blob: 7cdfce8455928b8bde5bb5fccfa45593f3172d67 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Misha Brukmanb1c93172005-04-21 23:48:37 +00006//
John Criswell482202a2003-10-20 19:43:21 +00007//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00008//
9// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000010// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000011//
12// For example: 4 + (x + 5) -> x + (4 + 5)
13//
Chris Lattnerc0f58002002-05-08 22:19:27 +000014// In the implementation of this algorithm, constants are assigned rank = 0,
15// function arguments are rank = 1, and other values are assigned ranks
16// corresponding to the reverse post order traversal of current function
17// (starting at 2), which effectively gives values in deep loops higher rank
18// than values not in loops.
19//
20//===----------------------------------------------------------------------===//
21
Justin Bognerc2bf63d2016-04-26 23:39:29 +000022#include "llvm/Transforms/Scalar/Reassociate.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000023#include "llvm/ADT/APFloat.h"
24#include "llvm/ADT/APInt.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000025#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/PostOrderIterator.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000027#include "llvm/ADT/SetVector.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000028#include "llvm/ADT/SmallPtrSet.h"
Fiona Glaserb8a330c2017-12-12 19:18:02 +000029#include "llvm/ADT/SmallSet.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000030#include "llvm/ADT/SmallVector.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000031#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000032#include "llvm/Analysis/GlobalsModRef.h"
David Blaikie31b98d22018-06-04 21:23:21 +000033#include "llvm/Transforms/Utils/Local.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000034#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000035#include "llvm/IR/Argument.h"
36#include "llvm/IR/BasicBlock.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000037#include "llvm/IR/CFG.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000038#include "llvm/IR/Constant.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000039#include "llvm/IR/Constants.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000040#include "llvm/IR/Function.h"
41#include "llvm/IR/IRBuilder.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000042#include "llvm/IR/InstrTypes.h"
43#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000044#include "llvm/IR/Instructions.h"
Bjorn Petterssonbec2a7c2018-04-25 09:23:56 +000045#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000046#include "llvm/IR/Operator.h"
47#include "llvm/IR/PassManager.h"
Craig Toppercbac691c2017-06-21 16:07:09 +000048#include "llvm/IR/PatternMatch.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000049#include "llvm/IR/Type.h"
50#include "llvm/IR/User.h"
51#include "llvm/IR/Value.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000052#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000053#include "llvm/Pass.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000054#include "llvm/Support/Casting.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000055#include "llvm/Support/Debug.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000056#include "llvm/Support/ErrorHandling.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000057#include "llvm/Support/raw_ostream.h"
Justin Bognerc2bf63d2016-04-26 23:39:29 +000058#include "llvm/Transforms/Scalar.h"
Chris Lattner1e506502005-05-07 21:59:39 +000059#include <algorithm>
Eugene Zelenko306d2992017-10-18 21:46:47 +000060#include <cassert>
61#include <utility>
62
Chris Lattner49525f82004-01-09 06:02:20 +000063using namespace llvm;
Justin Bognerc2bf63d2016-04-26 23:39:29 +000064using namespace reassociate;
Sanjay Pateldd1c3df2018-10-22 21:37:02 +000065using namespace PatternMatch;
Brian Gaeke960707c2003-11-11 22:41:34 +000066
Chandler Carruth964daaa2014-04-22 02:55:47 +000067#define DEBUG_TYPE "reassociate"
68
Chris Lattner79a42ac2006-12-19 21:40:18 +000069STATISTIC(NumChanged, "Number of insts reassociated");
70STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000072
Devang Patel702f45d2008-11-21 21:00:20 +000073#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000074/// Print out the expression identified in the Ops list.
Chris Lattner38abecb2009-12-31 18:40:32 +000075static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000076 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000077 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000078 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000079 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000080 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000081 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000082 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000083 }
Chris Lattner4c065092006-03-04 09:31:13 +000084}
Devang Patelcb181bb2008-11-21 20:00:59 +000085#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000086
Justin Bognerc2bf63d2016-04-26 23:39:29 +000087/// Utility class representing a non-constant Xor-operand. We classify
88/// non-constant Xor-Operands into two categories:
89/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
90/// C2)
91/// C2.1) The operand is in the form of "X | C", where C is a non-zero
92/// constant.
93/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94/// operand as "E | 0"
95class llvm::reassociate::XorOpnd {
96public:
97 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000098
Justin Bognerc2bf63d2016-04-26 23:39:29 +000099 bool isInvalid() const { return SymbolicPart == nullptr; }
100 bool isOrExpr() const { return isOr; }
101 Value *getValue() const { return OrigVal; }
102 Value *getSymbolicPart() const { return SymbolicPart; }
103 unsigned getSymbolicRank() const { return SymbolicRank; }
104 const APInt &getConstPart() const { return ConstPart; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000105
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000106 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000108
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000109private:
110 Value *OrigVal;
111 Value *SymbolicPart;
112 APInt ConstPart;
113 unsigned SymbolicRank;
114 bool isOr;
115};
Chris Lattnerc0f58002002-05-08 22:19:27 +0000116
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000117XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000118 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000119 OrigVal = V;
120 Instruction *I = dyn_cast<Instruction>(V);
121 SymbolicRank = 0;
122
123 if (I && (I->getOpcode() == Instruction::Or ||
124 I->getOpcode() == Instruction::And)) {
125 Value *V0 = I->getOperand(0);
126 Value *V1 = I->getOperand(1);
Craig Toppercbac691c2017-06-21 16:07:09 +0000127 const APInt *C;
Sanjay Pateldd1c3df2018-10-22 21:37:02 +0000128 if (match(V0, m_APInt(C)))
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000129 std::swap(V0, V1);
130
Sanjay Pateldd1c3df2018-10-22 21:37:02 +0000131 if (match(V1, m_APInt(C))) {
Craig Toppercbac691c2017-06-21 16:07:09 +0000132 ConstPart = *C;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000133 SymbolicPart = V0;
134 isOr = (I->getOpcode() == Instruction::Or);
135 return;
136 }
137 }
138
139 // view the operand as "V | 0"
140 SymbolicPart = V;
Craig Toppercbac691c2017-06-21 16:07:09 +0000141 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000142 isOr = true;
143}
144
Sanjay Patelc96ee082015-04-22 18:04:46 +0000145/// Return true if V is an instruction of the specified opcode and if it
146/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000147static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Sanjay Patel64fd3332017-11-14 23:03:56 +0000148 auto *I = dyn_cast<Instruction>(V);
149 if (I && I->hasOneUse() && I->getOpcode() == Opcode)
150 if (!isa<FPMathOperator>(I) || I->isFast())
151 return cast<BinaryOperator>(I);
Craig Topperf40110f2014-04-25 05:29:35 +0000152 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000153}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000154
Chad Rosier11ab9412014-08-14 15:23:01 +0000155static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
156 unsigned Opcode2) {
Sanjay Patel64fd3332017-11-14 23:03:56 +0000157 auto *I = dyn_cast<Instruction>(V);
158 if (I && I->hasOneUse() &&
159 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
160 if (!isa<FPMathOperator>(I) || I->isFast())
161 return cast<BinaryOperator>(I);
Chad Rosier11ab9412014-08-14 15:23:01 +0000162 return nullptr;
163}
164
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000165void ReassociatePass::BuildRankMap(Function &F,
166 ReversePostOrderTraversal<Function*> &RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000167 unsigned Rank = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000168
Chad Rosierf59e5482014-11-14 15:01:38 +0000169 // Assign distinct ranks to function arguments.
Davide Italianob53b0752017-08-07 01:57:21 +0000170 for (auto &Arg : F.args()) {
171 ValueRankMap[&Arg] = ++Rank;
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000172 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
173 << "\n");
Chad Rosierf59e5482014-11-14 15:01:38 +0000174 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000175
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000176 // Traverse basic blocks in ReversePostOrder
Benjamin Kramer135f7352016-06-26 12:28:59 +0000177 for (BasicBlock *BB : RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000178 unsigned BBRank = RankMap[BB] = ++Rank << 16;
Chris Lattner9f284e02005-05-08 20:57:04 +0000179
180 // Walk the basic block, adding precomputed ranks for any instructions that
181 // we cannot move. This ensures that the ranks for these instructions are
182 // all different in the block.
Benjamin Kramer135f7352016-06-26 12:28:59 +0000183 for (Instruction &I : *BB)
184 if (mayBeMemoryDependent(I))
185 ValueRankMap[&I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000186 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000187}
188
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000189unsigned ReassociatePass::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000190 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000191 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000192 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
193 return 0; // Otherwise it's a global or constant, rank 0.
194 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000195
Chris Lattner17229a72010-01-01 00:01:34 +0000196 if (unsigned Rank = ValueRankMap[I])
197 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000198
Chris Lattnerf43e9742005-05-07 04:08:02 +0000199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200 // we can reassociate expressions for code motion! Since we do not recurse
201 // for PHI nodes, we cannot have infinite recursion here, because there
202 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000203 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
Sanjay Patela2017872018-04-19 17:56:36 +0000204 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
Chris Lattnerf43e9742005-05-07 04:08:02 +0000205 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000206
Sanjay Patel5b6b0902018-10-23 15:55:06 +0000207 // If this is a 'not' or 'neg' instruction, do not count it for rank. This
Chris Lattner6e2086d2005-05-08 00:08:33 +0000208 // assures us that X and ~X will have the same rank.
Sanjay Patel5b6b0902018-10-23 15:55:06 +0000209 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
Cameron McInally678f43f2018-10-24 14:45:18 +0000210 !match(I, m_FNeg(m_Value())))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000211 ++Rank;
212
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000213 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
214 << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000215
Chris Lattner17229a72010-01-01 00:01:34 +0000216 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000217}
218
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000219// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000220void ReassociatePass::canonicalizeOperands(Instruction *I) {
Chad Rosierf8b55f12014-11-14 17:05:59 +0000221 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
222 assert(I->isCommutative() && "Expected commutative operator.");
223
224 Value *LHS = I->getOperand(0);
225 Value *RHS = I->getOperand(1);
Davide Italianoa5cdc222017-08-07 01:49:09 +0000226 if (LHS == RHS || isa<Constant>(RHS))
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000227 return;
Davide Italianoa5cdc222017-08-07 01:49:09 +0000228 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
Chad Rosierf8b55f12014-11-14 17:05:59 +0000229 cast<BinaryOperator>(I)->swapOperands();
230}
231
Chad Rosier11ab9412014-08-14 15:23:01 +0000232static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
233 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000234 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000235 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
236 else {
237 BinaryOperator *Res =
238 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
239 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
240 return Res;
241 }
242}
243
244static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
245 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000246 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000247 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
248 else {
249 BinaryOperator *Res =
250 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
251 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
252 return Res;
253 }
254}
255
256static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
257 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000258 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000259 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
260 else {
261 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
262 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
263 return Res;
264 }
265}
266
Sanjay Patelc96ee082015-04-22 18:04:46 +0000267/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000268static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000269 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000270 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
271 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000272
Chad Rosier11ab9412014-08-14 15:23:01 +0000273 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
274 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000275 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000276 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000277 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000278 return Res;
279}
280
Sanjay Patelc96ee082015-04-22 18:04:46 +0000281/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
282/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000283/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
284/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
285/// even x in Bitwidth-bit arithmetic.
286static unsigned CarmichaelShift(unsigned Bitwidth) {
287 if (Bitwidth < 3)
288 return Bitwidth - 1;
289 return Bitwidth - 2;
290}
291
Sanjay Patelc96ee082015-04-22 18:04:46 +0000292/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000293/// reducing the combined weight using any special properties of the operation.
294/// The existing weight LHS represents the computation X op X op ... op X where
295/// X occurs LHS times. The combined weight represents X op X op ... op X with
296/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
297/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
298/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
299static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
300 // If we were working with infinite precision arithmetic then the combined
301 // weight would be LHS + RHS. But we are using finite precision arithmetic,
302 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
303 // for nilpotent operations and addition, but not for idempotent operations
304 // and multiplication), so it is important to correctly reduce the combined
305 // weight back into range if wrapping would be wrong.
306
307 // If RHS is zero then the weight didn't change.
308 if (RHS.isMinValue())
309 return;
310 // If LHS is zero then the combined weight is RHS.
311 if (LHS.isMinValue()) {
312 LHS = RHS;
313 return;
314 }
315 // From this point on we know that neither LHS nor RHS is zero.
316
317 if (Instruction::isIdempotent(Opcode)) {
318 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
319 // weight of 1. Keeping weights at zero or one also means that wrapping is
320 // not a problem.
321 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
322 return; // Return a weight of 1.
323 }
324 if (Instruction::isNilpotent(Opcode)) {
325 // Nilpotent means X op X === 0, so reduce weights modulo 2.
326 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
327 LHS = 0; // 1 + 1 === 0 modulo 2.
328 return;
329 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000330 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000331 // TODO: Reduce the weight by exploiting nsw/nuw?
332 LHS += RHS;
333 return;
334 }
335
Chad Rosier11ab9412014-08-14 15:23:01 +0000336 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
337 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000338 unsigned Bitwidth = LHS.getBitWidth();
339 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
340 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
341 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
342 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
343 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
344 // which by a happy accident means that they can always be represented using
345 // Bitwidth bits.
346 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
347 // the Carmichael number).
348 if (Bitwidth > 3) {
349 /// CM - The value of Carmichael's lambda function.
350 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
351 // Any weight W >= Threshold can be replaced with W - CM.
352 APInt Threshold = CM + Bitwidth;
353 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
354 // For Bitwidth 4 or more the following sum does not overflow.
355 LHS += RHS;
356 while (LHS.uge(Threshold))
357 LHS -= CM;
358 } else {
359 // To avoid problems with overflow do everything the same as above but using
360 // a larger type.
361 unsigned CM = 1U << CarmichaelShift(Bitwidth);
362 unsigned Threshold = CM + Bitwidth;
363 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
364 "Weights not reduced!");
365 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
366 while (Total >= Threshold)
367 Total -= CM;
368 LHS = Total;
369 }
370}
371
Eugene Zelenko306d2992017-10-18 21:46:47 +0000372using RepeatedValue = std::pair<Value*, APInt>;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000373
Sanjay Patelc96ee082015-04-22 18:04:46 +0000374/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000375/// nodes in Ops along with their weights (how many times the leaf occurs). The
376/// original expression is the same as
377/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000378/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000379/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
380/// op
381/// ...
382/// op
383/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
384///
Duncan Sandsac852c72012-11-15 09:58:38 +0000385/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000386///
387/// This routine may modify the function, in which case it returns 'true'. The
388/// changes it makes may well be destructive, changing the value computed by 'I'
389/// to something completely different. Thus if the routine returns 'true' then
390/// you MUST either replace I with a new expression computed from the Ops array,
391/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000392///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000393/// A leaf node is either not a binary operation of the same kind as the root
394/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
395/// opcode), or is the same kind of binary operator but has a use which either
396/// does not belong to the expression, or does belong to the expression but is
397/// a leaf node. Every leaf node has at least one use that is a non-leaf node
398/// of the expression, while for non-leaf nodes (except for the root 'I') every
399/// use is a non-leaf node of the expression.
400///
401/// For example:
402/// expression graph node names
403///
404/// + | I
405/// / \ |
406/// + + | A, B
407/// / \ / \ |
408/// * + * | C, D, E
409/// / \ / \ / \ |
410/// + * | F, G
411///
412/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000413/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000414///
415/// The expression is maximal: if some instruction is a binary operator of the
416/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
417/// then the instruction also belongs to the expression, is not a leaf node of
418/// it, and its operands also belong to the expression (but may be leaf nodes).
419///
420/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
421/// order to ensure that every non-root node in the expression has *exactly one*
422/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000423/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000424/// RewriteExprTree to put the values back in if the routine indicates that it
425/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000426///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000427/// In the above example either the right operand of A or the left operand of B
428/// will be replaced by undef. If it is B's operand then this gives:
429///
430/// + | I
431/// / \ |
432/// + + | A, B - operand of B replaced with undef
433/// / \ \ |
434/// * + * | C, D, E
435/// / \ / \ / \ |
436/// + * | F, G
437///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000438/// Note that such undef operands can only be reached by passing through 'I'.
439/// For example, if you visit operands recursively starting from a leaf node
440/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000441/// which requires passing through a phi node.
442///
443/// Note that this routine may also mutate binary operators of the wrong type
444/// that have all uses inside the expression (i.e. only used by non-leaf nodes
445/// of the expression) if it can turn them into binary operators of the right
446/// type and thus make the expression bigger.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000447static bool LinearizeExprTree(BinaryOperator *I,
448 SmallVectorImpl<RepeatedValue> &Ops) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000449 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000450 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
451 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000452 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000453 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000454
455 // Visit all operands of the expression, keeping track of their weight (the
456 // number of paths from the expression root to the operand, or if you like
457 // the number of times that operand occurs in the linearized expression).
458 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
459 // while A has weight two.
460
461 // Worklist of non-leaf nodes (their operands are in the expression too) along
462 // with their weights, representing a certain number of paths to the operator.
463 // If an operator occurs in the worklist multiple times then we found multiple
464 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000465 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
466 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000467 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000468
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000469 // Leaves of the expression are values that either aren't the right kind of
470 // operation (eg: a constant, or a multiply in an add tree), or are, but have
471 // some uses that are not inside the expression. For example, in I = X + X,
472 // X = A + B, the value X has two uses (by I) that are in the expression. If
473 // X has any other uses, for example in a return instruction, then we consider
474 // X to be a leaf, and won't analyze it further. When we first visit a value,
475 // if it has more than one use then at first we conservatively consider it to
476 // be a leaf. Later, as the expression is explored, we may discover some more
477 // uses of the value from inside the expression. If all uses turn out to be
478 // from within the expression (and the value is a binary operator of the right
479 // kind) then the value is no longer considered to be a leaf, and its operands
480 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000481
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000482 // Leaves - Keeps track of the set of putative leaves as well as the number of
483 // paths to each leaf seen so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000484 using LeafMap = DenseMap<Value *, APInt>;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000485 LeafMap Leaves; // Leaf -> Total weight so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000486 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000487
488#ifndef NDEBUG
Eugene Zelenko306d2992017-10-18 21:46:47 +0000489 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000490#endif
491 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000492 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000493 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000494
495 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
496 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000497 APInt Weight = P.second; // Number of paths to this operand.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000498 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000499 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
500
501 // If this is a binary operation of the right kind with only one use then
502 // add its operands to the expression.
503 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000504 assert(Visited.insert(Op).second && "Not first visit!");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000505 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000506 Worklist.push_back(std::make_pair(BO, Weight));
507 continue;
508 }
509
510 // Appears to be a leaf. Is the operand already in the set of leaves?
511 LeafMap::iterator It = Leaves.find(Op);
512 if (It == Leaves.end()) {
513 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000514 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000515 if (!Op->hasOneUse()) {
516 // This value has uses not accounted for by the expression, so it is
517 // not safe to modify. Mark it as being a leaf.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000518 LLVM_DEBUG(dbgs()
519 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000520 LeafOrder.push_back(Op);
521 Leaves[Op] = Weight;
522 continue;
523 }
524 // No uses outside the expression, try morphing it.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000525 } else {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000526 // Already in the leaf map.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000527 assert(It != Leaves.end() && Visited.count(Op) &&
528 "In leaf map but not visited!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000529
530 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000531 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000532
Duncan Sands56514522012-07-26 09:26:40 +0000533#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000534 // The leaf already has one use from inside the expression. As we want
535 // exactly one such use, drop this new use of the leaf.
536 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
537 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000538 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000539
540 // If the leaf is a binary operation of the right kind and we now see
541 // that its multiple original uses were in fact all by nodes belonging
542 // to the expression, then no longer consider it to be a leaf and add
543 // its operands to the expression.
544 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000545 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000546 Worklist.push_back(std::make_pair(BO, It->second));
547 Leaves.erase(It);
548 continue;
549 }
Duncan Sands56514522012-07-26 09:26:40 +0000550#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000551
552 // If we still have uses that are not accounted for by the expression
553 // then it is not safe to modify the value.
554 if (!Op->hasOneUse())
555 continue;
556
557 // No uses outside the expression, try morphing it.
558 Weight = It->second;
559 Leaves.erase(It); // Since the value may be morphed below.
560 }
561
562 // At this point we have a value which, first of all, is not a binary
563 // expression of the right kind, and secondly, is only used inside the
564 // expression. This means that it can safely be modified. See if we
565 // can usefully morph it into an expression of the right kind.
566 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000567 cast<Instruction>(Op)->getOpcode() != Opcode
568 || (isa<FPMathOperator>(Op) &&
Sanjay Patel629c4112017-11-06 16:27:15 +0000569 !cast<Instruction>(Op)->isFast())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000570 "Should have been handled above!");
571 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
572
573 // If this is a multiply expression, turn any internal negations into
574 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000575 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
Sanjay Patel5b6b0902018-10-23 15:55:06 +0000576 if ((Opcode == Instruction::Mul && match(BO, m_Neg(m_Value()))) ||
Cameron McInally678f43f2018-10-24 14:45:18 +0000577 (Opcode == Instruction::FMul && match(BO, m_FNeg(m_Value())))) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000578 LLVM_DEBUG(dbgs()
579 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
Chad Rosier11ab9412014-08-14 15:23:01 +0000580 BO = LowerNegateToMultiply(BO);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000581 LLVM_DEBUG(dbgs() << *BO << '\n');
Chad Rosier11ab9412014-08-14 15:23:01 +0000582 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000583 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000584 continue;
585 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000586
587 // Failed to morph into an expression of the right type. This really is
588 // a leaf.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000589 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000590 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
591 LeafOrder.push_back(Op);
592 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000593 }
594 }
595
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000596 // The leaves, repeated according to their weights, represent the linearized
597 // form of the expression.
598 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
599 Value *V = LeafOrder[i];
600 LeafMap::iterator It = Leaves.find(V);
601 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000602 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000603 continue;
604 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000605 APInt Weight = It->second;
606 if (Weight.isMinValue())
607 // Leaf already output or weight reduction eliminated it.
608 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000609 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000610 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000611 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000612 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000613
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000614 // For nilpotent operations or addition there may be no operands, for example
615 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
616 // in both cases the weight reduces to 0 causing the value to be skipped.
617 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000618 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000619 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000620 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000621 }
622
Chad Rosiere53e8c82014-11-18 20:21:54 +0000623 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000624}
625
Sanjay Patelc96ee082015-04-22 18:04:46 +0000626/// Now that the operands for this expression tree are
627/// linearized and optimized, emit them in-order.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000628void ReassociatePass::RewriteExprTree(BinaryOperator *I,
629 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000630 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000631
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000632 // Since our optimizations should never increase the number of operations, the
633 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000634 // from the original expression tree, without creating any new instructions,
635 // though the rewritten expression may have a completely different topology.
636 // We take care to not change anything if the new expression will be the same
637 // as the original. If more than trivial changes (like commuting operands)
638 // were made then we are obliged to clear out any optional subclass data like
639 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000640
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000641 /// NodesToRewrite - Nodes from the original expression available for writing
642 /// the new expression into.
643 SmallVector<BinaryOperator*, 8> NodesToRewrite;
644 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000645 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000646
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000647 /// NotRewritable - The operands being written will be the leaves of the new
648 /// expression and must not be used as inner nodes (via NodesToRewrite) by
649 /// mistake. Inner nodes are always reassociable, and usually leaves are not
650 /// (if they were they would have been incorporated into the expression and so
651 /// would not be leaves), so most of the time there is no danger of this. But
652 /// in rare cases a leaf may become reassociable if an optimization kills uses
653 /// of it, or it may momentarily become reassociable during rewriting (below)
654 /// due it being removed as an operand of one of its uses. Ensure that misuse
655 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
656 /// leaves and refusing to reuse any of them as inner nodes.
657 SmallPtrSet<Value*, 8> NotRewritable;
658 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
659 NotRewritable.insert(Ops[i].Op);
660
Duncan Sands3c05cd32012-05-26 16:42:52 +0000661 // ExpressionChanged - Non-null if the rewritten expression differs from the
662 // original in some non-trivial way, requiring the clearing of optional flags.
663 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000664 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000665 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000666 // The last operation (which comes earliest in the IR) is special as both
667 // operands will come from Ops, rather than just one with the other being
668 // a subexpression.
669 if (i+2 == Ops.size()) {
670 Value *NewLHS = Ops[i].Op;
671 Value *NewRHS = Ops[i+1].Op;
672 Value *OldLHS = Op->getOperand(0);
673 Value *OldRHS = Op->getOperand(1);
674
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000675 if (NewLHS == OldLHS && NewRHS == OldRHS)
676 // Nothing changed, leave it alone.
677 break;
678
679 if (NewLHS == OldRHS && NewRHS == OldLHS) {
680 // The order of the operands was reversed. Swap them.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000681 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000682 Op->swapOperands();
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000683 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000684 MadeChange = true;
685 ++NumChanged;
686 break;
687 }
688
689 // The new operation differs non-trivially from the original. Overwrite
690 // the old operands with the new ones.
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000691 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000692 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000693 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
694 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000695 NodesToRewrite.push_back(BO);
696 Op->setOperand(0, NewLHS);
697 }
698 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000699 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
700 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000701 NodesToRewrite.push_back(BO);
702 Op->setOperand(1, NewRHS);
703 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000704 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000705
Duncan Sands3c05cd32012-05-26 16:42:52 +0000706 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000707 MadeChange = true;
708 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000709
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000710 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000711 }
Chris Lattner1e506502005-05-07 21:59:39 +0000712
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000713 // Not the last operation. The left-hand side will be a sub-expression
714 // while the right-hand side will be the current element of Ops.
715 Value *NewRHS = Ops[i].Op;
716 if (NewRHS != Op->getOperand(1)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000717 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000718 if (NewRHS == Op->getOperand(0)) {
719 // The new right-hand side was already present as the left operand. If
720 // we are lucky then swapping the operands will sort out both of them.
721 Op->swapOperands();
722 } else {
723 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000724 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
725 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000726 NodesToRewrite.push_back(BO);
727 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000728 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000729 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000730 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000731 MadeChange = true;
732 ++NumChanged;
733 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000734
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000735 // Now deal with the left-hand side. If this is already an operation node
736 // from the original expression then just rewrite the rest of the expression
737 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000738 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
739 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000740 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000741 continue;
742 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000743
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000744 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000745 // the left-hand side. If there are no nodes left then the optimizers made
746 // an expression with more nodes than the original! This usually means that
747 // they did something stupid but it might mean that the problem was just too
748 // hard (finding the mimimal number of multiplications needed to realize a
749 // multiplication expression is NP-complete). Whatever the reason, smart or
750 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000751 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000752 if (NodesToRewrite.empty()) {
753 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000754 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
755 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000756 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000757 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000758 } else {
759 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000760 }
761
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000762 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000763 Op->setOperand(0, NewOp);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000764 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000765 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000766 MadeChange = true;
767 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000768 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000769 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000770
Duncan Sands3c05cd32012-05-26 16:42:52 +0000771 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000772 // starting from the operator specified in ExpressionChanged, and compactify
773 // the operators to just before the expression root to guarantee that the
774 // expression tree is dominated by all of Ops.
775 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000776 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000777 // Preserve FastMathFlags.
778 if (isa<FPMathOperator>(I)) {
779 FastMathFlags Flags = I->getFastMathFlags();
780 ExpressionChanged->clearSubclassOptionalData();
781 ExpressionChanged->setFastMathFlags(Flags);
782 } else
783 ExpressionChanged->clearSubclassOptionalData();
784
Duncan Sands3c05cd32012-05-26 16:42:52 +0000785 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000786 break;
Bjorn Petterssonbec2a7c2018-04-25 09:23:56 +0000787
788 // Discard any debug info related to the expressions that has changed (we
789 // can leave debug infor related to the root, since the result of the
790 // expression tree should be the same even after reassociation).
Davide Italiano8ec77092018-12-10 22:17:04 +0000791 replaceDbgUsesWithUndef(ExpressionChanged);
Bjorn Petterssonbec2a7c2018-04-25 09:23:56 +0000792
Duncan Sands514db112012-06-27 14:19:00 +0000793 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000794 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Eugene Zelenko306d2992017-10-18 21:46:47 +0000795 } while (true);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000796
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000797 // Throw away any left over nodes from the original expression.
798 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000799 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000800}
801
Sanjay Patelc96ee082015-04-22 18:04:46 +0000802/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000803/// that computes the negative version of the value specified. The negative
804/// version of the value is returned, and BI is left pointing at the instruction
805/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000806/// Also add intermediate instructions to the redo list that are modified while
807/// pushing the negates through adds. These will be revisited to see if
808/// additional opportunities have been exposed.
809static Value *NegateValue(Value *V, Instruction *BI,
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +0000810 ReassociatePass::OrderedSet &ToRedo) {
Sanjay Pateld1becd02017-11-15 16:19:17 +0000811 if (auto *C = dyn_cast<Constant>(V))
812 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
813 ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000814
Chris Lattner7bc532d2002-05-16 04:37:07 +0000815 // We are trying to expose opportunity for reassociation. One of the things
816 // that we want to do to achieve this is to push a negation as deep into an
817 // expression chain as possible, to expose the add instructions. In practice,
818 // this means that we turn this:
819 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
820 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
821 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000822 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000823 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000824 if (BinaryOperator *I =
825 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000826 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000827 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
828 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000829 if (I->getOpcode() == Instruction::Add) {
830 I->setHasNoUnsignedWrap(false);
831 I->setHasNoSignedWrap(false);
832 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000833
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000834 // We must move the add instruction here, because the neg instructions do
835 // not dominate the old add instruction in general. By moving it, we are
836 // assured that the neg instructions we just inserted dominate the
837 // instruction we are about to insert after them.
838 //
839 I->moveBefore(BI);
840 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000841
842 // Add the intermediate negates to the redo list as processing them later
843 // could expose more reassociating opportunities.
844 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000845 return I;
846 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000847
Chris Lattnerfed33972009-12-31 20:34:32 +0000848 // Okay, we need to materialize a negated version of V with an instruction.
849 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000850 for (User *U : V->users()) {
Cameron McInally678f43f2018-10-24 14:45:18 +0000851 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
Chad Rosier11ab9412014-08-14 15:23:01 +0000852 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000853
854 // We found one! Now we have to make sure that the definition dominates
855 // this use. We do this by moving it to the entry block (if it is a
856 // non-instruction value) or right after the definition. These negates will
857 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000858 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000859
860 // Verify that the negate is in this function, V might be a constant expr.
861 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
862 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000863
Chris Lattnerfed33972009-12-31 20:34:32 +0000864 BasicBlock::iterator InsertPt;
865 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
866 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
867 InsertPt = II->getNormalDest()->begin();
868 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000869 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000870 }
871 while (isa<PHINode>(InsertPt)) ++InsertPt;
872 } else {
873 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
874 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000875 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000876 if (TheNeg->getOpcode() == Instruction::Sub) {
877 TheNeg->setHasNoUnsignedWrap(false);
878 TheNeg->setHasNoSignedWrap(false);
879 } else {
880 TheNeg->andIRFlags(BI);
881 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000882 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000883 return TheNeg;
884 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000885
886 // Insert a 'neg' instruction that subtracts the value from zero to get the
887 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000888 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
889 ToRedo.insert(NewNeg);
890 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000891}
892
Sanjay Patelc96ee082015-04-22 18:04:46 +0000893/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000894static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000895 // If this is a negation, we can't split it up!
Cameron McInally678f43f2018-10-24 14:45:18 +0000896 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
Chris Lattner902537c2008-02-17 20:44:51 +0000897 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000898
Chad Rosierbd64d462014-10-09 20:06:29 +0000899 // Don't breakup X - undef.
900 if (isa<UndefValue>(Sub->getOperand(1)))
901 return false;
902
Chris Lattner902537c2008-02-17 20:44:51 +0000903 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000904 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000905 Value *V0 = Sub->getOperand(0);
906 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
907 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000908 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000909 Value *V1 = Sub->getOperand(1);
910 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
911 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000912 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000913 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000914 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000915 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
916 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000917 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000918
Chris Lattner902537c2008-02-17 20:44:51 +0000919 return false;
920}
921
Sanjay Patelc96ee082015-04-22 18:04:46 +0000922/// If we have (X-Y), and if either X is an add, or if this is only used by an
923/// add, transform this into (X+(0-Y)) to promote better reassociation.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +0000924static BinaryOperator *BreakUpSubtract(Instruction *Sub,
925 ReassociatePass::OrderedSet &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000926 // Convert a subtract into an add and a neg instruction. This allows sub
927 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000928 //
Chris Lattnera5526832010-01-01 00:04:26 +0000929 // Calculate the negative value of Operand 1 of the sub instruction,
930 // and set it as the RHS of the add instruction we just made.
Owen Anderson2de9f542015-11-16 18:07:30 +0000931 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +0000932 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000933 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
934 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000935 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000936
937 // Everyone now refers to the add instruction.
938 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000939 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000940
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000941 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000942 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000943}
944
Sanjay Patelc96ee082015-04-22 18:04:46 +0000945/// If this is a shift of a reassociable multiply or is used by one, change
946/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000947static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
948 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
949 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000950
Duncan Sands3293f462012-06-08 20:15:33 +0000951 BinaryOperator *Mul =
952 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
953 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
954 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +0000955
956 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +0000957 Shl->replaceAllUsesWith(Mul);
958 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +0000959
960 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
961 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
962 // handling.
963 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
964 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
965 if (NSW && NUW)
966 Mul->setHasNoSignedWrap(true);
967 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +0000968 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000969}
970
Sanjay Patelc96ee082015-04-22 18:04:46 +0000971/// Scan backwards and forwards among values with the same rank as element i
972/// to see if X exists. If X does not exist, return i. This is useful when
973/// scanning for 'x' when we see '-x' because they both get the same rank.
Craig Topper99a2e892017-06-21 19:39:33 +0000974static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
975 unsigned i, Value *X) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000976 unsigned XRank = Ops[i].Rank;
977 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +0000978 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000979 if (Ops[j].Op == X)
980 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000981 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
982 if (Instruction *I2 = dyn_cast<Instruction>(X))
983 if (I1->isIdenticalTo(I2))
984 return j;
985 }
Chris Lattner0c59ac32010-01-01 01:13:15 +0000986 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +0000987 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000988 if (Ops[j].Op == X)
989 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000990 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
991 if (Instruction *I2 = dyn_cast<Instruction>(X))
992 if (I1->isIdenticalTo(I2))
993 return j;
994 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000995 return i;
996}
997
Sanjay Patelc96ee082015-04-22 18:04:46 +0000998/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +0000999/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001000static Value *EmitAddTreeOfValues(Instruction *I,
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001001 SmallVectorImpl<WeakTrackingVH> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +00001002 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001003
Chris Lattner4c065092006-03-04 09:31:13 +00001004 Value *V1 = Ops.back();
1005 Ops.pop_back();
1006 Value *V2 = EmitAddTreeOfValues(I, Ops);
Sanjay Patel0d660102017-11-09 18:14:24 +00001007 return CreateAdd(V2, V1, "reass.add", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001008}
1009
Sanjay Patelc96ee082015-04-22 18:04:46 +00001010/// If V is an expression tree that is a multiplication sequence,
1011/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +00001012/// remove Factor from the tree and return the new tree.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001013Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001014 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1015 if (!BO)
1016 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001017
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001018 SmallVector<RepeatedValue, 8> Tree;
1019 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001020 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001021 Factors.reserve(Tree.size());
1022 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1023 RepeatedValue E = Tree[i];
1024 Factors.append(E.second.getZExtValue(),
1025 ValueEntry(getRank(E.first), E.first));
1026 }
Chris Lattner4c065092006-03-04 09:31:13 +00001027
1028 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001029 bool NeedsNegate = false;
1030 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001031 if (Factors[i].Op == Factor) {
1032 FoundFactor = true;
1033 Factors.erase(Factors.begin()+i);
1034 break;
1035 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001036
Chris Lattner0c59ac32010-01-01 01:13:15 +00001037 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001038 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001039 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1040 if (FC1->getValue() == -FC2->getValue()) {
1041 FoundFactor = NeedsNegate = true;
1042 Factors.erase(Factors.begin()+i);
1043 break;
1044 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001045 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1046 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001047 const APFloat &F1 = FC1->getValueAPF();
Chad Rosier11ab9412014-08-14 15:23:01 +00001048 APFloat F2(FC2->getValueAPF());
1049 F2.changeSign();
1050 if (F1.compare(F2) == APFloat::cmpEqual) {
1051 FoundFactor = NeedsNegate = true;
1052 Factors.erase(Factors.begin() + i);
1053 break;
1054 }
1055 }
1056 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001057 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001058
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001059 if (!FoundFactor) {
1060 // Make sure to restore the operands to the expression tree.
1061 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001062 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001063 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001064
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001065 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001066
Chris Lattner1d897942009-12-31 19:34:45 +00001067 // If this was just a single multiply, remove the multiply and return the only
1068 // remaining operand.
1069 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001070 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001071 V = Factors[0].Op;
1072 } else {
1073 RewriteExprTree(BO, Factors);
1074 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001075 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001076
Chris Lattner0c59ac32010-01-01 01:13:15 +00001077 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001078 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001079
Chris Lattner0c59ac32010-01-01 01:13:15 +00001080 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001081}
1082
Sanjay Patelc96ee082015-04-22 18:04:46 +00001083/// If V is a single-use multiply, recursively add its operands as factors,
1084/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001085///
1086/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001087static void FindSingleUseMultiplyFactors(Value *V,
Chad Rosiere22c9922017-02-08 17:45:27 +00001088 SmallVectorImpl<Value*> &Factors) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001089 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001090 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001091 Factors.push_back(V);
1092 return;
1093 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001094
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001095 // Otherwise, add the LHS and RHS to the list of factors.
Chad Rosiere22c9922017-02-08 17:45:27 +00001096 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1097 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001098}
1099
Sanjay Patelc96ee082015-04-22 18:04:46 +00001100/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1101/// This optimizes based on identities. If it can be reduced to a single Value,
1102/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001103static Value *OptimizeAndOrXor(unsigned Opcode,
1104 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001105 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1106 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1107 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1108 // First, check for X and ~X in the operand list.
1109 assert(i < Ops.size());
Sanjay Patel5b6b0902018-10-23 15:55:06 +00001110 Value *X;
1111 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001112 unsigned FoundX = FindInOperandList(Ops, i, X);
1113 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001114 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001115 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001116
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001117 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001118 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001119 }
1120 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001121
Chris Lattner5f8a0052009-12-31 07:59:34 +00001122 // Next, check for duplicate pairs of values, which we assume are next to
1123 // each other, due to our sorting criteria.
1124 assert(i < Ops.size());
1125 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1126 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001127 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001128 Ops.erase(Ops.begin()+i);
1129 --i; --e;
1130 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001131 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001132 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001133
Chris Lattner60c2ca72009-12-31 19:49:01 +00001134 // Drop pairs of values for Xor.
1135 assert(Opcode == Instruction::Xor);
1136 if (e == 2)
1137 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001138
Chris Lattnera5526832010-01-01 00:04:26 +00001139 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001140 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1141 i -= 1; e -= 2;
1142 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001143 }
1144 }
Craig Topperf40110f2014-04-25 05:29:35 +00001145 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001146}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001147
Eric Christopherbfba5722015-12-16 23:10:53 +00001148/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001149/// instruction with the given two operands, and return the resulting
1150/// instruction. There are two special cases: 1) if the constant operand is 0,
1151/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1152/// be returned.
Craig Topper34caf532017-06-21 19:39:35 +00001153static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001154 const APInt &ConstOpnd) {
Craig Topper34caf532017-06-21 19:39:35 +00001155 if (ConstOpnd.isNullValue())
1156 return nullptr;
1157
1158 if (ConstOpnd.isAllOnesValue())
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001159 return Opnd;
Craig Topper34caf532017-06-21 19:39:35 +00001160
1161 Instruction *I = BinaryOperator::CreateAnd(
1162 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1163 InsertBefore);
1164 I->setDebugLoc(InsertBefore->getDebugLoc());
1165 return I;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001166}
1167
1168// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1169// into "R ^ C", where C would be 0, and R is a symbolic value.
1170//
1171// If it was successful, true is returned, and the "R" and "C" is returned
1172// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1173// and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001174bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1175 APInt &ConstOpnd, Value *&Res) {
Fangrui Songf78650a2018-07-30 19:41:25 +00001176 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001177 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1178 // = (x & ~c1) ^ (c1 ^ c2)
1179 // It is useful only when c1 == c2.
Craig Topper34caf532017-06-21 19:39:35 +00001180 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1181 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001182
Craig Topper34caf532017-06-21 19:39:35 +00001183 if (!Opnd1->getValue()->hasOneUse())
1184 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001185
Craig Topper34caf532017-06-21 19:39:35 +00001186 const APInt &C1 = Opnd1->getConstPart();
1187 if (C1 != ConstOpnd)
1188 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001189
Craig Topper34caf532017-06-21 19:39:35 +00001190 Value *X = Opnd1->getSymbolicPart();
1191 Res = createAndInstr(I, X, ~C1);
1192 // ConstOpnd was C2, now C1 ^ C2.
1193 ConstOpnd ^= C1;
1194
1195 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1196 RedoInsts.insert(T);
1197 return true;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001198}
Fangrui Songf78650a2018-07-30 19:41:25 +00001199
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001200// Helper function of OptimizeXor(). It tries to simplify
1201// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
Fangrui Songf78650a2018-07-30 19:41:25 +00001202// symbolic value.
1203//
1204// If it was successful, true is returned, and the "R" and "C" is returned
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001205// via "Res" and "ConstOpnd", respectively (If the entire expression is
1206// evaluated to a constant, the Res is set to NULL); otherwise, false is
1207// returned, and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001208bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1209 XorOpnd *Opnd2, APInt &ConstOpnd,
1210 Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001211 Value *X = Opnd1->getSymbolicPart();
1212 if (X != Opnd2->getSymbolicPart())
1213 return false;
1214
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001215 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1216 int DeadInstNum = 1;
1217 if (Opnd1->getValue()->hasOneUse())
1218 DeadInstNum++;
1219 if (Opnd2->getValue()->hasOneUse())
1220 DeadInstNum++;
1221
1222 // Xor-Rule 2:
1223 // (x | c1) ^ (x & c2)
1224 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1225 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1226 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1227 //
1228 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1229 if (Opnd2->isOrExpr())
1230 std::swap(Opnd1, Opnd2);
1231
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001232 const APInt &C1 = Opnd1->getConstPart();
1233 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001234 APInt C3((~C1) ^ C2);
1235
1236 // Do not increase code size!
Craig Topperd96177c2017-06-18 18:15:38 +00001237 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1238 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001239 if (NewInstNum > DeadInstNum)
1240 return false;
1241 }
1242
1243 Res = createAndInstr(I, X, C3);
1244 ConstOpnd ^= C1;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001245 } else if (Opnd1->isOrExpr()) {
1246 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1247 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001248 const APInt &C1 = Opnd1->getConstPart();
1249 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001250 APInt C3 = C1 ^ C2;
Fangrui Songf78650a2018-07-30 19:41:25 +00001251
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001252 // Do not increase code size
Craig Topperd96177c2017-06-18 18:15:38 +00001253 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1254 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001255 if (NewInstNum > DeadInstNum)
1256 return false;
1257 }
1258
1259 Res = createAndInstr(I, X, C3);
1260 ConstOpnd ^= C3;
1261 } else {
1262 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1263 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001264 const APInt &C1 = Opnd1->getConstPart();
1265 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001266 APInt C3 = C1 ^ C2;
1267 Res = createAndInstr(I, X, C3);
1268 }
1269
1270 // Put the original operands in the Redo list; hope they will be deleted
1271 // as dead code.
1272 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1273 RedoInsts.insert(T);
1274 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1275 RedoInsts.insert(T);
1276
1277 return true;
1278}
1279
1280/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1281/// to a single Value, it is returned, otherwise the Ops list is mutated as
1282/// necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001283Value *ReassociatePass::OptimizeXor(Instruction *I,
1284 SmallVectorImpl<ValueEntry> &Ops) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001285 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1286 return V;
Fangrui Songf78650a2018-07-30 19:41:25 +00001287
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001288 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001289 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001290
1291 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001292 SmallVector<XorOpnd*, 8> OpndPtrs;
Craig Toppercbac691c2017-06-21 16:07:09 +00001293 Type *Ty = Ops[0].Op->getType();
1294 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001295
1296 // Step 1: Convert ValueEntry to XorOpnd
1297 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1298 Value *V = Ops[i].Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001299 const APInt *C;
1300 // TODO: Support non-splat vectors.
Sanjay Pateldd1c3df2018-10-22 21:37:02 +00001301 if (match(V, m_APInt(C))) {
Craig Toppercbac691c2017-06-21 16:07:09 +00001302 ConstOpnd ^= *C;
1303 } else {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001304 XorOpnd O(V);
1305 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1306 Opnds.push_back(O);
Craig Toppercbac691c2017-06-21 16:07:09 +00001307 }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001308 }
1309
Shuxin Yang331f01d2013-04-08 22:00:43 +00001310 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1311 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1312 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1313 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1314 // when new elements are added to the vector.
1315 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1316 OpndPtrs.push_back(&Opnds[i]);
1317
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001318 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1319 // the same symbolic value cluster together. For instance, the input operand
1320 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1321 // ("x | 123", "x & 789", "y & 456").
Justin Bognercb8a21c2016-04-26 23:32:00 +00001322 //
1323 // The purpose is twofold:
1324 // 1) Cluster together the operands sharing the same symbolic-value.
1325 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1326 // could potentially shorten crital path, and expose more loop-invariants.
1327 // Note that values' rank are basically defined in RPO order (FIXME).
1328 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1329 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1330 // "z" in the order of X-Y-Z is better than any other orders.
Fangrui Songefd94c52019-04-23 14:51:27 +00001331 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
Justin Bognercb8a21c2016-04-26 23:32:00 +00001332 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1333 });
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001334
1335 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001336 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001337 bool Changed = false;
1338 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001339 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001340 // The combined value
1341 Value *CV;
1342
1343 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
Craig Topperd96177c2017-06-18 18:15:38 +00001344 if (!ConstOpnd.isNullValue() &&
1345 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001346 Changed = true;
1347 if (CV)
1348 *CurrOpnd = XorOpnd(CV);
1349 else {
1350 CurrOpnd->Invalidate();
1351 continue;
1352 }
1353 }
1354
1355 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1356 PrevOpnd = CurrOpnd;
1357 continue;
1358 }
1359
1360 // step 3.2: When previous and current operands share the same symbolic
Fangrui Songf78650a2018-07-30 19:41:25 +00001361 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001362 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1363 // Remove previous operand
1364 PrevOpnd->Invalidate();
1365 if (CV) {
1366 *CurrOpnd = XorOpnd(CV);
1367 PrevOpnd = CurrOpnd;
1368 } else {
1369 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001370 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001371 }
1372 Changed = true;
1373 }
1374 }
1375
1376 // Step 4: Reassemble the Ops
1377 if (Changed) {
1378 Ops.clear();
1379 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1380 XorOpnd &O = Opnds[i];
1381 if (O.isInvalid())
1382 continue;
1383 ValueEntry VE(getRank(O.getValue()), O.getValue());
1384 Ops.push_back(VE);
1385 }
Craig Topperd96177c2017-06-18 18:15:38 +00001386 if (!ConstOpnd.isNullValue()) {
Craig Toppercbac691c2017-06-21 16:07:09 +00001387 Value *C = ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001388 ValueEntry VE(getRank(C), C);
1389 Ops.push_back(VE);
1390 }
Craig Toppercbac691c2017-06-21 16:07:09 +00001391 unsigned Sz = Ops.size();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001392 if (Sz == 1)
1393 return Ops.back().Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001394 if (Sz == 0) {
1395 assert(ConstOpnd.isNullValue());
1396 return ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001397 }
1398 }
1399
Craig Topperf40110f2014-04-25 05:29:35 +00001400 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001401}
1402
Sanjay Patelc96ee082015-04-22 18:04:46 +00001403/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001404/// optimizes based on identities. If it can be reduced to a single Value, it
1405/// is returned, otherwise the Ops list is mutated as necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001406Value *ReassociatePass::OptimizeAdd(Instruction *I,
1407 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001408 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001409 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1410 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001411 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001412
Chris Lattner5f8a0052009-12-31 07:59:34 +00001413 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001414 Value *TheOp = Ops[i].Op;
1415 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001416 // instances of the operand together. Due to our sorting criteria, we know
1417 // that these need to be next to each other in the vector.
1418 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1419 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001420 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001421 do {
1422 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001423 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001424 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001425
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001426 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1427 << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001428 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001429
Chris Lattner60b71b52009-12-31 19:24:52 +00001430 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001431 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001432 Constant *C = Ty->isIntOrIntVectorTy() ?
1433 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001434 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001435
Chris Lattner60b71b52009-12-31 19:24:52 +00001436 // Now that we have inserted a multiply, optimize it. This allows us to
1437 // handle cases that require multiple factoring steps, such as this:
1438 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001439 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001440
Chris Lattner60b71b52009-12-31 19:24:52 +00001441 // If every add operand was a duplicate, return the multiply.
1442 if (Ops.empty())
1443 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001444
Chris Lattner60b71b52009-12-31 19:24:52 +00001445 // Otherwise, we had some input that didn't have the dupe, such as
1446 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1447 // things being added by this operation.
1448 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001449
Chris Lattner60c2ca72009-12-31 19:49:01 +00001450 --i;
1451 e = Ops.size();
1452 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001453 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001454
Benjamin Kramer49689442014-05-31 15:01:54 +00001455 // Check for X and -X or X and ~X in the operand list.
Sanjay Patel5b6b0902018-10-23 15:55:06 +00001456 Value *X;
1457 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
Cameron McInally678f43f2018-10-24 14:45:18 +00001458 !match(TheOp, m_FNeg(m_Value(X))))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001459 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001460
Chris Lattner5f8a0052009-12-31 07:59:34 +00001461 unsigned FoundX = FindInOperandList(Ops, i, X);
1462 if (FoundX == i)
1463 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001464
Chris Lattner5f8a0052009-12-31 07:59:34 +00001465 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001466 if (Ops.size() == 2 &&
Cameron McInally678f43f2018-10-24 14:45:18 +00001467 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001468 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001469
Benjamin Kramer49689442014-05-31 15:01:54 +00001470 // Remove X and ~X from the operand list.
Sanjay Patel5b6b0902018-10-23 15:55:06 +00001471 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
Benjamin Kramer49689442014-05-31 15:01:54 +00001472 return Constant::getAllOnesValue(X->getType());
1473
Chris Lattner5f8a0052009-12-31 07:59:34 +00001474 Ops.erase(Ops.begin()+i);
1475 if (i < FoundX)
1476 --FoundX;
1477 else
1478 --i; // Need to back up an extra one.
1479 Ops.erase(Ops.begin()+FoundX);
1480 ++NumAnnihil;
1481 --i; // Revisit element.
1482 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001483
1484 // if X and ~X we append -1 to the operand list.
Sanjay Patel5b6b0902018-10-23 15:55:06 +00001485 if (match(TheOp, m_Not(m_Value()))) {
Benjamin Kramer49689442014-05-31 15:01:54 +00001486 Value *V = Constant::getAllOnesValue(X->getType());
1487 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1488 e += 1;
1489 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001490 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001491
Chris Lattner177140a2009-12-31 18:17:13 +00001492 // Scan the operand list, checking to see if there are any common factors
1493 // between operands. Consider something like A*A+A*B*C+D. We would like to
1494 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1495 // To efficiently find this, we count the number of times a factor occurs
1496 // for any ADD operands that are MULs.
1497 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001498
Chris Lattner177140a2009-12-31 18:17:13 +00001499 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1500 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001501 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001502 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001503 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001504 BinaryOperator *BOp =
1505 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001506 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001507 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001508
Chris Lattner177140a2009-12-31 18:17:13 +00001509 // Compute all of the factors of this added value.
1510 SmallVector<Value*, 8> Factors;
Chad Rosiere22c9922017-02-08 17:45:27 +00001511 FindSingleUseMultiplyFactors(BOp, Factors);
Chris Lattner177140a2009-12-31 18:17:13 +00001512 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001513
Chris Lattner177140a2009-12-31 18:17:13 +00001514 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001515 SmallPtrSet<Value*, 8> Duplicates;
1516 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1517 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001518 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001519 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001520
Chris Lattner0c59ac32010-01-01 01:13:15 +00001521 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001522 if (Occ > MaxOcc) {
1523 MaxOcc = Occ;
1524 MaxOccVal = Factor;
1525 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001526
Chris Lattner0c59ac32010-01-01 01:13:15 +00001527 // If Factor is a negative constant, add the negated value as a factor
1528 // because we can percolate the negate out. Watch for minint, which
1529 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001530 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001531 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001532 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
Chad Rosier95abfa32017-02-23 18:49:03 +00001533 if (!Duplicates.insert(Factor).second)
1534 continue;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001535 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001536 if (Occ > MaxOcc) {
1537 MaxOcc = Occ;
1538 MaxOccVal = Factor;
1539 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001540 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001541 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1542 if (CF->isNegative()) {
1543 APFloat F(CF->getValueAPF());
1544 F.changeSign();
1545 Factor = ConstantFP::get(CF->getContext(), F);
Chad Rosier95abfa32017-02-23 18:49:03 +00001546 if (!Duplicates.insert(Factor).second)
1547 continue;
Chad Rosier11ab9412014-08-14 15:23:01 +00001548 unsigned Occ = ++FactorOccurrences[Factor];
1549 if (Occ > MaxOcc) {
1550 MaxOcc = Occ;
1551 MaxOccVal = Factor;
1552 }
1553 }
1554 }
Chris Lattner177140a2009-12-31 18:17:13 +00001555 }
1556 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001557
Chris Lattner177140a2009-12-31 18:17:13 +00001558 // If any factor occurred more than one time, we can pull it out.
1559 if (MaxOcc > 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001560 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1561 << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001562 ++NumFactor;
1563
1564 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1565 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001566 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001567 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001568 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001569 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001570 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1571 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1572
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001573 SmallVector<WeakTrackingVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001574 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001575 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001576 BinaryOperator *BOp =
1577 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001578 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001579 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001580
Chris Lattner177140a2009-12-31 18:17:13 +00001581 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001582 // The factorized operand may occur several times. Convert them all in
1583 // one fell swoop.
1584 for (unsigned j = Ops.size(); j != i;) {
1585 --j;
1586 if (Ops[j].Op == Ops[i].Op) {
1587 NewMulOps.push_back(V);
1588 Ops.erase(Ops.begin()+j);
1589 }
1590 }
1591 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001592 }
1593 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001594
Chris Lattner177140a2009-12-31 18:17:13 +00001595 // No need for extra uses anymore.
Reid Kleckner96ab8722017-05-18 17:24:10 +00001596 DummyInst->deleteValue();
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001597
Chris Lattner177140a2009-12-31 18:17:13 +00001598 unsigned NumAddedValues = NewMulOps.size();
1599 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001600
Chris Lattner60b71b52009-12-31 19:24:52 +00001601 // Now that we have inserted the add tree, optimize it. This allows us to
1602 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001603 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001604 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001605 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001606 if (Instruction *VI = dyn_cast<Instruction>(V))
1607 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001608
1609 // Create the multiply.
Sanjay Patel0d660102017-11-09 18:14:24 +00001610 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001611
Chris Lattner60c2ca72009-12-31 19:49:01 +00001612 // Rerun associate on the multiply in case the inner expression turned into
1613 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001614 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001615
Chris Lattner177140a2009-12-31 18:17:13 +00001616 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1617 // entire result expression is just the multiply "A*(B+C)".
1618 if (Ops.empty())
1619 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001620
Chris Lattnerac615502009-12-31 18:18:46 +00001621 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001622 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001623 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001624 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1625 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001626
Craig Topperf40110f2014-04-25 05:29:35 +00001627 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001628}
Chris Lattner4c065092006-03-04 09:31:13 +00001629
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001630/// Build up a vector of value/power pairs factoring a product.
Chandler Carruth739ef802012-04-26 05:30:30 +00001631///
1632/// Given a series of multiplication operands, build a vector of factors and
1633/// the powers each is raised to when forming the final product. Sort them in
1634/// the order of descending power.
1635///
1636/// (x*x) -> [(x, 2)]
1637/// ((x*x)*x) -> [(x, 3)]
1638/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1639///
1640/// \returns Whether any factors have a power greater than one.
Craig Topper43507342017-06-19 16:23:43 +00001641static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1642 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001643 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1644 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001645 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001646 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1647 Value *Op = Ops[Idx-1].Op;
1648
1649 // Count the number of occurrences of this value.
1650 unsigned Count = 1;
1651 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1652 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001653 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001654 if (Count > 1)
1655 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001656 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001657
Chandler Carruth739ef802012-04-26 05:30:30 +00001658 // We can only simplify factors if the sum of the powers of our simplifiable
1659 // factors is 4 or higher. When that is the case, we will *always* have
1660 // a simplification. This is an important invariant to prevent cyclicly
1661 // trying to simplify already minimal formations.
1662 if (FactorPowerSum < 4)
1663 return false;
1664
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001665 // Now gather the simplifiable factors, removing them from Ops.
1666 FactorPowerSum = 0;
1667 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1668 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001669
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001670 // Count the number of occurrences of this value.
1671 unsigned Count = 1;
1672 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1673 ++Count;
1674 if (Count == 1)
1675 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001676 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001677 Count &= ~1U;
1678 Idx -= Count;
1679 FactorPowerSum += Count;
1680 Factors.push_back(Factor(Op, Count));
1681 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001682 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001683
Chandler Carruth739ef802012-04-26 05:30:30 +00001684 // None of the adjustments above should have reduced the sum of factor powers
1685 // below our mininum of '4'.
1686 assert(FactorPowerSum >= 4);
1687
Fangrui Songefd94c52019-04-23 14:51:27 +00001688 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
Justin Bogner90744d22016-04-26 22:22:18 +00001689 return LHS.Power > RHS.Power;
1690 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001691 return true;
1692}
1693
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001694/// Build a tree of multiplies, computing the product of Ops.
Chandler Carruth739ef802012-04-26 05:30:30 +00001695static Value *buildMultiplyTree(IRBuilder<> &Builder,
1696 SmallVectorImpl<Value*> &Ops) {
1697 if (Ops.size() == 1)
1698 return Ops.back();
1699
1700 Value *LHS = Ops.pop_back_val();
1701 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001702 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001703 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1704 else
1705 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001706 } while (!Ops.empty());
1707
1708 return LHS;
1709}
1710
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001711/// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
Chandler Carruth739ef802012-04-26 05:30:30 +00001712///
1713/// Given a vector of values raised to various powers, where no two values are
1714/// equal and the powers are sorted in decreasing order, compute the minimal
1715/// DAG of multiplies to compute the final product, and return that product
1716/// value.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001717Value *
1718ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1719 SmallVectorImpl<Factor> &Factors) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001720 assert(Factors[0].Power);
1721 SmallVector<Value *, 4> OuterProduct;
1722 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1723 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1724 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1725 LastIdx = Idx;
1726 continue;
1727 }
1728
1729 // We want to multiply across all the factors with the same power so that
1730 // we can raise them to that power as a single entity. Build a mini tree
1731 // for that.
1732 SmallVector<Value *, 4> InnerProduct;
1733 InnerProduct.push_back(Factors[LastIdx].Base);
1734 do {
1735 InnerProduct.push_back(Factors[Idx].Base);
1736 ++Idx;
1737 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1738
1739 // Reset the base value of the first factor to the new expression tree.
1740 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001741 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1742 if (Instruction *MI = dyn_cast<Instruction>(M))
1743 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001744
1745 LastIdx = Idx;
1746 }
1747 // Unique factors with equal powers -- we've folded them into the first one's
1748 // base.
1749 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001750 [](const Factor &LHS, const Factor &RHS) {
1751 return LHS.Power == RHS.Power;
1752 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001753 Factors.end());
1754
1755 // Iteratively collect the base of each factor with an add power into the
1756 // outer product, and halve each power in preparation for squaring the
1757 // expression.
1758 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1759 if (Factors[Idx].Power & 1)
1760 OuterProduct.push_back(Factors[Idx].Base);
1761 Factors[Idx].Power >>= 1;
1762 }
1763 if (Factors[0].Power) {
1764 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1765 OuterProduct.push_back(SquareRoot);
1766 OuterProduct.push_back(SquareRoot);
1767 }
1768 if (OuterProduct.size() == 1)
1769 return OuterProduct.front();
1770
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001771 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001772 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001773}
1774
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001775Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1776 SmallVectorImpl<ValueEntry> &Ops) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001777 // We can only optimize the multiplies when there is a chain of more than
1778 // three, such that a balanced tree might require fewer total multiplies.
1779 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001780 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001781
1782 // Try to turn linear trees of multiplies without other uses of the
1783 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1784 // re-use.
1785 SmallVector<Factor, 4> Factors;
1786 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001787 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001788
1789 IRBuilder<> Builder(I);
Vyacheslav Klochkov68a677a2016-11-22 20:23:04 +00001790 // The reassociate transformation for FP operations is performed only
1791 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1792 // to the newly generated operations.
1793 if (auto FPI = dyn_cast<FPMathOperator>(I))
1794 Builder.setFastMathFlags(FPI->getFastMathFlags());
1795
Chandler Carruth739ef802012-04-26 05:30:30 +00001796 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1797 if (Ops.empty())
1798 return V;
1799
1800 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1801 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001802 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001803}
1804
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001805Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1806 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001807 // Now that we have the linearized expression tree, try to optimize it.
1808 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001809 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001810 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001811 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1812 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1813 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1814 }
1815 // If there was nothing but constants then we are done.
1816 if (Ops.empty())
1817 return Cst;
1818
1819 // Put the combined constant back at the end of the operand list, except if
1820 // there is no point. For example, an add of 0 gets dropped here, while a
1821 // multiplication by zero turns the whole expression into zero.
1822 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1823 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1824 return Cst;
1825 Ops.push_back(ValueEntry(0, Cst));
1826 }
1827
1828 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001829
Chris Lattner9039ff82009-12-31 07:33:14 +00001830 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001831 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001832 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001833 switch (Opcode) {
1834 default: break;
1835 case Instruction::And:
1836 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001837 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1838 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001839 break;
1840
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001841 case Instruction::Xor:
1842 if (Value *Result = OptimizeXor(I, Ops))
1843 return Result;
1844 break;
1845
Chandler Carruth739ef802012-04-26 05:30:30 +00001846 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001847 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001848 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001849 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001850 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001851
1852 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001853 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001854 if (Value *Result = OptimizeMul(I, Ops))
1855 return Result;
1856 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001857 }
1858
Duncan Sands3293f462012-06-08 20:15:33 +00001859 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001860 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001861 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001862}
1863
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001864// Remove dead instructions and if any operands are trivially dead add them to
1865// Insts so they will be removed as well.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00001866void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1867 OrderedSet &Insts) {
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001868 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1869 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1870 ValueRankMap.erase(I);
1871 Insts.remove(I);
1872 RedoInsts.remove(I);
1873 I->eraseFromParent();
1874 for (auto Op : Ops)
1875 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1876 if (OpInst->use_empty())
1877 Insts.insert(OpInst);
1878}
1879
Sanjay Patelc96ee082015-04-22 18:04:46 +00001880/// Zap the given instruction, adding interesting operands to the work list.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001881void ReassociatePass::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001882 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001883 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
Chad Rosier27ac0d82016-08-30 13:58:35 +00001884
Duncan Sands3293f462012-06-08 20:15:33 +00001885 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1886 // Erase the dead instruction.
1887 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001888 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001889 I->eraseFromParent();
1890 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001891 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001892 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1893 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1894 // If this is a node in an expression tree, climb to the expression root
1895 // and add that since that's where optimization actually happens.
1896 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001897 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001898 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001899 Op = Op->user_back();
Davide Italiano6e1f7bf2018-05-11 15:45:36 +00001900
1901 // The instruction we're going to push may be coming from a
1902 // dead block, and Reassociate skips the processing of unreachable
1903 // blocks because it's a waste of time and also because it can
1904 // lead to infinite loop due to LLVM's non-standard definition
1905 // of dominance.
1906 if (ValueRankMap.find(Op) != ValueRankMap.end())
1907 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001908 }
Mikael Holmen37b51202017-06-27 05:32:13 +00001909
1910 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001911}
1912
Chad Rosier094ac772014-11-11 22:58:35 +00001913// Canonicalize expressions of the following form:
1914// x + (-Constant * y) -> x - (Constant * y)
1915// x - (-Constant * y) -> x + (Constant * y)
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001916Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
Chad Rosier094ac772014-11-11 22:58:35 +00001917 if (!I->hasOneUse() || I->getType()->isVectorTy())
1918 return nullptr;
1919
David Majnemer587336d2015-05-28 06:16:39 +00001920 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001921 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001922 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001923 return nullptr;
1924
David Majnemer587336d2015-05-28 06:16:39 +00001925 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1926 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1927
1928 // Both operands are constant, let it get constant folded away.
1929 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001930 return nullptr;
1931
David Majnemer587336d2015-05-28 06:16:39 +00001932 ConstantFP *CF = C0 ? C0 : C1;
1933
1934 // Must have one constant operand.
1935 if (!CF)
1936 return nullptr;
1937
1938 // Must be a negative ConstantFP.
1939 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001940 return nullptr;
1941
1942 // User must be a binary operator with one or more uses.
1943 Instruction *User = I->user_back();
Davide Italiano79eb3b02017-05-16 22:38:40 +00001944 if (!isa<BinaryOperator>(User) || User->use_empty())
Chad Rosier094ac772014-11-11 22:58:35 +00001945 return nullptr;
1946
1947 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001948 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001949 return nullptr;
1950
1951 // Subtraction is not commutative. Explicitly, the following transform is
1952 // not valid: (-Constant * y) - x -> x + (Constant * y)
1953 if (!User->isCommutative() && User->getOperand(1) != I)
1954 return nullptr;
1955
Chad Rosier8db41e92017-08-23 14:10:06 +00001956 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1957 // resulting subtract will be broken up later. This can get us into an
1958 // infinite loop during reassociation.
1959 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1960 return nullptr;
1961
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001962 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001963 APFloat Val = CF->getValueAPF();
1964 Val.changeSign();
1965 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001966
Chad Rosier094ac772014-11-11 22:58:35 +00001967 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1968 // ((-Const*y) + x) -> (x + (-Const*y)).
1969 if (User->getOperand(0) == I && User->isCommutative())
1970 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001971
Chad Rosier094ac772014-11-11 22:58:35 +00001972 Value *Op0 = User->getOperand(0);
1973 Value *Op1 = User->getOperand(1);
1974 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00001975 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00001976 default:
1977 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00001978 case Instruction::FAdd:
1979 NI = BinaryOperator::CreateFSub(Op0, Op1);
1980 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1981 break;
1982 case Instruction::FSub:
1983 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1984 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1985 break;
1986 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001987
Chad Rosier094ac772014-11-11 22:58:35 +00001988 NI->insertBefore(User);
1989 NI->setName(User->getName());
1990 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001991 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00001992 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001993 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00001994 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001995}
1996
Sanjay Patelc96ee082015-04-22 18:04:46 +00001997/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00001998/// instructions is not allowed.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001999void ReassociatePass::OptimizeInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00002000 // Only consider operations that we understand.
2001 if (!isa<BinaryOperator>(I))
2002 return;
2003
Chad Rosier11ab9412014-08-14 15:23:01 +00002004 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002005 // If an operand of this shift is a reassociable multiply, or if the shift
2006 // is used by a reassociable multiply or add, turn into a multiply.
2007 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2008 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002009 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2010 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002011 Instruction *NI = ConvertShiftToMul(I);
2012 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002013 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002014 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002015 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002016
Chad Rosier094ac772014-11-11 22:58:35 +00002017 // Canonicalize negative constants out of expressions.
2018 if (Instruction *Res = canonicalizeNegConstExpr(I))
2019 I = Res;
2020
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002021 // Commute binary operators, to canonicalize the order of their operands.
2022 // This can potentially expose more CSE opportunities, and makes writing other
2023 // transformations simpler.
2024 if (I->isCommutative())
2025 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002026
Sanjay Patel629c4112017-11-06 16:27:15 +00002027 // Don't optimize floating-point instructions unless they are 'fast'.
2028 if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002029 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002030
Dan Gohman1c6c3482011-04-12 00:11:56 +00002031 // Do not reassociate boolean (i1) expressions. We want to preserve the
2032 // original order of evaluation for short-circuited comparisons that
2033 // SimplifyCFG has folded to AND/OR expressions. If the expression
2034 // is not further optimized, it is likely to be transformed back to a
2035 // short-circuited form for code gen, and the source order may have been
2036 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002037 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002038 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002039
Dan Gohman1c6c3482011-04-12 00:11:56 +00002040 // If this is a subtract instruction which is not already in negate form,
2041 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002042 if (I->getOpcode() == Instruction::Sub) {
2043 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002044 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002045 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002046 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002047 I = NI;
Sanjay Patel5b6b0902018-10-23 15:55:06 +00002048 } else if (match(I, m_Neg(m_Value()))) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002049 // Otherwise, this is a negation. See if the operand is a multiply tree
2050 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002051 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2052 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002053 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002054 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002055 // If the negate was simplified, revisit the users to see if we can
2056 // reassociate further.
2057 for (User *U : NI->users()) {
2058 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2059 RedoInsts.insert(Tmp);
2060 }
Duncan Sands3293f462012-06-08 20:15:33 +00002061 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002062 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002063 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002064 }
2065 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002066 } else if (I->getOpcode() == Instruction::FSub) {
2067 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002068 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002069 RedoInsts.insert(I);
2070 MadeChange = true;
2071 I = NI;
Cameron McInally678f43f2018-10-24 14:45:18 +00002072 } else if (match(I, m_FNeg(m_Value()))) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002073 // Otherwise, this is a negation. See if the operand is a multiply tree
2074 // and if this is not an inner node of a multiply tree.
2075 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2076 (!I->hasOneUse() ||
2077 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002078 // If the negate was simplified, revisit the users to see if we can
2079 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002080 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002081 for (User *U : NI->users()) {
2082 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2083 RedoInsts.insert(Tmp);
2084 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002085 RedoInsts.insert(I);
2086 MadeChange = true;
2087 I = NI;
2088 }
2089 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002090 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002091
Duncan Sands3293f462012-06-08 20:15:33 +00002092 // If this instruction is an associative binary operator, process it.
2093 if (!I->isAssociative()) return;
2094 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002095
2096 // If this is an interior node of a reassociable tree, ignore it until we
2097 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002098 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002099 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2100 // During the initial run we will get to the root of the tree.
2101 // But if we get here while we are redoing instructions, there is no
2102 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002103 if (BO->user_back() != BO &&
2104 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002105 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002106 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002107 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002108
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002109 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002110 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002111 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002112 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002113 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002114 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2115 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2116 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002117
Duncan Sands3293f462012-06-08 20:15:33 +00002118 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002119}
Chris Lattner1e506502005-05-07 21:59:39 +00002120
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002121void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002122 // First, walk the expression tree, linearizing the tree, collecting the
2123 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002124 SmallVector<RepeatedValue, 8> Tree;
2125 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002126 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002127 Ops.reserve(Tree.size());
2128 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2129 RepeatedValue E = Tree[i];
2130 Ops.append(E.second.getZExtValue(),
2131 ValueEntry(getRank(E.first), E.first));
2132 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002133
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002134 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002135
Chris Lattner2fc319d2006-03-14 07:11:11 +00002136 // Now that we have linearized the tree to a list and have gathered all of
2137 // the operands and their ranks, sort the operands by their rank. Use a
2138 // stable_sort so that values with equal ranks will have their relative
2139 // positions maintained (and so the compiler is deterministic). Note that
2140 // this sorts so that the highest ranking values end up at the beginning of
2141 // the vector.
Fangrui Songefd94c52019-04-23 14:51:27 +00002142 llvm::stable_sort(Ops);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002143
Sanjay Patelc96ee082015-04-22 18:04:46 +00002144 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002145 // sorted form, optimize it globally if possible.
2146 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002147 if (V == I)
2148 // Self-referential expression in unreachable code.
2149 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002150 // This expression tree simplified to something that isn't a tree,
2151 // eliminate it.
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002152 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002153 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002154 if (Instruction *VI = dyn_cast<Instruction>(V))
Mikael Holmen7a99e332017-08-24 09:05:00 +00002155 if (I->getDebugLoc())
2156 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002157 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002158 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002159 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002160 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002161
Chris Lattner2fc319d2006-03-14 07:11:11 +00002162 // We want to sink immediates as deeply as possible except in the case where
2163 // this is a multiply tree used only by an add, and the immediate is a -1.
2164 // In this case we reassociate to put the negation on the outside so that we
2165 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002166 if (I->hasOneUse()) {
2167 if (I->getOpcode() == Instruction::Mul &&
2168 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2169 isa<ConstantInt>(Ops.back().Op) &&
Craig Topper79ab6432017-07-06 18:39:47 +00002170 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002171 ValueEntry Tmp = Ops.pop_back_val();
2172 Ops.insert(Ops.begin(), Tmp);
2173 } else if (I->getOpcode() == Instruction::FMul &&
2174 cast<Instruction>(I->user_back())->getOpcode() ==
2175 Instruction::FAdd &&
2176 isa<ConstantFP>(Ops.back().Op) &&
2177 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2178 ValueEntry Tmp = Ops.pop_back_val();
2179 Ops.insert(Ops.begin(), Tmp);
2180 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002181 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002182
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002183 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002184
Chris Lattner2fc319d2006-03-14 07:11:11 +00002185 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002186 if (Ops[0].Op == I)
2187 // Self-referential expression in unreachable code.
2188 return;
2189
Chris Lattner2fc319d2006-03-14 07:11:11 +00002190 // This expression tree simplified to something that isn't a tree,
2191 // eliminate it.
2192 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002193 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2194 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002195 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002196 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002197 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002198
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002199 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2200 // Find the pair with the highest count in the pairmap and move it to the
2201 // back of the list so that it can later be CSE'd.
2202 // example:
2203 // a*b*c*d*e
2204 // if c*e is the most "popular" pair, we can express this as
2205 // (((c*e)*d)*b)*a
2206 unsigned Max = 1;
2207 unsigned BestRank = 0;
2208 std::pair<unsigned, unsigned> BestPair;
2209 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2210 for (unsigned i = 0; i < Ops.size() - 1; ++i)
2211 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2212 unsigned Score = 0;
2213 Value *Op0 = Ops[i].Op;
2214 Value *Op1 = Ops[j].Op;
2215 if (std::less<Value *>()(Op1, Op0))
2216 std::swap(Op0, Op1);
2217 auto it = PairMap[Idx].find({Op0, Op1});
Daniel Sandersef8761f2019-03-22 20:16:35 +00002218 if (it != PairMap[Idx].end()) {
2219 // Functions like BreakUpSubtract() can erase the Values we're using
2220 // as keys and create new Values after we built the PairMap. There's a
2221 // small chance that the new nodes can have the same address as
2222 // something already in the table. We shouldn't accumulate the stored
2223 // score in that case as it refers to the wrong Value.
2224 if (it->second.isValid())
2225 Score += it->second.Score;
2226 }
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002227
2228 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2229 if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2230 BestPair = {i, j};
2231 Max = Score;
2232 BestRank = MaxRank;
2233 }
2234 }
2235 if (Max > 1) {
2236 auto Op0 = Ops[BestPair.first];
2237 auto Op1 = Ops[BestPair.second];
2238 Ops.erase(&Ops[BestPair.second]);
2239 Ops.erase(&Ops[BestPair.first]);
2240 Ops.push_back(Op0);
2241 Ops.push_back(Op1);
2242 }
2243 }
Chris Lattner60b71b52009-12-31 19:24:52 +00002244 // Now that we ordered and optimized the expressions, splat them back into
2245 // the expression tree, removing any unneeded nodes.
2246 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002247}
2248
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002249void
2250ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2251 // Make a "pairmap" of how often each operand pair occurs.
2252 for (BasicBlock *BI : RPOT) {
2253 for (Instruction &I : *BI) {
2254 if (!I.isAssociative())
2255 continue;
2256
2257 // Ignore nodes that aren't at the root of trees.
2258 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2259 continue;
2260
2261 // Collect all operands in a single reassociable expression.
2262 // Since Reassociate has already been run once, we can assume things
2263 // are already canonical according to Reassociation's regime.
2264 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2265 SmallVector<Value *, 8> Ops;
2266 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2267 Value *Op = Worklist.pop_back_val();
2268 Instruction *OpI = dyn_cast<Instruction>(Op);
2269 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2270 Ops.push_back(Op);
2271 continue;
2272 }
2273 // Be paranoid about self-referencing expressions in unreachable code.
2274 if (OpI->getOperand(0) != OpI)
2275 Worklist.push_back(OpI->getOperand(0));
2276 if (OpI->getOperand(1) != OpI)
2277 Worklist.push_back(OpI->getOperand(1));
2278 }
2279 // Skip extremely long expressions.
2280 if (Ops.size() > GlobalReassociateLimit)
2281 continue;
2282
2283 // Add all pairwise combinations of operands to the pair map.
2284 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2285 SmallSet<std::pair<Value *, Value*>, 32> Visited;
2286 for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2287 for (unsigned j = i + 1; j < Ops.size(); ++j) {
2288 // Canonicalize operand orderings.
2289 Value *Op0 = Ops[i];
2290 Value *Op1 = Ops[j];
2291 if (std::less<Value *>()(Op1, Op0))
2292 std::swap(Op0, Op1);
2293 if (!Visited.insert({Op0, Op1}).second)
2294 continue;
Daniel Sandersef8761f2019-03-22 20:16:35 +00002295 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2296 if (!res.second) {
2297 // If either key value has been erased then we've got the same
2298 // address by coincidence. That can't happen here because nothing is
2299 // erasing values but it can happen by the time we're querying the
2300 // map.
2301 assert(res.first->second.isValid() && "WeakVH invalidated");
2302 ++res.first->second.Score;
2303 }
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002304 }
2305 }
2306 }
2307 }
2308}
2309
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002310PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002311 // Get the functions basic blocks in Reverse Post Order. This order is used by
2312 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2313 // blocks (it has been seen that the analysis in this pass could hang when
2314 // analysing dead basic blocks).
2315 ReversePostOrderTraversal<Function *> RPOT(&F);
2316
Chad Rosierea7e4642016-08-17 15:54:39 +00002317 // Calculate the rank map for F.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002318 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002319
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002320 // Build the pair map before running reassociate.
2321 // Technically this would be more accurate if we did it after one round
2322 // of reassociation, but in practice it doesn't seem to help much on
2323 // real-world code, so don't waste the compile time running reassociate
2324 // twice.
2325 // If a user wants, they could expicitly run reassociate twice in their
2326 // pass pipeline for further potential gains.
2327 // It might also be possible to update the pair map during runtime, but the
2328 // overhead of that may be large if there's many reassociable chains.
2329 BuildPairMap(RPOT);
2330
Chris Lattner1e506502005-05-07 21:59:39 +00002331 MadeChange = false;
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002332
2333 // Traverse the same blocks that were analysed by BuildRankMap.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002334 for (BasicBlock *BI : RPOT) {
2335 assert(RankMap.count(&*BI) && "BB should be ranked.");
Duncan Sands3293f462012-06-08 20:15:33 +00002336 // Optimize every instruction in the basic block.
Chad Rosierea7e4642016-08-17 15:54:39 +00002337 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002338 if (isInstructionTriviallyDead(&*II)) {
2339 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002340 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002341 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002342 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002343 ++II;
2344 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002345
Chad Rosierea7e4642016-08-17 15:54:39 +00002346 // Make a copy of all the instructions to be redone so we can remove dead
2347 // instructions.
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00002348 OrderedSet ToRedo(RedoInsts);
Chad Rosierea7e4642016-08-17 15:54:39 +00002349 // Iterate over all instructions to be reevaluated and remove trivially dead
2350 // instructions. If any operand of the trivially dead instruction becomes
2351 // dead mark it for deletion as well. Continue this process until all
2352 // trivially dead instructions have been removed.
2353 while (!ToRedo.empty()) {
2354 Instruction *I = ToRedo.pop_back_val();
Davide Italiano631cd272016-10-28 02:47:09 +00002355 if (isInstructionTriviallyDead(I)) {
Chad Rosierea7e4642016-08-17 15:54:39 +00002356 RecursivelyEraseDeadInsts(I, ToRedo);
Davide Italiano631cd272016-10-28 02:47:09 +00002357 MadeChange = true;
2358 }
Chad Rosierea7e4642016-08-17 15:54:39 +00002359 }
2360
2361 // Now that we have removed dead instructions, we can reoptimize the
2362 // remaining instructions.
2363 while (!RedoInsts.empty()) {
Daniel Sanders8d0d1aa2018-05-02 17:59:16 +00002364 Instruction *I = RedoInsts.front();
2365 RedoInsts.erase(RedoInsts.begin());
Chad Rosierea7e4642016-08-17 15:54:39 +00002366 if (isInstructionTriviallyDead(I))
2367 EraseInst(I);
2368 else
2369 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002370 }
Duncan Sands3293f462012-06-08 20:15:33 +00002371 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002372
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002373 // We are done with the rank map and pair map.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002374 RankMap.clear();
2375 ValueRankMap.clear();
Fiona Glaserb8a330c2017-12-12 19:18:02 +00002376 for (auto &Entry : PairMap)
2377 Entry.clear();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002378
Davide Italiano39893bd2016-05-29 00:41:17 +00002379 if (MadeChange) {
Chandler Carruthca68a3e2017-01-15 06:32:49 +00002380 PreservedAnalyses PA;
2381 PA.preserveSet<CFGAnalyses>();
Davide Italiano39893bd2016-05-29 00:41:17 +00002382 PA.preserve<GlobalsAA>();
2383 return PA;
2384 }
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002385
2386 return PreservedAnalyses::all();
2387}
2388
2389namespace {
Eugene Zelenko306d2992017-10-18 21:46:47 +00002390
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002391 class ReassociateLegacyPass : public FunctionPass {
2392 ReassociatePass Impl;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002393
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002394 public:
2395 static char ID; // Pass identification, replacement for typeid
Eugene Zelenko306d2992017-10-18 21:46:47 +00002396
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002397 ReassociateLegacyPass() : FunctionPass(ID) {
2398 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2399 }
2400
2401 bool runOnFunction(Function &F) override {
2402 if (skipFunction(F))
2403 return false;
2404
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002405 FunctionAnalysisManager DummyFAM;
2406 auto PA = Impl.run(F, DummyFAM);
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002407 return !PA.areAllPreserved();
2408 }
2409
2410 void getAnalysisUsage(AnalysisUsage &AU) const override {
2411 AU.setPreservesCFG();
2412 AU.addPreserved<GlobalsAAWrapperPass>();
2413 }
2414 };
Eugene Zelenko306d2992017-10-18 21:46:47 +00002415
2416} // end anonymous namespace
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002417
2418char ReassociateLegacyPass::ID = 0;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002419
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002420INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2421 "Reassociate expressions", false, false)
2422
2423// Public interface to the Reassociate pass
2424FunctionPass *llvm::createReassociatePass() {
2425 return new ReassociateLegacyPass();
Chris Lattnerc0f58002002-05-08 22:19:27 +00002426}