Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1 | .. _advanced: |
| 2 | |
| 3 | Advanced topics |
| 4 | ############### |
| 5 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 6 | For brevity, the rest of this chapter assumes that the following two lines are |
| 7 | present: |
| 8 | |
| 9 | .. code-block:: cpp |
| 10 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 11 | #include <pybind11/pybind11.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 12 | |
Wenzel Jakob | 10e62e1 | 2015-10-15 22:46:07 +0200 | [diff] [blame] | 13 | namespace py = pybind11; |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 14 | |
Wenzel Jakob | de3ad07 | 2016-02-02 11:38:21 +0100 | [diff] [blame] | 15 | Exporting constants and mutable objects |
| 16 | ======================================= |
| 17 | |
| 18 | To expose a C++ constant, use the ``attr`` function to register it in a module |
| 19 | as shown below. The ``int_`` class is one of many small wrapper objects defined |
| 20 | in ``pybind11/pytypes.h``. General objects (including integers) can also be |
| 21 | converted using the function ``cast``. |
| 22 | |
| 23 | .. code-block:: cpp |
| 24 | |
| 25 | PYBIND11_PLUGIN(example) { |
| 26 | py::module m("example", "pybind11 example plugin"); |
| 27 | m.attr("MY_CONSTANT") = py::int_(123); |
| 28 | m.attr("MY_CONSTANT_2") = py::cast(new MyObject()); |
| 29 | } |
| 30 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 31 | Operator overloading |
| 32 | ==================== |
| 33 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 34 | Suppose that we're given the following ``Vector2`` class with a vector addition |
| 35 | and scalar multiplication operation, all implemented using overloaded operators |
| 36 | in C++. |
| 37 | |
| 38 | .. code-block:: cpp |
| 39 | |
| 40 | class Vector2 { |
| 41 | public: |
| 42 | Vector2(float x, float y) : x(x), y(y) { } |
| 43 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 44 | Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); } |
| 45 | Vector2 operator*(float value) const { return Vector2(x * value, y * value); } |
| 46 | Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; } |
| 47 | Vector2& operator*=(float v) { x *= v; y *= v; return *this; } |
| 48 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 49 | friend Vector2 operator*(float f, const Vector2 &v) { |
| 50 | return Vector2(f * v.x, f * v.y); |
| 51 | } |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 52 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 53 | std::string toString() const { |
| 54 | return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; |
| 55 | } |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 56 | private: |
| 57 | float x, y; |
| 58 | }; |
| 59 | |
| 60 | The following snippet shows how the above operators can be conveniently exposed |
| 61 | to Python. |
| 62 | |
| 63 | .. code-block:: cpp |
| 64 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 65 | #include <pybind11/operators.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 66 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 67 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 68 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 69 | |
| 70 | py::class_<Vector2>(m, "Vector2") |
| 71 | .def(py::init<float, float>()) |
| 72 | .def(py::self + py::self) |
| 73 | .def(py::self += py::self) |
| 74 | .def(py::self *= float()) |
| 75 | .def(float() * py::self) |
| 76 | .def("__repr__", &Vector2::toString); |
| 77 | |
| 78 | return m.ptr(); |
| 79 | } |
| 80 | |
| 81 | Note that a line like |
| 82 | |
| 83 | .. code-block:: cpp |
| 84 | |
| 85 | .def(py::self * float()) |
| 86 | |
| 87 | is really just short hand notation for |
| 88 | |
| 89 | .. code-block:: cpp |
| 90 | |
| 91 | .def("__mul__", [](const Vector2 &a, float b) { |
| 92 | return a * b; |
Wenzel Jakob | 382484a | 2016-09-10 15:28:37 +0900 | [diff] [blame] | 93 | }, py::is_operator()) |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 94 | |
| 95 | This can be useful for exposing additional operators that don't exist on the |
Wenzel Jakob | 382484a | 2016-09-10 15:28:37 +0900 | [diff] [blame] | 96 | C++ side, or to perform other types of customization. The ``py::is_operator`` |
| 97 | flag marker is needed to inform pybind11 that this is an operator, which |
| 98 | returns ``NotImplemented`` when invoked with incompatible arguments rather than |
| 99 | throwing a type error. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 100 | |
| 101 | .. note:: |
| 102 | |
| 103 | To use the more convenient ``py::self`` notation, the additional |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 104 | header file :file:`pybind11/operators.h` must be included. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 105 | |
| 106 | .. seealso:: |
| 107 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 108 | The file :file:`tests/test_operator_overloading.cpp` contains a |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 109 | complete example that demonstrates how to work with overloaded operators in |
| 110 | more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 111 | |
| 112 | Callbacks and passing anonymous functions |
| 113 | ========================================= |
| 114 | |
| 115 | The C++11 standard brought lambda functions and the generic polymorphic |
| 116 | function wrapper ``std::function<>`` to the C++ programming language, which |
| 117 | enable powerful new ways of working with functions. Lambda functions come in |
| 118 | two flavors: stateless lambda function resemble classic function pointers that |
| 119 | link to an anonymous piece of code, while stateful lambda functions |
| 120 | additionally depend on captured variables that are stored in an anonymous |
| 121 | *lambda closure object*. |
| 122 | |
| 123 | Here is a simple example of a C++ function that takes an arbitrary function |
| 124 | (stateful or stateless) with signature ``int -> int`` as an argument and runs |
| 125 | it with the value 10. |
| 126 | |
| 127 | .. code-block:: cpp |
| 128 | |
| 129 | int func_arg(const std::function<int(int)> &f) { |
| 130 | return f(10); |
| 131 | } |
| 132 | |
| 133 | The example below is more involved: it takes a function of signature ``int -> int`` |
| 134 | and returns another function of the same kind. The return value is a stateful |
| 135 | lambda function, which stores the value ``f`` in the capture object and adds 1 to |
| 136 | its return value upon execution. |
| 137 | |
| 138 | .. code-block:: cpp |
| 139 | |
| 140 | std::function<int(int)> func_ret(const std::function<int(int)> &f) { |
| 141 | return [f](int i) { |
| 142 | return f(i) + 1; |
| 143 | }; |
| 144 | } |
| 145 | |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 146 | This example demonstrates using python named parameters in C++ callbacks which |
| 147 | requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining |
| 148 | methods of classes: |
| 149 | |
| 150 | .. code-block:: cpp |
| 151 | |
| 152 | py::cpp_function func_cpp() { |
| 153 | return py::cpp_function([](int i) { return i+1; }, |
| 154 | py::arg("number")); |
| 155 | } |
| 156 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 157 | After including the extra header file :file:`pybind11/functional.h`, it is almost |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 158 | trivial to generate binding code for all of these functions. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 159 | |
| 160 | .. code-block:: cpp |
| 161 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 162 | #include <pybind11/functional.h> |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 163 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 164 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 165 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 166 | |
| 167 | m.def("func_arg", &func_arg); |
| 168 | m.def("func_ret", &func_ret); |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 169 | m.def("func_cpp", &func_cpp); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 170 | |
| 171 | return m.ptr(); |
| 172 | } |
| 173 | |
| 174 | The following interactive session shows how to call them from Python. |
| 175 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 176 | .. code-block:: pycon |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 177 | |
| 178 | $ python |
| 179 | >>> import example |
| 180 | >>> def square(i): |
| 181 | ... return i * i |
| 182 | ... |
| 183 | >>> example.func_arg(square) |
| 184 | 100L |
| 185 | >>> square_plus_1 = example.func_ret(square) |
| 186 | >>> square_plus_1(4) |
| 187 | 17L |
Brad Harmon | 835fc06 | 2016-06-16 13:19:15 -0500 | [diff] [blame] | 188 | >>> plus_1 = func_cpp() |
| 189 | >>> plus_1(number=43) |
| 190 | 44L |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 191 | |
Wenzel Jakob | a4175d6 | 2015-11-17 08:30:34 +0100 | [diff] [blame] | 192 | .. warning:: |
| 193 | |
| 194 | Keep in mind that passing a function from C++ to Python (or vice versa) |
| 195 | will instantiate a piece of wrapper code that translates function |
Wenzel Jakob | 954b793 | 2016-07-10 10:13:18 +0200 | [diff] [blame] | 196 | invocations between the two languages. Naturally, this translation |
| 197 | increases the computational cost of each function call somewhat. A |
| 198 | problematic situation can arise when a function is copied back and forth |
| 199 | between Python and C++ many times in a row, in which case the underlying |
| 200 | wrappers will accumulate correspondingly. The resulting long sequence of |
| 201 | C++ -> Python -> C++ -> ... roundtrips can significantly decrease |
| 202 | performance. |
| 203 | |
| 204 | There is one exception: pybind11 detects case where a stateless function |
| 205 | (i.e. a function pointer or a lambda function without captured variables) |
| 206 | is passed as an argument to another C++ function exposed in Python. In this |
| 207 | case, there is no overhead. Pybind11 will extract the underlying C++ |
| 208 | function pointer from the wrapped function to sidestep a potential C++ -> |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 209 | Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`. |
Wenzel Jakob | 954b793 | 2016-07-10 10:13:18 +0200 | [diff] [blame] | 210 | |
| 211 | .. note:: |
| 212 | |
| 213 | This functionality is very useful when generating bindings for callbacks in |
| 214 | C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.). |
| 215 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 216 | The file :file:`tests/test_callbacks.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 217 | that demonstrates how to work with callbacks and anonymous functions in |
| 218 | more detail. |
Wenzel Jakob | a4175d6 | 2015-11-17 08:30:34 +0100 | [diff] [blame] | 219 | |
Wenzel Jakob | 8e5dceb | 2016-09-11 20:00:40 +0900 | [diff] [blame] | 220 | .. _overriding_virtuals: |
| 221 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 222 | Overriding virtual functions in Python |
| 223 | ====================================== |
| 224 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 225 | Suppose that a C++ class or interface has a virtual function that we'd like to |
| 226 | to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is |
| 227 | given as a specific example of how one would do this with traditional C++ |
| 228 | code). |
| 229 | |
| 230 | .. code-block:: cpp |
| 231 | |
| 232 | class Animal { |
| 233 | public: |
| 234 | virtual ~Animal() { } |
| 235 | virtual std::string go(int n_times) = 0; |
| 236 | }; |
| 237 | |
| 238 | class Dog : public Animal { |
| 239 | public: |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 240 | std::string go(int n_times) override { |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 241 | std::string result; |
| 242 | for (int i=0; i<n_times; ++i) |
| 243 | result += "woof! "; |
| 244 | return result; |
| 245 | } |
| 246 | }; |
| 247 | |
| 248 | Let's also suppose that we are given a plain function which calls the |
| 249 | function ``go()`` on an arbitrary ``Animal`` instance. |
| 250 | |
| 251 | .. code-block:: cpp |
| 252 | |
| 253 | std::string call_go(Animal *animal) { |
| 254 | return animal->go(3); |
| 255 | } |
| 256 | |
| 257 | Normally, the binding code for these classes would look as follows: |
| 258 | |
| 259 | .. code-block:: cpp |
| 260 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 261 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 262 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 263 | |
| 264 | py::class_<Animal> animal(m, "Animal"); |
| 265 | animal |
| 266 | .def("go", &Animal::go); |
| 267 | |
| 268 | py::class_<Dog>(m, "Dog", animal) |
| 269 | .def(py::init<>()); |
| 270 | |
| 271 | m.def("call_go", &call_go); |
| 272 | |
| 273 | return m.ptr(); |
| 274 | } |
| 275 | |
| 276 | However, these bindings are impossible to extend: ``Animal`` is not |
| 277 | constructible, and we clearly require some kind of "trampoline" that |
| 278 | redirects virtual calls back to Python. |
| 279 | |
| 280 | Defining a new type of ``Animal`` from within Python is possible but requires a |
| 281 | helper class that is defined as follows: |
| 282 | |
| 283 | .. code-block:: cpp |
| 284 | |
| 285 | class PyAnimal : public Animal { |
| 286 | public: |
| 287 | /* Inherit the constructors */ |
| 288 | using Animal::Animal; |
| 289 | |
| 290 | /* Trampoline (need one for each virtual function) */ |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 291 | std::string go(int n_times) override { |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 292 | PYBIND11_OVERLOAD_PURE( |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 293 | std::string, /* Return type */ |
| 294 | Animal, /* Parent class */ |
| 295 | go, /* Name of function */ |
| 296 | n_times /* Argument(s) */ |
| 297 | ); |
| 298 | } |
| 299 | }; |
| 300 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 301 | The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual |
| 302 | functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have |
Jason Rhinelander | 7dfb932 | 2016-09-08 14:49:43 -0400 | [diff] [blame] | 303 | a default implementation. There are also two alternate macros |
| 304 | :func:`PYBIND11_OVERLOAD_PURE_NAME` and :func:`PYBIND11_OVERLOAD_NAME` which |
| 305 | take a string-valued name argument between the *Parent class* and *Name of the |
| 306 | function* slots. This is useful when the C++ and Python versions of the |
| 307 | function have different names, e.g. ``operator()`` vs ``__call__``. |
Wenzel Jakob | 1e3be73 | 2016-05-24 23:42:05 +0200 | [diff] [blame] | 308 | |
| 309 | The binding code also needs a few minor adaptations (highlighted): |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 310 | |
| 311 | .. code-block:: cpp |
| 312 | :emphasize-lines: 4,6,7 |
| 313 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 314 | PYBIND11_PLUGIN(example) { |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 315 | py::module m("example", "pybind11 example plugin"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 316 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 317 | py::class_<Animal, PyAnimal /* <--- trampoline*/> animal(m, "Animal"); |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 318 | animal |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 319 | .def(py::init<>()) |
| 320 | .def("go", &Animal::go); |
| 321 | |
| 322 | py::class_<Dog>(m, "Dog", animal) |
| 323 | .def(py::init<>()); |
| 324 | |
| 325 | m.def("call_go", &call_go); |
| 326 | |
| 327 | return m.ptr(); |
| 328 | } |
| 329 | |
Jason Rhinelander | 6eca083 | 2016-09-08 13:25:45 -0400 | [diff] [blame] | 330 | Importantly, pybind11 is made aware of the trampoline helper class by |
| 331 | specifying it as an extra template argument to :class:`class_`. (This can also |
| 332 | be combined with other template arguments such as a custom holder type; the |
| 333 | order of template types does not matter). Following this, we are able to |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 334 | define a constructor as usual. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 335 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 336 | Note, however, that the above is sufficient for allowing python classes to |
| 337 | extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the |
| 338 | necessary steps required to providing proper overload support for inherited |
| 339 | classes. |
| 340 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 341 | The Python session below shows how to override ``Animal::go`` and invoke it via |
| 342 | a virtual method call. |
| 343 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 344 | .. code-block:: pycon |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 345 | |
| 346 | >>> from example import * |
| 347 | >>> d = Dog() |
| 348 | >>> call_go(d) |
| 349 | u'woof! woof! woof! ' |
| 350 | >>> class Cat(Animal): |
| 351 | ... def go(self, n_times): |
| 352 | ... return "meow! " * n_times |
| 353 | ... |
| 354 | >>> c = Cat() |
| 355 | >>> call_go(c) |
| 356 | u'meow! meow! meow! ' |
| 357 | |
Wenzel Jakob | 9bb97c1 | 2016-06-03 11:19:41 +0200 | [diff] [blame] | 358 | Please take a look at the :ref:`macro_notes` before using this feature. |
Wenzel Jakob | bd986fe | 2016-05-21 10:48:30 +0200 | [diff] [blame] | 359 | |
Jason Rhinelander | 7dfb932 | 2016-09-08 14:49:43 -0400 | [diff] [blame] | 360 | .. note:: |
| 361 | |
| 362 | When the overridden type returns a reference or pointer to a type that |
| 363 | pybind11 converts from Python (for example, numeric values, std::string, |
| 364 | and other built-in value-converting types), there are some limitations to |
| 365 | be aware of: |
| 366 | |
| 367 | - because in these cases there is no C++ variable to reference (the value |
| 368 | is stored in the referenced Python variable), pybind11 provides one in |
| 369 | the PYBIND11_OVERLOAD macros (when needed) with static storage duration. |
| 370 | Note that this means that invoking the overloaded method on *any* |
| 371 | instance will change the referenced value stored in *all* instances of |
| 372 | that type. |
| 373 | |
| 374 | - Attempts to modify a non-const reference will not have the desired |
| 375 | effect: it will change only the static cache variable, but this change |
| 376 | will not propagate to underlying Python instance, and the change will be |
| 377 | replaced the next time the overload is invoked. |
| 378 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 379 | .. seealso:: |
| 380 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 381 | The file :file:`tests/test_virtual_functions.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 382 | example that demonstrates how to override virtual functions using pybind11 |
| 383 | in more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 384 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 385 | .. _virtual_and_inheritance: |
| 386 | |
| 387 | Combining virtual functions and inheritance |
| 388 | =========================================== |
| 389 | |
| 390 | When combining virtual methods with inheritance, you need to be sure to provide |
| 391 | an override for each method for which you want to allow overrides from derived |
| 392 | python classes. For example, suppose we extend the above ``Animal``/``Dog`` |
| 393 | example as follows: |
| 394 | |
| 395 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 396 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 397 | class Animal { |
| 398 | public: |
| 399 | virtual std::string go(int n_times) = 0; |
| 400 | virtual std::string name() { return "unknown"; } |
| 401 | }; |
| 402 | class Dog : public class Animal { |
| 403 | public: |
| 404 | std::string go(int n_times) override { |
| 405 | std::string result; |
| 406 | for (int i=0; i<n_times; ++i) |
| 407 | result += bark() + " "; |
| 408 | return result; |
| 409 | } |
| 410 | virtual std::string bark() { return "woof!"; } |
| 411 | }; |
| 412 | |
| 413 | then the trampoline class for ``Animal`` must, as described in the previous |
| 414 | section, override ``go()`` and ``name()``, but in order to allow python code to |
| 415 | inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that |
| 416 | overrides both the added ``bark()`` method *and* the ``go()`` and ``name()`` |
| 417 | methods inherited from ``Animal`` (even though ``Dog`` doesn't directly |
| 418 | override the ``name()`` method): |
| 419 | |
| 420 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 421 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 422 | class PyAnimal : public Animal { |
| 423 | public: |
| 424 | using Animal::Animal; // Inherit constructors |
| 425 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); } |
| 426 | std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); } |
| 427 | }; |
| 428 | class PyDog : public Dog { |
| 429 | public: |
| 430 | using Dog::Dog; // Inherit constructors |
| 431 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); } |
| 432 | std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); } |
| 433 | std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); } |
| 434 | }; |
| 435 | |
| 436 | A registered class derived from a pybind11-registered class with virtual |
| 437 | methods requires a similar trampoline class, *even if* it doesn't explicitly |
| 438 | declare or override any virtual methods itself: |
| 439 | |
| 440 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 441 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 442 | class Husky : public Dog {}; |
| 443 | class PyHusky : public Husky { |
| 444 | using Dog::Dog; // Inherit constructors |
| 445 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); } |
| 446 | std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); } |
| 447 | std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); } |
| 448 | }; |
| 449 | |
| 450 | There is, however, a technique that can be used to avoid this duplication |
| 451 | (which can be especially helpful for a base class with several virtual |
| 452 | methods). The technique involves using template trampoline classes, as |
| 453 | follows: |
| 454 | |
| 455 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 456 | |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 457 | template <class AnimalBase = Animal> class PyAnimal : public AnimalBase { |
| 458 | using AnimalBase::AnimalBase; // Inherit constructors |
| 459 | std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); } |
| 460 | std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); } |
| 461 | }; |
| 462 | template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> { |
| 463 | using PyAnimal<DogBase>::PyAnimal; // Inherit constructors |
| 464 | // Override PyAnimal's pure virtual go() with a non-pure one: |
| 465 | std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); } |
| 466 | std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); } |
| 467 | }; |
| 468 | |
| 469 | This technique has the advantage of requiring just one trampoline method to be |
| 470 | declared per virtual method and pure virtual method override. It does, |
| 471 | however, require the compiler to generate at least as many methods (and |
| 472 | possibly more, if both pure virtual and overridden pure virtual methods are |
| 473 | exposed, as above). |
| 474 | |
| 475 | The classes are then registered with pybind11 using: |
| 476 | |
| 477 | .. code-block:: cpp |
Dean Moldovan | aebca12 | 2016-08-16 01:26:02 +0200 | [diff] [blame] | 478 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 479 | py::class_<Animal, PyAnimal<>> animal(m, "Animal"); |
| 480 | py::class_<Dog, PyDog<>> dog(m, "Dog"); |
| 481 | py::class_<Husky, PyDog<Husky>> husky(m, "Husky"); |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 482 | // ... add animal, dog, husky definitions |
| 483 | |
| 484 | Note that ``Husky`` did not require a dedicated trampoline template class at |
| 485 | all, since it neither declares any new virtual methods nor provides any pure |
| 486 | virtual method implementations. |
| 487 | |
| 488 | With either the repeated-virtuals or templated trampoline methods in place, you |
| 489 | can now create a python class that inherits from ``Dog``: |
| 490 | |
| 491 | .. code-block:: python |
| 492 | |
| 493 | class ShihTzu(Dog): |
| 494 | def bark(self): |
| 495 | return "yip!" |
| 496 | |
| 497 | .. seealso:: |
| 498 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 499 | See the file :file:`tests/test_virtual_functions.cpp` for complete examples |
Jason Rhinelander | 0ca96e2 | 2016-08-05 17:02:33 -0400 | [diff] [blame] | 500 | using both the duplication and templated trampoline approaches. |
| 501 | |
Jason Rhinelander | ec62d97 | 2016-09-09 02:42:51 -0400 | [diff] [blame] | 502 | Extended trampoline class functionality |
| 503 | ======================================= |
| 504 | |
| 505 | The trampoline classes described in the previous sections are, by default, only |
| 506 | initialized when needed. More specifically, they are initialized when a python |
| 507 | class actually inherits from a registered type (instead of merely creating an |
| 508 | instance of the registered type), or when a registered constructor is only |
| 509 | valid for the trampoline class but not the registered class. This is primarily |
| 510 | for performance reasons: when the trampoline class is not needed for anything |
| 511 | except virtual method dispatching, not initializing the trampoline class |
| 512 | improves performance by avoiding needing to do a run-time check to see if the |
| 513 | inheriting python instance has an overloaded method. |
| 514 | |
| 515 | Sometimes, however, it is useful to always initialize a trampoline class as an |
| 516 | intermediate class that does more than just handle virtual method dispatching. |
| 517 | For example, such a class might perform extra class initialization, extra |
| 518 | destruction operations, and might define new members and methods to enable a |
| 519 | more python-like interface to a class. |
| 520 | |
| 521 | In order to tell pybind11 that it should *always* initialize the trampoline |
| 522 | class when creating new instances of a type, the class constructors should be |
| 523 | declared using ``py::init_alias<Args, ...>()`` instead of the usual |
| 524 | ``py::init<Args, ...>()``. This forces construction via the trampoline class, |
| 525 | ensuring member initialization and (eventual) destruction. |
| 526 | |
| 527 | .. seealso:: |
| 528 | |
| 529 | See the file :file:`tests/test_alias_initialization.cpp` for complete examples |
| 530 | showing both normal and forced trampoline instantiation. |
| 531 | |
Wenzel Jakob | 9bb97c1 | 2016-06-03 11:19:41 +0200 | [diff] [blame] | 532 | .. _macro_notes: |
| 533 | |
| 534 | General notes regarding convenience macros |
| 535 | ========================================== |
| 536 | |
| 537 | pybind11 provides a few convenience macros such as |
| 538 | :func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and |
| 539 | ``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated |
| 540 | in the preprocessor (which has no concept of types), they *will* get confused |
| 541 | by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1, |
| 542 | T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates |
Jason Rhinelander | 20ef626 | 2016-09-21 13:39:02 -0400 | [diff] [blame] | 543 | the beginning of the next parameter. Use a ``typedef`` to bind the template to |
Wenzel Jakob | 9bb97c1 | 2016-06-03 11:19:41 +0200 | [diff] [blame] | 544 | another name and use it in the macro to avoid this problem. |
| 545 | |
| 546 | |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 547 | Global Interpreter Lock (GIL) |
| 548 | ============================= |
| 549 | |
| 550 | The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be |
| 551 | used to acquire and release the global interpreter lock in the body of a C++ |
| 552 | function call. In this way, long-running C++ code can be parallelized using |
| 553 | multiple Python threads. Taking the previous section as an example, this could |
| 554 | be realized as follows (important changes highlighted): |
| 555 | |
| 556 | .. code-block:: cpp |
| 557 | :emphasize-lines: 8,9,33,34 |
| 558 | |
| 559 | class PyAnimal : public Animal { |
| 560 | public: |
| 561 | /* Inherit the constructors */ |
| 562 | using Animal::Animal; |
| 563 | |
| 564 | /* Trampoline (need one for each virtual function) */ |
| 565 | std::string go(int n_times) { |
| 566 | /* Acquire GIL before calling Python code */ |
Wenzel Jakob | a4caa85 | 2015-12-14 12:39:02 +0100 | [diff] [blame] | 567 | py::gil_scoped_acquire acquire; |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 568 | |
| 569 | PYBIND11_OVERLOAD_PURE( |
| 570 | std::string, /* Return type */ |
| 571 | Animal, /* Parent class */ |
| 572 | go, /* Name of function */ |
| 573 | n_times /* Argument(s) */ |
| 574 | ); |
| 575 | } |
| 576 | }; |
| 577 | |
| 578 | PYBIND11_PLUGIN(example) { |
| 579 | py::module m("example", "pybind11 example plugin"); |
| 580 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 581 | py::class_<Animal, PyAnimal> animal(m, "Animal"); |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 582 | animal |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 583 | .def(py::init<>()) |
| 584 | .def("go", &Animal::go); |
| 585 | |
| 586 | py::class_<Dog>(m, "Dog", animal) |
| 587 | .def(py::init<>()); |
| 588 | |
| 589 | m.def("call_go", [](Animal *animal) -> std::string { |
| 590 | /* Release GIL before calling into (potentially long-running) C++ code */ |
Wenzel Jakob | a4caa85 | 2015-12-14 12:39:02 +0100 | [diff] [blame] | 591 | py::gil_scoped_release release; |
Wenzel Jakob | ecdd868 | 2015-12-07 18:17:58 +0100 | [diff] [blame] | 592 | return call_go(animal); |
| 593 | }); |
| 594 | |
| 595 | return m.ptr(); |
| 596 | } |
| 597 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 598 | Passing STL data structures |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 599 | =========================== |
| 600 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 601 | When including the additional header file :file:`pybind11/stl.h`, conversions |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 602 | between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>`` |
| 603 | and the Python ``list``, ``set`` and ``dict`` data structures are automatically |
| 604 | enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported |
| 605 | out of the box with just the core :file:`pybind11/pybind11.h` header. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 606 | |
Wenzel Jakob | fe34241 | 2016-09-06 13:02:29 +0900 | [diff] [blame] | 607 | The major downside of these implicit conversions is that containers must be |
| 608 | converted (i.e. copied) on every Python->C++ and C++->Python transition, which |
| 609 | can have implications on the program semantics and performance. Please read the |
| 610 | next sections for more details and alternative approaches that avoid this. |
Sergey Lyskov | 7520418 | 2016-08-29 22:50:38 -0400 | [diff] [blame] | 611 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 612 | .. note:: |
| 613 | |
Wenzel Jakob | fe34241 | 2016-09-06 13:02:29 +0900 | [diff] [blame] | 614 | Arbitrary nesting of any of these types is possible. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 615 | |
| 616 | .. seealso:: |
| 617 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 618 | The file :file:`tests/test_python_types.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 619 | example that demonstrates how to pass STL data types in more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 620 | |
Wenzel Jakob | fe34241 | 2016-09-06 13:02:29 +0900 | [diff] [blame] | 621 | .. _opaque: |
| 622 | |
| 623 | Treating STL data structures as opaque objects |
| 624 | ============================================== |
| 625 | |
| 626 | pybind11 heavily relies on a template matching mechanism to convert parameters |
| 627 | and return values that are constructed from STL data types such as vectors, |
| 628 | linked lists, hash tables, etc. This even works in a recursive manner, for |
| 629 | instance to deal with lists of hash maps of pairs of elementary and custom |
| 630 | types, etc. |
| 631 | |
| 632 | However, a fundamental limitation of this approach is that internal conversions |
| 633 | between Python and C++ types involve a copy operation that prevents |
| 634 | pass-by-reference semantics. What does this mean? |
| 635 | |
| 636 | Suppose we bind the following function |
| 637 | |
| 638 | .. code-block:: cpp |
| 639 | |
| 640 | void append_1(std::vector<int> &v) { |
| 641 | v.push_back(1); |
| 642 | } |
| 643 | |
| 644 | and call it from Python, the following happens: |
| 645 | |
| 646 | .. code-block:: pycon |
| 647 | |
| 648 | >>> v = [5, 6] |
| 649 | >>> append_1(v) |
| 650 | >>> print(v) |
| 651 | [5, 6] |
| 652 | |
| 653 | As you can see, when passing STL data structures by reference, modifications |
| 654 | are not propagated back the Python side. A similar situation arises when |
| 655 | exposing STL data structures using the ``def_readwrite`` or ``def_readonly`` |
| 656 | functions: |
| 657 | |
| 658 | .. code-block:: cpp |
| 659 | |
| 660 | /* ... definition ... */ |
| 661 | |
| 662 | class MyClass { |
| 663 | std::vector<int> contents; |
| 664 | }; |
| 665 | |
| 666 | /* ... binding code ... */ |
| 667 | |
| 668 | py::class_<MyClass>(m, "MyClass") |
| 669 | .def(py::init<>) |
| 670 | .def_readwrite("contents", &MyClass::contents); |
| 671 | |
| 672 | In this case, properties can be read and written in their entirety. However, an |
Jason Rhinelander | 20ef626 | 2016-09-21 13:39:02 -0400 | [diff] [blame] | 673 | ``append`` operation involving such a list type has no effect: |
Wenzel Jakob | fe34241 | 2016-09-06 13:02:29 +0900 | [diff] [blame] | 674 | |
| 675 | .. code-block:: pycon |
| 676 | |
| 677 | >>> m = MyClass() |
| 678 | >>> m.contents = [5, 6] |
| 679 | >>> print(m.contents) |
| 680 | [5, 6] |
| 681 | >>> m.contents.append(7) |
| 682 | >>> print(m.contents) |
| 683 | [5, 6] |
| 684 | |
| 685 | Finally, the involved copy operations can be costly when dealing with very |
| 686 | large lists. To deal with all of the above situations, pybind11 provides a |
| 687 | macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based |
| 688 | conversion machinery of types, thus rendering them *opaque*. The contents of |
| 689 | opaque objects are never inspected or extracted, hence they *can* be passed by |
| 690 | reference. For instance, to turn ``std::vector<int>`` into an opaque type, add |
| 691 | the declaration |
| 692 | |
| 693 | .. code-block:: cpp |
| 694 | |
| 695 | PYBIND11_MAKE_OPAQUE(std::vector<int>); |
| 696 | |
| 697 | before any binding code (e.g. invocations to ``class_::def()``, etc.). This |
| 698 | macro must be specified at the top level (and outside of any namespaces), since |
| 699 | it instantiates a partial template overload. If your binding code consists of |
| 700 | multiple compilation units, it must be present in every file preceding any |
| 701 | usage of ``std::vector<int>``. Opaque types must also have a corresponding |
| 702 | ``class_`` declaration to associate them with a name in Python, and to define a |
| 703 | set of available operations, e.g.: |
| 704 | |
| 705 | .. code-block:: cpp |
| 706 | |
| 707 | py::class_<std::vector<int>>(m, "IntVector") |
| 708 | .def(py::init<>()) |
| 709 | .def("clear", &std::vector<int>::clear) |
| 710 | .def("pop_back", &std::vector<int>::pop_back) |
| 711 | .def("__len__", [](const std::vector<int> &v) { return v.size(); }) |
| 712 | .def("__iter__", [](std::vector<int> &v) { |
| 713 | return py::make_iterator(v.begin(), v.end()); |
| 714 | }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */ |
| 715 | // .... |
| 716 | |
| 717 | The ability to expose STL containers as native Python objects is a fairly |
| 718 | common request, hence pybind11 also provides an optional header file named |
| 719 | :file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try |
| 720 | to match the behavior of their native Python counterparts as much as possible. |
| 721 | |
| 722 | The following example showcases usage of :file:`pybind11/stl_bind.h`: |
| 723 | |
| 724 | .. code-block:: cpp |
| 725 | |
| 726 | // Don't forget this |
| 727 | #include <pybind11/stl_bind.h> |
| 728 | |
| 729 | PYBIND11_MAKE_OPAQUE(std::vector<int>); |
| 730 | PYBIND11_MAKE_OPAQUE(std::map<std::string, double>); |
| 731 | |
| 732 | // ... |
| 733 | |
| 734 | // later in binding code: |
| 735 | py::bind_vector<std::vector<int>>(m, "VectorInt"); |
| 736 | py::bind_map<std::map<std::string, double>>(m, "MapStringDouble"); |
| 737 | |
| 738 | Please take a look at the :ref:`macro_notes` before using the |
| 739 | ``PYBIND11_MAKE_OPAQUE`` macro. |
| 740 | |
| 741 | .. seealso:: |
| 742 | |
| 743 | The file :file:`tests/test_opaque_types.cpp` contains a complete |
| 744 | example that demonstrates how to create and expose opaque types using |
| 745 | pybind11 in more detail. |
| 746 | |
| 747 | The file :file:`tests/test_stl_binders.cpp` shows how to use the |
| 748 | convenience STL container wrappers. |
| 749 | |
| 750 | |
Wenzel Jakob | b282595 | 2016-04-13 23:33:00 +0200 | [diff] [blame] | 751 | Binding sequence data types, iterators, the slicing protocol, etc. |
| 752 | ================================================================== |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 753 | |
| 754 | Please refer to the supplemental example for details. |
| 755 | |
| 756 | .. seealso:: |
| 757 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 758 | The file :file:`tests/test_sequences_and_iterators.cpp` contains a |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 759 | complete example that shows how to bind a sequence data type, including |
| 760 | length queries (``__len__``), iterators (``__iter__``), the slicing |
| 761 | protocol and other kinds of useful operations. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 762 | |
Trent Houliston | 352149e | 2016-08-25 23:08:04 +1000 | [diff] [blame] | 763 | C++11 chrono datatypes |
| 764 | ====================== |
Trent Houliston | 352149e | 2016-08-25 23:08:04 +1000 | [diff] [blame] | 765 | |
Trent Houliston | 10a6a90 | 2016-09-28 01:01:59 +1000 | [diff] [blame] | 766 | When including the additional header file :file:`pybind11/chrono.h` conversions |
| 767 | from C++11 chrono datatypes to python datetime objects are automatically enabled. |
| 768 | This header also enables conversions of python floats (often from sources such |
| 769 | as `time.monotonic()`, `time.perf_counter()` and `time.process_time()`) into |
| 770 | durations. |
Trent Houliston | 352149e | 2016-08-25 23:08:04 +1000 | [diff] [blame] | 771 | |
Trent Houliston | 10a6a90 | 2016-09-28 01:01:59 +1000 | [diff] [blame] | 772 | An overview of clocks in C++11 |
| 773 | ------------------------------ |
Trent Houliston | 352149e | 2016-08-25 23:08:04 +1000 | [diff] [blame] | 774 | |
Trent Houliston | 10a6a90 | 2016-09-28 01:01:59 +1000 | [diff] [blame] | 775 | A point of confusion when using these conversions is the differences between |
| 776 | clocks provided in C++11. There are three clock types defined by the C++11 |
| 777 | standard and users can define their own if needed. Each of these clocks have |
| 778 | different properties and when converting to and from python will give different |
| 779 | results. |
Trent Houliston | 2f59768 | 2016-09-13 20:40:28 +1000 | [diff] [blame] | 780 | |
Trent Houliston | 10a6a90 | 2016-09-28 01:01:59 +1000 | [diff] [blame] | 781 | The first clock defined by the standard is ``std::chrono::system_clock``. This |
| 782 | clock measures the current date and time. However, this clock changes with to |
| 783 | updates to the operating system time. For example, if your time is synchronised |
| 784 | with a time server this clock will change. This makes this clock a poor choice |
| 785 | for timing purposes but good for measuring the wall time. |
Trent Houliston | 352149e | 2016-08-25 23:08:04 +1000 | [diff] [blame] | 786 | |
Trent Houliston | 10a6a90 | 2016-09-28 01:01:59 +1000 | [diff] [blame] | 787 | The second clock defined in the standard is ``std::chrono::steady_clock``. |
| 788 | This clock ticks at a steady rate and is never adjusted. This makes it excellent |
| 789 | for timing purposes, however the value in this clock does not correspond to the |
| 790 | current date and time. Often this clock will be the amount of time your system |
| 791 | has been on, although it does not have to be. This clock will never be the same |
| 792 | clock as the system clock as the system clock can change but steady clocks |
| 793 | cannot. |
Trent Houliston | 352149e | 2016-08-25 23:08:04 +1000 | [diff] [blame] | 794 | |
Trent Houliston | 10a6a90 | 2016-09-28 01:01:59 +1000 | [diff] [blame] | 795 | The third clock defined in the standard is ``std::chrono::high_resolution_clock``. |
| 796 | This clock is the clock that has the highest resolution out of the clocks in the |
| 797 | system. It is normally a typedef to either the system clock or the steady clock |
| 798 | but can be its own independent clock. This is important as when using these |
| 799 | conversions as the types you get in python for this clock might be different |
| 800 | depending on the system. |
| 801 | If it is a typedef of the system clock, python will get datetime objects, but if |
| 802 | it is a different clock they will be timedelta objects. |
Trent Houliston | 2f59768 | 2016-09-13 20:40:28 +1000 | [diff] [blame] | 803 | |
Trent Houliston | 10a6a90 | 2016-09-28 01:01:59 +1000 | [diff] [blame] | 804 | Conversions Provided |
| 805 | -------------------- |
| 806 | |
| 807 | C++ to Python |
| 808 | - ``std::chrono::system_clock::time_point`` → ``datetime.datetime`` |
| 809 | System clock times are converted to python datetime instances. They are |
| 810 | in the local timezone, but do not have any timezone information attached |
| 811 | to them (they are naive datetime objects). |
| 812 | |
| 813 | - ``std::chrono::duration`` → ``datetime.timedelta`` |
| 814 | Durations are converted to timedeltas, any precision in the duration |
| 815 | greater than microseconds is lost by rounding towards zero. |
| 816 | |
| 817 | - ``std::chrono::[other_clocks]::time_point`` → ``datetime.timedelta`` |
| 818 | Any clock time that is not the system clock is converted to a time delta. This timedelta measures the time from the clocks epoch to now. |
| 819 | |
| 820 | Python to C++ |
| 821 | - ``datetime.datetime`` → ``std::chrono::system_clock::time_point`` |
| 822 | Date/time objects are converted into system clock timepoints. Any |
| 823 | timezone information is ignored and the type is treated as a naive |
| 824 | object. |
| 825 | |
| 826 | - ``datetime.timedelta`` → ``std::chrono::duration`` |
| 827 | Time delta are converted into durations with microsecond precision. |
| 828 | |
| 829 | - ``datetime.timedelta`` → ``std::chrono::[other_clocks]::time_point`` |
| 830 | Time deltas that are converted into clock timepoints are treated as |
| 831 | the amount of time from the start of the clocks epoch. |
| 832 | |
| 833 | - ``float`` → ``std::chrono::duration`` |
| 834 | Floats that are passed to C++ as durations be interpreted as a number of |
| 835 | seconds. These will be converted to the duration using ``duration_cast`` |
| 836 | from the float. |
| 837 | |
| 838 | - ``float`` → ``std::chrono::[other_clocks]::time_point`` |
| 839 | Floats that are passed to C++ as time points will be interpreted as the |
| 840 | number of seconds from the start of the clocks epoch. |
Trent Houliston | 352149e | 2016-08-25 23:08:04 +1000 | [diff] [blame] | 841 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 842 | Return value policies |
| 843 | ===================== |
| 844 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 845 | Python and C++ use wildly different ways of managing the memory and lifetime of |
| 846 | objects managed by them. This can lead to issues when creating bindings for |
| 847 | functions that return a non-trivial type. Just by looking at the type |
| 848 | information, it is not clear whether Python should take charge of the returned |
| 849 | value and eventually free its resources, or if this is handled on the C++ side. |
| 850 | For this reason, pybind11 provides a several `return value policy` annotations |
| 851 | that can be passed to the :func:`module::def` and :func:`class_::def` |
Wenzel Jakob | 61d67f0 | 2015-12-14 12:53:06 +0100 | [diff] [blame] | 852 | functions. The default policy is :enum:`return_value_policy::automatic`. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 853 | |
Wenzel Jakob | bf09958 | 2016-08-22 12:52:02 +0200 | [diff] [blame] | 854 | Return value policies can also be applied to properties, in which case the |
| 855 | arguments must be passed through the :class:`cpp_function` constructor: |
| 856 | |
| 857 | .. code-block:: cpp |
| 858 | |
| 859 | class_<MyClass>(m, "MyClass") |
| 860 | def_property("data" |
| 861 | py::cpp_function(&MyClass::getData, py::return_value_policy::copy), |
| 862 | py::cpp_function(&MyClass::setData) |
| 863 | ); |
| 864 | |
| 865 | The following table provides an overview of the available return value policies: |
| 866 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 867 | .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}| |
| 868 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 869 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 870 | | Return value policy | Description | |
| 871 | +==================================================+============================================================================+ |
| 872 | | :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy | |
| 873 | | | :enum:`return_value_policy::take_ownership` when the return value is a | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 874 | | | pointer. Otherwise, it uses :enum:`return_value::move` or | |
| 875 | | | :enum:`return_value::copy` for rvalue and lvalue references, respectively. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 876 | | | See below for a description of what all of these different policies do. | |
| 877 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 878 | | :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the | |
Wenzel Jakob | 37e1f61 | 2016-06-22 14:29:13 +0200 | [diff] [blame] | 879 | | | return value is a pointer. This is the default conversion policy for | |
| 880 | | | function arguments when calling Python functions manually from C++ code | |
| 881 | | | (i.e. via handle::operator()). You probably won't need to use this. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 882 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 883 | | :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take | |
| 884 | | | ownership. Python will call the destructor and delete operator when the | |
| 885 | | | object's reference count reaches zero. Undefined behavior ensues when the | |
Wenzel Jakob | f53e300 | 2016-06-30 14:59:23 +0200 | [diff] [blame] | 886 | | | C++ side does the same. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 887 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 888 | | :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. | |
| 889 | | | This policy is comparably safe because the lifetimes of the two instances | |
| 890 | | | are decoupled. | |
| 891 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 892 | | :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance | |
| 893 | | | that will be owned by Python. This policy is comparably safe because the | |
| 894 | | | lifetimes of the two instances (move source and destination) are decoupled.| |
| 895 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
| 896 | | :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is | |
| 897 | | | responsible for managing the object's lifetime and deallocating it when | |
| 898 | | | it is no longer used. Warning: undefined behavior will ensue when the C++ | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 899 | | | side deletes an object that is still referenced and used by Python. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 900 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
Wenzel Jakob | bf09958 | 2016-08-22 12:52:02 +0200 | [diff] [blame] | 901 | | :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime | |
| 902 | | | of a parent object, namely the implicit ``this``, or ``self`` argument of | |
| 903 | | | the called method or property. Internally, this policy works just like | |
| 904 | | | :enum:`return_value_policy::reference` but additionally applies a | |
| 905 | | | ``keep_alive<0, 1>`` *call policy* (described in the next section) that | |
| 906 | | | prevents the parent object from being garbage collected as long as the | |
| 907 | | | return value is referenced by Python. This is the default policy for | |
Trent Houliston | 10a6a90 | 2016-09-28 01:01:59 +1000 | [diff] [blame] | 908 | | | property getters created via ``def_property``, ``def_readwrite``, etc. | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 909 | +--------------------------------------------------+----------------------------------------------------------------------------+ |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 910 | |
Wenzel Jakob | fb6aed2 | 2016-07-18 20:29:53 +0200 | [diff] [blame] | 911 | .. warning:: |
| 912 | |
Jason Rhinelander | efc2aa7 | 2016-08-10 11:38:33 -0400 | [diff] [blame] | 913 | Code with invalid return value policies might access unitialized memory or |
| 914 | free data structures multiple times, which can lead to hard-to-debug |
Wenzel Jakob | fb6aed2 | 2016-07-18 20:29:53 +0200 | [diff] [blame] | 915 | non-determinism and segmentation faults, hence it is worth spending the |
| 916 | time to understand all the different options in the table above. |
| 917 | |
Jason Rhinelander | efc2aa7 | 2016-08-10 11:38:33 -0400 | [diff] [blame] | 918 | One important aspect of the above policies is that they only apply to instances |
| 919 | which pybind11 has *not* seen before, in which case the policy clarifies |
| 920 | essential questions about the return value's lifetime and ownership. When |
| 921 | pybind11 knows the instance already (as identified by its type and address in |
Wenzel Jakob | fb6aed2 | 2016-07-18 20:29:53 +0200 | [diff] [blame] | 922 | memory), it will return the existing Python object wrapper rather than creating |
Wenzel Jakob | bf09958 | 2016-08-22 12:52:02 +0200 | [diff] [blame] | 923 | a new copy. |
nafur | 717df75 | 2016-06-28 18:07:11 +0200 | [diff] [blame] | 924 | |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 925 | .. note:: |
| 926 | |
| 927 | The next section on :ref:`call_policies` discusses *call policies* that can be |
| 928 | specified *in addition* to a return value policy from the list above. Call |
| 929 | policies indicate reference relationships that can involve both return values |
| 930 | and parameters of functions. |
| 931 | |
| 932 | .. note:: |
| 933 | |
| 934 | As an alternative to elaborate call policies and lifetime management logic, |
| 935 | consider using smart pointers (see the section on :ref:`smart_pointers` for |
| 936 | details). Smart pointers can tell whether an object is still referenced from |
| 937 | C++ or Python, which generally eliminates the kinds of inconsistencies that |
| 938 | can lead to crashes or undefined behavior. For functions returning smart |
| 939 | pointers, it is not necessary to specify a return value policy. |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 940 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 941 | .. _call_policies: |
| 942 | |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 943 | Additional call policies |
| 944 | ======================== |
| 945 | |
| 946 | In addition to the above return value policies, further `call policies` can be |
| 947 | specified to indicate dependencies between parameters. There is currently just |
| 948 | one policy named ``keep_alive<Nurse, Patient>``, which indicates that the |
| 949 | argument with index ``Patient`` should be kept alive at least until the |
Wenzel Jakob | 0b63231 | 2016-08-18 10:58:21 +0200 | [diff] [blame] | 950 | argument with index ``Nurse`` is freed by the garbage collector. Argument |
| 951 | indices start at one, while zero refers to the return value. For methods, index |
| 952 | ``1`` refers to the implicit ``this`` pointer, while regular arguments begin at |
| 953 | index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse`` |
| 954 | with value ``None`` is detected at runtime, the call policy does nothing. |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 955 | |
Wenzel Jakob | 0b63231 | 2016-08-18 10:58:21 +0200 | [diff] [blame] | 956 | This feature internally relies on the ability to create a *weak reference* to |
| 957 | the nurse object, which is permitted by all classes exposed via pybind11. When |
| 958 | the nurse object does not support weak references, an exception will be thrown. |
| 959 | |
| 960 | Consider the following example: here, the binding code for a list append |
| 961 | operation ties the lifetime of the newly added element to the underlying |
| 962 | container: |
Wenzel Jakob | 5f218b3 | 2016-01-17 22:36:39 +0100 | [diff] [blame] | 963 | |
| 964 | .. code-block:: cpp |
| 965 | |
| 966 | py::class_<List>(m, "List") |
| 967 | .def("append", &List::append, py::keep_alive<1, 2>()); |
| 968 | |
| 969 | .. note:: |
| 970 | |
| 971 | ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse, |
| 972 | Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient == |
| 973 | 0) policies from Boost.Python. |
| 974 | |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 975 | .. seealso:: |
| 976 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 977 | The file :file:`tests/test_keep_alive.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 978 | that demonstrates using :class:`keep_alive` in more detail. |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 979 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 980 | Implicit type conversions |
| 981 | ========================= |
| 982 | |
| 983 | Suppose that instances of two types ``A`` and ``B`` are used in a project, and |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 984 | that an ``A`` can easily be converted into an instance of type ``B`` (examples of this |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 985 | could be a fixed and an arbitrary precision number type). |
| 986 | |
| 987 | .. code-block:: cpp |
| 988 | |
| 989 | py::class_<A>(m, "A") |
| 990 | /// ... members ... |
| 991 | |
| 992 | py::class_<B>(m, "B") |
| 993 | .def(py::init<A>()) |
| 994 | /// ... members ... |
| 995 | |
| 996 | m.def("func", |
| 997 | [](const B &) { /* .... */ } |
| 998 | ); |
| 999 | |
| 1000 | To invoke the function ``func`` using a variable ``a`` containing an ``A`` |
| 1001 | instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++ |
| 1002 | will automatically apply an implicit type conversion, which makes it possible |
| 1003 | to directly write ``func(a)``. |
| 1004 | |
| 1005 | In this situation (i.e. where ``B`` has a constructor that converts from |
| 1006 | ``A``), the following statement enables similar implicit conversions on the |
| 1007 | Python side: |
| 1008 | |
| 1009 | .. code-block:: cpp |
| 1010 | |
| 1011 | py::implicitly_convertible<A, B>(); |
| 1012 | |
Wenzel Jakob | 3eeea6f | 2016-06-30 18:10:28 +0200 | [diff] [blame] | 1013 | .. note:: |
| 1014 | |
| 1015 | Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom |
| 1016 | data type that is exposed to Python via pybind11. |
| 1017 | |
Wenzel Jakob | f88af0c | 2016-06-22 13:52:31 +0200 | [diff] [blame] | 1018 | .. _static_properties: |
| 1019 | |
| 1020 | Static properties |
| 1021 | ================= |
| 1022 | |
| 1023 | The section on :ref:`properties` discussed the creation of instance properties |
| 1024 | that are implemented in terms of C++ getters and setters. |
| 1025 | |
| 1026 | Static properties can also be created in a similar way to expose getters and |
| 1027 | setters of static class attributes. It is important to note that the implicit |
| 1028 | ``self`` argument also exists in this case and is used to pass the Python |
| 1029 | ``type`` subclass instance. This parameter will often not be needed by the C++ |
| 1030 | side, and the following example illustrates how to instantiate a lambda getter |
| 1031 | function that ignores it: |
| 1032 | |
| 1033 | .. code-block:: cpp |
| 1034 | |
| 1035 | py::class_<Foo>(m, "Foo") |
| 1036 | .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); }); |
| 1037 | |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 1038 | Unique pointers |
| 1039 | =============== |
| 1040 | |
| 1041 | Given a class ``Example`` with Python bindings, it's possible to return |
| 1042 | instances wrapped in C++11 unique pointers, like so |
| 1043 | |
| 1044 | .. code-block:: cpp |
| 1045 | |
| 1046 | std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); } |
| 1047 | |
| 1048 | .. code-block:: cpp |
| 1049 | |
| 1050 | m.def("create_example", &create_example); |
| 1051 | |
| 1052 | In other words, there is nothing special that needs to be done. While returning |
| 1053 | unique pointers in this way is allowed, it is *illegal* to use them as function |
| 1054 | arguments. For instance, the following function signature cannot be processed |
| 1055 | by pybind11. |
| 1056 | |
| 1057 | .. code-block:: cpp |
| 1058 | |
| 1059 | void do_something_with_example(std::unique_ptr<Example> ex) { ... } |
| 1060 | |
| 1061 | The above signature would imply that Python needs to give up ownership of an |
| 1062 | object that is passed to this function, which is generally not possible (for |
| 1063 | instance, the object might be referenced elsewhere). |
| 1064 | |
Wenzel Jakob | f7b5874 | 2016-04-25 23:04:27 +0200 | [diff] [blame] | 1065 | .. _smart_pointers: |
| 1066 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1067 | Smart pointers |
| 1068 | ============== |
| 1069 | |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 1070 | This section explains how to pass values that are wrapped in "smart" pointer |
Wenzel Jakob | e84f557 | 2016-04-26 23:19:19 +0200 | [diff] [blame] | 1071 | types with internal reference counting. For the simpler C++11 unique pointers, |
| 1072 | refer to the previous section. |
Wenzel Jakob | 9f0dfce | 2016-04-06 17:38:18 +0200 | [diff] [blame] | 1073 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 1074 | The binding generator for classes, :class:`class_`, can be passed a template |
| 1075 | type that denotes a special *holder* type that is used to manage references to |
| 1076 | the object. If no such holder type template argument is given, the default for |
| 1077 | a type named ``Type`` is ``std::unique_ptr<Type>``, which means that the object |
| 1078 | is deallocated when Python's reference count goes to zero. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1079 | |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 1080 | It is possible to switch to other types of reference counting wrappers or smart |
| 1081 | pointers, which is useful in codebases that rely on them. For instance, the |
| 1082 | following snippet causes ``std::shared_ptr`` to be used instead. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1083 | |
| 1084 | .. code-block:: cpp |
| 1085 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1086 | py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example"); |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1087 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1088 | Note that any particular class can only be associated with a single holder type. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1089 | |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 1090 | To enable transparent conversions for functions that take shared pointers as an |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1091 | argument or that return them, a macro invocation similar to the following must |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 1092 | be declared at the top level before any binding code: |
| 1093 | |
| 1094 | .. code-block:: cpp |
| 1095 | |
Wenzel Jakob | b1b7140 | 2015-10-18 16:48:30 +0200 | [diff] [blame] | 1096 | PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>); |
Wenzel Jakob | 1853b65 | 2015-10-18 15:38:50 +0200 | [diff] [blame] | 1097 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1098 | .. note:: |
Wenzel Jakob | 61d67f0 | 2015-12-14 12:53:06 +0100 | [diff] [blame] | 1099 | |
| 1100 | The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a |
| 1101 | placeholder name that is used as a template parameter of the second |
| 1102 | argument. Thus, feel free to use any identifier, but use it consistently on |
| 1103 | both sides; also, don't use the name of a type that already exists in your |
| 1104 | codebase. |
| 1105 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1106 | One potential stumbling block when using holder types is that they need to be |
| 1107 | applied consistently. Can you guess what's broken about the following binding |
| 1108 | code? |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 1109 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1110 | .. code-block:: cpp |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 1111 | |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 1112 | PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>); |
| 1113 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1114 | class Child { }; |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1115 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1116 | class Parent { |
| 1117 | public: |
| 1118 | Parent() : child(std::make_shared<Child>()) { } |
| 1119 | Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */ |
| 1120 | private: |
| 1121 | std::shared_ptr<Child> child; |
| 1122 | }; |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1123 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1124 | PYBIND11_PLUGIN(example) { |
| 1125 | py::module m("example"); |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1126 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1127 | py::class_<Child, std::shared_ptr<Child>>(m, "Child"); |
| 1128 | |
| 1129 | py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent") |
| 1130 | .def(py::init<>()) |
| 1131 | .def("get_child", &Parent::get_child); |
| 1132 | |
| 1133 | return m.ptr(); |
| 1134 | } |
| 1135 | |
| 1136 | The following Python code will cause undefined behavior (and likely a |
| 1137 | segmentation fault). |
| 1138 | |
| 1139 | .. code-block:: python |
| 1140 | |
| 1141 | from example import Parent |
| 1142 | print(Parent().get_child()) |
| 1143 | |
| 1144 | The problem is that ``Parent::get_child()`` returns a pointer to an instance of |
| 1145 | ``Child``, but the fact that this instance is already managed by |
| 1146 | ``std::shared_ptr<...>`` is lost when passing raw pointers. In this case, |
| 1147 | pybind11 will create a second independent ``std::shared_ptr<...>`` that also |
| 1148 | claims ownership of the pointer. In the end, the object will be freed **twice** |
| 1149 | since these shared pointers have no way of knowing about each other. |
| 1150 | |
| 1151 | There are two ways to resolve this issue: |
| 1152 | |
| 1153 | 1. For types that are managed by a smart pointer class, never use raw pointers |
| 1154 | in function arguments or return values. In other words: always consistently |
| 1155 | wrap pointers into their designated holder types (such as |
| 1156 | ``std::shared_ptr<...>``). In this case, the signature of ``get_child()`` |
| 1157 | should be modified as follows: |
| 1158 | |
| 1159 | .. code-block:: cpp |
| 1160 | |
| 1161 | std::shared_ptr<Child> get_child() { return child; } |
| 1162 | |
| 1163 | 2. Adjust the definition of ``Child`` by specifying |
| 1164 | ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a |
| 1165 | base class. This adds a small bit of information to ``Child`` that allows |
| 1166 | pybind11 to realize that there is already an existing |
| 1167 | ``std::shared_ptr<...>`` and communicate with it. In this case, the |
| 1168 | declaration of ``Child`` should look as follows: |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1169 | |
Wenzel Jakob | 6e213c9 | 2015-11-24 23:05:58 +0100 | [diff] [blame] | 1170 | .. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this |
| 1171 | |
Wenzel Jakob | b2c2c79 | 2016-01-17 22:36:40 +0100 | [diff] [blame] | 1172 | .. code-block:: cpp |
| 1173 | |
| 1174 | class Child : public std::enable_shared_from_this<Child> { }; |
| 1175 | |
Wenzel Jakob | 9bb97c1 | 2016-06-03 11:19:41 +0200 | [diff] [blame] | 1176 | |
| 1177 | Please take a look at the :ref:`macro_notes` before using this feature. |
| 1178 | |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1179 | .. seealso:: |
| 1180 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1181 | The file :file:`tests/test_smart_ptr.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1182 | that demonstrates how to work with custom reference-counting holder types |
| 1183 | in more detail. |
Wenzel Jakob | 5ef1219 | 2015-12-15 17:07:35 +0100 | [diff] [blame] | 1184 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1185 | .. _custom_constructors: |
| 1186 | |
| 1187 | Custom constructors |
| 1188 | =================== |
| 1189 | |
| 1190 | The syntax for binding constructors was previously introduced, but it only |
| 1191 | works when a constructor with the given parameters actually exists on the C++ |
| 1192 | side. To extend this to more general cases, let's take a look at what actually |
| 1193 | happens under the hood: the following statement |
| 1194 | |
| 1195 | .. code-block:: cpp |
| 1196 | |
| 1197 | py::class_<Example>(m, "Example") |
| 1198 | .def(py::init<int>()); |
| 1199 | |
| 1200 | is short hand notation for |
| 1201 | |
| 1202 | .. code-block:: cpp |
| 1203 | |
| 1204 | py::class_<Example>(m, "Example") |
| 1205 | .def("__init__", |
| 1206 | [](Example &instance, int arg) { |
| 1207 | new (&instance) Example(arg); |
| 1208 | } |
| 1209 | ); |
| 1210 | |
| 1211 | In other words, :func:`init` creates an anonymous function that invokes an |
| 1212 | in-place constructor. Memory allocation etc. is already take care of beforehand |
| 1213 | within pybind11. |
| 1214 | |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1215 | .. _classes_with_non_public_destructors: |
| 1216 | |
| 1217 | Classes with non-public destructors |
| 1218 | =================================== |
| 1219 | |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1220 | If a class has a private or protected destructor (as might e.g. be the case in |
| 1221 | a singleton pattern), a compile error will occur when creating bindings via |
| 1222 | pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that |
| 1223 | is responsible for managing the lifetime of instances will reference the |
| 1224 | destructor even if no deallocations ever take place. In order to expose classes |
| 1225 | with private or protected destructors, it is possible to override the holder |
Jason Rhinelander | 5fffe20 | 2016-09-06 12:17:06 -0400 | [diff] [blame] | 1226 | type via a holder type argument to ``class_``. Pybind11 provides a helper class |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1227 | ``py::nodelete`` that disables any destructor invocations. In this case, it is |
| 1228 | crucial that instances are deallocated on the C++ side to avoid memory leaks. |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1229 | |
| 1230 | .. code-block:: cpp |
| 1231 | |
| 1232 | /* ... definition ... */ |
| 1233 | |
| 1234 | class MyClass { |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1235 | private: |
| 1236 | ~MyClass() { } |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1237 | }; |
| 1238 | |
| 1239 | /* ... binding code ... */ |
| 1240 | |
Wenzel Jakob | 5e4e477 | 2016-08-28 02:03:15 +0200 | [diff] [blame] | 1241 | py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass") |
Nickolai Belakovski | 6333825 | 2016-08-27 11:57:55 -0700 | [diff] [blame] | 1242 | .def(py::init<>) |
| 1243 | |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1244 | .. _catching_and_throwing_exceptions: |
| 1245 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1246 | Catching and throwing exceptions |
| 1247 | ================================ |
| 1248 | |
| 1249 | When C++ code invoked from Python throws an ``std::exception``, it is |
| 1250 | automatically converted into a Python ``Exception``. pybind11 defines multiple |
| 1251 | special exception classes that will map to different types of Python |
| 1252 | exceptions: |
| 1253 | |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 1254 | .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}| |
| 1255 | |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1256 | +--------------------------------------+------------------------------+ |
| 1257 | | C++ exception type | Python exception type | |
| 1258 | +======================================+==============================+ |
| 1259 | | :class:`std::exception` | ``RuntimeError`` | |
| 1260 | +--------------------------------------+------------------------------+ |
| 1261 | | :class:`std::bad_alloc` | ``MemoryError`` | |
| 1262 | +--------------------------------------+------------------------------+ |
| 1263 | | :class:`std::domain_error` | ``ValueError`` | |
| 1264 | +--------------------------------------+------------------------------+ |
| 1265 | | :class:`std::invalid_argument` | ``ValueError`` | |
| 1266 | +--------------------------------------+------------------------------+ |
| 1267 | | :class:`std::length_error` | ``ValueError`` | |
| 1268 | +--------------------------------------+------------------------------+ |
| 1269 | | :class:`std::out_of_range` | ``ValueError`` | |
| 1270 | +--------------------------------------+------------------------------+ |
| 1271 | | :class:`std::range_error` | ``ValueError`` | |
| 1272 | +--------------------------------------+------------------------------+ |
| 1273 | | :class:`pybind11::stop_iteration` | ``StopIteration`` (used to | |
| 1274 | | | implement custom iterators) | |
| 1275 | +--------------------------------------+------------------------------+ |
| 1276 | | :class:`pybind11::index_error` | ``IndexError`` (used to | |
| 1277 | | | indicate out of bounds | |
| 1278 | | | accesses in ``__getitem__``, | |
| 1279 | | | ``__setitem__``, etc.) | |
| 1280 | +--------------------------------------+------------------------------+ |
Sergey Lyskov | a95bde1 | 2016-05-08 19:31:55 -0400 | [diff] [blame] | 1281 | | :class:`pybind11::value_error` | ``ValueError`` (used to | |
| 1282 | | | indicate wrong value passed | |
| 1283 | | | in ``container.remove(...)`` | |
| 1284 | +--------------------------------------+------------------------------+ |
Jason Rhinelander | 5aa85be | 2016-08-11 21:22:05 -0400 | [diff] [blame] | 1285 | | :class:`pybind11::key_error` | ``KeyError`` (used to | |
| 1286 | | | indicate out of bounds | |
| 1287 | | | accesses in ``__getitem__``, | |
| 1288 | | | ``__setitem__`` in dict-like | |
| 1289 | | | objects, etc.) | |
| 1290 | +--------------------------------------+------------------------------+ |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1291 | | :class:`pybind11::error_already_set` | Indicates that the Python | |
| 1292 | | | exception flag has already | |
| 1293 | | | been initialized | |
| 1294 | +--------------------------------------+------------------------------+ |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1295 | |
| 1296 | When a Python function invoked from C++ throws an exception, it is converted |
| 1297 | into a C++ exception of type :class:`error_already_set` whose string payload |
| 1298 | contains a textual summary. |
| 1299 | |
| 1300 | There is also a special exception :class:`cast_error` that is thrown by |
| 1301 | :func:`handle::call` when the input arguments cannot be converted to Python |
| 1302 | objects. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1303 | |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1304 | Registering custom exception translators |
| 1305 | ======================================== |
| 1306 | |
| 1307 | If the default exception conversion policy described |
| 1308 | :ref:`above <catching_and_throwing_exceptions>` |
| 1309 | is insufficient, pybind11 also provides support for registering custom |
| 1310 | exception translators. |
| 1311 | |
Jason Rhinelander | b3794f1 | 2016-09-16 02:04:15 -0400 | [diff] [blame] | 1312 | To register a simple exception conversion that translates a C++ exception into |
| 1313 | a new Python exception using the C++ exception's ``what()`` method, a helper |
| 1314 | function is available: |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1315 | |
| 1316 | .. code-block:: cpp |
| 1317 | |
Jason Rhinelander | b3794f1 | 2016-09-16 02:04:15 -0400 | [diff] [blame] | 1318 | py::register_exception<CppExp>(module, "PyExp"); |
| 1319 | |
| 1320 | This call creates a Python exception class with the name ``PyExp`` in the given |
| 1321 | module and automatically converts any encountered exceptions of type ``CppExp`` |
| 1322 | into Python exceptions of type ``PyExp``. |
| 1323 | |
| 1324 | When more advanced exception translation is needed, the function |
| 1325 | ``py::register_exception_translator(translator)`` can be used to register |
| 1326 | functions that can translate arbitrary exception types (and which may include |
| 1327 | additional logic to do so). The function takes a stateless callable (e.g. a |
| 1328 | function pointer or a lambda function without captured variables) with the call |
| 1329 | signature ``void(std::exception_ptr)``. |
| 1330 | |
| 1331 | When a C++ exception is thrown, the registered exception translators are tried |
| 1332 | in reverse order of registration (i.e. the last registered translator gets the |
| 1333 | first shot at handling the exception). |
| 1334 | |
| 1335 | Inside the translator, ``std::rethrow_exception`` should be used within |
| 1336 | a try block to re-throw the exception. One or more catch clauses to catch |
| 1337 | the appropriate exceptions should then be used with each clause using |
| 1338 | ``PyErr_SetString`` to set a Python exception or ``ex(string)`` to set |
| 1339 | the python exception to a custom exception type (see below). |
| 1340 | |
| 1341 | To declare a custom Python exception type, declare a ``py::exception`` variable |
| 1342 | and use this in the associated exception translator (note: it is often useful |
| 1343 | to make this a static declaration when using it inside a lambda expression |
| 1344 | without requiring capturing). |
| 1345 | |
| 1346 | |
| 1347 | The following example demonstrates this for a hypothetical exception classes |
| 1348 | ``MyCustomException`` and ``OtherException``: the first is translated to a |
| 1349 | custom python exception ``MyCustomError``, while the second is translated to a |
| 1350 | standard python RuntimeError: |
| 1351 | |
| 1352 | .. code-block:: cpp |
| 1353 | |
| 1354 | static py::exception<MyCustomException> exc(m, "MyCustomError"); |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1355 | py::register_exception_translator([](std::exception_ptr p) { |
| 1356 | try { |
| 1357 | if (p) std::rethrow_exception(p); |
| 1358 | } catch (const MyCustomException &e) { |
Jason Rhinelander | b3794f1 | 2016-09-16 02:04:15 -0400 | [diff] [blame] | 1359 | exc(e.what()); |
| 1360 | } catch (const OtherException &e) { |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1361 | PyErr_SetString(PyExc_RuntimeError, e.what()); |
| 1362 | } |
| 1363 | }); |
| 1364 | |
Jason Rhinelander | b3794f1 | 2016-09-16 02:04:15 -0400 | [diff] [blame] | 1365 | Multiple exceptions can be handled by a single translator, as shown in the |
| 1366 | example above. If the exception is not caught by the current translator, the |
| 1367 | previously registered one gets a chance. |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1368 | |
| 1369 | If none of the registered exception translators is able to handle the |
| 1370 | exception, it is handled by the default converter as described in the previous |
| 1371 | section. |
| 1372 | |
Jason Rhinelander | b3794f1 | 2016-09-16 02:04:15 -0400 | [diff] [blame] | 1373 | .. seealso:: |
| 1374 | |
| 1375 | The file :file:`tests/test_exceptions.cpp` contains examples |
| 1376 | of various custom exception translators and custom exception types. |
| 1377 | |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1378 | .. note:: |
| 1379 | |
Jason Rhinelander | b3794f1 | 2016-09-16 02:04:15 -0400 | [diff] [blame] | 1380 | You must call either ``PyErr_SetString`` or a custom exception's call |
| 1381 | operator (``exc(string)``) for every exception caught in a custom exception |
| 1382 | translator. Failure to do so will cause Python to crash with ``SystemError: |
| 1383 | error return without exception set``. |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1384 | |
Jason Rhinelander | b3794f1 | 2016-09-16 02:04:15 -0400 | [diff] [blame] | 1385 | Exceptions that you do not plan to handle should simply not be caught, or |
| 1386 | may be explicity (re-)thrown to delegate it to the other, |
| 1387 | previously-declared existing exception translators. |
Pim Schellart | 5a7d17f | 2016-06-17 17:35:59 -0400 | [diff] [blame] | 1388 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1389 | .. _eigen: |
| 1390 | |
| 1391 | Transparent conversion of dense and sparse Eigen data types |
| 1392 | =========================================================== |
| 1393 | |
| 1394 | Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to |
| 1395 | its popularity and widespread adoption, pybind11 provides transparent |
| 1396 | conversion support between Eigen and Scientific Python linear algebra data types. |
| 1397 | |
| 1398 | Specifically, when including the optional header file :file:`pybind11/eigen.h`, |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1399 | pybind11 will automatically and transparently convert |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1400 | |
| 1401 | 1. Static and dynamic Eigen dense vectors and matrices to instances of |
| 1402 | ``numpy.ndarray`` (and vice versa). |
| 1403 | |
Jason Rhinelander | b68d8fc | 2016-08-04 16:39:30 -0400 | [diff] [blame] | 1404 | 2. Returned matrix expressions such as blocks (including columns or rows) and |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1405 | diagonals will be converted to ``numpy.ndarray`` of the expression |
| 1406 | values. |
| 1407 | |
Jason Rhinelander | b68d8fc | 2016-08-04 16:39:30 -0400 | [diff] [blame] | 1408 | 3. Returned matrix-like objects such as Eigen::DiagonalMatrix or |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1409 | Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the |
| 1410 | expressed value. |
| 1411 | |
Jason Rhinelander | b68d8fc | 2016-08-04 16:39:30 -0400 | [diff] [blame] | 1412 | 4. Eigen sparse vectors and matrices to instances of |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1413 | ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa). |
| 1414 | |
| 1415 | This makes it possible to bind most kinds of functions that rely on these types. |
| 1416 | One major caveat are functions that take Eigen matrices *by reference* and modify |
| 1417 | them somehow, in which case the information won't be propagated to the caller. |
| 1418 | |
| 1419 | .. code-block:: cpp |
| 1420 | |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1421 | /* The Python bindings of these functions won't replicate |
| 1422 | the intended effect of modifying the function arguments */ |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1423 | void scale_by_2(Eigen::Vector3f &v) { |
Jason Rhinelander | 9ffb3dd | 2016-08-04 15:24:41 -0400 | [diff] [blame] | 1424 | v *= 2; |
| 1425 | } |
| 1426 | void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) { |
| 1427 | v *= 2; |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1428 | } |
| 1429 | |
| 1430 | To see why this is, refer to the section on :ref:`opaque` (although that |
| 1431 | section specifically covers STL data types, the underlying issue is the same). |
| 1432 | The next two sections discuss an efficient alternative for exposing the |
| 1433 | underlying native Eigen types as opaque objects in a way that still integrates |
| 1434 | with NumPy and SciPy. |
| 1435 | |
| 1436 | .. [#f1] http://eigen.tuxfamily.org |
| 1437 | |
| 1438 | .. seealso:: |
| 1439 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1440 | The file :file:`tests/test_eigen.cpp` contains a complete example that |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1441 | shows how to pass Eigen sparse and dense data types in more detail. |
| 1442 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1443 | Buffer protocol |
| 1444 | =============== |
| 1445 | |
| 1446 | Python supports an extremely general and convenient approach for exchanging |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1447 | data between plugin libraries. Types can expose a buffer view [#f2]_, which |
| 1448 | provides fast direct access to the raw internal data representation. Suppose we |
| 1449 | want to bind the following simplistic Matrix class: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1450 | |
| 1451 | .. code-block:: cpp |
| 1452 | |
| 1453 | class Matrix { |
| 1454 | public: |
| 1455 | Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) { |
| 1456 | m_data = new float[rows*cols]; |
| 1457 | } |
| 1458 | float *data() { return m_data; } |
| 1459 | size_t rows() const { return m_rows; } |
| 1460 | size_t cols() const { return m_cols; } |
| 1461 | private: |
| 1462 | size_t m_rows, m_cols; |
| 1463 | float *m_data; |
| 1464 | }; |
| 1465 | |
| 1466 | The following binding code exposes the ``Matrix`` contents as a buffer object, |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 1467 | making it possible to cast Matrices into NumPy arrays. It is even possible to |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1468 | completely avoid copy operations with Python expressions like |
| 1469 | ``np.array(matrix_instance, copy = False)``. |
| 1470 | |
| 1471 | .. code-block:: cpp |
| 1472 | |
| 1473 | py::class_<Matrix>(m, "Matrix") |
| 1474 | .def_buffer([](Matrix &m) -> py::buffer_info { |
| 1475 | return py::buffer_info( |
Ivan Smirnov | 5e71e17 | 2016-06-26 12:42:34 +0100 | [diff] [blame] | 1476 | m.data(), /* Pointer to buffer */ |
| 1477 | sizeof(float), /* Size of one scalar */ |
| 1478 | py::format_descriptor<float>::format(), /* Python struct-style format descriptor */ |
| 1479 | 2, /* Number of dimensions */ |
| 1480 | { m.rows(), m.cols() }, /* Buffer dimensions */ |
| 1481 | { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */ |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1482 | sizeof(float) } |
| 1483 | ); |
| 1484 | }); |
| 1485 | |
| 1486 | The snippet above binds a lambda function, which can create ``py::buffer_info`` |
| 1487 | description records on demand describing a given matrix. The contents of |
| 1488 | ``py::buffer_info`` mirror the Python buffer protocol specification. |
| 1489 | |
| 1490 | .. code-block:: cpp |
| 1491 | |
| 1492 | struct buffer_info { |
| 1493 | void *ptr; |
| 1494 | size_t itemsize; |
| 1495 | std::string format; |
| 1496 | int ndim; |
| 1497 | std::vector<size_t> shape; |
| 1498 | std::vector<size_t> strides; |
| 1499 | }; |
| 1500 | |
| 1501 | To create a C++ function that can take a Python buffer object as an argument, |
| 1502 | simply use the type ``py::buffer`` as one of its arguments. Buffers can exist |
| 1503 | in a great variety of configurations, hence some safety checks are usually |
| 1504 | necessary in the function body. Below, you can see an basic example on how to |
| 1505 | define a custom constructor for the Eigen double precision matrix |
| 1506 | (``Eigen::MatrixXd``) type, which supports initialization from compatible |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1507 | buffer objects (e.g. a NumPy matrix). |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1508 | |
| 1509 | .. code-block:: cpp |
| 1510 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1511 | /* Bind MatrixXd (or some other Eigen type) to Python */ |
| 1512 | typedef Eigen::MatrixXd Matrix; |
| 1513 | |
| 1514 | typedef Matrix::Scalar Scalar; |
| 1515 | constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit; |
| 1516 | |
| 1517 | py::class_<Matrix>(m, "Matrix") |
| 1518 | .def("__init__", [](Matrix &m, py::buffer b) { |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1519 | typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides; |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1520 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1521 | /* Request a buffer descriptor from Python */ |
| 1522 | py::buffer_info info = b.request(); |
| 1523 | |
| 1524 | /* Some sanity checks ... */ |
Ivan Smirnov | 5e71e17 | 2016-06-26 12:42:34 +0100 | [diff] [blame] | 1525 | if (info.format != py::format_descriptor<Scalar>::format()) |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1526 | throw std::runtime_error("Incompatible format: expected a double array!"); |
| 1527 | |
| 1528 | if (info.ndim != 2) |
| 1529 | throw std::runtime_error("Incompatible buffer dimension!"); |
| 1530 | |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1531 | auto strides = Strides( |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1532 | info.strides[rowMajor ? 0 : 1] / sizeof(Scalar), |
| 1533 | info.strides[rowMajor ? 1 : 0] / sizeof(Scalar)); |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1534 | |
| 1535 | auto map = Eigen::Map<Matrix, 0, Strides>( |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1536 | static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides); |
Wenzel Jakob | e762853 | 2016-05-05 10:04:44 +0200 | [diff] [blame] | 1537 | |
| 1538 | new (&m) Matrix(map); |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1539 | }); |
| 1540 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1541 | For reference, the ``def_buffer()`` call for this Eigen data type should look |
| 1542 | as follows: |
| 1543 | |
| 1544 | .. code-block:: cpp |
| 1545 | |
| 1546 | .def_buffer([](Matrix &m) -> py::buffer_info { |
| 1547 | return py::buffer_info( |
| 1548 | m.data(), /* Pointer to buffer */ |
| 1549 | sizeof(Scalar), /* Size of one scalar */ |
| 1550 | /* Python struct-style format descriptor */ |
Ivan Smirnov | 5e71e17 | 2016-06-26 12:42:34 +0100 | [diff] [blame] | 1551 | py::format_descriptor<Scalar>::format(), |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1552 | /* Number of dimensions */ |
| 1553 | 2, |
| 1554 | /* Buffer dimensions */ |
| 1555 | { (size_t) m.rows(), |
| 1556 | (size_t) m.cols() }, |
| 1557 | /* Strides (in bytes) for each index */ |
| 1558 | { sizeof(Scalar) * (rowMajor ? m.cols() : 1), |
| 1559 | sizeof(Scalar) * (rowMajor ? 1 : m.rows()) } |
| 1560 | ); |
| 1561 | }) |
| 1562 | |
| 1563 | For a much easier approach of binding Eigen types (although with some |
| 1564 | limitations), refer to the section on :ref:`eigen`. |
| 1565 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1566 | .. seealso:: |
| 1567 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1568 | The file :file:`tests/test_buffers.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1569 | that demonstrates using the buffer protocol with pybind11 in more detail. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1570 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 1571 | .. [#f2] http://docs.python.org/3/c-api/buffer.html |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1572 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1573 | NumPy support |
| 1574 | ============= |
| 1575 | |
| 1576 | By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can |
| 1577 | restrict the function so that it only accepts NumPy arrays (rather than any |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1578 | type of Python object satisfying the buffer protocol). |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1579 | |
| 1580 | In many situations, we want to define a function which only accepts a NumPy |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1581 | array of a certain data type. This is possible via the ``py::array_t<T>`` |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1582 | template. For instance, the following function requires the argument to be a |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1583 | NumPy array containing double precision values. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1584 | |
| 1585 | .. code-block:: cpp |
| 1586 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1587 | void f(py::array_t<double> array); |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1588 | |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1589 | When it is invoked with a different type (e.g. an integer or a list of |
| 1590 | integers), the binding code will attempt to cast the input into a NumPy array |
| 1591 | of the requested type. Note that this feature requires the |
| 1592 | :file:``pybind11/numpy.h`` header to be included. |
| 1593 | |
| 1594 | Data in NumPy arrays is not guaranteed to packed in a dense manner; |
| 1595 | furthermore, entries can be separated by arbitrary column and row strides. |
| 1596 | Sometimes, it can be useful to require a function to only accept dense arrays |
| 1597 | using either the C (row-major) or Fortran (column-major) ordering. This can be |
| 1598 | accomplished via a second template argument with values ``py::array::c_style`` |
| 1599 | or ``py::array::f_style``. |
| 1600 | |
| 1601 | .. code-block:: cpp |
| 1602 | |
Wenzel Jakob | b47a9de | 2016-05-19 16:02:09 +0200 | [diff] [blame] | 1603 | void f(py::array_t<double, py::array::c_style | py::array::forcecast> array); |
Wenzel Jakob | f1032df | 2016-05-05 10:00:00 +0200 | [diff] [blame] | 1604 | |
Wenzel Jakob | b47a9de | 2016-05-19 16:02:09 +0200 | [diff] [blame] | 1605 | The ``py::array::forcecast`` argument is the default value of the second |
Jason Rhinelander | 20ef626 | 2016-09-21 13:39:02 -0400 | [diff] [blame] | 1606 | template parameter, and it ensures that non-conforming arguments are converted |
Wenzel Jakob | b47a9de | 2016-05-19 16:02:09 +0200 | [diff] [blame] | 1607 | into an array satisfying the specified requirements instead of trying the next |
| 1608 | function overload. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1609 | |
Ivan Smirnov | 223afe3 | 2016-07-02 15:33:04 +0100 | [diff] [blame] | 1610 | NumPy structured types |
| 1611 | ====================== |
| 1612 | |
| 1613 | In order for ``py::array_t`` to work with structured (record) types, we first need |
Ivan Smirnov | 5412a05 | 2016-07-02 16:18:42 +0100 | [diff] [blame] | 1614 | to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE`` |
Ivan Smirnov | 223afe3 | 2016-07-02 15:33:04 +0100 | [diff] [blame] | 1615 | macro which expects the type followed by field names: |
| 1616 | |
| 1617 | .. code-block:: cpp |
| 1618 | |
| 1619 | struct A { |
| 1620 | int x; |
| 1621 | double y; |
| 1622 | }; |
| 1623 | |
| 1624 | struct B { |
| 1625 | int z; |
| 1626 | A a; |
| 1627 | }; |
| 1628 | |
Ivan Smirnov | 5412a05 | 2016-07-02 16:18:42 +0100 | [diff] [blame] | 1629 | PYBIND11_NUMPY_DTYPE(A, x, y); |
| 1630 | PYBIND11_NUMPY_DTYPE(B, z, a); |
Ivan Smirnov | 223afe3 | 2016-07-02 15:33:04 +0100 | [diff] [blame] | 1631 | |
| 1632 | /* now both A and B can be used as template arguments to py::array_t */ |
| 1633 | |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1634 | Vectorizing functions |
| 1635 | ===================== |
| 1636 | |
| 1637 | Suppose we want to bind a function with the following signature to Python so |
| 1638 | that it can process arbitrary NumPy array arguments (vectors, matrices, general |
| 1639 | N-D arrays) in addition to its normal arguments: |
| 1640 | |
| 1641 | .. code-block:: cpp |
| 1642 | |
| 1643 | double my_func(int x, float y, double z); |
| 1644 | |
Wenzel Jakob | 8f4eb00 | 2015-10-15 18:13:33 +0200 | [diff] [blame] | 1645 | After including the ``pybind11/numpy.h`` header, this is extremely simple: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1646 | |
| 1647 | .. code-block:: cpp |
| 1648 | |
| 1649 | m.def("vectorized_func", py::vectorize(my_func)); |
| 1650 | |
| 1651 | Invoking the function like below causes 4 calls to be made to ``my_func`` with |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 1652 | each of the array elements. The significant advantage of this compared to |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1653 | solutions like ``numpy.vectorize()`` is that the loop over the elements runs |
| 1654 | entirely on the C++ side and can be crunched down into a tight, optimized loop |
| 1655 | by the compiler. The result is returned as a NumPy array of type |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1656 | ``numpy.dtype.float64``. |
| 1657 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 1658 | .. code-block:: pycon |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1659 | |
| 1660 | >>> x = np.array([[1, 3],[5, 7]]) |
| 1661 | >>> y = np.array([[2, 4],[6, 8]]) |
| 1662 | >>> z = 3 |
| 1663 | >>> result = vectorized_func(x, y, z) |
| 1664 | |
| 1665 | The scalar argument ``z`` is transparently replicated 4 times. The input |
| 1666 | arrays ``x`` and ``y`` are automatically converted into the right types (they |
| 1667 | are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and |
| 1668 | ``numpy.dtype.float32``, respectively) |
| 1669 | |
Wenzel Jakob | 8e93df8 | 2016-05-01 02:36:58 +0200 | [diff] [blame] | 1670 | Sometimes we might want to explicitly exclude an argument from the vectorization |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1671 | because it makes little sense to wrap it in a NumPy array. For instance, |
| 1672 | suppose the function signature was |
| 1673 | |
| 1674 | .. code-block:: cpp |
| 1675 | |
| 1676 | double my_func(int x, float y, my_custom_type *z); |
| 1677 | |
| 1678 | This can be done with a stateful Lambda closure: |
| 1679 | |
| 1680 | .. code-block:: cpp |
| 1681 | |
| 1682 | // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) |
| 1683 | m.def("vectorized_func", |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1684 | [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) { |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1685 | auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); }; |
| 1686 | return py::vectorize(stateful_closure)(x, y); |
| 1687 | } |
| 1688 | ); |
| 1689 | |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 1690 | In cases where the computation is too complicated to be reduced to |
| 1691 | ``vectorize``, it will be necessary to create and access the buffer contents |
| 1692 | manually. The following snippet contains a complete example that shows how this |
| 1693 | works (the code is somewhat contrived, since it could have been done more |
| 1694 | simply using ``vectorize``). |
| 1695 | |
| 1696 | .. code-block:: cpp |
| 1697 | |
| 1698 | #include <pybind11/pybind11.h> |
| 1699 | #include <pybind11/numpy.h> |
| 1700 | |
| 1701 | namespace py = pybind11; |
| 1702 | |
| 1703 | py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) { |
| 1704 | auto buf1 = input1.request(), buf2 = input2.request(); |
| 1705 | |
| 1706 | if (buf1.ndim != 1 || buf2.ndim != 1) |
| 1707 | throw std::runtime_error("Number of dimensions must be one"); |
| 1708 | |
Ivan Smirnov | b651859 | 2016-08-13 13:28:56 +0100 | [diff] [blame] | 1709 | if (buf1.size != buf2.size) |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 1710 | throw std::runtime_error("Input shapes must match"); |
| 1711 | |
Ivan Smirnov | b651859 | 2016-08-13 13:28:56 +0100 | [diff] [blame] | 1712 | /* No pointer is passed, so NumPy will allocate the buffer */ |
| 1713 | auto result = py::array_t<double>(buf1.size); |
Wenzel Jakob | 6158716 | 2016-01-18 22:38:52 +0100 | [diff] [blame] | 1714 | |
| 1715 | auto buf3 = result.request(); |
| 1716 | |
| 1717 | double *ptr1 = (double *) buf1.ptr, |
| 1718 | *ptr2 = (double *) buf2.ptr, |
| 1719 | *ptr3 = (double *) buf3.ptr; |
| 1720 | |
| 1721 | for (size_t idx = 0; idx < buf1.shape[0]; idx++) |
| 1722 | ptr3[idx] = ptr1[idx] + ptr2[idx]; |
| 1723 | |
| 1724 | return result; |
| 1725 | } |
| 1726 | |
| 1727 | PYBIND11_PLUGIN(test) { |
| 1728 | py::module m("test"); |
| 1729 | m.def("add_arrays", &add_arrays, "Add two NumPy arrays"); |
| 1730 | return m.ptr(); |
| 1731 | } |
| 1732 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1733 | .. seealso:: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1734 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1735 | The file :file:`tests/test_numpy_vectorize.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1736 | example that demonstrates using :func:`vectorize` in more detail. |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1737 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1738 | Functions taking Python objects as arguments |
| 1739 | ============================================ |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1740 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1741 | pybind11 exposes all major Python types using thin C++ wrapper classes. These |
| 1742 | wrapper classes can also be used as parameters of functions in bindings, which |
| 1743 | makes it possible to directly work with native Python types on the C++ side. |
| 1744 | For instance, the following statement iterates over a Python ``dict``: |
Wenzel Jakob | 28f98aa | 2015-10-13 02:57:16 +0200 | [diff] [blame] | 1745 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1746 | .. code-block:: cpp |
| 1747 | |
| 1748 | void print_dict(py::dict dict) { |
| 1749 | /* Easily interact with Python types */ |
| 1750 | for (auto item : dict) |
| 1751 | std::cout << "key=" << item.first << ", " |
| 1752 | << "value=" << item.second << std::endl; |
| 1753 | } |
| 1754 | |
| 1755 | Available types include :class:`handle`, :class:`object`, :class:`bool_`, |
Wenzel Jakob | 27e8e10 | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1756 | :class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`, |
Wenzel Jakob | f64feaf | 2016-04-28 14:33:45 +0200 | [diff] [blame] | 1757 | :class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`, |
| 1758 | :class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`, |
| 1759 | :class:`array`, and :class:`array_t`. |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1760 | |
Wenzel Jakob | 436b731 | 2015-10-20 01:04:30 +0200 | [diff] [blame] | 1761 | In this kind of mixed code, it is often necessary to convert arbitrary C++ |
| 1762 | types to Python, which can be done using :func:`cast`: |
| 1763 | |
| 1764 | .. code-block:: cpp |
| 1765 | |
| 1766 | MyClass *cls = ..; |
| 1767 | py::object obj = py::cast(cls); |
| 1768 | |
| 1769 | The reverse direction uses the following syntax: |
| 1770 | |
| 1771 | .. code-block:: cpp |
| 1772 | |
| 1773 | py::object obj = ...; |
| 1774 | MyClass *cls = obj.cast<MyClass *>(); |
| 1775 | |
| 1776 | When conversion fails, both directions throw the exception :class:`cast_error`. |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1777 | It is also possible to call python functions via ``operator()``. |
| 1778 | |
| 1779 | .. code-block:: cpp |
| 1780 | |
| 1781 | py::function f = <...>; |
| 1782 | py::object result_py = f(1234, "hello", some_instance); |
| 1783 | MyClass &result = result_py.cast<MyClass>(); |
| 1784 | |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1785 | Keyword arguments are also supported. In Python, there is the usual call syntax: |
| 1786 | |
| 1787 | .. code-block:: python |
| 1788 | |
| 1789 | def f(number, say, to): |
| 1790 | ... # function code |
| 1791 | |
| 1792 | f(1234, say="hello", to=some_instance) # keyword call in Python |
| 1793 | |
| 1794 | In C++, the same call can be made using: |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1795 | |
| 1796 | .. code-block:: cpp |
| 1797 | |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1798 | using pybind11::literals; // to bring in the `_a` literal |
| 1799 | f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++ |
| 1800 | |
| 1801 | Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with |
| 1802 | other arguments: |
| 1803 | |
| 1804 | .. code-block:: cpp |
| 1805 | |
| 1806 | // * unpacking |
| 1807 | py::tuple args = py::make_tuple(1234, "hello", some_instance); |
| 1808 | f(*args); |
| 1809 | |
| 1810 | // ** unpacking |
| 1811 | py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance); |
| 1812 | f(**kwargs); |
| 1813 | |
| 1814 | // mixed keywords, * and ** unpacking |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1815 | py::tuple args = py::make_tuple(1234); |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1816 | py::dict kwargs = py::dict("to"_a=some_instance); |
| 1817 | f(*args, "say"_a="hello", **kwargs); |
| 1818 | |
| 1819 | Generalized unpacking according to PEP448_ is also supported: |
| 1820 | |
| 1821 | .. code-block:: cpp |
| 1822 | |
| 1823 | py::dict kwargs1 = py::dict("number"_a=1234); |
| 1824 | py::dict kwargs2 = py::dict("to"_a=some_instance); |
| 1825 | f(**kwargs1, "say"_a="hello", **kwargs2); |
Wenzel Jakob | 436b731 | 2015-10-20 01:04:30 +0200 | [diff] [blame] | 1826 | |
Wenzel Jakob | 9329669 | 2015-10-13 23:21:54 +0200 | [diff] [blame] | 1827 | .. seealso:: |
| 1828 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1829 | The file :file:`tests/test_python_types.cpp` contains a complete |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1830 | example that demonstrates passing native Python types in more detail. The |
Dean Moldovan | 625bd48 | 2016-09-02 16:40:49 +0200 | [diff] [blame] | 1831 | file :file:`tests/test_callbacks.cpp` presents a few examples of calling |
| 1832 | Python functions from C++, including keywords arguments and unpacking. |
| 1833 | |
| 1834 | .. _PEP448: https://www.python.org/dev/peps/pep-0448/ |
| 1835 | |
| 1836 | Using Python's print function in C++ |
| 1837 | ==================================== |
| 1838 | |
| 1839 | The usual way to write output in C++ is using ``std::cout`` while in Python one |
| 1840 | would use ``print``. Since these methods use different buffers, mixing them can |
| 1841 | lead to output order issues. To resolve this, pybind11 modules can use the |
| 1842 | :func:`py::print` function which writes to Python's ``sys.stdout`` for consistency. |
| 1843 | |
| 1844 | Python's ``print`` function is replicated in the C++ API including optional |
| 1845 | keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as |
| 1846 | expected in Python: |
| 1847 | |
| 1848 | .. code-block:: cpp |
| 1849 | |
| 1850 | py::print(1, 2.0, "three"); // 1 2.0 three |
| 1851 | py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three |
| 1852 | |
| 1853 | auto args = py::make_tuple("unpacked", true); |
| 1854 | py::print("->", *args, "end"_a="<-"); // -> unpacked True <- |
Wenzel Jakob | 2ac5044 | 2016-01-17 22:36:35 +0100 | [diff] [blame] | 1855 | |
| 1856 | Default arguments revisited |
| 1857 | =========================== |
| 1858 | |
| 1859 | The section on :ref:`default_args` previously discussed basic usage of default |
| 1860 | arguments using pybind11. One noteworthy aspect of their implementation is that |
| 1861 | default arguments are converted to Python objects right at declaration time. |
| 1862 | Consider the following example: |
| 1863 | |
| 1864 | .. code-block:: cpp |
| 1865 | |
| 1866 | py::class_<MyClass>("MyClass") |
| 1867 | .def("myFunction", py::arg("arg") = SomeType(123)); |
| 1868 | |
| 1869 | In this case, pybind11 must already be set up to deal with values of the type |
| 1870 | ``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an |
| 1871 | exception will be thrown. |
| 1872 | |
| 1873 | Another aspect worth highlighting is that the "preview" of the default argument |
| 1874 | in the function signature is generated using the object's ``__repr__`` method. |
| 1875 | If not available, the signature may not be very helpful, e.g.: |
| 1876 | |
Wenzel Jakob | 99279f7 | 2016-06-03 11:19:29 +0200 | [diff] [blame] | 1877 | .. code-block:: pycon |
Wenzel Jakob | 2ac5044 | 2016-01-17 22:36:35 +0100 | [diff] [blame] | 1878 | |
| 1879 | FUNCTIONS |
| 1880 | ... |
| 1881 | | myFunction(...) |
Wenzel Jakob | 48548ea | 2016-01-17 22:36:44 +0100 | [diff] [blame] | 1882 | | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType |
Wenzel Jakob | 2ac5044 | 2016-01-17 22:36:35 +0100 | [diff] [blame] | 1883 | ... |
| 1884 | |
| 1885 | The first way of addressing this is by defining ``SomeType.__repr__``. |
| 1886 | Alternatively, it is possible to specify the human-readable preview of the |
| 1887 | default argument manually using the ``arg_t`` notation: |
| 1888 | |
| 1889 | .. code-block:: cpp |
| 1890 | |
| 1891 | py::class_<MyClass>("MyClass") |
| 1892 | .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)")); |
| 1893 | |
Wenzel Jakob | c769fce | 2016-03-03 12:03:30 +0100 | [diff] [blame] | 1894 | Sometimes it may be necessary to pass a null pointer value as a default |
| 1895 | argument. In this case, remember to cast it to the underlying type in question, |
| 1896 | like so: |
| 1897 | |
| 1898 | .. code-block:: cpp |
| 1899 | |
| 1900 | py::class_<MyClass>("MyClass") |
| 1901 | .def("myFunction", py::arg("arg") = (SomeType *) nullptr); |
| 1902 | |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1903 | Binding functions that accept arbitrary numbers of arguments and keywords arguments |
| 1904 | =================================================================================== |
| 1905 | |
| 1906 | Python provides a useful mechanism to define functions that accept arbitrary |
| 1907 | numbers of arguments and keyword arguments: |
| 1908 | |
| 1909 | .. code-block:: cpp |
| 1910 | |
| 1911 | def generic(*args, **kwargs): |
| 1912 | # .. do something with args and kwargs |
| 1913 | |
| 1914 | Such functions can also be created using pybind11: |
| 1915 | |
| 1916 | .. code-block:: cpp |
| 1917 | |
| 1918 | void generic(py::args args, py::kwargs kwargs) { |
| 1919 | /// .. do something with args |
| 1920 | if (kwargs) |
| 1921 | /// .. do something with kwargs |
| 1922 | } |
| 1923 | |
| 1924 | /// Binding code |
| 1925 | m.def("generic", &generic); |
| 1926 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 1927 | (See ``tests/test_kwargs_and_defaults.cpp``). The class ``py::args`` |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 1928 | derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note |
| 1929 | that the ``kwargs`` argument is invalid if no keyword arguments were actually |
| 1930 | provided. Please refer to the other examples for details on how to iterate |
| 1931 | over these, and on how to cast their entries into C++ objects. |
Wenzel Jakob | 178c8a8 | 2016-05-10 15:59:01 +0100 | [diff] [blame] | 1932 | |
Wenzel Jakob | 3764e28 | 2016-08-01 23:34:48 +0200 | [diff] [blame] | 1933 | .. warning:: |
| 1934 | |
| 1935 | Unlike Python, pybind11 does not allow combining normal parameters with the |
| 1936 | ``args`` / ``kwargs`` special parameters. |
| 1937 | |
Wenzel Jakob | 2dfbade | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1938 | Partitioning code over multiple extension modules |
| 1939 | ================================================= |
| 1940 | |
Wenzel Jakob | 90d2f5e | 2016-04-11 14:30:11 +0200 | [diff] [blame] | 1941 | It's straightforward to split binding code over multiple extension modules, |
| 1942 | while referencing types that are declared elsewhere. Everything "just" works |
| 1943 | without any special precautions. One exception to this rule occurs when |
| 1944 | extending a type declared in another extension module. Recall the basic example |
| 1945 | from Section :ref:`inheritance`. |
Wenzel Jakob | 2dfbade | 2016-01-17 22:36:37 +0100 | [diff] [blame] | 1946 | |
| 1947 | .. code-block:: cpp |
| 1948 | |
| 1949 | py::class_<Pet> pet(m, "Pet"); |
| 1950 | pet.def(py::init<const std::string &>()) |
| 1951 | .def_readwrite("name", &Pet::name); |
| 1952 | |
| 1953 | py::class_<Dog>(m, "Dog", pet /* <- specify parent */) |
| 1954 | .def(py::init<const std::string &>()) |
| 1955 | .def("bark", &Dog::bark); |
| 1956 | |
| 1957 | Suppose now that ``Pet`` bindings are defined in a module named ``basic``, |
| 1958 | whereas the ``Dog`` bindings are defined somewhere else. The challenge is of |
| 1959 | course that the variable ``pet`` is not available anymore though it is needed |
| 1960 | to indicate the inheritance relationship to the constructor of ``class_<Dog>``. |
| 1961 | However, it can be acquired as follows: |
| 1962 | |
| 1963 | .. code-block:: cpp |
| 1964 | |
| 1965 | py::object pet = (py::object) py::module::import("basic").attr("Pet"); |
| 1966 | |
| 1967 | py::class_<Dog>(m, "Dog", pet) |
| 1968 | .def(py::init<const std::string &>()) |
| 1969 | .def("bark", &Dog::bark); |
| 1970 | |
Jason Rhinelander | 6b52c83 | 2016-09-06 12:27:00 -0400 | [diff] [blame] | 1971 | Alternatively, you can specify the base class as a template parameter option to |
| 1972 | ``class_``, which performs an automated lookup of the corresponding Python |
| 1973 | type. Like the above code, however, this also requires invoking the ``import`` |
| 1974 | function once to ensure that the pybind11 binding code of the module ``basic`` |
| 1975 | has been executed: |
Wenzel Jakob | 8d862b3 | 2016-03-06 13:37:22 +0100 | [diff] [blame] | 1976 | |
Wenzel Jakob | 8d862b3 | 2016-03-06 13:37:22 +0100 | [diff] [blame] | 1977 | .. code-block:: cpp |
| 1978 | |
| 1979 | py::module::import("basic"); |
| 1980 | |
Jason Rhinelander | 6b52c83 | 2016-09-06 12:27:00 -0400 | [diff] [blame] | 1981 | py::class_<Dog, Pet>(m, "Dog") |
Wenzel Jakob | 8d862b3 | 2016-03-06 13:37:22 +0100 | [diff] [blame] | 1982 | .def(py::init<const std::string &>()) |
| 1983 | .def("bark", &Dog::bark); |
Wenzel Jakob | eda978e | 2016-03-15 15:05:40 +0100 | [diff] [blame] | 1984 | |
Wenzel Jakob | 978e376 | 2016-04-07 18:00:41 +0200 | [diff] [blame] | 1985 | Naturally, both methods will fail when there are cyclic dependencies. |
| 1986 | |
Wenzel Jakob | 90d2f5e | 2016-04-11 14:30:11 +0200 | [diff] [blame] | 1987 | Note that compiling code which has its default symbol visibility set to |
| 1988 | *hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the |
| 1989 | ability to access types defined in another extension module. Workarounds |
| 1990 | include changing the global symbol visibility (not recommended, because it will |
| 1991 | lead unnecessarily large binaries) or manually exporting types that are |
| 1992 | accessed by multiple extension modules: |
| 1993 | |
| 1994 | .. code-block:: cpp |
| 1995 | |
| 1996 | #ifdef _WIN32 |
| 1997 | # define EXPORT_TYPE __declspec(dllexport) |
| 1998 | #else |
| 1999 | # define EXPORT_TYPE __attribute__ ((visibility("default"))) |
| 2000 | #endif |
| 2001 | |
| 2002 | class EXPORT_TYPE Dog : public Animal { |
| 2003 | ... |
| 2004 | }; |
| 2005 | |
| 2006 | |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 2007 | Pickling support |
| 2008 | ================ |
| 2009 | |
| 2010 | Python's ``pickle`` module provides a powerful facility to serialize and |
| 2011 | de-serialize a Python object graph into a binary data stream. To pickle and |
Wenzel Jakob | 3d0e6ff | 2016-04-13 11:48:10 +0200 | [diff] [blame] | 2012 | unpickle C++ classes using pybind11, two additional functions must be provided. |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 2013 | Suppose the class in question has the following signature: |
| 2014 | |
| 2015 | .. code-block:: cpp |
| 2016 | |
| 2017 | class Pickleable { |
| 2018 | public: |
| 2019 | Pickleable(const std::string &value) : m_value(value) { } |
| 2020 | const std::string &value() const { return m_value; } |
| 2021 | |
| 2022 | void setExtra(int extra) { m_extra = extra; } |
| 2023 | int extra() const { return m_extra; } |
| 2024 | private: |
| 2025 | std::string m_value; |
| 2026 | int m_extra = 0; |
| 2027 | }; |
| 2028 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 2029 | The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_ |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 2030 | looks as follows: |
| 2031 | |
| 2032 | .. code-block:: cpp |
| 2033 | |
| 2034 | py::class_<Pickleable>(m, "Pickleable") |
| 2035 | .def(py::init<std::string>()) |
| 2036 | .def("value", &Pickleable::value) |
| 2037 | .def("extra", &Pickleable::extra) |
| 2038 | .def("setExtra", &Pickleable::setExtra) |
| 2039 | .def("__getstate__", [](const Pickleable &p) { |
| 2040 | /* Return a tuple that fully encodes the state of the object */ |
| 2041 | return py::make_tuple(p.value(), p.extra()); |
| 2042 | }) |
| 2043 | .def("__setstate__", [](Pickleable &p, py::tuple t) { |
| 2044 | if (t.size() != 2) |
| 2045 | throw std::runtime_error("Invalid state!"); |
| 2046 | |
Wenzel Jakob | d40885a | 2016-04-13 13:30:05 +0200 | [diff] [blame] | 2047 | /* Invoke the in-place constructor. Note that this is needed even |
| 2048 | when the object just has a trivial default constructor */ |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 2049 | new (&p) Pickleable(t[0].cast<std::string>()); |
| 2050 | |
| 2051 | /* Assign any additional state */ |
| 2052 | p.setExtra(t[1].cast<int>()); |
| 2053 | }); |
| 2054 | |
| 2055 | An instance can now be pickled as follows: |
| 2056 | |
| 2057 | .. code-block:: python |
| 2058 | |
| 2059 | try: |
| 2060 | import cPickle as pickle # Use cPickle on Python 2.7 |
| 2061 | except ImportError: |
| 2062 | import pickle |
| 2063 | |
| 2064 | p = Pickleable("test_value") |
| 2065 | p.setExtra(15) |
Wenzel Jakob | 81e0975 | 2016-04-30 23:13:03 +0200 | [diff] [blame] | 2066 | data = pickle.dumps(p, 2) |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 2067 | |
Wenzel Jakob | 81e0975 | 2016-04-30 23:13:03 +0200 | [diff] [blame] | 2068 | Note that only the cPickle module is supported on Python 2.7. The second |
| 2069 | argument to ``dumps`` is also crucial: it selects the pickle protocol version |
| 2070 | 2, since the older version 1 is not supported. Newer versions are also fine—for |
| 2071 | instance, specify ``-1`` to always use the latest available version. Beware: |
| 2072 | failure to follow these instructions will cause important pybind11 memory |
| 2073 | allocation routines to be skipped during unpickling, which will likely lead to |
| 2074 | memory corruption and/or segmentation faults. |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 2075 | |
| 2076 | .. seealso:: |
| 2077 | |
Dean Moldovan | ec0d38e | 2016-08-13 03:09:52 +0200 | [diff] [blame] | 2078 | The file :file:`tests/test_pickling.cpp` contains a complete example |
Jason Rhinelander | 3e2e44f | 2016-07-18 17:03:37 -0400 | [diff] [blame] | 2079 | that demonstrates how to pickle and unpickle types using pybind11 in more |
| 2080 | detail. |
Wenzel Jakob | 1c329aa | 2016-04-13 02:37:36 +0200 | [diff] [blame] | 2081 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 2082 | .. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 2083 | |
| 2084 | Generating documentation using Sphinx |
| 2085 | ===================================== |
| 2086 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 2087 | Sphinx [#f4]_ has the ability to inspect the signatures and documentation |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 2088 | strings in pybind11-based extension modules to automatically generate beautiful |
Wenzel Jakob | ca8dc08 | 2016-06-03 14:24:17 +0200 | [diff] [blame] | 2089 | documentation in a variety formats. The python_example repository [#f5]_ contains a |
Wenzel Jakob | ef7a9b9 | 2016-04-13 18:41:59 +0200 | [diff] [blame] | 2090 | simple example repository which uses this approach. |
| 2091 | |
| 2092 | There are two potential gotchas when using this approach: first, make sure that |
| 2093 | the resulting strings do not contain any :kbd:`TAB` characters, which break the |
| 2094 | docstring parsing routines. You may want to use C++11 raw string literals, |
| 2095 | which are convenient for multi-line comments. Conveniently, any excess |
| 2096 | indentation will be automatically be removed by Sphinx. However, for this to |
| 2097 | work, it is important that all lines are indented consistently, i.e.: |
| 2098 | |
| 2099 | .. code-block:: cpp |
| 2100 | |
| 2101 | // ok |
| 2102 | m.def("foo", &foo, R"mydelimiter( |
| 2103 | The foo function |
| 2104 | |
| 2105 | Parameters |
| 2106 | ---------- |
| 2107 | )mydelimiter"); |
| 2108 | |
| 2109 | // *not ok* |
| 2110 | m.def("foo", &foo, R"mydelimiter(The foo function |
| 2111 | |
| 2112 | Parameters |
| 2113 | ---------- |
| 2114 | )mydelimiter"); |
| 2115 | |
Wenzel Jakob | 9e0a056 | 2016-05-05 20:33:54 +0200 | [diff] [blame] | 2116 | .. [#f4] http://www.sphinx-doc.org |
Wenzel Jakob | ca8dc08 | 2016-06-03 14:24:17 +0200 | [diff] [blame] | 2117 | .. [#f5] http://github.com/pybind/python_example |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2118 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2119 | Evaluating Python expressions from strings and files |
| 2120 | ==================================================== |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2121 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2122 | pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate |
| 2123 | Python expressions and statements. The following example illustrates how they |
| 2124 | can be used. |
| 2125 | |
| 2126 | Both functions accept a template parameter that describes how the argument |
| 2127 | should be interpreted. Possible choices include ``eval_expr`` (isolated |
| 2128 | expression), ``eval_single_statement`` (a single statement, return value is |
| 2129 | always ``none``), and ``eval_statements`` (sequence of statements, return value |
| 2130 | is always ``none``). |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2131 | |
| 2132 | .. code-block:: cpp |
| 2133 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2134 | // At beginning of file |
| 2135 | #include <pybind11/eval.h> |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2136 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2137 | ... |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2138 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2139 | // Evaluate in scope of main module |
| 2140 | py::object scope = py::module::import("__main__").attr("__dict__"); |
Klemens Morgenstern | c6ad2c4 | 2016-06-09 16:10:26 +0200 | [diff] [blame] | 2141 | |
Wenzel Jakob | 0d3fc35 | 2016-07-08 10:52:10 +0200 | [diff] [blame] | 2142 | // Evaluate an isolated expression |
| 2143 | int result = py::eval("my_variable + 10", scope).cast<int>(); |
| 2144 | |
| 2145 | // Evaluate a sequence of statements |
| 2146 | py::eval<py::eval_statements>( |
| 2147 | "print('Hello')\n" |
| 2148 | "print('world!');", |
| 2149 | scope); |
| 2150 | |
| 2151 | // Evaluate the statements in an separate Python file on disk |
| 2152 | py::eval_file("script.py", scope); |
Wenzel Jakob | 48ce072 | 2016-09-06 14:13:22 +0900 | [diff] [blame] | 2153 | |
| 2154 | Development of custom type casters |
| 2155 | ================================== |
| 2156 | |
| 2157 | In very rare cases, applications may require custom type casters that cannot be |
| 2158 | expressed using the abstractions provided by pybind11, thus requiring raw |
| 2159 | Python C API calls. This is fairly advanced usage and should only be pursued by |
| 2160 | experts who are familiar with the intricacies of Python reference counting. |
| 2161 | |
| 2162 | The following snippets demonstrate how this works for a very simple ``inty`` |
| 2163 | type that that should be convertible from Python types that provide a |
| 2164 | ``__int__(self)`` method. |
| 2165 | |
| 2166 | .. code-block:: cpp |
| 2167 | |
| 2168 | struct inty { long long_value; }; |
| 2169 | |
| 2170 | void print(inty s) { |
| 2171 | std::cout << s.long_value << std::endl; |
| 2172 | } |
| 2173 | |
| 2174 | The following Python snippet demonstrates the intended usage from the Python side: |
| 2175 | |
| 2176 | .. code-block:: python |
| 2177 | |
| 2178 | class A: |
| 2179 | def __int__(self): |
| 2180 | return 123 |
| 2181 | |
| 2182 | from example import print |
| 2183 | print(A()) |
| 2184 | |
| 2185 | To register the necessary conversion routines, it is necessary to add |
| 2186 | a partial overload to the ``pybind11::detail::type_caster<T>`` template. |
| 2187 | Although this is an implementation detail, adding partial overloads to this |
| 2188 | type is explicitly allowed. |
| 2189 | |
| 2190 | .. code-block:: cpp |
| 2191 | |
| 2192 | namespace pybind11 { |
| 2193 | namespace detail { |
| 2194 | template <> struct type_caster<inty> { |
| 2195 | public: |
| 2196 | /** |
| 2197 | * This macro establishes the name 'inty' in |
| 2198 | * function signatures and declares a local variable |
| 2199 | * 'value' of type inty |
| 2200 | */ |
| 2201 | PYBIND11_TYPE_CASTER(inty, _("inty")); |
| 2202 | |
| 2203 | /** |
| 2204 | * Conversion part 1 (Python->C++): convert a PyObject into a inty |
| 2205 | * instance or return false upon failure. The second argument |
| 2206 | * indicates whether implicit conversions should be applied. |
| 2207 | */ |
| 2208 | bool load(handle src, bool) { |
| 2209 | /* Extract PyObject from handle */ |
| 2210 | PyObject *source = src.ptr(); |
| 2211 | /* Try converting into a Python integer value */ |
| 2212 | PyObject *tmp = PyNumber_Long(source); |
| 2213 | if (!tmp) |
| 2214 | return false; |
| 2215 | /* Now try to convert into a C++ int */ |
| 2216 | value.long_value = PyLong_AsLong(tmp); |
| 2217 | Py_DECREF(tmp); |
| 2218 | /* Ensure return code was OK (to avoid out-of-range errors etc) */ |
| 2219 | return !(value.long_value == -1 && !PyErr_Occurred()); |
| 2220 | } |
| 2221 | |
| 2222 | /** |
| 2223 | * Conversion part 2 (C++ -> Python): convert an inty instance into |
| 2224 | * a Python object. The second and third arguments are used to |
| 2225 | * indicate the return value policy and parent object (for |
| 2226 | * ``return_value_policy::reference_internal``) and are generally |
| 2227 | * ignored by implicit casters. |
| 2228 | */ |
| 2229 | static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) { |
| 2230 | return PyLong_FromLong(src.long_value); |
| 2231 | } |
| 2232 | }; |
| 2233 | } |
| 2234 | }; |
Wenzel Jakob | 8e5dceb | 2016-09-11 20:00:40 +0900 | [diff] [blame] | 2235 | |
| 2236 | Multiple Inheritance |
| 2237 | ==================== |
| 2238 | |
| 2239 | pybind11 can create bindings for types that derive from multiple base types |
| 2240 | (aka. *multiple inheritance*). To do so, specify all bases in the template |
| 2241 | arguments of the ``class_`` declaration: |
| 2242 | |
| 2243 | .. code-block:: cpp |
| 2244 | |
| 2245 | py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType") |
| 2246 | ... |
| 2247 | |
| 2248 | The base types can be specified in arbitrary order, and they can even be |
| 2249 | interspersed with alias types and holder types (discussed earlier in this |
| 2250 | document)---pybind11 will automatically find out which is which. The only |
| 2251 | requirement is that the first template argument is the type to be declared. |
| 2252 | |
| 2253 | There are two caveats regarding the implementation of this feature: |
| 2254 | |
| 2255 | 1. When only one base type is specified for a C++ type that actually has |
| 2256 | multiple bases, pybind11 will assume that it does not participate in |
| 2257 | multiple inheritance, which can lead to undefined behavior. In such cases, |
| 2258 | add the tag ``multiple_inheritance``: |
| 2259 | |
| 2260 | .. code-block:: cpp |
| 2261 | |
| 2262 | py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance()); |
| 2263 | |
| 2264 | The tag is redundant and does not need to be specified when multiple base |
| 2265 | types are listed. |
| 2266 | |
| 2267 | 2. As was previously discussed in the section on :ref:`overriding_virtuals`, it |
| 2268 | is easy to create Python types that derive from C++ classes. It is even |
| 2269 | possible to make use of multiple inheritance to declare a Python class which |
| 2270 | has e.g. a C++ and a Python class as bases. However, any attempt to create a |
| 2271 | type that has *two or more* C++ classes in its hierarchy of base types will |
| 2272 | fail with a fatal error message: ``TypeError: multiple bases have instance |
| 2273 | lay-out conflict``. Core Python types that are implemented in C (e.g. |
| 2274 | ``dict``, ``list``, ``Exception``, etc.) also fall under this combination |
| 2275 | and cannot be combined with C++ types bound using pybind11 via multiple |
| 2276 | inheritance. |