blob: 8bb834b45ed36aa8a2458801a5db0d653454b62e [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
Sean Silvab084af42012-12-07 10:36:55 +0000277It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000278other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000279
Sean Silvab084af42012-12-07 10:36:55 +0000280.. _callingconv:
281
282Calling Conventions
283-------------------
284
285LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
286:ref:`invokes <i_invoke>` can all have an optional calling convention
287specified for the call. The calling convention of any pair of dynamic
288caller/callee must match, or the behavior of the program is undefined.
289The following calling conventions are supported by LLVM, and more may be
290added in the future:
291
292"``ccc``" - The C calling convention
293 This calling convention (the default if no other calling convention
294 is specified) matches the target C calling conventions. This calling
295 convention supports varargs function calls and tolerates some
296 mismatch in the declared prototype and implemented declaration of
297 the function (as does normal C).
298"``fastcc``" - The fast calling convention
299 This calling convention attempts to make calls as fast as possible
300 (e.g. by passing things in registers). This calling convention
301 allows the target to use whatever tricks it wants to produce fast
302 code for the target, without having to conform to an externally
303 specified ABI (Application Binary Interface). `Tail calls can only
304 be optimized when this, the GHC or the HiPE convention is
305 used. <CodeGenerator.html#id80>`_ This calling convention does not
306 support varargs and requires the prototype of all callees to exactly
307 match the prototype of the function definition.
308"``coldcc``" - The cold calling convention
309 This calling convention attempts to make code in the caller as
310 efficient as possible under the assumption that the call is not
311 commonly executed. As such, these calls often preserve all registers
312 so that the call does not break any live ranges in the caller side.
313 This calling convention does not support varargs and requires the
314 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000315 function definition. Furthermore the inliner doesn't consider such function
316 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000317"``cc 10``" - GHC convention
318 This calling convention has been implemented specifically for use by
319 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
320 It passes everything in registers, going to extremes to achieve this
321 by disabling callee save registers. This calling convention should
322 not be used lightly but only for specific situations such as an
323 alternative to the *register pinning* performance technique often
324 used when implementing functional programming languages. At the
325 moment only X86 supports this convention and it has the following
326 limitations:
327
328 - On *X86-32* only supports up to 4 bit type parameters. No
329 floating point types are supported.
330 - On *X86-64* only supports up to 10 bit type parameters and 6
331 floating point parameters.
332
333 This calling convention supports `tail call
334 optimization <CodeGenerator.html#id80>`_ but requires both the
335 caller and callee are using it.
336"``cc 11``" - The HiPE calling convention
337 This calling convention has been implemented specifically for use by
338 the `High-Performance Erlang
339 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
340 native code compiler of the `Ericsson's Open Source Erlang/OTP
341 system <http://www.erlang.org/download.shtml>`_. It uses more
342 registers for argument passing than the ordinary C calling
343 convention and defines no callee-saved registers. The calling
344 convention properly supports `tail call
345 optimization <CodeGenerator.html#id80>`_ but requires that both the
346 caller and the callee use it. It uses a *register pinning*
347 mechanism, similar to GHC's convention, for keeping frequently
348 accessed runtime components pinned to specific hardware registers.
349 At the moment only X86 supports this convention (both 32 and 64
350 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000351"``webkit_jscc``" - WebKit's JavaScript calling convention
352 This calling convention has been implemented for `WebKit FTL JIT
353 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
354 stack right to left (as cdecl does), and returns a value in the
355 platform's customary return register.
356"``anyregcc``" - Dynamic calling convention for code patching
357 This is a special convention that supports patching an arbitrary code
358 sequence in place of a call site. This convention forces the call
359 arguments into registers but allows them to be dynamcially
360 allocated. This can currently only be used with calls to
361 llvm.experimental.patchpoint because only this intrinsic records
362 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000363"``preserve_mostcc``" - The `PreserveMost` calling convention
364 This calling convention attempts to make the code in the caller as little
365 intrusive as possible. This calling convention behaves identical to the `C`
366 calling convention on how arguments and return values are passed, but it
367 uses a different set of caller/callee-saved registers. This alleviates the
368 burden of saving and recovering a large register set before and after the
369 call in the caller.
370
371 - On X86-64 the callee preserves all general purpose registers, except for
372 R11. R11 can be used as a scratch register. Floating-point registers
373 (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375 The idea behind this convention is to support calls to runtime functions
376 that have a hot path and a cold path. The hot path is usually a small piece
377 of code that doesn't many registers. The cold path might need to call out to
378 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000379 registers, which haven't already been saved by the caller. The
380 `PreserveMost` calling convention is very similar to the `cold` calling
381 convention in terms of caller/callee-saved registers, but they are used for
382 different types of function calls. `coldcc` is for function calls that are
383 rarely executed, whereas `preserve_mostcc` function calls are intended to be
384 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000386
387 This calling convention will be used by a future version of the ObjectiveC
388 runtime and should therefore still be considered experimental at this time.
389 Although this convention was created to optimize certain runtime calls to
390 the ObjectiveC runtime, it is not limited to this runtime and might be used
391 by other runtimes in the future too. The current implementation only
392 supports X86-64, but the intention is to support more architectures in the
393 future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395 This calling convention attempts to make the code in the caller even less
396 intrusive than the `PreserveMost` calling convention. This calling
397 convention also behaves identical to the `C` calling convention on how
398 arguments and return values are passed, but it uses a different set of
399 caller/callee-saved registers. This removes the burden of saving and
400 recovering a large register set before and after the call in the caller.
401
402 - On X86-64 the callee preserves all general purpose registers, except for
403 R11. R11 can be used as a scratch register. Furthermore it also preserves
404 all floating-point registers (XMMs/YMMs).
405
406 The idea behind this convention is to support calls to runtime functions
407 that don't need to call out to any other functions.
408
409 This calling convention, like the `PreserveMost` calling convention, will be
410 used by a future version of the ObjectiveC runtime and should be considered
411 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000412"``cc <n>``" - Numbered convention
413 Any calling convention may be specified by number, allowing
414 target-specific calling conventions to be used. Target specific
415 calling conventions start at 64.
416
417More calling conventions can be added/defined on an as-needed basis, to
418support Pascal conventions or any other well-known target-independent
419convention.
420
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000421.. _visibilitystyles:
422
Sean Silvab084af42012-12-07 10:36:55 +0000423Visibility Styles
424-----------------
425
426All Global Variables and Functions have one of the following visibility
427styles:
428
429"``default``" - Default style
430 On targets that use the ELF object file format, default visibility
431 means that the declaration is visible to other modules and, in
432 shared libraries, means that the declared entity may be overridden.
433 On Darwin, default visibility means that the declaration is visible
434 to other modules. Default visibility corresponds to "external
435 linkage" in the language.
436"``hidden``" - Hidden style
437 Two declarations of an object with hidden visibility refer to the
438 same object if they are in the same shared object. Usually, hidden
439 visibility indicates that the symbol will not be placed into the
440 dynamic symbol table, so no other module (executable or shared
441 library) can reference it directly.
442"``protected``" - Protected style
443 On ELF, protected visibility indicates that the symbol will be
444 placed in the dynamic symbol table, but that references within the
445 defining module will bind to the local symbol. That is, the symbol
446 cannot be overridden by another module.
447
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000448.. _namedtypes:
449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Sean Silvab084af42012-12-07 10:36:55 +0000469Named Types
470-----------
471
472LLVM IR allows you to specify name aliases for certain types. This can
473make it easier to read the IR and make the IR more condensed
474(particularly when recursive types are involved). An example of a name
475specification is:
476
477.. code-block:: llvm
478
479 %mytype = type { %mytype*, i32 }
480
481You may give a name to any :ref:`type <typesystem>` except
482":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
483expected with the syntax "%mytype".
484
485Note that type names are aliases for the structural type that they
486indicate, and that you can therefore specify multiple names for the same
487type. This often leads to confusing behavior when dumping out a .ll
488file. Since LLVM IR uses structural typing, the name is not part of the
489type. When printing out LLVM IR, the printer will pick *one name* to
490render all types of a particular shape. This means that if you have code
491where two different source types end up having the same LLVM type, that
492the dumper will sometimes print the "wrong" or unexpected type. This is
493an important design point and isn't going to change.
494
495.. _globalvars:
496
497Global Variables
498----------------
499
500Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000501instead of run-time.
502
503Global variables definitions must be initialized, may have an explicit section
504to be placed in, and may have an optional explicit alignment specified.
505
506Global variables in other translation units can also be declared, in which
507case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000508
509A variable may be defined as ``thread_local``, which means that it will
510not be shared by threads (each thread will have a separated copy of the
511variable). Not all targets support thread-local variables. Optionally, a
512TLS model may be specified:
513
514``localdynamic``
515 For variables that are only used within the current shared library.
516``initialexec``
517 For variables in modules that will not be loaded dynamically.
518``localexec``
519 For variables defined in the executable and only used within it.
520
521The models correspond to the ELF TLS models; see `ELF Handling For
522Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
523more information on under which circumstances the different models may
524be used. The target may choose a different TLS model if the specified
525model is not supported, or if a better choice of model can be made.
526
Michael Gottesman006039c2013-01-31 05:48:48 +0000527A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000528the contents of the variable will **never** be modified (enabling better
529optimization, allowing the global data to be placed in the read-only
530section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000531initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000532variable.
533
534LLVM explicitly allows *declarations* of global variables to be marked
535constant, even if the final definition of the global is not. This
536capability can be used to enable slightly better optimization of the
537program, but requires the language definition to guarantee that
538optimizations based on the 'constantness' are valid for the translation
539units that do not include the definition.
540
541As SSA values, global variables define pointer values that are in scope
542(i.e. they dominate) all basic blocks in the program. Global variables
543always define a pointer to their "content" type because they describe a
544region of memory, and all memory objects in LLVM are accessed through
545pointers.
546
547Global variables can be marked with ``unnamed_addr`` which indicates
548that the address is not significant, only the content. Constants marked
549like this can be merged with other constants if they have the same
550initializer. Note that a constant with significant address *can* be
551merged with a ``unnamed_addr`` constant, the result being a constant
552whose address is significant.
553
554A global variable may be declared to reside in a target-specific
555numbered address space. For targets that support them, address spaces
556may affect how optimizations are performed and/or what target
557instructions are used to access the variable. The default address space
558is zero. The address space qualifier must precede any other attributes.
559
560LLVM allows an explicit section to be specified for globals. If the
561target supports it, it will emit globals to the section specified.
562
Michael Gottesmane743a302013-02-04 03:22:00 +0000563By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000564variables defined within the module are not modified from their
565initial values before the start of the global initializer. This is
566true even for variables potentially accessible from outside the
567module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000568``@llvm.used`` or dllexported variables. This assumption may be suppressed
569by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000570
Sean Silvab084af42012-12-07 10:36:55 +0000571An explicit alignment may be specified for a global, which must be a
572power of 2. If not present, or if the alignment is set to zero, the
573alignment of the global is set by the target to whatever it feels
574convenient. If an explicit alignment is specified, the global is forced
575to have exactly that alignment. Targets and optimizers are not allowed
576to over-align the global if the global has an assigned section. In this
577case, the extra alignment could be observable: for example, code could
578assume that the globals are densely packed in their section and try to
579iterate over them as an array, alignment padding would break this
580iteration.
581
Nico Rieck7157bb72014-01-14 15:22:47 +0000582Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
583
584Syntax::
585
586 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
587 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
588 <global | constant> <Type>
589 [, section "name"] [, align <Alignment>]
590
Sean Silvab084af42012-12-07 10:36:55 +0000591For example, the following defines a global in a numbered address space
592with an initializer, section, and alignment:
593
594.. code-block:: llvm
595
596 @G = addrspace(5) constant float 1.0, section "foo", align 4
597
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000598The following example just declares a global variable
599
600.. code-block:: llvm
601
602 @G = external global i32
603
Sean Silvab084af42012-12-07 10:36:55 +0000604The following example defines a thread-local global with the
605``initialexec`` TLS model:
606
607.. code-block:: llvm
608
609 @G = thread_local(initialexec) global i32 0, align 4
610
611.. _functionstructure:
612
613Functions
614---------
615
616LLVM function definitions consist of the "``define``" keyword, an
617optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000618style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
619an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000620an optional ``unnamed_addr`` attribute, a return type, an optional
621:ref:`parameter attribute <paramattrs>` for the return type, a function
622name, a (possibly empty) argument list (each with optional :ref:`parameter
623attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
624an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000625collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
626curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000627
628LLVM function declarations consist of the "``declare``" keyword, an
629optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000630style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
631an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000632an optional ``unnamed_addr`` attribute, a return type, an optional
633:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000634name, a possibly empty list of arguments, an optional alignment, an optional
635:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000636
Bill Wendling6822ecb2013-10-27 05:09:12 +0000637A function definition contains a list of basic blocks, forming the CFG (Control
638Flow Graph) for the function. Each basic block may optionally start with a label
639(giving the basic block a symbol table entry), contains a list of instructions,
640and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
641function return). If an explicit label is not provided, a block is assigned an
642implicit numbered label, using the next value from the same counter as used for
643unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
644entry block does not have an explicit label, it will be assigned label "%0",
645then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000646
647The first basic block in a function is special in two ways: it is
648immediately executed on entrance to the function, and it is not allowed
649to have predecessor basic blocks (i.e. there can not be any branches to
650the entry block of a function). Because the block can have no
651predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
652
653LLVM allows an explicit section to be specified for functions. If the
654target supports it, it will emit functions to the section specified.
655
656An explicit alignment may be specified for a function. If not present,
657or if the alignment is set to zero, the alignment of the function is set
658by the target to whatever it feels convenient. If an explicit alignment
659is specified, the function is forced to have at least that much
660alignment. All alignments must be a power of 2.
661
662If the ``unnamed_addr`` attribute is given, the address is know to not
663be significant and two identical functions can be merged.
664
665Syntax::
666
Nico Rieck7157bb72014-01-14 15:22:47 +0000667 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000668 [cconv] [ret attrs]
669 <ResultType> @<FunctionName> ([argument list])
670 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000671 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000672
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000673.. _langref_aliases:
674
Sean Silvab084af42012-12-07 10:36:55 +0000675Aliases
676-------
677
678Aliases act as "second name" for the aliasee value (which can be either
679function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000680Aliases may have an optional :ref:`linkage type <linkage>`, an optional
681:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
682<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000687
Rafael Espindola65785492013-10-07 13:57:59 +0000688The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000689``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000690``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000691might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000692alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000693
Sean Silvab084af42012-12-07 10:36:55 +0000694.. _namedmetadatastructure:
695
696Named Metadata
697--------------
698
699Named metadata is a collection of metadata. :ref:`Metadata
700nodes <metadata>` (but not metadata strings) are the only valid
701operands for a named metadata.
702
703Syntax::
704
705 ; Some unnamed metadata nodes, which are referenced by the named metadata.
706 !0 = metadata !{metadata !"zero"}
707 !1 = metadata !{metadata !"one"}
708 !2 = metadata !{metadata !"two"}
709 ; A named metadata.
710 !name = !{!0, !1, !2}
711
712.. _paramattrs:
713
714Parameter Attributes
715--------------------
716
717The return type and each parameter of a function type may have a set of
718*parameter attributes* associated with them. Parameter attributes are
719used to communicate additional information about the result or
720parameters of a function. Parameter attributes are considered to be part
721of the function, not of the function type, so functions with different
722parameter attributes can have the same function type.
723
724Parameter attributes are simple keywords that follow the type specified.
725If multiple parameter attributes are needed, they are space separated.
726For example:
727
728.. code-block:: llvm
729
730 declare i32 @printf(i8* noalias nocapture, ...)
731 declare i32 @atoi(i8 zeroext)
732 declare signext i8 @returns_signed_char()
733
734Note that any attributes for the function result (``nounwind``,
735``readonly``) come immediately after the argument list.
736
737Currently, only the following parameter attributes are defined:
738
739``zeroext``
740 This indicates to the code generator that the parameter or return
741 value should be zero-extended to the extent required by the target's
742 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
743 the caller (for a parameter) or the callee (for a return value).
744``signext``
745 This indicates to the code generator that the parameter or return
746 value should be sign-extended to the extent required by the target's
747 ABI (which is usually 32-bits) by the caller (for a parameter) or
748 the callee (for a return value).
749``inreg``
750 This indicates that this parameter or return value should be treated
751 in a special target-dependent fashion during while emitting code for
752 a function call or return (usually, by putting it in a register as
753 opposed to memory, though some targets use it to distinguish between
754 two different kinds of registers). Use of this attribute is
755 target-specific.
756``byval``
757 This indicates that the pointer parameter should really be passed by
758 value to the function. The attribute implies that a hidden copy of
759 the pointee is made between the caller and the callee, so the callee
760 is unable to modify the value in the caller. This attribute is only
761 valid on LLVM pointer arguments. It is generally used to pass
762 structs and arrays by value, but is also valid on pointers to
763 scalars. The copy is considered to belong to the caller not the
764 callee (for example, ``readonly`` functions should not write to
765 ``byval`` parameters). This is not a valid attribute for return
766 values.
767
768 The byval attribute also supports specifying an alignment with the
769 align attribute. It indicates the alignment of the stack slot to
770 form and the known alignment of the pointer specified to the call
771 site. If the alignment is not specified, then the code generator
772 makes a target-specific assumption.
773
Reid Klecknera534a382013-12-19 02:14:12 +0000774.. _attr_inalloca:
775
776``inalloca``
777
778.. Warning:: This feature is unstable and not fully implemented.
779
Reid Kleckner60d3a832014-01-16 22:59:24 +0000780 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000781 address of outgoing stack arguments. An ``inalloca`` argument must
782 be a pointer to stack memory produced by an ``alloca`` instruction.
783 The alloca, or argument allocation, must also be tagged with the
784 inalloca keyword. Only the past argument may have the ``inalloca``
785 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000786
Reid Kleckner436c42e2014-01-17 23:58:17 +0000787 An argument allocation may be used by a call at most once because
788 the call may deallocate it. The ``inalloca`` attribute cannot be
789 used in conjunction with other attributes that affect argument
790 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``.
Reid Klecknera534a382013-12-19 02:14:12 +0000791
Reid Kleckner60d3a832014-01-16 22:59:24 +0000792 When the call site is reached, the argument allocation must have
793 been the most recent stack allocation that is still live, or the
794 results are undefined. It is possible to allocate additional stack
795 space after an argument allocation and before its call site, but it
796 must be cleared off with :ref:`llvm.stackrestore
797 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000798
799 See :doc:`InAlloca` for more information on how to use this
800 attribute.
801
Sean Silvab084af42012-12-07 10:36:55 +0000802``sret``
803 This indicates that the pointer parameter specifies the address of a
804 structure that is the return value of the function in the source
805 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000806 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000807 not to trap and to be properly aligned. This may only be applied to
808 the first parameter. This is not a valid attribute for return
809 values.
810``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000811 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000812 the argument or return value do not alias pointer values which are
813 not *based* on it, ignoring certain "irrelevant" dependencies. For a
814 call to the parent function, dependencies between memory references
815 from before or after the call and from those during the call are
816 "irrelevant" to the ``noalias`` keyword for the arguments and return
817 value used in that call. The caller shares the responsibility with
818 the callee for ensuring that these requirements are met. For further
819 details, please see the discussion of the NoAlias response in `alias
820 analysis <AliasAnalysis.html#MustMayNo>`_.
821
822 Note that this definition of ``noalias`` is intentionally similar
823 to the definition of ``restrict`` in C99 for function arguments,
824 though it is slightly weaker.
825
826 For function return values, C99's ``restrict`` is not meaningful,
827 while LLVM's ``noalias`` is.
828``nocapture``
829 This indicates that the callee does not make any copies of the
830 pointer that outlive the callee itself. This is not a valid
831 attribute for return values.
832
833.. _nest:
834
835``nest``
836 This indicates that the pointer parameter can be excised using the
837 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000838 attribute for return values and can only be applied to one parameter.
839
840``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000841 This indicates that the function always returns the argument as its return
842 value. This is an optimization hint to the code generator when generating
843 the caller, allowing tail call optimization and omission of register saves
844 and restores in some cases; it is not checked or enforced when generating
845 the callee. The parameter and the function return type must be valid
846 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
847 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000848
849.. _gc:
850
851Garbage Collector Names
852-----------------------
853
854Each function may specify a garbage collector name, which is simply a
855string:
856
857.. code-block:: llvm
858
859 define void @f() gc "name" { ... }
860
861The compiler declares the supported values of *name*. Specifying a
862collector which will cause the compiler to alter its output in order to
863support the named garbage collection algorithm.
864
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000865.. _prefixdata:
866
867Prefix Data
868-----------
869
870Prefix data is data associated with a function which the code generator
871will emit immediately before the function body. The purpose of this feature
872is to allow frontends to associate language-specific runtime metadata with
873specific functions and make it available through the function pointer while
874still allowing the function pointer to be called. To access the data for a
875given function, a program may bitcast the function pointer to a pointer to
876the constant's type. This implies that the IR symbol points to the start
877of the prefix data.
878
879To maintain the semantics of ordinary function calls, the prefix data must
880have a particular format. Specifically, it must begin with a sequence of
881bytes which decode to a sequence of machine instructions, valid for the
882module's target, which transfer control to the point immediately succeeding
883the prefix data, without performing any other visible action. This allows
884the inliner and other passes to reason about the semantics of the function
885definition without needing to reason about the prefix data. Obviously this
886makes the format of the prefix data highly target dependent.
887
Peter Collingbourne213358a2013-09-23 20:14:21 +0000888Prefix data is laid out as if it were an initializer for a global variable
889of the prefix data's type. No padding is automatically placed between the
890prefix data and the function body. If padding is required, it must be part
891of the prefix data.
892
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000893A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
894which encodes the ``nop`` instruction:
895
896.. code-block:: llvm
897
898 define void @f() prefix i8 144 { ... }
899
900Generally prefix data can be formed by encoding a relative branch instruction
901which skips the metadata, as in this example of valid prefix data for the
902x86_64 architecture, where the first two bytes encode ``jmp .+10``:
903
904.. code-block:: llvm
905
906 %0 = type <{ i8, i8, i8* }>
907
908 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
909
910A function may have prefix data but no body. This has similar semantics
911to the ``available_externally`` linkage in that the data may be used by the
912optimizers but will not be emitted in the object file.
913
Bill Wendling63b88192013-02-06 06:52:58 +0000914.. _attrgrp:
915
916Attribute Groups
917----------------
918
919Attribute groups are groups of attributes that are referenced by objects within
920the IR. They are important for keeping ``.ll`` files readable, because a lot of
921functions will use the same set of attributes. In the degenerative case of a
922``.ll`` file that corresponds to a single ``.c`` file, the single attribute
923group will capture the important command line flags used to build that file.
924
925An attribute group is a module-level object. To use an attribute group, an
926object references the attribute group's ID (e.g. ``#37``). An object may refer
927to more than one attribute group. In that situation, the attributes from the
928different groups are merged.
929
930Here is an example of attribute groups for a function that should always be
931inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
932
933.. code-block:: llvm
934
935 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000936 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000937
938 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000939 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000940
941 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
942 define void @f() #0 #1 { ... }
943
Sean Silvab084af42012-12-07 10:36:55 +0000944.. _fnattrs:
945
946Function Attributes
947-------------------
948
949Function attributes are set to communicate additional information about
950a function. Function attributes are considered to be part of the
951function, not of the function type, so functions with different function
952attributes can have the same function type.
953
954Function attributes are simple keywords that follow the type specified.
955If multiple attributes are needed, they are space separated. For
956example:
957
958.. code-block:: llvm
959
960 define void @f() noinline { ... }
961 define void @f() alwaysinline { ... }
962 define void @f() alwaysinline optsize { ... }
963 define void @f() optsize { ... }
964
Sean Silvab084af42012-12-07 10:36:55 +0000965``alignstack(<n>)``
966 This attribute indicates that, when emitting the prologue and
967 epilogue, the backend should forcibly align the stack pointer.
968 Specify the desired alignment, which must be a power of two, in
969 parentheses.
970``alwaysinline``
971 This attribute indicates that the inliner should attempt to inline
972 this function into callers whenever possible, ignoring any active
973 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000974``builtin``
975 This indicates that the callee function at a call site should be
976 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000977 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000978 direct calls to functions which are declared with the ``nobuiltin``
979 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000980``cold``
981 This attribute indicates that this function is rarely called. When
982 computing edge weights, basic blocks post-dominated by a cold
983 function call are also considered to be cold; and, thus, given low
984 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000985``inlinehint``
986 This attribute indicates that the source code contained a hint that
987 inlining this function is desirable (such as the "inline" keyword in
988 C/C++). It is just a hint; it imposes no requirements on the
989 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000990``minsize``
991 This attribute suggests that optimization passes and code generator
992 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000993 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000994 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000995``naked``
996 This attribute disables prologue / epilogue emission for the
997 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000998``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000999 This indicates that the callee function at a call site is not recognized as
1000 a built-in function. LLVM will retain the original call and not replace it
1001 with equivalent code based on the semantics of the built-in function, unless
1002 the call site uses the ``builtin`` attribute. This is valid at call sites
1003 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001004``noduplicate``
1005 This attribute indicates that calls to the function cannot be
1006 duplicated. A call to a ``noduplicate`` function may be moved
1007 within its parent function, but may not be duplicated within
1008 its parent function.
1009
1010 A function containing a ``noduplicate`` call may still
1011 be an inlining candidate, provided that the call is not
1012 duplicated by inlining. That implies that the function has
1013 internal linkage and only has one call site, so the original
1014 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001015``noimplicitfloat``
1016 This attributes disables implicit floating point instructions.
1017``noinline``
1018 This attribute indicates that the inliner should never inline this
1019 function in any situation. This attribute may not be used together
1020 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001021``nonlazybind``
1022 This attribute suppresses lazy symbol binding for the function. This
1023 may make calls to the function faster, at the cost of extra program
1024 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001025``noredzone``
1026 This attribute indicates that the code generator should not use a
1027 red zone, even if the target-specific ABI normally permits it.
1028``noreturn``
1029 This function attribute indicates that the function never returns
1030 normally. This produces undefined behavior at runtime if the
1031 function ever does dynamically return.
1032``nounwind``
1033 This function attribute indicates that the function never returns
1034 with an unwind or exceptional control flow. If the function does
1035 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001036``optnone``
1037 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001038 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001039 exception of interprocedural optimization passes.
1040 This attribute cannot be used together with the ``alwaysinline``
1041 attribute; this attribute is also incompatible
1042 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001043
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001044 This attribute requires the ``noinline`` attribute to be specified on
1045 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001046 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001047 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001048``optsize``
1049 This attribute suggests that optimization passes and code generator
1050 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001051 and otherwise do optimizations specifically to reduce code size as
1052 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001053``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001054 On a function, this attribute indicates that the function computes its
1055 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001056 without dereferencing any pointer arguments or otherwise accessing
1057 any mutable state (e.g. memory, control registers, etc) visible to
1058 caller functions. It does not write through any pointer arguments
1059 (including ``byval`` arguments) and never changes any state visible
1060 to callers. This means that it cannot unwind exceptions by calling
1061 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001062
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001063 On an argument, this attribute indicates that the function does not
1064 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001065 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001066``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001067 On a function, this attribute indicates that the function does not write
1068 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001069 modify any state (e.g. memory, control registers, etc) visible to
1070 caller functions. It may dereference pointer arguments and read
1071 state that may be set in the caller. A readonly function always
1072 returns the same value (or unwinds an exception identically) when
1073 called with the same set of arguments and global state. It cannot
1074 unwind an exception by calling the ``C++`` exception throwing
1075 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001076
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001077 On an argument, this attribute indicates that the function does not write
1078 through this pointer argument, even though it may write to the memory that
1079 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001080``returns_twice``
1081 This attribute indicates that this function can return twice. The C
1082 ``setjmp`` is an example of such a function. The compiler disables
1083 some optimizations (like tail calls) in the caller of these
1084 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001085``sanitize_address``
1086 This attribute indicates that AddressSanitizer checks
1087 (dynamic address safety analysis) are enabled for this function.
1088``sanitize_memory``
1089 This attribute indicates that MemorySanitizer checks (dynamic detection
1090 of accesses to uninitialized memory) are enabled for this function.
1091``sanitize_thread``
1092 This attribute indicates that ThreadSanitizer checks
1093 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001094``ssp``
1095 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001096 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001097 placed on the stack before the local variables that's checked upon
1098 return from the function to see if it has been overwritten. A
1099 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001100 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001101
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001102 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1103 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1104 - Calls to alloca() with variable sizes or constant sizes greater than
1105 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001106
1107 If a function that has an ``ssp`` attribute is inlined into a
1108 function that doesn't have an ``ssp`` attribute, then the resulting
1109 function will have an ``ssp`` attribute.
1110``sspreq``
1111 This attribute indicates that the function should *always* emit a
1112 stack smashing protector. This overrides the ``ssp`` function
1113 attribute.
1114
1115 If a function that has an ``sspreq`` attribute is inlined into a
1116 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001117 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1118 an ``sspreq`` attribute.
1119``sspstrong``
1120 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001121 protector. This attribute causes a strong heuristic to be used when
1122 determining if a function needs stack protectors. The strong heuristic
1123 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001124
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001125 - Arrays of any size and type
1126 - Aggregates containing an array of any size and type.
1127 - Calls to alloca().
1128 - Local variables that have had their address taken.
1129
1130 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001131
1132 If a function that has an ``sspstrong`` attribute is inlined into a
1133 function that doesn't have an ``sspstrong`` attribute, then the
1134 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001135``uwtable``
1136 This attribute indicates that the ABI being targeted requires that
1137 an unwind table entry be produce for this function even if we can
1138 show that no exceptions passes by it. This is normally the case for
1139 the ELF x86-64 abi, but it can be disabled for some compilation
1140 units.
Sean Silvab084af42012-12-07 10:36:55 +00001141
1142.. _moduleasm:
1143
1144Module-Level Inline Assembly
1145----------------------------
1146
1147Modules may contain "module-level inline asm" blocks, which corresponds
1148to the GCC "file scope inline asm" blocks. These blocks are internally
1149concatenated by LLVM and treated as a single unit, but may be separated
1150in the ``.ll`` file if desired. The syntax is very simple:
1151
1152.. code-block:: llvm
1153
1154 module asm "inline asm code goes here"
1155 module asm "more can go here"
1156
1157The strings can contain any character by escaping non-printable
1158characters. The escape sequence used is simply "\\xx" where "xx" is the
1159two digit hex code for the number.
1160
1161The inline asm code is simply printed to the machine code .s file when
1162assembly code is generated.
1163
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001164.. _langref_datalayout:
1165
Sean Silvab084af42012-12-07 10:36:55 +00001166Data Layout
1167-----------
1168
1169A module may specify a target specific data layout string that specifies
1170how data is to be laid out in memory. The syntax for the data layout is
1171simply:
1172
1173.. code-block:: llvm
1174
1175 target datalayout = "layout specification"
1176
1177The *layout specification* consists of a list of specifications
1178separated by the minus sign character ('-'). Each specification starts
1179with a letter and may include other information after the letter to
1180define some aspect of the data layout. The specifications accepted are
1181as follows:
1182
1183``E``
1184 Specifies that the target lays out data in big-endian form. That is,
1185 the bits with the most significance have the lowest address
1186 location.
1187``e``
1188 Specifies that the target lays out data in little-endian form. That
1189 is, the bits with the least significance have the lowest address
1190 location.
1191``S<size>``
1192 Specifies the natural alignment of the stack in bits. Alignment
1193 promotion of stack variables is limited to the natural stack
1194 alignment to avoid dynamic stack realignment. The stack alignment
1195 must be a multiple of 8-bits. If omitted, the natural stack
1196 alignment defaults to "unspecified", which does not prevent any
1197 alignment promotions.
1198``p[n]:<size>:<abi>:<pref>``
1199 This specifies the *size* of a pointer and its ``<abi>`` and
1200 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001201 bits. The address space, ``n`` is optional, and if not specified,
1202 denotes the default address space 0. The value of ``n`` must be
1203 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001204``i<size>:<abi>:<pref>``
1205 This specifies the alignment for an integer type of a given bit
1206 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1207``v<size>:<abi>:<pref>``
1208 This specifies the alignment for a vector type of a given bit
1209 ``<size>``.
1210``f<size>:<abi>:<pref>``
1211 This specifies the alignment for a floating point type of a given bit
1212 ``<size>``. Only values of ``<size>`` that are supported by the target
1213 will work. 32 (float) and 64 (double) are supported on all targets; 80
1214 or 128 (different flavors of long double) are also supported on some
1215 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001216``a:<abi>:<pref>``
1217 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001218``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001219 If present, specifies that llvm names are mangled in the output. The
1220 options are
1221
1222 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1223 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1224 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1225 symbols get a ``_`` prefix.
1226 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1227 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001228``n<size1>:<size2>:<size3>...``
1229 This specifies a set of native integer widths for the target CPU in
1230 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1231 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1232 this set are considered to support most general arithmetic operations
1233 efficiently.
1234
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001235On every specification that takes a ``<abi>:<pref>``, specifying the
1236``<pref>`` alignment is optional. If omitted, the preceding ``:``
1237should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1238
Sean Silvab084af42012-12-07 10:36:55 +00001239When constructing the data layout for a given target, LLVM starts with a
1240default set of specifications which are then (possibly) overridden by
1241the specifications in the ``datalayout`` keyword. The default
1242specifications are given in this list:
1243
1244- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001245- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1246- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1247 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001248- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001249- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1250- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1251- ``i16:16:16`` - i16 is 16-bit aligned
1252- ``i32:32:32`` - i32 is 32-bit aligned
1253- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1254 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001255- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001256- ``f32:32:32`` - float is 32-bit aligned
1257- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001258- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001259- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1260- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001261- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001262
1263When LLVM is determining the alignment for a given type, it uses the
1264following rules:
1265
1266#. If the type sought is an exact match for one of the specifications,
1267 that specification is used.
1268#. If no match is found, and the type sought is an integer type, then
1269 the smallest integer type that is larger than the bitwidth of the
1270 sought type is used. If none of the specifications are larger than
1271 the bitwidth then the largest integer type is used. For example,
1272 given the default specifications above, the i7 type will use the
1273 alignment of i8 (next largest) while both i65 and i256 will use the
1274 alignment of i64 (largest specified).
1275#. If no match is found, and the type sought is a vector type, then the
1276 largest vector type that is smaller than the sought vector type will
1277 be used as a fall back. This happens because <128 x double> can be
1278 implemented in terms of 64 <2 x double>, for example.
1279
1280The function of the data layout string may not be what you expect.
1281Notably, this is not a specification from the frontend of what alignment
1282the code generator should use.
1283
1284Instead, if specified, the target data layout is required to match what
1285the ultimate *code generator* expects. This string is used by the
1286mid-level optimizers to improve code, and this only works if it matches
1287what the ultimate code generator uses. If you would like to generate IR
1288that does not embed this target-specific detail into the IR, then you
1289don't have to specify the string. This will disable some optimizations
1290that require precise layout information, but this also prevents those
1291optimizations from introducing target specificity into the IR.
1292
Bill Wendling5cc90842013-10-18 23:41:25 +00001293.. _langref_triple:
1294
1295Target Triple
1296-------------
1297
1298A module may specify a target triple string that describes the target
1299host. The syntax for the target triple is simply:
1300
1301.. code-block:: llvm
1302
1303 target triple = "x86_64-apple-macosx10.7.0"
1304
1305The *target triple* string consists of a series of identifiers delimited
1306by the minus sign character ('-'). The canonical forms are:
1307
1308::
1309
1310 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1311 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1312
1313This information is passed along to the backend so that it generates
1314code for the proper architecture. It's possible to override this on the
1315command line with the ``-mtriple`` command line option.
1316
Sean Silvab084af42012-12-07 10:36:55 +00001317.. _pointeraliasing:
1318
1319Pointer Aliasing Rules
1320----------------------
1321
1322Any memory access must be done through a pointer value associated with
1323an address range of the memory access, otherwise the behavior is
1324undefined. Pointer values are associated with address ranges according
1325to the following rules:
1326
1327- A pointer value is associated with the addresses associated with any
1328 value it is *based* on.
1329- An address of a global variable is associated with the address range
1330 of the variable's storage.
1331- The result value of an allocation instruction is associated with the
1332 address range of the allocated storage.
1333- A null pointer in the default address-space is associated with no
1334 address.
1335- An integer constant other than zero or a pointer value returned from
1336 a function not defined within LLVM may be associated with address
1337 ranges allocated through mechanisms other than those provided by
1338 LLVM. Such ranges shall not overlap with any ranges of addresses
1339 allocated by mechanisms provided by LLVM.
1340
1341A pointer value is *based* on another pointer value according to the
1342following rules:
1343
1344- A pointer value formed from a ``getelementptr`` operation is *based*
1345 on the first operand of the ``getelementptr``.
1346- The result value of a ``bitcast`` is *based* on the operand of the
1347 ``bitcast``.
1348- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1349 values that contribute (directly or indirectly) to the computation of
1350 the pointer's value.
1351- The "*based* on" relationship is transitive.
1352
1353Note that this definition of *"based"* is intentionally similar to the
1354definition of *"based"* in C99, though it is slightly weaker.
1355
1356LLVM IR does not associate types with memory. The result type of a
1357``load`` merely indicates the size and alignment of the memory from
1358which to load, as well as the interpretation of the value. The first
1359operand type of a ``store`` similarly only indicates the size and
1360alignment of the store.
1361
1362Consequently, type-based alias analysis, aka TBAA, aka
1363``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1364:ref:`Metadata <metadata>` may be used to encode additional information
1365which specialized optimization passes may use to implement type-based
1366alias analysis.
1367
1368.. _volatile:
1369
1370Volatile Memory Accesses
1371------------------------
1372
1373Certain memory accesses, such as :ref:`load <i_load>`'s,
1374:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1375marked ``volatile``. The optimizers must not change the number of
1376volatile operations or change their order of execution relative to other
1377volatile operations. The optimizers *may* change the order of volatile
1378operations relative to non-volatile operations. This is not Java's
1379"volatile" and has no cross-thread synchronization behavior.
1380
Andrew Trick89fc5a62013-01-30 21:19:35 +00001381IR-level volatile loads and stores cannot safely be optimized into
1382llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1383flagged volatile. Likewise, the backend should never split or merge
1384target-legal volatile load/store instructions.
1385
Andrew Trick7e6f9282013-01-31 00:49:39 +00001386.. admonition:: Rationale
1387
1388 Platforms may rely on volatile loads and stores of natively supported
1389 data width to be executed as single instruction. For example, in C
1390 this holds for an l-value of volatile primitive type with native
1391 hardware support, but not necessarily for aggregate types. The
1392 frontend upholds these expectations, which are intentionally
1393 unspecified in the IR. The rules above ensure that IR transformation
1394 do not violate the frontend's contract with the language.
1395
Sean Silvab084af42012-12-07 10:36:55 +00001396.. _memmodel:
1397
1398Memory Model for Concurrent Operations
1399--------------------------------------
1400
1401The LLVM IR does not define any way to start parallel threads of
1402execution or to register signal handlers. Nonetheless, there are
1403platform-specific ways to create them, and we define LLVM IR's behavior
1404in their presence. This model is inspired by the C++0x memory model.
1405
1406For a more informal introduction to this model, see the :doc:`Atomics`.
1407
1408We define a *happens-before* partial order as the least partial order
1409that
1410
1411- Is a superset of single-thread program order, and
1412- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1413 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1414 techniques, like pthread locks, thread creation, thread joining,
1415 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1416 Constraints <ordering>`).
1417
1418Note that program order does not introduce *happens-before* edges
1419between a thread and signals executing inside that thread.
1420
1421Every (defined) read operation (load instructions, memcpy, atomic
1422loads/read-modify-writes, etc.) R reads a series of bytes written by
1423(defined) write operations (store instructions, atomic
1424stores/read-modify-writes, memcpy, etc.). For the purposes of this
1425section, initialized globals are considered to have a write of the
1426initializer which is atomic and happens before any other read or write
1427of the memory in question. For each byte of a read R, R\ :sub:`byte`
1428may see any write to the same byte, except:
1429
1430- If write\ :sub:`1` happens before write\ :sub:`2`, and
1431 write\ :sub:`2` happens before R\ :sub:`byte`, then
1432 R\ :sub:`byte` does not see write\ :sub:`1`.
1433- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1434 R\ :sub:`byte` does not see write\ :sub:`3`.
1435
1436Given that definition, R\ :sub:`byte` is defined as follows:
1437
1438- If R is volatile, the result is target-dependent. (Volatile is
1439 supposed to give guarantees which can support ``sig_atomic_t`` in
1440 C/C++, and may be used for accesses to addresses which do not behave
1441 like normal memory. It does not generally provide cross-thread
1442 synchronization.)
1443- Otherwise, if there is no write to the same byte that happens before
1444 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1445- Otherwise, if R\ :sub:`byte` may see exactly one write,
1446 R\ :sub:`byte` returns the value written by that write.
1447- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1448 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1449 Memory Ordering Constraints <ordering>` section for additional
1450 constraints on how the choice is made.
1451- Otherwise R\ :sub:`byte` returns ``undef``.
1452
1453R returns the value composed of the series of bytes it read. This
1454implies that some bytes within the value may be ``undef`` **without**
1455the entire value being ``undef``. Note that this only defines the
1456semantics of the operation; it doesn't mean that targets will emit more
1457than one instruction to read the series of bytes.
1458
1459Note that in cases where none of the atomic intrinsics are used, this
1460model places only one restriction on IR transformations on top of what
1461is required for single-threaded execution: introducing a store to a byte
1462which might not otherwise be stored is not allowed in general.
1463(Specifically, in the case where another thread might write to and read
1464from an address, introducing a store can change a load that may see
1465exactly one write into a load that may see multiple writes.)
1466
1467.. _ordering:
1468
1469Atomic Memory Ordering Constraints
1470----------------------------------
1471
1472Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1473:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1474:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1475an ordering parameter that determines which other atomic instructions on
1476the same address they *synchronize with*. These semantics are borrowed
1477from Java and C++0x, but are somewhat more colloquial. If these
1478descriptions aren't precise enough, check those specs (see spec
1479references in the :doc:`atomics guide <Atomics>`).
1480:ref:`fence <i_fence>` instructions treat these orderings somewhat
1481differently since they don't take an address. See that instruction's
1482documentation for details.
1483
1484For a simpler introduction to the ordering constraints, see the
1485:doc:`Atomics`.
1486
1487``unordered``
1488 The set of values that can be read is governed by the happens-before
1489 partial order. A value cannot be read unless some operation wrote
1490 it. This is intended to provide a guarantee strong enough to model
1491 Java's non-volatile shared variables. This ordering cannot be
1492 specified for read-modify-write operations; it is not strong enough
1493 to make them atomic in any interesting way.
1494``monotonic``
1495 In addition to the guarantees of ``unordered``, there is a single
1496 total order for modifications by ``monotonic`` operations on each
1497 address. All modification orders must be compatible with the
1498 happens-before order. There is no guarantee that the modification
1499 orders can be combined to a global total order for the whole program
1500 (and this often will not be possible). The read in an atomic
1501 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1502 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1503 order immediately before the value it writes. If one atomic read
1504 happens before another atomic read of the same address, the later
1505 read must see the same value or a later value in the address's
1506 modification order. This disallows reordering of ``monotonic`` (or
1507 stronger) operations on the same address. If an address is written
1508 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1509 read that address repeatedly, the other threads must eventually see
1510 the write. This corresponds to the C++0x/C1x
1511 ``memory_order_relaxed``.
1512``acquire``
1513 In addition to the guarantees of ``monotonic``, a
1514 *synchronizes-with* edge may be formed with a ``release`` operation.
1515 This is intended to model C++'s ``memory_order_acquire``.
1516``release``
1517 In addition to the guarantees of ``monotonic``, if this operation
1518 writes a value which is subsequently read by an ``acquire``
1519 operation, it *synchronizes-with* that operation. (This isn't a
1520 complete description; see the C++0x definition of a release
1521 sequence.) This corresponds to the C++0x/C1x
1522 ``memory_order_release``.
1523``acq_rel`` (acquire+release)
1524 Acts as both an ``acquire`` and ``release`` operation on its
1525 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1526``seq_cst`` (sequentially consistent)
1527 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1528 operation which only reads, ``release`` for an operation which only
1529 writes), there is a global total order on all
1530 sequentially-consistent operations on all addresses, which is
1531 consistent with the *happens-before* partial order and with the
1532 modification orders of all the affected addresses. Each
1533 sequentially-consistent read sees the last preceding write to the
1534 same address in this global order. This corresponds to the C++0x/C1x
1535 ``memory_order_seq_cst`` and Java volatile.
1536
1537.. _singlethread:
1538
1539If an atomic operation is marked ``singlethread``, it only *synchronizes
1540with* or participates in modification and seq\_cst total orderings with
1541other operations running in the same thread (for example, in signal
1542handlers).
1543
1544.. _fastmath:
1545
1546Fast-Math Flags
1547---------------
1548
1549LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1550:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1551:ref:`frem <i_frem>`) have the following flags that can set to enable
1552otherwise unsafe floating point operations
1553
1554``nnan``
1555 No NaNs - Allow optimizations to assume the arguments and result are not
1556 NaN. Such optimizations are required to retain defined behavior over
1557 NaNs, but the value of the result is undefined.
1558
1559``ninf``
1560 No Infs - Allow optimizations to assume the arguments and result are not
1561 +/-Inf. Such optimizations are required to retain defined behavior over
1562 +/-Inf, but the value of the result is undefined.
1563
1564``nsz``
1565 No Signed Zeros - Allow optimizations to treat the sign of a zero
1566 argument or result as insignificant.
1567
1568``arcp``
1569 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1570 argument rather than perform division.
1571
1572``fast``
1573 Fast - Allow algebraically equivalent transformations that may
1574 dramatically change results in floating point (e.g. reassociate). This
1575 flag implies all the others.
1576
1577.. _typesystem:
1578
1579Type System
1580===========
1581
1582The LLVM type system is one of the most important features of the
1583intermediate representation. Being typed enables a number of
1584optimizations to be performed on the intermediate representation
1585directly, without having to do extra analyses on the side before the
1586transformation. A strong type system makes it easier to read the
1587generated code and enables novel analyses and transformations that are
1588not feasible to perform on normal three address code representations.
1589
Rafael Espindola08013342013-12-07 19:34:20 +00001590.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001591
Rafael Espindola08013342013-12-07 19:34:20 +00001592Void Type
1593---------
Sean Silvab084af42012-12-07 10:36:55 +00001594
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001595:Overview:
1596
Rafael Espindola08013342013-12-07 19:34:20 +00001597
1598The void type does not represent any value and has no size.
1599
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001600:Syntax:
1601
Rafael Espindola08013342013-12-07 19:34:20 +00001602
1603::
1604
1605 void
Sean Silvab084af42012-12-07 10:36:55 +00001606
1607
Rafael Espindola08013342013-12-07 19:34:20 +00001608.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001609
Rafael Espindola08013342013-12-07 19:34:20 +00001610Function Type
1611-------------
Sean Silvab084af42012-12-07 10:36:55 +00001612
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001613:Overview:
1614
Sean Silvab084af42012-12-07 10:36:55 +00001615
Rafael Espindola08013342013-12-07 19:34:20 +00001616The function type can be thought of as a function signature. It consists of a
1617return type and a list of formal parameter types. The return type of a function
1618type is a void type or first class type --- except for :ref:`label <t_label>`
1619and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001620
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001621:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001622
Rafael Espindola08013342013-12-07 19:34:20 +00001623::
Sean Silvab084af42012-12-07 10:36:55 +00001624
Rafael Espindola08013342013-12-07 19:34:20 +00001625 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001626
Rafael Espindola08013342013-12-07 19:34:20 +00001627...where '``<parameter list>``' is a comma-separated list of type
1628specifiers. Optionally, the parameter list may include a type ``...``, which
1629indicates that the function takes a variable number of arguments. Variable
1630argument functions can access their arguments with the :ref:`variable argument
1631handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1632except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001633
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001634:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001635
Rafael Espindola08013342013-12-07 19:34:20 +00001636+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1637| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1638+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1639| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1640+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1641| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1642+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1643| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1644+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1645
1646.. _t_firstclass:
1647
1648First Class Types
1649-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001650
1651The :ref:`first class <t_firstclass>` types are perhaps the most important.
1652Values of these types are the only ones which can be produced by
1653instructions.
1654
Rafael Espindola08013342013-12-07 19:34:20 +00001655.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001656
Rafael Espindola08013342013-12-07 19:34:20 +00001657Single Value Types
1658^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001659
Rafael Espindola08013342013-12-07 19:34:20 +00001660These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001661
1662.. _t_integer:
1663
1664Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001665""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001666
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001667:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001668
1669The integer type is a very simple type that simply specifies an
1670arbitrary bit width for the integer type desired. Any bit width from 1
1671bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1672
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001673:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001674
1675::
1676
1677 iN
1678
1679The number of bits the integer will occupy is specified by the ``N``
1680value.
1681
1682Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001683*********
Sean Silvab084af42012-12-07 10:36:55 +00001684
1685+----------------+------------------------------------------------+
1686| ``i1`` | a single-bit integer. |
1687+----------------+------------------------------------------------+
1688| ``i32`` | a 32-bit integer. |
1689+----------------+------------------------------------------------+
1690| ``i1942652`` | a really big integer of over 1 million bits. |
1691+----------------+------------------------------------------------+
1692
1693.. _t_floating:
1694
1695Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001696""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001697
1698.. list-table::
1699 :header-rows: 1
1700
1701 * - Type
1702 - Description
1703
1704 * - ``half``
1705 - 16-bit floating point value
1706
1707 * - ``float``
1708 - 32-bit floating point value
1709
1710 * - ``double``
1711 - 64-bit floating point value
1712
1713 * - ``fp128``
1714 - 128-bit floating point value (112-bit mantissa)
1715
1716 * - ``x86_fp80``
1717 - 80-bit floating point value (X87)
1718
1719 * - ``ppc_fp128``
1720 - 128-bit floating point value (two 64-bits)
1721
1722.. _t_x86mmx:
1723
1724X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001725"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001726
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001727:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001728
1729The x86mmx type represents a value held in an MMX register on an x86
1730machine. The operations allowed on it are quite limited: parameters and
1731return values, load and store, and bitcast. User-specified MMX
1732instructions are represented as intrinsic or asm calls with arguments
1733and/or results of this type. There are no arrays, vectors or constants
1734of this type.
1735
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001736:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001737
1738::
1739
1740 x86mmx
1741
Sean Silvab084af42012-12-07 10:36:55 +00001742
Rafael Espindola08013342013-12-07 19:34:20 +00001743.. _t_pointer:
1744
1745Pointer Type
1746""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001747
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001748:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001749
Rafael Espindola08013342013-12-07 19:34:20 +00001750The pointer type is used to specify memory locations. Pointers are
1751commonly used to reference objects in memory.
1752
1753Pointer types may have an optional address space attribute defining the
1754numbered address space where the pointed-to object resides. The default
1755address space is number zero. The semantics of non-zero address spaces
1756are target-specific.
1757
1758Note that LLVM does not permit pointers to void (``void*``) nor does it
1759permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001760
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001761:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001762
1763::
1764
Rafael Espindola08013342013-12-07 19:34:20 +00001765 <type> *
1766
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001767:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001768
1769+-------------------------+--------------------------------------------------------------------------------------------------------------+
1770| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1771+-------------------------+--------------------------------------------------------------------------------------------------------------+
1772| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1773+-------------------------+--------------------------------------------------------------------------------------------------------------+
1774| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1775+-------------------------+--------------------------------------------------------------------------------------------------------------+
1776
1777.. _t_vector:
1778
1779Vector Type
1780"""""""""""
1781
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001782:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001783
1784A vector type is a simple derived type that represents a vector of
1785elements. Vector types are used when multiple primitive data are
1786operated in parallel using a single instruction (SIMD). A vector type
1787requires a size (number of elements) and an underlying primitive data
1788type. Vector types are considered :ref:`first class <t_firstclass>`.
1789
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001790:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001791
1792::
1793
1794 < <# elements> x <elementtype> >
1795
1796The number of elements is a constant integer value larger than 0;
1797elementtype may be any integer or floating point type, or a pointer to
1798these types. Vectors of size zero are not allowed.
1799
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001800:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001801
1802+-------------------+--------------------------------------------------+
1803| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1804+-------------------+--------------------------------------------------+
1805| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1806+-------------------+--------------------------------------------------+
1807| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1808+-------------------+--------------------------------------------------+
1809| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1810+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001811
1812.. _t_label:
1813
1814Label Type
1815^^^^^^^^^^
1816
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001817:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001818
1819The label type represents code labels.
1820
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001821:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001822
1823::
1824
1825 label
1826
1827.. _t_metadata:
1828
1829Metadata Type
1830^^^^^^^^^^^^^
1831
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001832:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001833
1834The metadata type represents embedded metadata. No derived types may be
1835created from metadata except for :ref:`function <t_function>` arguments.
1836
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001837:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001838
1839::
1840
1841 metadata
1842
Sean Silvab084af42012-12-07 10:36:55 +00001843.. _t_aggregate:
1844
1845Aggregate Types
1846^^^^^^^^^^^^^^^
1847
1848Aggregate Types are a subset of derived types that can contain multiple
1849member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1850aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1851aggregate types.
1852
1853.. _t_array:
1854
1855Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001856""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001857
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001858:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001859
1860The array type is a very simple derived type that arranges elements
1861sequentially in memory. The array type requires a size (number of
1862elements) and an underlying data type.
1863
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001864:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001865
1866::
1867
1868 [<# elements> x <elementtype>]
1869
1870The number of elements is a constant integer value; ``elementtype`` may
1871be any type with a size.
1872
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001873:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001874
1875+------------------+--------------------------------------+
1876| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1877+------------------+--------------------------------------+
1878| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1879+------------------+--------------------------------------+
1880| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1881+------------------+--------------------------------------+
1882
1883Here are some examples of multidimensional arrays:
1884
1885+-----------------------------+----------------------------------------------------------+
1886| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1887+-----------------------------+----------------------------------------------------------+
1888| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1889+-----------------------------+----------------------------------------------------------+
1890| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1891+-----------------------------+----------------------------------------------------------+
1892
1893There is no restriction on indexing beyond the end of the array implied
1894by a static type (though there are restrictions on indexing beyond the
1895bounds of an allocated object in some cases). This means that
1896single-dimension 'variable sized array' addressing can be implemented in
1897LLVM with a zero length array type. An implementation of 'pascal style
1898arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1899example.
1900
Sean Silvab084af42012-12-07 10:36:55 +00001901.. _t_struct:
1902
1903Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001904""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001905
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001906:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001907
1908The structure type is used to represent a collection of data members
1909together in memory. The elements of a structure may be any type that has
1910a size.
1911
1912Structures in memory are accessed using '``load``' and '``store``' by
1913getting a pointer to a field with the '``getelementptr``' instruction.
1914Structures in registers are accessed using the '``extractvalue``' and
1915'``insertvalue``' instructions.
1916
1917Structures may optionally be "packed" structures, which indicate that
1918the alignment of the struct is one byte, and that there is no padding
1919between the elements. In non-packed structs, padding between field types
1920is inserted as defined by the DataLayout string in the module, which is
1921required to match what the underlying code generator expects.
1922
1923Structures can either be "literal" or "identified". A literal structure
1924is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1925identified types are always defined at the top level with a name.
1926Literal types are uniqued by their contents and can never be recursive
1927or opaque since there is no way to write one. Identified types can be
1928recursive, can be opaqued, and are never uniqued.
1929
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001930:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001931
1932::
1933
1934 %T1 = type { <type list> } ; Identified normal struct type
1935 %T2 = type <{ <type list> }> ; Identified packed struct type
1936
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001937:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001938
1939+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1940| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1941+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001942| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001943+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1944| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1945+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1946
1947.. _t_opaque:
1948
1949Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001950""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001951
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001952:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001953
1954Opaque structure types are used to represent named structure types that
1955do not have a body specified. This corresponds (for example) to the C
1956notion of a forward declared structure.
1957
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001958:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001959
1960::
1961
1962 %X = type opaque
1963 %52 = type opaque
1964
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001965:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001966
1967+--------------+-------------------+
1968| ``opaque`` | An opaque type. |
1969+--------------+-------------------+
1970
Sean Silvab084af42012-12-07 10:36:55 +00001971Constants
1972=========
1973
1974LLVM has several different basic types of constants. This section
1975describes them all and their syntax.
1976
1977Simple Constants
1978----------------
1979
1980**Boolean constants**
1981 The two strings '``true``' and '``false``' are both valid constants
1982 of the ``i1`` type.
1983**Integer constants**
1984 Standard integers (such as '4') are constants of the
1985 :ref:`integer <t_integer>` type. Negative numbers may be used with
1986 integer types.
1987**Floating point constants**
1988 Floating point constants use standard decimal notation (e.g.
1989 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1990 hexadecimal notation (see below). The assembler requires the exact
1991 decimal value of a floating-point constant. For example, the
1992 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1993 decimal in binary. Floating point constants must have a :ref:`floating
1994 point <t_floating>` type.
1995**Null pointer constants**
1996 The identifier '``null``' is recognized as a null pointer constant
1997 and must be of :ref:`pointer type <t_pointer>`.
1998
1999The one non-intuitive notation for constants is the hexadecimal form of
2000floating point constants. For example, the form
2001'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2002than) '``double 4.5e+15``'. The only time hexadecimal floating point
2003constants are required (and the only time that they are generated by the
2004disassembler) is when a floating point constant must be emitted but it
2005cannot be represented as a decimal floating point number in a reasonable
2006number of digits. For example, NaN's, infinities, and other special
2007values are represented in their IEEE hexadecimal format so that assembly
2008and disassembly do not cause any bits to change in the constants.
2009
2010When using the hexadecimal form, constants of types half, float, and
2011double are represented using the 16-digit form shown above (which
2012matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002013must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002014precision, respectively. Hexadecimal format is always used for long
2015double, and there are three forms of long double. The 80-bit format used
2016by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2017128-bit format used by PowerPC (two adjacent doubles) is represented by
2018``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002019represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2020will only work if they match the long double format on your target.
2021The IEEE 16-bit format (half precision) is represented by ``0xH``
2022followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2023(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002024
2025There are no constants of type x86mmx.
2026
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002027.. _complexconstants:
2028
Sean Silvab084af42012-12-07 10:36:55 +00002029Complex Constants
2030-----------------
2031
2032Complex constants are a (potentially recursive) combination of simple
2033constants and smaller complex constants.
2034
2035**Structure constants**
2036 Structure constants are represented with notation similar to
2037 structure type definitions (a comma separated list of elements,
2038 surrounded by braces (``{}``)). For example:
2039 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2040 "``@G = external global i32``". Structure constants must have
2041 :ref:`structure type <t_struct>`, and the number and types of elements
2042 must match those specified by the type.
2043**Array constants**
2044 Array constants are represented with notation similar to array type
2045 definitions (a comma separated list of elements, surrounded by
2046 square brackets (``[]``)). For example:
2047 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2048 :ref:`array type <t_array>`, and the number and types of elements must
2049 match those specified by the type.
2050**Vector constants**
2051 Vector constants are represented with notation similar to vector
2052 type definitions (a comma separated list of elements, surrounded by
2053 less-than/greater-than's (``<>``)). For example:
2054 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2055 must have :ref:`vector type <t_vector>`, and the number and types of
2056 elements must match those specified by the type.
2057**Zero initialization**
2058 The string '``zeroinitializer``' can be used to zero initialize a
2059 value to zero of *any* type, including scalar and
2060 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2061 having to print large zero initializers (e.g. for large arrays) and
2062 is always exactly equivalent to using explicit zero initializers.
2063**Metadata node**
2064 A metadata node is a structure-like constant with :ref:`metadata
2065 type <t_metadata>`. For example:
2066 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2067 constants that are meant to be interpreted as part of the
2068 instruction stream, metadata is a place to attach additional
2069 information such as debug info.
2070
2071Global Variable and Function Addresses
2072--------------------------------------
2073
2074The addresses of :ref:`global variables <globalvars>` and
2075:ref:`functions <functionstructure>` are always implicitly valid
2076(link-time) constants. These constants are explicitly referenced when
2077the :ref:`identifier for the global <identifiers>` is used and always have
2078:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2079file:
2080
2081.. code-block:: llvm
2082
2083 @X = global i32 17
2084 @Y = global i32 42
2085 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2086
2087.. _undefvalues:
2088
2089Undefined Values
2090----------------
2091
2092The string '``undef``' can be used anywhere a constant is expected, and
2093indicates that the user of the value may receive an unspecified
2094bit-pattern. Undefined values may be of any type (other than '``label``'
2095or '``void``') and be used anywhere a constant is permitted.
2096
2097Undefined values are useful because they indicate to the compiler that
2098the program is well defined no matter what value is used. This gives the
2099compiler more freedom to optimize. Here are some examples of
2100(potentially surprising) transformations that are valid (in pseudo IR):
2101
2102.. code-block:: llvm
2103
2104 %A = add %X, undef
2105 %B = sub %X, undef
2106 %C = xor %X, undef
2107 Safe:
2108 %A = undef
2109 %B = undef
2110 %C = undef
2111
2112This is safe because all of the output bits are affected by the undef
2113bits. Any output bit can have a zero or one depending on the input bits.
2114
2115.. code-block:: llvm
2116
2117 %A = or %X, undef
2118 %B = and %X, undef
2119 Safe:
2120 %A = -1
2121 %B = 0
2122 Unsafe:
2123 %A = undef
2124 %B = undef
2125
2126These logical operations have bits that are not always affected by the
2127input. For example, if ``%X`` has a zero bit, then the output of the
2128'``and``' operation will always be a zero for that bit, no matter what
2129the corresponding bit from the '``undef``' is. As such, it is unsafe to
2130optimize or assume that the result of the '``and``' is '``undef``'.
2131However, it is safe to assume that all bits of the '``undef``' could be
21320, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2133all the bits of the '``undef``' operand to the '``or``' could be set,
2134allowing the '``or``' to be folded to -1.
2135
2136.. code-block:: llvm
2137
2138 %A = select undef, %X, %Y
2139 %B = select undef, 42, %Y
2140 %C = select %X, %Y, undef
2141 Safe:
2142 %A = %X (or %Y)
2143 %B = 42 (or %Y)
2144 %C = %Y
2145 Unsafe:
2146 %A = undef
2147 %B = undef
2148 %C = undef
2149
2150This set of examples shows that undefined '``select``' (and conditional
2151branch) conditions can go *either way*, but they have to come from one
2152of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2153both known to have a clear low bit, then ``%A`` would have to have a
2154cleared low bit. However, in the ``%C`` example, the optimizer is
2155allowed to assume that the '``undef``' operand could be the same as
2156``%Y``, allowing the whole '``select``' to be eliminated.
2157
2158.. code-block:: llvm
2159
2160 %A = xor undef, undef
2161
2162 %B = undef
2163 %C = xor %B, %B
2164
2165 %D = undef
2166 %E = icmp lt %D, 4
2167 %F = icmp gte %D, 4
2168
2169 Safe:
2170 %A = undef
2171 %B = undef
2172 %C = undef
2173 %D = undef
2174 %E = undef
2175 %F = undef
2176
2177This example points out that two '``undef``' operands are not
2178necessarily the same. This can be surprising to people (and also matches
2179C semantics) where they assume that "``X^X``" is always zero, even if
2180``X`` is undefined. This isn't true for a number of reasons, but the
2181short answer is that an '``undef``' "variable" can arbitrarily change
2182its value over its "live range". This is true because the variable
2183doesn't actually *have a live range*. Instead, the value is logically
2184read from arbitrary registers that happen to be around when needed, so
2185the value is not necessarily consistent over time. In fact, ``%A`` and
2186``%C`` need to have the same semantics or the core LLVM "replace all
2187uses with" concept would not hold.
2188
2189.. code-block:: llvm
2190
2191 %A = fdiv undef, %X
2192 %B = fdiv %X, undef
2193 Safe:
2194 %A = undef
2195 b: unreachable
2196
2197These examples show the crucial difference between an *undefined value*
2198and *undefined behavior*. An undefined value (like '``undef``') is
2199allowed to have an arbitrary bit-pattern. This means that the ``%A``
2200operation can be constant folded to '``undef``', because the '``undef``'
2201could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2202However, in the second example, we can make a more aggressive
2203assumption: because the ``undef`` is allowed to be an arbitrary value,
2204we are allowed to assume that it could be zero. Since a divide by zero
2205has *undefined behavior*, we are allowed to assume that the operation
2206does not execute at all. This allows us to delete the divide and all
2207code after it. Because the undefined operation "can't happen", the
2208optimizer can assume that it occurs in dead code.
2209
2210.. code-block:: llvm
2211
2212 a: store undef -> %X
2213 b: store %X -> undef
2214 Safe:
2215 a: <deleted>
2216 b: unreachable
2217
2218These examples reiterate the ``fdiv`` example: a store *of* an undefined
2219value can be assumed to not have any effect; we can assume that the
2220value is overwritten with bits that happen to match what was already
2221there. However, a store *to* an undefined location could clobber
2222arbitrary memory, therefore, it has undefined behavior.
2223
2224.. _poisonvalues:
2225
2226Poison Values
2227-------------
2228
2229Poison values are similar to :ref:`undef values <undefvalues>`, however
2230they also represent the fact that an instruction or constant expression
2231which cannot evoke side effects has nevertheless detected a condition
2232which results in undefined behavior.
2233
2234There is currently no way of representing a poison value in the IR; they
2235only exist when produced by operations such as :ref:`add <i_add>` with
2236the ``nsw`` flag.
2237
2238Poison value behavior is defined in terms of value *dependence*:
2239
2240- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2241- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2242 their dynamic predecessor basic block.
2243- Function arguments depend on the corresponding actual argument values
2244 in the dynamic callers of their functions.
2245- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2246 instructions that dynamically transfer control back to them.
2247- :ref:`Invoke <i_invoke>` instructions depend on the
2248 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2249 call instructions that dynamically transfer control back to them.
2250- Non-volatile loads and stores depend on the most recent stores to all
2251 of the referenced memory addresses, following the order in the IR
2252 (including loads and stores implied by intrinsics such as
2253 :ref:`@llvm.memcpy <int_memcpy>`.)
2254- An instruction with externally visible side effects depends on the
2255 most recent preceding instruction with externally visible side
2256 effects, following the order in the IR. (This includes :ref:`volatile
2257 operations <volatile>`.)
2258- An instruction *control-depends* on a :ref:`terminator
2259 instruction <terminators>` if the terminator instruction has
2260 multiple successors and the instruction is always executed when
2261 control transfers to one of the successors, and may not be executed
2262 when control is transferred to another.
2263- Additionally, an instruction also *control-depends* on a terminator
2264 instruction if the set of instructions it otherwise depends on would
2265 be different if the terminator had transferred control to a different
2266 successor.
2267- Dependence is transitive.
2268
2269Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2270with the additional affect that any instruction which has a *dependence*
2271on a poison value has undefined behavior.
2272
2273Here are some examples:
2274
2275.. code-block:: llvm
2276
2277 entry:
2278 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2279 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2280 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2281 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2282
2283 store i32 %poison, i32* @g ; Poison value stored to memory.
2284 %poison2 = load i32* @g ; Poison value loaded back from memory.
2285
2286 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2287
2288 %narrowaddr = bitcast i32* @g to i16*
2289 %wideaddr = bitcast i32* @g to i64*
2290 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2291 %poison4 = load i64* %wideaddr ; Returns a poison value.
2292
2293 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2294 br i1 %cmp, label %true, label %end ; Branch to either destination.
2295
2296 true:
2297 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2298 ; it has undefined behavior.
2299 br label %end
2300
2301 end:
2302 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2303 ; Both edges into this PHI are
2304 ; control-dependent on %cmp, so this
2305 ; always results in a poison value.
2306
2307 store volatile i32 0, i32* @g ; This would depend on the store in %true
2308 ; if %cmp is true, or the store in %entry
2309 ; otherwise, so this is undefined behavior.
2310
2311 br i1 %cmp, label %second_true, label %second_end
2312 ; The same branch again, but this time the
2313 ; true block doesn't have side effects.
2314
2315 second_true:
2316 ; No side effects!
2317 ret void
2318
2319 second_end:
2320 store volatile i32 0, i32* @g ; This time, the instruction always depends
2321 ; on the store in %end. Also, it is
2322 ; control-equivalent to %end, so this is
2323 ; well-defined (ignoring earlier undefined
2324 ; behavior in this example).
2325
2326.. _blockaddress:
2327
2328Addresses of Basic Blocks
2329-------------------------
2330
2331``blockaddress(@function, %block)``
2332
2333The '``blockaddress``' constant computes the address of the specified
2334basic block in the specified function, and always has an ``i8*`` type.
2335Taking the address of the entry block is illegal.
2336
2337This value only has defined behavior when used as an operand to the
2338':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2339against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002340undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002341no label is equal to the null pointer. This may be passed around as an
2342opaque pointer sized value as long as the bits are not inspected. This
2343allows ``ptrtoint`` and arithmetic to be performed on these values so
2344long as the original value is reconstituted before the ``indirectbr``
2345instruction.
2346
2347Finally, some targets may provide defined semantics when using the value
2348as the operand to an inline assembly, but that is target specific.
2349
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002350.. _constantexprs:
2351
Sean Silvab084af42012-12-07 10:36:55 +00002352Constant Expressions
2353--------------------
2354
2355Constant expressions are used to allow expressions involving other
2356constants to be used as constants. Constant expressions may be of any
2357:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2358that does not have side effects (e.g. load and call are not supported).
2359The following is the syntax for constant expressions:
2360
2361``trunc (CST to TYPE)``
2362 Truncate a constant to another type. The bit size of CST must be
2363 larger than the bit size of TYPE. Both types must be integers.
2364``zext (CST to TYPE)``
2365 Zero extend a constant to another type. The bit size of CST must be
2366 smaller than the bit size of TYPE. Both types must be integers.
2367``sext (CST to TYPE)``
2368 Sign extend a constant to another type. The bit size of CST must be
2369 smaller than the bit size of TYPE. Both types must be integers.
2370``fptrunc (CST to TYPE)``
2371 Truncate a floating point constant to another floating point type.
2372 The size of CST must be larger than the size of TYPE. Both types
2373 must be floating point.
2374``fpext (CST to TYPE)``
2375 Floating point extend a constant to another type. The size of CST
2376 must be smaller or equal to the size of TYPE. Both types must be
2377 floating point.
2378``fptoui (CST to TYPE)``
2379 Convert a floating point constant to the corresponding unsigned
2380 integer constant. TYPE must be a scalar or vector integer type. CST
2381 must be of scalar or vector floating point type. Both CST and TYPE
2382 must be scalars, or vectors of the same number of elements. If the
2383 value won't fit in the integer type, the results are undefined.
2384``fptosi (CST to TYPE)``
2385 Convert a floating point constant to the corresponding signed
2386 integer constant. TYPE must be a scalar or vector integer type. CST
2387 must be of scalar or vector floating point type. Both CST and TYPE
2388 must be scalars, or vectors of the same number of elements. If the
2389 value won't fit in the integer type, the results are undefined.
2390``uitofp (CST to TYPE)``
2391 Convert an unsigned integer constant to the corresponding floating
2392 point constant. TYPE must be a scalar or vector floating point type.
2393 CST must be of scalar or vector integer type. Both CST and TYPE must
2394 be scalars, or vectors of the same number of elements. If the value
2395 won't fit in the floating point type, the results are undefined.
2396``sitofp (CST to TYPE)``
2397 Convert a signed integer constant to the corresponding floating
2398 point constant. TYPE must be a scalar or vector floating point type.
2399 CST must be of scalar or vector integer type. Both CST and TYPE must
2400 be scalars, or vectors of the same number of elements. If the value
2401 won't fit in the floating point type, the results are undefined.
2402``ptrtoint (CST to TYPE)``
2403 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002404 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002405 pointer type. The ``CST`` value is zero extended, truncated, or
2406 unchanged to make it fit in ``TYPE``.
2407``inttoptr (CST to TYPE)``
2408 Convert an integer constant to a pointer constant. TYPE must be a
2409 pointer type. CST must be of integer type. The CST value is zero
2410 extended, truncated, or unchanged to make it fit in a pointer size.
2411 This one is *really* dangerous!
2412``bitcast (CST to TYPE)``
2413 Convert a constant, CST, to another TYPE. The constraints of the
2414 operands are the same as those for the :ref:`bitcast
2415 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002416``addrspacecast (CST to TYPE)``
2417 Convert a constant pointer or constant vector of pointer, CST, to another
2418 TYPE in a different address space. The constraints of the operands are the
2419 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002420``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2421 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2422 constants. As with the :ref:`getelementptr <i_getelementptr>`
2423 instruction, the index list may have zero or more indexes, which are
2424 required to make sense for the type of "CSTPTR".
2425``select (COND, VAL1, VAL2)``
2426 Perform the :ref:`select operation <i_select>` on constants.
2427``icmp COND (VAL1, VAL2)``
2428 Performs the :ref:`icmp operation <i_icmp>` on constants.
2429``fcmp COND (VAL1, VAL2)``
2430 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2431``extractelement (VAL, IDX)``
2432 Perform the :ref:`extractelement operation <i_extractelement>` on
2433 constants.
2434``insertelement (VAL, ELT, IDX)``
2435 Perform the :ref:`insertelement operation <i_insertelement>` on
2436 constants.
2437``shufflevector (VEC1, VEC2, IDXMASK)``
2438 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2439 constants.
2440``extractvalue (VAL, IDX0, IDX1, ...)``
2441 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2442 constants. The index list is interpreted in a similar manner as
2443 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2444 least one index value must be specified.
2445``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2446 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2447 The index list is interpreted in a similar manner as indices in a
2448 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2449 value must be specified.
2450``OPCODE (LHS, RHS)``
2451 Perform the specified operation of the LHS and RHS constants. OPCODE
2452 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2453 binary <bitwiseops>` operations. The constraints on operands are
2454 the same as those for the corresponding instruction (e.g. no bitwise
2455 operations on floating point values are allowed).
2456
2457Other Values
2458============
2459
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002460.. _inlineasmexprs:
2461
Sean Silvab084af42012-12-07 10:36:55 +00002462Inline Assembler Expressions
2463----------------------------
2464
2465LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2466Inline Assembly <moduleasm>`) through the use of a special value. This
2467value represents the inline assembler as a string (containing the
2468instructions to emit), a list of operand constraints (stored as a
2469string), a flag that indicates whether or not the inline asm expression
2470has side effects, and a flag indicating whether the function containing
2471the asm needs to align its stack conservatively. An example inline
2472assembler expression is:
2473
2474.. code-block:: llvm
2475
2476 i32 (i32) asm "bswap $0", "=r,r"
2477
2478Inline assembler expressions may **only** be used as the callee operand
2479of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2480Thus, typically we have:
2481
2482.. code-block:: llvm
2483
2484 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2485
2486Inline asms with side effects not visible in the constraint list must be
2487marked as having side effects. This is done through the use of the
2488'``sideeffect``' keyword, like so:
2489
2490.. code-block:: llvm
2491
2492 call void asm sideeffect "eieio", ""()
2493
2494In some cases inline asms will contain code that will not work unless
2495the stack is aligned in some way, such as calls or SSE instructions on
2496x86, yet will not contain code that does that alignment within the asm.
2497The compiler should make conservative assumptions about what the asm
2498might contain and should generate its usual stack alignment code in the
2499prologue if the '``alignstack``' keyword is present:
2500
2501.. code-block:: llvm
2502
2503 call void asm alignstack "eieio", ""()
2504
2505Inline asms also support using non-standard assembly dialects. The
2506assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2507the inline asm is using the Intel dialect. Currently, ATT and Intel are
2508the only supported dialects. An example is:
2509
2510.. code-block:: llvm
2511
2512 call void asm inteldialect "eieio", ""()
2513
2514If multiple keywords appear the '``sideeffect``' keyword must come
2515first, the '``alignstack``' keyword second and the '``inteldialect``'
2516keyword last.
2517
2518Inline Asm Metadata
2519^^^^^^^^^^^^^^^^^^^
2520
2521The call instructions that wrap inline asm nodes may have a
2522"``!srcloc``" MDNode attached to it that contains a list of constant
2523integers. If present, the code generator will use the integer as the
2524location cookie value when report errors through the ``LLVMContext``
2525error reporting mechanisms. This allows a front-end to correlate backend
2526errors that occur with inline asm back to the source code that produced
2527it. For example:
2528
2529.. code-block:: llvm
2530
2531 call void asm sideeffect "something bad", ""(), !srcloc !42
2532 ...
2533 !42 = !{ i32 1234567 }
2534
2535It is up to the front-end to make sense of the magic numbers it places
2536in the IR. If the MDNode contains multiple constants, the code generator
2537will use the one that corresponds to the line of the asm that the error
2538occurs on.
2539
2540.. _metadata:
2541
2542Metadata Nodes and Metadata Strings
2543-----------------------------------
2544
2545LLVM IR allows metadata to be attached to instructions in the program
2546that can convey extra information about the code to the optimizers and
2547code generator. One example application of metadata is source-level
2548debug information. There are two metadata primitives: strings and nodes.
2549All metadata has the ``metadata`` type and is identified in syntax by a
2550preceding exclamation point ('``!``').
2551
2552A metadata string is a string surrounded by double quotes. It can
2553contain any character by escaping non-printable characters with
2554"``\xx``" where "``xx``" is the two digit hex code. For example:
2555"``!"test\00"``".
2556
2557Metadata nodes are represented with notation similar to structure
2558constants (a comma separated list of elements, surrounded by braces and
2559preceded by an exclamation point). Metadata nodes can have any values as
2560their operand. For example:
2561
2562.. code-block:: llvm
2563
2564 !{ metadata !"test\00", i32 10}
2565
2566A :ref:`named metadata <namedmetadatastructure>` is a collection of
2567metadata nodes, which can be looked up in the module symbol table. For
2568example:
2569
2570.. code-block:: llvm
2571
2572 !foo = metadata !{!4, !3}
2573
2574Metadata can be used as function arguments. Here ``llvm.dbg.value``
2575function is using two metadata arguments:
2576
2577.. code-block:: llvm
2578
2579 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2580
2581Metadata can be attached with an instruction. Here metadata ``!21`` is
2582attached to the ``add`` instruction using the ``!dbg`` identifier:
2583
2584.. code-block:: llvm
2585
2586 %indvar.next = add i64 %indvar, 1, !dbg !21
2587
2588More information about specific metadata nodes recognized by the
2589optimizers and code generator is found below.
2590
2591'``tbaa``' Metadata
2592^^^^^^^^^^^^^^^^^^^
2593
2594In LLVM IR, memory does not have types, so LLVM's own type system is not
2595suitable for doing TBAA. Instead, metadata is added to the IR to
2596describe a type system of a higher level language. This can be used to
2597implement typical C/C++ TBAA, but it can also be used to implement
2598custom alias analysis behavior for other languages.
2599
2600The current metadata format is very simple. TBAA metadata nodes have up
2601to three fields, e.g.:
2602
2603.. code-block:: llvm
2604
2605 !0 = metadata !{ metadata !"an example type tree" }
2606 !1 = metadata !{ metadata !"int", metadata !0 }
2607 !2 = metadata !{ metadata !"float", metadata !0 }
2608 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2609
2610The first field is an identity field. It can be any value, usually a
2611metadata string, which uniquely identifies the type. The most important
2612name in the tree is the name of the root node. Two trees with different
2613root node names are entirely disjoint, even if they have leaves with
2614common names.
2615
2616The second field identifies the type's parent node in the tree, or is
2617null or omitted for a root node. A type is considered to alias all of
2618its descendants and all of its ancestors in the tree. Also, a type is
2619considered to alias all types in other trees, so that bitcode produced
2620from multiple front-ends is handled conservatively.
2621
2622If the third field is present, it's an integer which if equal to 1
2623indicates that the type is "constant" (meaning
2624``pointsToConstantMemory`` should return true; see `other useful
2625AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2626
2627'``tbaa.struct``' Metadata
2628^^^^^^^^^^^^^^^^^^^^^^^^^^
2629
2630The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2631aggregate assignment operations in C and similar languages, however it
2632is defined to copy a contiguous region of memory, which is more than
2633strictly necessary for aggregate types which contain holes due to
2634padding. Also, it doesn't contain any TBAA information about the fields
2635of the aggregate.
2636
2637``!tbaa.struct`` metadata can describe which memory subregions in a
2638memcpy are padding and what the TBAA tags of the struct are.
2639
2640The current metadata format is very simple. ``!tbaa.struct`` metadata
2641nodes are a list of operands which are in conceptual groups of three.
2642For each group of three, the first operand gives the byte offset of a
2643field in bytes, the second gives its size in bytes, and the third gives
2644its tbaa tag. e.g.:
2645
2646.. code-block:: llvm
2647
2648 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2649
2650This describes a struct with two fields. The first is at offset 0 bytes
2651with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2652and has size 4 bytes and has tbaa tag !2.
2653
2654Note that the fields need not be contiguous. In this example, there is a
26554 byte gap between the two fields. This gap represents padding which
2656does not carry useful data and need not be preserved.
2657
2658'``fpmath``' Metadata
2659^^^^^^^^^^^^^^^^^^^^^
2660
2661``fpmath`` metadata may be attached to any instruction of floating point
2662type. It can be used to express the maximum acceptable error in the
2663result of that instruction, in ULPs, thus potentially allowing the
2664compiler to use a more efficient but less accurate method of computing
2665it. ULP is defined as follows:
2666
2667 If ``x`` is a real number that lies between two finite consecutive
2668 floating-point numbers ``a`` and ``b``, without being equal to one
2669 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2670 distance between the two non-equal finite floating-point numbers
2671 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2672
2673The metadata node shall consist of a single positive floating point
2674number representing the maximum relative error, for example:
2675
2676.. code-block:: llvm
2677
2678 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2679
2680'``range``' Metadata
2681^^^^^^^^^^^^^^^^^^^^
2682
2683``range`` metadata may be attached only to loads of integer types. It
2684expresses the possible ranges the loaded value is in. The ranges are
2685represented with a flattened list of integers. The loaded value is known
2686to be in the union of the ranges defined by each consecutive pair. Each
2687pair has the following properties:
2688
2689- The type must match the type loaded by the instruction.
2690- The pair ``a,b`` represents the range ``[a,b)``.
2691- Both ``a`` and ``b`` are constants.
2692- The range is allowed to wrap.
2693- The range should not represent the full or empty set. That is,
2694 ``a!=b``.
2695
2696In addition, the pairs must be in signed order of the lower bound and
2697they must be non-contiguous.
2698
2699Examples:
2700
2701.. code-block:: llvm
2702
2703 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2704 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2705 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2706 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2707 ...
2708 !0 = metadata !{ i8 0, i8 2 }
2709 !1 = metadata !{ i8 255, i8 2 }
2710 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2711 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2712
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002713'``llvm.loop``'
2714^^^^^^^^^^^^^^^
2715
2716It is sometimes useful to attach information to loop constructs. Currently,
2717loop metadata is implemented as metadata attached to the branch instruction
2718in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002719guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002720specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002721
2722The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002723itself to avoid merging it with any other identifier metadata, e.g.,
2724during module linkage or function inlining. That is, each loop should refer
2725to their own identification metadata even if they reside in separate functions.
2726The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002727constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002728
2729.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002730
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002731 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002732 !1 = metadata !{ metadata !1 }
2733
Paul Redmond5fdf8362013-05-28 20:00:34 +00002734The loop identifier metadata can be used to specify additional per-loop
2735metadata. Any operands after the first operand can be treated as user-defined
2736metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2737by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002738
Paul Redmond5fdf8362013-05-28 20:00:34 +00002739.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002740
Paul Redmond5fdf8362013-05-28 20:00:34 +00002741 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2742 ...
2743 !0 = metadata !{ metadata !0, metadata !1 }
2744 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002745
2746'``llvm.mem``'
2747^^^^^^^^^^^^^^^
2748
2749Metadata types used to annotate memory accesses with information helpful
2750for optimizations are prefixed with ``llvm.mem``.
2751
2752'``llvm.mem.parallel_loop_access``' Metadata
2753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2754
2755For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002756the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002757also all of the memory accessing instructions in the loop body need to be
2758marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2759is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002760the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002761converted to sequential loops due to optimization passes that are unaware of
2762the parallel semantics and that insert new memory instructions to the loop
2763body.
2764
2765Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002766both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002767metadata types that refer to the same loop identifier metadata.
2768
2769.. code-block:: llvm
2770
2771 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002772 ...
2773 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2774 ...
2775 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2776 ...
2777 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002778
2779 for.end:
2780 ...
2781 !0 = metadata !{ metadata !0 }
2782
2783It is also possible to have nested parallel loops. In that case the
2784memory accesses refer to a list of loop identifier metadata nodes instead of
2785the loop identifier metadata node directly:
2786
2787.. code-block:: llvm
2788
2789 outer.for.body:
2790 ...
2791
2792 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002793 ...
2794 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2795 ...
2796 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2797 ...
2798 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002799
2800 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002801 ...
2802 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2803 ...
2804 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2805 ...
2806 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002807
2808 outer.for.end: ; preds = %for.body
2809 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002810 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2811 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2812 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002813
Paul Redmond5fdf8362013-05-28 20:00:34 +00002814'``llvm.vectorizer``'
2815^^^^^^^^^^^^^^^^^^^^^
2816
2817Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2818vectorization parameters such as vectorization factor and unroll factor.
2819
2820``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2821loop identification metadata.
2822
2823'``llvm.vectorizer.unroll``' Metadata
2824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2825
2826This metadata instructs the loop vectorizer to unroll the specified
2827loop exactly ``N`` times.
2828
2829The first operand is the string ``llvm.vectorizer.unroll`` and the second
2830operand is an integer specifying the unroll factor. For example:
2831
2832.. code-block:: llvm
2833
2834 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2835
2836Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2837loop.
2838
2839If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2840determined automatically.
2841
2842'``llvm.vectorizer.width``' Metadata
2843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2844
Paul Redmondeccbb322013-05-30 17:22:46 +00002845This metadata sets the target width of the vectorizer to ``N``. Without
2846this metadata, the vectorizer will choose a width automatically.
2847Regardless of this metadata, the vectorizer will only vectorize loops if
2848it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002849
2850The first operand is the string ``llvm.vectorizer.width`` and the second
2851operand is an integer specifying the width. For example:
2852
2853.. code-block:: llvm
2854
2855 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2856
2857Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2858loop.
2859
2860If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2861automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002862
Sean Silvab084af42012-12-07 10:36:55 +00002863Module Flags Metadata
2864=====================
2865
2866Information about the module as a whole is difficult to convey to LLVM's
2867subsystems. The LLVM IR isn't sufficient to transmit this information.
2868The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002869this. These flags are in the form of key / value pairs --- much like a
2870dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002871look it up.
2872
2873The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2874Each triplet has the following form:
2875
2876- The first element is a *behavior* flag, which specifies the behavior
2877 when two (or more) modules are merged together, and it encounters two
2878 (or more) metadata with the same ID. The supported behaviors are
2879 described below.
2880- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002881 metadata. Each module may only have one flag entry for each unique ID (not
2882 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002883- The third element is the value of the flag.
2884
2885When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002886``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2887each unique metadata ID string, there will be exactly one entry in the merged
2888modules ``llvm.module.flags`` metadata table, and the value for that entry will
2889be determined by the merge behavior flag, as described below. The only exception
2890is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002891
2892The following behaviors are supported:
2893
2894.. list-table::
2895 :header-rows: 1
2896 :widths: 10 90
2897
2898 * - Value
2899 - Behavior
2900
2901 * - 1
2902 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002903 Emits an error if two values disagree, otherwise the resulting value
2904 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002905
2906 * - 2
2907 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002908 Emits a warning if two values disagree. The result value will be the
2909 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002910
2911 * - 3
2912 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002913 Adds a requirement that another module flag be present and have a
2914 specified value after linking is performed. The value must be a
2915 metadata pair, where the first element of the pair is the ID of the
2916 module flag to be restricted, and the second element of the pair is
2917 the value the module flag should be restricted to. This behavior can
2918 be used to restrict the allowable results (via triggering of an
2919 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002920
2921 * - 4
2922 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002923 Uses the specified value, regardless of the behavior or value of the
2924 other module. If both modules specify **Override**, but the values
2925 differ, an error will be emitted.
2926
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002927 * - 5
2928 - **Append**
2929 Appends the two values, which are required to be metadata nodes.
2930
2931 * - 6
2932 - **AppendUnique**
2933 Appends the two values, which are required to be metadata
2934 nodes. However, duplicate entries in the second list are dropped
2935 during the append operation.
2936
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002937It is an error for a particular unique flag ID to have multiple behaviors,
2938except in the case of **Require** (which adds restrictions on another metadata
2939value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002940
2941An example of module flags:
2942
2943.. code-block:: llvm
2944
2945 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2946 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2947 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2948 !3 = metadata !{ i32 3, metadata !"qux",
2949 metadata !{
2950 metadata !"foo", i32 1
2951 }
2952 }
2953 !llvm.module.flags = !{ !0, !1, !2, !3 }
2954
2955- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2956 if two or more ``!"foo"`` flags are seen is to emit an error if their
2957 values are not equal.
2958
2959- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2960 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002961 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002962
2963- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2964 behavior if two or more ``!"qux"`` flags are seen is to emit a
2965 warning if their values are not equal.
2966
2967- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2968
2969 ::
2970
2971 metadata !{ metadata !"foo", i32 1 }
2972
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002973 The behavior is to emit an error if the ``llvm.module.flags`` does not
2974 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2975 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002976
2977Objective-C Garbage Collection Module Flags Metadata
2978----------------------------------------------------
2979
2980On the Mach-O platform, Objective-C stores metadata about garbage
2981collection in a special section called "image info". The metadata
2982consists of a version number and a bitmask specifying what types of
2983garbage collection are supported (if any) by the file. If two or more
2984modules are linked together their garbage collection metadata needs to
2985be merged rather than appended together.
2986
2987The Objective-C garbage collection module flags metadata consists of the
2988following key-value pairs:
2989
2990.. list-table::
2991 :header-rows: 1
2992 :widths: 30 70
2993
2994 * - Key
2995 - Value
2996
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002997 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002998 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002999
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003000 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003001 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003002 always 0.
3003
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003004 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003005 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003006 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3007 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3008 Objective-C ABI version 2.
3009
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003010 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003011 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003012 not. Valid values are 0, for no garbage collection, and 2, for garbage
3013 collection supported.
3014
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003015 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003016 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003017 If present, its value must be 6. This flag requires that the
3018 ``Objective-C Garbage Collection`` flag have the value 2.
3019
3020Some important flag interactions:
3021
3022- If a module with ``Objective-C Garbage Collection`` set to 0 is
3023 merged with a module with ``Objective-C Garbage Collection`` set to
3024 2, then the resulting module has the
3025 ``Objective-C Garbage Collection`` flag set to 0.
3026- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3027 merged with a module with ``Objective-C GC Only`` set to 6.
3028
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003029Automatic Linker Flags Module Flags Metadata
3030--------------------------------------------
3031
3032Some targets support embedding flags to the linker inside individual object
3033files. Typically this is used in conjunction with language extensions which
3034allow source files to explicitly declare the libraries they depend on, and have
3035these automatically be transmitted to the linker via object files.
3036
3037These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003038using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003039to be ``AppendUnique``, and the value for the key is expected to be a metadata
3040node which should be a list of other metadata nodes, each of which should be a
3041list of metadata strings defining linker options.
3042
3043For example, the following metadata section specifies two separate sets of
3044linker options, presumably to link against ``libz`` and the ``Cocoa``
3045framework::
3046
Michael Liaoa7699082013-03-06 18:24:34 +00003047 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003048 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003049 metadata !{ metadata !"-lz" },
3050 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003051 !llvm.module.flags = !{ !0 }
3052
3053The metadata encoding as lists of lists of options, as opposed to a collapsed
3054list of options, is chosen so that the IR encoding can use multiple option
3055strings to specify e.g., a single library, while still having that specifier be
3056preserved as an atomic element that can be recognized by a target specific
3057assembly writer or object file emitter.
3058
3059Each individual option is required to be either a valid option for the target's
3060linker, or an option that is reserved by the target specific assembly writer or
3061object file emitter. No other aspect of these options is defined by the IR.
3062
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003063.. _intrinsicglobalvariables:
3064
Sean Silvab084af42012-12-07 10:36:55 +00003065Intrinsic Global Variables
3066==========================
3067
3068LLVM has a number of "magic" global variables that contain data that
3069affect code generation or other IR semantics. These are documented here.
3070All globals of this sort should have a section specified as
3071"``llvm.metadata``". This section and all globals that start with
3072"``llvm.``" are reserved for use by LLVM.
3073
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003074.. _gv_llvmused:
3075
Sean Silvab084af42012-12-07 10:36:55 +00003076The '``llvm.used``' Global Variable
3077-----------------------------------
3078
Rafael Espindola74f2e462013-04-22 14:58:02 +00003079The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003080:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003081pointers to named global variables, functions and aliases which may optionally
3082have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003083use of it is:
3084
3085.. code-block:: llvm
3086
3087 @X = global i8 4
3088 @Y = global i32 123
3089
3090 @llvm.used = appending global [2 x i8*] [
3091 i8* @X,
3092 i8* bitcast (i32* @Y to i8*)
3093 ], section "llvm.metadata"
3094
Rafael Espindola74f2e462013-04-22 14:58:02 +00003095If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3096and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003097symbol that it cannot see (which is why they have to be named). For example, if
3098a variable has internal linkage and no references other than that from the
3099``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3100references from inline asms and other things the compiler cannot "see", and
3101corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003102
3103On some targets, the code generator must emit a directive to the
3104assembler or object file to prevent the assembler and linker from
3105molesting the symbol.
3106
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003107.. _gv_llvmcompilerused:
3108
Sean Silvab084af42012-12-07 10:36:55 +00003109The '``llvm.compiler.used``' Global Variable
3110--------------------------------------------
3111
3112The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3113directive, except that it only prevents the compiler from touching the
3114symbol. On targets that support it, this allows an intelligent linker to
3115optimize references to the symbol without being impeded as it would be
3116by ``@llvm.used``.
3117
3118This is a rare construct that should only be used in rare circumstances,
3119and should not be exposed to source languages.
3120
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003121.. _gv_llvmglobalctors:
3122
Sean Silvab084af42012-12-07 10:36:55 +00003123The '``llvm.global_ctors``' Global Variable
3124-------------------------------------------
3125
3126.. code-block:: llvm
3127
3128 %0 = type { i32, void ()* }
3129 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3130
3131The ``@llvm.global_ctors`` array contains a list of constructor
3132functions and associated priorities. The functions referenced by this
3133array will be called in ascending order of priority (i.e. lowest first)
3134when the module is loaded. The order of functions with the same priority
3135is not defined.
3136
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003137.. _llvmglobaldtors:
3138
Sean Silvab084af42012-12-07 10:36:55 +00003139The '``llvm.global_dtors``' Global Variable
3140-------------------------------------------
3141
3142.. code-block:: llvm
3143
3144 %0 = type { i32, void ()* }
3145 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3146
3147The ``@llvm.global_dtors`` array contains a list of destructor functions
3148and associated priorities. The functions referenced by this array will
3149be called in descending order of priority (i.e. highest first) when the
3150module is loaded. The order of functions with the same priority is not
3151defined.
3152
3153Instruction Reference
3154=====================
3155
3156The LLVM instruction set consists of several different classifications
3157of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3158instructions <binaryops>`, :ref:`bitwise binary
3159instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3160:ref:`other instructions <otherops>`.
3161
3162.. _terminators:
3163
3164Terminator Instructions
3165-----------------------
3166
3167As mentioned :ref:`previously <functionstructure>`, every basic block in a
3168program ends with a "Terminator" instruction, which indicates which
3169block should be executed after the current block is finished. These
3170terminator instructions typically yield a '``void``' value: they produce
3171control flow, not values (the one exception being the
3172':ref:`invoke <i_invoke>`' instruction).
3173
3174The terminator instructions are: ':ref:`ret <i_ret>`',
3175':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3176':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3177':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3178
3179.. _i_ret:
3180
3181'``ret``' Instruction
3182^^^^^^^^^^^^^^^^^^^^^
3183
3184Syntax:
3185"""""""
3186
3187::
3188
3189 ret <type> <value> ; Return a value from a non-void function
3190 ret void ; Return from void function
3191
3192Overview:
3193"""""""""
3194
3195The '``ret``' instruction is used to return control flow (and optionally
3196a value) from a function back to the caller.
3197
3198There are two forms of the '``ret``' instruction: one that returns a
3199value and then causes control flow, and one that just causes control
3200flow to occur.
3201
3202Arguments:
3203""""""""""
3204
3205The '``ret``' instruction optionally accepts a single argument, the
3206return value. The type of the return value must be a ':ref:`first
3207class <t_firstclass>`' type.
3208
3209A function is not :ref:`well formed <wellformed>` if it it has a non-void
3210return type and contains a '``ret``' instruction with no return value or
3211a return value with a type that does not match its type, or if it has a
3212void return type and contains a '``ret``' instruction with a return
3213value.
3214
3215Semantics:
3216""""""""""
3217
3218When the '``ret``' instruction is executed, control flow returns back to
3219the calling function's context. If the caller is a
3220":ref:`call <i_call>`" instruction, execution continues at the
3221instruction after the call. If the caller was an
3222":ref:`invoke <i_invoke>`" instruction, execution continues at the
3223beginning of the "normal" destination block. If the instruction returns
3224a value, that value shall set the call or invoke instruction's return
3225value.
3226
3227Example:
3228""""""""
3229
3230.. code-block:: llvm
3231
3232 ret i32 5 ; Return an integer value of 5
3233 ret void ; Return from a void function
3234 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3235
3236.. _i_br:
3237
3238'``br``' Instruction
3239^^^^^^^^^^^^^^^^^^^^
3240
3241Syntax:
3242"""""""
3243
3244::
3245
3246 br i1 <cond>, label <iftrue>, label <iffalse>
3247 br label <dest> ; Unconditional branch
3248
3249Overview:
3250"""""""""
3251
3252The '``br``' instruction is used to cause control flow to transfer to a
3253different basic block in the current function. There are two forms of
3254this instruction, corresponding to a conditional branch and an
3255unconditional branch.
3256
3257Arguments:
3258""""""""""
3259
3260The conditional branch form of the '``br``' instruction takes a single
3261'``i1``' value and two '``label``' values. The unconditional form of the
3262'``br``' instruction takes a single '``label``' value as a target.
3263
3264Semantics:
3265""""""""""
3266
3267Upon execution of a conditional '``br``' instruction, the '``i1``'
3268argument is evaluated. If the value is ``true``, control flows to the
3269'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3270to the '``iffalse``' ``label`` argument.
3271
3272Example:
3273""""""""
3274
3275.. code-block:: llvm
3276
3277 Test:
3278 %cond = icmp eq i32 %a, %b
3279 br i1 %cond, label %IfEqual, label %IfUnequal
3280 IfEqual:
3281 ret i32 1
3282 IfUnequal:
3283 ret i32 0
3284
3285.. _i_switch:
3286
3287'``switch``' Instruction
3288^^^^^^^^^^^^^^^^^^^^^^^^
3289
3290Syntax:
3291"""""""
3292
3293::
3294
3295 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3296
3297Overview:
3298"""""""""
3299
3300The '``switch``' instruction is used to transfer control flow to one of
3301several different places. It is a generalization of the '``br``'
3302instruction, allowing a branch to occur to one of many possible
3303destinations.
3304
3305Arguments:
3306""""""""""
3307
3308The '``switch``' instruction uses three parameters: an integer
3309comparison value '``value``', a default '``label``' destination, and an
3310array of pairs of comparison value constants and '``label``'s. The table
3311is not allowed to contain duplicate constant entries.
3312
3313Semantics:
3314""""""""""
3315
3316The ``switch`` instruction specifies a table of values and destinations.
3317When the '``switch``' instruction is executed, this table is searched
3318for the given value. If the value is found, control flow is transferred
3319to the corresponding destination; otherwise, control flow is transferred
3320to the default destination.
3321
3322Implementation:
3323"""""""""""""""
3324
3325Depending on properties of the target machine and the particular
3326``switch`` instruction, this instruction may be code generated in
3327different ways. For example, it could be generated as a series of
3328chained conditional branches or with a lookup table.
3329
3330Example:
3331""""""""
3332
3333.. code-block:: llvm
3334
3335 ; Emulate a conditional br instruction
3336 %Val = zext i1 %value to i32
3337 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3338
3339 ; Emulate an unconditional br instruction
3340 switch i32 0, label %dest [ ]
3341
3342 ; Implement a jump table:
3343 switch i32 %val, label %otherwise [ i32 0, label %onzero
3344 i32 1, label %onone
3345 i32 2, label %ontwo ]
3346
3347.. _i_indirectbr:
3348
3349'``indirectbr``' Instruction
3350^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3351
3352Syntax:
3353"""""""
3354
3355::
3356
3357 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3358
3359Overview:
3360"""""""""
3361
3362The '``indirectbr``' instruction implements an indirect branch to a
3363label within the current function, whose address is specified by
3364"``address``". Address must be derived from a
3365:ref:`blockaddress <blockaddress>` constant.
3366
3367Arguments:
3368""""""""""
3369
3370The '``address``' argument is the address of the label to jump to. The
3371rest of the arguments indicate the full set of possible destinations
3372that the address may point to. Blocks are allowed to occur multiple
3373times in the destination list, though this isn't particularly useful.
3374
3375This destination list is required so that dataflow analysis has an
3376accurate understanding of the CFG.
3377
3378Semantics:
3379""""""""""
3380
3381Control transfers to the block specified in the address argument. All
3382possible destination blocks must be listed in the label list, otherwise
3383this instruction has undefined behavior. This implies that jumps to
3384labels defined in other functions have undefined behavior as well.
3385
3386Implementation:
3387"""""""""""""""
3388
3389This is typically implemented with a jump through a register.
3390
3391Example:
3392""""""""
3393
3394.. code-block:: llvm
3395
3396 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3397
3398.. _i_invoke:
3399
3400'``invoke``' Instruction
3401^^^^^^^^^^^^^^^^^^^^^^^^
3402
3403Syntax:
3404"""""""
3405
3406::
3407
3408 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3409 to label <normal label> unwind label <exception label>
3410
3411Overview:
3412"""""""""
3413
3414The '``invoke``' instruction causes control to transfer to a specified
3415function, with the possibility of control flow transfer to either the
3416'``normal``' label or the '``exception``' label. If the callee function
3417returns with the "``ret``" instruction, control flow will return to the
3418"normal" label. If the callee (or any indirect callees) returns via the
3419":ref:`resume <i_resume>`" instruction or other exception handling
3420mechanism, control is interrupted and continued at the dynamically
3421nearest "exception" label.
3422
3423The '``exception``' label is a `landing
3424pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3425'``exception``' label is required to have the
3426":ref:`landingpad <i_landingpad>`" instruction, which contains the
3427information about the behavior of the program after unwinding happens,
3428as its first non-PHI instruction. The restrictions on the
3429"``landingpad``" instruction's tightly couples it to the "``invoke``"
3430instruction, so that the important information contained within the
3431"``landingpad``" instruction can't be lost through normal code motion.
3432
3433Arguments:
3434""""""""""
3435
3436This instruction requires several arguments:
3437
3438#. The optional "cconv" marker indicates which :ref:`calling
3439 convention <callingconv>` the call should use. If none is
3440 specified, the call defaults to using C calling conventions.
3441#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3442 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3443 are valid here.
3444#. '``ptr to function ty``': shall be the signature of the pointer to
3445 function value being invoked. In most cases, this is a direct
3446 function invocation, but indirect ``invoke``'s are just as possible,
3447 branching off an arbitrary pointer to function value.
3448#. '``function ptr val``': An LLVM value containing a pointer to a
3449 function to be invoked.
3450#. '``function args``': argument list whose types match the function
3451 signature argument types and parameter attributes. All arguments must
3452 be of :ref:`first class <t_firstclass>` type. If the function signature
3453 indicates the function accepts a variable number of arguments, the
3454 extra arguments can be specified.
3455#. '``normal label``': the label reached when the called function
3456 executes a '``ret``' instruction.
3457#. '``exception label``': the label reached when a callee returns via
3458 the :ref:`resume <i_resume>` instruction or other exception handling
3459 mechanism.
3460#. The optional :ref:`function attributes <fnattrs>` list. Only
3461 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3462 attributes are valid here.
3463
3464Semantics:
3465""""""""""
3466
3467This instruction is designed to operate as a standard '``call``'
3468instruction in most regards. The primary difference is that it
3469establishes an association with a label, which is used by the runtime
3470library to unwind the stack.
3471
3472This instruction is used in languages with destructors to ensure that
3473proper cleanup is performed in the case of either a ``longjmp`` or a
3474thrown exception. Additionally, this is important for implementation of
3475'``catch``' clauses in high-level languages that support them.
3476
3477For the purposes of the SSA form, the definition of the value returned
3478by the '``invoke``' instruction is deemed to occur on the edge from the
3479current block to the "normal" label. If the callee unwinds then no
3480return value is available.
3481
3482Example:
3483""""""""
3484
3485.. code-block:: llvm
3486
3487 %retval = invoke i32 @Test(i32 15) to label %Continue
3488 unwind label %TestCleanup ; {i32}:retval set
3489 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3490 unwind label %TestCleanup ; {i32}:retval set
3491
3492.. _i_resume:
3493
3494'``resume``' Instruction
3495^^^^^^^^^^^^^^^^^^^^^^^^
3496
3497Syntax:
3498"""""""
3499
3500::
3501
3502 resume <type> <value>
3503
3504Overview:
3505"""""""""
3506
3507The '``resume``' instruction is a terminator instruction that has no
3508successors.
3509
3510Arguments:
3511""""""""""
3512
3513The '``resume``' instruction requires one argument, which must have the
3514same type as the result of any '``landingpad``' instruction in the same
3515function.
3516
3517Semantics:
3518""""""""""
3519
3520The '``resume``' instruction resumes propagation of an existing
3521(in-flight) exception whose unwinding was interrupted with a
3522:ref:`landingpad <i_landingpad>` instruction.
3523
3524Example:
3525""""""""
3526
3527.. code-block:: llvm
3528
3529 resume { i8*, i32 } %exn
3530
3531.. _i_unreachable:
3532
3533'``unreachable``' Instruction
3534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3535
3536Syntax:
3537"""""""
3538
3539::
3540
3541 unreachable
3542
3543Overview:
3544"""""""""
3545
3546The '``unreachable``' instruction has no defined semantics. This
3547instruction is used to inform the optimizer that a particular portion of
3548the code is not reachable. This can be used to indicate that the code
3549after a no-return function cannot be reached, and other facts.
3550
3551Semantics:
3552""""""""""
3553
3554The '``unreachable``' instruction has no defined semantics.
3555
3556.. _binaryops:
3557
3558Binary Operations
3559-----------------
3560
3561Binary operators are used to do most of the computation in a program.
3562They require two operands of the same type, execute an operation on
3563them, and produce a single value. The operands might represent multiple
3564data, as is the case with the :ref:`vector <t_vector>` data type. The
3565result value has the same type as its operands.
3566
3567There are several different binary operators:
3568
3569.. _i_add:
3570
3571'``add``' Instruction
3572^^^^^^^^^^^^^^^^^^^^^
3573
3574Syntax:
3575"""""""
3576
3577::
3578
3579 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3580 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3581 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3582 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3583
3584Overview:
3585"""""""""
3586
3587The '``add``' instruction returns the sum of its two operands.
3588
3589Arguments:
3590""""""""""
3591
3592The two arguments to the '``add``' instruction must be
3593:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3594arguments must have identical types.
3595
3596Semantics:
3597""""""""""
3598
3599The value produced is the integer sum of the two operands.
3600
3601If the sum has unsigned overflow, the result returned is the
3602mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3603the result.
3604
3605Because LLVM integers use a two's complement representation, this
3606instruction is appropriate for both signed and unsigned integers.
3607
3608``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3609respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3610result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3611unsigned and/or signed overflow, respectively, occurs.
3612
3613Example:
3614""""""""
3615
3616.. code-block:: llvm
3617
3618 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3619
3620.. _i_fadd:
3621
3622'``fadd``' Instruction
3623^^^^^^^^^^^^^^^^^^^^^^
3624
3625Syntax:
3626"""""""
3627
3628::
3629
3630 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3631
3632Overview:
3633"""""""""
3634
3635The '``fadd``' instruction returns the sum of its two operands.
3636
3637Arguments:
3638""""""""""
3639
3640The two arguments to the '``fadd``' instruction must be :ref:`floating
3641point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3642Both arguments must have identical types.
3643
3644Semantics:
3645""""""""""
3646
3647The value produced is the floating point sum of the two operands. This
3648instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3649which are optimization hints to enable otherwise unsafe floating point
3650optimizations:
3651
3652Example:
3653""""""""
3654
3655.. code-block:: llvm
3656
3657 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3658
3659'``sub``' Instruction
3660^^^^^^^^^^^^^^^^^^^^^
3661
3662Syntax:
3663"""""""
3664
3665::
3666
3667 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3668 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3669 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3670 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3671
3672Overview:
3673"""""""""
3674
3675The '``sub``' instruction returns the difference of its two operands.
3676
3677Note that the '``sub``' instruction is used to represent the '``neg``'
3678instruction present in most other intermediate representations.
3679
3680Arguments:
3681""""""""""
3682
3683The two arguments to the '``sub``' instruction must be
3684:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3685arguments must have identical types.
3686
3687Semantics:
3688""""""""""
3689
3690The value produced is the integer difference of the two operands.
3691
3692If the difference has unsigned overflow, the result returned is the
3693mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3694the result.
3695
3696Because LLVM integers use a two's complement representation, this
3697instruction is appropriate for both signed and unsigned integers.
3698
3699``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3700respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3701result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3702unsigned and/or signed overflow, respectively, occurs.
3703
3704Example:
3705""""""""
3706
3707.. code-block:: llvm
3708
3709 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3710 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3711
3712.. _i_fsub:
3713
3714'``fsub``' Instruction
3715^^^^^^^^^^^^^^^^^^^^^^
3716
3717Syntax:
3718"""""""
3719
3720::
3721
3722 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3723
3724Overview:
3725"""""""""
3726
3727The '``fsub``' instruction returns the difference of its two operands.
3728
3729Note that the '``fsub``' instruction is used to represent the '``fneg``'
3730instruction present in most other intermediate representations.
3731
3732Arguments:
3733""""""""""
3734
3735The two arguments to the '``fsub``' instruction must be :ref:`floating
3736point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3737Both arguments must have identical types.
3738
3739Semantics:
3740""""""""""
3741
3742The value produced is the floating point difference of the two operands.
3743This instruction can also take any number of :ref:`fast-math
3744flags <fastmath>`, which are optimization hints to enable otherwise
3745unsafe floating point optimizations:
3746
3747Example:
3748""""""""
3749
3750.. code-block:: llvm
3751
3752 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3753 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3754
3755'``mul``' Instruction
3756^^^^^^^^^^^^^^^^^^^^^
3757
3758Syntax:
3759"""""""
3760
3761::
3762
3763 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3764 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3765 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3766 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3767
3768Overview:
3769"""""""""
3770
3771The '``mul``' instruction returns the product of its two operands.
3772
3773Arguments:
3774""""""""""
3775
3776The two arguments to the '``mul``' instruction must be
3777:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3778arguments must have identical types.
3779
3780Semantics:
3781""""""""""
3782
3783The value produced is the integer product of the two operands.
3784
3785If the result of the multiplication has unsigned overflow, the result
3786returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3787bit width of the result.
3788
3789Because LLVM integers use a two's complement representation, and the
3790result is the same width as the operands, this instruction returns the
3791correct result for both signed and unsigned integers. If a full product
3792(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3793sign-extended or zero-extended as appropriate to the width of the full
3794product.
3795
3796``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3797respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3798result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3799unsigned and/or signed overflow, respectively, occurs.
3800
3801Example:
3802""""""""
3803
3804.. code-block:: llvm
3805
3806 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3807
3808.. _i_fmul:
3809
3810'``fmul``' Instruction
3811^^^^^^^^^^^^^^^^^^^^^^
3812
3813Syntax:
3814"""""""
3815
3816::
3817
3818 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3819
3820Overview:
3821"""""""""
3822
3823The '``fmul``' instruction returns the product of its two operands.
3824
3825Arguments:
3826""""""""""
3827
3828The two arguments to the '``fmul``' instruction must be :ref:`floating
3829point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3830Both arguments must have identical types.
3831
3832Semantics:
3833""""""""""
3834
3835The value produced is the floating point product of the two operands.
3836This instruction can also take any number of :ref:`fast-math
3837flags <fastmath>`, which are optimization hints to enable otherwise
3838unsafe floating point optimizations:
3839
3840Example:
3841""""""""
3842
3843.. code-block:: llvm
3844
3845 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3846
3847'``udiv``' Instruction
3848^^^^^^^^^^^^^^^^^^^^^^
3849
3850Syntax:
3851"""""""
3852
3853::
3854
3855 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3856 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3857
3858Overview:
3859"""""""""
3860
3861The '``udiv``' instruction returns the quotient of its two operands.
3862
3863Arguments:
3864""""""""""
3865
3866The two arguments to the '``udiv``' instruction must be
3867:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3868arguments must have identical types.
3869
3870Semantics:
3871""""""""""
3872
3873The value produced is the unsigned integer quotient of the two operands.
3874
3875Note that unsigned integer division and signed integer division are
3876distinct operations; for signed integer division, use '``sdiv``'.
3877
3878Division by zero leads to undefined behavior.
3879
3880If the ``exact`` keyword is present, the result value of the ``udiv`` is
3881a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3882such, "((a udiv exact b) mul b) == a").
3883
3884Example:
3885""""""""
3886
3887.. code-block:: llvm
3888
3889 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3890
3891'``sdiv``' Instruction
3892^^^^^^^^^^^^^^^^^^^^^^
3893
3894Syntax:
3895"""""""
3896
3897::
3898
3899 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3900 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3901
3902Overview:
3903"""""""""
3904
3905The '``sdiv``' instruction returns the quotient of its two operands.
3906
3907Arguments:
3908""""""""""
3909
3910The two arguments to the '``sdiv``' instruction must be
3911:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3912arguments must have identical types.
3913
3914Semantics:
3915""""""""""
3916
3917The value produced is the signed integer quotient of the two operands
3918rounded towards zero.
3919
3920Note that signed integer division and unsigned integer division are
3921distinct operations; for unsigned integer division, use '``udiv``'.
3922
3923Division by zero leads to undefined behavior. Overflow also leads to
3924undefined behavior; this is a rare case, but can occur, for example, by
3925doing a 32-bit division of -2147483648 by -1.
3926
3927If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3928a :ref:`poison value <poisonvalues>` if the result would be rounded.
3929
3930Example:
3931""""""""
3932
3933.. code-block:: llvm
3934
3935 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3936
3937.. _i_fdiv:
3938
3939'``fdiv``' Instruction
3940^^^^^^^^^^^^^^^^^^^^^^
3941
3942Syntax:
3943"""""""
3944
3945::
3946
3947 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3948
3949Overview:
3950"""""""""
3951
3952The '``fdiv``' instruction returns the quotient of its two operands.
3953
3954Arguments:
3955""""""""""
3956
3957The two arguments to the '``fdiv``' instruction must be :ref:`floating
3958point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3959Both arguments must have identical types.
3960
3961Semantics:
3962""""""""""
3963
3964The value produced is the floating point quotient of the two operands.
3965This instruction can also take any number of :ref:`fast-math
3966flags <fastmath>`, which are optimization hints to enable otherwise
3967unsafe floating point optimizations:
3968
3969Example:
3970""""""""
3971
3972.. code-block:: llvm
3973
3974 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3975
3976'``urem``' Instruction
3977^^^^^^^^^^^^^^^^^^^^^^
3978
3979Syntax:
3980"""""""
3981
3982::
3983
3984 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3985
3986Overview:
3987"""""""""
3988
3989The '``urem``' instruction returns the remainder from the unsigned
3990division of its two arguments.
3991
3992Arguments:
3993""""""""""
3994
3995The two arguments to the '``urem``' instruction must be
3996:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3997arguments must have identical types.
3998
3999Semantics:
4000""""""""""
4001
4002This instruction returns the unsigned integer *remainder* of a division.
4003This instruction always performs an unsigned division to get the
4004remainder.
4005
4006Note that unsigned integer remainder and signed integer remainder are
4007distinct operations; for signed integer remainder, use '``srem``'.
4008
4009Taking the remainder of a division by zero leads to undefined behavior.
4010
4011Example:
4012""""""""
4013
4014.. code-block:: llvm
4015
4016 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4017
4018'``srem``' Instruction
4019^^^^^^^^^^^^^^^^^^^^^^
4020
4021Syntax:
4022"""""""
4023
4024::
4025
4026 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4027
4028Overview:
4029"""""""""
4030
4031The '``srem``' instruction returns the remainder from the signed
4032division of its two operands. This instruction can also take
4033:ref:`vector <t_vector>` versions of the values in which case the elements
4034must be integers.
4035
4036Arguments:
4037""""""""""
4038
4039The two arguments to the '``srem``' instruction must be
4040:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4041arguments must have identical types.
4042
4043Semantics:
4044""""""""""
4045
4046This instruction returns the *remainder* of a division (where the result
4047is either zero or has the same sign as the dividend, ``op1``), not the
4048*modulo* operator (where the result is either zero or has the same sign
4049as the divisor, ``op2``) of a value. For more information about the
4050difference, see `The Math
4051Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4052table of how this is implemented in various languages, please see
4053`Wikipedia: modulo
4054operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4055
4056Note that signed integer remainder and unsigned integer remainder are
4057distinct operations; for unsigned integer remainder, use '``urem``'.
4058
4059Taking the remainder of a division by zero leads to undefined behavior.
4060Overflow also leads to undefined behavior; this is a rare case, but can
4061occur, for example, by taking the remainder of a 32-bit division of
4062-2147483648 by -1. (The remainder doesn't actually overflow, but this
4063rule lets srem be implemented using instructions that return both the
4064result of the division and the remainder.)
4065
4066Example:
4067""""""""
4068
4069.. code-block:: llvm
4070
4071 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4072
4073.. _i_frem:
4074
4075'``frem``' Instruction
4076^^^^^^^^^^^^^^^^^^^^^^
4077
4078Syntax:
4079"""""""
4080
4081::
4082
4083 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4084
4085Overview:
4086"""""""""
4087
4088The '``frem``' instruction returns the remainder from the division of
4089its two operands.
4090
4091Arguments:
4092""""""""""
4093
4094The two arguments to the '``frem``' instruction must be :ref:`floating
4095point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4096Both arguments must have identical types.
4097
4098Semantics:
4099""""""""""
4100
4101This instruction returns the *remainder* of a division. The remainder
4102has the same sign as the dividend. This instruction can also take any
4103number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4104to enable otherwise unsafe floating point optimizations:
4105
4106Example:
4107""""""""
4108
4109.. code-block:: llvm
4110
4111 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4112
4113.. _bitwiseops:
4114
4115Bitwise Binary Operations
4116-------------------------
4117
4118Bitwise binary operators are used to do various forms of bit-twiddling
4119in a program. They are generally very efficient instructions and can
4120commonly be strength reduced from other instructions. They require two
4121operands of the same type, execute an operation on them, and produce a
4122single value. The resulting value is the same type as its operands.
4123
4124'``shl``' Instruction
4125^^^^^^^^^^^^^^^^^^^^^
4126
4127Syntax:
4128"""""""
4129
4130::
4131
4132 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4133 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4134 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4135 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4136
4137Overview:
4138"""""""""
4139
4140The '``shl``' instruction returns the first operand shifted to the left
4141a specified number of bits.
4142
4143Arguments:
4144""""""""""
4145
4146Both arguments to the '``shl``' instruction must be the same
4147:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4148'``op2``' is treated as an unsigned value.
4149
4150Semantics:
4151""""""""""
4152
4153The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4154where ``n`` is the width of the result. If ``op2`` is (statically or
4155dynamically) negative or equal to or larger than the number of bits in
4156``op1``, the result is undefined. If the arguments are vectors, each
4157vector element of ``op1`` is shifted by the corresponding shift amount
4158in ``op2``.
4159
4160If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4161value <poisonvalues>` if it shifts out any non-zero bits. If the
4162``nsw`` keyword is present, then the shift produces a :ref:`poison
4163value <poisonvalues>` if it shifts out any bits that disagree with the
4164resultant sign bit. As such, NUW/NSW have the same semantics as they
4165would if the shift were expressed as a mul instruction with the same
4166nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4167
4168Example:
4169""""""""
4170
4171.. code-block:: llvm
4172
4173 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4174 <result> = shl i32 4, 2 ; yields {i32}: 16
4175 <result> = shl i32 1, 10 ; yields {i32}: 1024
4176 <result> = shl i32 1, 32 ; undefined
4177 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4178
4179'``lshr``' Instruction
4180^^^^^^^^^^^^^^^^^^^^^^
4181
4182Syntax:
4183"""""""
4184
4185::
4186
4187 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4188 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4189
4190Overview:
4191"""""""""
4192
4193The '``lshr``' instruction (logical shift right) returns the first
4194operand shifted to the right a specified number of bits with zero fill.
4195
4196Arguments:
4197""""""""""
4198
4199Both arguments to the '``lshr``' instruction must be the same
4200:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4201'``op2``' is treated as an unsigned value.
4202
4203Semantics:
4204""""""""""
4205
4206This instruction always performs a logical shift right operation. The
4207most significant bits of the result will be filled with zero bits after
4208the shift. If ``op2`` is (statically or dynamically) equal to or larger
4209than the number of bits in ``op1``, the result is undefined. If the
4210arguments are vectors, each vector element of ``op1`` is shifted by the
4211corresponding shift amount in ``op2``.
4212
4213If the ``exact`` keyword is present, the result value of the ``lshr`` is
4214a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4215non-zero.
4216
4217Example:
4218""""""""
4219
4220.. code-block:: llvm
4221
4222 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4223 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4224 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004225 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004226 <result> = lshr i32 1, 32 ; undefined
4227 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4228
4229'``ashr``' Instruction
4230^^^^^^^^^^^^^^^^^^^^^^
4231
4232Syntax:
4233"""""""
4234
4235::
4236
4237 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4238 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4239
4240Overview:
4241"""""""""
4242
4243The '``ashr``' instruction (arithmetic shift right) returns the first
4244operand shifted to the right a specified number of bits with sign
4245extension.
4246
4247Arguments:
4248""""""""""
4249
4250Both arguments to the '``ashr``' instruction must be the same
4251:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4252'``op2``' is treated as an unsigned value.
4253
4254Semantics:
4255""""""""""
4256
4257This instruction always performs an arithmetic shift right operation,
4258The most significant bits of the result will be filled with the sign bit
4259of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4260than the number of bits in ``op1``, the result is undefined. If the
4261arguments are vectors, each vector element of ``op1`` is shifted by the
4262corresponding shift amount in ``op2``.
4263
4264If the ``exact`` keyword is present, the result value of the ``ashr`` is
4265a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4266non-zero.
4267
4268Example:
4269""""""""
4270
4271.. code-block:: llvm
4272
4273 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4274 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4275 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4276 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4277 <result> = ashr i32 1, 32 ; undefined
4278 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4279
4280'``and``' Instruction
4281^^^^^^^^^^^^^^^^^^^^^
4282
4283Syntax:
4284"""""""
4285
4286::
4287
4288 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4289
4290Overview:
4291"""""""""
4292
4293The '``and``' instruction returns the bitwise logical and of its two
4294operands.
4295
4296Arguments:
4297""""""""""
4298
4299The two arguments to the '``and``' instruction must be
4300:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4301arguments must have identical types.
4302
4303Semantics:
4304""""""""""
4305
4306The truth table used for the '``and``' instruction is:
4307
4308+-----+-----+-----+
4309| In0 | In1 | Out |
4310+-----+-----+-----+
4311| 0 | 0 | 0 |
4312+-----+-----+-----+
4313| 0 | 1 | 0 |
4314+-----+-----+-----+
4315| 1 | 0 | 0 |
4316+-----+-----+-----+
4317| 1 | 1 | 1 |
4318+-----+-----+-----+
4319
4320Example:
4321""""""""
4322
4323.. code-block:: llvm
4324
4325 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4326 <result> = and i32 15, 40 ; yields {i32}:result = 8
4327 <result> = and i32 4, 8 ; yields {i32}:result = 0
4328
4329'``or``' Instruction
4330^^^^^^^^^^^^^^^^^^^^
4331
4332Syntax:
4333"""""""
4334
4335::
4336
4337 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4338
4339Overview:
4340"""""""""
4341
4342The '``or``' instruction returns the bitwise logical inclusive or of its
4343two operands.
4344
4345Arguments:
4346""""""""""
4347
4348The two arguments to the '``or``' instruction must be
4349:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4350arguments must have identical types.
4351
4352Semantics:
4353""""""""""
4354
4355The truth table used for the '``or``' instruction is:
4356
4357+-----+-----+-----+
4358| In0 | In1 | Out |
4359+-----+-----+-----+
4360| 0 | 0 | 0 |
4361+-----+-----+-----+
4362| 0 | 1 | 1 |
4363+-----+-----+-----+
4364| 1 | 0 | 1 |
4365+-----+-----+-----+
4366| 1 | 1 | 1 |
4367+-----+-----+-----+
4368
4369Example:
4370""""""""
4371
4372::
4373
4374 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4375 <result> = or i32 15, 40 ; yields {i32}:result = 47
4376 <result> = or i32 4, 8 ; yields {i32}:result = 12
4377
4378'``xor``' Instruction
4379^^^^^^^^^^^^^^^^^^^^^
4380
4381Syntax:
4382"""""""
4383
4384::
4385
4386 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4387
4388Overview:
4389"""""""""
4390
4391The '``xor``' instruction returns the bitwise logical exclusive or of
4392its two operands. The ``xor`` is used to implement the "one's
4393complement" operation, which is the "~" operator in C.
4394
4395Arguments:
4396""""""""""
4397
4398The two arguments to the '``xor``' instruction must be
4399:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4400arguments must have identical types.
4401
4402Semantics:
4403""""""""""
4404
4405The truth table used for the '``xor``' instruction is:
4406
4407+-----+-----+-----+
4408| In0 | In1 | Out |
4409+-----+-----+-----+
4410| 0 | 0 | 0 |
4411+-----+-----+-----+
4412| 0 | 1 | 1 |
4413+-----+-----+-----+
4414| 1 | 0 | 1 |
4415+-----+-----+-----+
4416| 1 | 1 | 0 |
4417+-----+-----+-----+
4418
4419Example:
4420""""""""
4421
4422.. code-block:: llvm
4423
4424 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4425 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4426 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4427 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4428
4429Vector Operations
4430-----------------
4431
4432LLVM supports several instructions to represent vector operations in a
4433target-independent manner. These instructions cover the element-access
4434and vector-specific operations needed to process vectors effectively.
4435While LLVM does directly support these vector operations, many
4436sophisticated algorithms will want to use target-specific intrinsics to
4437take full advantage of a specific target.
4438
4439.. _i_extractelement:
4440
4441'``extractelement``' Instruction
4442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4443
4444Syntax:
4445"""""""
4446
4447::
4448
4449 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4450
4451Overview:
4452"""""""""
4453
4454The '``extractelement``' instruction extracts a single scalar element
4455from a vector at a specified index.
4456
4457Arguments:
4458""""""""""
4459
4460The first operand of an '``extractelement``' instruction is a value of
4461:ref:`vector <t_vector>` type. The second operand is an index indicating
4462the position from which to extract the element. The index may be a
4463variable.
4464
4465Semantics:
4466""""""""""
4467
4468The result is a scalar of the same type as the element type of ``val``.
4469Its value is the value at position ``idx`` of ``val``. If ``idx``
4470exceeds the length of ``val``, the results are undefined.
4471
4472Example:
4473""""""""
4474
4475.. code-block:: llvm
4476
4477 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4478
4479.. _i_insertelement:
4480
4481'``insertelement``' Instruction
4482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4483
4484Syntax:
4485"""""""
4486
4487::
4488
4489 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4490
4491Overview:
4492"""""""""
4493
4494The '``insertelement``' instruction inserts a scalar element into a
4495vector at a specified index.
4496
4497Arguments:
4498""""""""""
4499
4500The first operand of an '``insertelement``' instruction is a value of
4501:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4502type must equal the element type of the first operand. The third operand
4503is an index indicating the position at which to insert the value. The
4504index may be a variable.
4505
4506Semantics:
4507""""""""""
4508
4509The result is a vector of the same type as ``val``. Its element values
4510are those of ``val`` except at position ``idx``, where it gets the value
4511``elt``. If ``idx`` exceeds the length of ``val``, the results are
4512undefined.
4513
4514Example:
4515""""""""
4516
4517.. code-block:: llvm
4518
4519 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4520
4521.. _i_shufflevector:
4522
4523'``shufflevector``' Instruction
4524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4525
4526Syntax:
4527"""""""
4528
4529::
4530
4531 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4532
4533Overview:
4534"""""""""
4535
4536The '``shufflevector``' instruction constructs a permutation of elements
4537from two input vectors, returning a vector with the same element type as
4538the input and length that is the same as the shuffle mask.
4539
4540Arguments:
4541""""""""""
4542
4543The first two operands of a '``shufflevector``' instruction are vectors
4544with the same type. The third argument is a shuffle mask whose element
4545type is always 'i32'. The result of the instruction is a vector whose
4546length is the same as the shuffle mask and whose element type is the
4547same as the element type of the first two operands.
4548
4549The shuffle mask operand is required to be a constant vector with either
4550constant integer or undef values.
4551
4552Semantics:
4553""""""""""
4554
4555The elements of the two input vectors are numbered from left to right
4556across both of the vectors. The shuffle mask operand specifies, for each
4557element of the result vector, which element of the two input vectors the
4558result element gets. The element selector may be undef (meaning "don't
4559care") and the second operand may be undef if performing a shuffle from
4560only one vector.
4561
4562Example:
4563""""""""
4564
4565.. code-block:: llvm
4566
4567 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4568 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4569 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4570 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4571 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4572 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4573 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4574 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4575
4576Aggregate Operations
4577--------------------
4578
4579LLVM supports several instructions for working with
4580:ref:`aggregate <t_aggregate>` values.
4581
4582.. _i_extractvalue:
4583
4584'``extractvalue``' Instruction
4585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4586
4587Syntax:
4588"""""""
4589
4590::
4591
4592 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4593
4594Overview:
4595"""""""""
4596
4597The '``extractvalue``' instruction extracts the value of a member field
4598from an :ref:`aggregate <t_aggregate>` value.
4599
4600Arguments:
4601""""""""""
4602
4603The first operand of an '``extractvalue``' instruction is a value of
4604:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4605constant indices to specify which value to extract in a similar manner
4606as indices in a '``getelementptr``' instruction.
4607
4608The major differences to ``getelementptr`` indexing are:
4609
4610- Since the value being indexed is not a pointer, the first index is
4611 omitted and assumed to be zero.
4612- At least one index must be specified.
4613- Not only struct indices but also array indices must be in bounds.
4614
4615Semantics:
4616""""""""""
4617
4618The result is the value at the position in the aggregate specified by
4619the index operands.
4620
4621Example:
4622""""""""
4623
4624.. code-block:: llvm
4625
4626 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4627
4628.. _i_insertvalue:
4629
4630'``insertvalue``' Instruction
4631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4632
4633Syntax:
4634"""""""
4635
4636::
4637
4638 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4639
4640Overview:
4641"""""""""
4642
4643The '``insertvalue``' instruction inserts a value into a member field in
4644an :ref:`aggregate <t_aggregate>` value.
4645
4646Arguments:
4647""""""""""
4648
4649The first operand of an '``insertvalue``' instruction is a value of
4650:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4651a first-class value to insert. The following operands are constant
4652indices indicating the position at which to insert the value in a
4653similar manner as indices in a '``extractvalue``' instruction. The value
4654to insert must have the same type as the value identified by the
4655indices.
4656
4657Semantics:
4658""""""""""
4659
4660The result is an aggregate of the same type as ``val``. Its value is
4661that of ``val`` except that the value at the position specified by the
4662indices is that of ``elt``.
4663
4664Example:
4665""""""""
4666
4667.. code-block:: llvm
4668
4669 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4670 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4671 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4672
4673.. _memoryops:
4674
4675Memory Access and Addressing Operations
4676---------------------------------------
4677
4678A key design point of an SSA-based representation is how it represents
4679memory. In LLVM, no memory locations are in SSA form, which makes things
4680very simple. This section describes how to read, write, and allocate
4681memory in LLVM.
4682
4683.. _i_alloca:
4684
4685'``alloca``' Instruction
4686^^^^^^^^^^^^^^^^^^^^^^^^
4687
4688Syntax:
4689"""""""
4690
4691::
4692
Reid Kleckner436c42e2014-01-17 23:58:17 +00004693 <result> = alloca <type>[, inalloca][, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004694
4695Overview:
4696"""""""""
4697
4698The '``alloca``' instruction allocates memory on the stack frame of the
4699currently executing function, to be automatically released when this
4700function returns to its caller. The object is always allocated in the
4701generic address space (address space zero).
4702
4703Arguments:
4704""""""""""
4705
4706The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4707bytes of memory on the runtime stack, returning a pointer of the
4708appropriate type to the program. If "NumElements" is specified, it is
4709the number of elements allocated, otherwise "NumElements" is defaulted
4710to be one. If a constant alignment is specified, the value result of the
4711allocation is guaranteed to be aligned to at least that boundary. If not
4712specified, or if zero, the target can choose to align the allocation on
4713any convenient boundary compatible with the type.
4714
4715'``type``' may be any sized type.
4716
4717Semantics:
4718""""""""""
4719
4720Memory is allocated; a pointer is returned. The operation is undefined
4721if there is insufficient stack space for the allocation. '``alloca``'d
4722memory is automatically released when the function returns. The
4723'``alloca``' instruction is commonly used to represent automatic
4724variables that must have an address available. When the function returns
4725(either with the ``ret`` or ``resume`` instructions), the memory is
4726reclaimed. Allocating zero bytes is legal, but the result is undefined.
4727The order in which memory is allocated (ie., which way the stack grows)
4728is not specified.
4729
4730Example:
4731""""""""
4732
4733.. code-block:: llvm
4734
4735 %ptr = alloca i32 ; yields {i32*}:ptr
4736 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4737 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4738 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4739
4740.. _i_load:
4741
4742'``load``' Instruction
4743^^^^^^^^^^^^^^^^^^^^^^
4744
4745Syntax:
4746"""""""
4747
4748::
4749
4750 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4751 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4752 !<index> = !{ i32 1 }
4753
4754Overview:
4755"""""""""
4756
4757The '``load``' instruction is used to read from memory.
4758
4759Arguments:
4760""""""""""
4761
Eli Bendersky239a78b2013-04-17 20:17:08 +00004762The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004763from which to load. The pointer must point to a :ref:`first
4764class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4765then the optimizer is not allowed to modify the number or order of
4766execution of this ``load`` with other :ref:`volatile
4767operations <volatile>`.
4768
4769If the ``load`` is marked as ``atomic``, it takes an extra
4770:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4771``release`` and ``acq_rel`` orderings are not valid on ``load``
4772instructions. Atomic loads produce :ref:`defined <memmodel>` results
4773when they may see multiple atomic stores. The type of the pointee must
4774be an integer type whose bit width is a power of two greater than or
4775equal to eight and less than or equal to a target-specific size limit.
4776``align`` must be explicitly specified on atomic loads, and the load has
4777undefined behavior if the alignment is not set to a value which is at
4778least the size in bytes of the pointee. ``!nontemporal`` does not have
4779any defined semantics for atomic loads.
4780
4781The optional constant ``align`` argument specifies the alignment of the
4782operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004783or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004784alignment for the target. It is the responsibility of the code emitter
4785to ensure that the alignment information is correct. Overestimating the
4786alignment results in undefined behavior. Underestimating the alignment
4787may produce less efficient code. An alignment of 1 is always safe.
4788
4789The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004790metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004791``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004792metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004793that this load is not expected to be reused in the cache. The code
4794generator may select special instructions to save cache bandwidth, such
4795as the ``MOVNT`` instruction on x86.
4796
4797The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004798metadata name ``<index>`` corresponding to a metadata node with no
4799entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004800instruction tells the optimizer and code generator that this load
4801address points to memory which does not change value during program
4802execution. The optimizer may then move this load around, for example, by
4803hoisting it out of loops using loop invariant code motion.
4804
4805Semantics:
4806""""""""""
4807
4808The location of memory pointed to is loaded. If the value being loaded
4809is of scalar type then the number of bytes read does not exceed the
4810minimum number of bytes needed to hold all bits of the type. For
4811example, loading an ``i24`` reads at most three bytes. When loading a
4812value of a type like ``i20`` with a size that is not an integral number
4813of bytes, the result is undefined if the value was not originally
4814written using a store of the same type.
4815
4816Examples:
4817"""""""""
4818
4819.. code-block:: llvm
4820
4821 %ptr = alloca i32 ; yields {i32*}:ptr
4822 store i32 3, i32* %ptr ; yields {void}
4823 %val = load i32* %ptr ; yields {i32}:val = i32 3
4824
4825.. _i_store:
4826
4827'``store``' Instruction
4828^^^^^^^^^^^^^^^^^^^^^^^
4829
4830Syntax:
4831"""""""
4832
4833::
4834
4835 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4836 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4837
4838Overview:
4839"""""""""
4840
4841The '``store``' instruction is used to write to memory.
4842
4843Arguments:
4844""""""""""
4845
Eli Benderskyca380842013-04-17 17:17:20 +00004846There are two arguments to the ``store`` instruction: a value to store
4847and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004848operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004849the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004850then the optimizer is not allowed to modify the number or order of
4851execution of this ``store`` with other :ref:`volatile
4852operations <volatile>`.
4853
4854If the ``store`` is marked as ``atomic``, it takes an extra
4855:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4856``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4857instructions. Atomic loads produce :ref:`defined <memmodel>` results
4858when they may see multiple atomic stores. The type of the pointee must
4859be an integer type whose bit width is a power of two greater than or
4860equal to eight and less than or equal to a target-specific size limit.
4861``align`` must be explicitly specified on atomic stores, and the store
4862has undefined behavior if the alignment is not set to a value which is
4863at least the size in bytes of the pointee. ``!nontemporal`` does not
4864have any defined semantics for atomic stores.
4865
Eli Benderskyca380842013-04-17 17:17:20 +00004866The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004867operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004868or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004869alignment for the target. It is the responsibility of the code emitter
4870to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004871alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004872alignment may produce less efficient code. An alignment of 1 is always
4873safe.
4874
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004875The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004876name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004877value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004878tells the optimizer and code generator that this load is not expected to
4879be reused in the cache. The code generator may select special
4880instructions to save cache bandwidth, such as the MOVNT instruction on
4881x86.
4882
4883Semantics:
4884""""""""""
4885
Eli Benderskyca380842013-04-17 17:17:20 +00004886The contents of memory are updated to contain ``<value>`` at the
4887location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004888of scalar type then the number of bytes written does not exceed the
4889minimum number of bytes needed to hold all bits of the type. For
4890example, storing an ``i24`` writes at most three bytes. When writing a
4891value of a type like ``i20`` with a size that is not an integral number
4892of bytes, it is unspecified what happens to the extra bits that do not
4893belong to the type, but they will typically be overwritten.
4894
4895Example:
4896""""""""
4897
4898.. code-block:: llvm
4899
4900 %ptr = alloca i32 ; yields {i32*}:ptr
4901 store i32 3, i32* %ptr ; yields {void}
4902 %val = load i32* %ptr ; yields {i32}:val = i32 3
4903
4904.. _i_fence:
4905
4906'``fence``' Instruction
4907^^^^^^^^^^^^^^^^^^^^^^^
4908
4909Syntax:
4910"""""""
4911
4912::
4913
4914 fence [singlethread] <ordering> ; yields {void}
4915
4916Overview:
4917"""""""""
4918
4919The '``fence``' instruction is used to introduce happens-before edges
4920between operations.
4921
4922Arguments:
4923""""""""""
4924
4925'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4926defines what *synchronizes-with* edges they add. They can only be given
4927``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4928
4929Semantics:
4930""""""""""
4931
4932A fence A which has (at least) ``release`` ordering semantics
4933*synchronizes with* a fence B with (at least) ``acquire`` ordering
4934semantics if and only if there exist atomic operations X and Y, both
4935operating on some atomic object M, such that A is sequenced before X, X
4936modifies M (either directly or through some side effect of a sequence
4937headed by X), Y is sequenced before B, and Y observes M. This provides a
4938*happens-before* dependency between A and B. Rather than an explicit
4939``fence``, one (but not both) of the atomic operations X or Y might
4940provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4941still *synchronize-with* the explicit ``fence`` and establish the
4942*happens-before* edge.
4943
4944A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4945``acquire`` and ``release`` semantics specified above, participates in
4946the global program order of other ``seq_cst`` operations and/or fences.
4947
4948The optional ":ref:`singlethread <singlethread>`" argument specifies
4949that the fence only synchronizes with other fences in the same thread.
4950(This is useful for interacting with signal handlers.)
4951
4952Example:
4953""""""""
4954
4955.. code-block:: llvm
4956
4957 fence acquire ; yields {void}
4958 fence singlethread seq_cst ; yields {void}
4959
4960.. _i_cmpxchg:
4961
4962'``cmpxchg``' Instruction
4963^^^^^^^^^^^^^^^^^^^^^^^^^
4964
4965Syntax:
4966"""""""
4967
4968::
4969
4970 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4971
4972Overview:
4973"""""""""
4974
4975The '``cmpxchg``' instruction is used to atomically modify memory. It
4976loads a value in memory and compares it to a given value. If they are
4977equal, it stores a new value into the memory.
4978
4979Arguments:
4980""""""""""
4981
4982There are three arguments to the '``cmpxchg``' instruction: an address
4983to operate on, a value to compare to the value currently be at that
4984address, and a new value to place at that address if the compared values
4985are equal. The type of '<cmp>' must be an integer type whose bit width
4986is a power of two greater than or equal to eight and less than or equal
4987to a target-specific size limit. '<cmp>' and '<new>' must have the same
4988type, and the type of '<pointer>' must be a pointer to that type. If the
4989``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4990to modify the number or order of execution of this ``cmpxchg`` with
4991other :ref:`volatile operations <volatile>`.
4992
4993The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4994synchronizes with other atomic operations.
4995
4996The optional "``singlethread``" argument declares that the ``cmpxchg``
4997is only atomic with respect to code (usually signal handlers) running in
4998the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4999respect to all other code in the system.
5000
5001The pointer passed into cmpxchg must have alignment greater than or
5002equal to the size in memory of the operand.
5003
5004Semantics:
5005""""""""""
5006
5007The contents of memory at the location specified by the '``<pointer>``'
5008operand is read and compared to '``<cmp>``'; if the read value is the
5009equal, '``<new>``' is written. The original value at the location is
5010returned.
5011
5012A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
5013of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
5014atomic load with an ordering parameter determined by dropping any
5015``release`` part of the ``cmpxchg``'s ordering.
5016
5017Example:
5018""""""""
5019
5020.. code-block:: llvm
5021
5022 entry:
5023 %orig = atomic load i32* %ptr unordered ; yields {i32}
5024 br label %loop
5025
5026 loop:
5027 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5028 %squared = mul i32 %cmp, %cmp
5029 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
5030 %success = icmp eq i32 %cmp, %old
5031 br i1 %success, label %done, label %loop
5032
5033 done:
5034 ...
5035
5036.. _i_atomicrmw:
5037
5038'``atomicrmw``' Instruction
5039^^^^^^^^^^^^^^^^^^^^^^^^^^^
5040
5041Syntax:
5042"""""""
5043
5044::
5045
5046 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5047
5048Overview:
5049"""""""""
5050
5051The '``atomicrmw``' instruction is used to atomically modify memory.
5052
5053Arguments:
5054""""""""""
5055
5056There are three arguments to the '``atomicrmw``' instruction: an
5057operation to apply, an address whose value to modify, an argument to the
5058operation. The operation must be one of the following keywords:
5059
5060- xchg
5061- add
5062- sub
5063- and
5064- nand
5065- or
5066- xor
5067- max
5068- min
5069- umax
5070- umin
5071
5072The type of '<value>' must be an integer type whose bit width is a power
5073of two greater than or equal to eight and less than or equal to a
5074target-specific size limit. The type of the '``<pointer>``' operand must
5075be a pointer to that type. If the ``atomicrmw`` is marked as
5076``volatile``, then the optimizer is not allowed to modify the number or
5077order of execution of this ``atomicrmw`` with other :ref:`volatile
5078operations <volatile>`.
5079
5080Semantics:
5081""""""""""
5082
5083The contents of memory at the location specified by the '``<pointer>``'
5084operand are atomically read, modified, and written back. The original
5085value at the location is returned. The modification is specified by the
5086operation argument:
5087
5088- xchg: ``*ptr = val``
5089- add: ``*ptr = *ptr + val``
5090- sub: ``*ptr = *ptr - val``
5091- and: ``*ptr = *ptr & val``
5092- nand: ``*ptr = ~(*ptr & val)``
5093- or: ``*ptr = *ptr | val``
5094- xor: ``*ptr = *ptr ^ val``
5095- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5096- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5097- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5098 comparison)
5099- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5100 comparison)
5101
5102Example:
5103""""""""
5104
5105.. code-block:: llvm
5106
5107 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5108
5109.. _i_getelementptr:
5110
5111'``getelementptr``' Instruction
5112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5113
5114Syntax:
5115"""""""
5116
5117::
5118
5119 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5120 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5121 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5122
5123Overview:
5124"""""""""
5125
5126The '``getelementptr``' instruction is used to get the address of a
5127subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5128address calculation only and does not access memory.
5129
5130Arguments:
5131""""""""""
5132
5133The first argument is always a pointer or a vector of pointers, and
5134forms the basis of the calculation. The remaining arguments are indices
5135that indicate which of the elements of the aggregate object are indexed.
5136The interpretation of each index is dependent on the type being indexed
5137into. The first index always indexes the pointer value given as the
5138first argument, the second index indexes a value of the type pointed to
5139(not necessarily the value directly pointed to, since the first index
5140can be non-zero), etc. The first type indexed into must be a pointer
5141value, subsequent types can be arrays, vectors, and structs. Note that
5142subsequent types being indexed into can never be pointers, since that
5143would require loading the pointer before continuing calculation.
5144
5145The type of each index argument depends on the type it is indexing into.
5146When indexing into a (optionally packed) structure, only ``i32`` integer
5147**constants** are allowed (when using a vector of indices they must all
5148be the **same** ``i32`` integer constant). When indexing into an array,
5149pointer or vector, integers of any width are allowed, and they are not
5150required to be constant. These integers are treated as signed values
5151where relevant.
5152
5153For example, let's consider a C code fragment and how it gets compiled
5154to LLVM:
5155
5156.. code-block:: c
5157
5158 struct RT {
5159 char A;
5160 int B[10][20];
5161 char C;
5162 };
5163 struct ST {
5164 int X;
5165 double Y;
5166 struct RT Z;
5167 };
5168
5169 int *foo(struct ST *s) {
5170 return &s[1].Z.B[5][13];
5171 }
5172
5173The LLVM code generated by Clang is:
5174
5175.. code-block:: llvm
5176
5177 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5178 %struct.ST = type { i32, double, %struct.RT }
5179
5180 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5181 entry:
5182 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5183 ret i32* %arrayidx
5184 }
5185
5186Semantics:
5187""""""""""
5188
5189In the example above, the first index is indexing into the
5190'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5191= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5192indexes into the third element of the structure, yielding a
5193'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5194structure. The third index indexes into the second element of the
5195structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5196dimensions of the array are subscripted into, yielding an '``i32``'
5197type. The '``getelementptr``' instruction returns a pointer to this
5198element, thus computing a value of '``i32*``' type.
5199
5200Note that it is perfectly legal to index partially through a structure,
5201returning a pointer to an inner element. Because of this, the LLVM code
5202for the given testcase is equivalent to:
5203
5204.. code-block:: llvm
5205
5206 define i32* @foo(%struct.ST* %s) {
5207 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5208 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5209 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5210 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5211 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5212 ret i32* %t5
5213 }
5214
5215If the ``inbounds`` keyword is present, the result value of the
5216``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5217pointer is not an *in bounds* address of an allocated object, or if any
5218of the addresses that would be formed by successive addition of the
5219offsets implied by the indices to the base address with infinitely
5220precise signed arithmetic are not an *in bounds* address of that
5221allocated object. The *in bounds* addresses for an allocated object are
5222all the addresses that point into the object, plus the address one byte
5223past the end. In cases where the base is a vector of pointers the
5224``inbounds`` keyword applies to each of the computations element-wise.
5225
5226If the ``inbounds`` keyword is not present, the offsets are added to the
5227base address with silently-wrapping two's complement arithmetic. If the
5228offsets have a different width from the pointer, they are sign-extended
5229or truncated to the width of the pointer. The result value of the
5230``getelementptr`` may be outside the object pointed to by the base
5231pointer. The result value may not necessarily be used to access memory
5232though, even if it happens to point into allocated storage. See the
5233:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5234information.
5235
5236The getelementptr instruction is often confusing. For some more insight
5237into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5238
5239Example:
5240""""""""
5241
5242.. code-block:: llvm
5243
5244 ; yields [12 x i8]*:aptr
5245 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5246 ; yields i8*:vptr
5247 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5248 ; yields i8*:eptr
5249 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5250 ; yields i32*:iptr
5251 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5252
5253In cases where the pointer argument is a vector of pointers, each index
5254must be a vector with the same number of elements. For example:
5255
5256.. code-block:: llvm
5257
5258 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5259
5260Conversion Operations
5261---------------------
5262
5263The instructions in this category are the conversion instructions
5264(casting) which all take a single operand and a type. They perform
5265various bit conversions on the operand.
5266
5267'``trunc .. to``' Instruction
5268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5269
5270Syntax:
5271"""""""
5272
5273::
5274
5275 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5276
5277Overview:
5278"""""""""
5279
5280The '``trunc``' instruction truncates its operand to the type ``ty2``.
5281
5282Arguments:
5283""""""""""
5284
5285The '``trunc``' instruction takes a value to trunc, and a type to trunc
5286it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5287of the same number of integers. The bit size of the ``value`` must be
5288larger than the bit size of the destination type, ``ty2``. Equal sized
5289types are not allowed.
5290
5291Semantics:
5292""""""""""
5293
5294The '``trunc``' instruction truncates the high order bits in ``value``
5295and converts the remaining bits to ``ty2``. Since the source size must
5296be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5297It will always truncate bits.
5298
5299Example:
5300""""""""
5301
5302.. code-block:: llvm
5303
5304 %X = trunc i32 257 to i8 ; yields i8:1
5305 %Y = trunc i32 123 to i1 ; yields i1:true
5306 %Z = trunc i32 122 to i1 ; yields i1:false
5307 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5308
5309'``zext .. to``' Instruction
5310^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5311
5312Syntax:
5313"""""""
5314
5315::
5316
5317 <result> = zext <ty> <value> to <ty2> ; yields ty2
5318
5319Overview:
5320"""""""""
5321
5322The '``zext``' instruction zero extends its operand to type ``ty2``.
5323
5324Arguments:
5325""""""""""
5326
5327The '``zext``' instruction takes a value to cast, and a type to cast it
5328to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5329the same number of integers. The bit size of the ``value`` must be
5330smaller than the bit size of the destination type, ``ty2``.
5331
5332Semantics:
5333""""""""""
5334
5335The ``zext`` fills the high order bits of the ``value`` with zero bits
5336until it reaches the size of the destination type, ``ty2``.
5337
5338When zero extending from i1, the result will always be either 0 or 1.
5339
5340Example:
5341""""""""
5342
5343.. code-block:: llvm
5344
5345 %X = zext i32 257 to i64 ; yields i64:257
5346 %Y = zext i1 true to i32 ; yields i32:1
5347 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5348
5349'``sext .. to``' Instruction
5350^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5351
5352Syntax:
5353"""""""
5354
5355::
5356
5357 <result> = sext <ty> <value> to <ty2> ; yields ty2
5358
5359Overview:
5360"""""""""
5361
5362The '``sext``' sign extends ``value`` to the type ``ty2``.
5363
5364Arguments:
5365""""""""""
5366
5367The '``sext``' instruction takes a value to cast, and a type to cast it
5368to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5369the same number of integers. The bit size of the ``value`` must be
5370smaller than the bit size of the destination type, ``ty2``.
5371
5372Semantics:
5373""""""""""
5374
5375The '``sext``' instruction performs a sign extension by copying the sign
5376bit (highest order bit) of the ``value`` until it reaches the bit size
5377of the type ``ty2``.
5378
5379When sign extending from i1, the extension always results in -1 or 0.
5380
5381Example:
5382""""""""
5383
5384.. code-block:: llvm
5385
5386 %X = sext i8 -1 to i16 ; yields i16 :65535
5387 %Y = sext i1 true to i32 ; yields i32:-1
5388 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5389
5390'``fptrunc .. to``' Instruction
5391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5392
5393Syntax:
5394"""""""
5395
5396::
5397
5398 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5399
5400Overview:
5401"""""""""
5402
5403The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5404
5405Arguments:
5406""""""""""
5407
5408The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5409value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5410The size of ``value`` must be larger than the size of ``ty2``. This
5411implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5412
5413Semantics:
5414""""""""""
5415
5416The '``fptrunc``' instruction truncates a ``value`` from a larger
5417:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5418point <t_floating>` type. If the value cannot fit within the
5419destination type, ``ty2``, then the results are undefined.
5420
5421Example:
5422""""""""
5423
5424.. code-block:: llvm
5425
5426 %X = fptrunc double 123.0 to float ; yields float:123.0
5427 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5428
5429'``fpext .. to``' Instruction
5430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5431
5432Syntax:
5433"""""""
5434
5435::
5436
5437 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5438
5439Overview:
5440"""""""""
5441
5442The '``fpext``' extends a floating point ``value`` to a larger floating
5443point value.
5444
5445Arguments:
5446""""""""""
5447
5448The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5449``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5450to. The source type must be smaller than the destination type.
5451
5452Semantics:
5453""""""""""
5454
5455The '``fpext``' instruction extends the ``value`` from a smaller
5456:ref:`floating point <t_floating>` type to a larger :ref:`floating
5457point <t_floating>` type. The ``fpext`` cannot be used to make a
5458*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5459*no-op cast* for a floating point cast.
5460
5461Example:
5462""""""""
5463
5464.. code-block:: llvm
5465
5466 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5467 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5468
5469'``fptoui .. to``' Instruction
5470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5471
5472Syntax:
5473"""""""
5474
5475::
5476
5477 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5478
5479Overview:
5480"""""""""
5481
5482The '``fptoui``' converts a floating point ``value`` to its unsigned
5483integer equivalent of type ``ty2``.
5484
5485Arguments:
5486""""""""""
5487
5488The '``fptoui``' instruction takes a value to cast, which must be a
5489scalar or vector :ref:`floating point <t_floating>` value, and a type to
5490cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5491``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5492type with the same number of elements as ``ty``
5493
5494Semantics:
5495""""""""""
5496
5497The '``fptoui``' instruction converts its :ref:`floating
5498point <t_floating>` operand into the nearest (rounding towards zero)
5499unsigned integer value. If the value cannot fit in ``ty2``, the results
5500are undefined.
5501
5502Example:
5503""""""""
5504
5505.. code-block:: llvm
5506
5507 %X = fptoui double 123.0 to i32 ; yields i32:123
5508 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5509 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5510
5511'``fptosi .. to``' Instruction
5512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5513
5514Syntax:
5515"""""""
5516
5517::
5518
5519 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5520
5521Overview:
5522"""""""""
5523
5524The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5525``value`` to type ``ty2``.
5526
5527Arguments:
5528""""""""""
5529
5530The '``fptosi``' instruction takes a value to cast, which must be a
5531scalar or vector :ref:`floating point <t_floating>` value, and a type to
5532cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5533``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5534type with the same number of elements as ``ty``
5535
5536Semantics:
5537""""""""""
5538
5539The '``fptosi``' instruction converts its :ref:`floating
5540point <t_floating>` operand into the nearest (rounding towards zero)
5541signed integer value. If the value cannot fit in ``ty2``, the results
5542are undefined.
5543
5544Example:
5545""""""""
5546
5547.. code-block:: llvm
5548
5549 %X = fptosi double -123.0 to i32 ; yields i32:-123
5550 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5551 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5552
5553'``uitofp .. to``' Instruction
5554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5555
5556Syntax:
5557"""""""
5558
5559::
5560
5561 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5562
5563Overview:
5564"""""""""
5565
5566The '``uitofp``' instruction regards ``value`` as an unsigned integer
5567and converts that value to the ``ty2`` type.
5568
5569Arguments:
5570""""""""""
5571
5572The '``uitofp``' instruction takes a value to cast, which must be a
5573scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5574``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5575``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5576type with the same number of elements as ``ty``
5577
5578Semantics:
5579""""""""""
5580
5581The '``uitofp``' instruction interprets its operand as an unsigned
5582integer quantity and converts it to the corresponding floating point
5583value. If the value cannot fit in the floating point value, the results
5584are undefined.
5585
5586Example:
5587""""""""
5588
5589.. code-block:: llvm
5590
5591 %X = uitofp i32 257 to float ; yields float:257.0
5592 %Y = uitofp i8 -1 to double ; yields double:255.0
5593
5594'``sitofp .. to``' Instruction
5595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5596
5597Syntax:
5598"""""""
5599
5600::
5601
5602 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5603
5604Overview:
5605"""""""""
5606
5607The '``sitofp``' instruction regards ``value`` as a signed integer and
5608converts that value to the ``ty2`` type.
5609
5610Arguments:
5611""""""""""
5612
5613The '``sitofp``' instruction takes a value to cast, which must be a
5614scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5615``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5616``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5617type with the same number of elements as ``ty``
5618
5619Semantics:
5620""""""""""
5621
5622The '``sitofp``' instruction interprets its operand as a signed integer
5623quantity and converts it to the corresponding floating point value. If
5624the value cannot fit in the floating point value, the results are
5625undefined.
5626
5627Example:
5628""""""""
5629
5630.. code-block:: llvm
5631
5632 %X = sitofp i32 257 to float ; yields float:257.0
5633 %Y = sitofp i8 -1 to double ; yields double:-1.0
5634
5635.. _i_ptrtoint:
5636
5637'``ptrtoint .. to``' Instruction
5638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5639
5640Syntax:
5641"""""""
5642
5643::
5644
5645 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5646
5647Overview:
5648"""""""""
5649
5650The '``ptrtoint``' instruction converts the pointer or a vector of
5651pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5652
5653Arguments:
5654""""""""""
5655
5656The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5657a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5658type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5659a vector of integers type.
5660
5661Semantics:
5662""""""""""
5663
5664The '``ptrtoint``' instruction converts ``value`` to integer type
5665``ty2`` by interpreting the pointer value as an integer and either
5666truncating or zero extending that value to the size of the integer type.
5667If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5668``value`` is larger than ``ty2`` then a truncation is done. If they are
5669the same size, then nothing is done (*no-op cast*) other than a type
5670change.
5671
5672Example:
5673""""""""
5674
5675.. code-block:: llvm
5676
5677 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5678 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5679 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5680
5681.. _i_inttoptr:
5682
5683'``inttoptr .. to``' Instruction
5684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5685
5686Syntax:
5687"""""""
5688
5689::
5690
5691 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5692
5693Overview:
5694"""""""""
5695
5696The '``inttoptr``' instruction converts an integer ``value`` to a
5697pointer type, ``ty2``.
5698
5699Arguments:
5700""""""""""
5701
5702The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5703cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5704type.
5705
5706Semantics:
5707""""""""""
5708
5709The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5710applying either a zero extension or a truncation depending on the size
5711of the integer ``value``. If ``value`` is larger than the size of a
5712pointer then a truncation is done. If ``value`` is smaller than the size
5713of a pointer then a zero extension is done. If they are the same size,
5714nothing is done (*no-op cast*).
5715
5716Example:
5717""""""""
5718
5719.. code-block:: llvm
5720
5721 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5722 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5723 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5724 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5725
5726.. _i_bitcast:
5727
5728'``bitcast .. to``' Instruction
5729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5730
5731Syntax:
5732"""""""
5733
5734::
5735
5736 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5737
5738Overview:
5739"""""""""
5740
5741The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5742changing any bits.
5743
5744Arguments:
5745""""""""""
5746
5747The '``bitcast``' instruction takes a value to cast, which must be a
5748non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005749also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5750bit sizes of ``value`` and the destination type, ``ty2``, must be
5751identical. If the source type is a pointer, the destination type must
5752also be a pointer of the same size. This instruction supports bitwise
5753conversion of vectors to integers and to vectors of other types (as
5754long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005755
5756Semantics:
5757""""""""""
5758
Matt Arsenault24b49c42013-07-31 17:49:08 +00005759The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5760is always a *no-op cast* because no bits change with this
5761conversion. The conversion is done as if the ``value`` had been stored
5762to memory and read back as type ``ty2``. Pointer (or vector of
5763pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005764pointers) types with the same address space through this instruction.
5765To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5766or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005767
5768Example:
5769""""""""
5770
5771.. code-block:: llvm
5772
5773 %X = bitcast i8 255 to i8 ; yields i8 :-1
5774 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5775 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5776 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5777
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005778.. _i_addrspacecast:
5779
5780'``addrspacecast .. to``' Instruction
5781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5782
5783Syntax:
5784"""""""
5785
5786::
5787
5788 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5789
5790Overview:
5791"""""""""
5792
5793The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5794address space ``n`` to type ``pty2`` in address space ``m``.
5795
5796Arguments:
5797""""""""""
5798
5799The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5800to cast and a pointer type to cast it to, which must have a different
5801address space.
5802
5803Semantics:
5804""""""""""
5805
5806The '``addrspacecast``' instruction converts the pointer value
5807``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005808value modification, depending on the target and the address space
5809pair. Pointer conversions within the same address space must be
5810performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005811conversion is legal then both result and operand refer to the same memory
5812location.
5813
5814Example:
5815""""""""
5816
5817.. code-block:: llvm
5818
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005819 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5820 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5821 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005822
Sean Silvab084af42012-12-07 10:36:55 +00005823.. _otherops:
5824
5825Other Operations
5826----------------
5827
5828The instructions in this category are the "miscellaneous" instructions,
5829which defy better classification.
5830
5831.. _i_icmp:
5832
5833'``icmp``' Instruction
5834^^^^^^^^^^^^^^^^^^^^^^
5835
5836Syntax:
5837"""""""
5838
5839::
5840
5841 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5842
5843Overview:
5844"""""""""
5845
5846The '``icmp``' instruction returns a boolean value or a vector of
5847boolean values based on comparison of its two integer, integer vector,
5848pointer, or pointer vector operands.
5849
5850Arguments:
5851""""""""""
5852
5853The '``icmp``' instruction takes three operands. The first operand is
5854the condition code indicating the kind of comparison to perform. It is
5855not a value, just a keyword. The possible condition code are:
5856
5857#. ``eq``: equal
5858#. ``ne``: not equal
5859#. ``ugt``: unsigned greater than
5860#. ``uge``: unsigned greater or equal
5861#. ``ult``: unsigned less than
5862#. ``ule``: unsigned less or equal
5863#. ``sgt``: signed greater than
5864#. ``sge``: signed greater or equal
5865#. ``slt``: signed less than
5866#. ``sle``: signed less or equal
5867
5868The remaining two arguments must be :ref:`integer <t_integer>` or
5869:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5870must also be identical types.
5871
5872Semantics:
5873""""""""""
5874
5875The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5876code given as ``cond``. The comparison performed always yields either an
5877:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5878
5879#. ``eq``: yields ``true`` if the operands are equal, ``false``
5880 otherwise. No sign interpretation is necessary or performed.
5881#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5882 otherwise. No sign interpretation is necessary or performed.
5883#. ``ugt``: interprets the operands as unsigned values and yields
5884 ``true`` if ``op1`` is greater than ``op2``.
5885#. ``uge``: interprets the operands as unsigned values and yields
5886 ``true`` if ``op1`` is greater than or equal to ``op2``.
5887#. ``ult``: interprets the operands as unsigned values and yields
5888 ``true`` if ``op1`` is less than ``op2``.
5889#. ``ule``: interprets the operands as unsigned values and yields
5890 ``true`` if ``op1`` is less than or equal to ``op2``.
5891#. ``sgt``: interprets the operands as signed values and yields ``true``
5892 if ``op1`` is greater than ``op2``.
5893#. ``sge``: interprets the operands as signed values and yields ``true``
5894 if ``op1`` is greater than or equal to ``op2``.
5895#. ``slt``: interprets the operands as signed values and yields ``true``
5896 if ``op1`` is less than ``op2``.
5897#. ``sle``: interprets the operands as signed values and yields ``true``
5898 if ``op1`` is less than or equal to ``op2``.
5899
5900If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5901are compared as if they were integers.
5902
5903If the operands are integer vectors, then they are compared element by
5904element. The result is an ``i1`` vector with the same number of elements
5905as the values being compared. Otherwise, the result is an ``i1``.
5906
5907Example:
5908""""""""
5909
5910.. code-block:: llvm
5911
5912 <result> = icmp eq i32 4, 5 ; yields: result=false
5913 <result> = icmp ne float* %X, %X ; yields: result=false
5914 <result> = icmp ult i16 4, 5 ; yields: result=true
5915 <result> = icmp sgt i16 4, 5 ; yields: result=false
5916 <result> = icmp ule i16 -4, 5 ; yields: result=false
5917 <result> = icmp sge i16 4, 5 ; yields: result=false
5918
5919Note that the code generator does not yet support vector types with the
5920``icmp`` instruction.
5921
5922.. _i_fcmp:
5923
5924'``fcmp``' Instruction
5925^^^^^^^^^^^^^^^^^^^^^^
5926
5927Syntax:
5928"""""""
5929
5930::
5931
5932 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5933
5934Overview:
5935"""""""""
5936
5937The '``fcmp``' instruction returns a boolean value or vector of boolean
5938values based on comparison of its operands.
5939
5940If the operands are floating point scalars, then the result type is a
5941boolean (:ref:`i1 <t_integer>`).
5942
5943If the operands are floating point vectors, then the result type is a
5944vector of boolean with the same number of elements as the operands being
5945compared.
5946
5947Arguments:
5948""""""""""
5949
5950The '``fcmp``' instruction takes three operands. The first operand is
5951the condition code indicating the kind of comparison to perform. It is
5952not a value, just a keyword. The possible condition code are:
5953
5954#. ``false``: no comparison, always returns false
5955#. ``oeq``: ordered and equal
5956#. ``ogt``: ordered and greater than
5957#. ``oge``: ordered and greater than or equal
5958#. ``olt``: ordered and less than
5959#. ``ole``: ordered and less than or equal
5960#. ``one``: ordered and not equal
5961#. ``ord``: ordered (no nans)
5962#. ``ueq``: unordered or equal
5963#. ``ugt``: unordered or greater than
5964#. ``uge``: unordered or greater than or equal
5965#. ``ult``: unordered or less than
5966#. ``ule``: unordered or less than or equal
5967#. ``une``: unordered or not equal
5968#. ``uno``: unordered (either nans)
5969#. ``true``: no comparison, always returns true
5970
5971*Ordered* means that neither operand is a QNAN while *unordered* means
5972that either operand may be a QNAN.
5973
5974Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5975point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5976type. They must have identical types.
5977
5978Semantics:
5979""""""""""
5980
5981The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5982condition code given as ``cond``. If the operands are vectors, then the
5983vectors are compared element by element. Each comparison performed
5984always yields an :ref:`i1 <t_integer>` result, as follows:
5985
5986#. ``false``: always yields ``false``, regardless of operands.
5987#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5988 is equal to ``op2``.
5989#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5990 is greater than ``op2``.
5991#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5992 is greater than or equal to ``op2``.
5993#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5994 is less than ``op2``.
5995#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5996 is less than or equal to ``op2``.
5997#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5998 is not equal to ``op2``.
5999#. ``ord``: yields ``true`` if both operands are not a QNAN.
6000#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6001 equal to ``op2``.
6002#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6003 greater than ``op2``.
6004#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6005 greater than or equal to ``op2``.
6006#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6007 less than ``op2``.
6008#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6009 less than or equal to ``op2``.
6010#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6011 not equal to ``op2``.
6012#. ``uno``: yields ``true`` if either operand is a QNAN.
6013#. ``true``: always yields ``true``, regardless of operands.
6014
6015Example:
6016""""""""
6017
6018.. code-block:: llvm
6019
6020 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6021 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6022 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6023 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6024
6025Note that the code generator does not yet support vector types with the
6026``fcmp`` instruction.
6027
6028.. _i_phi:
6029
6030'``phi``' Instruction
6031^^^^^^^^^^^^^^^^^^^^^
6032
6033Syntax:
6034"""""""
6035
6036::
6037
6038 <result> = phi <ty> [ <val0>, <label0>], ...
6039
6040Overview:
6041"""""""""
6042
6043The '``phi``' instruction is used to implement the φ node in the SSA
6044graph representing the function.
6045
6046Arguments:
6047""""""""""
6048
6049The type of the incoming values is specified with the first type field.
6050After this, the '``phi``' instruction takes a list of pairs as
6051arguments, with one pair for each predecessor basic block of the current
6052block. Only values of :ref:`first class <t_firstclass>` type may be used as
6053the value arguments to the PHI node. Only labels may be used as the
6054label arguments.
6055
6056There must be no non-phi instructions between the start of a basic block
6057and the PHI instructions: i.e. PHI instructions must be first in a basic
6058block.
6059
6060For the purposes of the SSA form, the use of each incoming value is
6061deemed to occur on the edge from the corresponding predecessor block to
6062the current block (but after any definition of an '``invoke``'
6063instruction's return value on the same edge).
6064
6065Semantics:
6066""""""""""
6067
6068At runtime, the '``phi``' instruction logically takes on the value
6069specified by the pair corresponding to the predecessor basic block that
6070executed just prior to the current block.
6071
6072Example:
6073""""""""
6074
6075.. code-block:: llvm
6076
6077 Loop: ; Infinite loop that counts from 0 on up...
6078 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6079 %nextindvar = add i32 %indvar, 1
6080 br label %Loop
6081
6082.. _i_select:
6083
6084'``select``' Instruction
6085^^^^^^^^^^^^^^^^^^^^^^^^
6086
6087Syntax:
6088"""""""
6089
6090::
6091
6092 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6093
6094 selty is either i1 or {<N x i1>}
6095
6096Overview:
6097"""""""""
6098
6099The '``select``' instruction is used to choose one value based on a
6100condition, without branching.
6101
6102Arguments:
6103""""""""""
6104
6105The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6106values indicating the condition, and two values of the same :ref:`first
6107class <t_firstclass>` type. If the val1/val2 are vectors and the
6108condition is a scalar, then entire vectors are selected, not individual
6109elements.
6110
6111Semantics:
6112""""""""""
6113
6114If the condition is an i1 and it evaluates to 1, the instruction returns
6115the first value argument; otherwise, it returns the second value
6116argument.
6117
6118If the condition is a vector of i1, then the value arguments must be
6119vectors of the same size, and the selection is done element by element.
6120
6121Example:
6122""""""""
6123
6124.. code-block:: llvm
6125
6126 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6127
6128.. _i_call:
6129
6130'``call``' Instruction
6131^^^^^^^^^^^^^^^^^^^^^^
6132
6133Syntax:
6134"""""""
6135
6136::
6137
6138 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6139
6140Overview:
6141"""""""""
6142
6143The '``call``' instruction represents a simple function call.
6144
6145Arguments:
6146""""""""""
6147
6148This instruction requires several arguments:
6149
6150#. The optional "tail" marker indicates that the callee function does
6151 not access any allocas or varargs in the caller. Note that calls may
6152 be marked "tail" even if they do not occur before a
6153 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6154 function call is eligible for tail call optimization, but `might not
6155 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6156 The code generator may optimize calls marked "tail" with either 1)
6157 automatic `sibling call
6158 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6159 callee have matching signatures, or 2) forced tail call optimization
6160 when the following extra requirements are met:
6161
6162 - Caller and callee both have the calling convention ``fastcc``.
6163 - The call is in tail position (ret immediately follows call and ret
6164 uses value of call or is void).
6165 - Option ``-tailcallopt`` is enabled, or
6166 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6167 - `Platform specific constraints are
6168 met. <CodeGenerator.html#tailcallopt>`_
6169
6170#. The optional "cconv" marker indicates which :ref:`calling
6171 convention <callingconv>` the call should use. If none is
6172 specified, the call defaults to using C calling conventions. The
6173 calling convention of the call must match the calling convention of
6174 the target function, or else the behavior is undefined.
6175#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6176 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6177 are valid here.
6178#. '``ty``': the type of the call instruction itself which is also the
6179 type of the return value. Functions that return no value are marked
6180 ``void``.
6181#. '``fnty``': shall be the signature of the pointer to function value
6182 being invoked. The argument types must match the types implied by
6183 this signature. This type can be omitted if the function is not
6184 varargs and if the function type does not return a pointer to a
6185 function.
6186#. '``fnptrval``': An LLVM value containing a pointer to a function to
6187 be invoked. In most cases, this is a direct function invocation, but
6188 indirect ``call``'s are just as possible, calling an arbitrary pointer
6189 to function value.
6190#. '``function args``': argument list whose types match the function
6191 signature argument types and parameter attributes. All arguments must
6192 be of :ref:`first class <t_firstclass>` type. If the function signature
6193 indicates the function accepts a variable number of arguments, the
6194 extra arguments can be specified.
6195#. The optional :ref:`function attributes <fnattrs>` list. Only
6196 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6197 attributes are valid here.
6198
6199Semantics:
6200""""""""""
6201
6202The '``call``' instruction is used to cause control flow to transfer to
6203a specified function, with its incoming arguments bound to the specified
6204values. Upon a '``ret``' instruction in the called function, control
6205flow continues with the instruction after the function call, and the
6206return value of the function is bound to the result argument.
6207
6208Example:
6209""""""""
6210
6211.. code-block:: llvm
6212
6213 %retval = call i32 @test(i32 %argc)
6214 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6215 %X = tail call i32 @foo() ; yields i32
6216 %Y = tail call fastcc i32 @foo() ; yields i32
6217 call void %foo(i8 97 signext)
6218
6219 %struct.A = type { i32, i8 }
6220 %r = call %struct.A @foo() ; yields { 32, i8 }
6221 %gr = extractvalue %struct.A %r, 0 ; yields i32
6222 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6223 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6224 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6225
6226llvm treats calls to some functions with names and arguments that match
6227the standard C99 library as being the C99 library functions, and may
6228perform optimizations or generate code for them under that assumption.
6229This is something we'd like to change in the future to provide better
6230support for freestanding environments and non-C-based languages.
6231
6232.. _i_va_arg:
6233
6234'``va_arg``' Instruction
6235^^^^^^^^^^^^^^^^^^^^^^^^
6236
6237Syntax:
6238"""""""
6239
6240::
6241
6242 <resultval> = va_arg <va_list*> <arglist>, <argty>
6243
6244Overview:
6245"""""""""
6246
6247The '``va_arg``' instruction is used to access arguments passed through
6248the "variable argument" area of a function call. It is used to implement
6249the ``va_arg`` macro in C.
6250
6251Arguments:
6252""""""""""
6253
6254This instruction takes a ``va_list*`` value and the type of the
6255argument. It returns a value of the specified argument type and
6256increments the ``va_list`` to point to the next argument. The actual
6257type of ``va_list`` is target specific.
6258
6259Semantics:
6260""""""""""
6261
6262The '``va_arg``' instruction loads an argument of the specified type
6263from the specified ``va_list`` and causes the ``va_list`` to point to
6264the next argument. For more information, see the variable argument
6265handling :ref:`Intrinsic Functions <int_varargs>`.
6266
6267It is legal for this instruction to be called in a function which does
6268not take a variable number of arguments, for example, the ``vfprintf``
6269function.
6270
6271``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6272function <intrinsics>` because it takes a type as an argument.
6273
6274Example:
6275""""""""
6276
6277See the :ref:`variable argument processing <int_varargs>` section.
6278
6279Note that the code generator does not yet fully support va\_arg on many
6280targets. Also, it does not currently support va\_arg with aggregate
6281types on any target.
6282
6283.. _i_landingpad:
6284
6285'``landingpad``' Instruction
6286^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6287
6288Syntax:
6289"""""""
6290
6291::
6292
6293 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6294 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6295
6296 <clause> := catch <type> <value>
6297 <clause> := filter <array constant type> <array constant>
6298
6299Overview:
6300"""""""""
6301
6302The '``landingpad``' instruction is used by `LLVM's exception handling
6303system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006304is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006305code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6306defines values supplied by the personality function (``pers_fn``) upon
6307re-entry to the function. The ``resultval`` has the type ``resultty``.
6308
6309Arguments:
6310""""""""""
6311
6312This instruction takes a ``pers_fn`` value. This is the personality
6313function associated with the unwinding mechanism. The optional
6314``cleanup`` flag indicates that the landing pad block is a cleanup.
6315
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006316A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006317contains the global variable representing the "type" that may be caught
6318or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6319clause takes an array constant as its argument. Use
6320"``[0 x i8**] undef``" for a filter which cannot throw. The
6321'``landingpad``' instruction must contain *at least* one ``clause`` or
6322the ``cleanup`` flag.
6323
6324Semantics:
6325""""""""""
6326
6327The '``landingpad``' instruction defines the values which are set by the
6328personality function (``pers_fn``) upon re-entry to the function, and
6329therefore the "result type" of the ``landingpad`` instruction. As with
6330calling conventions, how the personality function results are
6331represented in LLVM IR is target specific.
6332
6333The clauses are applied in order from top to bottom. If two
6334``landingpad`` instructions are merged together through inlining, the
6335clauses from the calling function are appended to the list of clauses.
6336When the call stack is being unwound due to an exception being thrown,
6337the exception is compared against each ``clause`` in turn. If it doesn't
6338match any of the clauses, and the ``cleanup`` flag is not set, then
6339unwinding continues further up the call stack.
6340
6341The ``landingpad`` instruction has several restrictions:
6342
6343- A landing pad block is a basic block which is the unwind destination
6344 of an '``invoke``' instruction.
6345- A landing pad block must have a '``landingpad``' instruction as its
6346 first non-PHI instruction.
6347- There can be only one '``landingpad``' instruction within the landing
6348 pad block.
6349- A basic block that is not a landing pad block may not include a
6350 '``landingpad``' instruction.
6351- All '``landingpad``' instructions in a function must have the same
6352 personality function.
6353
6354Example:
6355""""""""
6356
6357.. code-block:: llvm
6358
6359 ;; A landing pad which can catch an integer.
6360 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6361 catch i8** @_ZTIi
6362 ;; A landing pad that is a cleanup.
6363 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6364 cleanup
6365 ;; A landing pad which can catch an integer and can only throw a double.
6366 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6367 catch i8** @_ZTIi
6368 filter [1 x i8**] [@_ZTId]
6369
6370.. _intrinsics:
6371
6372Intrinsic Functions
6373===================
6374
6375LLVM supports the notion of an "intrinsic function". These functions
6376have well known names and semantics and are required to follow certain
6377restrictions. Overall, these intrinsics represent an extension mechanism
6378for the LLVM language that does not require changing all of the
6379transformations in LLVM when adding to the language (or the bitcode
6380reader/writer, the parser, etc...).
6381
6382Intrinsic function names must all start with an "``llvm.``" prefix. This
6383prefix is reserved in LLVM for intrinsic names; thus, function names may
6384not begin with this prefix. Intrinsic functions must always be external
6385functions: you cannot define the body of intrinsic functions. Intrinsic
6386functions may only be used in call or invoke instructions: it is illegal
6387to take the address of an intrinsic function. Additionally, because
6388intrinsic functions are part of the LLVM language, it is required if any
6389are added that they be documented here.
6390
6391Some intrinsic functions can be overloaded, i.e., the intrinsic
6392represents a family of functions that perform the same operation but on
6393different data types. Because LLVM can represent over 8 million
6394different integer types, overloading is used commonly to allow an
6395intrinsic function to operate on any integer type. One or more of the
6396argument types or the result type can be overloaded to accept any
6397integer type. Argument types may also be defined as exactly matching a
6398previous argument's type or the result type. This allows an intrinsic
6399function which accepts multiple arguments, but needs all of them to be
6400of the same type, to only be overloaded with respect to a single
6401argument or the result.
6402
6403Overloaded intrinsics will have the names of its overloaded argument
6404types encoded into its function name, each preceded by a period. Only
6405those types which are overloaded result in a name suffix. Arguments
6406whose type is matched against another type do not. For example, the
6407``llvm.ctpop`` function can take an integer of any width and returns an
6408integer of exactly the same integer width. This leads to a family of
6409functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6410``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6411overloaded, and only one type suffix is required. Because the argument's
6412type is matched against the return type, it does not require its own
6413name suffix.
6414
6415To learn how to add an intrinsic function, please see the `Extending
6416LLVM Guide <ExtendingLLVM.html>`_.
6417
6418.. _int_varargs:
6419
6420Variable Argument Handling Intrinsics
6421-------------------------------------
6422
6423Variable argument support is defined in LLVM with the
6424:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6425functions. These functions are related to the similarly named macros
6426defined in the ``<stdarg.h>`` header file.
6427
6428All of these functions operate on arguments that use a target-specific
6429value type "``va_list``". The LLVM assembly language reference manual
6430does not define what this type is, so all transformations should be
6431prepared to handle these functions regardless of the type used.
6432
6433This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6434variable argument handling intrinsic functions are used.
6435
6436.. code-block:: llvm
6437
6438 define i32 @test(i32 %X, ...) {
6439 ; Initialize variable argument processing
6440 %ap = alloca i8*
6441 %ap2 = bitcast i8** %ap to i8*
6442 call void @llvm.va_start(i8* %ap2)
6443
6444 ; Read a single integer argument
6445 %tmp = va_arg i8** %ap, i32
6446
6447 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6448 %aq = alloca i8*
6449 %aq2 = bitcast i8** %aq to i8*
6450 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6451 call void @llvm.va_end(i8* %aq2)
6452
6453 ; Stop processing of arguments.
6454 call void @llvm.va_end(i8* %ap2)
6455 ret i32 %tmp
6456 }
6457
6458 declare void @llvm.va_start(i8*)
6459 declare void @llvm.va_copy(i8*, i8*)
6460 declare void @llvm.va_end(i8*)
6461
6462.. _int_va_start:
6463
6464'``llvm.va_start``' Intrinsic
6465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6466
6467Syntax:
6468"""""""
6469
6470::
6471
Nick Lewycky04f6de02013-09-11 22:04:52 +00006472 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006473
6474Overview:
6475"""""""""
6476
6477The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6478subsequent use by ``va_arg``.
6479
6480Arguments:
6481""""""""""
6482
6483The argument is a pointer to a ``va_list`` element to initialize.
6484
6485Semantics:
6486""""""""""
6487
6488The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6489available in C. In a target-dependent way, it initializes the
6490``va_list`` element to which the argument points, so that the next call
6491to ``va_arg`` will produce the first variable argument passed to the
6492function. Unlike the C ``va_start`` macro, this intrinsic does not need
6493to know the last argument of the function as the compiler can figure
6494that out.
6495
6496'``llvm.va_end``' Intrinsic
6497^^^^^^^^^^^^^^^^^^^^^^^^^^^
6498
6499Syntax:
6500"""""""
6501
6502::
6503
6504 declare void @llvm.va_end(i8* <arglist>)
6505
6506Overview:
6507"""""""""
6508
6509The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6510initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6511
6512Arguments:
6513""""""""""
6514
6515The argument is a pointer to a ``va_list`` to destroy.
6516
6517Semantics:
6518""""""""""
6519
6520The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6521available in C. In a target-dependent way, it destroys the ``va_list``
6522element to which the argument points. Calls to
6523:ref:`llvm.va_start <int_va_start>` and
6524:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6525``llvm.va_end``.
6526
6527.. _int_va_copy:
6528
6529'``llvm.va_copy``' Intrinsic
6530^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6531
6532Syntax:
6533"""""""
6534
6535::
6536
6537 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6538
6539Overview:
6540"""""""""
6541
6542The '``llvm.va_copy``' intrinsic copies the current argument position
6543from the source argument list to the destination argument list.
6544
6545Arguments:
6546""""""""""
6547
6548The first argument is a pointer to a ``va_list`` element to initialize.
6549The second argument is a pointer to a ``va_list`` element to copy from.
6550
6551Semantics:
6552""""""""""
6553
6554The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6555available in C. In a target-dependent way, it copies the source
6556``va_list`` element into the destination ``va_list`` element. This
6557intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6558arbitrarily complex and require, for example, memory allocation.
6559
6560Accurate Garbage Collection Intrinsics
6561--------------------------------------
6562
6563LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6564(GC) requires the implementation and generation of these intrinsics.
6565These intrinsics allow identification of :ref:`GC roots on the
6566stack <int_gcroot>`, as well as garbage collector implementations that
6567require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6568Front-ends for type-safe garbage collected languages should generate
6569these intrinsics to make use of the LLVM garbage collectors. For more
6570details, see `Accurate Garbage Collection with
6571LLVM <GarbageCollection.html>`_.
6572
6573The garbage collection intrinsics only operate on objects in the generic
6574address space (address space zero).
6575
6576.. _int_gcroot:
6577
6578'``llvm.gcroot``' Intrinsic
6579^^^^^^^^^^^^^^^^^^^^^^^^^^^
6580
6581Syntax:
6582"""""""
6583
6584::
6585
6586 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6587
6588Overview:
6589"""""""""
6590
6591The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6592the code generator, and allows some metadata to be associated with it.
6593
6594Arguments:
6595""""""""""
6596
6597The first argument specifies the address of a stack object that contains
6598the root pointer. The second pointer (which must be either a constant or
6599a global value address) contains the meta-data to be associated with the
6600root.
6601
6602Semantics:
6603""""""""""
6604
6605At runtime, a call to this intrinsic stores a null pointer into the
6606"ptrloc" location. At compile-time, the code generator generates
6607information to allow the runtime to find the pointer at GC safe points.
6608The '``llvm.gcroot``' intrinsic may only be used in a function which
6609:ref:`specifies a GC algorithm <gc>`.
6610
6611.. _int_gcread:
6612
6613'``llvm.gcread``' Intrinsic
6614^^^^^^^^^^^^^^^^^^^^^^^^^^^
6615
6616Syntax:
6617"""""""
6618
6619::
6620
6621 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6622
6623Overview:
6624"""""""""
6625
6626The '``llvm.gcread``' intrinsic identifies reads of references from heap
6627locations, allowing garbage collector implementations that require read
6628barriers.
6629
6630Arguments:
6631""""""""""
6632
6633The second argument is the address to read from, which should be an
6634address allocated from the garbage collector. The first object is a
6635pointer to the start of the referenced object, if needed by the language
6636runtime (otherwise null).
6637
6638Semantics:
6639""""""""""
6640
6641The '``llvm.gcread``' intrinsic has the same semantics as a load
6642instruction, but may be replaced with substantially more complex code by
6643the garbage collector runtime, as needed. The '``llvm.gcread``'
6644intrinsic may only be used in a function which :ref:`specifies a GC
6645algorithm <gc>`.
6646
6647.. _int_gcwrite:
6648
6649'``llvm.gcwrite``' Intrinsic
6650^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6651
6652Syntax:
6653"""""""
6654
6655::
6656
6657 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6658
6659Overview:
6660"""""""""
6661
6662The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6663locations, allowing garbage collector implementations that require write
6664barriers (such as generational or reference counting collectors).
6665
6666Arguments:
6667""""""""""
6668
6669The first argument is the reference to store, the second is the start of
6670the object to store it to, and the third is the address of the field of
6671Obj to store to. If the runtime does not require a pointer to the
6672object, Obj may be null.
6673
6674Semantics:
6675""""""""""
6676
6677The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6678instruction, but may be replaced with substantially more complex code by
6679the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6680intrinsic may only be used in a function which :ref:`specifies a GC
6681algorithm <gc>`.
6682
6683Code Generator Intrinsics
6684-------------------------
6685
6686These intrinsics are provided by LLVM to expose special features that
6687may only be implemented with code generator support.
6688
6689'``llvm.returnaddress``' Intrinsic
6690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6691
6692Syntax:
6693"""""""
6694
6695::
6696
6697 declare i8 *@llvm.returnaddress(i32 <level>)
6698
6699Overview:
6700"""""""""
6701
6702The '``llvm.returnaddress``' intrinsic attempts to compute a
6703target-specific value indicating the return address of the current
6704function or one of its callers.
6705
6706Arguments:
6707""""""""""
6708
6709The argument to this intrinsic indicates which function to return the
6710address for. Zero indicates the calling function, one indicates its
6711caller, etc. The argument is **required** to be a constant integer
6712value.
6713
6714Semantics:
6715""""""""""
6716
6717The '``llvm.returnaddress``' intrinsic either returns a pointer
6718indicating the return address of the specified call frame, or zero if it
6719cannot be identified. The value returned by this intrinsic is likely to
6720be incorrect or 0 for arguments other than zero, so it should only be
6721used for debugging purposes.
6722
6723Note that calling this intrinsic does not prevent function inlining or
6724other aggressive transformations, so the value returned may not be that
6725of the obvious source-language caller.
6726
6727'``llvm.frameaddress``' Intrinsic
6728^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6729
6730Syntax:
6731"""""""
6732
6733::
6734
6735 declare i8* @llvm.frameaddress(i32 <level>)
6736
6737Overview:
6738"""""""""
6739
6740The '``llvm.frameaddress``' intrinsic attempts to return the
6741target-specific frame pointer value for the specified stack frame.
6742
6743Arguments:
6744""""""""""
6745
6746The argument to this intrinsic indicates which function to return the
6747frame pointer for. Zero indicates the calling function, one indicates
6748its caller, etc. The argument is **required** to be a constant integer
6749value.
6750
6751Semantics:
6752""""""""""
6753
6754The '``llvm.frameaddress``' intrinsic either returns a pointer
6755indicating the frame address of the specified call frame, or zero if it
6756cannot be identified. The value returned by this intrinsic is likely to
6757be incorrect or 0 for arguments other than zero, so it should only be
6758used for debugging purposes.
6759
6760Note that calling this intrinsic does not prevent function inlining or
6761other aggressive transformations, so the value returned may not be that
6762of the obvious source-language caller.
6763
6764.. _int_stacksave:
6765
6766'``llvm.stacksave``' Intrinsic
6767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6768
6769Syntax:
6770"""""""
6771
6772::
6773
6774 declare i8* @llvm.stacksave()
6775
6776Overview:
6777"""""""""
6778
6779The '``llvm.stacksave``' intrinsic is used to remember the current state
6780of the function stack, for use with
6781:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6782implementing language features like scoped automatic variable sized
6783arrays in C99.
6784
6785Semantics:
6786""""""""""
6787
6788This intrinsic returns a opaque pointer value that can be passed to
6789:ref:`llvm.stackrestore <int_stackrestore>`. When an
6790``llvm.stackrestore`` intrinsic is executed with a value saved from
6791``llvm.stacksave``, it effectively restores the state of the stack to
6792the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6793practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6794were allocated after the ``llvm.stacksave`` was executed.
6795
6796.. _int_stackrestore:
6797
6798'``llvm.stackrestore``' Intrinsic
6799^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6800
6801Syntax:
6802"""""""
6803
6804::
6805
6806 declare void @llvm.stackrestore(i8* %ptr)
6807
6808Overview:
6809"""""""""
6810
6811The '``llvm.stackrestore``' intrinsic is used to restore the state of
6812the function stack to the state it was in when the corresponding
6813:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6814useful for implementing language features like scoped automatic variable
6815sized arrays in C99.
6816
6817Semantics:
6818""""""""""
6819
6820See the description for :ref:`llvm.stacksave <int_stacksave>`.
6821
6822'``llvm.prefetch``' Intrinsic
6823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6824
6825Syntax:
6826"""""""
6827
6828::
6829
6830 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6831
6832Overview:
6833"""""""""
6834
6835The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6836insert a prefetch instruction if supported; otherwise, it is a noop.
6837Prefetches have no effect on the behavior of the program but can change
6838its performance characteristics.
6839
6840Arguments:
6841""""""""""
6842
6843``address`` is the address to be prefetched, ``rw`` is the specifier
6844determining if the fetch should be for a read (0) or write (1), and
6845``locality`` is a temporal locality specifier ranging from (0) - no
6846locality, to (3) - extremely local keep in cache. The ``cache type``
6847specifies whether the prefetch is performed on the data (1) or
6848instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6849arguments must be constant integers.
6850
6851Semantics:
6852""""""""""
6853
6854This intrinsic does not modify the behavior of the program. In
6855particular, prefetches cannot trap and do not produce a value. On
6856targets that support this intrinsic, the prefetch can provide hints to
6857the processor cache for better performance.
6858
6859'``llvm.pcmarker``' Intrinsic
6860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6861
6862Syntax:
6863"""""""
6864
6865::
6866
6867 declare void @llvm.pcmarker(i32 <id>)
6868
6869Overview:
6870"""""""""
6871
6872The '``llvm.pcmarker``' intrinsic is a method to export a Program
6873Counter (PC) in a region of code to simulators and other tools. The
6874method is target specific, but it is expected that the marker will use
6875exported symbols to transmit the PC of the marker. The marker makes no
6876guarantees that it will remain with any specific instruction after
6877optimizations. It is possible that the presence of a marker will inhibit
6878optimizations. The intended use is to be inserted after optimizations to
6879allow correlations of simulation runs.
6880
6881Arguments:
6882""""""""""
6883
6884``id`` is a numerical id identifying the marker.
6885
6886Semantics:
6887""""""""""
6888
6889This intrinsic does not modify the behavior of the program. Backends
6890that do not support this intrinsic may ignore it.
6891
6892'``llvm.readcyclecounter``' Intrinsic
6893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6894
6895Syntax:
6896"""""""
6897
6898::
6899
6900 declare i64 @llvm.readcyclecounter()
6901
6902Overview:
6903"""""""""
6904
6905The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6906counter register (or similar low latency, high accuracy clocks) on those
6907targets that support it. On X86, it should map to RDTSC. On Alpha, it
6908should map to RPCC. As the backing counters overflow quickly (on the
6909order of 9 seconds on alpha), this should only be used for small
6910timings.
6911
6912Semantics:
6913""""""""""
6914
6915When directly supported, reading the cycle counter should not modify any
6916memory. Implementations are allowed to either return a application
6917specific value or a system wide value. On backends without support, this
6918is lowered to a constant 0.
6919
Tim Northoverbc933082013-05-23 19:11:20 +00006920Note that runtime support may be conditional on the privilege-level code is
6921running at and the host platform.
6922
Sean Silvab084af42012-12-07 10:36:55 +00006923Standard C Library Intrinsics
6924-----------------------------
6925
6926LLVM provides intrinsics for a few important standard C library
6927functions. These intrinsics allow source-language front-ends to pass
6928information about the alignment of the pointer arguments to the code
6929generator, providing opportunity for more efficient code generation.
6930
6931.. _int_memcpy:
6932
6933'``llvm.memcpy``' Intrinsic
6934^^^^^^^^^^^^^^^^^^^^^^^^^^^
6935
6936Syntax:
6937"""""""
6938
6939This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6940integer bit width and for different address spaces. Not all targets
6941support all bit widths however.
6942
6943::
6944
6945 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6946 i32 <len>, i32 <align>, i1 <isvolatile>)
6947 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6948 i64 <len>, i32 <align>, i1 <isvolatile>)
6949
6950Overview:
6951"""""""""
6952
6953The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6954source location to the destination location.
6955
6956Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6957intrinsics do not return a value, takes extra alignment/isvolatile
6958arguments and the pointers can be in specified address spaces.
6959
6960Arguments:
6961""""""""""
6962
6963The first argument is a pointer to the destination, the second is a
6964pointer to the source. The third argument is an integer argument
6965specifying the number of bytes to copy, the fourth argument is the
6966alignment of the source and destination locations, and the fifth is a
6967boolean indicating a volatile access.
6968
6969If the call to this intrinsic has an alignment value that is not 0 or 1,
6970then the caller guarantees that both the source and destination pointers
6971are aligned to that boundary.
6972
6973If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6974a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6975very cleanly specified and it is unwise to depend on it.
6976
6977Semantics:
6978""""""""""
6979
6980The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6981source location to the destination location, which are not allowed to
6982overlap. It copies "len" bytes of memory over. If the argument is known
6983to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006984argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006985
6986'``llvm.memmove``' Intrinsic
6987^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6988
6989Syntax:
6990"""""""
6991
6992This is an overloaded intrinsic. You can use llvm.memmove on any integer
6993bit width and for different address space. Not all targets support all
6994bit widths however.
6995
6996::
6997
6998 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6999 i32 <len>, i32 <align>, i1 <isvolatile>)
7000 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7001 i64 <len>, i32 <align>, i1 <isvolatile>)
7002
7003Overview:
7004"""""""""
7005
7006The '``llvm.memmove.*``' intrinsics move a block of memory from the
7007source location to the destination location. It is similar to the
7008'``llvm.memcpy``' intrinsic but allows the two memory locations to
7009overlap.
7010
7011Note that, unlike the standard libc function, the ``llvm.memmove.*``
7012intrinsics do not return a value, takes extra alignment/isvolatile
7013arguments and the pointers can be in specified address spaces.
7014
7015Arguments:
7016""""""""""
7017
7018The first argument is a pointer to the destination, the second is a
7019pointer to the source. The third argument is an integer argument
7020specifying the number of bytes to copy, the fourth argument is the
7021alignment of the source and destination locations, and the fifth is a
7022boolean indicating a volatile access.
7023
7024If the call to this intrinsic has an alignment value that is not 0 or 1,
7025then the caller guarantees that the source and destination pointers are
7026aligned to that boundary.
7027
7028If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7029is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7030not very cleanly specified and it is unwise to depend on it.
7031
7032Semantics:
7033""""""""""
7034
7035The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7036source location to the destination location, which may overlap. It
7037copies "len" bytes of memory over. If the argument is known to be
7038aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007039otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007040
7041'``llvm.memset.*``' Intrinsics
7042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7043
7044Syntax:
7045"""""""
7046
7047This is an overloaded intrinsic. You can use llvm.memset on any integer
7048bit width and for different address spaces. However, not all targets
7049support all bit widths.
7050
7051::
7052
7053 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7054 i32 <len>, i32 <align>, i1 <isvolatile>)
7055 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7056 i64 <len>, i32 <align>, i1 <isvolatile>)
7057
7058Overview:
7059"""""""""
7060
7061The '``llvm.memset.*``' intrinsics fill a block of memory with a
7062particular byte value.
7063
7064Note that, unlike the standard libc function, the ``llvm.memset``
7065intrinsic does not return a value and takes extra alignment/volatile
7066arguments. Also, the destination can be in an arbitrary address space.
7067
7068Arguments:
7069""""""""""
7070
7071The first argument is a pointer to the destination to fill, the second
7072is the byte value with which to fill it, the third argument is an
7073integer argument specifying the number of bytes to fill, and the fourth
7074argument is the known alignment of the destination location.
7075
7076If the call to this intrinsic has an alignment value that is not 0 or 1,
7077then the caller guarantees that the destination pointer is aligned to
7078that boundary.
7079
7080If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7081a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7082very cleanly specified and it is unwise to depend on it.
7083
7084Semantics:
7085""""""""""
7086
7087The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7088at the destination location. If the argument is known to be aligned to
7089some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007090it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007091
7092'``llvm.sqrt.*``' Intrinsic
7093^^^^^^^^^^^^^^^^^^^^^^^^^^^
7094
7095Syntax:
7096"""""""
7097
7098This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7099floating point or vector of floating point type. Not all targets support
7100all types however.
7101
7102::
7103
7104 declare float @llvm.sqrt.f32(float %Val)
7105 declare double @llvm.sqrt.f64(double %Val)
7106 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7107 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7108 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7109
7110Overview:
7111"""""""""
7112
7113The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7114returning the same value as the libm '``sqrt``' functions would. Unlike
7115``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7116negative numbers other than -0.0 (which allows for better optimization,
7117because there is no need to worry about errno being set).
7118``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7119
7120Arguments:
7121""""""""""
7122
7123The argument and return value are floating point numbers of the same
7124type.
7125
7126Semantics:
7127""""""""""
7128
7129This function returns the sqrt of the specified operand if it is a
7130nonnegative floating point number.
7131
7132'``llvm.powi.*``' Intrinsic
7133^^^^^^^^^^^^^^^^^^^^^^^^^^^
7134
7135Syntax:
7136"""""""
7137
7138This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7139floating point or vector of floating point type. Not all targets support
7140all types however.
7141
7142::
7143
7144 declare float @llvm.powi.f32(float %Val, i32 %power)
7145 declare double @llvm.powi.f64(double %Val, i32 %power)
7146 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7147 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7148 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7149
7150Overview:
7151"""""""""
7152
7153The '``llvm.powi.*``' intrinsics return the first operand raised to the
7154specified (positive or negative) power. The order of evaluation of
7155multiplications is not defined. When a vector of floating point type is
7156used, the second argument remains a scalar integer value.
7157
7158Arguments:
7159""""""""""
7160
7161The second argument is an integer power, and the first is a value to
7162raise to that power.
7163
7164Semantics:
7165""""""""""
7166
7167This function returns the first value raised to the second power with an
7168unspecified sequence of rounding operations.
7169
7170'``llvm.sin.*``' Intrinsic
7171^^^^^^^^^^^^^^^^^^^^^^^^^^
7172
7173Syntax:
7174"""""""
7175
7176This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7177floating point or vector of floating point type. Not all targets support
7178all types however.
7179
7180::
7181
7182 declare float @llvm.sin.f32(float %Val)
7183 declare double @llvm.sin.f64(double %Val)
7184 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7185 declare fp128 @llvm.sin.f128(fp128 %Val)
7186 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7187
7188Overview:
7189"""""""""
7190
7191The '``llvm.sin.*``' intrinsics return the sine of the operand.
7192
7193Arguments:
7194""""""""""
7195
7196The argument and return value are floating point numbers of the same
7197type.
7198
7199Semantics:
7200""""""""""
7201
7202This function returns the sine of the specified operand, returning the
7203same values as the libm ``sin`` functions would, and handles error
7204conditions in the same way.
7205
7206'``llvm.cos.*``' Intrinsic
7207^^^^^^^^^^^^^^^^^^^^^^^^^^
7208
7209Syntax:
7210"""""""
7211
7212This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7213floating point or vector of floating point type. Not all targets support
7214all types however.
7215
7216::
7217
7218 declare float @llvm.cos.f32(float %Val)
7219 declare double @llvm.cos.f64(double %Val)
7220 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7221 declare fp128 @llvm.cos.f128(fp128 %Val)
7222 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7223
7224Overview:
7225"""""""""
7226
7227The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7228
7229Arguments:
7230""""""""""
7231
7232The argument and return value are floating point numbers of the same
7233type.
7234
7235Semantics:
7236""""""""""
7237
7238This function returns the cosine of the specified operand, returning the
7239same values as the libm ``cos`` functions would, and handles error
7240conditions in the same way.
7241
7242'``llvm.pow.*``' Intrinsic
7243^^^^^^^^^^^^^^^^^^^^^^^^^^
7244
7245Syntax:
7246"""""""
7247
7248This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7249floating point or vector of floating point type. Not all targets support
7250all types however.
7251
7252::
7253
7254 declare float @llvm.pow.f32(float %Val, float %Power)
7255 declare double @llvm.pow.f64(double %Val, double %Power)
7256 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7257 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7258 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7259
7260Overview:
7261"""""""""
7262
7263The '``llvm.pow.*``' intrinsics return the first operand raised to the
7264specified (positive or negative) power.
7265
7266Arguments:
7267""""""""""
7268
7269The second argument is a floating point power, and the first is a value
7270to raise to that power.
7271
7272Semantics:
7273""""""""""
7274
7275This function returns the first value raised to the second power,
7276returning the same values as the libm ``pow`` functions would, and
7277handles error conditions in the same way.
7278
7279'``llvm.exp.*``' Intrinsic
7280^^^^^^^^^^^^^^^^^^^^^^^^^^
7281
7282Syntax:
7283"""""""
7284
7285This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7286floating point or vector of floating point type. Not all targets support
7287all types however.
7288
7289::
7290
7291 declare float @llvm.exp.f32(float %Val)
7292 declare double @llvm.exp.f64(double %Val)
7293 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7294 declare fp128 @llvm.exp.f128(fp128 %Val)
7295 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7296
7297Overview:
7298"""""""""
7299
7300The '``llvm.exp.*``' intrinsics perform the exp function.
7301
7302Arguments:
7303""""""""""
7304
7305The argument and return value are floating point numbers of the same
7306type.
7307
7308Semantics:
7309""""""""""
7310
7311This function returns the same values as the libm ``exp`` functions
7312would, and handles error conditions in the same way.
7313
7314'``llvm.exp2.*``' Intrinsic
7315^^^^^^^^^^^^^^^^^^^^^^^^^^^
7316
7317Syntax:
7318"""""""
7319
7320This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7321floating point or vector of floating point type. Not all targets support
7322all types however.
7323
7324::
7325
7326 declare float @llvm.exp2.f32(float %Val)
7327 declare double @llvm.exp2.f64(double %Val)
7328 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7329 declare fp128 @llvm.exp2.f128(fp128 %Val)
7330 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7331
7332Overview:
7333"""""""""
7334
7335The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7336
7337Arguments:
7338""""""""""
7339
7340The argument and return value are floating point numbers of the same
7341type.
7342
7343Semantics:
7344""""""""""
7345
7346This function returns the same values as the libm ``exp2`` functions
7347would, and handles error conditions in the same way.
7348
7349'``llvm.log.*``' Intrinsic
7350^^^^^^^^^^^^^^^^^^^^^^^^^^
7351
7352Syntax:
7353"""""""
7354
7355This is an overloaded intrinsic. You can use ``llvm.log`` on any
7356floating point or vector of floating point type. Not all targets support
7357all types however.
7358
7359::
7360
7361 declare float @llvm.log.f32(float %Val)
7362 declare double @llvm.log.f64(double %Val)
7363 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7364 declare fp128 @llvm.log.f128(fp128 %Val)
7365 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7366
7367Overview:
7368"""""""""
7369
7370The '``llvm.log.*``' intrinsics perform the log function.
7371
7372Arguments:
7373""""""""""
7374
7375The argument and return value are floating point numbers of the same
7376type.
7377
7378Semantics:
7379""""""""""
7380
7381This function returns the same values as the libm ``log`` functions
7382would, and handles error conditions in the same way.
7383
7384'``llvm.log10.*``' Intrinsic
7385^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7386
7387Syntax:
7388"""""""
7389
7390This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7391floating point or vector of floating point type. Not all targets support
7392all types however.
7393
7394::
7395
7396 declare float @llvm.log10.f32(float %Val)
7397 declare double @llvm.log10.f64(double %Val)
7398 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7399 declare fp128 @llvm.log10.f128(fp128 %Val)
7400 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7401
7402Overview:
7403"""""""""
7404
7405The '``llvm.log10.*``' intrinsics perform the log10 function.
7406
7407Arguments:
7408""""""""""
7409
7410The argument and return value are floating point numbers of the same
7411type.
7412
7413Semantics:
7414""""""""""
7415
7416This function returns the same values as the libm ``log10`` functions
7417would, and handles error conditions in the same way.
7418
7419'``llvm.log2.*``' Intrinsic
7420^^^^^^^^^^^^^^^^^^^^^^^^^^^
7421
7422Syntax:
7423"""""""
7424
7425This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7426floating point or vector of floating point type. Not all targets support
7427all types however.
7428
7429::
7430
7431 declare float @llvm.log2.f32(float %Val)
7432 declare double @llvm.log2.f64(double %Val)
7433 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7434 declare fp128 @llvm.log2.f128(fp128 %Val)
7435 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7436
7437Overview:
7438"""""""""
7439
7440The '``llvm.log2.*``' intrinsics perform the log2 function.
7441
7442Arguments:
7443""""""""""
7444
7445The argument and return value are floating point numbers of the same
7446type.
7447
7448Semantics:
7449""""""""""
7450
7451This function returns the same values as the libm ``log2`` functions
7452would, and handles error conditions in the same way.
7453
7454'``llvm.fma.*``' Intrinsic
7455^^^^^^^^^^^^^^^^^^^^^^^^^^
7456
7457Syntax:
7458"""""""
7459
7460This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7461floating point or vector of floating point type. Not all targets support
7462all types however.
7463
7464::
7465
7466 declare float @llvm.fma.f32(float %a, float %b, float %c)
7467 declare double @llvm.fma.f64(double %a, double %b, double %c)
7468 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7469 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7470 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7471
7472Overview:
7473"""""""""
7474
7475The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7476operation.
7477
7478Arguments:
7479""""""""""
7480
7481The argument and return value are floating point numbers of the same
7482type.
7483
7484Semantics:
7485""""""""""
7486
7487This function returns the same values as the libm ``fma`` functions
7488would.
7489
7490'``llvm.fabs.*``' Intrinsic
7491^^^^^^^^^^^^^^^^^^^^^^^^^^^
7492
7493Syntax:
7494"""""""
7495
7496This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7497floating point or vector of floating point type. Not all targets support
7498all types however.
7499
7500::
7501
7502 declare float @llvm.fabs.f32(float %Val)
7503 declare double @llvm.fabs.f64(double %Val)
7504 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7505 declare fp128 @llvm.fabs.f128(fp128 %Val)
7506 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7507
7508Overview:
7509"""""""""
7510
7511The '``llvm.fabs.*``' intrinsics return the absolute value of the
7512operand.
7513
7514Arguments:
7515""""""""""
7516
7517The argument and return value are floating point numbers of the same
7518type.
7519
7520Semantics:
7521""""""""""
7522
7523This function returns the same values as the libm ``fabs`` functions
7524would, and handles error conditions in the same way.
7525
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007526'``llvm.copysign.*``' Intrinsic
7527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7528
7529Syntax:
7530"""""""
7531
7532This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7533floating point or vector of floating point type. Not all targets support
7534all types however.
7535
7536::
7537
7538 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7539 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7540 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7541 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7542 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7543
7544Overview:
7545"""""""""
7546
7547The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7548first operand and the sign of the second operand.
7549
7550Arguments:
7551""""""""""
7552
7553The arguments and return value are floating point numbers of the same
7554type.
7555
7556Semantics:
7557""""""""""
7558
7559This function returns the same values as the libm ``copysign``
7560functions would, and handles error conditions in the same way.
7561
Sean Silvab084af42012-12-07 10:36:55 +00007562'``llvm.floor.*``' Intrinsic
7563^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7564
7565Syntax:
7566"""""""
7567
7568This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7569floating point or vector of floating point type. Not all targets support
7570all types however.
7571
7572::
7573
7574 declare float @llvm.floor.f32(float %Val)
7575 declare double @llvm.floor.f64(double %Val)
7576 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7577 declare fp128 @llvm.floor.f128(fp128 %Val)
7578 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7579
7580Overview:
7581"""""""""
7582
7583The '``llvm.floor.*``' intrinsics return the floor of the operand.
7584
7585Arguments:
7586""""""""""
7587
7588The argument and return value are floating point numbers of the same
7589type.
7590
7591Semantics:
7592""""""""""
7593
7594This function returns the same values as the libm ``floor`` functions
7595would, and handles error conditions in the same way.
7596
7597'``llvm.ceil.*``' Intrinsic
7598^^^^^^^^^^^^^^^^^^^^^^^^^^^
7599
7600Syntax:
7601"""""""
7602
7603This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7604floating point or vector of floating point type. Not all targets support
7605all types however.
7606
7607::
7608
7609 declare float @llvm.ceil.f32(float %Val)
7610 declare double @llvm.ceil.f64(double %Val)
7611 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7612 declare fp128 @llvm.ceil.f128(fp128 %Val)
7613 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7614
7615Overview:
7616"""""""""
7617
7618The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7619
7620Arguments:
7621""""""""""
7622
7623The argument and return value are floating point numbers of the same
7624type.
7625
7626Semantics:
7627""""""""""
7628
7629This function returns the same values as the libm ``ceil`` functions
7630would, and handles error conditions in the same way.
7631
7632'``llvm.trunc.*``' Intrinsic
7633^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7634
7635Syntax:
7636"""""""
7637
7638This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7639floating point or vector of floating point type. Not all targets support
7640all types however.
7641
7642::
7643
7644 declare float @llvm.trunc.f32(float %Val)
7645 declare double @llvm.trunc.f64(double %Val)
7646 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7647 declare fp128 @llvm.trunc.f128(fp128 %Val)
7648 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7649
7650Overview:
7651"""""""""
7652
7653The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7654nearest integer not larger in magnitude than the operand.
7655
7656Arguments:
7657""""""""""
7658
7659The argument and return value are floating point numbers of the same
7660type.
7661
7662Semantics:
7663""""""""""
7664
7665This function returns the same values as the libm ``trunc`` functions
7666would, and handles error conditions in the same way.
7667
7668'``llvm.rint.*``' Intrinsic
7669^^^^^^^^^^^^^^^^^^^^^^^^^^^
7670
7671Syntax:
7672"""""""
7673
7674This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7675floating point or vector of floating point type. Not all targets support
7676all types however.
7677
7678::
7679
7680 declare float @llvm.rint.f32(float %Val)
7681 declare double @llvm.rint.f64(double %Val)
7682 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7683 declare fp128 @llvm.rint.f128(fp128 %Val)
7684 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7685
7686Overview:
7687"""""""""
7688
7689The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7690nearest integer. It may raise an inexact floating-point exception if the
7691operand isn't an integer.
7692
7693Arguments:
7694""""""""""
7695
7696The argument and return value are floating point numbers of the same
7697type.
7698
7699Semantics:
7700""""""""""
7701
7702This function returns the same values as the libm ``rint`` functions
7703would, and handles error conditions in the same way.
7704
7705'``llvm.nearbyint.*``' Intrinsic
7706^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7707
7708Syntax:
7709"""""""
7710
7711This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7712floating point or vector of floating point type. Not all targets support
7713all types however.
7714
7715::
7716
7717 declare float @llvm.nearbyint.f32(float %Val)
7718 declare double @llvm.nearbyint.f64(double %Val)
7719 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7720 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7721 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7722
7723Overview:
7724"""""""""
7725
7726The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7727nearest integer.
7728
7729Arguments:
7730""""""""""
7731
7732The argument and return value are floating point numbers of the same
7733type.
7734
7735Semantics:
7736""""""""""
7737
7738This function returns the same values as the libm ``nearbyint``
7739functions would, and handles error conditions in the same way.
7740
Hal Finkel171817e2013-08-07 22:49:12 +00007741'``llvm.round.*``' Intrinsic
7742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7743
7744Syntax:
7745"""""""
7746
7747This is an overloaded intrinsic. You can use ``llvm.round`` on any
7748floating point or vector of floating point type. Not all targets support
7749all types however.
7750
7751::
7752
7753 declare float @llvm.round.f32(float %Val)
7754 declare double @llvm.round.f64(double %Val)
7755 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7756 declare fp128 @llvm.round.f128(fp128 %Val)
7757 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7758
7759Overview:
7760"""""""""
7761
7762The '``llvm.round.*``' intrinsics returns the operand rounded to the
7763nearest integer.
7764
7765Arguments:
7766""""""""""
7767
7768The argument and return value are floating point numbers of the same
7769type.
7770
7771Semantics:
7772""""""""""
7773
7774This function returns the same values as the libm ``round``
7775functions would, and handles error conditions in the same way.
7776
Sean Silvab084af42012-12-07 10:36:55 +00007777Bit Manipulation Intrinsics
7778---------------------------
7779
7780LLVM provides intrinsics for a few important bit manipulation
7781operations. These allow efficient code generation for some algorithms.
7782
7783'``llvm.bswap.*``' Intrinsics
7784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7785
7786Syntax:
7787"""""""
7788
7789This is an overloaded intrinsic function. You can use bswap on any
7790integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7791
7792::
7793
7794 declare i16 @llvm.bswap.i16(i16 <id>)
7795 declare i32 @llvm.bswap.i32(i32 <id>)
7796 declare i64 @llvm.bswap.i64(i64 <id>)
7797
7798Overview:
7799"""""""""
7800
7801The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7802values with an even number of bytes (positive multiple of 16 bits).
7803These are useful for performing operations on data that is not in the
7804target's native byte order.
7805
7806Semantics:
7807""""""""""
7808
7809The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7810and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7811intrinsic returns an i32 value that has the four bytes of the input i32
7812swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7813returned i32 will have its bytes in 3, 2, 1, 0 order. The
7814``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7815concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7816respectively).
7817
7818'``llvm.ctpop.*``' Intrinsic
7819^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7820
7821Syntax:
7822"""""""
7823
7824This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7825bit width, or on any vector with integer elements. Not all targets
7826support all bit widths or vector types, however.
7827
7828::
7829
7830 declare i8 @llvm.ctpop.i8(i8 <src>)
7831 declare i16 @llvm.ctpop.i16(i16 <src>)
7832 declare i32 @llvm.ctpop.i32(i32 <src>)
7833 declare i64 @llvm.ctpop.i64(i64 <src>)
7834 declare i256 @llvm.ctpop.i256(i256 <src>)
7835 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7836
7837Overview:
7838"""""""""
7839
7840The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7841in a value.
7842
7843Arguments:
7844""""""""""
7845
7846The only argument is the value to be counted. The argument may be of any
7847integer type, or a vector with integer elements. The return type must
7848match the argument type.
7849
7850Semantics:
7851""""""""""
7852
7853The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7854each element of a vector.
7855
7856'``llvm.ctlz.*``' Intrinsic
7857^^^^^^^^^^^^^^^^^^^^^^^^^^^
7858
7859Syntax:
7860"""""""
7861
7862This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7863integer bit width, or any vector whose elements are integers. Not all
7864targets support all bit widths or vector types, however.
7865
7866::
7867
7868 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7869 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7870 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7871 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7872 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7873 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7874
7875Overview:
7876"""""""""
7877
7878The '``llvm.ctlz``' family of intrinsic functions counts the number of
7879leading zeros in a variable.
7880
7881Arguments:
7882""""""""""
7883
7884The first argument is the value to be counted. This argument may be of
7885any integer type, or a vectory with integer element type. The return
7886type must match the first argument type.
7887
7888The second argument must be a constant and is a flag to indicate whether
7889the intrinsic should ensure that a zero as the first argument produces a
7890defined result. Historically some architectures did not provide a
7891defined result for zero values as efficiently, and many algorithms are
7892now predicated on avoiding zero-value inputs.
7893
7894Semantics:
7895""""""""""
7896
7897The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7898zeros in a variable, or within each element of the vector. If
7899``src == 0`` then the result is the size in bits of the type of ``src``
7900if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7901``llvm.ctlz(i32 2) = 30``.
7902
7903'``llvm.cttz.*``' Intrinsic
7904^^^^^^^^^^^^^^^^^^^^^^^^^^^
7905
7906Syntax:
7907"""""""
7908
7909This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7910integer bit width, or any vector of integer elements. Not all targets
7911support all bit widths or vector types, however.
7912
7913::
7914
7915 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7916 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7917 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7918 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7919 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7920 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7921
7922Overview:
7923"""""""""
7924
7925The '``llvm.cttz``' family of intrinsic functions counts the number of
7926trailing zeros.
7927
7928Arguments:
7929""""""""""
7930
7931The first argument is the value to be counted. This argument may be of
7932any integer type, or a vectory with integer element type. The return
7933type must match the first argument type.
7934
7935The second argument must be a constant and is a flag to indicate whether
7936the intrinsic should ensure that a zero as the first argument produces a
7937defined result. Historically some architectures did not provide a
7938defined result for zero values as efficiently, and many algorithms are
7939now predicated on avoiding zero-value inputs.
7940
7941Semantics:
7942""""""""""
7943
7944The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7945zeros in a variable, or within each element of a vector. If ``src == 0``
7946then the result is the size in bits of the type of ``src`` if
7947``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7948``llvm.cttz(2) = 1``.
7949
7950Arithmetic with Overflow Intrinsics
7951-----------------------------------
7952
7953LLVM provides intrinsics for some arithmetic with overflow operations.
7954
7955'``llvm.sadd.with.overflow.*``' Intrinsics
7956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7957
7958Syntax:
7959"""""""
7960
7961This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7962on any integer bit width.
7963
7964::
7965
7966 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7967 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7968 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7969
7970Overview:
7971"""""""""
7972
7973The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7974a signed addition of the two arguments, and indicate whether an overflow
7975occurred during the signed summation.
7976
7977Arguments:
7978""""""""""
7979
7980The arguments (%a and %b) and the first element of the result structure
7981may be of integer types of any bit width, but they must have the same
7982bit width. The second element of the result structure must be of type
7983``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7984addition.
7985
7986Semantics:
7987""""""""""
7988
7989The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007990a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007991first element of which is the signed summation, and the second element
7992of which is a bit specifying if the signed summation resulted in an
7993overflow.
7994
7995Examples:
7996"""""""""
7997
7998.. code-block:: llvm
7999
8000 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8001 %sum = extractvalue {i32, i1} %res, 0
8002 %obit = extractvalue {i32, i1} %res, 1
8003 br i1 %obit, label %overflow, label %normal
8004
8005'``llvm.uadd.with.overflow.*``' Intrinsics
8006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8007
8008Syntax:
8009"""""""
8010
8011This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8012on any integer bit width.
8013
8014::
8015
8016 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8017 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8018 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8019
8020Overview:
8021"""""""""
8022
8023The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8024an unsigned addition of the two arguments, and indicate whether a carry
8025occurred during the unsigned summation.
8026
8027Arguments:
8028""""""""""
8029
8030The arguments (%a and %b) and the first element of the result structure
8031may be of integer types of any bit width, but they must have the same
8032bit width. The second element of the result structure must be of type
8033``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8034addition.
8035
8036Semantics:
8037""""""""""
8038
8039The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008040an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008041first element of which is the sum, and the second element of which is a
8042bit specifying if the unsigned summation resulted in a carry.
8043
8044Examples:
8045"""""""""
8046
8047.. code-block:: llvm
8048
8049 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8050 %sum = extractvalue {i32, i1} %res, 0
8051 %obit = extractvalue {i32, i1} %res, 1
8052 br i1 %obit, label %carry, label %normal
8053
8054'``llvm.ssub.with.overflow.*``' Intrinsics
8055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8056
8057Syntax:
8058"""""""
8059
8060This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8061on any integer bit width.
8062
8063::
8064
8065 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8066 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8067 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8068
8069Overview:
8070"""""""""
8071
8072The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8073a signed subtraction of the two arguments, and indicate whether an
8074overflow occurred during the signed subtraction.
8075
8076Arguments:
8077""""""""""
8078
8079The arguments (%a and %b) and the first element of the result structure
8080may be of integer types of any bit width, but they must have the same
8081bit width. The second element of the result structure must be of type
8082``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8083subtraction.
8084
8085Semantics:
8086""""""""""
8087
8088The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008089a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008090first element of which is the subtraction, and the second element of
8091which is a bit specifying if the signed subtraction resulted in an
8092overflow.
8093
8094Examples:
8095"""""""""
8096
8097.. code-block:: llvm
8098
8099 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8100 %sum = extractvalue {i32, i1} %res, 0
8101 %obit = extractvalue {i32, i1} %res, 1
8102 br i1 %obit, label %overflow, label %normal
8103
8104'``llvm.usub.with.overflow.*``' Intrinsics
8105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8106
8107Syntax:
8108"""""""
8109
8110This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8111on any integer bit width.
8112
8113::
8114
8115 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8116 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8117 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8118
8119Overview:
8120"""""""""
8121
8122The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8123an unsigned subtraction of the two arguments, and indicate whether an
8124overflow occurred during the unsigned subtraction.
8125
8126Arguments:
8127""""""""""
8128
8129The arguments (%a and %b) and the first element of the result structure
8130may be of integer types of any bit width, but they must have the same
8131bit width. The second element of the result structure must be of type
8132``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8133subtraction.
8134
8135Semantics:
8136""""""""""
8137
8138The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008139an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008140the first element of which is the subtraction, and the second element of
8141which is a bit specifying if the unsigned subtraction resulted in an
8142overflow.
8143
8144Examples:
8145"""""""""
8146
8147.. code-block:: llvm
8148
8149 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8150 %sum = extractvalue {i32, i1} %res, 0
8151 %obit = extractvalue {i32, i1} %res, 1
8152 br i1 %obit, label %overflow, label %normal
8153
8154'``llvm.smul.with.overflow.*``' Intrinsics
8155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8156
8157Syntax:
8158"""""""
8159
8160This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8161on any integer bit width.
8162
8163::
8164
8165 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8166 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8167 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8168
8169Overview:
8170"""""""""
8171
8172The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8173a signed multiplication of the two arguments, and indicate whether an
8174overflow occurred during the signed multiplication.
8175
8176Arguments:
8177""""""""""
8178
8179The arguments (%a and %b) and the first element of the result structure
8180may be of integer types of any bit width, but they must have the same
8181bit width. The second element of the result structure must be of type
8182``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8183multiplication.
8184
8185Semantics:
8186""""""""""
8187
8188The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008189a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008190the first element of which is the multiplication, and the second element
8191of which is a bit specifying if the signed multiplication resulted in an
8192overflow.
8193
8194Examples:
8195"""""""""
8196
8197.. code-block:: llvm
8198
8199 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8200 %sum = extractvalue {i32, i1} %res, 0
8201 %obit = extractvalue {i32, i1} %res, 1
8202 br i1 %obit, label %overflow, label %normal
8203
8204'``llvm.umul.with.overflow.*``' Intrinsics
8205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8206
8207Syntax:
8208"""""""
8209
8210This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8211on any integer bit width.
8212
8213::
8214
8215 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8216 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8217 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8218
8219Overview:
8220"""""""""
8221
8222The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8223a unsigned multiplication of the two arguments, and indicate whether an
8224overflow occurred during the unsigned multiplication.
8225
8226Arguments:
8227""""""""""
8228
8229The arguments (%a and %b) and the first element of the result structure
8230may be of integer types of any bit width, but they must have the same
8231bit width. The second element of the result structure must be of type
8232``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8233multiplication.
8234
8235Semantics:
8236""""""""""
8237
8238The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008239an unsigned multiplication of the two arguments. They return a structure ---
8240the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008241element of which is a bit specifying if the unsigned multiplication
8242resulted in an overflow.
8243
8244Examples:
8245"""""""""
8246
8247.. code-block:: llvm
8248
8249 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8250 %sum = extractvalue {i32, i1} %res, 0
8251 %obit = extractvalue {i32, i1} %res, 1
8252 br i1 %obit, label %overflow, label %normal
8253
8254Specialised Arithmetic Intrinsics
8255---------------------------------
8256
8257'``llvm.fmuladd.*``' Intrinsic
8258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8259
8260Syntax:
8261"""""""
8262
8263::
8264
8265 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8266 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8267
8268Overview:
8269"""""""""
8270
8271The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008272expressions that can be fused if the code generator determines that (a) the
8273target instruction set has support for a fused operation, and (b) that the
8274fused operation is more efficient than the equivalent, separate pair of mul
8275and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008276
8277Arguments:
8278""""""""""
8279
8280The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8281multiplicands, a and b, and an addend c.
8282
8283Semantics:
8284""""""""""
8285
8286The expression:
8287
8288::
8289
8290 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8291
8292is equivalent to the expression a \* b + c, except that rounding will
8293not be performed between the multiplication and addition steps if the
8294code generator fuses the operations. Fusion is not guaranteed, even if
8295the target platform supports it. If a fused multiply-add is required the
8296corresponding llvm.fma.\* intrinsic function should be used instead.
8297
8298Examples:
8299"""""""""
8300
8301.. code-block:: llvm
8302
8303 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8304
8305Half Precision Floating Point Intrinsics
8306----------------------------------------
8307
8308For most target platforms, half precision floating point is a
8309storage-only format. This means that it is a dense encoding (in memory)
8310but does not support computation in the format.
8311
8312This means that code must first load the half-precision floating point
8313value as an i16, then convert it to float with
8314:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8315then be performed on the float value (including extending to double
8316etc). To store the value back to memory, it is first converted to float
8317if needed, then converted to i16 with
8318:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8319i16 value.
8320
8321.. _int_convert_to_fp16:
8322
8323'``llvm.convert.to.fp16``' Intrinsic
8324^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8325
8326Syntax:
8327"""""""
8328
8329::
8330
8331 declare i16 @llvm.convert.to.fp16(f32 %a)
8332
8333Overview:
8334"""""""""
8335
8336The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8337from single precision floating point format to half precision floating
8338point format.
8339
8340Arguments:
8341""""""""""
8342
8343The intrinsic function contains single argument - the value to be
8344converted.
8345
8346Semantics:
8347""""""""""
8348
8349The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8350from single precision floating point format to half precision floating
8351point format. The return value is an ``i16`` which contains the
8352converted number.
8353
8354Examples:
8355"""""""""
8356
8357.. code-block:: llvm
8358
8359 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8360 store i16 %res, i16* @x, align 2
8361
8362.. _int_convert_from_fp16:
8363
8364'``llvm.convert.from.fp16``' Intrinsic
8365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8366
8367Syntax:
8368"""""""
8369
8370::
8371
8372 declare f32 @llvm.convert.from.fp16(i16 %a)
8373
8374Overview:
8375"""""""""
8376
8377The '``llvm.convert.from.fp16``' intrinsic function performs a
8378conversion from half precision floating point format to single precision
8379floating point format.
8380
8381Arguments:
8382""""""""""
8383
8384The intrinsic function contains single argument - the value to be
8385converted.
8386
8387Semantics:
8388""""""""""
8389
8390The '``llvm.convert.from.fp16``' intrinsic function performs a
8391conversion from half single precision floating point format to single
8392precision floating point format. The input half-float value is
8393represented by an ``i16`` value.
8394
8395Examples:
8396"""""""""
8397
8398.. code-block:: llvm
8399
8400 %a = load i16* @x, align 2
8401 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8402
8403Debugger Intrinsics
8404-------------------
8405
8406The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8407prefix), are described in the `LLVM Source Level
8408Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8409document.
8410
8411Exception Handling Intrinsics
8412-----------------------------
8413
8414The LLVM exception handling intrinsics (which all start with
8415``llvm.eh.`` prefix), are described in the `LLVM Exception
8416Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8417
8418.. _int_trampoline:
8419
8420Trampoline Intrinsics
8421---------------------
8422
8423These intrinsics make it possible to excise one parameter, marked with
8424the :ref:`nest <nest>` attribute, from a function. The result is a
8425callable function pointer lacking the nest parameter - the caller does
8426not need to provide a value for it. Instead, the value to use is stored
8427in advance in a "trampoline", a block of memory usually allocated on the
8428stack, which also contains code to splice the nest value into the
8429argument list. This is used to implement the GCC nested function address
8430extension.
8431
8432For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8433then the resulting function pointer has signature ``i32 (i32, i32)*``.
8434It can be created as follows:
8435
8436.. code-block:: llvm
8437
8438 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8439 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8440 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8441 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8442 %fp = bitcast i8* %p to i32 (i32, i32)*
8443
8444The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8445``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8446
8447.. _int_it:
8448
8449'``llvm.init.trampoline``' Intrinsic
8450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8451
8452Syntax:
8453"""""""
8454
8455::
8456
8457 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8458
8459Overview:
8460"""""""""
8461
8462This fills the memory pointed to by ``tramp`` with executable code,
8463turning it into a trampoline.
8464
8465Arguments:
8466""""""""""
8467
8468The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8469pointers. The ``tramp`` argument must point to a sufficiently large and
8470sufficiently aligned block of memory; this memory is written to by the
8471intrinsic. Note that the size and the alignment are target-specific -
8472LLVM currently provides no portable way of determining them, so a
8473front-end that generates this intrinsic needs to have some
8474target-specific knowledge. The ``func`` argument must hold a function
8475bitcast to an ``i8*``.
8476
8477Semantics:
8478""""""""""
8479
8480The block of memory pointed to by ``tramp`` is filled with target
8481dependent code, turning it into a function. Then ``tramp`` needs to be
8482passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8483be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8484function's signature is the same as that of ``func`` with any arguments
8485marked with the ``nest`` attribute removed. At most one such ``nest``
8486argument is allowed, and it must be of pointer type. Calling the new
8487function is equivalent to calling ``func`` with the same argument list,
8488but with ``nval`` used for the missing ``nest`` argument. If, after
8489calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8490modified, then the effect of any later call to the returned function
8491pointer is undefined.
8492
8493.. _int_at:
8494
8495'``llvm.adjust.trampoline``' Intrinsic
8496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8497
8498Syntax:
8499"""""""
8500
8501::
8502
8503 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8504
8505Overview:
8506"""""""""
8507
8508This performs any required machine-specific adjustment to the address of
8509a trampoline (passed as ``tramp``).
8510
8511Arguments:
8512""""""""""
8513
8514``tramp`` must point to a block of memory which already has trampoline
8515code filled in by a previous call to
8516:ref:`llvm.init.trampoline <int_it>`.
8517
8518Semantics:
8519""""""""""
8520
8521On some architectures the address of the code to be executed needs to be
8522different to the address where the trampoline is actually stored. This
8523intrinsic returns the executable address corresponding to ``tramp``
8524after performing the required machine specific adjustments. The pointer
8525returned can then be :ref:`bitcast and executed <int_trampoline>`.
8526
8527Memory Use Markers
8528------------------
8529
8530This class of intrinsics exists to information about the lifetime of
8531memory objects and ranges where variables are immutable.
8532
Reid Klecknera534a382013-12-19 02:14:12 +00008533.. _int_lifestart:
8534
Sean Silvab084af42012-12-07 10:36:55 +00008535'``llvm.lifetime.start``' Intrinsic
8536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8537
8538Syntax:
8539"""""""
8540
8541::
8542
8543 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8544
8545Overview:
8546"""""""""
8547
8548The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8549object's lifetime.
8550
8551Arguments:
8552""""""""""
8553
8554The first argument is a constant integer representing the size of the
8555object, or -1 if it is variable sized. The second argument is a pointer
8556to the object.
8557
8558Semantics:
8559""""""""""
8560
8561This intrinsic indicates that before this point in the code, the value
8562of the memory pointed to by ``ptr`` is dead. This means that it is known
8563to never be used and has an undefined value. A load from the pointer
8564that precedes this intrinsic can be replaced with ``'undef'``.
8565
Reid Klecknera534a382013-12-19 02:14:12 +00008566.. _int_lifeend:
8567
Sean Silvab084af42012-12-07 10:36:55 +00008568'``llvm.lifetime.end``' Intrinsic
8569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8570
8571Syntax:
8572"""""""
8573
8574::
8575
8576 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8577
8578Overview:
8579"""""""""
8580
8581The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8582object's lifetime.
8583
8584Arguments:
8585""""""""""
8586
8587The first argument is a constant integer representing the size of the
8588object, or -1 if it is variable sized. The second argument is a pointer
8589to the object.
8590
8591Semantics:
8592""""""""""
8593
8594This intrinsic indicates that after this point in the code, the value of
8595the memory pointed to by ``ptr`` is dead. This means that it is known to
8596never be used and has an undefined value. Any stores into the memory
8597object following this intrinsic may be removed as dead.
8598
8599'``llvm.invariant.start``' Intrinsic
8600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8601
8602Syntax:
8603"""""""
8604
8605::
8606
8607 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8608
8609Overview:
8610"""""""""
8611
8612The '``llvm.invariant.start``' intrinsic specifies that the contents of
8613a memory object will not change.
8614
8615Arguments:
8616""""""""""
8617
8618The first argument is a constant integer representing the size of the
8619object, or -1 if it is variable sized. The second argument is a pointer
8620to the object.
8621
8622Semantics:
8623""""""""""
8624
8625This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8626the return value, the referenced memory location is constant and
8627unchanging.
8628
8629'``llvm.invariant.end``' Intrinsic
8630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8631
8632Syntax:
8633"""""""
8634
8635::
8636
8637 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8638
8639Overview:
8640"""""""""
8641
8642The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8643memory object are mutable.
8644
8645Arguments:
8646""""""""""
8647
8648The first argument is the matching ``llvm.invariant.start`` intrinsic.
8649The second argument is a constant integer representing the size of the
8650object, or -1 if it is variable sized and the third argument is a
8651pointer to the object.
8652
8653Semantics:
8654""""""""""
8655
8656This intrinsic indicates that the memory is mutable again.
8657
8658General Intrinsics
8659------------------
8660
8661This class of intrinsics is designed to be generic and has no specific
8662purpose.
8663
8664'``llvm.var.annotation``' Intrinsic
8665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8666
8667Syntax:
8668"""""""
8669
8670::
8671
8672 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8673
8674Overview:
8675"""""""""
8676
8677The '``llvm.var.annotation``' intrinsic.
8678
8679Arguments:
8680""""""""""
8681
8682The first argument is a pointer to a value, the second is a pointer to a
8683global string, the third is a pointer to a global string which is the
8684source file name, and the last argument is the line number.
8685
8686Semantics:
8687""""""""""
8688
8689This intrinsic allows annotation of local variables with arbitrary
8690strings. This can be useful for special purpose optimizations that want
8691to look for these annotations. These have no other defined use; they are
8692ignored by code generation and optimization.
8693
Michael Gottesman88d18832013-03-26 00:34:27 +00008694'``llvm.ptr.annotation.*``' Intrinsic
8695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8696
8697Syntax:
8698"""""""
8699
8700This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8701pointer to an integer of any width. *NOTE* you must specify an address space for
8702the pointer. The identifier for the default address space is the integer
8703'``0``'.
8704
8705::
8706
8707 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8708 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8709 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8710 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8711 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8712
8713Overview:
8714"""""""""
8715
8716The '``llvm.ptr.annotation``' intrinsic.
8717
8718Arguments:
8719""""""""""
8720
8721The first argument is a pointer to an integer value of arbitrary bitwidth
8722(result of some expression), the second is a pointer to a global string, the
8723third is a pointer to a global string which is the source file name, and the
8724last argument is the line number. It returns the value of the first argument.
8725
8726Semantics:
8727""""""""""
8728
8729This intrinsic allows annotation of a pointer to an integer with arbitrary
8730strings. This can be useful for special purpose optimizations that want to look
8731for these annotations. These have no other defined use; they are ignored by code
8732generation and optimization.
8733
Sean Silvab084af42012-12-07 10:36:55 +00008734'``llvm.annotation.*``' Intrinsic
8735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8736
8737Syntax:
8738"""""""
8739
8740This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8741any integer bit width.
8742
8743::
8744
8745 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8746 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8747 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8748 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8749 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8750
8751Overview:
8752"""""""""
8753
8754The '``llvm.annotation``' intrinsic.
8755
8756Arguments:
8757""""""""""
8758
8759The first argument is an integer value (result of some expression), the
8760second is a pointer to a global string, the third is a pointer to a
8761global string which is the source file name, and the last argument is
8762the line number. It returns the value of the first argument.
8763
8764Semantics:
8765""""""""""
8766
8767This intrinsic allows annotations to be put on arbitrary expressions
8768with arbitrary strings. This can be useful for special purpose
8769optimizations that want to look for these annotations. These have no
8770other defined use; they are ignored by code generation and optimization.
8771
8772'``llvm.trap``' Intrinsic
8773^^^^^^^^^^^^^^^^^^^^^^^^^
8774
8775Syntax:
8776"""""""
8777
8778::
8779
8780 declare void @llvm.trap() noreturn nounwind
8781
8782Overview:
8783"""""""""
8784
8785The '``llvm.trap``' intrinsic.
8786
8787Arguments:
8788""""""""""
8789
8790None.
8791
8792Semantics:
8793""""""""""
8794
8795This intrinsic is lowered to the target dependent trap instruction. If
8796the target does not have a trap instruction, this intrinsic will be
8797lowered to a call of the ``abort()`` function.
8798
8799'``llvm.debugtrap``' Intrinsic
8800^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8801
8802Syntax:
8803"""""""
8804
8805::
8806
8807 declare void @llvm.debugtrap() nounwind
8808
8809Overview:
8810"""""""""
8811
8812The '``llvm.debugtrap``' intrinsic.
8813
8814Arguments:
8815""""""""""
8816
8817None.
8818
8819Semantics:
8820""""""""""
8821
8822This intrinsic is lowered to code which is intended to cause an
8823execution trap with the intention of requesting the attention of a
8824debugger.
8825
8826'``llvm.stackprotector``' Intrinsic
8827^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8828
8829Syntax:
8830"""""""
8831
8832::
8833
8834 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8835
8836Overview:
8837"""""""""
8838
8839The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8840onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8841is placed on the stack before local variables.
8842
8843Arguments:
8844""""""""""
8845
8846The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8847The first argument is the value loaded from the stack guard
8848``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8849enough space to hold the value of the guard.
8850
8851Semantics:
8852""""""""""
8853
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008854This intrinsic causes the prologue/epilogue inserter to force the position of
8855the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8856to ensure that if a local variable on the stack is overwritten, it will destroy
8857the value of the guard. When the function exits, the guard on the stack is
8858checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8859different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8860calling the ``__stack_chk_fail()`` function.
8861
8862'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008863^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008864
8865Syntax:
8866"""""""
8867
8868::
8869
8870 declare void @llvm.stackprotectorcheck(i8** <guard>)
8871
8872Overview:
8873"""""""""
8874
8875The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008876created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008877``__stack_chk_fail()`` function.
8878
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008879Arguments:
8880""""""""""
8881
8882The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8883the variable ``@__stack_chk_guard``.
8884
8885Semantics:
8886""""""""""
8887
8888This intrinsic is provided to perform the stack protector check by comparing
8889``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8890values do not match call the ``__stack_chk_fail()`` function.
8891
8892The reason to provide this as an IR level intrinsic instead of implementing it
8893via other IR operations is that in order to perform this operation at the IR
8894level without an intrinsic, one would need to create additional basic blocks to
8895handle the success/failure cases. This makes it difficult to stop the stack
8896protector check from disrupting sibling tail calls in Codegen. With this
8897intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008898codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008899
Sean Silvab084af42012-12-07 10:36:55 +00008900'``llvm.objectsize``' Intrinsic
8901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8902
8903Syntax:
8904"""""""
8905
8906::
8907
8908 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8909 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8910
8911Overview:
8912"""""""""
8913
8914The ``llvm.objectsize`` intrinsic is designed to provide information to
8915the optimizers to determine at compile time whether a) an operation
8916(like memcpy) will overflow a buffer that corresponds to an object, or
8917b) that a runtime check for overflow isn't necessary. An object in this
8918context means an allocation of a specific class, structure, array, or
8919other object.
8920
8921Arguments:
8922""""""""""
8923
8924The ``llvm.objectsize`` intrinsic takes two arguments. The first
8925argument is a pointer to or into the ``object``. The second argument is
8926a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8927or -1 (if false) when the object size is unknown. The second argument
8928only accepts constants.
8929
8930Semantics:
8931""""""""""
8932
8933The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8934the size of the object concerned. If the size cannot be determined at
8935compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8936on the ``min`` argument).
8937
8938'``llvm.expect``' Intrinsic
8939^^^^^^^^^^^^^^^^^^^^^^^^^^^
8940
8941Syntax:
8942"""""""
8943
8944::
8945
8946 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8947 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8948
8949Overview:
8950"""""""""
8951
8952The ``llvm.expect`` intrinsic provides information about expected (the
8953most probable) value of ``val``, which can be used by optimizers.
8954
8955Arguments:
8956""""""""""
8957
8958The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8959a value. The second argument is an expected value, this needs to be a
8960constant value, variables are not allowed.
8961
8962Semantics:
8963""""""""""
8964
8965This intrinsic is lowered to the ``val``.
8966
8967'``llvm.donothing``' Intrinsic
8968^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8969
8970Syntax:
8971"""""""
8972
8973::
8974
8975 declare void @llvm.donothing() nounwind readnone
8976
8977Overview:
8978"""""""""
8979
8980The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8981only intrinsic that can be called with an invoke instruction.
8982
8983Arguments:
8984""""""""""
8985
8986None.
8987
8988Semantics:
8989""""""""""
8990
8991This intrinsic does nothing, and it's removed by optimizers and ignored
8992by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00008993
8994Stack Map Intrinsics
8995--------------------
8996
8997LLVM provides experimental intrinsics to support runtime patching
8998mechanisms commonly desired in dynamic language JITs. These intrinsics
8999are described in :doc:`StackMaps`.