blob: ae43d584572576b73ebbc1ab9fee8fe13dafb316 [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
Wenzel Jakob382484a2016-09-10 15:28:37 +090093 }, py::is_operator())
Wenzel Jakob93296692015-10-13 23:21:54 +020094
95This can be useful for exposing additional operators that don't exist on the
Wenzel Jakob382484a2016-09-10 15:28:37 +090096C++ side, or to perform other types of customization. The ``py::is_operator``
97flag marker is needed to inform pybind11 that this is an operator, which
98returns ``NotImplemented`` when invoked with incompatible arguments rather than
99throwing a type error.
Wenzel Jakob93296692015-10-13 23:21:54 +0200100
101.. note::
102
103 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200104 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200105
106.. seealso::
107
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200108 The file :file:`tests/test_operator_overloading.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400109 complete example that demonstrates how to work with overloaded operators in
110 more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200111
112Callbacks and passing anonymous functions
113=========================================
114
115The C++11 standard brought lambda functions and the generic polymorphic
116function wrapper ``std::function<>`` to the C++ programming language, which
117enable powerful new ways of working with functions. Lambda functions come in
118two flavors: stateless lambda function resemble classic function pointers that
119link to an anonymous piece of code, while stateful lambda functions
120additionally depend on captured variables that are stored in an anonymous
121*lambda closure object*.
122
123Here is a simple example of a C++ function that takes an arbitrary function
124(stateful or stateless) with signature ``int -> int`` as an argument and runs
125it with the value 10.
126
127.. code-block:: cpp
128
129 int func_arg(const std::function<int(int)> &f) {
130 return f(10);
131 }
132
133The example below is more involved: it takes a function of signature ``int -> int``
134and returns another function of the same kind. The return value is a stateful
135lambda function, which stores the value ``f`` in the capture object and adds 1 to
136its return value upon execution.
137
138.. code-block:: cpp
139
140 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
141 return [f](int i) {
142 return f(i) + 1;
143 };
144 }
145
Brad Harmon835fc062016-06-16 13:19:15 -0500146This example demonstrates using python named parameters in C++ callbacks which
147requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
148methods of classes:
149
150.. code-block:: cpp
151
152 py::cpp_function func_cpp() {
153 return py::cpp_function([](int i) { return i+1; },
154 py::arg("number"));
155 }
156
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200157After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500158trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200159
160.. code-block:: cpp
161
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200162 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200163
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200164 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200165 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200166
167 m.def("func_arg", &func_arg);
168 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500169 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200170
171 return m.ptr();
172 }
173
174The following interactive session shows how to call them from Python.
175
Wenzel Jakob99279f72016-06-03 11:19:29 +0200176.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200177
178 $ python
179 >>> import example
180 >>> def square(i):
181 ... return i * i
182 ...
183 >>> example.func_arg(square)
184 100L
185 >>> square_plus_1 = example.func_ret(square)
186 >>> square_plus_1(4)
187 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500188 >>> plus_1 = func_cpp()
189 >>> plus_1(number=43)
190 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200191
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100192.. warning::
193
194 Keep in mind that passing a function from C++ to Python (or vice versa)
195 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200196 invocations between the two languages. Naturally, this translation
197 increases the computational cost of each function call somewhat. A
198 problematic situation can arise when a function is copied back and forth
199 between Python and C++ many times in a row, in which case the underlying
200 wrappers will accumulate correspondingly. The resulting long sequence of
201 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
202 performance.
203
204 There is one exception: pybind11 detects case where a stateless function
205 (i.e. a function pointer or a lambda function without captured variables)
206 is passed as an argument to another C++ function exposed in Python. In this
207 case, there is no overhead. Pybind11 will extract the underlying C++
208 function pointer from the wrapped function to sidestep a potential C++ ->
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200209 Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`.
Wenzel Jakob954b7932016-07-10 10:13:18 +0200210
211.. note::
212
213 This functionality is very useful when generating bindings for callbacks in
214 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
215
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200216 The file :file:`tests/test_callbacks.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400217 that demonstrates how to work with callbacks and anonymous functions in
218 more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100219
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200220Overriding virtual functions in Python
221======================================
222
Wenzel Jakob93296692015-10-13 23:21:54 +0200223Suppose that a C++ class or interface has a virtual function that we'd like to
224to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
225given as a specific example of how one would do this with traditional C++
226code).
227
228.. code-block:: cpp
229
230 class Animal {
231 public:
232 virtual ~Animal() { }
233 virtual std::string go(int n_times) = 0;
234 };
235
236 class Dog : public Animal {
237 public:
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400238 std::string go(int n_times) override {
Wenzel Jakob93296692015-10-13 23:21:54 +0200239 std::string result;
240 for (int i=0; i<n_times; ++i)
241 result += "woof! ";
242 return result;
243 }
244 };
245
246Let's also suppose that we are given a plain function which calls the
247function ``go()`` on an arbitrary ``Animal`` instance.
248
249.. code-block:: cpp
250
251 std::string call_go(Animal *animal) {
252 return animal->go(3);
253 }
254
255Normally, the binding code for these classes would look as follows:
256
257.. code-block:: cpp
258
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200259 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200260 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200261
262 py::class_<Animal> animal(m, "Animal");
263 animal
264 .def("go", &Animal::go);
265
266 py::class_<Dog>(m, "Dog", animal)
267 .def(py::init<>());
268
269 m.def("call_go", &call_go);
270
271 return m.ptr();
272 }
273
274However, these bindings are impossible to extend: ``Animal`` is not
275constructible, and we clearly require some kind of "trampoline" that
276redirects virtual calls back to Python.
277
278Defining a new type of ``Animal`` from within Python is possible but requires a
279helper class that is defined as follows:
280
281.. code-block:: cpp
282
283 class PyAnimal : public Animal {
284 public:
285 /* Inherit the constructors */
286 using Animal::Animal;
287
288 /* Trampoline (need one for each virtual function) */
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400289 std::string go(int n_times) override {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200290 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200291 std::string, /* Return type */
292 Animal, /* Parent class */
293 go, /* Name of function */
294 n_times /* Argument(s) */
295 );
296 }
297 };
298
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200299The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
300functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Jason Rhinelander7dfb9322016-09-08 14:49:43 -0400301a default implementation. There are also two alternate macros
302:func:`PYBIND11_OVERLOAD_PURE_NAME` and :func:`PYBIND11_OVERLOAD_NAME` which
303take a string-valued name argument between the *Parent class* and *Name of the
304function* slots. This is useful when the C++ and Python versions of the
305function have different names, e.g. ``operator()`` vs ``__call__``.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200306
307The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200308
309.. code-block:: cpp
310 :emphasize-lines: 4,6,7
311
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200312 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200313 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200314
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400315 py::class_<Animal, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200316 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200317 .def(py::init<>())
318 .def("go", &Animal::go);
319
320 py::class_<Dog>(m, "Dog", animal)
321 .def(py::init<>());
322
323 m.def("call_go", &call_go);
324
325 return m.ptr();
326 }
327
Jason Rhinelander6eca0832016-09-08 13:25:45 -0400328Importantly, pybind11 is made aware of the trampoline helper class by
329specifying it as an extra template argument to :class:`class_`. (This can also
330be combined with other template arguments such as a custom holder type; the
331order of template types does not matter). Following this, we are able to
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400332define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200333
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400334Note, however, that the above is sufficient for allowing python classes to
335extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
336necessary steps required to providing proper overload support for inherited
337classes.
338
Wenzel Jakob93296692015-10-13 23:21:54 +0200339The Python session below shows how to override ``Animal::go`` and invoke it via
340a virtual method call.
341
Wenzel Jakob99279f72016-06-03 11:19:29 +0200342.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200343
344 >>> from example import *
345 >>> d = Dog()
346 >>> call_go(d)
347 u'woof! woof! woof! '
348 >>> class Cat(Animal):
349 ... def go(self, n_times):
350 ... return "meow! " * n_times
351 ...
352 >>> c = Cat()
353 >>> call_go(c)
354 u'meow! meow! meow! '
355
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200356Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200357
Jason Rhinelander7dfb9322016-09-08 14:49:43 -0400358.. note::
359
360 When the overridden type returns a reference or pointer to a type that
361 pybind11 converts from Python (for example, numeric values, std::string,
362 and other built-in value-converting types), there are some limitations to
363 be aware of:
364
365 - because in these cases there is no C++ variable to reference (the value
366 is stored in the referenced Python variable), pybind11 provides one in
367 the PYBIND11_OVERLOAD macros (when needed) with static storage duration.
368 Note that this means that invoking the overloaded method on *any*
369 instance will change the referenced value stored in *all* instances of
370 that type.
371
372 - Attempts to modify a non-const reference will not have the desired
373 effect: it will change only the static cache variable, but this change
374 will not propagate to underlying Python instance, and the change will be
375 replaced the next time the overload is invoked.
376
Wenzel Jakob93296692015-10-13 23:21:54 +0200377.. seealso::
378
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200379 The file :file:`tests/test_virtual_functions.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400380 example that demonstrates how to override virtual functions using pybind11
381 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200382
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400383.. _virtual_and_inheritance:
384
385Combining virtual functions and inheritance
386===========================================
387
388When combining virtual methods with inheritance, you need to be sure to provide
389an override for each method for which you want to allow overrides from derived
390python classes. For example, suppose we extend the above ``Animal``/``Dog``
391example as follows:
392
393.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200394
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400395 class Animal {
396 public:
397 virtual std::string go(int n_times) = 0;
398 virtual std::string name() { return "unknown"; }
399 };
400 class Dog : public class Animal {
401 public:
402 std::string go(int n_times) override {
403 std::string result;
404 for (int i=0; i<n_times; ++i)
405 result += bark() + " ";
406 return result;
407 }
408 virtual std::string bark() { return "woof!"; }
409 };
410
411then the trampoline class for ``Animal`` must, as described in the previous
412section, override ``go()`` and ``name()``, but in order to allow python code to
413inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
414overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
415methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
416override the ``name()`` method):
417
418.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200419
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400420 class PyAnimal : public Animal {
421 public:
422 using Animal::Animal; // Inherit constructors
423 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
424 std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
425 };
426 class PyDog : public Dog {
427 public:
428 using Dog::Dog; // Inherit constructors
429 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
430 std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
431 std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
432 };
433
434A registered class derived from a pybind11-registered class with virtual
435methods requires a similar trampoline class, *even if* it doesn't explicitly
436declare or override any virtual methods itself:
437
438.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200439
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400440 class Husky : public Dog {};
441 class PyHusky : public Husky {
442 using Dog::Dog; // Inherit constructors
443 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
444 std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
445 std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
446 };
447
448There is, however, a technique that can be used to avoid this duplication
449(which can be especially helpful for a base class with several virtual
450methods). The technique involves using template trampoline classes, as
451follows:
452
453.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200454
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400455 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
456 using AnimalBase::AnimalBase; // Inherit constructors
457 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
458 std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
459 };
460 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
461 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
462 // Override PyAnimal's pure virtual go() with a non-pure one:
463 std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
464 std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
465 };
466
467This technique has the advantage of requiring just one trampoline method to be
468declared per virtual method and pure virtual method override. It does,
469however, require the compiler to generate at least as many methods (and
470possibly more, if both pure virtual and overridden pure virtual methods are
471exposed, as above).
472
473The classes are then registered with pybind11 using:
474
475.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200476
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400477 py::class_<Animal, PyAnimal<>> animal(m, "Animal");
478 py::class_<Dog, PyDog<>> dog(m, "Dog");
479 py::class_<Husky, PyDog<Husky>> husky(m, "Husky");
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400480 // ... add animal, dog, husky definitions
481
482Note that ``Husky`` did not require a dedicated trampoline template class at
483all, since it neither declares any new virtual methods nor provides any pure
484virtual method implementations.
485
486With either the repeated-virtuals or templated trampoline methods in place, you
487can now create a python class that inherits from ``Dog``:
488
489.. code-block:: python
490
491 class ShihTzu(Dog):
492 def bark(self):
493 return "yip!"
494
495.. seealso::
496
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200497 See the file :file:`tests/test_virtual_functions.cpp` for complete examples
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400498 using both the duplication and templated trampoline approaches.
499
Jason Rhinelanderec62d972016-09-09 02:42:51 -0400500Extended trampoline class functionality
501=======================================
502
503The trampoline classes described in the previous sections are, by default, only
504initialized when needed. More specifically, they are initialized when a python
505class actually inherits from a registered type (instead of merely creating an
506instance of the registered type), or when a registered constructor is only
507valid for the trampoline class but not the registered class. This is primarily
508for performance reasons: when the trampoline class is not needed for anything
509except virtual method dispatching, not initializing the trampoline class
510improves performance by avoiding needing to do a run-time check to see if the
511inheriting python instance has an overloaded method.
512
513Sometimes, however, it is useful to always initialize a trampoline class as an
514intermediate class that does more than just handle virtual method dispatching.
515For example, such a class might perform extra class initialization, extra
516destruction operations, and might define new members and methods to enable a
517more python-like interface to a class.
518
519In order to tell pybind11 that it should *always* initialize the trampoline
520class when creating new instances of a type, the class constructors should be
521declared using ``py::init_alias<Args, ...>()`` instead of the usual
522``py::init<Args, ...>()``. This forces construction via the trampoline class,
523ensuring member initialization and (eventual) destruction.
524
525.. seealso::
526
527 See the file :file:`tests/test_alias_initialization.cpp` for complete examples
528 showing both normal and forced trampoline instantiation.
529
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200530.. _macro_notes:
531
532General notes regarding convenience macros
533==========================================
534
535pybind11 provides a few convenience macros such as
536:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
537``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
538in the preprocessor (which has no concept of types), they *will* get confused
539by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
540T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
541the beginnning of the next parameter. Use a ``typedef`` to bind the template to
542another name and use it in the macro to avoid this problem.
543
544
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100545Global Interpreter Lock (GIL)
546=============================
547
548The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
549used to acquire and release the global interpreter lock in the body of a C++
550function call. In this way, long-running C++ code can be parallelized using
551multiple Python threads. Taking the previous section as an example, this could
552be realized as follows (important changes highlighted):
553
554.. code-block:: cpp
555 :emphasize-lines: 8,9,33,34
556
557 class PyAnimal : public Animal {
558 public:
559 /* Inherit the constructors */
560 using Animal::Animal;
561
562 /* Trampoline (need one for each virtual function) */
563 std::string go(int n_times) {
564 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100565 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100566
567 PYBIND11_OVERLOAD_PURE(
568 std::string, /* Return type */
569 Animal, /* Parent class */
570 go, /* Name of function */
571 n_times /* Argument(s) */
572 );
573 }
574 };
575
576 PYBIND11_PLUGIN(example) {
577 py::module m("example", "pybind11 example plugin");
578
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400579 py::class_<Animal, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100580 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100581 .def(py::init<>())
582 .def("go", &Animal::go);
583
584 py::class_<Dog>(m, "Dog", animal)
585 .def(py::init<>());
586
587 m.def("call_go", [](Animal *animal) -> std::string {
588 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100589 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100590 return call_go(animal);
591 });
592
593 return m.ptr();
594 }
595
Wenzel Jakob93296692015-10-13 23:21:54 +0200596Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200597===========================
598
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200599When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200600between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
601and the Python ``list``, ``set`` and ``dict`` data structures are automatically
602enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
603out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200604
Wenzel Jakobfe342412016-09-06 13:02:29 +0900605The major downside of these implicit conversions is that containers must be
606converted (i.e. copied) on every Python->C++ and C++->Python transition, which
607can have implications on the program semantics and performance. Please read the
608next sections for more details and alternative approaches that avoid this.
Sergey Lyskov75204182016-08-29 22:50:38 -0400609
Wenzel Jakob93296692015-10-13 23:21:54 +0200610.. note::
611
Wenzel Jakobfe342412016-09-06 13:02:29 +0900612 Arbitrary nesting of any of these types is possible.
Wenzel Jakob93296692015-10-13 23:21:54 +0200613
614.. seealso::
615
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200616 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400617 example that demonstrates how to pass STL data types in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200618
Wenzel Jakobfe342412016-09-06 13:02:29 +0900619.. _opaque:
620
621Treating STL data structures as opaque objects
622==============================================
623
624pybind11 heavily relies on a template matching mechanism to convert parameters
625and return values that are constructed from STL data types such as vectors,
626linked lists, hash tables, etc. This even works in a recursive manner, for
627instance to deal with lists of hash maps of pairs of elementary and custom
628types, etc.
629
630However, a fundamental limitation of this approach is that internal conversions
631between Python and C++ types involve a copy operation that prevents
632pass-by-reference semantics. What does this mean?
633
634Suppose we bind the following function
635
636.. code-block:: cpp
637
638 void append_1(std::vector<int> &v) {
639 v.push_back(1);
640 }
641
642and call it from Python, the following happens:
643
644.. code-block:: pycon
645
646 >>> v = [5, 6]
647 >>> append_1(v)
648 >>> print(v)
649 [5, 6]
650
651As you can see, when passing STL data structures by reference, modifications
652are not propagated back the Python side. A similar situation arises when
653exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
654functions:
655
656.. code-block:: cpp
657
658 /* ... definition ... */
659
660 class MyClass {
661 std::vector<int> contents;
662 };
663
664 /* ... binding code ... */
665
666 py::class_<MyClass>(m, "MyClass")
667 .def(py::init<>)
668 .def_readwrite("contents", &MyClass::contents);
669
670In this case, properties can be read and written in their entirety. However, an
671``append`` operaton involving such a list type has no effect:
672
673.. code-block:: pycon
674
675 >>> m = MyClass()
676 >>> m.contents = [5, 6]
677 >>> print(m.contents)
678 [5, 6]
679 >>> m.contents.append(7)
680 >>> print(m.contents)
681 [5, 6]
682
683Finally, the involved copy operations can be costly when dealing with very
684large lists. To deal with all of the above situations, pybind11 provides a
685macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based
686conversion machinery of types, thus rendering them *opaque*. The contents of
687opaque objects are never inspected or extracted, hence they *can* be passed by
688reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
689the declaration
690
691.. code-block:: cpp
692
693 PYBIND11_MAKE_OPAQUE(std::vector<int>);
694
695before any binding code (e.g. invocations to ``class_::def()``, etc.). This
696macro must be specified at the top level (and outside of any namespaces), since
697it instantiates a partial template overload. If your binding code consists of
698multiple compilation units, it must be present in every file preceding any
699usage of ``std::vector<int>``. Opaque types must also have a corresponding
700``class_`` declaration to associate them with a name in Python, and to define a
701set of available operations, e.g.:
702
703.. code-block:: cpp
704
705 py::class_<std::vector<int>>(m, "IntVector")
706 .def(py::init<>())
707 .def("clear", &std::vector<int>::clear)
708 .def("pop_back", &std::vector<int>::pop_back)
709 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
710 .def("__iter__", [](std::vector<int> &v) {
711 return py::make_iterator(v.begin(), v.end());
712 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
713 // ....
714
715The ability to expose STL containers as native Python objects is a fairly
716common request, hence pybind11 also provides an optional header file named
717:file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try
718to match the behavior of their native Python counterparts as much as possible.
719
720The following example showcases usage of :file:`pybind11/stl_bind.h`:
721
722.. code-block:: cpp
723
724 // Don't forget this
725 #include <pybind11/stl_bind.h>
726
727 PYBIND11_MAKE_OPAQUE(std::vector<int>);
728 PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);
729
730 // ...
731
732 // later in binding code:
733 py::bind_vector<std::vector<int>>(m, "VectorInt");
734 py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");
735
736Please take a look at the :ref:`macro_notes` before using the
737``PYBIND11_MAKE_OPAQUE`` macro.
738
739.. seealso::
740
741 The file :file:`tests/test_opaque_types.cpp` contains a complete
742 example that demonstrates how to create and expose opaque types using
743 pybind11 in more detail.
744
745 The file :file:`tests/test_stl_binders.cpp` shows how to use the
746 convenience STL container wrappers.
747
748
Wenzel Jakobb2825952016-04-13 23:33:00 +0200749Binding sequence data types, iterators, the slicing protocol, etc.
750==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200751
752Please refer to the supplemental example for details.
753
754.. seealso::
755
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200756 The file :file:`tests/test_sequences_and_iterators.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400757 complete example that shows how to bind a sequence data type, including
758 length queries (``__len__``), iterators (``__iter__``), the slicing
759 protocol and other kinds of useful operations.
Wenzel Jakob93296692015-10-13 23:21:54 +0200760
Trent Houliston352149e2016-08-25 23:08:04 +1000761C++11 chrono datatypes
762======================
763When including the additional header file :file:`pybind11/chrono.h` conversions from c++11 chrono datatypes
764to corresponding python datetime objects are automatically enabled.
765The following rules describe how the conversions are applied.
766
767Objects of type ``std::chrono::system_clock::time_point`` are converted into datetime.datetime objects.
768These objects are those that specifically come from the system_clock as this is the only clock that measures wall time.
769
770Objects of type ``std::chrono::[other_clock]::time_point`` are converted into datetime.time objects.
771These objects are those that come from all clocks that are not the system_clock (e.g. steady_clock).
772Clocks other than the system_clock are not measured from wall date/time and instead have any start time
773(often when the computer was turned on).
774Therefore as these clocks can only measure time from an arbitrary start point they are represented as time without date.
775
776Objects of type ``std::chrono::duration`` are converted into datetime.timedelta objects.
777
778.. note::
779
780 Pythons datetime implementation is limited to microsecond precision.
781 The extra precision that c++11 clocks can have have (nanoseconds) will be lost upon conversion.
782 The rounding policy from c++ to python is via ``std::chrono::duration_cast<>`` (rounding towards 0 in microseconds).
783
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200784Return value policies
785=====================
786
Wenzel Jakob93296692015-10-13 23:21:54 +0200787Python and C++ use wildly different ways of managing the memory and lifetime of
788objects managed by them. This can lead to issues when creating bindings for
789functions that return a non-trivial type. Just by looking at the type
790information, it is not clear whether Python should take charge of the returned
791value and eventually free its resources, or if this is handled on the C++ side.
792For this reason, pybind11 provides a several `return value policy` annotations
793that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100794functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200795
Wenzel Jakobbf099582016-08-22 12:52:02 +0200796Return value policies can also be applied to properties, in which case the
797arguments must be passed through the :class:`cpp_function` constructor:
798
799.. code-block:: cpp
800
801 class_<MyClass>(m, "MyClass")
802 def_property("data"
803 py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
804 py::cpp_function(&MyClass::setData)
805 );
806
807The following table provides an overview of the available return value policies:
808
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200809.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
810
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200811+--------------------------------------------------+----------------------------------------------------------------------------+
812| Return value policy | Description |
813+==================================================+============================================================================+
814| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
815| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200816| | pointer. Otherwise, it uses :enum:`return_value::move` or |
817| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200818| | See below for a description of what all of these different policies do. |
819+--------------------------------------------------+----------------------------------------------------------------------------+
820| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200821| | return value is a pointer. This is the default conversion policy for |
822| | function arguments when calling Python functions manually from C++ code |
823| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200824+--------------------------------------------------+----------------------------------------------------------------------------+
825| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
826| | ownership. Python will call the destructor and delete operator when the |
827| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200828| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200829+--------------------------------------------------+----------------------------------------------------------------------------+
830| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
831| | This policy is comparably safe because the lifetimes of the two instances |
832| | are decoupled. |
833+--------------------------------------------------+----------------------------------------------------------------------------+
834| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
835| | that will be owned by Python. This policy is comparably safe because the |
836| | lifetimes of the two instances (move source and destination) are decoupled.|
837+--------------------------------------------------+----------------------------------------------------------------------------+
838| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
839| | responsible for managing the object's lifetime and deallocating it when |
840| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200841| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200842+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobbf099582016-08-22 12:52:02 +0200843| :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime |
844| | of a parent object, namely the implicit ``this``, or ``self`` argument of |
845| | the called method or property. Internally, this policy works just like |
846| | :enum:`return_value_policy::reference` but additionally applies a |
847| | ``keep_alive<0, 1>`` *call policy* (described in the next section) that |
848| | prevents the parent object from being garbage collected as long as the |
849| | return value is referenced by Python. This is the default policy for |
850| | property getters created via ``def_property``, ``def_readwrite``, etc.) |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200851+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200852
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200853.. warning::
854
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400855 Code with invalid return value policies might access unitialized memory or
856 free data structures multiple times, which can lead to hard-to-debug
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200857 non-determinism and segmentation faults, hence it is worth spending the
858 time to understand all the different options in the table above.
859
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400860One important aspect of the above policies is that they only apply to instances
861which pybind11 has *not* seen before, in which case the policy clarifies
862essential questions about the return value's lifetime and ownership. When
863pybind11 knows the instance already (as identified by its type and address in
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200864memory), it will return the existing Python object wrapper rather than creating
Wenzel Jakobbf099582016-08-22 12:52:02 +0200865a new copy.
nafur717df752016-06-28 18:07:11 +0200866
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200867.. note::
868
869 The next section on :ref:`call_policies` discusses *call policies* that can be
870 specified *in addition* to a return value policy from the list above. Call
871 policies indicate reference relationships that can involve both return values
872 and parameters of functions.
873
874.. note::
875
876 As an alternative to elaborate call policies and lifetime management logic,
877 consider using smart pointers (see the section on :ref:`smart_pointers` for
878 details). Smart pointers can tell whether an object is still referenced from
879 C++ or Python, which generally eliminates the kinds of inconsistencies that
880 can lead to crashes or undefined behavior. For functions returning smart
881 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100882
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200883.. _call_policies:
884
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100885Additional call policies
886========================
887
888In addition to the above return value policies, further `call policies` can be
889specified to indicate dependencies between parameters. There is currently just
890one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
891argument with index ``Patient`` should be kept alive at least until the
Wenzel Jakob0b632312016-08-18 10:58:21 +0200892argument with index ``Nurse`` is freed by the garbage collector. Argument
893indices start at one, while zero refers to the return value. For methods, index
894``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
895index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
896with value ``None`` is detected at runtime, the call policy does nothing.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100897
Wenzel Jakob0b632312016-08-18 10:58:21 +0200898This feature internally relies on the ability to create a *weak reference* to
899the nurse object, which is permitted by all classes exposed via pybind11. When
900the nurse object does not support weak references, an exception will be thrown.
901
902Consider the following example: here, the binding code for a list append
903operation ties the lifetime of the newly added element to the underlying
904container:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100905
906.. code-block:: cpp
907
908 py::class_<List>(m, "List")
909 .def("append", &List::append, py::keep_alive<1, 2>());
910
911.. note::
912
913 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
914 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
915 0) policies from Boost.Python.
916
Wenzel Jakob61587162016-01-18 22:38:52 +0100917.. seealso::
918
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200919 The file :file:`tests/test_keep_alive.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400920 that demonstrates using :class:`keep_alive` in more detail.
Wenzel Jakob61587162016-01-18 22:38:52 +0100921
Wenzel Jakob93296692015-10-13 23:21:54 +0200922Implicit type conversions
923=========================
924
925Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200926that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200927could be a fixed and an arbitrary precision number type).
928
929.. code-block:: cpp
930
931 py::class_<A>(m, "A")
932 /// ... members ...
933
934 py::class_<B>(m, "B")
935 .def(py::init<A>())
936 /// ... members ...
937
938 m.def("func",
939 [](const B &) { /* .... */ }
940 );
941
942To invoke the function ``func`` using a variable ``a`` containing an ``A``
943instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
944will automatically apply an implicit type conversion, which makes it possible
945to directly write ``func(a)``.
946
947In this situation (i.e. where ``B`` has a constructor that converts from
948``A``), the following statement enables similar implicit conversions on the
949Python side:
950
951.. code-block:: cpp
952
953 py::implicitly_convertible<A, B>();
954
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200955.. note::
956
957 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
958 data type that is exposed to Python via pybind11.
959
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200960.. _static_properties:
961
962Static properties
963=================
964
965The section on :ref:`properties` discussed the creation of instance properties
966that are implemented in terms of C++ getters and setters.
967
968Static properties can also be created in a similar way to expose getters and
969setters of static class attributes. It is important to note that the implicit
970``self`` argument also exists in this case and is used to pass the Python
971``type`` subclass instance. This parameter will often not be needed by the C++
972side, and the following example illustrates how to instantiate a lambda getter
973function that ignores it:
974
975.. code-block:: cpp
976
977 py::class_<Foo>(m, "Foo")
978 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
979
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200980Unique pointers
981===============
982
983Given a class ``Example`` with Python bindings, it's possible to return
984instances wrapped in C++11 unique pointers, like so
985
986.. code-block:: cpp
987
988 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
989
990.. code-block:: cpp
991
992 m.def("create_example", &create_example);
993
994In other words, there is nothing special that needs to be done. While returning
995unique pointers in this way is allowed, it is *illegal* to use them as function
996arguments. For instance, the following function signature cannot be processed
997by pybind11.
998
999.. code-block:: cpp
1000
1001 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
1002
1003The above signature would imply that Python needs to give up ownership of an
1004object that is passed to this function, which is generally not possible (for
1005instance, the object might be referenced elsewhere).
1006
Wenzel Jakobf7b58742016-04-25 23:04:27 +02001007.. _smart_pointers:
1008
Wenzel Jakob93296692015-10-13 23:21:54 +02001009Smart pointers
1010==============
1011
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +02001012This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +02001013types with internal reference counting. For the simpler C++11 unique pointers,
1014refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +02001015
Jason Rhinelander5fffe202016-09-06 12:17:06 -04001016The binding generator for classes, :class:`class_`, can be passed a template
1017type that denotes a special *holder* type that is used to manage references to
1018the object. If no such holder type template argument is given, the default for
1019a type named ``Type`` is ``std::unique_ptr<Type>``, which means that the object
1020is deallocated when Python's reference count goes to zero.
Wenzel Jakob93296692015-10-13 23:21:54 +02001021
Wenzel Jakob1853b652015-10-18 15:38:50 +02001022It is possible to switch to other types of reference counting wrappers or smart
1023pointers, which is useful in codebases that rely on them. For instance, the
1024following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +02001025
1026.. code-block:: cpp
1027
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001028 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001029
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001030Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +02001031
Wenzel Jakob1853b652015-10-18 15:38:50 +02001032To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001033argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +02001034be declared at the top level before any binding code:
1035
1036.. code-block:: cpp
1037
Wenzel Jakobb1b71402015-10-18 16:48:30 +02001038 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +02001039
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001040.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +01001041
1042 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
1043 placeholder name that is used as a template parameter of the second
1044 argument. Thus, feel free to use any identifier, but use it consistently on
1045 both sides; also, don't use the name of a type that already exists in your
1046 codebase.
1047
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001048One potential stumbling block when using holder types is that they need to be
1049applied consistently. Can you guess what's broken about the following binding
1050code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +01001051
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001052.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +01001053
Jason Rhinelander5fffe202016-09-06 12:17:06 -04001054 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
1055
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001056 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001057
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001058 class Parent {
1059 public:
1060 Parent() : child(std::make_shared<Child>()) { }
1061 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
1062 private:
1063 std::shared_ptr<Child> child;
1064 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001065
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001066 PYBIND11_PLUGIN(example) {
1067 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001068
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001069 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
1070
1071 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
1072 .def(py::init<>())
1073 .def("get_child", &Parent::get_child);
1074
1075 return m.ptr();
1076 }
1077
1078The following Python code will cause undefined behavior (and likely a
1079segmentation fault).
1080
1081.. code-block:: python
1082
1083 from example import Parent
1084 print(Parent().get_child())
1085
1086The problem is that ``Parent::get_child()`` returns a pointer to an instance of
1087``Child``, but the fact that this instance is already managed by
1088``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
1089pybind11 will create a second independent ``std::shared_ptr<...>`` that also
1090claims ownership of the pointer. In the end, the object will be freed **twice**
1091since these shared pointers have no way of knowing about each other.
1092
1093There are two ways to resolve this issue:
1094
10951. For types that are managed by a smart pointer class, never use raw pointers
1096 in function arguments or return values. In other words: always consistently
1097 wrap pointers into their designated holder types (such as
1098 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
1099 should be modified as follows:
1100
1101.. code-block:: cpp
1102
1103 std::shared_ptr<Child> get_child() { return child; }
1104
11052. Adjust the definition of ``Child`` by specifying
1106 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
1107 base class. This adds a small bit of information to ``Child`` that allows
1108 pybind11 to realize that there is already an existing
1109 ``std::shared_ptr<...>`` and communicate with it. In this case, the
1110 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001111
Wenzel Jakob6e213c92015-11-24 23:05:58 +01001112.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
1113
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001114.. code-block:: cpp
1115
1116 class Child : public std::enable_shared_from_this<Child> { };
1117
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001118
1119Please take a look at the :ref:`macro_notes` before using this feature.
1120
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001121.. seealso::
1122
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001123 The file :file:`tests/test_smart_ptr.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001124 that demonstrates how to work with custom reference-counting holder types
1125 in more detail.
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001126
Wenzel Jakob93296692015-10-13 23:21:54 +02001127.. _custom_constructors:
1128
1129Custom constructors
1130===================
1131
1132The syntax for binding constructors was previously introduced, but it only
1133works when a constructor with the given parameters actually exists on the C++
1134side. To extend this to more general cases, let's take a look at what actually
1135happens under the hood: the following statement
1136
1137.. code-block:: cpp
1138
1139 py::class_<Example>(m, "Example")
1140 .def(py::init<int>());
1141
1142is short hand notation for
1143
1144.. code-block:: cpp
1145
1146 py::class_<Example>(m, "Example")
1147 .def("__init__",
1148 [](Example &instance, int arg) {
1149 new (&instance) Example(arg);
1150 }
1151 );
1152
1153In other words, :func:`init` creates an anonymous function that invokes an
1154in-place constructor. Memory allocation etc. is already take care of beforehand
1155within pybind11.
1156
Nickolai Belakovski63338252016-08-27 11:57:55 -07001157.. _classes_with_non_public_destructors:
1158
1159Classes with non-public destructors
1160===================================
1161
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001162If a class has a private or protected destructor (as might e.g. be the case in
1163a singleton pattern), a compile error will occur when creating bindings via
1164pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
1165is responsible for managing the lifetime of instances will reference the
1166destructor even if no deallocations ever take place. In order to expose classes
1167with private or protected destructors, it is possible to override the holder
Jason Rhinelander5fffe202016-09-06 12:17:06 -04001168type via a holder type argument to ``class_``. Pybind11 provides a helper class
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001169``py::nodelete`` that disables any destructor invocations. In this case, it is
1170crucial that instances are deallocated on the C++ side to avoid memory leaks.
Nickolai Belakovski63338252016-08-27 11:57:55 -07001171
1172.. code-block:: cpp
1173
1174 /* ... definition ... */
1175
1176 class MyClass {
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001177 private:
1178 ~MyClass() { }
Nickolai Belakovski63338252016-08-27 11:57:55 -07001179 };
1180
1181 /* ... binding code ... */
1182
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001183 py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
Nickolai Belakovski63338252016-08-27 11:57:55 -07001184 .def(py::init<>)
1185
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001186.. _catching_and_throwing_exceptions:
1187
Wenzel Jakob93296692015-10-13 23:21:54 +02001188Catching and throwing exceptions
1189================================
1190
1191When C++ code invoked from Python throws an ``std::exception``, it is
1192automatically converted into a Python ``Exception``. pybind11 defines multiple
1193special exception classes that will map to different types of Python
1194exceptions:
1195
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001196.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
1197
Wenzel Jakob978e3762016-04-07 18:00:41 +02001198+--------------------------------------+------------------------------+
1199| C++ exception type | Python exception type |
1200+======================================+==============================+
1201| :class:`std::exception` | ``RuntimeError`` |
1202+--------------------------------------+------------------------------+
1203| :class:`std::bad_alloc` | ``MemoryError`` |
1204+--------------------------------------+------------------------------+
1205| :class:`std::domain_error` | ``ValueError`` |
1206+--------------------------------------+------------------------------+
1207| :class:`std::invalid_argument` | ``ValueError`` |
1208+--------------------------------------+------------------------------+
1209| :class:`std::length_error` | ``ValueError`` |
1210+--------------------------------------+------------------------------+
1211| :class:`std::out_of_range` | ``ValueError`` |
1212+--------------------------------------+------------------------------+
1213| :class:`std::range_error` | ``ValueError`` |
1214+--------------------------------------+------------------------------+
1215| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
1216| | implement custom iterators) |
1217+--------------------------------------+------------------------------+
1218| :class:`pybind11::index_error` | ``IndexError`` (used to |
1219| | indicate out of bounds |
1220| | accesses in ``__getitem__``, |
1221| | ``__setitem__``, etc.) |
1222+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -04001223| :class:`pybind11::value_error` | ``ValueError`` (used to |
1224| | indicate wrong value passed |
1225| | in ``container.remove(...)`` |
1226+--------------------------------------+------------------------------+
Jason Rhinelander5aa85be2016-08-11 21:22:05 -04001227| :class:`pybind11::key_error` | ``KeyError`` (used to |
1228| | indicate out of bounds |
1229| | accesses in ``__getitem__``, |
1230| | ``__setitem__`` in dict-like |
1231| | objects, etc.) |
1232+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +02001233| :class:`pybind11::error_already_set` | Indicates that the Python |
1234| | exception flag has already |
1235| | been initialized |
1236+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +02001237
1238When a Python function invoked from C++ throws an exception, it is converted
1239into a C++ exception of type :class:`error_already_set` whose string payload
1240contains a textual summary.
1241
1242There is also a special exception :class:`cast_error` that is thrown by
1243:func:`handle::call` when the input arguments cannot be converted to Python
1244objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001245
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001246Registering custom exception translators
1247========================================
1248
1249If the default exception conversion policy described
1250:ref:`above <catching_and_throwing_exceptions>`
1251is insufficient, pybind11 also provides support for registering custom
1252exception translators.
1253
1254The function ``register_exception_translator(translator)`` takes a stateless
1255callable (e.g. a function pointer or a lambda function without captured
1256variables) with the following call signature: ``void(std::exception_ptr)``.
1257
1258When a C++ exception is thrown, registered exception translators are tried
1259in reverse order of registration (i.e. the last registered translator gets
1260a first shot at handling the exception).
1261
1262Inside the translator, ``std::rethrow_exception`` should be used within
1263a try block to re-throw the exception. A catch clause can then use
1264``PyErr_SetString`` to set a Python exception as demonstrated
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001265in :file:`tests/test_exceptions.cpp`.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001266
1267This example also demonstrates how to create custom exception types
1268with ``py::exception``.
1269
1270The following example demonstrates this for a hypothetical exception class
1271``MyCustomException``:
1272
1273.. code-block:: cpp
1274
1275 py::register_exception_translator([](std::exception_ptr p) {
1276 try {
1277 if (p) std::rethrow_exception(p);
1278 } catch (const MyCustomException &e) {
1279 PyErr_SetString(PyExc_RuntimeError, e.what());
1280 }
1281 });
1282
1283Multiple exceptions can be handled by a single translator. If the exception is
1284not caught by the current translator, the previously registered one gets a
1285chance.
1286
1287If none of the registered exception translators is able to handle the
1288exception, it is handled by the default converter as described in the previous
1289section.
1290
1291.. note::
1292
1293 You must either call ``PyErr_SetString`` for every exception caught in a
1294 custom exception translator. Failure to do so will cause Python to crash
1295 with ``SystemError: error return without exception set``.
1296
1297 Exceptions that you do not plan to handle should simply not be caught.
1298
1299 You may also choose to explicity (re-)throw the exception to delegate it to
1300 the other existing exception translators.
1301
1302 The ``py::exception`` wrapper for creating custom exceptions cannot (yet)
Jason Rhinelander6b52c832016-09-06 12:27:00 -04001303 be used as a base type.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001304
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001305.. _eigen:
1306
1307Transparent conversion of dense and sparse Eigen data types
1308===========================================================
1309
1310Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1311its popularity and widespread adoption, pybind11 provides transparent
1312conversion support between Eigen and Scientific Python linear algebra data types.
1313
1314Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001315pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001316
13171. Static and dynamic Eigen dense vectors and matrices to instances of
1318 ``numpy.ndarray`` (and vice versa).
1319
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040013202. Returned matrix expressions such as blocks (including columns or rows) and
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001321 diagonals will be converted to ``numpy.ndarray`` of the expression
1322 values.
1323
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040013243. Returned matrix-like objects such as Eigen::DiagonalMatrix or
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001325 Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
1326 expressed value.
1327
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040013284. Eigen sparse vectors and matrices to instances of
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001329 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1330
1331This makes it possible to bind most kinds of functions that rely on these types.
1332One major caveat are functions that take Eigen matrices *by reference* and modify
1333them somehow, in which case the information won't be propagated to the caller.
1334
1335.. code-block:: cpp
1336
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001337 /* The Python bindings of these functions won't replicate
1338 the intended effect of modifying the function arguments */
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001339 void scale_by_2(Eigen::Vector3f &v) {
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001340 v *= 2;
1341 }
1342 void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
1343 v *= 2;
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001344 }
1345
1346To see why this is, refer to the section on :ref:`opaque` (although that
1347section specifically covers STL data types, the underlying issue is the same).
1348The next two sections discuss an efficient alternative for exposing the
1349underlying native Eigen types as opaque objects in a way that still integrates
1350with NumPy and SciPy.
1351
1352.. [#f1] http://eigen.tuxfamily.org
1353
1354.. seealso::
1355
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001356 The file :file:`tests/test_eigen.cpp` contains a complete example that
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001357 shows how to pass Eigen sparse and dense data types in more detail.
1358
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001359Buffer protocol
1360===============
1361
1362Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001363data between plugin libraries. Types can expose a buffer view [#f2]_, which
1364provides fast direct access to the raw internal data representation. Suppose we
1365want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001366
1367.. code-block:: cpp
1368
1369 class Matrix {
1370 public:
1371 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1372 m_data = new float[rows*cols];
1373 }
1374 float *data() { return m_data; }
1375 size_t rows() const { return m_rows; }
1376 size_t cols() const { return m_cols; }
1377 private:
1378 size_t m_rows, m_cols;
1379 float *m_data;
1380 };
1381
1382The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001383making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001384completely avoid copy operations with Python expressions like
1385``np.array(matrix_instance, copy = False)``.
1386
1387.. code-block:: cpp
1388
1389 py::class_<Matrix>(m, "Matrix")
1390 .def_buffer([](Matrix &m) -> py::buffer_info {
1391 return py::buffer_info(
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001392 m.data(), /* Pointer to buffer */
1393 sizeof(float), /* Size of one scalar */
1394 py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
1395 2, /* Number of dimensions */
1396 { m.rows(), m.cols() }, /* Buffer dimensions */
1397 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001398 sizeof(float) }
1399 );
1400 });
1401
1402The snippet above binds a lambda function, which can create ``py::buffer_info``
1403description records on demand describing a given matrix. The contents of
1404``py::buffer_info`` mirror the Python buffer protocol specification.
1405
1406.. code-block:: cpp
1407
1408 struct buffer_info {
1409 void *ptr;
1410 size_t itemsize;
1411 std::string format;
1412 int ndim;
1413 std::vector<size_t> shape;
1414 std::vector<size_t> strides;
1415 };
1416
1417To create a C++ function that can take a Python buffer object as an argument,
1418simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1419in a great variety of configurations, hence some safety checks are usually
1420necessary in the function body. Below, you can see an basic example on how to
1421define a custom constructor for the Eigen double precision matrix
1422(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001423buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001424
1425.. code-block:: cpp
1426
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001427 /* Bind MatrixXd (or some other Eigen type) to Python */
1428 typedef Eigen::MatrixXd Matrix;
1429
1430 typedef Matrix::Scalar Scalar;
1431 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1432
1433 py::class_<Matrix>(m, "Matrix")
1434 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001435 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001436
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001437 /* Request a buffer descriptor from Python */
1438 py::buffer_info info = b.request();
1439
1440 /* Some sanity checks ... */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001441 if (info.format != py::format_descriptor<Scalar>::format())
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001442 throw std::runtime_error("Incompatible format: expected a double array!");
1443
1444 if (info.ndim != 2)
1445 throw std::runtime_error("Incompatible buffer dimension!");
1446
Wenzel Jakobe7628532016-05-05 10:04:44 +02001447 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001448 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1449 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001450
1451 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001452 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001453
1454 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001455 });
1456
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001457For reference, the ``def_buffer()`` call for this Eigen data type should look
1458as follows:
1459
1460.. code-block:: cpp
1461
1462 .def_buffer([](Matrix &m) -> py::buffer_info {
1463 return py::buffer_info(
1464 m.data(), /* Pointer to buffer */
1465 sizeof(Scalar), /* Size of one scalar */
1466 /* Python struct-style format descriptor */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001467 py::format_descriptor<Scalar>::format(),
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001468 /* Number of dimensions */
1469 2,
1470 /* Buffer dimensions */
1471 { (size_t) m.rows(),
1472 (size_t) m.cols() },
1473 /* Strides (in bytes) for each index */
1474 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1475 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1476 );
1477 })
1478
1479For a much easier approach of binding Eigen types (although with some
1480limitations), refer to the section on :ref:`eigen`.
1481
Wenzel Jakob93296692015-10-13 23:21:54 +02001482.. seealso::
1483
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001484 The file :file:`tests/test_buffers.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001485 that demonstrates using the buffer protocol with pybind11 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +02001486
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001487.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001488
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001489NumPy support
1490=============
1491
1492By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1493restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001494type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001495
1496In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001497array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001498template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001499NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001500
1501.. code-block:: cpp
1502
Wenzel Jakob93296692015-10-13 23:21:54 +02001503 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001504
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001505When it is invoked with a different type (e.g. an integer or a list of
1506integers), the binding code will attempt to cast the input into a NumPy array
1507of the requested type. Note that this feature requires the
1508:file:``pybind11/numpy.h`` header to be included.
1509
1510Data in NumPy arrays is not guaranteed to packed in a dense manner;
1511furthermore, entries can be separated by arbitrary column and row strides.
1512Sometimes, it can be useful to require a function to only accept dense arrays
1513using either the C (row-major) or Fortran (column-major) ordering. This can be
1514accomplished via a second template argument with values ``py::array::c_style``
1515or ``py::array::f_style``.
1516
1517.. code-block:: cpp
1518
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001519 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001520
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001521The ``py::array::forcecast`` argument is the default value of the second
1522template paramenter, and it ensures that non-conforming arguments are converted
1523into an array satisfying the specified requirements instead of trying the next
1524function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001525
Ivan Smirnov223afe32016-07-02 15:33:04 +01001526NumPy structured types
1527======================
1528
1529In order for ``py::array_t`` to work with structured (record) types, we first need
Ivan Smirnov5412a052016-07-02 16:18:42 +01001530to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE``
Ivan Smirnov223afe32016-07-02 15:33:04 +01001531macro which expects the type followed by field names:
1532
1533.. code-block:: cpp
1534
1535 struct A {
1536 int x;
1537 double y;
1538 };
1539
1540 struct B {
1541 int z;
1542 A a;
1543 };
1544
Ivan Smirnov5412a052016-07-02 16:18:42 +01001545 PYBIND11_NUMPY_DTYPE(A, x, y);
1546 PYBIND11_NUMPY_DTYPE(B, z, a);
Ivan Smirnov223afe32016-07-02 15:33:04 +01001547
1548 /* now both A and B can be used as template arguments to py::array_t */
1549
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001550Vectorizing functions
1551=====================
1552
1553Suppose we want to bind a function with the following signature to Python so
1554that it can process arbitrary NumPy array arguments (vectors, matrices, general
1555N-D arrays) in addition to its normal arguments:
1556
1557.. code-block:: cpp
1558
1559 double my_func(int x, float y, double z);
1560
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001561After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001562
1563.. code-block:: cpp
1564
1565 m.def("vectorized_func", py::vectorize(my_func));
1566
1567Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001568each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001569solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1570entirely on the C++ side and can be crunched down into a tight, optimized loop
1571by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001572``numpy.dtype.float64``.
1573
Wenzel Jakob99279f72016-06-03 11:19:29 +02001574.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001575
1576 >>> x = np.array([[1, 3],[5, 7]])
1577 >>> y = np.array([[2, 4],[6, 8]])
1578 >>> z = 3
1579 >>> result = vectorized_func(x, y, z)
1580
1581The scalar argument ``z`` is transparently replicated 4 times. The input
1582arrays ``x`` and ``y`` are automatically converted into the right types (they
1583are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1584``numpy.dtype.float32``, respectively)
1585
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001586Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001587because it makes little sense to wrap it in a NumPy array. For instance,
1588suppose the function signature was
1589
1590.. code-block:: cpp
1591
1592 double my_func(int x, float y, my_custom_type *z);
1593
1594This can be done with a stateful Lambda closure:
1595
1596.. code-block:: cpp
1597
1598 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1599 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001600 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001601 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1602 return py::vectorize(stateful_closure)(x, y);
1603 }
1604 );
1605
Wenzel Jakob61587162016-01-18 22:38:52 +01001606In cases where the computation is too complicated to be reduced to
1607``vectorize``, it will be necessary to create and access the buffer contents
1608manually. The following snippet contains a complete example that shows how this
1609works (the code is somewhat contrived, since it could have been done more
1610simply using ``vectorize``).
1611
1612.. code-block:: cpp
1613
1614 #include <pybind11/pybind11.h>
1615 #include <pybind11/numpy.h>
1616
1617 namespace py = pybind11;
1618
1619 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1620 auto buf1 = input1.request(), buf2 = input2.request();
1621
1622 if (buf1.ndim != 1 || buf2.ndim != 1)
1623 throw std::runtime_error("Number of dimensions must be one");
1624
Ivan Smirnovb6518592016-08-13 13:28:56 +01001625 if (buf1.size != buf2.size)
Wenzel Jakob61587162016-01-18 22:38:52 +01001626 throw std::runtime_error("Input shapes must match");
1627
Ivan Smirnovb6518592016-08-13 13:28:56 +01001628 /* No pointer is passed, so NumPy will allocate the buffer */
1629 auto result = py::array_t<double>(buf1.size);
Wenzel Jakob61587162016-01-18 22:38:52 +01001630
1631 auto buf3 = result.request();
1632
1633 double *ptr1 = (double *) buf1.ptr,
1634 *ptr2 = (double *) buf2.ptr,
1635 *ptr3 = (double *) buf3.ptr;
1636
1637 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1638 ptr3[idx] = ptr1[idx] + ptr2[idx];
1639
1640 return result;
1641 }
1642
1643 PYBIND11_PLUGIN(test) {
1644 py::module m("test");
1645 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1646 return m.ptr();
1647 }
1648
Wenzel Jakob93296692015-10-13 23:21:54 +02001649.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001650
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001651 The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001652 example that demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001653
Wenzel Jakob93296692015-10-13 23:21:54 +02001654Functions taking Python objects as arguments
1655============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001656
Wenzel Jakob93296692015-10-13 23:21:54 +02001657pybind11 exposes all major Python types using thin C++ wrapper classes. These
1658wrapper classes can also be used as parameters of functions in bindings, which
1659makes it possible to directly work with native Python types on the C++ side.
1660For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001661
Wenzel Jakob93296692015-10-13 23:21:54 +02001662.. code-block:: cpp
1663
1664 void print_dict(py::dict dict) {
1665 /* Easily interact with Python types */
1666 for (auto item : dict)
1667 std::cout << "key=" << item.first << ", "
1668 << "value=" << item.second << std::endl;
1669 }
1670
1671Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001672:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001673:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1674:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1675:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001676
Wenzel Jakob436b7312015-10-20 01:04:30 +02001677In this kind of mixed code, it is often necessary to convert arbitrary C++
1678types to Python, which can be done using :func:`cast`:
1679
1680.. code-block:: cpp
1681
1682 MyClass *cls = ..;
1683 py::object obj = py::cast(cls);
1684
1685The reverse direction uses the following syntax:
1686
1687.. code-block:: cpp
1688
1689 py::object obj = ...;
1690 MyClass *cls = obj.cast<MyClass *>();
1691
1692When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001693It is also possible to call python functions via ``operator()``.
1694
1695.. code-block:: cpp
1696
1697 py::function f = <...>;
1698 py::object result_py = f(1234, "hello", some_instance);
1699 MyClass &result = result_py.cast<MyClass>();
1700
Dean Moldovan625bd482016-09-02 16:40:49 +02001701Keyword arguments are also supported. In Python, there is the usual call syntax:
1702
1703.. code-block:: python
1704
1705 def f(number, say, to):
1706 ... # function code
1707
1708 f(1234, say="hello", to=some_instance) # keyword call in Python
1709
1710In C++, the same call can be made using:
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001711
1712.. code-block:: cpp
1713
Dean Moldovan625bd482016-09-02 16:40:49 +02001714 using pybind11::literals; // to bring in the `_a` literal
1715 f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
1716
1717Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with
1718other arguments:
1719
1720.. code-block:: cpp
1721
1722 // * unpacking
1723 py::tuple args = py::make_tuple(1234, "hello", some_instance);
1724 f(*args);
1725
1726 // ** unpacking
1727 py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
1728 f(**kwargs);
1729
1730 // mixed keywords, * and ** unpacking
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001731 py::tuple args = py::make_tuple(1234);
Dean Moldovan625bd482016-09-02 16:40:49 +02001732 py::dict kwargs = py::dict("to"_a=some_instance);
1733 f(*args, "say"_a="hello", **kwargs);
1734
1735Generalized unpacking according to PEP448_ is also supported:
1736
1737.. code-block:: cpp
1738
1739 py::dict kwargs1 = py::dict("number"_a=1234);
1740 py::dict kwargs2 = py::dict("to"_a=some_instance);
1741 f(**kwargs1, "say"_a="hello", **kwargs2);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001742
Wenzel Jakob93296692015-10-13 23:21:54 +02001743.. seealso::
1744
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001745 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001746 example that demonstrates passing native Python types in more detail. The
Dean Moldovan625bd482016-09-02 16:40:49 +02001747 file :file:`tests/test_callbacks.cpp` presents a few examples of calling
1748 Python functions from C++, including keywords arguments and unpacking.
1749
1750.. _PEP448: https://www.python.org/dev/peps/pep-0448/
1751
1752Using Python's print function in C++
1753====================================
1754
1755The usual way to write output in C++ is using ``std::cout`` while in Python one
1756would use ``print``. Since these methods use different buffers, mixing them can
1757lead to output order issues. To resolve this, pybind11 modules can use the
1758:func:`py::print` function which writes to Python's ``sys.stdout`` for consistency.
1759
1760Python's ``print`` function is replicated in the C++ API including optional
1761keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as
1762expected in Python:
1763
1764.. code-block:: cpp
1765
1766 py::print(1, 2.0, "three"); // 1 2.0 three
1767 py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three
1768
1769 auto args = py::make_tuple("unpacked", true);
1770 py::print("->", *args, "end"_a="<-"); // -> unpacked True <-
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001771
1772Default arguments revisited
1773===========================
1774
1775The section on :ref:`default_args` previously discussed basic usage of default
1776arguments using pybind11. One noteworthy aspect of their implementation is that
1777default arguments are converted to Python objects right at declaration time.
1778Consider the following example:
1779
1780.. code-block:: cpp
1781
1782 py::class_<MyClass>("MyClass")
1783 .def("myFunction", py::arg("arg") = SomeType(123));
1784
1785In this case, pybind11 must already be set up to deal with values of the type
1786``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1787exception will be thrown.
1788
1789Another aspect worth highlighting is that the "preview" of the default argument
1790in the function signature is generated using the object's ``__repr__`` method.
1791If not available, the signature may not be very helpful, e.g.:
1792
Wenzel Jakob99279f72016-06-03 11:19:29 +02001793.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001794
1795 FUNCTIONS
1796 ...
1797 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001798 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001799 ...
1800
1801The first way of addressing this is by defining ``SomeType.__repr__``.
1802Alternatively, it is possible to specify the human-readable preview of the
1803default argument manually using the ``arg_t`` notation:
1804
1805.. code-block:: cpp
1806
1807 py::class_<MyClass>("MyClass")
1808 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1809
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001810Sometimes it may be necessary to pass a null pointer value as a default
1811argument. In this case, remember to cast it to the underlying type in question,
1812like so:
1813
1814.. code-block:: cpp
1815
1816 py::class_<MyClass>("MyClass")
1817 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1818
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001819Binding functions that accept arbitrary numbers of arguments and keywords arguments
1820===================================================================================
1821
1822Python provides a useful mechanism to define functions that accept arbitrary
1823numbers of arguments and keyword arguments:
1824
1825.. code-block:: cpp
1826
1827 def generic(*args, **kwargs):
1828 # .. do something with args and kwargs
1829
1830Such functions can also be created using pybind11:
1831
1832.. code-block:: cpp
1833
1834 void generic(py::args args, py::kwargs kwargs) {
1835 /// .. do something with args
1836 if (kwargs)
1837 /// .. do something with kwargs
1838 }
1839
1840 /// Binding code
1841 m.def("generic", &generic);
1842
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001843(See ``tests/test_kwargs_and_defaults.cpp``). The class ``py::args``
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001844derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note
1845that the ``kwargs`` argument is invalid if no keyword arguments were actually
1846provided. Please refer to the other examples for details on how to iterate
1847over these, and on how to cast their entries into C++ objects.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001848
Wenzel Jakob3764e282016-08-01 23:34:48 +02001849.. warning::
1850
1851 Unlike Python, pybind11 does not allow combining normal parameters with the
1852 ``args`` / ``kwargs`` special parameters.
1853
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001854Partitioning code over multiple extension modules
1855=================================================
1856
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001857It's straightforward to split binding code over multiple extension modules,
1858while referencing types that are declared elsewhere. Everything "just" works
1859without any special precautions. One exception to this rule occurs when
1860extending a type declared in another extension module. Recall the basic example
1861from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001862
1863.. code-block:: cpp
1864
1865 py::class_<Pet> pet(m, "Pet");
1866 pet.def(py::init<const std::string &>())
1867 .def_readwrite("name", &Pet::name);
1868
1869 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1870 .def(py::init<const std::string &>())
1871 .def("bark", &Dog::bark);
1872
1873Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1874whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1875course that the variable ``pet`` is not available anymore though it is needed
1876to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1877However, it can be acquired as follows:
1878
1879.. code-block:: cpp
1880
1881 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1882
1883 py::class_<Dog>(m, "Dog", pet)
1884 .def(py::init<const std::string &>())
1885 .def("bark", &Dog::bark);
1886
Jason Rhinelander6b52c832016-09-06 12:27:00 -04001887Alternatively, you can specify the base class as a template parameter option to
1888``class_``, which performs an automated lookup of the corresponding Python
1889type. Like the above code, however, this also requires invoking the ``import``
1890function once to ensure that the pybind11 binding code of the module ``basic``
1891has been executed:
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001892
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001893.. code-block:: cpp
1894
1895 py::module::import("basic");
1896
Jason Rhinelander6b52c832016-09-06 12:27:00 -04001897 py::class_<Dog, Pet>(m, "Dog")
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001898 .def(py::init<const std::string &>())
1899 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001900
Wenzel Jakob978e3762016-04-07 18:00:41 +02001901Naturally, both methods will fail when there are cyclic dependencies.
1902
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001903Note that compiling code which has its default symbol visibility set to
1904*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1905ability to access types defined in another extension module. Workarounds
1906include changing the global symbol visibility (not recommended, because it will
1907lead unnecessarily large binaries) or manually exporting types that are
1908accessed by multiple extension modules:
1909
1910.. code-block:: cpp
1911
1912 #ifdef _WIN32
1913 # define EXPORT_TYPE __declspec(dllexport)
1914 #else
1915 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1916 #endif
1917
1918 class EXPORT_TYPE Dog : public Animal {
1919 ...
1920 };
1921
1922
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001923Pickling support
1924================
1925
1926Python's ``pickle`` module provides a powerful facility to serialize and
1927de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001928unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001929Suppose the class in question has the following signature:
1930
1931.. code-block:: cpp
1932
1933 class Pickleable {
1934 public:
1935 Pickleable(const std::string &value) : m_value(value) { }
1936 const std::string &value() const { return m_value; }
1937
1938 void setExtra(int extra) { m_extra = extra; }
1939 int extra() const { return m_extra; }
1940 private:
1941 std::string m_value;
1942 int m_extra = 0;
1943 };
1944
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001945The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001946looks as follows:
1947
1948.. code-block:: cpp
1949
1950 py::class_<Pickleable>(m, "Pickleable")
1951 .def(py::init<std::string>())
1952 .def("value", &Pickleable::value)
1953 .def("extra", &Pickleable::extra)
1954 .def("setExtra", &Pickleable::setExtra)
1955 .def("__getstate__", [](const Pickleable &p) {
1956 /* Return a tuple that fully encodes the state of the object */
1957 return py::make_tuple(p.value(), p.extra());
1958 })
1959 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1960 if (t.size() != 2)
1961 throw std::runtime_error("Invalid state!");
1962
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001963 /* Invoke the in-place constructor. Note that this is needed even
1964 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001965 new (&p) Pickleable(t[0].cast<std::string>());
1966
1967 /* Assign any additional state */
1968 p.setExtra(t[1].cast<int>());
1969 });
1970
1971An instance can now be pickled as follows:
1972
1973.. code-block:: python
1974
1975 try:
1976 import cPickle as pickle # Use cPickle on Python 2.7
1977 except ImportError:
1978 import pickle
1979
1980 p = Pickleable("test_value")
1981 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001982 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001983
Wenzel Jakob81e09752016-04-30 23:13:03 +02001984Note that only the cPickle module is supported on Python 2.7. The second
1985argument to ``dumps`` is also crucial: it selects the pickle protocol version
19862, since the older version 1 is not supported. Newer versions are also fine—for
1987instance, specify ``-1`` to always use the latest available version. Beware:
1988failure to follow these instructions will cause important pybind11 memory
1989allocation routines to be skipped during unpickling, which will likely lead to
1990memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001991
1992.. seealso::
1993
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001994 The file :file:`tests/test_pickling.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001995 that demonstrates how to pickle and unpickle types using pybind11 in more
1996 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001997
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001998.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001999
2000Generating documentation using Sphinx
2001=====================================
2002
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02002003Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02002004strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02002005documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02002006simple example repository which uses this approach.
2007
2008There are two potential gotchas when using this approach: first, make sure that
2009the resulting strings do not contain any :kbd:`TAB` characters, which break the
2010docstring parsing routines. You may want to use C++11 raw string literals,
2011which are convenient for multi-line comments. Conveniently, any excess
2012indentation will be automatically be removed by Sphinx. However, for this to
2013work, it is important that all lines are indented consistently, i.e.:
2014
2015.. code-block:: cpp
2016
2017 // ok
2018 m.def("foo", &foo, R"mydelimiter(
2019 The foo function
2020
2021 Parameters
2022 ----------
2023 )mydelimiter");
2024
2025 // *not ok*
2026 m.def("foo", &foo, R"mydelimiter(The foo function
2027
2028 Parameters
2029 ----------
2030 )mydelimiter");
2031
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02002032.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02002033.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002034
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002035Evaluating Python expressions from strings and files
2036====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002037
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002038pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
2039Python expressions and statements. The following example illustrates how they
2040can be used.
2041
2042Both functions accept a template parameter that describes how the argument
2043should be interpreted. Possible choices include ``eval_expr`` (isolated
2044expression), ``eval_single_statement`` (a single statement, return value is
2045always ``none``), and ``eval_statements`` (sequence of statements, return value
2046is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002047
2048.. code-block:: cpp
2049
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002050 // At beginning of file
2051 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002052
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002053 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002054
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002055 // Evaluate in scope of main module
2056 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002057
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002058 // Evaluate an isolated expression
2059 int result = py::eval("my_variable + 10", scope).cast<int>();
2060
2061 // Evaluate a sequence of statements
2062 py::eval<py::eval_statements>(
2063 "print('Hello')\n"
2064 "print('world!');",
2065 scope);
2066
2067 // Evaluate the statements in an separate Python file on disk
2068 py::eval_file("script.py", scope);
Wenzel Jakob48ce0722016-09-06 14:13:22 +09002069
2070Development of custom type casters
2071==================================
2072
2073In very rare cases, applications may require custom type casters that cannot be
2074expressed using the abstractions provided by pybind11, thus requiring raw
2075Python C API calls. This is fairly advanced usage and should only be pursued by
2076experts who are familiar with the intricacies of Python reference counting.
2077
2078The following snippets demonstrate how this works for a very simple ``inty``
2079type that that should be convertible from Python types that provide a
2080``__int__(self)`` method.
2081
2082.. code-block:: cpp
2083
2084 struct inty { long long_value; };
2085
2086 void print(inty s) {
2087 std::cout << s.long_value << std::endl;
2088 }
2089
2090The following Python snippet demonstrates the intended usage from the Python side:
2091
2092.. code-block:: python
2093
2094 class A:
2095 def __int__(self):
2096 return 123
2097
2098 from example import print
2099 print(A())
2100
2101To register the necessary conversion routines, it is necessary to add
2102a partial overload to the ``pybind11::detail::type_caster<T>`` template.
2103Although this is an implementation detail, adding partial overloads to this
2104type is explicitly allowed.
2105
2106.. code-block:: cpp
2107
2108 namespace pybind11 {
2109 namespace detail {
2110 template <> struct type_caster<inty> {
2111 public:
2112 /**
2113 * This macro establishes the name 'inty' in
2114 * function signatures and declares a local variable
2115 * 'value' of type inty
2116 */
2117 PYBIND11_TYPE_CASTER(inty, _("inty"));
2118
2119 /**
2120 * Conversion part 1 (Python->C++): convert a PyObject into a inty
2121 * instance or return false upon failure. The second argument
2122 * indicates whether implicit conversions should be applied.
2123 */
2124 bool load(handle src, bool) {
2125 /* Extract PyObject from handle */
2126 PyObject *source = src.ptr();
2127 /* Try converting into a Python integer value */
2128 PyObject *tmp = PyNumber_Long(source);
2129 if (!tmp)
2130 return false;
2131 /* Now try to convert into a C++ int */
2132 value.long_value = PyLong_AsLong(tmp);
2133 Py_DECREF(tmp);
2134 /* Ensure return code was OK (to avoid out-of-range errors etc) */
2135 return !(value.long_value == -1 && !PyErr_Occurred());
2136 }
2137
2138 /**
2139 * Conversion part 2 (C++ -> Python): convert an inty instance into
2140 * a Python object. The second and third arguments are used to
2141 * indicate the return value policy and parent object (for
2142 * ``return_value_policy::reference_internal``) and are generally
2143 * ignored by implicit casters.
2144 */
2145 static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) {
2146 return PyLong_FromLong(src.long_value);
2147 }
2148 };
2149 }
2150 };