The '``llvm.ptr.annotation``' intrinsic.
8606
8607Arguments:
8608""""""""""
8609
8610The first argument is a pointer to an integer value of arbitrary bitwidth
8611(result of some expression), the second is a pointer to a global string, the
8612third is a pointer to a global string which is the source file name, and the
8613last argument is the line number. It returns the value of the first argument.
8614
8615Semantics:
8616""""""""""
8617
8618This intrinsic allows annotation of a pointer to an integer with arbitrary
8619strings. This can be useful for special purpose optimizations that want to look
8620for these annotations. These have no other defined use; they are ignored by code
8621generation and optimization.
8622
Sean Silvaf722b002012-12-07 10:36:55 +00008623'``llvm.annotation.*``' Intrinsic
8624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8625
8626Syntax:
8627"""""""
8628
8629This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8630any integer bit width.
8631
8632::
8633
8634 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8635 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8636 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8637 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8638 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8639
8640Overview:
8641"""""""""
8642
8643The '``llvm.annotation``' intrinsic.
8644
8645Arguments:
8646""""""""""
8647
8648The first argument is an integer value (result of some expression), the
8649second is a pointer to a global string, the third is a pointer to a
8650global string which is the source file name, and the last argument is
8651the line number. It returns the value of the first argument.
8652
8653Semantics:
8654""""""""""
8655
8656This intrinsic allows annotations to be put on arbitrary expressions
8657with arbitrary strings. This can be useful for special purpose
8658optimizations that want to look for these annotations. These have no
8659other defined use; they are ignored by code generation and optimization.
8660
8661'``llvm.trap``' Intrinsic
8662^^^^^^^^^^^^^^^^^^^^^^^^^
8663
8664Syntax:
8665"""""""
8666
8667::
8668
8669 declare void @llvm.trap() noreturn nounwind
8670
8671Overview:
8672"""""""""
8673
8674The '``llvm.trap``' intrinsic.
8675
8676Arguments:
8677""""""""""
8678
8679None.
8680
8681Semantics:
8682""""""""""
8683
8684This intrinsic is lowered to the target dependent trap instruction. If
8685the target does not have a trap instruction, this intrinsic will be
8686lowered to a call of the ``abort()`` function.
8687
8688'``llvm.debugtrap``' Intrinsic
8689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8690
8691Syntax:
8692"""""""
8693
8694::
8695
8696 declare void @llvm.debugtrap() nounwind
8697
8698Overview:
8699"""""""""
8700
8701The '``llvm.debugtrap``' intrinsic.
8702
8703Arguments:
8704""""""""""
8705
8706None.
8707
8708Semantics:
8709""""""""""
8710
8711This intrinsic is lowered to code which is intended to cause an
8712execution trap with the intention of requesting the attention of a
8713debugger.
8714
8715'``llvm.stackprotector``' Intrinsic
8716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8717
8718Syntax:
8719"""""""
8720
8721::
8722
8723 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8724
8725Overview:
8726"""""""""
8727
8728The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8729onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8730is placed on the stack before local variables.
8731
8732Arguments:
8733""""""""""
8734
8735The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8736The first argument is the value loaded from the stack guard
8737``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8738enough space to hold the value of the guard.
8739
8740Semantics:
8741""""""""""
8742
Michael Gottesman2a64a632013-08-12 18:35:32 +00008743This intrinsic causes the prologue/epilogue inserter to force the position of
8744the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8745to ensure that if a local variable on the stack is overwritten, it will destroy
8746the value of the guard. When the function exits, the guard on the stack is
8747checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8748different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8749calling the ``__stack_chk_fail()`` function.
8750
8751'``llvm.stackprotectorcheck``' Intrinsic
Sean Silvacce63992013-09-09 19:13:28 +00008752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesman2a64a632013-08-12 18:35:32 +00008753
8754Syntax:
8755"""""""
8756
8757::
8758
8759 declare void @llvm.stackprotectorcheck(i8** <guard>)
8760
8761Overview:
8762"""""""""
8763
8764The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman2bf823e2013-08-12 19:44:09 +00008765created stack protector and if they are not equal calls the
Sean Silvaf722b002012-12-07 10:36:55 +00008766``__stack_chk_fail()`` function.
8767
Michael Gottesman2a64a632013-08-12 18:35:32 +00008768Arguments:
8769""""""""""
8770
8771The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8772the variable ``@__stack_chk_guard``.
8773
8774Semantics:
8775""""""""""
8776
8777This intrinsic is provided to perform the stack protector check by comparing
8778``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8779values do not match call the ``__stack_chk_fail()`` function.
8780
8781The reason to provide this as an IR level intrinsic instead of implementing it
8782via other IR operations is that in order to perform this operation at the IR
8783level without an intrinsic, one would need to create additional basic blocks to
8784handle the success/failure cases. This makes it difficult to stop the stack
8785protector check from disrupting sibling tail calls in Codegen. With this
8786intrinsic, we are able to generate the stack protector basic blocks late in
8787codegen after the tail call decision has occured.
8788
Sean Silvaf722b002012-12-07 10:36:55 +00008789'``llvm.objectsize``' Intrinsic
8790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8791
8792Syntax:
8793"""""""
8794
8795::
8796
8797 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8798 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8799
8800Overview:
8801"""""""""
8802
8803The ``llvm.objectsize`` intrinsic is designed to provide information to
8804the optimizers to determine at compile time whether a) an operation
8805(like memcpy) will overflow a buffer that corresponds to an object, or
8806b) that a runtime check for overflow isn't necessary. An object in this
8807context means an allocation of a specific class, structure, array, or
8808other object.
8809
8810Arguments:
8811""""""""""
8812
8813The ``llvm.objectsize`` intrinsic takes two arguments. The first
8814argument is a pointer to or into the ``object``. The second argument is
8815a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8816or -1 (if false) when the object size is unknown. The second argument
8817only accepts constants.
8818
8819Semantics:
8820""""""""""
8821
8822The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8823the size of the object concerned. If the size cannot be determined at
8824compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8825on the ``min`` argument).
8826
8827'``llvm.expect``' Intrinsic
8828^^^^^^^^^^^^^^^^^^^^^^^^^^^
8829
8830Syntax:
8831"""""""
8832
8833::
8834
8835 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8836 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8837
8838Overview:
8839"""""""""
8840
8841The ``llvm.expect`` intrinsic provides information about expected (the
8842most probable) value of ``val``, which can be used by optimizers.
8843
8844Arguments:
8845""""""""""
8846
8847The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8848a value. The second argument is an expected value, this needs to be a
8849constant value, variables are not allowed.
8850
8851Semantics:
8852""""""""""
8853
8854This intrinsic is lowered to the ``val``.
8855
8856'``llvm.donothing``' Intrinsic
8857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8858
8859Syntax:
8860"""""""
8861
8862::
8863
8864 declare void @llvm.donothing() nounwind readnone
8865
8866Overview:
8867"""""""""
8868
8869The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8870only intrinsic that can be called with an invoke instruction.
8871
8872Arguments:
8873""""""""""
8874
8875None.
8876
8877Semantics:
8878""""""""""
8879
8880This intrinsic does nothing, and it's removed by optimizers and ignored
8881by codegen.