Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1 | .. _advanced: |
| 2 | |
| 3 | Advanced topics |
| 4 | ############### |
| 5 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 6 | For brevity, the rest of this chapter assumes that the following two lines are |
| 7 | present: |
| 8 | |
| 9 | .. code-block:: cpp |
| 10 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 11 | #include <pybind11/pybind11.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 12 | |
Wenzel Jakob | 10e62e1 | 2015-10-15 22:46:07 +0200 | [diff] [blame] | 13 | namespace py = pybind11; |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 14 | |
Wenzel Jakob | de3ad07 | 2016-02-02 11:38:21 +0100 | [diff] [blame] | 15 | Exporting constants and mutable objects |
| 16 | ======================================= |
| 17 | |
| 18 | To expose a C++ constant, use the ``attr`` function to register it in a module |
| 19 | as shown below. The ``int_`` class is one of many small wrapper objects defined |
| 20 | in ``pybind11/pytypes.h``. General objects (including integers) can also be |
| 21 | converted using the function ``cast``. |
| 22 | |
| 23 | .. code-block:: cpp |
| 24 | |
| 25 | PYBIND11_PLUGIN(example) { |
| 26 | py::module m("example", "pybind11 example plugin"); |
| 27 | m.attr("MY_CONSTANT") = py::int_(123); |
| 28 | m.attr("MY_CONSTANT_2") = py::cast(new MyObject()); |
| 29 | } |
| 30 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 31 | Operator overloading |
| 32 | ==================== |
| 33 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 34 | Suppose that we're given the following ``Vector2`` class with a vector addition |
| 35 | and scalar multiplication operation, all implemented using overloaded operators |
| 36 | in C++. |
| 37 | |
| 38 | .. code-block:: cpp |
| 39 | |
| 40 | class Vector2 { |
| 41 | public: |
| 42 | Vector2(float x, float y) : x(x), y(y) { } |
| 43 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 44 | Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); } |
| 45 | Vector2 operator*(float value) const { return Vector2(x * value, y * value); } |
| 46 | Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; } |
| 47 | Vector2& operator*=(float v) { x *= v; y *= v; return *this; } |
| 48 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 49 | friend Vector2 operator*(float f, const Vector2 &v) { |
| 50 | return Vector2(f * v.x, f * v.y); |
| 51 | } |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 52 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 53 | std::string toString() const { |
| 54 | return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; |
| 55 | } |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 56 | private: |
| 57 | float x, y; |
| 58 | }; |
| 59 | |
| 60 | The following snippet shows how the above operators can be conveniently exposed |
| 61 | to Python. |
| 62 | |
| 63 | .. code-block:: cpp |
| 64 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 65 | #include <pybind11/operators.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 66 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 67 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 68 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 69 | |
| 70 | py::class_<Vector2>(m, "Vector2") |
| 71 | .def(py::init<float, float>()) |
| 72 | .def(py::self + py::self) |
| 73 | .def(py::self += py::self) |
| 74 | .def(py::self *= float()) |
| 75 | .def(float() * py::self) |
| 76 | .def("__repr__", &Vector2::toString); |
| 77 | |
| 78 | return m.ptr(); |
| 79 | } |
| 80 | |
| 81 | Note that a line like |
| 82 | |
| 83 | .. code-block:: cpp |
| 84 | |
| 85 | .def(py::self * float()) |
| 86 | |
| 87 | is really just short hand notation for |
| 88 | |
| 89 | .. code-block:: cpp |
| 90 | |
| 91 | .def("__mul__", [](const Vector2 &a, float b) { |
| 92 | return a * b; |
Wenzel Jakob | 382484a | 2016-09-10 15:28:37 +0900 | [diff] [blame] | 93 | }, py::is_operator()) |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 94 | |
| 95 | This can be useful for exposing additional operators that don't exist on the |
Wenzel Jakob | 382484a | 2016-09-10 15:28:37 +0900 | [diff] [blame] | 96 | C++ side, or to perform other types of customization. The ``py::is_operator`` |
| 97 | flag marker is needed to inform pybind11 that this is an operator, which |
| 98 | returns ``NotImplemented`` when invoked with incompatible arguments rather than |
| 99 | throwing a type error. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 100 | |
| 101 | .. note:: |
| 102 | |
| 103 | To use the more convenient ``py::self`` notation, the additional |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 104 | header file :file:`pybind11/operators.h` must be included. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 105 | |
| 106 | .. seealso:: |
| 107 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 108 | The file :file:`tests/test_operator_overloading.cpp` contains a |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 109 | complete example that demonstrates how to work with overloaded operators in |
| 110 | more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 111 | |
| 112 | Callbacks and passing anonymous functions |
| 113 | ========================================= |
| 114 | |
| 115 | The C++11 standard brought lambda functions and the generic polymorphic |
| 116 | function wrapper ``std::function<>`` to the C++ programming language, which |
| 117 | enable powerful new ways of working with functions. Lambda functions come in |
| 118 | two flavors: stateless lambda function resemble classic function pointers that |
| 119 | link to an anonymous piece of code, while stateful lambda functions |
| 120 | additionally depend on captured variables that are stored in an anonymous |
| 121 | *lambda closure object*. |
| 122 | |
| 123 | Here is a simple example of a C++ function that takes an arbitrary function |
| 124 | (stateful or stateless) with signature ``int -> int`` as an argument and runs |
| 125 | it with the value 10. |
| 126 | |
| 127 | .. code-block:: cpp |
| 128 | |
| 129 | int func_arg(const std::function<int(int)> &f) { |
| 130 | return f(10); |
| 131 | } |
| 132 | |
| 133 | The example below is more involved: it takes a function of signature ``int -> int`` |
| 134 | and returns another function of the same kind. The return value is a stateful |
| 135 | lambda function, which stores the value ``f`` in the capture object and adds 1 to |
| 136 | its return value upon execution. |
| 137 | |
| 138 | .. code-block:: cpp |
| 139 | |
| 140 | std::function<int(int)> func_ret(const std::function<int(int)> &f) { |
| 141 | return [f](int i) { |
| 142 | return f(i) + 1; |
| 143 | }; |
| 144 | } |
| 145 | |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 146 | This example demonstrates using python named parameters in C++ callbacks which |
| 147 | requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining |
| 148 | methods of classes: |
| 149 | |
| 150 | .. code-block:: cpp |
| 151 | |
| 152 | py::cpp_function func_cpp() { |
| 153 | return py::cpp_function([](int i) { return i+1; }, |
| 154 | py::arg("number")); |
| 155 | } |
| 156 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 157 | After including the extra header file :file:`pybind11/functional.h`, it is almost |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 158 | trivial to generate binding code for all of these functions. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 159 | |
| 160 | .. code-block:: cpp |
| 161 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 162 | #include <pybind11/functional.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 163 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 164 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 165 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 166 | |
| 167 | m.def("func_arg", &func_arg); |
| 168 | m.def("func_ret", &func_ret); |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 169 | m.def("func_cpp", &func_cpp); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 170 | |
| 171 | return m.ptr(); |
| 172 | } |
| 173 | |
| 174 | The following interactive session shows how to call them from Python. |
| 175 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 176 | .. code-block:: pycon |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 177 | |
| 178 | $ python |
| 179 | >>> import example |
| 180 | >>> def square(i): |
| 181 | ... return i * i |
| 182 | ... |
| 183 | >>> example.func_arg(square) |
| 184 | 100L |
| 185 | >>> square_plus_1 = example.func_ret(square) |
| 186 | >>> square_plus_1(4) |
| 187 | 17L |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 188 | >>> plus_1 = func_cpp() |
| 189 | >>> plus_1(number=43) |
| 190 | 44L |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 191 | |
Wenzel Jakob | a4175d6 | 2015-11-17 08:30:34 +0100 | [diff] [blame] | 192 | .. warning:: |
| 193 | |
| 194 | Keep in mind that passing a function from C++ to Python (or vice versa) |
| 195 | will instantiate a piece of wrapper code that translates function |
Wenzel Jakob | 954b793 | 2016-07-10 10:13:18 +0200 | [diff] [blame] | 196 | invocations between the two languages. Naturally, this translation |
| 197 | increases the computational cost of each function call somewhat. A |
| 198 | problematic situation can arise when a function is copied back and forth |
| 199 | between Python and C++ many times in a row, in which case the underlying |
| 200 | wrappers will accumulate correspondingly. The resulting long sequence of |
| 201 | C++ -> Python -> C++ -> ... roundtrips can significantly decrease |
| 202 | performance. |
| 203 | |
| 204 | There is one exception: pybind11 detects case where a stateless function |
| 205 | (i.e. a function pointer or a lambda function without captured variables) |
| 206 | is passed as an argument to another C++ function exposed in Python. In this |
| 207 | case, there is no overhead. Pybind11 will extract the underlying C++ |
| 208 | function pointer from the wrapped function to sidestep a potential C++ -> |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 209 | Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`. |
Wenzel Jakob | 954b793 | 2016-07-10 10:13:18 +0200 | [diff] [blame] | 210 | |
| 211 | .. note:: |
| 212 | |
| 213 | This functionality is very useful when generating bindings for callbacks in |
| 214 | C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.). |
| 215 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 216 | The file :file:`tests/test_callbacks.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 217 | that demonstrates how to work with callbacks and anonymous functions in |
| 218 | more detail. |
Wenzel Jakob | a4175d6 | 2015-11-17 08:30:34 +0100 | [diff] [blame] | 219 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 220 | Overriding virtual functions in Python |
| 221 | ====================================== |
| 222 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 223 | Suppose that a C++ class or interface has a virtual function that we'd like to |
| 224 | to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is |
| 225 | given as a specific example of how one would do this with traditional C++ |
| 226 | code). |
| 227 | |
| 228 | .. code-block:: cpp |
| 229 | |
| 230 | class Animal { |
| 231 | public: |
| 232 | virtual ~Animal() { } |
| 233 | virtual std::string go(int n_times) = 0; |
| 234 | }; |
| 235 | |
| 236 | class Dog : public Animal { |
| 237 | public: |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 238 | std::string go(int n_times) override { |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 239 | std::string result; |
| 240 | for (int i=0; i<n_times; ++i) |
| 241 | result += "woof! "; |
| 242 | return result; |
| 243 | } |
| 244 | }; |
| 245 | |
| 246 | Let's also suppose that we are given a plain function which calls the |
| 247 | function ``go()`` on an arbitrary ``Animal`` instance. |
| 248 | |
| 249 | .. code-block:: cpp |
| 250 | |
| 251 | std::string call_go(Animal *animal) { |
| 252 | return animal->go(3); |
| 253 | } |
| 254 | |
| 255 | Normally, the binding code for these classes would look as follows: |
| 256 | |
| 257 | .. code-block:: cpp |
| 258 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 259 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 260 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 261 | |
| 262 | py::class_<Animal> animal(m, "Animal"); |
| 263 | animal |
| 264 | .def("go", &Animal::go); |
| 265 | |
| 266 | py::class_<Dog>(m, "Dog", animal) |
| 267 | .def(py::init<>()); |
| 268 | |
| 269 | m.def("call_go", &call_go); |
| 270 | |
| 271 | return m.ptr(); |
| 272 | } |
| 273 | |
| 274 | However, these bindings are impossible to extend: ``Animal`` is not |
| 275 | constructible, and we clearly require some kind of "trampoline" that |
| 276 | redirects virtual calls back to Python. |
| 277 | |
| 278 | Defining a new type of ``Animal`` from within Python is possible but requires a |
| 279 | helper class that is defined as follows: |
| 280 | |
| 281 | .. code-block:: cpp |
| 282 | |
| 283 | class PyAnimal : public Animal { |
| 284 | public: |
| 285 | /* Inherit the constructors */ |
| 286 | using Animal::Animal; |
| 287 | |
| 288 | /* Trampoline (need one for each virtual function) */ |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 289 | std::string go(int n_times) override { |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 290 | PYBIND11_OVERLOAD_PURE( |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 291 | std::string, /* Return type */ |
| 292 | Animal, /* Parent class */ |
| 293 | go, /* Name of function */ |
| 294 | n_times /* Argument(s) */ |
| 295 | ); |
| 296 | } |
| 297 | }; |
| 298 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 299 | The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual |
| 300 | functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have |
Jason Rhinelander | 7dfb932 | 2016-09-08 14:49:43 -0400 | [diff] [blame] | 301 | a default implementation. There are also two alternate macros |
| 302 | :func:`PYBIND11_OVERLOAD_PURE_NAME` and :func:`PYBIND11_OVERLOAD_NAME` which |
| 303 | take a string-valued name argument between the *Parent class* and *Name of the |
| 304 | function* slots. This is useful when the C++ and Python versions of the |
| 305 | function have different names, e.g. ``operator()`` vs ``__call__``. |
Wenzel Jakob | 1e3be73 | 2016-05-24 23:42:05 +0200 | [diff] [blame] | 306 | |
| 307 | The binding code also needs a few minor adaptations (highlighted): |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 308 | |
| 309 | .. code-block:: cpp |
| 310 | :emphasize-lines: 4,6,7 |
| 311 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 312 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 313 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 314 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 315 | py::class_<Animal, PyAnimal /* <--- trampoline*/> animal(m, "Animal"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 316 | animal |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 317 | .def(py::init<>()) |
| 318 | .def("go", &Animal::go); |
| 319 | |
| 320 | py::class_<Dog>(m, "Dog", animal) |
| 321 | .def(py::init<>()); |
| 322 | |
| 323 | m.def("call_go", &call_go); |
| 324 | |
| 325 | return m.ptr(); |
| 326 | } |
| 327 | |
Jason Rhinelander | 6eca083 | 2016-09-08 13:25:45 -0400 | [diff] [blame] | 328 | Importantly, pybind11 is made aware of the trampoline helper class by |
| 329 | specifying it as an extra template argument to :class:`class_`. (This can also |
| 330 | be combined with other template arguments such as a custom holder type; the |
| 331 | order of template types does not matter). Following this, we are able to |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 332 | define a constructor as usual. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 333 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 334 | Note, however, that the above is sufficient for allowing python classes to |
| 335 | extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the |
| 336 | necessary steps required to providing proper overload support for inherited |
| 337 | classes. |
| 338 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 339 | The Python session below shows how to override ``Animal::go`` and invoke it via |
| 340 | a virtual method call. |
| 341 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 342 | .. code-block:: pycon |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 343 | |
| 344 | >>> from example import * |
| 345 | >>> d = Dog() |
| 346 | >>> call_go(d) |
| 347 | u'woof! woof! woof! ' |
| 348 | >>> class Cat(Animal): |
| 349 | ... def go(self, n_times): |
| 350 | ... return "meow! " * n_times |
| 351 | ... |
| 352 | >>> c = Cat() |
| 353 | >>> call_go(c) |
| 354 | u'meow! meow! meow! ' |
| 355 | |
Wenzel Jakob | 9bb97c1 | 2016-06-03 11:19:41 +0200 | [diff] [blame] | 356 | Please take a look at the :ref:`macro_notes` before using this feature. |
Wenzel Jakob | bd986fe | 2016-05-21 10:48:30 +0200 | [diff] [blame] | 357 | |
Jason Rhinelander | 7dfb932 | 2016-09-08 14:49:43 -0400 | [diff] [blame] | 358 | .. note:: |
| 359 | |
| 360 | When the overridden type returns a reference or pointer to a type that |
| 361 | pybind11 converts from Python (for example, numeric values, std::string, |
| 362 | and other built-in value-converting types), there are some limitations to |
| 363 | be aware of: |
| 364 | |
| 365 | - because in these cases there is no C++ variable to reference (the value |
| 366 | is stored in the referenced Python variable), pybind11 provides one in |
| 367 | the PYBIND11_OVERLOAD macros (when needed) with static storage duration. |
| 368 | Note that this means that invoking the overloaded method on *any* |
| 369 | instance will change the referenced value stored in *all* instances of |
| 370 | that type. |
| 371 | |
| 372 | - Attempts to modify a non-const reference will not have the desired |
| 373 | effect: it will change only the static cache variable, but this change |
| 374 | will not propagate to underlying Python instance, and the change will be |
| 375 | replaced the next time the overload is invoked. |
| 376 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 377 | .. seealso:: |
| 378 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 379 | The file :file:`tests/test_virtual_functions.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 380 | example that demonstrates how to override virtual functions using pybind11 |
| 381 | in more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 382 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 383 | .. _virtual_and_inheritance: |
| 384 | |
| 385 | Combining virtual functions and inheritance |
| 386 | =========================================== |
| 387 | |
| 388 | When combining virtual methods with inheritance, you need to be sure to provide |
| 389 | an override for each method for which you want to allow overrides from derived |
| 390 | python classes. For example, suppose we extend the above ``Animal``/``Dog`` |
| 391 | example as follows: |
| 392 | |
| 393 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 394 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 395 | class Animal { |
| 396 | public: |
| 397 | virtual std::string go(int n_times) = 0; |
| 398 | virtual std::string name() { return "unknown"; } |
| 399 | }; |
| 400 | class Dog : public class Animal { |
| 401 | public: |
| 402 | std::string go(int n_times) override { |
| 403 | std::string result; |
| 404 | for (int i=0; i<n_times; ++i) |
| 405 | result += bark() + " "; |
| 406 | return result; |
| 407 | } |
| 408 | virtual std::string bark() { return "woof!"; } |
| 409 | }; |
| 410 | |
| 411 | then the trampoline class for ``Animal`` must, as described in the previous |
| 412 | section, override ``go()`` and ``name()``, but in order to allow python code to |
| 413 | inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that |
| 414 | overrides both the added ``bark()`` method *and* the ``go()`` and ``name()`` |
| 415 | methods inherited from ``Animal`` (even though ``Dog`` doesn't directly |
| 416 | override the ``name()`` method): |
| 417 | |
| 418 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 419 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 420 | class PyAnimal : public Animal { |
| 421 | public: |
| 422 | using Animal::Animal; // Inherit constructors |
| 423 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); } |
| 424 | std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); } |
| 425 | }; |
| 426 | class PyDog : public Dog { |
| 427 | public: |
| 428 | using Dog::Dog; // Inherit constructors |
| 429 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); } |
| 430 | std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); } |
| 431 | std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); } |
| 432 | }; |
| 433 | |
| 434 | A registered class derived from a pybind11-registered class with virtual |
| 435 | methods requires a similar trampoline class, *even if* it doesn't explicitly |
| 436 | declare or override any virtual methods itself: |
| 437 | |
| 438 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 439 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 440 | class Husky : public Dog {}; |
| 441 | class PyHusky : public Husky { |
| 442 | using Dog::Dog; // Inherit constructors |
| 443 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); } |
| 444 | std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); } |
| 445 | std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); } |
| 446 | }; |
| 447 | |
| 448 | There is, however, a technique that can be used to avoid this duplication |
| 449 | (which can be especially helpful for a base class with several virtual |
| 450 | methods). The technique involves using template trampoline classes, as |
| 451 | follows: |
| 452 | |
| 453 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 454 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 455 | template <class AnimalBase = Animal> class PyAnimal : public AnimalBase { |
| 456 | using AnimalBase::AnimalBase; // Inherit constructors |
| 457 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); } |
| 458 | std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); } |
| 459 | }; |
| 460 | template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> { |
| 461 | using PyAnimal<DogBase>::PyAnimal; // Inherit constructors |
| 462 | // Override PyAnimal's pure virtual go() with a non-pure one: |
| 463 | std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); } |
| 464 | std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); } |
| 465 | }; |
| 466 | |
| 467 | This technique has the advantage of requiring just one trampoline method to be |
| 468 | declared per virtual method and pure virtual method override. It does, |
| 469 | however, require the compiler to generate at least as many methods (and |
| 470 | possibly more, if both pure virtual and overridden pure virtual methods are |
| 471 | exposed, as above). |
| 472 | |
| 473 | The classes are then registered with pybind11 using: |
| 474 | |
| 475 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 476 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 477 | py::class_<Animal, PyAnimal<>> animal(m, "Animal"); |
| 478 | py::class_<Dog, PyDog<>> dog(m, "Dog"); |
| 479 | py::class_<Husky, PyDog<Husky>> husky(m, "Husky"); |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 480 | // ... add animal, dog, husky definitions |
| 481 | |
| 482 | Note that ``Husky`` did not require a dedicated trampoline template class at |
| 483 | all, since it neither declares any new virtual methods nor provides any pure |
| 484 | virtual method implementations. |
| 485 | |
| 486 | With either the repeated-virtuals or templated trampoline methods in place, you |
| 487 | can now create a python class that inherits from ``Dog``: |
| 488 | |
| 489 | .. code-block:: python |
| 490 | |
| 491 | class ShihTzu(Dog): |
| 492 | def bark(self): |
| 493 | return "yip!" |
| 494 | |
| 495 | .. seealso:: |
| 496 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 497 | See the file :file:`tests/test_virtual_functions.cpp` for complete examples |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 498 | using both the duplication and templated trampoline approaches. |
| 499 | |
Jason Rhinelander | ec62d97 | 2016-09-09 02:42:51 -0400 | [diff] [blame] | 500 | Extended trampoline class functionality |
| 501 | ======================================= |
| 502 | |
| 503 | The trampoline classes described in the previous sections are, by default, only |
| 504 | initialized when needed. More specifically, they are initialized when a python |
| 505 | class actually inherits from a registered type (instead of merely creating an |
| 506 | instance of the registered type), or when a registered constructor is only |
| 507 | valid for the trampoline class but not the registered class. This is primarily |
| 508 | for performance reasons: when the trampoline class is not needed for anything |
| 509 | except virtual method dispatching, not initializing the trampoline class |
| 510 | improves performance by avoiding needing to do a run-time check to see if the |
| 511 | inheriting python instance has an overloaded method. |
| 512 | |
| 513 | Sometimes, however, it is useful to always initialize a trampoline class as an |
| 514 | intermediate class that does more than just handle virtual method dispatching. |
| 515 | For example, such a class might perform extra class initialization, extra |
| 516 | destruction operations, and might define new members and methods to enable a |
| 517 | more python-like interface to a class. |
| 518 | |
| 519 | In order to tell pybind11 that it should *always* initialize the trampoline |
| 520 | class when creating new instances of a type, the class constructors should be |
| 521 | declared using ``py::init_alias<Args, ...>()`` instead of the usual |
| 522 | ``py::init<Args, ...>()``. This forces construction via the trampoline class, |
| 523 | ensuring member initialization and (eventual) destruction. |
| 524 | |
| 525 | .. seealso:: |
| 526 | |
| 527 | See the file :file:`tests/test_alias_initialization.cpp` for complete examples |
| 528 | showing both normal and forced trampoline instantiation. |
| 529 | |
Wenzel Jakob | 9bb97c1 | 2016-06-03 11:19:41 +0200 | [diff] [blame] | 530 | .. _macro_notes: |
| 531 | |
| 532 | General notes regarding convenience macros |
| 533 | ========================================== |
| 534 | |
| 535 | pybind11 provides a few convenience macros such as |
| 536 | :func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and |
| 537 | ``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated |
| 538 | in the preprocessor (which has no concept of types), they *will* get confused |
| 539 | by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1, |
| 540 | T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates |
| 541 | the beginnning of the next parameter. Use a ``typedef`` to bind the template to |
| 542 | another name and use it in the macro to avoid this problem. |
| 543 | |
| 544 | |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 545 | Global Interpreter Lock (GIL) |
| 546 | ============================= |
| 547 | |
| 548 | The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be |
| 549 | used to acquire and release the global interpreter lock in the body of a C++ |
| 550 | function call. In this way, long-running C++ code can be parallelized using |
| 551 | multiple Python threads. Taking the previous section as an example, this could |
| 552 | be realized as follows (important changes highlighted): |
| 553 | |
| 554 | .. code-block:: cpp |
| 555 | :emphasize-lines: 8,9,33,34 |
| 556 | |
| 557 | class PyAnimal : public Animal { |
| 558 | public: |
| 559 | /* Inherit the constructors */ |
| 560 | using Animal::Animal; |
| 561 | |
| 562 | /* Trampoline (need one for each virtual function) */ |
| 563 | std::string go(int n_times) { |
| 564 | /* Acquire GIL before calling Python code */ |
Wenzel Jakob | a4caa85 | 2015-12-14 12:39:02 +0100 | [diff] [blame] | 565 | py::gil_scoped_acquire acquire; |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 566 | |
| 567 | PYBIND11_OVERLOAD_PURE( |
| 568 | std::string, /* Return type */ |
| 569 | Animal, /* Parent class */ |
| 570 | go, /* Name of function */ |
| 571 | n_times /* Argument(s) */ |
| 572 | ); |
| 573 | } |
| 574 | }; |
| 575 | |
| 576 | PYBIND11_PLUGIN(example) { |
| 577 | py::module m("example", "pybind11 example plugin"); |
| 578 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 579 | py::class_<Animal, PyAnimal> animal(m, "Animal"); |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 580 | animal |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 581 | .def(py::init<>()) |
| 582 | .def("go", &Animal::go); |
| 583 | |
| 584 | py::class_<Dog>(m, "Dog", animal) |
| 585 | .def(py::init<>()); |
| 586 | |
| 587 | m.def("call_go", [](Animal *animal) -> std::string { |
| 588 | /* Release GIL before calling into (potentially long-running) C++ code */ |
Wenzel Jakob | a4caa85 | 2015-12-14 12:39:02 +0100 | [diff] [blame] | 589 | py::gil_scoped_release release; |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 590 | return call_go(animal); |
| 591 | }); |
| 592 | |
| 593 | return m.ptr(); |
| 594 | } |
| 595 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 596 | Passing STL data structures |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 597 | =========================== |
| 598 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 599 | When including the additional header file :file:`pybind11/stl.h`, conversions |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 600 | between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>`` |
| 601 | and the Python ``list``, ``set`` and ``dict`` data structures are automatically |
| 602 | enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported |
| 603 | out of the box with just the core :file:`pybind11/pybind11.h` header. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 604 | |
Wenzel Jakob | fe34241 | 2016-09-06 13:02:29 +0900 | [diff] [blame] | 605 | The major downside of these implicit conversions is that containers must be |
| 606 | converted (i.e. copied) on every Python->C++ and C++->Python transition, which |
| 607 | can have implications on the program semantics and performance. Please read the |
| 608 | next sections for more details and alternative approaches that avoid this. |
Sergey Lyskov | 7520418 | 2016-08-29 22:50:38 -0400 | [diff] [blame] | 609 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 610 | .. note:: |
| 611 | |
Wenzel Jakob | fe34241 | 2016-09-06 13:02:29 +0900 | [diff] [blame] | 612 | Arbitrary nesting of any of these types is possible. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 613 | |
| 614 | .. seealso:: |
| 615 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 616 | The file :file:`tests/test_python_types.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 617 | example that demonstrates how to pass STL data types in more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 618 | |
Wenzel Jakob | fe34241 | 2016-09-06 13:02:29 +0900 | [diff] [blame] | 619 | .. _opaque: |
| 620 | |
| 621 | Treating STL data structures as opaque objects |
| 622 | ============================================== |
| 623 | |
| 624 | pybind11 heavily relies on a template matching mechanism to convert parameters |
| 625 | and return values that are constructed from STL data types such as vectors, |
| 626 | linked lists, hash tables, etc. This even works in a recursive manner, for |
| 627 | instance to deal with lists of hash maps of pairs of elementary and custom |
| 628 | types, etc. |
| 629 | |
| 630 | However, a fundamental limitation of this approach is that internal conversions |
| 631 | between Python and C++ types involve a copy operation that prevents |
| 632 | pass-by-reference semantics. What does this mean? |
| 633 | |
| 634 | Suppose we bind the following function |
| 635 | |
| 636 | .. code-block:: cpp |
| 637 | |
| 638 | void append_1(std::vector<int> &v) { |
| 639 | v.push_back(1); |
| 640 | } |
| 641 | |
| 642 | and call it from Python, the following happens: |
| 643 | |
| 644 | .. code-block:: pycon |
| 645 | |
| 646 | >>> v = [5, 6] |
| 647 | >>> append_1(v) |
| 648 | >>> print(v) |
| 649 | [5, 6] |
| 650 | |
| 651 | As you can see, when passing STL data structures by reference, modifications |
| 652 | are not propagated back the Python side. A similar situation arises when |
| 653 | exposing STL data structures using the ``def_readwrite`` or ``def_readonly`` |
| 654 | functions: |
| 655 | |
| 656 | .. code-block:: cpp |
| 657 | |
| 658 | /* ... definition ... */ |
| 659 | |
| 660 | class MyClass { |
| 661 | std::vector<int> contents; |
| 662 | }; |
| 663 | |
| 664 | /* ... binding code ... */ |
| 665 | |
| 666 | py::class_<MyClass>(m, "MyClass") |
| 667 | .def(py::init<>) |
| 668 | .def_readwrite("contents", &MyClass::contents); |
| 669 | |
| 670 | In this case, properties can be read and written in their entirety. However, an |
| 671 | ``append`` operaton involving such a list type has no effect: |
| 672 | |
| 673 | .. code-block:: pycon |
| 674 | |
| 675 | >>> m = MyClass() |
| 676 | >>> m.contents = [5, 6] |
| 677 | >>> print(m.contents) |
| 678 | [5, 6] |
| 679 | >>> m.contents.append(7) |
| 680 | >>> print(m.contents) |
| 681 | [5, 6] |
| 682 | |
| 683 | Finally, the involved copy operations can be costly when dealing with very |
| 684 | large lists. To deal with all of the above situations, pybind11 provides a |
| 685 | macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based |
| 686 | conversion machinery of types, thus rendering them *opaque*. The contents of |
| 687 | opaque objects are never inspected or extracted, hence they *can* be passed by |
| 688 | reference. For instance, to turn ``std::vector<int>`` into an opaque type, add |
| 689 | the declaration |
| 690 | |
| 691 | .. code-block:: cpp |
| 692 | |
| 693 | PYBIND11_MAKE_OPAQUE(std::vector<int>); |
| 694 | |
| 695 | before any binding code (e.g. invocations to ``class_::def()``, etc.). This |
| 696 | macro must be specified at the top level (and outside of any namespaces), since |
| 697 | it instantiates a partial template overload. If your binding code consists of |
| 698 | multiple compilation units, it must be present in every file preceding any |
| 699 | usage of ``std::vector<int>``. Opaque types must also have a corresponding |
| 700 | ``class_`` declaration to associate them with a name in Python, and to define a |
| 701 | set of available operations, e.g.: |
| 702 | |
| 703 | .. code-block:: cpp |
| 704 | |
| 705 | py::class_<std::vector<int>>(m, "IntVector") |
| 706 | .def(py::init<>()) |
| 707 | .def("clear", &std::vector<int>::clear) |
| 708 | .def("pop_back", &std::vector<int>::pop_back) |
| 709 | .def("__len__", [](const std::vector<int> &v) { return v.size(); }) |
| 710 | .def("__iter__", [](std::vector<int> &v) { |
| 711 | return py::make_iterator(v.begin(), v.end()); |
| 712 | }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */ |
| 713 | // .... |
| 714 | |
| 715 | The ability to expose STL containers as native Python objects is a fairly |
| 716 | common request, hence pybind11 also provides an optional header file named |
| 717 | :file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try |
| 718 | to match the behavior of their native Python counterparts as much as possible. |
| 719 | |
| 720 | The following example showcases usage of :file:`pybind11/stl_bind.h`: |
| 721 | |
| 722 | .. code-block:: cpp |
| 723 | |
| 724 | // Don't forget this |
| 725 | #include <pybind11/stl_bind.h> |
| 726 | |
| 727 | PYBIND11_MAKE_OPAQUE(std::vector<int>); |
| 728 | PYBIND11_MAKE_OPAQUE(std::map<std::string, double>); |
| 729 | |
| 730 | // ... |
| 731 | |
| 732 | // later in binding code: |
| 733 | py::bind_vector<std::vector<int>>(m, "VectorInt"); |
| 734 | py::bind_map<std::map<std::string, double>>(m, "MapStringDouble"); |
| 735 | |
| 736 | Please take a look at the :ref:`macro_notes` before using the |
| 737 | ``PYBIND11_MAKE_OPAQUE`` macro. |
| 738 | |
| 739 | .. seealso:: |
| 740 | |
| 741 | The file :file:`tests/test_opaque_types.cpp` contains a complete |
| 742 | example that demonstrates how to create and expose opaque types using |
| 743 | pybind11 in more detail. |
| 744 | |
| 745 | The file :file:`tests/test_stl_binders.cpp` shows how to use the |
| 746 | convenience STL container wrappers. |
| 747 | |
| 748 | |
Wenzel Jakob | b282595 | 2016-04-13 23:33:00 +0200 | [diff] [blame] | 749 | Binding sequence data types, iterators, the slicing protocol, etc. |
| 750 | ================================================================== |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 751 | |
| 752 | Please refer to the supplemental example for details. |
| 753 | |
| 754 | .. seealso:: |
| 755 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 756 | The file :file:`tests/test_sequences_and_iterators.cpp` contains a |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 757 | complete example that shows how to bind a sequence data type, including |
| 758 | length queries (``__len__``), iterators (``__iter__``), the slicing |
| 759 | protocol and other kinds of useful operations. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 760 | |
Trent Houliston | 352149e | 2016-08-25 23:08:04 +1000 | [diff] [blame^] | 761 | C++11 chrono datatypes |
| 762 | ====================== |
| 763 | When including the additional header file :file:`pybind11/chrono.h` conversions from c++11 chrono datatypes |
| 764 | to corresponding python datetime objects are automatically enabled. |
| 765 | The following rules describe how the conversions are applied. |
| 766 | |
| 767 | Objects of type ``std::chrono::system_clock::time_point`` are converted into datetime.datetime objects. |
| 768 | These objects are those that specifically come from the system_clock as this is the only clock that measures wall time. |
| 769 | |
| 770 | Objects of type ``std::chrono::[other_clock]::time_point`` are converted into datetime.time objects. |
| 771 | These objects are those that come from all clocks that are not the system_clock (e.g. steady_clock). |
| 772 | Clocks other than the system_clock are not measured from wall date/time and instead have any start time |
| 773 | (often when the computer was turned on). |
| 774 | Therefore as these clocks can only measure time from an arbitrary start point they are represented as time without date. |
| 775 | |
| 776 | Objects of type ``std::chrono::duration`` are converted into datetime.timedelta objects. |
| 777 | |
| 778 | .. note:: |
| 779 | |
| 780 | Pythons datetime implementation is limited to microsecond precision. |
| 781 | The extra precision that c++11 clocks can have have (nanoseconds) will be lost upon conversion. |
| 782 | The rounding policy from c++ to python is via ``std::chrono::duration_cast<>`` (rounding towards 0 in microseconds). |
| 783 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 784 | Return value policies |
| 785 | ===================== |
| 786 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 787 | Python and C++ use wildly different ways of managing the memory and lifetime of |
| 788 | objects managed by them. This can lead to issues when creating bindings for |
| 789 | functions that return a non-trivial type. Just by looking at the type |
| 790 | information, it is not clear whether Python should take charge of the returned |
| 791 | value and eventually free its resources, or if this is handled on the C++ side. |
| 792 | For this reason, pybind11 provides a several `return value policy` annotations |
| 793 | that can be passed to the :func:`module::def` and :func:`class_::def` |
Wenzel Jakob | 61d67f0 | 2015-12-14 12:53:06 +0100 | [diff] [blame] | 794 | functions. The default policy is :enum:`return_value_policy::automatic`. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 795 | |
Wenzel Jakob | bf09958 | 2016-08-22 12:52:02 +0200 | [diff] [blame] | 796 | Return value policies can also be applied to properties, in which case the |
| 797 | arguments must be passed through the :class:`cpp_function` constructor: |
| 798 | |
| 799 | .. code-block:: cpp |
| 800 | |
| 801 | class_<MyClass>(m, "MyClass") |
| 802 | def_property("data" |
| 803 | py::cpp_function(&MyClass::getData, py::return_value_policy::copy), |
| 804 | py::cpp_function(&MyClass::setData) |
| 805 | ); |
| 806 | |
| 807 | The following table provides an overview of the available return value policies: |
| 808 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 809 | .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}| |
| 810 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 811 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 812 | | Return value policy | Description | |
| 813 | +==================================================+============================================================================+ |
| 814 | | :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy | |
| 815 | | | :enum:`return_value_policy::take_ownership` when the return value is a | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 816 | | | pointer. Otherwise, it uses :enum:`return_value::move` or | |
| 817 | | | :enum:`return_value::copy` for rvalue and lvalue references, respectively. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 818 | | | See below for a description of what all of these different policies do. | |
| 819 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 820 | | :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the | |
Wenzel Jakob | 37e1f61 | 2016-06-22 14:29:13 +0200 | [diff] [blame] | 821 | | | return value is a pointer. This is the default conversion policy for | |
| 822 | | | function arguments when calling Python functions manually from C++ code | |
| 823 | | | (i.e. via handle::operator()). You probably won't need to use this. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 824 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 825 | | :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take | |
| 826 | | | ownership. Python will call the destructor and delete operator when the | |
| 827 | | | object's reference count reaches zero. Undefined behavior ensues when the | |
Wenzel Jakob | f53e300 | 2016-06-30 14:59:23 +0200 | [diff] [blame] | 828 | | | C++ side does the same. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 829 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 830 | | :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. | |
| 831 | | | This policy is comparably safe because the lifetimes of the two instances | |
| 832 | | | are decoupled. | |
| 833 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 834 | | :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance | |
| 835 | | | that will be owned by Python. This policy is comparably safe because the | |
| 836 | | | lifetimes of the two instances (move source and destination) are decoupled.| |
| 837 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 838 | | :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is | |
| 839 | | | responsible for managing the object's lifetime and deallocating it when | |
| 840 | | | it is no longer used. Warning: undefined behavior will ensue when the C++ | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 841 | | | side deletes an object that is still referenced and used by Python. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 842 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
Wenzel Jakob | bf09958 | 2016-08-22 12:52:02 +0200 | [diff] [blame] | 843 | | :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime | |
| 844 | | | of a parent object, namely the implicit ``this``, or ``self`` argument of | |
| 845 | | | the called method or property. Internally, this policy works just like | |
| 846 | | | :enum:`return_value_policy::reference` but additionally applies a | |
| 847 | | | ``keep_alive<0, 1>`` *call policy* (described in the next section) that | |
| 848 | | | prevents the parent object from being garbage collected as long as the | |
| 849 | | | return value is referenced by Python. This is the default policy for | |
| 850 | | | property getters created via ``def_property``, ``def_readwrite``, etc.) | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 851 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 852 | |
Wenzel Jakob | fb6aed2 | 2016-07-18 20:29:53 +0200 | [diff] [blame] | 853 | .. warning:: |
| 854 | |
Jason Rhinelander | efc2aa7 | 2016-08-10 11:38:33 -0400 | [diff] [blame] | 855 | Code with invalid return value policies might access unitialized memory or |
| 856 | free data structures multiple times, which can lead to hard-to-debug |
Wenzel Jakob | fb6aed2 | 2016-07-18 20:29:53 +0200 | [diff] [blame] | 857 | non-determinism and segmentation faults, hence it is worth spending the |
| 858 | time to understand all the different options in the table above. |
| 859 | |
Jason Rhinelander | efc2aa7 | 2016-08-10 11:38:33 -0400 | [diff] [blame] | 860 | One important aspect of the above policies is that they only apply to instances |
| 861 | which pybind11 has *not* seen before, in which case the policy clarifies |
| 862 | essential questions about the return value's lifetime and ownership. When |
| 863 | pybind11 knows the instance already (as identified by its type and address in |
Wenzel Jakob | fb6aed2 | 2016-07-18 20:29:53 +0200 | [diff] [blame] | 864 | memory), it will return the existing Python object wrapper rather than creating |
Wenzel Jakob | bf09958 | 2016-08-22 12:52:02 +0200 | [diff] [blame] | 865 | a new copy. |
nafur | 717df75 | 2016-06-28 18:07:11 +0200 | [diff] [blame] | 866 | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 867 | .. note:: |
| 868 | |
| 869 | The next section on :ref:`call_policies` discusses *call policies* that can be |
| 870 | specified *in addition* to a return value policy from the list above. Call |
| 871 | policies indicate reference relationships that can involve both return values |
| 872 | and parameters of functions. |
| 873 | |
| 874 | .. note:: |
| 875 | |
| 876 | As an alternative to elaborate call policies and lifetime management logic, |
| 877 | consider using smart pointers (see the section on :ref:`smart_pointers` for |
| 878 | details). Smart pointers can tell whether an object is still referenced from |
| 879 | C++ or Python, which generally eliminates the kinds of inconsistencies that |
| 880 | can lead to crashes or undefined behavior. For functions returning smart |
| 881 | pointers, it is not necessary to specify a return value policy. |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 882 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 883 | .. _call_policies: |
| 884 | |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 885 | Additional call policies |
| 886 | ======================== |
| 887 | |
| 888 | In addition to the above return value policies, further `call policies` can be |
| 889 | specified to indicate dependencies between parameters. There is currently just |
| 890 | one policy named ``keep_alive<Nurse, Patient>``, which indicates that the |
| 891 | argument with index ``Patient`` should be kept alive at least until the |
Wenzel Jakob | 0b63231 | 2016-08-18 10:58:21 +0200 | [diff] [blame] | 892 | argument with index ``Nurse`` is freed by the garbage collector. Argument |
| 893 | indices start at one, while zero refers to the return value. For methods, index |
| 894 | ``1`` refers to the implicit ``this`` pointer, while regular arguments begin at |
| 895 | index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse`` |
| 896 | with value ``None`` is detected at runtime, the call policy does nothing. |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 897 | |
Wenzel Jakob | 0b63231 | 2016-08-18 10:58:21 +0200 | [diff] [blame] | 898 | This feature internally relies on the ability to create a *weak reference* to |
| 899 | the nurse object, which is permitted by all classes exposed via pybind11. When |
| 900 | the nurse object does not support weak references, an exception will be thrown. |
| 901 | |
| 902 | Consider the following example: here, the binding code for a list append |
| 903 | operation ties the lifetime of the newly added element to the underlying |
| 904 | container: |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 905 | |
| 906 | .. code-block:: cpp |
| 907 | |
| 908 | py::class_<List>(m, "List") |
| 909 | .def("append", &List::append, py::keep_alive<1, 2>()); |
| 910 | |
| 911 | .. note:: |
| 912 | |
| 913 | ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse, |
| 914 | Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient == |
| 915 | 0) policies from Boost.Python. |
| 916 | |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 917 | .. seealso:: |
| 918 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 919 | The file :file:`tests/test_keep_alive.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 920 | that demonstrates using :class:`keep_alive` in more detail. |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 921 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 922 | Implicit type conversions |
| 923 | ========================= |
| 924 | |
| 925 | Suppose that instances of two types ``A`` and ``B`` are used in a project, and |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 926 | that an ``A`` can easily be converted into an instance of type ``B`` (examples of this |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 927 | could be a fixed and an arbitrary precision number type). |
| 928 | |
| 929 | .. code-block:: cpp |
| 930 | |
| 931 | py::class_<A>(m, "A") |
| 932 | /// ... members ... |
| 933 | |
| 934 | py::class_<B>(m, "B") |
| 935 | .def(py::init<A>()) |
| 936 | /// ... members ... |
| 937 | |
| 938 | m.def("func", |
| 939 | [](const B &) { /* .... */ } |
| 940 | ); |
| 941 | |
| 942 | To invoke the function ``func`` using a variable ``a`` containing an ``A`` |
| 943 | instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++ |
| 944 | will automatically apply an implicit type conversion, which makes it possible |
| 945 | to directly write ``func(a)``. |
| 946 | |
| 947 | In this situation (i.e. where ``B`` has a constructor that converts from |
| 948 | ``A``), the following statement enables similar implicit conversions on the |
| 949 | Python side: |
| 950 | |
| 951 | .. code-block:: cpp |
| 952 | |
| 953 | py::implicitly_convertible<A, B>(); |
| 954 | |
Wenzel Jakob | 3eeea6f | 2016-06-30 18:10:28 +0200 | [diff] [blame] | 955 | .. note:: |
| 956 | |
| 957 | Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom |
| 958 | data type that is exposed to Python via pybind11. |
| 959 | |
Wenzel Jakob | f88af0c | 2016-06-22 13:52:31 +0200 | [diff] [blame] | 960 | .. _static_properties: |
| 961 | |
| 962 | Static properties |
| 963 | ================= |
| 964 | |
| 965 | The section on :ref:`properties` discussed the creation of instance properties |
| 966 | that are implemented in terms of C++ getters and setters. |
| 967 | |
| 968 | Static properties can also be created in a similar way to expose getters and |
| 969 | setters of static class attributes. It is important to note that the implicit |
| 970 | ``self`` argument also exists in this case and is used to pass the Python |
| 971 | ``type`` subclass instance. This parameter will often not be needed by the C++ |
| 972 | side, and the following example illustrates how to instantiate a lambda getter |
| 973 | function that ignores it: |
| 974 | |
| 975 | .. code-block:: cpp |
| 976 | |
| 977 | py::class_<Foo>(m, "Foo") |
| 978 | .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); }); |
| 979 | |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 980 | Unique pointers |
| 981 | =============== |
| 982 | |
| 983 | Given a class ``Example`` with Python bindings, it's possible to return |
| 984 | instances wrapped in C++11 unique pointers, like so |
| 985 | |
| 986 | .. code-block:: cpp |
| 987 | |
| 988 | std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); } |
| 989 | |
| 990 | .. code-block:: cpp |
| 991 | |
| 992 | m.def("create_example", &create_example); |
| 993 | |
| 994 | In other words, there is nothing special that needs to be done. While returning |
| 995 | unique pointers in this way is allowed, it is *illegal* to use them as function |
| 996 | arguments. For instance, the following function signature cannot be processed |
| 997 | by pybind11. |
| 998 | |
| 999 | .. code-block:: cpp |
| 1000 | |
| 1001 | void do_something_with_example(std::unique_ptr<Example> ex) { ... } |
| 1002 | |
| 1003 | The above signature would imply that Python needs to give up ownership of an |
| 1004 | object that is passed to this function, which is generally not possible (for |
| 1005 | instance, the object might be referenced elsewhere). |
| 1006 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 1007 | .. _smart_pointers: |
| 1008 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1009 | Smart pointers |
| 1010 | ============== |
| 1011 | |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 1012 | This section explains how to pass values that are wrapped in "smart" pointer |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 1013 | types with internal reference counting. For the simpler C++11 unique pointers, |
| 1014 | refer to the previous section. |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 1015 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 1016 | The binding generator for classes, :class:`class_`, can be passed a template |
| 1017 | type that denotes a special *holder* type that is used to manage references to |
| 1018 | the object. If no such holder type template argument is given, the default for |
| 1019 | a type named ``Type`` is ``std::unique_ptr<Type>``, which means that the object |
| 1020 | is deallocated when Python's reference count goes to zero. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1021 | |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 1022 | It is possible to switch to other types of reference counting wrappers or smart |
| 1023 | pointers, which is useful in codebases that rely on them. For instance, the |
| 1024 | following snippet causes ``std::shared_ptr`` to be used instead. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1025 | |
| 1026 | .. code-block:: cpp |
| 1027 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1028 | py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example"); |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1029 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1030 | Note that any particular class can only be associated with a single holder type. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1031 | |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 1032 | To enable transparent conversions for functions that take shared pointers as an |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1033 | argument or that return them, a macro invocation similar to the following must |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 1034 | be declared at the top level before any binding code: |
| 1035 | |
| 1036 | .. code-block:: cpp |
| 1037 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 1038 | PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>); |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 1039 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1040 | .. note:: |
Wenzel Jakob | 61d67f0 | 2015-12-14 12:53:06 +0100 | [diff] [blame] | 1041 | |
| 1042 | The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a |
| 1043 | placeholder name that is used as a template parameter of the second |
| 1044 | argument. Thus, feel free to use any identifier, but use it consistently on |
| 1045 | both sides; also, don't use the name of a type that already exists in your |
| 1046 | codebase. |
| 1047 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1048 | One potential stumbling block when using holder types is that they need to be |
| 1049 | applied consistently. Can you guess what's broken about the following binding |
| 1050 | code? |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 1051 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1052 | .. code-block:: cpp |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 1053 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 1054 | PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>); |
| 1055 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1056 | class Child { }; |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1057 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1058 | class Parent { |
| 1059 | public: |
| 1060 | Parent() : child(std::make_shared<Child>()) { } |
| 1061 | Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */ |
| 1062 | private: |
| 1063 | std::shared_ptr<Child> child; |
| 1064 | }; |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1065 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1066 | PYBIND11_PLUGIN(example) { |
| 1067 | py::module m("example"); |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1068 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1069 | py::class_<Child, std::shared_ptr<Child>>(m, "Child"); |
| 1070 | |
| 1071 | py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent") |
| 1072 | .def(py::init<>()) |
| 1073 | .def("get_child", &Parent::get_child); |
| 1074 | |
| 1075 | return m.ptr(); |
| 1076 | } |
| 1077 | |
| 1078 | The following Python code will cause undefined behavior (and likely a |
| 1079 | segmentation fault). |
| 1080 | |
| 1081 | .. code-block:: python |
| 1082 | |
| 1083 | from example import Parent |
| 1084 | print(Parent().get_child()) |
| 1085 | |
| 1086 | The problem is that ``Parent::get_child()`` returns a pointer to an instance of |
| 1087 | ``Child``, but the fact that this instance is already managed by |
| 1088 | ``std::shared_ptr<...>`` is lost when passing raw pointers. In this case, |
| 1089 | pybind11 will create a second independent ``std::shared_ptr<...>`` that also |
| 1090 | claims ownership of the pointer. In the end, the object will be freed **twice** |
| 1091 | since these shared pointers have no way of knowing about each other. |
| 1092 | |
| 1093 | There are two ways to resolve this issue: |
| 1094 | |
| 1095 | 1. For types that are managed by a smart pointer class, never use raw pointers |
| 1096 | in function arguments or return values. In other words: always consistently |
| 1097 | wrap pointers into their designated holder types (such as |
| 1098 | ``std::shared_ptr<...>``). In this case, the signature of ``get_child()`` |
| 1099 | should be modified as follows: |
| 1100 | |
| 1101 | .. code-block:: cpp |
| 1102 | |
| 1103 | std::shared_ptr<Child> get_child() { return child; } |
| 1104 | |
| 1105 | 2. Adjust the definition of ``Child`` by specifying |
| 1106 | ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a |
| 1107 | base class. This adds a small bit of information to ``Child`` that allows |
| 1108 | pybind11 to realize that there is already an existing |
| 1109 | ``std::shared_ptr<...>`` and communicate with it. In this case, the |
| 1110 | declaration of ``Child`` should look as follows: |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1111 | |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 1112 | .. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this |
| 1113 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1114 | .. code-block:: cpp |
| 1115 | |
| 1116 | class Child : public std::enable_shared_from_this<Child> { }; |
| 1117 | |
Wenzel Jakob | 9bb97c1 | 2016-06-03 11:19:41 +0200 | [diff] [blame] | 1118 | |
| 1119 | Please take a look at the :ref:`macro_notes` before using this feature. |
| 1120 | |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1121 | .. seealso:: |
| 1122 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1123 | The file :file:`tests/test_smart_ptr.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1124 | that demonstrates how to work with custom reference-counting holder types |
| 1125 | in more detail. |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1126 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1127 | .. _custom_constructors: |
| 1128 | |
| 1129 | Custom constructors |
| 1130 | =================== |
| 1131 | |
| 1132 | The syntax for binding constructors was previously introduced, but it only |
| 1133 | works when a constructor with the given parameters actually exists on the C++ |
| 1134 | side. To extend this to more general cases, let's take a look at what actually |
| 1135 | happens under the hood: the following statement |
| 1136 | |
| 1137 | .. code-block:: cpp |
| 1138 | |
| 1139 | py::class_<Example>(m, "Example") |
| 1140 | .def(py::init<int>()); |
| 1141 | |
| 1142 | is short hand notation for |
| 1143 | |
| 1144 | .. code-block:: cpp |
| 1145 | |
| 1146 | py::class_<Example>(m, "Example") |
| 1147 | .def("__init__", |
| 1148 | [](Example &instance, int arg) { |
| 1149 | new (&instance) Example(arg); |
| 1150 | } |
| 1151 | ); |
| 1152 | |
| 1153 | In other words, :func:`init` creates an anonymous function that invokes an |
| 1154 | in-place constructor. Memory allocation etc. is already take care of beforehand |
| 1155 | within pybind11. |
| 1156 | |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1157 | .. _classes_with_non_public_destructors: |
| 1158 | |
| 1159 | Classes with non-public destructors |
| 1160 | =================================== |
| 1161 | |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1162 | If a class has a private or protected destructor (as might e.g. be the case in |
| 1163 | a singleton pattern), a compile error will occur when creating bindings via |
| 1164 | pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that |
| 1165 | is responsible for managing the lifetime of instances will reference the |
| 1166 | destructor even if no deallocations ever take place. In order to expose classes |
| 1167 | with private or protected destructors, it is possible to override the holder |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 1168 | type via a holder type argument to ``class_``. Pybind11 provides a helper class |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1169 | ``py::nodelete`` that disables any destructor invocations. In this case, it is |
| 1170 | crucial that instances are deallocated on the C++ side to avoid memory leaks. |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1171 | |
| 1172 | .. code-block:: cpp |
| 1173 | |
| 1174 | /* ... definition ... */ |
| 1175 | |
| 1176 | class MyClass { |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1177 | private: |
| 1178 | ~MyClass() { } |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1179 | }; |
| 1180 | |
| 1181 | /* ... binding code ... */ |
| 1182 | |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1183 | py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass") |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1184 | .def(py::init<>) |
| 1185 | |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1186 | .. _catching_and_throwing_exceptions: |
| 1187 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1188 | Catching and throwing exceptions |
| 1189 | ================================ |
| 1190 | |
| 1191 | When C++ code invoked from Python throws an ``std::exception``, it is |
| 1192 | automatically converted into a Python ``Exception``. pybind11 defines multiple |
| 1193 | special exception classes that will map to different types of Python |
| 1194 | exceptions: |
| 1195 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 1196 | .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}| |
| 1197 | |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1198 | +--------------------------------------+------------------------------+ |
| 1199 | | C++ exception type | Python exception type | |
| 1200 | +======================================+==============================+ |
| 1201 | | :class:`std::exception` | ``RuntimeError`` | |
| 1202 | +--------------------------------------+------------------------------+ |
| 1203 | | :class:`std::bad_alloc` | ``MemoryError`` | |
| 1204 | +--------------------------------------+------------------------------+ |
| 1205 | | :class:`std::domain_error` | ``ValueError`` | |
| 1206 | +--------------------------------------+------------------------------+ |
| 1207 | | :class:`std::invalid_argument` | ``ValueError`` | |
| 1208 | +--------------------------------------+------------------------------+ |
| 1209 | | :class:`std::length_error` | ``ValueError`` | |
| 1210 | +--------------------------------------+------------------------------+ |
| 1211 | | :class:`std::out_of_range` | ``ValueError`` | |
| 1212 | +--------------------------------------+------------------------------+ |
| 1213 | | :class:`std::range_error` | ``ValueError`` | |
| 1214 | +--------------------------------------+------------------------------+ |
| 1215 | | :class:`pybind11::stop_iteration` | ``StopIteration`` (used to | |
| 1216 | | | implement custom iterators) | |
| 1217 | +--------------------------------------+------------------------------+ |
| 1218 | | :class:`pybind11::index_error` | ``IndexError`` (used to | |
| 1219 | | | indicate out of bounds | |
| 1220 | | | accesses in ``__getitem__``, | |
| 1221 | | | ``__setitem__``, etc.) | |
| 1222 | +--------------------------------------+------------------------------+ |
Sergey Lyskov | a95bde1 | 2016-05-08 19:31:55 -0400 | [diff] [blame] | 1223 | | :class:`pybind11::value_error` | ``ValueError`` (used to | |
| 1224 | | | indicate wrong value passed | |
| 1225 | | | in ``container.remove(...)`` | |
| 1226 | +--------------------------------------+------------------------------+ |
Jason Rhinelander | 5aa85be | 2016-08-11 21:22:05 -0400 | [diff] [blame] | 1227 | | :class:`pybind11::key_error` | ``KeyError`` (used to | |
| 1228 | | | indicate out of bounds | |
| 1229 | | | accesses in ``__getitem__``, | |
| 1230 | | | ``__setitem__`` in dict-like | |
| 1231 | | | objects, etc.) | |
| 1232 | +--------------------------------------+------------------------------+ |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1233 | | :class:`pybind11::error_already_set` | Indicates that the Python | |
| 1234 | | | exception flag has already | |
| 1235 | | | been initialized | |
| 1236 | +--------------------------------------+------------------------------+ |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1237 | |
| 1238 | When a Python function invoked from C++ throws an exception, it is converted |
| 1239 | into a C++ exception of type :class:`error_already_set` whose string payload |
| 1240 | contains a textual summary. |
| 1241 | |
| 1242 | There is also a special exception :class:`cast_error` that is thrown by |
| 1243 | :func:`handle::call` when the input arguments cannot be converted to Python |
| 1244 | objects. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1245 | |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1246 | Registering custom exception translators |
| 1247 | ======================================== |
| 1248 | |
| 1249 | If the default exception conversion policy described |
| 1250 | :ref:`above <catching_and_throwing_exceptions>` |
| 1251 | is insufficient, pybind11 also provides support for registering custom |
| 1252 | exception translators. |
| 1253 | |
| 1254 | The function ``register_exception_translator(translator)`` takes a stateless |
| 1255 | callable (e.g. a function pointer or a lambda function without captured |
| 1256 | variables) with the following call signature: ``void(std::exception_ptr)``. |
| 1257 | |
| 1258 | When a C++ exception is thrown, registered exception translators are tried |
| 1259 | in reverse order of registration (i.e. the last registered translator gets |
| 1260 | a first shot at handling the exception). |
| 1261 | |
| 1262 | Inside the translator, ``std::rethrow_exception`` should be used within |
| 1263 | a try block to re-throw the exception. A catch clause can then use |
| 1264 | ``PyErr_SetString`` to set a Python exception as demonstrated |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1265 | in :file:`tests/test_exceptions.cpp`. |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1266 | |
| 1267 | This example also demonstrates how to create custom exception types |
| 1268 | with ``py::exception``. |
| 1269 | |
| 1270 | The following example demonstrates this for a hypothetical exception class |
| 1271 | ``MyCustomException``: |
| 1272 | |
| 1273 | .. code-block:: cpp |
| 1274 | |
| 1275 | py::register_exception_translator([](std::exception_ptr p) { |
| 1276 | try { |
| 1277 | if (p) std::rethrow_exception(p); |
| 1278 | } catch (const MyCustomException &e) { |
| 1279 | PyErr_SetString(PyExc_RuntimeError, e.what()); |
| 1280 | } |
| 1281 | }); |
| 1282 | |
| 1283 | Multiple exceptions can be handled by a single translator. If the exception is |
| 1284 | not caught by the current translator, the previously registered one gets a |
| 1285 | chance. |
| 1286 | |
| 1287 | If none of the registered exception translators is able to handle the |
| 1288 | exception, it is handled by the default converter as described in the previous |
| 1289 | section. |
| 1290 | |
| 1291 | .. note:: |
| 1292 | |
| 1293 | You must either call ``PyErr_SetString`` for every exception caught in a |
| 1294 | custom exception translator. Failure to do so will cause Python to crash |
| 1295 | with ``SystemError: error return without exception set``. |
| 1296 | |
| 1297 | Exceptions that you do not plan to handle should simply not be caught. |
| 1298 | |
| 1299 | You may also choose to explicity (re-)throw the exception to delegate it to |
| 1300 | the other existing exception translators. |
| 1301 | |
| 1302 | The ``py::exception`` wrapper for creating custom exceptions cannot (yet) |
Jason Rhinelander | 6b52c83 | 2016-09-06 12:27:00 -0400 | [diff] [blame] | 1303 | be used as a base type. |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1304 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1305 | .. _eigen: |
| 1306 | |
| 1307 | Transparent conversion of dense and sparse Eigen data types |
| 1308 | =========================================================== |
| 1309 | |
| 1310 | Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to |
| 1311 | its popularity and widespread adoption, pybind11 provides transparent |
| 1312 | conversion support between Eigen and Scientific Python linear algebra data types. |
| 1313 | |
| 1314 | Specifically, when including the optional header file :file:`pybind11/eigen.h`, |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1315 | pybind11 will automatically and transparently convert |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1316 | |
| 1317 | 1. Static and dynamic Eigen dense vectors and matrices to instances of |
| 1318 | ``numpy.ndarray`` (and vice versa). |
| 1319 | |
Jason Rhinelander | b68d8fc | 2016-08-04 16:39:30 -0400 | [diff] [blame] | 1320 | 2. Returned matrix expressions such as blocks (including columns or rows) and |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1321 | diagonals will be converted to ``numpy.ndarray`` of the expression |
| 1322 | values. |
| 1323 | |
Jason Rhinelander | b68d8fc | 2016-08-04 16:39:30 -0400 | [diff] [blame] | 1324 | 3. Returned matrix-like objects such as Eigen::DiagonalMatrix or |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1325 | Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the |
| 1326 | expressed value. |
| 1327 | |
Jason Rhinelander | b68d8fc | 2016-08-04 16:39:30 -0400 | [diff] [blame] | 1328 | 4. Eigen sparse vectors and matrices to instances of |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1329 | ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa). |
| 1330 | |
| 1331 | This makes it possible to bind most kinds of functions that rely on these types. |
| 1332 | One major caveat are functions that take Eigen matrices *by reference* and modify |
| 1333 | them somehow, in which case the information won't be propagated to the caller. |
| 1334 | |
| 1335 | .. code-block:: cpp |
| 1336 | |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1337 | /* The Python bindings of these functions won't replicate |
| 1338 | the intended effect of modifying the function arguments */ |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1339 | void scale_by_2(Eigen::Vector3f &v) { |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1340 | v *= 2; |
| 1341 | } |
| 1342 | void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) { |
| 1343 | v *= 2; |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1344 | } |
| 1345 | |
| 1346 | To see why this is, refer to the section on :ref:`opaque` (although that |
| 1347 | section specifically covers STL data types, the underlying issue is the same). |
| 1348 | The next two sections discuss an efficient alternative for exposing the |
| 1349 | underlying native Eigen types as opaque objects in a way that still integrates |
| 1350 | with NumPy and SciPy. |
| 1351 | |
| 1352 | .. [#f1] http://eigen.tuxfamily.org |
| 1353 | |
| 1354 | .. seealso:: |
| 1355 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1356 | The file :file:`tests/test_eigen.cpp` contains a complete example that |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1357 | shows how to pass Eigen sparse and dense data types in more detail. |
| 1358 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1359 | Buffer protocol |
| 1360 | =============== |
| 1361 | |
| 1362 | Python supports an extremely general and convenient approach for exchanging |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1363 | data between plugin libraries. Types can expose a buffer view [#f2]_, which |
| 1364 | provides fast direct access to the raw internal data representation. Suppose we |
| 1365 | want to bind the following simplistic Matrix class: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1366 | |
| 1367 | .. code-block:: cpp |
| 1368 | |
| 1369 | class Matrix { |
| 1370 | public: |
| 1371 | Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) { |
| 1372 | m_data = new float[rows*cols]; |
| 1373 | } |
| 1374 | float *data() { return m_data; } |
| 1375 | size_t rows() const { return m_rows; } |
| 1376 | size_t cols() const { return m_cols; } |
| 1377 | private: |
| 1378 | size_t m_rows, m_cols; |
| 1379 | float *m_data; |
| 1380 | }; |
| 1381 | |
| 1382 | The following binding code exposes the ``Matrix`` contents as a buffer object, |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 1383 | making it possible to cast Matrices into NumPy arrays. It is even possible to |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1384 | completely avoid copy operations with Python expressions like |
| 1385 | ``np.array(matrix_instance, copy = False)``. |
| 1386 | |
| 1387 | .. code-block:: cpp |
| 1388 | |
| 1389 | py::class_<Matrix>(m, "Matrix") |
| 1390 | .def_buffer([](Matrix &m) -> py::buffer_info { |
| 1391 | return py::buffer_info( |
Ivan Smirnov | 5e71e17 | 2016-06-26 12:42:34 +0100 | [diff] [blame] | 1392 | m.data(), /* Pointer to buffer */ |
| 1393 | sizeof(float), /* Size of one scalar */ |
| 1394 | py::format_descriptor<float>::format(), /* Python struct-style format descriptor */ |
| 1395 | 2, /* Number of dimensions */ |
| 1396 | { m.rows(), m.cols() }, /* Buffer dimensions */ |
| 1397 | { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */ |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1398 | sizeof(float) } |
| 1399 | ); |
| 1400 | }); |
| 1401 | |
| 1402 | The snippet above binds a lambda function, which can create ``py::buffer_info`` |
| 1403 | description records on demand describing a given matrix. The contents of |
| 1404 | ``py::buffer_info`` mirror the Python buffer protocol specification. |
| 1405 | |
| 1406 | .. code-block:: cpp |
| 1407 | |
| 1408 | struct buffer_info { |
| 1409 | void *ptr; |
| 1410 | size_t itemsize; |
| 1411 | std::string format; |
| 1412 | int ndim; |
| 1413 | std::vector<size_t> shape; |
| 1414 | std::vector<size_t> strides; |
| 1415 | }; |
| 1416 | |
| 1417 | To create a C++ function that can take a Python buffer object as an argument, |
| 1418 | simply use the type ``py::buffer`` as one of its arguments. Buffers can exist |
| 1419 | in a great variety of configurations, hence some safety checks are usually |
| 1420 | necessary in the function body. Below, you can see an basic example on how to |
| 1421 | define a custom constructor for the Eigen double precision matrix |
| 1422 | (``Eigen::MatrixXd``) type, which supports initialization from compatible |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1423 | buffer objects (e.g. a NumPy matrix). |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1424 | |
| 1425 | .. code-block:: cpp |
| 1426 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1427 | /* Bind MatrixXd (or some other Eigen type) to Python */ |
| 1428 | typedef Eigen::MatrixXd Matrix; |
| 1429 | |
| 1430 | typedef Matrix::Scalar Scalar; |
| 1431 | constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit; |
| 1432 | |
| 1433 | py::class_<Matrix>(m, "Matrix") |
| 1434 | .def("__init__", [](Matrix &m, py::buffer b) { |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1435 | typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides; |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1436 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1437 | /* Request a buffer descriptor from Python */ |
| 1438 | py::buffer_info info = b.request(); |
| 1439 | |
| 1440 | /* Some sanity checks ... */ |
Ivan Smirnov | 5e71e17 | 2016-06-26 12:42:34 +0100 | [diff] [blame] | 1441 | if (info.format != py::format_descriptor<Scalar>::format()) |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1442 | throw std::runtime_error("Incompatible format: expected a double array!"); |
| 1443 | |
| 1444 | if (info.ndim != 2) |
| 1445 | throw std::runtime_error("Incompatible buffer dimension!"); |
| 1446 | |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1447 | auto strides = Strides( |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1448 | info.strides[rowMajor ? 0 : 1] / sizeof(Scalar), |
| 1449 | info.strides[rowMajor ? 1 : 0] / sizeof(Scalar)); |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1450 | |
| 1451 | auto map = Eigen::Map<Matrix, 0, Strides>( |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1452 | static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides); |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1453 | |
| 1454 | new (&m) Matrix(map); |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1455 | }); |
| 1456 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1457 | For reference, the ``def_buffer()`` call for this Eigen data type should look |
| 1458 | as follows: |
| 1459 | |
| 1460 | .. code-block:: cpp |
| 1461 | |
| 1462 | .def_buffer([](Matrix &m) -> py::buffer_info { |
| 1463 | return py::buffer_info( |
| 1464 | m.data(), /* Pointer to buffer */ |
| 1465 | sizeof(Scalar), /* Size of one scalar */ |
| 1466 | /* Python struct-style format descriptor */ |
Ivan Smirnov | 5e71e17 | 2016-06-26 12:42:34 +0100 | [diff] [blame] | 1467 | py::format_descriptor<Scalar>::format(), |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1468 | /* Number of dimensions */ |
| 1469 | 2, |
| 1470 | /* Buffer dimensions */ |
| 1471 | { (size_t) m.rows(), |
| 1472 | (size_t) m.cols() }, |
| 1473 | /* Strides (in bytes) for each index */ |
| 1474 | { sizeof(Scalar) * (rowMajor ? m.cols() : 1), |
| 1475 | sizeof(Scalar) * (rowMajor ? 1 : m.rows()) } |
| 1476 | ); |
| 1477 | }) |
| 1478 | |
| 1479 | For a much easier approach of binding Eigen types (although with some |
| 1480 | limitations), refer to the section on :ref:`eigen`. |
| 1481 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1482 | .. seealso:: |
| 1483 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1484 | The file :file:`tests/test_buffers.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1485 | that demonstrates using the buffer protocol with pybind11 in more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1486 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1487 | .. [#f2] http://docs.python.org/3/c-api/buffer.html |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1488 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1489 | NumPy support |
| 1490 | ============= |
| 1491 | |
| 1492 | By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can |
| 1493 | restrict the function so that it only accepts NumPy arrays (rather than any |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1494 | type of Python object satisfying the buffer protocol). |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1495 | |
| 1496 | In many situations, we want to define a function which only accepts a NumPy |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1497 | array of a certain data type. This is possible via the ``py::array_t<T>`` |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1498 | template. For instance, the following function requires the argument to be a |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1499 | NumPy array containing double precision values. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1500 | |
| 1501 | .. code-block:: cpp |
| 1502 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1503 | void f(py::array_t<double> array); |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1504 | |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1505 | When it is invoked with a different type (e.g. an integer or a list of |
| 1506 | integers), the binding code will attempt to cast the input into a NumPy array |
| 1507 | of the requested type. Note that this feature requires the |
| 1508 | :file:``pybind11/numpy.h`` header to be included. |
| 1509 | |
| 1510 | Data in NumPy arrays is not guaranteed to packed in a dense manner; |
| 1511 | furthermore, entries can be separated by arbitrary column and row strides. |
| 1512 | Sometimes, it can be useful to require a function to only accept dense arrays |
| 1513 | using either the C (row-major) or Fortran (column-major) ordering. This can be |
| 1514 | accomplished via a second template argument with values ``py::array::c_style`` |
| 1515 | or ``py::array::f_style``. |
| 1516 | |
| 1517 | .. code-block:: cpp |
| 1518 | |
Wenzel Jakob | b47a9de | 2016-05-19 16:02:09 +0200 | [diff] [blame] | 1519 | void f(py::array_t<double, py::array::c_style | py::array::forcecast> array); |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1520 | |
Wenzel Jakob | b47a9de | 2016-05-19 16:02:09 +0200 | [diff] [blame] | 1521 | The ``py::array::forcecast`` argument is the default value of the second |
| 1522 | template paramenter, and it ensures that non-conforming arguments are converted |
| 1523 | into an array satisfying the specified requirements instead of trying the next |
| 1524 | function overload. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1525 | |
Ivan Smirnov | 223afe3 | 2016-07-02 15:33:04 +0100 | [diff] [blame] | 1526 | NumPy structured types |
| 1527 | ====================== |
| 1528 | |
| 1529 | In order for ``py::array_t`` to work with structured (record) types, we first need |
Ivan Smirnov | 5412a05 | 2016-07-02 16:18:42 +0100 | [diff] [blame] | 1530 | to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE`` |
Ivan Smirnov | 223afe3 | 2016-07-02 15:33:04 +0100 | [diff] [blame] | 1531 | macro which expects the type followed by field names: |
| 1532 | |
| 1533 | .. code-block:: cpp |
| 1534 | |
| 1535 | struct A { |
| 1536 | int x; |
| 1537 | double y; |
| 1538 | }; |
| 1539 | |
| 1540 | struct B { |
| 1541 | int z; |
| 1542 | A a; |
| 1543 | }; |
| 1544 | |
Ivan Smirnov | 5412a05 | 2016-07-02 16:18:42 +0100 | [diff] [blame] | 1545 | PYBIND11_NUMPY_DTYPE(A, x, y); |
| 1546 | PYBIND11_NUMPY_DTYPE(B, z, a); |
Ivan Smirnov | 223afe3 | 2016-07-02 15:33:04 +0100 | [diff] [blame] | 1547 | |
| 1548 | /* now both A and B can be used as template arguments to py::array_t */ |
| 1549 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1550 | Vectorizing functions |
| 1551 | ===================== |
| 1552 | |
| 1553 | Suppose we want to bind a function with the following signature to Python so |
| 1554 | that it can process arbitrary NumPy array arguments (vectors, matrices, general |
| 1555 | N-D arrays) in addition to its normal arguments: |
| 1556 | |
| 1557 | .. code-block:: cpp |
| 1558 | |
| 1559 | double my_func(int x, float y, double z); |
| 1560 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 1561 | After including the ``pybind11/numpy.h`` header, this is extremely simple: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1562 | |
| 1563 | .. code-block:: cpp |
| 1564 | |
| 1565 | m.def("vectorized_func", py::vectorize(my_func)); |
| 1566 | |
| 1567 | Invoking the function like below causes 4 calls to be made to ``my_func`` with |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 1568 | each of the array elements. The significant advantage of this compared to |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1569 | solutions like ``numpy.vectorize()`` is that the loop over the elements runs |
| 1570 | entirely on the C++ side and can be crunched down into a tight, optimized loop |
| 1571 | by the compiler. The result is returned as a NumPy array of type |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1572 | ``numpy.dtype.float64``. |
| 1573 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 1574 | .. code-block:: pycon |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1575 | |
| 1576 | >>> x = np.array([[1, 3],[5, 7]]) |
| 1577 | >>> y = np.array([[2, 4],[6, 8]]) |
| 1578 | >>> z = 3 |
| 1579 | >>> result = vectorized_func(x, y, z) |
| 1580 | |
| 1581 | The scalar argument ``z`` is transparently replicated 4 times. The input |
| 1582 | arrays ``x`` and ``y`` are automatically converted into the right types (they |
| 1583 | are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and |
| 1584 | ``numpy.dtype.float32``, respectively) |
| 1585 | |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 1586 | Sometimes we might want to explicitly exclude an argument from the vectorization |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1587 | because it makes little sense to wrap it in a NumPy array. For instance, |
| 1588 | suppose the function signature was |
| 1589 | |
| 1590 | .. code-block:: cpp |
| 1591 | |
| 1592 | double my_func(int x, float y, my_custom_type *z); |
| 1593 | |
| 1594 | This can be done with a stateful Lambda closure: |
| 1595 | |
| 1596 | .. code-block:: cpp |
| 1597 | |
| 1598 | // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) |
| 1599 | m.def("vectorized_func", |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1600 | [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) { |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1601 | auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); }; |
| 1602 | return py::vectorize(stateful_closure)(x, y); |
| 1603 | } |
| 1604 | ); |
| 1605 | |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 1606 | In cases where the computation is too complicated to be reduced to |
| 1607 | ``vectorize``, it will be necessary to create and access the buffer contents |
| 1608 | manually. The following snippet contains a complete example that shows how this |
| 1609 | works (the code is somewhat contrived, since it could have been done more |
| 1610 | simply using ``vectorize``). |
| 1611 | |
| 1612 | .. code-block:: cpp |
| 1613 | |
| 1614 | #include <pybind11/pybind11.h> |
| 1615 | #include <pybind11/numpy.h> |
| 1616 | |
| 1617 | namespace py = pybind11; |
| 1618 | |
| 1619 | py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) { |
| 1620 | auto buf1 = input1.request(), buf2 = input2.request(); |
| 1621 | |
| 1622 | if (buf1.ndim != 1 || buf2.ndim != 1) |
| 1623 | throw std::runtime_error("Number of dimensions must be one"); |
| 1624 | |
Ivan Smirnov | b651859 | 2016-08-13 13:28:56 +0100 | [diff] [blame] | 1625 | if (buf1.size != buf2.size) |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 1626 | throw std::runtime_error("Input shapes must match"); |
| 1627 | |
Ivan Smirnov | b651859 | 2016-08-13 13:28:56 +0100 | [diff] [blame] | 1628 | /* No pointer is passed, so NumPy will allocate the buffer */ |
| 1629 | auto result = py::array_t<double>(buf1.size); |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 1630 | |
| 1631 | auto buf3 = result.request(); |
| 1632 | |
| 1633 | double *ptr1 = (double *) buf1.ptr, |
| 1634 | *ptr2 = (double *) buf2.ptr, |
| 1635 | *ptr3 = (double *) buf3.ptr; |
| 1636 | |
| 1637 | for (size_t idx = 0; idx < buf1.shape[0]; idx++) |
| 1638 | ptr3[idx] = ptr1[idx] + ptr2[idx]; |
| 1639 | |
| 1640 | return result; |
| 1641 | } |
| 1642 | |
| 1643 | PYBIND11_PLUGIN(test) { |
| 1644 | py::module m("test"); |
| 1645 | m.def("add_arrays", &add_arrays, "Add two NumPy arrays"); |
| 1646 | return m.ptr(); |
| 1647 | } |
| 1648 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1649 | .. seealso:: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1650 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1651 | The file :file:`tests/test_numpy_vectorize.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1652 | example that demonstrates using :func:`vectorize` in more detail. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1653 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1654 | Functions taking Python objects as arguments |
| 1655 | ============================================ |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1656 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1657 | pybind11 exposes all major Python types using thin C++ wrapper classes. These |
| 1658 | wrapper classes can also be used as parameters of functions in bindings, which |
| 1659 | makes it possible to directly work with native Python types on the C++ side. |
| 1660 | For instance, the following statement iterates over a Python ``dict``: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1661 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1662 | .. code-block:: cpp |
| 1663 | |
| 1664 | void print_dict(py::dict dict) { |
| 1665 | /* Easily interact with Python types */ |
| 1666 | for (auto item : dict) |
| 1667 | std::cout << "key=" << item.first << ", " |
| 1668 | << "value=" << item.second << std::endl; |
| 1669 | } |
| 1670 | |
| 1671 | Available types include :class:`handle`, :class:`object`, :class:`bool_`, |
Wenzel Jakob | 27e8e10 | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1672 | :class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`, |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 1673 | :class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`, |
| 1674 | :class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`, |
| 1675 | :class:`array`, and :class:`array_t`. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1676 | |
Wenzel Jakob | 436b731 | 2015-10-20 01:04:30 +0200 | [diff] [blame] | 1677 | In this kind of mixed code, it is often necessary to convert arbitrary C++ |
| 1678 | types to Python, which can be done using :func:`cast`: |
| 1679 | |
| 1680 | .. code-block:: cpp |
| 1681 | |
| 1682 | MyClass *cls = ..; |
| 1683 | py::object obj = py::cast(cls); |
| 1684 | |
| 1685 | The reverse direction uses the following syntax: |
| 1686 | |
| 1687 | .. code-block:: cpp |
| 1688 | |
| 1689 | py::object obj = ...; |
| 1690 | MyClass *cls = obj.cast<MyClass *>(); |
| 1691 | |
| 1692 | When conversion fails, both directions throw the exception :class:`cast_error`. |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1693 | It is also possible to call python functions via ``operator()``. |
| 1694 | |
| 1695 | .. code-block:: cpp |
| 1696 | |
| 1697 | py::function f = <...>; |
| 1698 | py::object result_py = f(1234, "hello", some_instance); |
| 1699 | MyClass &result = result_py.cast<MyClass>(); |
| 1700 | |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1701 | Keyword arguments are also supported. In Python, there is the usual call syntax: |
| 1702 | |
| 1703 | .. code-block:: python |
| 1704 | |
| 1705 | def f(number, say, to): |
| 1706 | ... # function code |
| 1707 | |
| 1708 | f(1234, say="hello", to=some_instance) # keyword call in Python |
| 1709 | |
| 1710 | In C++, the same call can be made using: |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1711 | |
| 1712 | .. code-block:: cpp |
| 1713 | |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1714 | using pybind11::literals; // to bring in the `_a` literal |
| 1715 | f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++ |
| 1716 | |
| 1717 | Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with |
| 1718 | other arguments: |
| 1719 | |
| 1720 | .. code-block:: cpp |
| 1721 | |
| 1722 | // * unpacking |
| 1723 | py::tuple args = py::make_tuple(1234, "hello", some_instance); |
| 1724 | f(*args); |
| 1725 | |
| 1726 | // ** unpacking |
| 1727 | py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance); |
| 1728 | f(**kwargs); |
| 1729 | |
| 1730 | // mixed keywords, * and ** unpacking |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1731 | py::tuple args = py::make_tuple(1234); |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1732 | py::dict kwargs = py::dict("to"_a=some_instance); |
| 1733 | f(*args, "say"_a="hello", **kwargs); |
| 1734 | |
| 1735 | Generalized unpacking according to PEP448_ is also supported: |
| 1736 | |
| 1737 | .. code-block:: cpp |
| 1738 | |
| 1739 | py::dict kwargs1 = py::dict("number"_a=1234); |
| 1740 | py::dict kwargs2 = py::dict("to"_a=some_instance); |
| 1741 | f(**kwargs1, "say"_a="hello", **kwargs2); |
Wenzel Jakob | 436b731 | 2015-10-20 01:04:30 +0200 | [diff] [blame] | 1742 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1743 | .. seealso:: |
| 1744 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1745 | The file :file:`tests/test_python_types.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1746 | example that demonstrates passing native Python types in more detail. The |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1747 | file :file:`tests/test_callbacks.cpp` presents a few examples of calling |
| 1748 | Python functions from C++, including keywords arguments and unpacking. |
| 1749 | |
| 1750 | .. _PEP448: https://www.python.org/dev/peps/pep-0448/ |
| 1751 | |
| 1752 | Using Python's print function in C++ |
| 1753 | ==================================== |
| 1754 | |
| 1755 | The usual way to write output in C++ is using ``std::cout`` while in Python one |
| 1756 | would use ``print``. Since these methods use different buffers, mixing them can |
| 1757 | lead to output order issues. To resolve this, pybind11 modules can use the |
| 1758 | :func:`py::print` function which writes to Python's ``sys.stdout`` for consistency. |
| 1759 | |
| 1760 | Python's ``print`` function is replicated in the C++ API including optional |
| 1761 | keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as |
| 1762 | expected in Python: |
| 1763 | |
| 1764 | .. code-block:: cpp |
| 1765 | |
| 1766 | py::print(1, 2.0, "three"); // 1 2.0 three |
| 1767 | py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three |
| 1768 | |
| 1769 | auto args = py::make_tuple("unpacked", true); |
| 1770 | py::print("->", *args, "end"_a="<-"); // -> unpacked True <- |
Wenzel Jakob | 2ac5044 | 2016-01-17 22:36:35 +0100 | [diff] [blame] | 1771 | |
| 1772 | Default arguments revisited |
| 1773 | =========================== |
| 1774 | |
| 1775 | The section on :ref:`default_args` previously discussed basic usage of default |
| 1776 | arguments using pybind11. One noteworthy aspect of their implementation is that |
| 1777 | default arguments are converted to Python objects right at declaration time. |
| 1778 | Consider the following example: |
| 1779 | |
| 1780 | .. code-block:: cpp |
| 1781 | |
| 1782 | py::class_<MyClass>("MyClass") |
| 1783 | .def("myFunction", py::arg("arg") = SomeType(123)); |
| 1784 | |
| 1785 | In this case, pybind11 must already be set up to deal with values of the type |
| 1786 | ``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an |
| 1787 | exception will be thrown. |
| 1788 | |
| 1789 | Another aspect worth highlighting is that the "preview" of the default argument |
| 1790 | in the function signature is generated using the object's ``__repr__`` method. |
| 1791 | If not available, the signature may not be very helpful, e.g.: |
| 1792 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 1793 | .. code-block:: pycon |
Wenzel Jakob | 2ac5044 | 2016-01-17 22:36:35 +0100 | [diff] [blame] | 1794 | |
| 1795 | FUNCTIONS |
| 1796 | ... |
| 1797 | | myFunction(...) |
Wenzel Jakob | 48548ea | 2016-01-17 22:36:44 +0100 | [diff] [blame] | 1798 | | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType |
Wenzel Jakob | 2ac5044 | 2016-01-17 22:36:35 +0100 | [diff] [blame] | 1799 | ... |
| 1800 | |
| 1801 | The first way of addressing this is by defining ``SomeType.__repr__``. |
| 1802 | Alternatively, it is possible to specify the human-readable preview of the |
| 1803 | default argument manually using the ``arg_t`` notation: |
| 1804 | |
| 1805 | .. code-block:: cpp |
| 1806 | |
| 1807 | py::class_<MyClass>("MyClass") |
| 1808 | .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)")); |
| 1809 | |
Wenzel Jakob | c769fce | 2016-03-03 12:03:30 +0100 | [diff] [blame] | 1810 | Sometimes it may be necessary to pass a null pointer value as a default |
| 1811 | argument. In this case, remember to cast it to the underlying type in question, |
| 1812 | like so: |
| 1813 | |
| 1814 | .. code-block:: cpp |
| 1815 | |
| 1816 | py::class_<MyClass>("MyClass") |
| 1817 | .def("myFunction", py::arg("arg") = (SomeType *) nullptr); |
| 1818 | |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1819 | Binding functions that accept arbitrary numbers of arguments and keywords arguments |
| 1820 | =================================================================================== |
| 1821 | |
| 1822 | Python provides a useful mechanism to define functions that accept arbitrary |
| 1823 | numbers of arguments and keyword arguments: |
| 1824 | |
| 1825 | .. code-block:: cpp |
| 1826 | |
| 1827 | def generic(*args, **kwargs): |
| 1828 | # .. do something with args and kwargs |
| 1829 | |
| 1830 | Such functions can also be created using pybind11: |
| 1831 | |
| 1832 | .. code-block:: cpp |
| 1833 | |
| 1834 | void generic(py::args args, py::kwargs kwargs) { |
| 1835 | /// .. do something with args |
| 1836 | if (kwargs) |
| 1837 | /// .. do something with kwargs |
| 1838 | } |
| 1839 | |
| 1840 | /// Binding code |
| 1841 | m.def("generic", &generic); |
| 1842 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1843 | (See ``tests/test_kwargs_and_defaults.cpp``). The class ``py::args`` |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1844 | derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note |
| 1845 | that the ``kwargs`` argument is invalid if no keyword arguments were actually |
| 1846 | provided. Please refer to the other examples for details on how to iterate |
| 1847 | over these, and on how to cast their entries into C++ objects. |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1848 | |
Wenzel Jakob | 3764e28 | 2016-08-01 23:34:48 +0200 | [diff] [blame] | 1849 | .. warning:: |
| 1850 | |
| 1851 | Unlike Python, pybind11 does not allow combining normal parameters with the |
| 1852 | ``args`` / ``kwargs`` special parameters. |
| 1853 | |
Wenzel Jakob | 2dfbade | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1854 | Partitioning code over multiple extension modules |
| 1855 | ================================================= |
| 1856 | |
Wenzel Jakob | 90d2f5e | 2016-04-11 14:30:11 +0200 | [diff] [blame] | 1857 | It's straightforward to split binding code over multiple extension modules, |
| 1858 | while referencing types that are declared elsewhere. Everything "just" works |
| 1859 | without any special precautions. One exception to this rule occurs when |
| 1860 | extending a type declared in another extension module. Recall the basic example |
| 1861 | from Section :ref:`inheritance`. |
Wenzel Jakob | 2dfbade | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1862 | |
| 1863 | .. code-block:: cpp |
| 1864 | |
| 1865 | py::class_<Pet> pet(m, "Pet"); |
| 1866 | pet.def(py::init<const std::string &>()) |
| 1867 | .def_readwrite("name", &Pet::name); |
| 1868 | |
| 1869 | py::class_<Dog>(m, "Dog", pet /* <- specify parent */) |
| 1870 | .def(py::init<const std::string &>()) |
| 1871 | .def("bark", &Dog::bark); |
| 1872 | |
| 1873 | Suppose now that ``Pet`` bindings are defined in a module named ``basic``, |
| 1874 | whereas the ``Dog`` bindings are defined somewhere else. The challenge is of |
| 1875 | course that the variable ``pet`` is not available anymore though it is needed |
| 1876 | to indicate the inheritance relationship to the constructor of ``class_<Dog>``. |
| 1877 | However, it can be acquired as follows: |
| 1878 | |
| 1879 | .. code-block:: cpp |
| 1880 | |
| 1881 | py::object pet = (py::object) py::module::import("basic").attr("Pet"); |
| 1882 | |
| 1883 | py::class_<Dog>(m, "Dog", pet) |
| 1884 | .def(py::init<const std::string &>()) |
| 1885 | .def("bark", &Dog::bark); |
| 1886 | |
Jason Rhinelander | 6b52c83 | 2016-09-06 12:27:00 -0400 | [diff] [blame] | 1887 | Alternatively, you can specify the base class as a template parameter option to |
| 1888 | ``class_``, which performs an automated lookup of the corresponding Python |
| 1889 | type. Like the above code, however, this also requires invoking the ``import`` |
| 1890 | function once to ensure that the pybind11 binding code of the module ``basic`` |
| 1891 | has been executed: |
Wenzel Jakob | 8d862b3 | 2016-03-06 13:37:22 +0100 | [diff] [blame] | 1892 | |
Wenzel Jakob | 8d862b3 | 2016-03-06 13:37:22 +0100 | [diff] [blame] | 1893 | .. code-block:: cpp |
| 1894 | |
| 1895 | py::module::import("basic"); |
| 1896 | |
Jason Rhinelander | 6b52c83 | 2016-09-06 12:27:00 -0400 | [diff] [blame] | 1897 | py::class_<Dog, Pet>(m, "Dog") |
Wenzel Jakob | 8d862b3 | 2016-03-06 13:37:22 +0100 | [diff] [blame] | 1898 | .def(py::init<const std::string &>()) |
| 1899 | .def("bark", &Dog::bark); |
Wenzel Jakob | eda978e | 2016-03-15 15:05:40 +0100 | [diff] [blame] | 1900 | |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1901 | Naturally, both methods will fail when there are cyclic dependencies. |
| 1902 | |
Wenzel Jakob | 90d2f5e | 2016-04-11 14:30:11 +0200 | [diff] [blame] | 1903 | Note that compiling code which has its default symbol visibility set to |
| 1904 | *hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the |
| 1905 | ability to access types defined in another extension module. Workarounds |
| 1906 | include changing the global symbol visibility (not recommended, because it will |
| 1907 | lead unnecessarily large binaries) or manually exporting types that are |
| 1908 | accessed by multiple extension modules: |
| 1909 | |
| 1910 | .. code-block:: cpp |
| 1911 | |
| 1912 | #ifdef _WIN32 |
| 1913 | # define EXPORT_TYPE __declspec(dllexport) |
| 1914 | #else |
| 1915 | # define EXPORT_TYPE __attribute__ ((visibility("default"))) |
| 1916 | #endif |
| 1917 | |
| 1918 | class EXPORT_TYPE Dog : public Animal { |
| 1919 | ... |
| 1920 | }; |
| 1921 | |
| 1922 | |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1923 | Pickling support |
| 1924 | ================ |
| 1925 | |
| 1926 | Python's ``pickle`` module provides a powerful facility to serialize and |
| 1927 | de-serialize a Python object graph into a binary data stream. To pickle and |
Wenzel Jakob | 3d0e6ff | 2016-04-13 11:48:10 +0200 | [diff] [blame] | 1928 | unpickle C++ classes using pybind11, two additional functions must be provided. |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1929 | Suppose the class in question has the following signature: |
| 1930 | |
| 1931 | .. code-block:: cpp |
| 1932 | |
| 1933 | class Pickleable { |
| 1934 | public: |
| 1935 | Pickleable(const std::string &value) : m_value(value) { } |
| 1936 | const std::string &value() const { return m_value; } |
| 1937 | |
| 1938 | void setExtra(int extra) { m_extra = extra; } |
| 1939 | int extra() const { return m_extra; } |
| 1940 | private: |
| 1941 | std::string m_value; |
| 1942 | int m_extra = 0; |
| 1943 | }; |
| 1944 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1945 | The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_ |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1946 | looks as follows: |
| 1947 | |
| 1948 | .. code-block:: cpp |
| 1949 | |
| 1950 | py::class_<Pickleable>(m, "Pickleable") |
| 1951 | .def(py::init<std::string>()) |
| 1952 | .def("value", &Pickleable::value) |
| 1953 | .def("extra", &Pickleable::extra) |
| 1954 | .def("setExtra", &Pickleable::setExtra) |
| 1955 | .def("__getstate__", [](const Pickleable &p) { |
| 1956 | /* Return a tuple that fully encodes the state of the object */ |
| 1957 | return py::make_tuple(p.value(), p.extra()); |
| 1958 | }) |
| 1959 | .def("__setstate__", [](Pickleable &p, py::tuple t) { |
| 1960 | if (t.size() != 2) |
| 1961 | throw std::runtime_error("Invalid state!"); |
| 1962 | |
Wenzel Jakob | d40885a | 2016-04-13 13:30:05 +0200 | [diff] [blame] | 1963 | /* Invoke the in-place constructor. Note that this is needed even |
| 1964 | when the object just has a trivial default constructor */ |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1965 | new (&p) Pickleable(t[0].cast<std::string>()); |
| 1966 | |
| 1967 | /* Assign any additional state */ |
| 1968 | p.setExtra(t[1].cast<int>()); |
| 1969 | }); |
| 1970 | |
| 1971 | An instance can now be pickled as follows: |
| 1972 | |
| 1973 | .. code-block:: python |
| 1974 | |
| 1975 | try: |
| 1976 | import cPickle as pickle # Use cPickle on Python 2.7 |
| 1977 | except ImportError: |
| 1978 | import pickle |
| 1979 | |
| 1980 | p = Pickleable("test_value") |
| 1981 | p.setExtra(15) |
Wenzel Jakob | 81e0975 | 2016-04-30 23:13:03 +0200 | [diff] [blame] | 1982 | data = pickle.dumps(p, 2) |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1983 | |
Wenzel Jakob | 81e0975 | 2016-04-30 23:13:03 +0200 | [diff] [blame] | 1984 | Note that only the cPickle module is supported on Python 2.7. The second |
| 1985 | argument to ``dumps`` is also crucial: it selects the pickle protocol version |
| 1986 | 2, since the older version 1 is not supported. Newer versions are also fineāfor |
| 1987 | instance, specify ``-1`` to always use the latest available version. Beware: |
| 1988 | failure to follow these instructions will cause important pybind11 memory |
| 1989 | allocation routines to be skipped during unpickling, which will likely lead to |
| 1990 | memory corruption and/or segmentation faults. |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1991 | |
| 1992 | .. seealso:: |
| 1993 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1994 | The file :file:`tests/test_pickling.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1995 | that demonstrates how to pickle and unpickle types using pybind11 in more |
| 1996 | detail. |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 1997 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1998 | .. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 1999 | |
| 2000 | Generating documentation using Sphinx |
| 2001 | ===================================== |
| 2002 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 2003 | Sphinx [#f4]_ has the ability to inspect the signatures and documentation |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 2004 | strings in pybind11-based extension modules to automatically generate beautiful |
Wenzel Jakob | ca8dc08 | 2016-06-03 14:24:17 +0200 | [diff] [blame] | 2005 | documentation in a variety formats. The python_example repository [#f5]_ contains a |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 2006 | simple example repository which uses this approach. |
| 2007 | |
| 2008 | There are two potential gotchas when using this approach: first, make sure that |
| 2009 | the resulting strings do not contain any :kbd:`TAB` characters, which break the |
| 2010 | docstring parsing routines. You may want to use C++11 raw string literals, |
| 2011 | which are convenient for multi-line comments. Conveniently, any excess |
| 2012 | indentation will be automatically be removed by Sphinx. However, for this to |
| 2013 | work, it is important that all lines are indented consistently, i.e.: |
| 2014 | |
| 2015 | .. code-block:: cpp |
| 2016 | |
| 2017 | // ok |
| 2018 | m.def("foo", &foo, R"mydelimiter( |
| 2019 | The foo function |
| 2020 | |
| 2021 | Parameters |
| 2022 | ---------- |
| 2023 | )mydelimiter"); |
| 2024 | |
| 2025 | // *not ok* |
| 2026 | m.def("foo", &foo, R"mydelimiter(The foo function |
| 2027 | |
| 2028 | Parameters |
| 2029 | ---------- |
| 2030 | )mydelimiter"); |
| 2031 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 2032 | .. [#f4] http://www.sphinx-doc.org |
Wenzel Jakob | ca8dc08 | 2016-06-03 14:24:17 +0200 | [diff] [blame] | 2033 | .. [#f5] http://github.com/pybind/python_example |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2034 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2035 | Evaluating Python expressions from strings and files |
| 2036 | ==================================================== |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2037 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2038 | pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate |
| 2039 | Python expressions and statements. The following example illustrates how they |
| 2040 | can be used. |
| 2041 | |
| 2042 | Both functions accept a template parameter that describes how the argument |
| 2043 | should be interpreted. Possible choices include ``eval_expr`` (isolated |
| 2044 | expression), ``eval_single_statement`` (a single statement, return value is |
| 2045 | always ``none``), and ``eval_statements`` (sequence of statements, return value |
| 2046 | is always ``none``). |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2047 | |
| 2048 | .. code-block:: cpp |
| 2049 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2050 | // At beginning of file |
| 2051 | #include <pybind11/eval.h> |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2052 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2053 | ... |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2054 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2055 | // Evaluate in scope of main module |
| 2056 | py::object scope = py::module::import("__main__").attr("__dict__"); |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2057 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2058 | // Evaluate an isolated expression |
| 2059 | int result = py::eval("my_variable + 10", scope).cast<int>(); |
| 2060 | |
| 2061 | // Evaluate a sequence of statements |
| 2062 | py::eval<py::eval_statements>( |
| 2063 | "print('Hello')\n" |
| 2064 | "print('world!');", |
| 2065 | scope); |
| 2066 | |
| 2067 | // Evaluate the statements in an separate Python file on disk |
| 2068 | py::eval_file("script.py", scope); |
Wenzel Jakob | 48ce072 | 2016-09-06 14:13:22 +0900 | [diff] [blame] | 2069 | |
| 2070 | Development of custom type casters |
| 2071 | ================================== |
| 2072 | |
| 2073 | In very rare cases, applications may require custom type casters that cannot be |
| 2074 | expressed using the abstractions provided by pybind11, thus requiring raw |
| 2075 | Python C API calls. This is fairly advanced usage and should only be pursued by |
| 2076 | experts who are familiar with the intricacies of Python reference counting. |
| 2077 | |
| 2078 | The following snippets demonstrate how this works for a very simple ``inty`` |
| 2079 | type that that should be convertible from Python types that provide a |
| 2080 | ``__int__(self)`` method. |
| 2081 | |
| 2082 | .. code-block:: cpp |
| 2083 | |
| 2084 | struct inty { long long_value; }; |
| 2085 | |
| 2086 | void print(inty s) { |
| 2087 | std::cout << s.long_value << std::endl; |
| 2088 | } |
| 2089 | |
| 2090 | The following Python snippet demonstrates the intended usage from the Python side: |
| 2091 | |
| 2092 | .. code-block:: python |
| 2093 | |
| 2094 | class A: |
| 2095 | def __int__(self): |
| 2096 | return 123 |
| 2097 | |
| 2098 | from example import print |
| 2099 | print(A()) |
| 2100 | |
| 2101 | To register the necessary conversion routines, it is necessary to add |
| 2102 | a partial overload to the ``pybind11::detail::type_caster<T>`` template. |
| 2103 | Although this is an implementation detail, adding partial overloads to this |
| 2104 | type is explicitly allowed. |
| 2105 | |
| 2106 | .. code-block:: cpp |
| 2107 | |
| 2108 | namespace pybind11 { |
| 2109 | namespace detail { |
| 2110 | template <> struct type_caster<inty> { |
| 2111 | public: |
| 2112 | /** |
| 2113 | * This macro establishes the name 'inty' in |
| 2114 | * function signatures and declares a local variable |
| 2115 | * 'value' of type inty |
| 2116 | */ |
| 2117 | PYBIND11_TYPE_CASTER(inty, _("inty")); |
| 2118 | |
| 2119 | /** |
| 2120 | * Conversion part 1 (Python->C++): convert a PyObject into a inty |
| 2121 | * instance or return false upon failure. The second argument |
| 2122 | * indicates whether implicit conversions should be applied. |
| 2123 | */ |
| 2124 | bool load(handle src, bool) { |
| 2125 | /* Extract PyObject from handle */ |
| 2126 | PyObject *source = src.ptr(); |
| 2127 | /* Try converting into a Python integer value */ |
| 2128 | PyObject *tmp = PyNumber_Long(source); |
| 2129 | if (!tmp) |
| 2130 | return false; |
| 2131 | /* Now try to convert into a C++ int */ |
| 2132 | value.long_value = PyLong_AsLong(tmp); |
| 2133 | Py_DECREF(tmp); |
| 2134 | /* Ensure return code was OK (to avoid out-of-range errors etc) */ |
| 2135 | return !(value.long_value == -1 && !PyErr_Occurred()); |
| 2136 | } |
| 2137 | |
| 2138 | /** |
| 2139 | * Conversion part 2 (C++ -> Python): convert an inty instance into |
| 2140 | * a Python object. The second and third arguments are used to |
| 2141 | * indicate the return value policy and parent object (for |
| 2142 | * ``return_value_policy::reference_internal``) and are generally |
| 2143 | * ignored by implicit casters. |
| 2144 | */ |
| 2145 | static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) { |
| 2146 | return PyLong_FromLong(src.long_value); |
| 2147 | } |
| 2148 | }; |
| 2149 | } |
| 2150 | }; |