blob: 50205ff91c33c631eee4fb837a3382ee19aa63da [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Sanjay Patelaee84212014-11-04 16:27:42 +000054/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000056static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000057 if (unsigned BitWidth = Ty->getScalarSizeInBits())
58 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000061}
Chris Lattner965c7692008-06-02 01:18:21 +000062
Benjamin Kramercfd8d902014-09-12 08:56:53 +000063namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000064// Simplifying using an assume can only be done in a particular control-flow
65// context (the context instruction provides that context). If an assume and
66// the context instruction are not in the same block then the DT helps in
67// figuring out if we can use it.
68struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000069 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000070 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000071 const Instruction *CxtI;
72 const DominatorTree *DT;
73
Matthias Braun37e5d792016-01-28 06:29:33 +000074 /// Set of assumptions that should be excluded from further queries.
75 /// This is because of the potential for mutual recursion to cause
76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77 /// classic case of this is assume(x = y), which will attempt to determine
78 /// bits in x from bits in y, which will attempt to determine bits in y from
79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82 /// on.
83 std::array<const Value*, MaxDepth> Excluded;
84 unsigned NumExcluded;
85
Matthias Braunfeb81bc2016-01-15 22:22:04 +000086 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000088 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000089
90 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000091 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92 Excluded = Q.Excluded;
93 Excluded[NumExcluded++] = NewExcl;
94 assert(NumExcluded <= Excluded.size());
95 }
96
97 bool isExcluded(const Value *Value) const {
98 if (NumExcluded == 0)
99 return false;
100 auto End = Excluded.begin() + NumExcluded;
101 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000102 }
103};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000104} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000105
Sanjay Patel547e9752014-11-04 16:09:50 +0000106// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000107// the preferred context instruction (if any).
108static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120}
121
122static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000123 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000124
125void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000126 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
Jingyue Wuca321902015-05-14 23:53:19 +0000133bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134 AssumptionCache *AC, const Instruction *CxtI,
135 const DominatorTree *DT) {
136 assert(LHS->getType() == RHS->getType() &&
137 "LHS and RHS should have the same type");
138 assert(LHS->getType()->isIntOrIntVectorTy() &&
139 "LHS and RHS should be integers");
140 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146}
147
Hal Finkel60db0582014-09-07 18:57:58 +0000148static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000149 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000150
151void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000152 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000153 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000154 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000155 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000157}
158
159static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000160 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000161
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000162bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000163 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000164 const Instruction *CxtI,
165 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000166 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000168}
169
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000170static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171
172bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173 AssumptionCache *AC, const Instruction *CxtI,
174 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000175 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Jingyue Wu10fcea52015-08-20 18:27:04 +0000178bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179 AssumptionCache *AC, const Instruction *CxtI,
180 const DominatorTree *DT) {
181 bool NonNegative, Negative;
182 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183 return NonNegative;
184}
185
Philip Reames8f12eba2016-03-09 21:31:47 +0000186bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 if (auto *CI = dyn_cast<ConstantInt>(V))
190 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000191
Philip Reames8f12eba2016-03-09 21:31:47 +0000192 // TODO: We'd doing two recursive queries here. We should factor this such
193 // that only a single query is needed.
194 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196}
197
Nick Lewycky762f8a82016-04-21 00:53:14 +0000198bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199 AssumptionCache *AC, const Instruction *CxtI,
200 const DominatorTree *DT) {
201 bool NonNegative, Negative;
202 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203 return Negative;
204}
205
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000206static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000207
208bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209 AssumptionCache *AC, const Instruction *CxtI,
210 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000211 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212 safeCxtI(V1, safeCxtI(V2, CxtI)),
213 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000214}
215
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000216static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000218
219bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220 unsigned Depth, AssumptionCache *AC,
221 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000222 return ::MaskedValueIsZero(V, Mask, Depth,
223 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000224}
225
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000226static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000227
228unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229 unsigned Depth, AssumptionCache *AC,
230 const Instruction *CxtI,
231 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000232 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000233}
234
Jay Foada0653a32014-05-14 21:14:37 +0000235static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236 APInt &KnownZero, APInt &KnownOne,
237 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000238 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000239 if (!Add) {
240 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241 // We know that the top bits of C-X are clear if X contains less bits
242 // than C (i.e. no wrap-around can happen). For example, 20-X is
243 // positive if we can prove that X is >= 0 and < 16.
244 if (!CLHS->getValue().isNegative()) {
245 unsigned BitWidth = KnownZero.getBitWidth();
246 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247 // NLZ can't be BitWidth with no sign bit
248 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000249 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000250
251 // If all of the MaskV bits are known to be zero, then we know the
252 // output top bits are zero, because we now know that the output is
253 // from [0-C].
254 if ((KnownZero2 & MaskV) == MaskV) {
255 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256 // Top bits known zero.
257 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258 }
259 }
260 }
261 }
262
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000263 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000264
David Majnemer97ddca32014-08-22 00:40:43 +0000265 // If an initial sequence of bits in the result is not needed, the
266 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000267 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000270
David Majnemer97ddca32014-08-22 00:40:43 +0000271 // Carry in a 1 for a subtract, rather than a 0.
272 APInt CarryIn(BitWidth, 0);
273 if (!Add) {
274 // Sum = LHS + ~RHS + 1
275 std::swap(KnownZero2, KnownOne2);
276 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277 }
278
David Majnemer97ddca32014-08-22 00:40:43 +0000279 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281
282 // Compute known bits of the carry.
283 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285
286 // Compute set of known bits (where all three relevant bits are known).
287 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288 APInt RHSKnown = KnownZero2 | KnownOne2;
289 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290 APInt Known = LHSKnown & RHSKnown & CarryKnown;
291
292 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293 "known bits of sum differ");
294
295 // Compute known bits of the result.
296 KnownZero = ~PossibleSumOne & Known;
297 KnownOne = PossibleSumOne & Known;
298
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000299 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000300 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000301 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000302 // Adding two non-negative numbers, or subtracting a negative number from
303 // a non-negative one, can't wrap into negative.
304 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305 KnownZero |= APInt::getSignBit(BitWidth);
306 // Adding two negative numbers, or subtracting a non-negative number from
307 // a negative one, can't wrap into non-negative.
308 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000310 }
311 }
312}
313
Jay Foada0653a32014-05-14 21:14:37 +0000314static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315 APInt &KnownZero, APInt &KnownOne,
316 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000317 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000318 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000319 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000321
322 bool isKnownNegative = false;
323 bool isKnownNonNegative = false;
324 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000325 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000326 if (Op0 == Op1) {
327 // The product of a number with itself is non-negative.
328 isKnownNonNegative = true;
329 } else {
330 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332 bool isKnownNegativeOp1 = KnownOne.isNegative();
333 bool isKnownNegativeOp0 = KnownOne2.isNegative();
334 // The product of two numbers with the same sign is non-negative.
335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337 // The product of a negative number and a non-negative number is either
338 // negative or zero.
339 if (!isKnownNonNegative)
340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000341 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000343 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000344 }
345 }
346
347 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000348 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000349 // More trickiness is possible, but this is sufficient for the
350 // interesting case of alignment computation.
351 KnownOne.clearAllBits();
352 unsigned TrailZ = KnownZero.countTrailingOnes() +
353 KnownZero2.countTrailingOnes();
354 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
355 KnownZero2.countLeadingOnes(),
356 BitWidth) - BitWidth;
357
358 TrailZ = std::min(TrailZ, BitWidth);
359 LeadZ = std::min(LeadZ, BitWidth);
360 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362
363 // Only make use of no-wrap flags if we failed to compute the sign bit
364 // directly. This matters if the multiplication always overflows, in
365 // which case we prefer to follow the result of the direct computation,
366 // though as the program is invoking undefined behaviour we can choose
367 // whatever we like here.
368 if (isKnownNonNegative && !KnownOne.isNegative())
369 KnownZero.setBit(BitWidth - 1);
370 else if (isKnownNegative && !KnownZero.isNegative())
371 KnownOne.setBit(BitWidth - 1);
372}
373
Jingyue Wu37fcb592014-06-19 16:50:16 +0000374void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000375 APInt &KnownZero,
376 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000377 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000378 unsigned NumRanges = Ranges.getNumOperands() / 2;
379 assert(NumRanges >= 1);
380
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000381 KnownZero.setAllBits();
382 KnownOne.setAllBits();
383
Rafael Espindola53190532012-03-30 15:52:11 +0000384 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000385 ConstantInt *Lower =
386 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387 ConstantInt *Upper =
388 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000389 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000390
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000391 // The first CommonPrefixBits of all values in Range are equal.
392 unsigned CommonPrefixBits =
393 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394
395 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396 KnownOne &= Range.getUnsignedMax() & Mask;
397 KnownZero &= ~Range.getUnsignedMax() & Mask;
398 }
Rafael Espindola53190532012-03-30 15:52:11 +0000399}
Jay Foad5a29c362014-05-15 12:12:55 +0000400
Hal Finkel60db0582014-09-07 18:57:58 +0000401static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402 SmallVector<const Value *, 16> WorkSet(1, I);
403 SmallPtrSet<const Value *, 32> Visited;
404 SmallPtrSet<const Value *, 16> EphValues;
405
Hal Finkelf2199b22015-10-23 20:37:08 +0000406 // The instruction defining an assumption's condition itself is always
407 // considered ephemeral to that assumption (even if it has other
408 // non-ephemeral users). See r246696's test case for an example.
409 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
410 return true;
411
Hal Finkel60db0582014-09-07 18:57:58 +0000412 while (!WorkSet.empty()) {
413 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000414 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000415 continue;
416
417 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000418 if (std::all_of(V->user_begin(), V->user_end(),
419 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000420 if (V == E)
421 return true;
422
423 EphValues.insert(V);
424 if (const User *U = dyn_cast<User>(V))
425 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
426 J != JE; ++J) {
427 if (isSafeToSpeculativelyExecute(*J))
428 WorkSet.push_back(*J);
429 }
430 }
431 }
432
433 return false;
434}
435
436// Is this an intrinsic that cannot be speculated but also cannot trap?
437static bool isAssumeLikeIntrinsic(const Instruction *I) {
438 if (const CallInst *CI = dyn_cast<CallInst>(I))
439 if (Function *F = CI->getCalledFunction())
440 switch (F->getIntrinsicID()) {
441 default: break;
442 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
443 case Intrinsic::assume:
444 case Intrinsic::dbg_declare:
445 case Intrinsic::dbg_value:
446 case Intrinsic::invariant_start:
447 case Intrinsic::invariant_end:
448 case Intrinsic::lifetime_start:
449 case Intrinsic::lifetime_end:
450 case Intrinsic::objectsize:
451 case Intrinsic::ptr_annotation:
452 case Intrinsic::var_annotation:
453 return true;
454 }
455
456 return false;
457}
458
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000459static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
460 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000461 Instruction *Inv = cast<Instruction>(V);
462
463 // There are two restrictions on the use of an assume:
464 // 1. The assume must dominate the context (or the control flow must
465 // reach the assume whenever it reaches the context).
466 // 2. The context must not be in the assume's set of ephemeral values
467 // (otherwise we will use the assume to prove that the condition
468 // feeding the assume is trivially true, thus causing the removal of
469 // the assume).
470
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000471 if (DT) {
472 if (DT->dominates(Inv, CxtI)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000473 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000474 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000475 // The context comes first, but they're both in the same block. Make sure
476 // there is nothing in between that might interrupt the control flow.
477 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000478 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000479 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000480 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000481 return false;
482
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000484 }
485
486 return false;
487 }
488
489 // When we don't have a DT, we do a limited search...
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000490 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000491 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000492 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000493 // Search forward from the assume until we reach the context (or the end
494 // of the block); the common case is that the assume will come first.
495 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
496 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000497 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000498 return true;
499
500 // The context must come first...
501 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000502 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000503 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000504 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000505 return false;
506
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000507 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000508 }
509
510 return false;
511}
512
513bool llvm::isValidAssumeForContext(const Instruction *I,
514 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000515 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000516 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
Hal Finkel60db0582014-09-07 18:57:58 +0000517}
518
Hal Finkel60db0582014-09-07 18:57:58 +0000519static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000520 APInt &KnownOne, unsigned Depth,
521 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000522 // Use of assumptions is context-sensitive. If we don't have a context, we
523 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000524 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000525 return;
526
527 unsigned BitWidth = KnownZero.getBitWidth();
528
Chandler Carruth66b31302015-01-04 12:03:27 +0000529 for (auto &AssumeVH : Q.AC->assumptions()) {
530 if (!AssumeVH)
531 continue;
532 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000533 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000534 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000535 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000536 continue;
537
Philip Reames00d3b272014-11-24 23:44:28 +0000538 // Warning: This loop can end up being somewhat performance sensetive.
539 // We're running this loop for once for each value queried resulting in a
540 // runtime of ~O(#assumes * #values).
541
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000542 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000543 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000544
Philip Reames00d3b272014-11-24 23:44:28 +0000545 Value *Arg = I->getArgOperand(0);
546
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000547 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000548 assert(BitWidth == 1 && "assume operand is not i1?");
549 KnownZero.clearAllBits();
550 KnownOne.setAllBits();
551 return;
552 }
553
David Majnemer9b609752014-12-12 23:59:29 +0000554 // The remaining tests are all recursive, so bail out if we hit the limit.
555 if (Depth == MaxDepth)
556 continue;
557
Hal Finkel60db0582014-09-07 18:57:58 +0000558 Value *A, *B;
559 auto m_V = m_CombineOr(m_Specific(V),
560 m_CombineOr(m_PtrToInt(m_Specific(V)),
561 m_BitCast(m_Specific(V))));
562
563 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000564 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000565 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000566 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000567 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000568 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000569 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000570 KnownZero |= RHSKnownZero;
571 KnownOne |= RHSKnownOne;
572 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000573 } else if (match(Arg,
574 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000575 Pred == ICmpInst::ICMP_EQ &&
576 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000577 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000578 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000579 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000580 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000581
582 // For those bits in the mask that are known to be one, we can propagate
583 // known bits from the RHS to V.
584 KnownZero |= RHSKnownZero & MaskKnownOne;
585 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000586 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000587 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000589 Pred == ICmpInst::ICMP_EQ &&
590 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000591 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000592 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000593 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000594 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000595
596 // For those bits in the mask that are known to be one, we can propagate
597 // inverted known bits from the RHS to V.
598 KnownZero |= RHSKnownOne & MaskKnownOne;
599 KnownOne |= RHSKnownZero & MaskKnownOne;
600 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000601 } else if (match(Arg,
602 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000603 Pred == ICmpInst::ICMP_EQ &&
604 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000608 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000609
610 // For those bits in B that are known to be zero, we can propagate known
611 // bits from the RHS to V.
612 KnownZero |= RHSKnownZero & BKnownZero;
613 KnownOne |= RHSKnownOne & BKnownZero;
614 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000615 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000617 Pred == ICmpInst::ICMP_EQ &&
618 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000619 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000620 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000621 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000622 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000623
624 // For those bits in B that are known to be zero, we can propagate
625 // inverted known bits from the RHS to V.
626 KnownZero |= RHSKnownOne & BKnownZero;
627 KnownOne |= RHSKnownZero & BKnownZero;
628 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000629 } else if (match(Arg,
630 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000631 Pred == ICmpInst::ICMP_EQ &&
632 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000635 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000636 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637
638 // For those bits in B that are known to be zero, we can propagate known
639 // bits from the RHS to V. For those bits in B that are known to be one,
640 // we can propagate inverted known bits from the RHS to V.
641 KnownZero |= RHSKnownZero & BKnownZero;
642 KnownOne |= RHSKnownOne & BKnownZero;
643 KnownZero |= RHSKnownOne & BKnownOne;
644 KnownOne |= RHSKnownZero & BKnownOne;
645 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000646 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000648 Pred == ICmpInst::ICMP_EQ &&
649 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000650 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000651 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000652 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000653 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654
655 // For those bits in B that are known to be zero, we can propagate
656 // inverted known bits from the RHS to V. For those bits in B that are
657 // known to be one, we can propagate known bits from the RHS to V.
658 KnownZero |= RHSKnownOne & BKnownZero;
659 KnownOne |= RHSKnownZero & BKnownZero;
660 KnownZero |= RHSKnownZero & BKnownOne;
661 KnownOne |= RHSKnownOne & BKnownOne;
662 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000663 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000665 Pred == ICmpInst::ICMP_EQ &&
666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000668 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000669 // For those bits in RHS that are known, we can propagate them to known
670 // bits in V shifted to the right by C.
671 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
673 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000674 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000676 Pred == ICmpInst::ICMP_EQ &&
677 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // For those bits in RHS that are known, we can propagate them inverted
681 // to known bits in V shifted to the right by C.
682 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
684 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000685 } else if (match(Arg,
686 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000687 m_AShr(m_V, m_ConstantInt(C))),
688 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000689 Pred == ICmpInst::ICMP_EQ &&
690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000693 // For those bits in RHS that are known, we can propagate them to known
694 // bits in V shifted to the right by C.
695 KnownZero |= RHSKnownZero << C->getZExtValue();
696 KnownOne |= RHSKnownOne << C->getZExtValue();
697 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000698 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000699 m_LShr(m_V, m_ConstantInt(C)),
700 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000701 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000702 Pred == ICmpInst::ICMP_EQ &&
703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000704 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706 // For those bits in RHS that are known, we can propagate them inverted
707 // to known bits in V shifted to the right by C.
708 KnownZero |= RHSKnownOne << C->getZExtValue();
709 KnownOne |= RHSKnownZero << C->getZExtValue();
710 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 Pred == ICmpInst::ICMP_SGE &&
713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716
717 if (RHSKnownZero.isNegative()) {
718 // We know that the sign bit is zero.
719 KnownZero |= APInt::getSignBit(BitWidth);
720 }
721 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000723 Pred == ICmpInst::ICMP_SGT &&
724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000725 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000726 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000727
728 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729 // We know that the sign bit is zero.
730 KnownZero |= APInt::getSignBit(BitWidth);
731 }
732 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000734 Pred == ICmpInst::ICMP_SLE &&
735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000737 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000738
739 if (RHSKnownOne.isNegative()) {
740 // We know that the sign bit is one.
741 KnownOne |= APInt::getSignBit(BitWidth);
742 }
743 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000745 Pred == ICmpInst::ICMP_SLT &&
746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000748 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000749
750 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751 // We know that the sign bit is one.
752 KnownOne |= APInt::getSignBit(BitWidth);
753 }
754 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000756 Pred == ICmpInst::ICMP_ULE &&
757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000758 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000759 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760
761 // Whatever high bits in c are zero are known to be zero.
762 KnownZero |=
763 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000766 Pred == ICmpInst::ICMP_ULT &&
767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000770
771 // Whatever high bits in c are zero are known to be zero (if c is a power
772 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000773 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 KnownZero |=
775 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776 else
777 KnownZero |=
778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000779 }
780 }
781}
782
Hal Finkelf2199b22015-10-23 20:37:08 +0000783// Compute known bits from a shift operator, including those with a
784// non-constant shift amount. KnownZero and KnownOne are the outputs of this
785// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787// functors that, given the known-zero or known-one bits respectively, and a
788// shift amount, compute the implied known-zero or known-one bits of the shift
789// operator's result respectively for that shift amount. The results from calling
790// KZF and KOF are conservatively combined for all permitted shift amounts.
791template <typename KZFunctor, typename KOFunctor>
792static void computeKnownBitsFromShiftOperator(Operator *I,
793 APInt &KnownZero, APInt &KnownOne,
794 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000795 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000796 unsigned BitWidth = KnownZero.getBitWidth();
797
798 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000801 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000802 KnownZero = KZF(KnownZero, ShiftAmt);
803 KnownOne = KOF(KnownOne, ShiftAmt);
804 return;
805 }
806
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000807 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000808
809 // Note: We cannot use KnownZero.getLimitedValue() here, because if
810 // BitWidth > 64 and any upper bits are known, we'll end up returning the
811 // limit value (which implies all bits are known).
812 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
813 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
814
815 // It would be more-clearly correct to use the two temporaries for this
816 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000817 KnownZero.clearAllBits();
818 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000819
James Molloy493e57d2015-10-26 14:10:46 +0000820 // If we know the shifter operand is nonzero, we can sometimes infer more
821 // known bits. However this is expensive to compute, so be lazy about it and
822 // only compute it when absolutely necessary.
823 Optional<bool> ShifterOperandIsNonZero;
824
Hal Finkelf2199b22015-10-23 20:37:08 +0000825 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000826 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
827 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000828 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000829 if (!*ShifterOperandIsNonZero)
830 return;
831 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000832
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000833 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000834
835 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
836 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
837 // Combine the shifted known input bits only for those shift amounts
838 // compatible with its known constraints.
839 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
840 continue;
841 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
842 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000843 // If we know the shifter is nonzero, we may be able to infer more known
844 // bits. This check is sunk down as far as possible to avoid the expensive
845 // call to isKnownNonZero if the cheaper checks above fail.
846 if (ShiftAmt == 0) {
847 if (!ShifterOperandIsNonZero.hasValue())
848 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000849 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000850 if (*ShifterOperandIsNonZero)
851 continue;
852 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000853
854 KnownZero &= KZF(KnownZero2, ShiftAmt);
855 KnownOne &= KOF(KnownOne2, ShiftAmt);
856 }
857
858 // If there are no compatible shift amounts, then we've proven that the shift
859 // amount must be >= the BitWidth, and the result is undefined. We could
860 // return anything we'd like, but we need to make sure the sets of known bits
861 // stay disjoint (it should be better for some other code to actually
862 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000863 if ((KnownZero & KnownOne) != 0) {
864 KnownZero.clearAllBits();
865 KnownOne.clearAllBits();
866 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000867}
868
Jingyue Wu12b0c282015-06-15 05:46:29 +0000869static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000870 APInt &KnownOne, unsigned Depth,
871 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000872 unsigned BitWidth = KnownZero.getBitWidth();
873
Chris Lattner965c7692008-06-02 01:18:21 +0000874 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000875 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000876 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000877 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000878 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000879 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000880 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000881 case Instruction::And: {
882 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000883 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
884 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000885
Chris Lattner965c7692008-06-02 01:18:21 +0000886 // Output known-1 bits are only known if set in both the LHS & RHS.
887 KnownOne &= KnownOne2;
888 // Output known-0 are known to be clear if zero in either the LHS | RHS.
889 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000890
891 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
892 // here we handle the more general case of adding any odd number by
893 // matching the form add(x, add(x, y)) where y is odd.
894 // TODO: This could be generalized to clearing any bit set in y where the
895 // following bit is known to be unset in y.
896 Value *Y = nullptr;
897 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
898 m_Value(Y))) ||
899 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
900 m_Value(Y)))) {
901 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000902 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000903 if (KnownOne3.countTrailingOnes() > 0)
904 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
905 }
Jay Foad5a29c362014-05-15 12:12:55 +0000906 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000907 }
908 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000909 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
910 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000911
Chris Lattner965c7692008-06-02 01:18:21 +0000912 // Output known-0 bits are only known if clear in both the LHS & RHS.
913 KnownZero &= KnownZero2;
914 // Output known-1 are known to be set if set in either the LHS | RHS.
915 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000916 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000917 }
918 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000919 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
920 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000921
Chris Lattner965c7692008-06-02 01:18:21 +0000922 // Output known-0 bits are known if clear or set in both the LHS & RHS.
923 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
924 // Output known-1 are known to be set if set in only one of the LHS, RHS.
925 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
926 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000927 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000928 }
929 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000930 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000931 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000932 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000933 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000934 }
935 case Instruction::UDiv: {
936 // For the purposes of computing leading zeros we can conservatively
937 // treat a udiv as a logical right shift by the power of 2 known to
938 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000939 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000940 unsigned LeadZ = KnownZero2.countLeadingOnes();
941
Jay Foad25a5e4c2010-12-01 08:53:58 +0000942 KnownOne2.clearAllBits();
943 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000944 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000945 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
946 if (RHSUnknownLeadingOnes != BitWidth)
947 LeadZ = std::min(BitWidth,
948 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
949
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000950 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000951 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000952 }
James Molloyc5eded52016-01-14 15:49:32 +0000953 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000954 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
955 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000956
957 // Only known if known in both the LHS and RHS.
958 KnownOne &= KnownOne2;
959 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000960 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000961 case Instruction::FPTrunc:
962 case Instruction::FPExt:
963 case Instruction::FPToUI:
964 case Instruction::FPToSI:
965 case Instruction::SIToFP:
966 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000967 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000968 case Instruction::PtrToInt:
969 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000970 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000971 // FALL THROUGH and handle them the same as zext/trunc.
972 case Instruction::ZExt:
973 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000974 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000975
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000976 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000977 // Note that we handle pointer operands here because of inttoptr/ptrtoint
978 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000979 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +0000980
981 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000982 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
983 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000984 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +0000985 KnownZero = KnownZero.zextOrTrunc(BitWidth);
986 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000987 // Any top bits are known to be zero.
988 if (BitWidth > SrcBitWidth)
989 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000990 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000991 }
992 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000993 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Patel9115cf82015-10-08 16:56:55 +0000994 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
995 SrcTy->isFloatingPointTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000996 // TODO: For now, not handling conversions like:
997 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000998 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000999 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001000 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001001 }
1002 break;
1003 }
1004 case Instruction::SExt: {
1005 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001006 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001007
Jay Foad583abbc2010-12-07 08:25:19 +00001008 KnownZero = KnownZero.trunc(SrcBitWidth);
1009 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001010 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001011 KnownZero = KnownZero.zext(BitWidth);
1012 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001013
1014 // If the sign bit of the input is known set or clear, then we know the
1015 // top bits of the result.
1016 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1017 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1018 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1019 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001020 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001021 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001022 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001023 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001024 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1025 return (KnownZero << ShiftAmt) |
1026 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1027 };
1028
1029 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1030 return KnownOne << ShiftAmt;
1031 };
1032
1033 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001034 KnownZero2, KnownOne2, Depth, Q, KZF,
1035 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001036 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001037 }
1038 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001039 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001040 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1041 return APIntOps::lshr(KnownZero, ShiftAmt) |
1042 // High bits known zero.
1043 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1044 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001045
Hal Finkelf2199b22015-10-23 20:37:08 +00001046 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1047 return APIntOps::lshr(KnownOne, ShiftAmt);
1048 };
1049
1050 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001051 KnownZero2, KnownOne2, Depth, Q, KZF,
1052 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001053 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001054 }
1055 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001056 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001057 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1058 return APIntOps::ashr(KnownZero, ShiftAmt);
1059 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001060
Hal Finkelf2199b22015-10-23 20:37:08 +00001061 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1062 return APIntOps::ashr(KnownOne, ShiftAmt);
1063 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001064
Hal Finkelf2199b22015-10-23 20:37:08 +00001065 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001066 KnownZero2, KnownOne2, Depth, Q, KZF,
1067 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001068 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001069 }
Chris Lattner965c7692008-06-02 01:18:21 +00001070 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001071 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001072 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001073 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1074 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001075 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001076 }
Chris Lattner965c7692008-06-02 01:18:21 +00001077 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001078 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001079 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001080 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1081 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001082 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001083 }
1084 case Instruction::SRem:
1085 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001086 APInt RA = Rem->getValue().abs();
1087 if (RA.isPowerOf2()) {
1088 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001089 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001090 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001091
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001092 // The low bits of the first operand are unchanged by the srem.
1093 KnownZero = KnownZero2 & LowBits;
1094 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001095
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001096 // If the first operand is non-negative or has all low bits zero, then
1097 // the upper bits are all zero.
1098 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1099 KnownZero |= ~LowBits;
1100
1101 // If the first operand is negative and not all low bits are zero, then
1102 // the upper bits are all one.
1103 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1104 KnownOne |= ~LowBits;
1105
Craig Topper1bef2c82012-12-22 19:15:35 +00001106 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001107 }
1108 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001109
1110 // The sign bit is the LHS's sign bit, except when the result of the
1111 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001112 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001113 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001114 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1115 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001116 // If it's known zero, our sign bit is also zero.
1117 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001118 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001119 }
1120
Chris Lattner965c7692008-06-02 01:18:21 +00001121 break;
1122 case Instruction::URem: {
1123 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1124 APInt RA = Rem->getValue();
1125 if (RA.isPowerOf2()) {
1126 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001127 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001128 KnownZero |= ~LowBits;
1129 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001130 break;
1131 }
1132 }
1133
1134 // Since the result is less than or equal to either operand, any leading
1135 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001136 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1137 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001138
Chris Lattner4612ae12009-01-20 18:22:57 +00001139 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001140 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001141 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001142 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001143 break;
1144 }
1145
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001146 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001147 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001148 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001149 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001150 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001151
Chris Lattner965c7692008-06-02 01:18:21 +00001152 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001153 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001154 break;
1155 }
1156 case Instruction::GetElementPtr: {
1157 // Analyze all of the subscripts of this getelementptr instruction
1158 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001159 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001160 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1161 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001162 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1163
1164 gep_type_iterator GTI = gep_type_begin(I);
1165 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1166 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001167 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001168 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001169
1170 // Handle case when index is vector zeroinitializer
1171 Constant *CIndex = cast<Constant>(Index);
1172 if (CIndex->isZeroValue())
1173 continue;
1174
1175 if (CIndex->getType()->isVectorTy())
1176 Index = CIndex->getSplatValue();
1177
Chris Lattner965c7692008-06-02 01:18:21 +00001178 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001179 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001180 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001181 TrailZ = std::min<unsigned>(TrailZ,
1182 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001183 } else {
1184 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001185 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001186 if (!IndexedTy->isSized()) {
1187 TrailZ = 0;
1188 break;
1189 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001190 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001191 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001192 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001193 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001194 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001195 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001196 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001197 }
1198 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001199
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001200 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001201 break;
1202 }
1203 case Instruction::PHI: {
1204 PHINode *P = cast<PHINode>(I);
1205 // Handle the case of a simple two-predecessor recurrence PHI.
1206 // There's a lot more that could theoretically be done here, but
1207 // this is sufficient to catch some interesting cases.
1208 if (P->getNumIncomingValues() == 2) {
1209 for (unsigned i = 0; i != 2; ++i) {
1210 Value *L = P->getIncomingValue(i);
1211 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001212 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001213 if (!LU)
1214 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001215 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001216 // Check for operations that have the property that if
1217 // both their operands have low zero bits, the result
1218 // will have low zero bits.
1219 if (Opcode == Instruction::Add ||
1220 Opcode == Instruction::Sub ||
1221 Opcode == Instruction::And ||
1222 Opcode == Instruction::Or ||
1223 Opcode == Instruction::Mul) {
1224 Value *LL = LU->getOperand(0);
1225 Value *LR = LU->getOperand(1);
1226 // Find a recurrence.
1227 if (LL == I)
1228 L = LR;
1229 else if (LR == I)
1230 L = LL;
1231 else
1232 break;
1233 // Ok, we have a PHI of the form L op= R. Check for low
1234 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001235 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001236
1237 // We need to take the minimum number of known bits
1238 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001239 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001240
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001241 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001242 std::min(KnownZero2.countTrailingOnes(),
1243 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001244 break;
1245 }
1246 }
1247 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001248
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001249 // Unreachable blocks may have zero-operand PHI nodes.
1250 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001251 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001252
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001253 // Otherwise take the unions of the known bit sets of the operands,
1254 // taking conservative care to avoid excessive recursion.
1255 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001256 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001257 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001258 break;
1259
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001260 KnownZero = APInt::getAllOnesValue(BitWidth);
1261 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001262 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001263 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001264 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001265
1266 KnownZero2 = APInt(BitWidth, 0);
1267 KnownOne2 = APInt(BitWidth, 0);
1268 // Recurse, but cap the recursion to one level, because we don't
1269 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001270 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001271 KnownZero &= KnownZero2;
1272 KnownOne &= KnownOne2;
1273 // If all bits have been ruled out, there's no need to check
1274 // more operands.
1275 if (!KnownZero && !KnownOne)
1276 break;
1277 }
1278 }
Chris Lattner965c7692008-06-02 01:18:21 +00001279 break;
1280 }
1281 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001282 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001283 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001284 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jingyue Wu37fcb592014-06-19 16:50:16 +00001285 // If a range metadata is attached to this IntrinsicInst, intersect the
1286 // explicit range specified by the metadata and the implicit range of
1287 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001288 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1289 switch (II->getIntrinsicID()) {
1290 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001291 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001292 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001293 KnownZero |= KnownZero2.byteSwap();
1294 KnownOne |= KnownOne2.byteSwap();
1295 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001296 case Intrinsic::ctlz:
1297 case Intrinsic::cttz: {
1298 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001299 // If this call is undefined for 0, the result will be less than 2^n.
1300 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1301 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001302 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001303 break;
1304 }
1305 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001306 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001307 // We can bound the space the count needs. Also, bits known to be zero
1308 // can't contribute to the population.
1309 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1310 unsigned LeadingZeros =
1311 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001312 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001313 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1314 KnownOne &= ~KnownZero;
1315 // TODO: we could bound KnownOne using the lower bound on the number
1316 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001317 break;
1318 }
Sanjay Patel9115cf82015-10-08 16:56:55 +00001319 case Intrinsic::fabs: {
1320 Type *Ty = II->getType();
1321 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1322 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1323 break;
1324 }
Chad Rosierb3628842011-05-26 23:13:19 +00001325 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001326 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001327 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001328 }
1329 }
1330 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001331 case Instruction::ExtractValue:
1332 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1333 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1334 if (EVI->getNumIndices() != 1) break;
1335 if (EVI->getIndices()[0] == 0) {
1336 switch (II->getIntrinsicID()) {
1337 default: break;
1338 case Intrinsic::uadd_with_overflow:
1339 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001340 computeKnownBitsAddSub(true, II->getArgOperand(0),
1341 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001342 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001343 break;
1344 case Intrinsic::usub_with_overflow:
1345 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001346 computeKnownBitsAddSub(false, II->getArgOperand(0),
1347 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001348 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001349 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001350 case Intrinsic::umul_with_overflow:
1351 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001352 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001353 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1354 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001355 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001356 }
1357 }
1358 }
Chris Lattner965c7692008-06-02 01:18:21 +00001359 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001360}
1361
1362/// Determine which bits of V are known to be either zero or one and return
1363/// them in the KnownZero/KnownOne bit sets.
1364///
1365/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1366/// we cannot optimize based on the assumption that it is zero without changing
1367/// it to be an explicit zero. If we don't change it to zero, other code could
1368/// optimized based on the contradictory assumption that it is non-zero.
1369/// Because instcombine aggressively folds operations with undef args anyway,
1370/// this won't lose us code quality.
1371///
1372/// This function is defined on values with integer type, values with pointer
1373/// type, and vectors of integers. In the case
1374/// where V is a vector, known zero, and known one values are the
1375/// same width as the vector element, and the bit is set only if it is true
1376/// for all of the elements in the vector.
1377void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001378 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001379 assert(V && "No Value?");
1380 assert(Depth <= MaxDepth && "Limit Search Depth");
1381 unsigned BitWidth = KnownZero.getBitWidth();
1382
1383 assert((V->getType()->isIntOrIntVectorTy() ||
Sanjay Patel9115cf82015-10-08 16:56:55 +00001384 V->getType()->isFPOrFPVectorTy() ||
Jingyue Wu12b0c282015-06-15 05:46:29 +00001385 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Patel9115cf82015-10-08 16:56:55 +00001386 "Not integer, floating point, or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001387 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001388 (!V->getType()->isIntOrIntVectorTy() ||
1389 V->getType()->getScalarSizeInBits() == BitWidth) &&
1390 KnownZero.getBitWidth() == BitWidth &&
1391 KnownOne.getBitWidth() == BitWidth &&
1392 "V, KnownOne and KnownZero should have same BitWidth");
1393
1394 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1395 // We know all of the bits for a constant!
1396 KnownOne = CI->getValue();
1397 KnownZero = ~KnownOne;
1398 return;
1399 }
1400 // Null and aggregate-zero are all-zeros.
1401 if (isa<ConstantPointerNull>(V) ||
1402 isa<ConstantAggregateZero>(V)) {
1403 KnownOne.clearAllBits();
1404 KnownZero = APInt::getAllOnesValue(BitWidth);
1405 return;
1406 }
1407 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001408 // each element.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001409 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1410 // We know that CDS must be a vector of integers. Take the intersection of
1411 // each element.
1412 KnownZero.setAllBits(); KnownOne.setAllBits();
1413 APInt Elt(KnownZero.getBitWidth(), 0);
1414 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1415 Elt = CDS->getElementAsInteger(i);
1416 KnownZero &= ~Elt;
1417 KnownOne &= Elt;
1418 }
1419 return;
1420 }
1421
David Majnemer3918cdd2016-05-04 06:13:33 +00001422 if (auto *CV = dyn_cast<ConstantVector>(V)) {
1423 // We know that CV must be a vector of integers. Take the intersection of
1424 // each element.
1425 KnownZero.setAllBits(); KnownOne.setAllBits();
1426 APInt Elt(KnownZero.getBitWidth(), 0);
1427 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1428 Constant *Element = CV->getAggregateElement(i);
1429 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1430 if (!ElementCI) {
1431 KnownZero.clearAllBits();
1432 KnownOne.clearAllBits();
1433 return;
1434 }
1435 Elt = ElementCI->getValue();
1436 KnownZero &= ~Elt;
1437 KnownOne &= Elt;
1438 }
1439 return;
1440 }
1441
Jingyue Wu12b0c282015-06-15 05:46:29 +00001442 // Start out not knowing anything.
1443 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1444
1445 // Limit search depth.
1446 // All recursive calls that increase depth must come after this.
1447 if (Depth == MaxDepth)
1448 return;
1449
1450 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1451 // the bits of its aliasee.
1452 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001453 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001454 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001455 return;
1456 }
1457
1458 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001459 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001460
Artur Pilipenko029d8532015-09-30 11:55:45 +00001461 // Aligned pointers have trailing zeros - refine KnownZero set
1462 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001463 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001464 if (Align)
1465 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1466 }
1467
Philip Reames146307e2016-03-03 19:44:06 +00001468 // computeKnownBitsFromAssume strictly refines KnownZero and
1469 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001470
1471 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001472 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001473
Jay Foad5a29c362014-05-15 12:12:55 +00001474 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001475}
1476
Sanjay Patelaee84212014-11-04 16:27:42 +00001477/// Determine whether the sign bit is known to be zero or one.
1478/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001479void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001480 unsigned Depth, const Query &Q) {
1481 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001482 if (!BitWidth) {
1483 KnownZero = false;
1484 KnownOne = false;
1485 return;
1486 }
1487 APInt ZeroBits(BitWidth, 0);
1488 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001489 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001490 KnownOne = OneBits[BitWidth - 1];
1491 KnownZero = ZeroBits[BitWidth - 1];
1492}
1493
Sanjay Patelaee84212014-11-04 16:27:42 +00001494/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001495/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001496/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001497/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001498bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001499 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001500 if (Constant *C = dyn_cast<Constant>(V)) {
1501 if (C->isNullValue())
1502 return OrZero;
1503 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1504 return CI->getValue().isPowerOf2();
1505 // TODO: Handle vector constants.
1506 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001507
1508 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1509 // it is shifted off the end then the result is undefined.
1510 if (match(V, m_Shl(m_One(), m_Value())))
1511 return true;
1512
1513 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1514 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001515 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001516 return true;
1517
1518 // The remaining tests are all recursive, so bail out if we hit the limit.
1519 if (Depth++ == MaxDepth)
1520 return false;
1521
Craig Topper9f008862014-04-15 04:59:12 +00001522 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001523 // A shift left or a logical shift right of a power of two is a power of two
1524 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001525 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001526 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001527 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001528
Duncan Sandsd3951082011-01-25 09:38:29 +00001529 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001530 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001531
1532 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001533 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1534 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001535
Duncan Sandsba286d72011-10-26 20:55:21 +00001536 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1537 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001538 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1539 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001540 return true;
1541 // X & (-X) is always a power of two or zero.
1542 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1543 return true;
1544 return false;
1545 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001546
David Majnemerb7d54092013-07-30 21:01:36 +00001547 // Adding a power-of-two or zero to the same power-of-two or zero yields
1548 // either the original power-of-two, a larger power-of-two or zero.
1549 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1550 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1551 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1552 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1553 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001554 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001555 return true;
1556 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1557 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001558 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001559 return true;
1560
1561 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1562 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001563 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001564
1565 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001566 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001567 // If i8 V is a power of two or zero:
1568 // ZeroBits: 1 1 1 0 1 1 1 1
1569 // ~ZeroBits: 0 0 0 1 0 0 0 0
1570 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1571 // If OrZero isn't set, we cannot give back a zero result.
1572 // Make sure either the LHS or RHS has a bit set.
1573 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1574 return true;
1575 }
1576 }
David Majnemerbeab5672013-05-18 19:30:37 +00001577
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001578 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001579 // is a power of two only if the first operand is a power of two and not
1580 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001581 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1582 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001583 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001584 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001585 }
1586
Duncan Sandsd3951082011-01-25 09:38:29 +00001587 return false;
1588}
1589
Chandler Carruth80d3e562012-12-07 02:08:58 +00001590/// \brief Test whether a GEP's result is known to be non-null.
1591///
1592/// Uses properties inherent in a GEP to try to determine whether it is known
1593/// to be non-null.
1594///
1595/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001596static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1597 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001598 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1599 return false;
1600
1601 // FIXME: Support vector-GEPs.
1602 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1603
1604 // If the base pointer is non-null, we cannot walk to a null address with an
1605 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001606 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001607 return true;
1608
Chandler Carruth80d3e562012-12-07 02:08:58 +00001609 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1610 // If so, then the GEP cannot produce a null pointer, as doing so would
1611 // inherently violate the inbounds contract within address space zero.
1612 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1613 GTI != GTE; ++GTI) {
1614 // Struct types are easy -- they must always be indexed by a constant.
1615 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1616 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1617 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001618 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001619 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1620 if (ElementOffset > 0)
1621 return true;
1622 continue;
1623 }
1624
1625 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001626 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001627 continue;
1628
1629 // Fast path the constant operand case both for efficiency and so we don't
1630 // increment Depth when just zipping down an all-constant GEP.
1631 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1632 if (!OpC->isZero())
1633 return true;
1634 continue;
1635 }
1636
1637 // We post-increment Depth here because while isKnownNonZero increments it
1638 // as well, when we pop back up that increment won't persist. We don't want
1639 // to recurse 10k times just because we have 10k GEP operands. We don't
1640 // bail completely out because we want to handle constant GEPs regardless
1641 // of depth.
1642 if (Depth++ >= MaxDepth)
1643 continue;
1644
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001645 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001646 return true;
1647 }
1648
1649 return false;
1650}
1651
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001652/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1653/// ensure that the value it's attached to is never Value? 'RangeType' is
1654/// is the type of the value described by the range.
1655static bool rangeMetadataExcludesValue(MDNode* Ranges,
1656 const APInt& Value) {
1657 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1658 assert(NumRanges >= 1);
1659 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001660 ConstantInt *Lower =
1661 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1662 ConstantInt *Upper =
1663 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001664 ConstantRange Range(Lower->getValue(), Upper->getValue());
1665 if (Range.contains(Value))
1666 return false;
1667 }
1668 return true;
1669}
1670
Sanjay Patelaee84212014-11-04 16:27:42 +00001671/// Return true if the given value is known to be non-zero when defined.
1672/// For vectors return true if every element is known to be non-zero when
1673/// defined. Supports values with integer or pointer type and vectors of
1674/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001675bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001676 if (Constant *C = dyn_cast<Constant>(V)) {
1677 if (C->isNullValue())
1678 return false;
1679 if (isa<ConstantInt>(C))
1680 // Must be non-zero due to null test above.
1681 return true;
1682 // TODO: Handle vectors
1683 return false;
1684 }
1685
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001686 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001687 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001688 // If the possible ranges don't contain zero, then the value is
1689 // definitely non-zero.
1690 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1691 const APInt ZeroValue(Ty->getBitWidth(), 0);
1692 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1693 return true;
1694 }
1695 }
1696 }
1697
Duncan Sandsd3951082011-01-25 09:38:29 +00001698 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001699 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001700 return false;
1701
Chandler Carruth80d3e562012-12-07 02:08:58 +00001702 // Check for pointer simplifications.
1703 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001704 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001705 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001706 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001707 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001708 return true;
1709 }
1710
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001711 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001712
1713 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001714 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001715 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001716 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001717
1718 // ext X != 0 if X != 0.
1719 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001720 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001721
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001722 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001723 // if the lowest bit is shifted off the end.
1724 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001725 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001726 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001727 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001728 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001729
Duncan Sandsd3951082011-01-25 09:38:29 +00001730 APInt KnownZero(BitWidth, 0);
1731 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001732 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001733 if (KnownOne[0])
1734 return true;
1735 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001736 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001737 // defined if the sign bit is shifted off the end.
1738 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001739 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001740 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001741 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001742 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001743
Duncan Sandsd3951082011-01-25 09:38:29 +00001744 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001745 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001746 if (XKnownNegative)
1747 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001748
1749 // If the shifter operand is a constant, and all of the bits shifted
1750 // out are known to be zero, and X is known non-zero then at least one
1751 // non-zero bit must remain.
1752 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1753 APInt KnownZero(BitWidth, 0);
1754 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001755 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001756
James Molloyb6be1eb2015-09-24 16:06:32 +00001757 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1758 // Is there a known one in the portion not shifted out?
1759 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1760 return true;
1761 // Are all the bits to be shifted out known zero?
1762 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001763 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001764 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001765 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001766 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001767 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001768 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001769 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001770 // X + Y.
1771 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1772 bool XKnownNonNegative, XKnownNegative;
1773 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001774 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1775 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001776
1777 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001778 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001779 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001780 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001781 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001782
1783 // If X and Y are both negative (as signed values) then their sum is not
1784 // zero unless both X and Y equal INT_MIN.
1785 if (BitWidth && XKnownNegative && YKnownNegative) {
1786 APInt KnownZero(BitWidth, 0);
1787 APInt KnownOne(BitWidth, 0);
1788 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1789 // The sign bit of X is set. If some other bit is set then X is not equal
1790 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001791 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001792 if ((KnownOne & Mask) != 0)
1793 return true;
1794 // The sign bit of Y is set. If some other bit is set then Y is not equal
1795 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001796 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001797 if ((KnownOne & Mask) != 0)
1798 return true;
1799 }
1800
1801 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001802 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001803 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001804 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001805 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001806 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001807 return true;
1808 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001809 // X * Y.
1810 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1811 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1812 // If X and Y are non-zero then so is X * Y as long as the multiplication
1813 // does not overflow.
1814 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001815 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001816 return true;
1817 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001818 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1819 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001820 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1821 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001822 return true;
1823 }
James Molloy897048b2015-09-29 14:08:45 +00001824 // PHI
1825 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1826 // Try and detect a recurrence that monotonically increases from a
1827 // starting value, as these are common as induction variables.
1828 if (PN->getNumIncomingValues() == 2) {
1829 Value *Start = PN->getIncomingValue(0);
1830 Value *Induction = PN->getIncomingValue(1);
1831 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1832 std::swap(Start, Induction);
1833 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1834 if (!C->isZero() && !C->isNegative()) {
1835 ConstantInt *X;
1836 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1837 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1838 !X->isNegative())
1839 return true;
1840 }
1841 }
1842 }
Jun Bum Limca832662016-02-01 17:03:07 +00001843 // Check if all incoming values are non-zero constant.
1844 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1845 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1846 });
1847 if (AllNonZeroConstants)
1848 return true;
James Molloy897048b2015-09-29 14:08:45 +00001849 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001850
1851 if (!BitWidth) return false;
1852 APInt KnownZero(BitWidth, 0);
1853 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001854 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001855 return KnownOne != 0;
1856}
1857
James Molloy1d88d6f2015-10-22 13:18:42 +00001858/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001859static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001860 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1861 if (!BO || BO->getOpcode() != Instruction::Add)
1862 return false;
1863 Value *Op = nullptr;
1864 if (V2 == BO->getOperand(0))
1865 Op = BO->getOperand(1);
1866 else if (V2 == BO->getOperand(1))
1867 Op = BO->getOperand(0);
1868 else
1869 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001870 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001871}
1872
1873/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001874static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001875 if (V1->getType()->isVectorTy() || V1 == V2)
1876 return false;
1877 if (V1->getType() != V2->getType())
1878 // We can't look through casts yet.
1879 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001880 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001881 return true;
1882
1883 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1884 // Are any known bits in V1 contradictory to known bits in V2? If V1
1885 // has a known zero where V2 has a known one, they must not be equal.
1886 auto BitWidth = Ty->getBitWidth();
1887 APInt KnownZero1(BitWidth, 0);
1888 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001889 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001890 APInt KnownZero2(BitWidth, 0);
1891 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001892 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001893
1894 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1895 if (OppositeBits.getBoolValue())
1896 return true;
1897 }
1898 return false;
1899}
1900
Sanjay Patelaee84212014-11-04 16:27:42 +00001901/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1902/// simplify operations downstream. Mask is known to be zero for bits that V
1903/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001904///
1905/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001906/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001907/// where V is a vector, the mask, known zero, and known one values are the
1908/// same width as the vector element, and the bit is set only if it is true
1909/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001910bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1911 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001912 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001913 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001914 return (KnownZero & Mask) == Mask;
1915}
1916
1917
1918
Sanjay Patelaee84212014-11-04 16:27:42 +00001919/// Return the number of times the sign bit of the register is replicated into
1920/// the other bits. We know that at least 1 bit is always equal to the sign bit
1921/// (itself), but other cases can give us information. For example, immediately
1922/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1923/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001924///
1925/// 'Op' must have a scalar integer type.
1926///
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001927unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1928 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00001929 unsigned Tmp, Tmp2;
1930 unsigned FirstAnswer = 1;
1931
Jay Foada0653a32014-05-14 21:14:37 +00001932 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001933 // below.
1934
Chris Lattner965c7692008-06-02 01:18:21 +00001935 if (Depth == 6)
1936 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001937
Dan Gohman80ca01c2009-07-17 20:47:02 +00001938 Operator *U = dyn_cast<Operator>(V);
1939 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001940 default: break;
1941 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001942 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001943 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001944
Nadav Rotemc99a3872015-03-06 00:23:58 +00001945 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00001946 const APInt *Denominator;
1947 // sdiv X, C -> adds log(C) sign bits.
1948 if (match(U->getOperand(1), m_APInt(Denominator))) {
1949
1950 // Ignore non-positive denominator.
1951 if (!Denominator->isStrictlyPositive())
1952 break;
1953
1954 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001955 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00001956
1957 // Add floor(log(C)) bits to the numerator bits.
1958 return std::min(TyBits, NumBits + Denominator->logBase2());
1959 }
1960 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00001961 }
1962
1963 case Instruction::SRem: {
1964 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00001965 // srem X, C -> we know that the result is within [-C+1,C) when C is a
1966 // positive constant. This let us put a lower bound on the number of sign
1967 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001968 if (match(U->getOperand(1), m_APInt(Denominator))) {
1969
1970 // Ignore non-positive denominator.
1971 if (!Denominator->isStrictlyPositive())
1972 break;
1973
1974 // Calculate the incoming numerator bits. SRem by a positive constant
1975 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001976 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001977 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00001978
1979 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00001980 // denominator. Given that the denominator is positive, there are two
1981 // cases:
1982 //
1983 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
1984 // (1 << ceilLogBase2(C)).
1985 //
1986 // 2. the numerator is negative. Then the result range is (-C,0] and
1987 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
1988 //
1989 // Thus a lower bound on the number of sign bits is `TyBits -
1990 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001991
Sanjoy Dase561fee2015-03-25 22:33:53 +00001992 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00001993 return std::max(NumrBits, ResBits);
1994 }
1995 break;
1996 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00001997
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001998 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001999 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002000 // ashr X, C -> adds C sign bits. Vectors too.
2001 const APInt *ShAmt;
2002 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2003 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002004 if (Tmp > TyBits) Tmp = TyBits;
2005 }
2006 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002007 }
2008 case Instruction::Shl: {
2009 const APInt *ShAmt;
2010 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002011 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002012 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002013 Tmp2 = ShAmt->getZExtValue();
2014 if (Tmp2 >= TyBits || // Bad shift.
2015 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2016 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002017 }
2018 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002019 }
Chris Lattner965c7692008-06-02 01:18:21 +00002020 case Instruction::And:
2021 case Instruction::Or:
2022 case Instruction::Xor: // NOT is handled here.
2023 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002024 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002025 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002026 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002027 FirstAnswer = std::min(Tmp, Tmp2);
2028 // We computed what we know about the sign bits as our first
2029 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002030 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002031 }
2032 break;
2033
2034 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002035 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002036 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002037 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002038 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002039
Chris Lattner965c7692008-06-02 01:18:21 +00002040 case Instruction::Add:
2041 // Add can have at most one carry bit. Thus we know that the output
2042 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002043 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002044 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002045
Chris Lattner965c7692008-06-02 01:18:21 +00002046 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002047 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002048 if (CRHS->isAllOnesValue()) {
2049 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002050 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002051
Chris Lattner965c7692008-06-02 01:18:21 +00002052 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2053 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002054 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002055 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002056
Chris Lattner965c7692008-06-02 01:18:21 +00002057 // If we are subtracting one from a positive number, there is no carry
2058 // out of the result.
2059 if (KnownZero.isNegative())
2060 return Tmp;
2061 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002062
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002063 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002064 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002065 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002066
Chris Lattner965c7692008-06-02 01:18:21 +00002067 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002068 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002069 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002070
Chris Lattner965c7692008-06-02 01:18:21 +00002071 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002072 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002073 if (CLHS->isNullValue()) {
2074 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002075 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002076 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2077 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002078 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002079 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002080
Chris Lattner965c7692008-06-02 01:18:21 +00002081 // If the input is known to be positive (the sign bit is known clear),
2082 // the output of the NEG has the same number of sign bits as the input.
2083 if (KnownZero.isNegative())
2084 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002085
Chris Lattner965c7692008-06-02 01:18:21 +00002086 // Otherwise, we treat this like a SUB.
2087 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002088
Chris Lattner965c7692008-06-02 01:18:21 +00002089 // Sub can have at most one carry bit. Thus we know that the output
2090 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002091 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002092 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002093 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002094
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002095 case Instruction::PHI: {
2096 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002097 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002098 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002099 if (NumIncomingValues > 4) break;
2100 // Unreachable blocks may have zero-operand PHI nodes.
2101 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002102
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002103 // Take the minimum of all incoming values. This can't infinitely loop
2104 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002105 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002106 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002107 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002108 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002109 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002110 }
2111 return Tmp;
2112 }
2113
Chris Lattner965c7692008-06-02 01:18:21 +00002114 case Instruction::Trunc:
2115 // FIXME: it's tricky to do anything useful for this, but it is an important
2116 // case for targets like X86.
2117 break;
2118 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002119
Chris Lattner965c7692008-06-02 01:18:21 +00002120 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2121 // use this information.
2122 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002123 APInt Mask;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002124 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002125
Chris Lattner965c7692008-06-02 01:18:21 +00002126 if (KnownZero.isNegative()) { // sign bit is 0
2127 Mask = KnownZero;
2128 } else if (KnownOne.isNegative()) { // sign bit is 1;
2129 Mask = KnownOne;
2130 } else {
2131 // Nothing known.
2132 return FirstAnswer;
2133 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002134
Chris Lattner965c7692008-06-02 01:18:21 +00002135 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2136 // the number of identical bits in the top of the input value.
2137 Mask = ~Mask;
2138 Mask <<= Mask.getBitWidth()-TyBits;
2139 // Return # leading zeros. We use 'min' here in case Val was zero before
2140 // shifting. We don't want to return '64' as for an i32 "0".
2141 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2142}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002143
Sanjay Patelaee84212014-11-04 16:27:42 +00002144/// This function computes the integer multiple of Base that equals V.
2145/// If successful, it returns true and returns the multiple in
2146/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002147/// through SExt instructions only if LookThroughSExt is true.
2148bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002149 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002150 const unsigned MaxDepth = 6;
2151
Dan Gohman6a976bb2009-11-18 00:58:27 +00002152 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002153 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002154 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002155
Chris Lattner229907c2011-07-18 04:54:35 +00002156 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002157
Dan Gohman6a976bb2009-11-18 00:58:27 +00002158 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002159
2160 if (Base == 0)
2161 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002162
Victor Hernandez47444882009-11-10 08:28:35 +00002163 if (Base == 1) {
2164 Multiple = V;
2165 return true;
2166 }
2167
2168 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2169 Constant *BaseVal = ConstantInt::get(T, Base);
2170 if (CO && CO == BaseVal) {
2171 // Multiple is 1.
2172 Multiple = ConstantInt::get(T, 1);
2173 return true;
2174 }
2175
2176 if (CI && CI->getZExtValue() % Base == 0) {
2177 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002178 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002179 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002180
Victor Hernandez47444882009-11-10 08:28:35 +00002181 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002182
Victor Hernandez47444882009-11-10 08:28:35 +00002183 Operator *I = dyn_cast<Operator>(V);
2184 if (!I) return false;
2185
2186 switch (I->getOpcode()) {
2187 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002188 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002189 if (!LookThroughSExt) return false;
2190 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002191 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002192 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2193 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002194 case Instruction::Shl:
2195 case Instruction::Mul: {
2196 Value *Op0 = I->getOperand(0);
2197 Value *Op1 = I->getOperand(1);
2198
2199 if (I->getOpcode() == Instruction::Shl) {
2200 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2201 if (!Op1CI) return false;
2202 // Turn Op0 << Op1 into Op0 * 2^Op1
2203 APInt Op1Int = Op1CI->getValue();
2204 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002205 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002206 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002207 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002208 }
2209
Craig Topper9f008862014-04-15 04:59:12 +00002210 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002211 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2212 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2213 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002214 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002215 MulC->getType()->getPrimitiveSizeInBits())
2216 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002217 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002218 MulC->getType()->getPrimitiveSizeInBits())
2219 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002220
Chris Lattner72d283c2010-09-05 17:20:46 +00002221 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2222 Multiple = ConstantExpr::getMul(MulC, Op1C);
2223 return true;
2224 }
Victor Hernandez47444882009-11-10 08:28:35 +00002225
2226 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2227 if (Mul0CI->getValue() == 1) {
2228 // V == Base * Op1, so return Op1
2229 Multiple = Op1;
2230 return true;
2231 }
2232 }
2233
Craig Topper9f008862014-04-15 04:59:12 +00002234 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002235 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2236 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2237 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002238 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002239 MulC->getType()->getPrimitiveSizeInBits())
2240 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002241 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002242 MulC->getType()->getPrimitiveSizeInBits())
2243 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002244
Chris Lattner72d283c2010-09-05 17:20:46 +00002245 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2246 Multiple = ConstantExpr::getMul(MulC, Op0C);
2247 return true;
2248 }
Victor Hernandez47444882009-11-10 08:28:35 +00002249
2250 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2251 if (Mul1CI->getValue() == 1) {
2252 // V == Base * Op0, so return Op0
2253 Multiple = Op0;
2254 return true;
2255 }
2256 }
Victor Hernandez47444882009-11-10 08:28:35 +00002257 }
2258 }
2259
2260 // We could not determine if V is a multiple of Base.
2261 return false;
2262}
2263
David Majnemerb4b27232016-04-19 19:10:21 +00002264Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2265 const TargetLibraryInfo *TLI) {
2266 const Function *F = ICS.getCalledFunction();
2267 if (!F)
2268 return Intrinsic::not_intrinsic;
2269
2270 if (F->isIntrinsic())
2271 return F->getIntrinsicID();
2272
2273 if (!TLI)
2274 return Intrinsic::not_intrinsic;
2275
2276 LibFunc::Func Func;
2277 // We're going to make assumptions on the semantics of the functions, check
2278 // that the target knows that it's available in this environment and it does
2279 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002280 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2281 return Intrinsic::not_intrinsic;
2282
2283 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002284 return Intrinsic::not_intrinsic;
2285
2286 // Otherwise check if we have a call to a function that can be turned into a
2287 // vector intrinsic.
2288 switch (Func) {
2289 default:
2290 break;
2291 case LibFunc::sin:
2292 case LibFunc::sinf:
2293 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002294 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002295 case LibFunc::cos:
2296 case LibFunc::cosf:
2297 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002298 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002299 case LibFunc::exp:
2300 case LibFunc::expf:
2301 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002302 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002303 case LibFunc::exp2:
2304 case LibFunc::exp2f:
2305 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002306 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002307 case LibFunc::log:
2308 case LibFunc::logf:
2309 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002310 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002311 case LibFunc::log10:
2312 case LibFunc::log10f:
2313 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002314 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002315 case LibFunc::log2:
2316 case LibFunc::log2f:
2317 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002318 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002319 case LibFunc::fabs:
2320 case LibFunc::fabsf:
2321 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002322 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002323 case LibFunc::fmin:
2324 case LibFunc::fminf:
2325 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002326 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002327 case LibFunc::fmax:
2328 case LibFunc::fmaxf:
2329 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002330 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002331 case LibFunc::copysign:
2332 case LibFunc::copysignf:
2333 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002334 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002335 case LibFunc::floor:
2336 case LibFunc::floorf:
2337 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002338 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002339 case LibFunc::ceil:
2340 case LibFunc::ceilf:
2341 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002342 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002343 case LibFunc::trunc:
2344 case LibFunc::truncf:
2345 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002346 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002347 case LibFunc::rint:
2348 case LibFunc::rintf:
2349 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002350 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002351 case LibFunc::nearbyint:
2352 case LibFunc::nearbyintf:
2353 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002354 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002355 case LibFunc::round:
2356 case LibFunc::roundf:
2357 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002358 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002359 case LibFunc::pow:
2360 case LibFunc::powf:
2361 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002362 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002363 case LibFunc::sqrt:
2364 case LibFunc::sqrtf:
2365 case LibFunc::sqrtl:
2366 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002367 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002368 return Intrinsic::not_intrinsic;
2369 }
2370
2371 return Intrinsic::not_intrinsic;
2372}
2373
Sanjay Patelaee84212014-11-04 16:27:42 +00002374/// Return true if we can prove that the specified FP value is never equal to
2375/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002376///
2377/// NOTE: this function will need to be revisited when we support non-default
2378/// rounding modes!
2379///
David Majnemer3ee5f342016-04-13 06:55:52 +00002380bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2381 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002382 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2383 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002384
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002385 // FIXME: Magic number! At the least, this should be given a name because it's
2386 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2387 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002388 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002389 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002390
Dan Gohman80ca01c2009-07-17 20:47:02 +00002391 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002392 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002393
2394 // Check if the nsz fast-math flag is set
2395 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2396 if (FPO->hasNoSignedZeros())
2397 return true;
2398
Chris Lattnera12a6de2008-06-02 01:29:46 +00002399 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002400 if (I->getOpcode() == Instruction::FAdd)
2401 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2402 if (CFP->isNullValue())
2403 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002404
Chris Lattnera12a6de2008-06-02 01:29:46 +00002405 // sitofp and uitofp turn into +0.0 for zero.
2406 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2407 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002408
David Majnemer3ee5f342016-04-13 06:55:52 +00002409 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002410 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002411 switch (IID) {
2412 default:
2413 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002414 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002415 case Intrinsic::sqrt:
2416 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2417 // fabs(x) != -0.0
2418 case Intrinsic::fabs:
2419 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002420 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002421 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002422
Chris Lattnera12a6de2008-06-02 01:29:46 +00002423 return false;
2424}
2425
David Majnemer3ee5f342016-04-13 06:55:52 +00002426bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2427 const TargetLibraryInfo *TLI,
2428 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002429 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2430 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2431
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002432 // FIXME: Magic number! At the least, this should be given a name because it's
2433 // used similarly in CannotBeNegativeZero(). A better fix may be to
2434 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002435 if (Depth == 6)
2436 return false; // Limit search depth.
2437
2438 const Operator *I = dyn_cast<Operator>(V);
2439 if (!I) return false;
2440
2441 switch (I->getOpcode()) {
2442 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002443 // Unsigned integers are always nonnegative.
2444 case Instruction::UIToFP:
2445 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002446 case Instruction::FMul:
2447 // x*x is always non-negative or a NaN.
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002448 if (I->getOperand(0) == I->getOperand(1))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002449 return true;
2450 // Fall through
2451 case Instruction::FAdd:
2452 case Instruction::FDiv:
2453 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002454 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2455 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002456 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002457 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2458 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002459 case Instruction::FPExt:
2460 case Instruction::FPTrunc:
2461 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002462 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2463 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002464 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002465 switch (IID) {
2466 default:
2467 break;
2468 case Intrinsic::maxnum:
2469 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2470 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2471 case Intrinsic::minnum:
2472 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2473 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2474 case Intrinsic::exp:
2475 case Intrinsic::exp2:
2476 case Intrinsic::fabs:
2477 case Intrinsic::sqrt:
2478 return true;
2479 case Intrinsic::powi:
2480 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2481 // powi(x,n) is non-negative if n is even.
2482 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2483 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002484 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002485 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2486 case Intrinsic::fma:
2487 case Intrinsic::fmuladd:
2488 // x*x+y is non-negative if y is non-negative.
2489 return I->getOperand(0) == I->getOperand(1) &&
2490 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2491 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002492 break;
2493 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002494 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002495}
2496
Sanjay Patelaee84212014-11-04 16:27:42 +00002497/// If the specified value can be set by repeating the same byte in memory,
2498/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002499/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2500/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2501/// byte store (e.g. i16 0x1234), return null.
2502Value *llvm::isBytewiseValue(Value *V) {
2503 // All byte-wide stores are splatable, even of arbitrary variables.
2504 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002505
2506 // Handle 'null' ConstantArrayZero etc.
2507 if (Constant *C = dyn_cast<Constant>(V))
2508 if (C->isNullValue())
2509 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002510
Chris Lattner9cb10352010-12-26 20:15:01 +00002511 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002512 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002513 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2514 if (CFP->getType()->isFloatTy())
2515 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2516 if (CFP->getType()->isDoubleTy())
2517 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2518 // Don't handle long double formats, which have strange constraints.
2519 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002520
Benjamin Kramer17d90152015-02-07 19:29:02 +00002521 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002522 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002523 if (CI->getBitWidth() % 8 == 0) {
2524 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002525
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002526 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002527 return nullptr;
2528 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002529 }
2530 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002531
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002532 // A ConstantDataArray/Vector is splatable if all its members are equal and
2533 // also splatable.
2534 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2535 Value *Elt = CA->getElementAsConstant(0);
2536 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002537 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002538 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002539
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002540 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2541 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002542 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002543
Chris Lattner9cb10352010-12-26 20:15:01 +00002544 return Val;
2545 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002546
Chris Lattner9cb10352010-12-26 20:15:01 +00002547 // Conceptually, we could handle things like:
2548 // %a = zext i8 %X to i16
2549 // %b = shl i16 %a, 8
2550 // %c = or i16 %a, %b
2551 // but until there is an example that actually needs this, it doesn't seem
2552 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002553 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002554}
2555
2556
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002557// This is the recursive version of BuildSubAggregate. It takes a few different
2558// arguments. Idxs is the index within the nested struct From that we are
2559// looking at now (which is of type IndexedType). IdxSkip is the number of
2560// indices from Idxs that should be left out when inserting into the resulting
2561// struct. To is the result struct built so far, new insertvalue instructions
2562// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002563static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002564 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002565 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002566 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002567 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002568 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002569 // Save the original To argument so we can modify it
2570 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002571 // General case, the type indexed by Idxs is a struct
2572 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2573 // Process each struct element recursively
2574 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002575 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002576 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002577 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002578 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002579 if (!To) {
2580 // Couldn't find any inserted value for this index? Cleanup
2581 while (PrevTo != OrigTo) {
2582 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2583 PrevTo = Del->getAggregateOperand();
2584 Del->eraseFromParent();
2585 }
2586 // Stop processing elements
2587 break;
2588 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002589 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002590 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002591 if (To)
2592 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002593 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002594 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2595 // the struct's elements had a value that was inserted directly. In the latter
2596 // case, perhaps we can't determine each of the subelements individually, but
2597 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002598
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002599 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002600 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002601
2602 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002603 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002604
2605 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002606 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002607 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002608}
2609
2610// This helper takes a nested struct and extracts a part of it (which is again a
2611// struct) into a new value. For example, given the struct:
2612// { a, { b, { c, d }, e } }
2613// and the indices "1, 1" this returns
2614// { c, d }.
2615//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002616// It does this by inserting an insertvalue for each element in the resulting
2617// struct, as opposed to just inserting a single struct. This will only work if
2618// each of the elements of the substruct are known (ie, inserted into From by an
2619// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002620//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002621// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002622static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002623 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002624 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002625 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002626 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002627 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002628 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002629 unsigned IdxSkip = Idxs.size();
2630
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002631 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002632}
2633
Sanjay Patelaee84212014-11-04 16:27:42 +00002634/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002635/// the scalar value indexed is already around as a register, for example if it
2636/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002637///
2638/// If InsertBefore is not null, this function will duplicate (modified)
2639/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002640Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2641 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002642 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002643 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002644 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002645 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002646 // We have indices, so V should have an indexable type.
2647 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2648 "Not looking at a struct or array?");
2649 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2650 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002651
Chris Lattner67058832012-01-25 06:48:06 +00002652 if (Constant *C = dyn_cast<Constant>(V)) {
2653 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002654 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002655 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2656 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002657
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002658 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002659 // Loop the indices for the insertvalue instruction in parallel with the
2660 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002661 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002662 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2663 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002664 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002665 // We can't handle this without inserting insertvalues
2666 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002667 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002668
2669 // The requested index identifies a part of a nested aggregate. Handle
2670 // this specially. For example,
2671 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2672 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2673 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2674 // This can be changed into
2675 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2676 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2677 // which allows the unused 0,0 element from the nested struct to be
2678 // removed.
2679 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2680 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002681 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002682
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002683 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002684 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002685 // looking for, then.
2686 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002687 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002688 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002689 }
2690 // If we end up here, the indices of the insertvalue match with those
2691 // requested (though possibly only partially). Now we recursively look at
2692 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002693 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002694 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002695 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002696 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002697
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002698 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002699 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002700 // something else, we can extract from that something else directly instead.
2701 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002702
2703 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002704 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002705 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002706 SmallVector<unsigned, 5> Idxs;
2707 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002708 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002709 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002710
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002711 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002712 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002713
Craig Topper1bef2c82012-12-22 19:15:35 +00002714 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002715 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002716
Jay Foad57aa6362011-07-13 10:26:04 +00002717 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002718 }
2719 // Otherwise, we don't know (such as, extracting from a function return value
2720 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002721 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002722}
Evan Chengda3db112008-06-30 07:31:25 +00002723
Sanjay Patelaee84212014-11-04 16:27:42 +00002724/// Analyze the specified pointer to see if it can be expressed as a base
2725/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002726Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002727 const DataLayout &DL) {
2728 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002729 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002730
2731 // We walk up the defs but use a visited set to handle unreachable code. In
2732 // that case, we stop after accumulating the cycle once (not that it
2733 // matters).
2734 SmallPtrSet<Value *, 16> Visited;
2735 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002736 if (Ptr->getType()->isVectorTy())
2737 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002738
Nuno Lopes368c4d02012-12-31 20:48:35 +00002739 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002740 APInt GEPOffset(BitWidth, 0);
2741 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2742 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002743
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002744 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002745
Nuno Lopes368c4d02012-12-31 20:48:35 +00002746 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002747 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2748 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002749 Ptr = cast<Operator>(Ptr)->getOperand(0);
2750 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002751 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002752 break;
2753 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002754 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002755 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002756 }
2757 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002758 Offset = ByteOffset.getSExtValue();
2759 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002760}
2761
David L Kreitzer752c1442016-04-13 14:31:06 +00002762bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2763 // Make sure the GEP has exactly three arguments.
2764 if (GEP->getNumOperands() != 3)
2765 return false;
2766
2767 // Make sure the index-ee is a pointer to array of i8.
2768 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2769 if (!AT || !AT->getElementType()->isIntegerTy(8))
2770 return false;
2771
2772 // Check to make sure that the first operand of the GEP is an integer and
2773 // has value 0 so that we are sure we're indexing into the initializer.
2774 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2775 if (!FirstIdx || !FirstIdx->isZero())
2776 return false;
2777
2778 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002779}
Chris Lattnere28618d2010-11-30 22:25:26 +00002780
Sanjay Patelaee84212014-11-04 16:27:42 +00002781/// This function computes the length of a null-terminated C string pointed to
2782/// by V. If successful, it returns true and returns the string in Str.
2783/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002784bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2785 uint64_t Offset, bool TrimAtNul) {
2786 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002787
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002788 // Look through bitcast instructions and geps.
2789 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002790
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002791 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002792 // offset.
2793 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002794 // The GEP operator should be based on a pointer to string constant, and is
2795 // indexing into the string constant.
2796 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002797 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002798
Evan Chengda3db112008-06-30 07:31:25 +00002799 // If the second index isn't a ConstantInt, then this is a variable index
2800 // into the array. If this occurs, we can't say anything meaningful about
2801 // the string.
2802 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002803 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002804 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002805 else
2806 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002807 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2808 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002809 }
Nick Lewycky46209882011-10-20 00:34:35 +00002810
Evan Chengda3db112008-06-30 07:31:25 +00002811 // The GEP instruction, constant or instruction, must reference a global
2812 // variable that is a constant and is initialized. The referenced constant
2813 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002814 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002815 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002816 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002817
Nick Lewycky46209882011-10-20 00:34:35 +00002818 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002819 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002820 // This is a degenerate case. The initializer is constant zero so the
2821 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002822 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002823 return true;
2824 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002825
Evan Chengda3db112008-06-30 07:31:25 +00002826 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002827 const ConstantDataArray *Array =
2828 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002829 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002830 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002831
Evan Chengda3db112008-06-30 07:31:25 +00002832 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002833 uint64_t NumElts = Array->getType()->getArrayNumElements();
2834
2835 // Start out with the entire array in the StringRef.
2836 Str = Array->getAsString();
2837
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002838 if (Offset > NumElts)
2839 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002840
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002841 // Skip over 'offset' bytes.
2842 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002843
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002844 if (TrimAtNul) {
2845 // Trim off the \0 and anything after it. If the array is not nul
2846 // terminated, we just return the whole end of string. The client may know
2847 // some other way that the string is length-bound.
2848 Str = Str.substr(0, Str.find('\0'));
2849 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002850 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002851}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002852
2853// These next two are very similar to the above, but also look through PHI
2854// nodes.
2855// TODO: See if we can integrate these two together.
2856
Sanjay Patelaee84212014-11-04 16:27:42 +00002857/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002858/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002859static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002860 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002861 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002862
2863 // If this is a PHI node, there are two cases: either we have already seen it
2864 // or we haven't.
2865 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002866 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002867 return ~0ULL; // already in the set.
2868
2869 // If it was new, see if all the input strings are the same length.
2870 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002871 for (Value *IncValue : PN->incoming_values()) {
2872 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002873 if (Len == 0) return 0; // Unknown length -> unknown.
2874
2875 if (Len == ~0ULL) continue;
2876
2877 if (Len != LenSoFar && LenSoFar != ~0ULL)
2878 return 0; // Disagree -> unknown.
2879 LenSoFar = Len;
2880 }
2881
2882 // Success, all agree.
2883 return LenSoFar;
2884 }
2885
2886 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2887 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2888 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2889 if (Len1 == 0) return 0;
2890 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2891 if (Len2 == 0) return 0;
2892 if (Len1 == ~0ULL) return Len2;
2893 if (Len2 == ~0ULL) return Len1;
2894 if (Len1 != Len2) return 0;
2895 return Len1;
2896 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002897
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002898 // Otherwise, see if we can read the string.
2899 StringRef StrData;
2900 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002901 return 0;
2902
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002903 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002904}
2905
Sanjay Patelaee84212014-11-04 16:27:42 +00002906/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002907/// the specified pointer, return 'len+1'. If we can't, return 0.
2908uint64_t llvm::GetStringLength(Value *V) {
2909 if (!V->getType()->isPointerTy()) return 0;
2910
2911 SmallPtrSet<PHINode*, 32> PHIs;
2912 uint64_t Len = GetStringLengthH(V, PHIs);
2913 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2914 // an empty string as a length.
2915 return Len == ~0ULL ? 1 : Len;
2916}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002917
Adam Nemete2b885c2015-04-23 20:09:20 +00002918/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2919/// previous iteration of the loop was referring to the same object as \p PN.
2920static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2921 // Find the loop-defined value.
2922 Loop *L = LI->getLoopFor(PN->getParent());
2923 if (PN->getNumIncomingValues() != 2)
2924 return true;
2925
2926 // Find the value from previous iteration.
2927 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2928 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2929 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2930 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2931 return true;
2932
2933 // If a new pointer is loaded in the loop, the pointer references a different
2934 // object in every iteration. E.g.:
2935 // for (i)
2936 // int *p = a[i];
2937 // ...
2938 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2939 if (!L->isLoopInvariant(Load->getPointerOperand()))
2940 return false;
2941 return true;
2942}
2943
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002944Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2945 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002946 if (!V->getType()->isPointerTy())
2947 return V;
2948 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2949 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2950 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002951 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2952 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002953 V = cast<Operator>(V)->getOperand(0);
2954 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002955 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00002956 return V;
2957 V = GA->getAliasee();
2958 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002959 // See if InstructionSimplify knows any relevant tricks.
2960 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002961 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002962 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002963 V = Simplified;
2964 continue;
2965 }
2966
Dan Gohmana4fcd242010-12-15 20:02:24 +00002967 return V;
2968 }
2969 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2970 }
2971 return V;
2972}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002973
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002974void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00002975 const DataLayout &DL, LoopInfo *LI,
2976 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002977 SmallPtrSet<Value *, 4> Visited;
2978 SmallVector<Value *, 4> Worklist;
2979 Worklist.push_back(V);
2980 do {
2981 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002982 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002983
David Blaikie70573dc2014-11-19 07:49:26 +00002984 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002985 continue;
2986
2987 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2988 Worklist.push_back(SI->getTrueValue());
2989 Worklist.push_back(SI->getFalseValue());
2990 continue;
2991 }
2992
2993 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00002994 // If this PHI changes the underlying object in every iteration of the
2995 // loop, don't look through it. Consider:
2996 // int **A;
2997 // for (i) {
2998 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
2999 // Curr = A[i];
3000 // *Prev, *Curr;
3001 //
3002 // Prev is tracking Curr one iteration behind so they refer to different
3003 // underlying objects.
3004 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3005 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003006 for (Value *IncValue : PN->incoming_values())
3007 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003008 continue;
3009 }
3010
3011 Objects.push_back(P);
3012 } while (!Worklist.empty());
3013}
3014
Sanjay Patelaee84212014-11-04 16:27:42 +00003015/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003016bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003017 for (const User *U : V->users()) {
3018 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003019 if (!II) return false;
3020
3021 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3022 II->getIntrinsicID() != Intrinsic::lifetime_end)
3023 return false;
3024 }
3025 return true;
3026}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003027
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003028bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3029 const Instruction *CtxI,
3030 const DominatorTree *DT,
3031 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003032 const Operator *Inst = dyn_cast<Operator>(V);
3033 if (!Inst)
3034 return false;
3035
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003036 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3037 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3038 if (C->canTrap())
3039 return false;
3040
3041 switch (Inst->getOpcode()) {
3042 default:
3043 return true;
3044 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003045 case Instruction::URem: {
3046 // x / y is undefined if y == 0.
3047 const APInt *V;
3048 if (match(Inst->getOperand(1), m_APInt(V)))
3049 return *V != 0;
3050 return false;
3051 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003052 case Instruction::SDiv:
3053 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003054 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003055 const APInt *Numerator, *Denominator;
3056 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3057 return false;
3058 // We cannot hoist this division if the denominator is 0.
3059 if (*Denominator == 0)
3060 return false;
3061 // It's safe to hoist if the denominator is not 0 or -1.
3062 if (*Denominator != -1)
3063 return true;
3064 // At this point we know that the denominator is -1. It is safe to hoist as
3065 // long we know that the numerator is not INT_MIN.
3066 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3067 return !Numerator->isMinSignedValue();
3068 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003069 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003070 }
3071 case Instruction::Load: {
3072 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003073 if (!LI->isUnordered() ||
3074 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003075 LI->getParent()->getParent()->hasFnAttribute(
3076 Attribute::SanitizeThread) ||
3077 // Speculative load may load data from dirty regions.
3078 LI->getParent()->getParent()->hasFnAttribute(
3079 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003080 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003081 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003082 return isDereferenceableAndAlignedPointer(
3083 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003084 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003085 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003086 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3087 switch (II->getIntrinsicID()) {
3088 // These synthetic intrinsics have no side-effects and just mark
3089 // information about their operands.
3090 // FIXME: There are other no-op synthetic instructions that potentially
3091 // should be considered at least *safe* to speculate...
3092 case Intrinsic::dbg_declare:
3093 case Intrinsic::dbg_value:
3094 return true;
3095
3096 case Intrinsic::bswap:
3097 case Intrinsic::ctlz:
3098 case Intrinsic::ctpop:
3099 case Intrinsic::cttz:
3100 case Intrinsic::objectsize:
3101 case Intrinsic::sadd_with_overflow:
3102 case Intrinsic::smul_with_overflow:
3103 case Intrinsic::ssub_with_overflow:
3104 case Intrinsic::uadd_with_overflow:
3105 case Intrinsic::umul_with_overflow:
3106 case Intrinsic::usub_with_overflow:
3107 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003108 // These intrinsics are defined to have the same behavior as libm
3109 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003110 case Intrinsic::sqrt:
3111 case Intrinsic::fma:
3112 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003113 return true;
3114 // These intrinsics are defined to have the same behavior as libm
3115 // functions, and the corresponding libm functions never set errno.
3116 case Intrinsic::trunc:
3117 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003118 case Intrinsic::fabs:
3119 case Intrinsic::minnum:
3120 case Intrinsic::maxnum:
3121 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003122 // These intrinsics are defined to have the same behavior as libm
3123 // functions, which never overflow when operating on the IEEE754 types
3124 // that we support, and never set errno otherwise.
3125 case Intrinsic::ceil:
3126 case Intrinsic::floor:
3127 case Intrinsic::nearbyint:
3128 case Intrinsic::rint:
3129 case Intrinsic::round:
3130 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003131 // TODO: are convert_{from,to}_fp16 safe?
3132 // TODO: can we list target-specific intrinsics here?
3133 default: break;
3134 }
3135 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003136 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003137 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003138 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003139 case Instruction::VAArg:
3140 case Instruction::Alloca:
3141 case Instruction::Invoke:
3142 case Instruction::PHI:
3143 case Instruction::Store:
3144 case Instruction::Ret:
3145 case Instruction::Br:
3146 case Instruction::IndirectBr:
3147 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003148 case Instruction::Unreachable:
3149 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003150 case Instruction::AtomicRMW:
3151 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003152 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003153 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003154 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003155 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003156 case Instruction::CatchRet:
3157 case Instruction::CleanupPad:
3158 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003159 return false; // Misc instructions which have effects
3160 }
3161}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003162
Quentin Colombet6443cce2015-08-06 18:44:34 +00003163bool llvm::mayBeMemoryDependent(const Instruction &I) {
3164 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3165}
3166
Sanjay Patelaee84212014-11-04 16:27:42 +00003167/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003168bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003169 assert(V->getType()->isPointerTy() && "V must be pointer type");
3170
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003171 // Alloca never returns null, malloc might.
3172 if (isa<AllocaInst>(V)) return true;
3173
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003174 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003175 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003176 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003177
Pete Cooper6b716212015-08-27 03:16:29 +00003178 // A global variable in address space 0 is non null unless extern weak.
3179 // Other address spaces may have null as a valid address for a global,
3180 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003181 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003182 return !GV->hasExternalWeakLinkage() &&
3183 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003184
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003185 // A Load tagged w/nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003186 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003187 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003188
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003189 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003190 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003191 return true;
3192
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003193 return false;
3194}
David Majnemer491331a2015-01-02 07:29:43 +00003195
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003196static bool isKnownNonNullFromDominatingCondition(const Value *V,
3197 const Instruction *CtxI,
3198 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003199 assert(V->getType()->isPointerTy() && "V must be pointer type");
3200
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003201 unsigned NumUsesExplored = 0;
3202 for (auto U : V->users()) {
3203 // Avoid massive lists
3204 if (NumUsesExplored >= DomConditionsMaxUses)
3205 break;
3206 NumUsesExplored++;
3207 // Consider only compare instructions uniquely controlling a branch
3208 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3209 if (!Cmp)
3210 continue;
3211
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003212 for (auto *CmpU : Cmp->users()) {
3213 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3214 if (!BI)
3215 continue;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003216
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003217 assert(BI->isConditional() && "uses a comparison!");
3218
3219 BasicBlock *NonNullSuccessor = nullptr;
3220 CmpInst::Predicate Pred;
3221
3222 if (match(const_cast<ICmpInst*>(Cmp),
3223 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3224 if (Pred == ICmpInst::ICMP_EQ)
3225 NonNullSuccessor = BI->getSuccessor(1);
3226 else if (Pred == ICmpInst::ICMP_NE)
3227 NonNullSuccessor = BI->getSuccessor(0);
3228 }
3229
3230 if (NonNullSuccessor) {
3231 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3232 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3233 return true;
3234 }
3235 }
3236 }
3237
3238 return false;
3239}
3240
3241bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3242 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3243 if (isKnownNonNull(V, TLI))
3244 return true;
3245
3246 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3247}
3248
David Majnemer491331a2015-01-02 07:29:43 +00003249OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003250 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003251 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003252 const Instruction *CxtI,
3253 const DominatorTree *DT) {
3254 // Multiplying n * m significant bits yields a result of n + m significant
3255 // bits. If the total number of significant bits does not exceed the
3256 // result bit width (minus 1), there is no overflow.
3257 // This means if we have enough leading zero bits in the operands
3258 // we can guarantee that the result does not overflow.
3259 // Ref: "Hacker's Delight" by Henry Warren
3260 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3261 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003262 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003263 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003264 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003265 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3266 DT);
3267 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3268 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003269 // Note that underestimating the number of zero bits gives a more
3270 // conservative answer.
3271 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3272 RHSKnownZero.countLeadingOnes();
3273 // First handle the easy case: if we have enough zero bits there's
3274 // definitely no overflow.
3275 if (ZeroBits >= BitWidth)
3276 return OverflowResult::NeverOverflows;
3277
3278 // Get the largest possible values for each operand.
3279 APInt LHSMax = ~LHSKnownZero;
3280 APInt RHSMax = ~RHSKnownZero;
3281
3282 // We know the multiply operation doesn't overflow if the maximum values for
3283 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003284 bool MaxOverflow;
3285 LHSMax.umul_ov(RHSMax, MaxOverflow);
3286 if (!MaxOverflow)
3287 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003288
David Majnemerc8a576b2015-01-02 07:29:47 +00003289 // We know it always overflows if multiplying the smallest possible values for
3290 // the operands also results in overflow.
3291 bool MinOverflow;
3292 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3293 if (MinOverflow)
3294 return OverflowResult::AlwaysOverflows;
3295
3296 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003297}
David Majnemer5310c1e2015-01-07 00:39:50 +00003298
3299OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003300 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003301 AssumptionCache *AC,
3302 const Instruction *CxtI,
3303 const DominatorTree *DT) {
3304 bool LHSKnownNonNegative, LHSKnownNegative;
3305 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3306 AC, CxtI, DT);
3307 if (LHSKnownNonNegative || LHSKnownNegative) {
3308 bool RHSKnownNonNegative, RHSKnownNegative;
3309 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3310 AC, CxtI, DT);
3311
3312 if (LHSKnownNegative && RHSKnownNegative) {
3313 // The sign bit is set in both cases: this MUST overflow.
3314 // Create a simple add instruction, and insert it into the struct.
3315 return OverflowResult::AlwaysOverflows;
3316 }
3317
3318 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3319 // The sign bit is clear in both cases: this CANNOT overflow.
3320 // Create a simple add instruction, and insert it into the struct.
3321 return OverflowResult::NeverOverflows;
3322 }
3323 }
3324
3325 return OverflowResult::MayOverflow;
3326}
James Molloy71b91c22015-05-11 14:42:20 +00003327
Jingyue Wu10fcea52015-08-20 18:27:04 +00003328static OverflowResult computeOverflowForSignedAdd(
3329 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3330 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3331 if (Add && Add->hasNoSignedWrap()) {
3332 return OverflowResult::NeverOverflows;
3333 }
3334
3335 bool LHSKnownNonNegative, LHSKnownNegative;
3336 bool RHSKnownNonNegative, RHSKnownNegative;
3337 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3338 AC, CxtI, DT);
3339 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3340 AC, CxtI, DT);
3341
3342 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3343 (LHSKnownNegative && RHSKnownNonNegative)) {
3344 // The sign bits are opposite: this CANNOT overflow.
3345 return OverflowResult::NeverOverflows;
3346 }
3347
3348 // The remaining code needs Add to be available. Early returns if not so.
3349 if (!Add)
3350 return OverflowResult::MayOverflow;
3351
3352 // If the sign of Add is the same as at least one of the operands, this add
3353 // CANNOT overflow. This is particularly useful when the sum is
3354 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3355 // operands.
3356 bool LHSOrRHSKnownNonNegative =
3357 (LHSKnownNonNegative || RHSKnownNonNegative);
3358 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3359 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3360 bool AddKnownNonNegative, AddKnownNegative;
3361 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3362 /*Depth=*/0, AC, CxtI, DT);
3363 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3364 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3365 return OverflowResult::NeverOverflows;
3366 }
3367 }
3368
3369 return OverflowResult::MayOverflow;
3370}
3371
3372OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3373 const DataLayout &DL,
3374 AssumptionCache *AC,
3375 const Instruction *CxtI,
3376 const DominatorTree *DT) {
3377 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3378 Add, DL, AC, CxtI, DT);
3379}
3380
3381OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3382 const DataLayout &DL,
3383 AssumptionCache *AC,
3384 const Instruction *CxtI,
3385 const DominatorTree *DT) {
3386 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3387}
3388
Jingyue Wu42f1d672015-07-28 18:22:40 +00003389bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3390 // FIXME: This conservative implementation can be relaxed. E.g. most
3391 // atomic operations are guaranteed to terminate on most platforms
3392 // and most functions terminate.
3393
3394 return !I->isAtomic() && // atomics may never succeed on some platforms
3395 !isa<CallInst>(I) && // could throw and might not terminate
3396 !isa<InvokeInst>(I) && // might not terminate and could throw to
3397 // non-successor (see bug 24185 for details).
3398 !isa<ResumeInst>(I) && // has no successors
3399 !isa<ReturnInst>(I); // has no successors
3400}
3401
3402bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3403 const Loop *L) {
3404 // The loop header is guaranteed to be executed for every iteration.
3405 //
3406 // FIXME: Relax this constraint to cover all basic blocks that are
3407 // guaranteed to be executed at every iteration.
3408 if (I->getParent() != L->getHeader()) return false;
3409
3410 for (const Instruction &LI : *L->getHeader()) {
3411 if (&LI == I) return true;
3412 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3413 }
3414 llvm_unreachable("Instruction not contained in its own parent basic block.");
3415}
3416
3417bool llvm::propagatesFullPoison(const Instruction *I) {
3418 switch (I->getOpcode()) {
3419 case Instruction::Add:
3420 case Instruction::Sub:
3421 case Instruction::Xor:
3422 case Instruction::Trunc:
3423 case Instruction::BitCast:
3424 case Instruction::AddrSpaceCast:
3425 // These operations all propagate poison unconditionally. Note that poison
3426 // is not any particular value, so xor or subtraction of poison with
3427 // itself still yields poison, not zero.
3428 return true;
3429
3430 case Instruction::AShr:
3431 case Instruction::SExt:
3432 // For these operations, one bit of the input is replicated across
3433 // multiple output bits. A replicated poison bit is still poison.
3434 return true;
3435
3436 case Instruction::Shl: {
3437 // Left shift *by* a poison value is poison. The number of
3438 // positions to shift is unsigned, so no negative values are
3439 // possible there. Left shift by zero places preserves poison. So
3440 // it only remains to consider left shift of poison by a positive
3441 // number of places.
3442 //
3443 // A left shift by a positive number of places leaves the lowest order bit
3444 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3445 // make the poison operand violate that flag, yielding a fresh full-poison
3446 // value.
3447 auto *OBO = cast<OverflowingBinaryOperator>(I);
3448 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3449 }
3450
3451 case Instruction::Mul: {
3452 // A multiplication by zero yields a non-poison zero result, so we need to
3453 // rule out zero as an operand. Conservatively, multiplication by a
3454 // non-zero constant is not multiplication by zero.
3455 //
3456 // Multiplication by a non-zero constant can leave some bits
3457 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3458 // order bit unpoisoned. So we need to consider that.
3459 //
3460 // Multiplication by 1 preserves poison. If the multiplication has a
3461 // no-wrap flag, then we can make the poison operand violate that flag
3462 // when multiplied by any integer other than 0 and 1.
3463 auto *OBO = cast<OverflowingBinaryOperator>(I);
3464 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3465 for (Value *V : OBO->operands()) {
3466 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3467 // A ConstantInt cannot yield poison, so we can assume that it is
3468 // the other operand that is poison.
3469 return !CI->isZero();
3470 }
3471 }
3472 }
3473 return false;
3474 }
3475
3476 case Instruction::GetElementPtr:
3477 // A GEP implicitly represents a sequence of additions, subtractions,
3478 // truncations, sign extensions and multiplications. The multiplications
3479 // are by the non-zero sizes of some set of types, so we do not have to be
3480 // concerned with multiplication by zero. If the GEP is in-bounds, then
3481 // these operations are implicitly no-signed-wrap so poison is propagated
3482 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3483 return cast<GEPOperator>(I)->isInBounds();
3484
3485 default:
3486 return false;
3487 }
3488}
3489
3490const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3491 switch (I->getOpcode()) {
3492 case Instruction::Store:
3493 return cast<StoreInst>(I)->getPointerOperand();
3494
3495 case Instruction::Load:
3496 return cast<LoadInst>(I)->getPointerOperand();
3497
3498 case Instruction::AtomicCmpXchg:
3499 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3500
3501 case Instruction::AtomicRMW:
3502 return cast<AtomicRMWInst>(I)->getPointerOperand();
3503
3504 case Instruction::UDiv:
3505 case Instruction::SDiv:
3506 case Instruction::URem:
3507 case Instruction::SRem:
3508 return I->getOperand(1);
3509
3510 default:
3511 return nullptr;
3512 }
3513}
3514
3515bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3516 // We currently only look for uses of poison values within the same basic
3517 // block, as that makes it easier to guarantee that the uses will be
3518 // executed given that PoisonI is executed.
3519 //
3520 // FIXME: Expand this to consider uses beyond the same basic block. To do
3521 // this, look out for the distinction between post-dominance and strong
3522 // post-dominance.
3523 const BasicBlock *BB = PoisonI->getParent();
3524
3525 // Set of instructions that we have proved will yield poison if PoisonI
3526 // does.
3527 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003528 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003529 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003530 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003531
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003532 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003533
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003534 unsigned Iter = 0;
3535 while (Iter++ < MaxDepth) {
3536 for (auto &I : make_range(Begin, End)) {
3537 if (&I != PoisonI) {
3538 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3539 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3540 return true;
3541 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3542 return false;
3543 }
3544
3545 // Mark poison that propagates from I through uses of I.
3546 if (YieldsPoison.count(&I)) {
3547 for (const User *User : I.users()) {
3548 const Instruction *UserI = cast<Instruction>(User);
3549 if (propagatesFullPoison(UserI))
3550 YieldsPoison.insert(User);
3551 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003552 }
3553 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003554
3555 if (auto *NextBB = BB->getSingleSuccessor()) {
3556 if (Visited.insert(NextBB).second) {
3557 BB = NextBB;
3558 Begin = BB->getFirstNonPHI()->getIterator();
3559 End = BB->end();
3560 continue;
3561 }
3562 }
3563
3564 break;
3565 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003566 return false;
3567}
3568
James Molloy134bec22015-08-11 09:12:57 +00003569static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3570 if (FMF.noNaNs())
3571 return true;
3572
3573 if (auto *C = dyn_cast<ConstantFP>(V))
3574 return !C->isNaN();
3575 return false;
3576}
3577
3578static bool isKnownNonZero(Value *V) {
3579 if (auto *C = dyn_cast<ConstantFP>(V))
3580 return !C->isZero();
3581 return false;
3582}
3583
3584static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3585 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003586 Value *CmpLHS, Value *CmpRHS,
3587 Value *TrueVal, Value *FalseVal,
3588 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003589 LHS = CmpLHS;
3590 RHS = CmpRHS;
3591
James Molloy134bec22015-08-11 09:12:57 +00003592 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3593 // return inconsistent results between implementations.
3594 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3595 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3596 // Therefore we behave conservatively and only proceed if at least one of the
3597 // operands is known to not be zero, or if we don't care about signed zeroes.
3598 switch (Pred) {
3599 default: break;
3600 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3601 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3602 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3603 !isKnownNonZero(CmpRHS))
3604 return {SPF_UNKNOWN, SPNB_NA, false};
3605 }
3606
3607 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3608 bool Ordered = false;
3609
3610 // When given one NaN and one non-NaN input:
3611 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3612 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3613 // ordered comparison fails), which could be NaN or non-NaN.
3614 // so here we discover exactly what NaN behavior is required/accepted.
3615 if (CmpInst::isFPPredicate(Pred)) {
3616 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3617 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3618
3619 if (LHSSafe && RHSSafe) {
3620 // Both operands are known non-NaN.
3621 NaNBehavior = SPNB_RETURNS_ANY;
3622 } else if (CmpInst::isOrdered(Pred)) {
3623 // An ordered comparison will return false when given a NaN, so it
3624 // returns the RHS.
3625 Ordered = true;
3626 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003627 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003628 NaNBehavior = SPNB_RETURNS_NAN;
3629 else if (RHSSafe)
3630 NaNBehavior = SPNB_RETURNS_OTHER;
3631 else
3632 // Completely unsafe.
3633 return {SPF_UNKNOWN, SPNB_NA, false};
3634 } else {
3635 Ordered = false;
3636 // An unordered comparison will return true when given a NaN, so it
3637 // returns the LHS.
3638 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003639 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003640 NaNBehavior = SPNB_RETURNS_OTHER;
3641 else if (RHSSafe)
3642 NaNBehavior = SPNB_RETURNS_NAN;
3643 else
3644 // Completely unsafe.
3645 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003646 }
3647 }
3648
James Molloy71b91c22015-05-11 14:42:20 +00003649 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003650 std::swap(CmpLHS, CmpRHS);
3651 Pred = CmpInst::getSwappedPredicate(Pred);
3652 if (NaNBehavior == SPNB_RETURNS_NAN)
3653 NaNBehavior = SPNB_RETURNS_OTHER;
3654 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3655 NaNBehavior = SPNB_RETURNS_NAN;
3656 Ordered = !Ordered;
3657 }
3658
3659 // ([if]cmp X, Y) ? X : Y
3660 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003661 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003662 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003663 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003664 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003665 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003666 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003667 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003668 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003669 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003670 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3671 case FCmpInst::FCMP_UGT:
3672 case FCmpInst::FCMP_UGE:
3673 case FCmpInst::FCMP_OGT:
3674 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3675 case FCmpInst::FCMP_ULT:
3676 case FCmpInst::FCMP_ULE:
3677 case FCmpInst::FCMP_OLT:
3678 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003679 }
3680 }
3681
3682 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3683 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3684 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3685
3686 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3687 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3688 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003689 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003690 }
3691
3692 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3693 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3694 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003695 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003696 }
3697 }
Sanjoy Dasc9d6d8b2016-03-31 05:14:29 +00003698
James Molloy71b91c22015-05-11 14:42:20 +00003699 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3700 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
Sanjoy Das56df0ec2016-03-31 05:14:34 +00003701 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3702 ~C1->getValue() == C2->getValue() &&
James Molloy71b91c22015-05-11 14:42:20 +00003703 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3704 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3705 LHS = TrueVal;
3706 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003707 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003708 }
3709 }
3710 }
3711
3712 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3713
James Molloy134bec22015-08-11 09:12:57 +00003714 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003715}
James Molloy270ef8c2015-05-15 16:04:50 +00003716
James Molloy569cea62015-09-02 17:25:25 +00003717static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3718 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003719 CastInst *CI = dyn_cast<CastInst>(V1);
3720 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003721 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003722 return nullptr;
3723 *CastOp = CI->getOpcode();
3724
David Majnemerd2a074b2016-04-29 18:40:34 +00003725 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00003726 // If V1 and V2 are both the same cast from the same type, we can look
3727 // through V1.
3728 if (CI2->getOpcode() == CI->getOpcode() &&
3729 CI2->getSrcTy() == CI->getSrcTy())
3730 return CI2->getOperand(0);
3731 return nullptr;
3732 } else if (!C) {
3733 return nullptr;
3734 }
3735
David Majnemerd2a074b2016-04-29 18:40:34 +00003736 Constant *CastedTo = nullptr;
3737
David Majnemer826e9832016-04-29 21:22:04 +00003738 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3739 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3740
David Majnemerd2a074b2016-04-29 18:40:34 +00003741 if (isa<SExtInst>(CI) && CmpI->isSigned())
3742 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3743
David Majnemer826e9832016-04-29 21:22:04 +00003744 if (isa<TruncInst>(CI))
3745 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3746
3747 if (isa<FPTruncInst>(CI))
3748 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3749
3750 if (isa<FPExtInst>(CI))
3751 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3752
David Majnemerd2a074b2016-04-29 18:40:34 +00003753 if (isa<FPToUIInst>(CI))
3754 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3755
3756 if (isa<FPToSIInst>(CI))
3757 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3758
3759 if (isa<UIToFPInst>(CI))
3760 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3761
3762 if (isa<SIToFPInst>(CI))
3763 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3764
3765 if (!CastedTo)
3766 return nullptr;
3767
3768 Constant *CastedBack =
3769 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3770 // Make sure the cast doesn't lose any information.
3771 if (CastedBack != C)
3772 return nullptr;
3773
3774 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00003775}
3776
James Molloy134bec22015-08-11 09:12:57 +00003777SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00003778 Value *&LHS, Value *&RHS,
3779 Instruction::CastOps *CastOp) {
3780 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003781 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003782
James Molloy134bec22015-08-11 09:12:57 +00003783 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3784 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003785
James Molloy134bec22015-08-11 09:12:57 +00003786 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003787 Value *CmpLHS = CmpI->getOperand(0);
3788 Value *CmpRHS = CmpI->getOperand(1);
3789 Value *TrueVal = SI->getTrueValue();
3790 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003791 FastMathFlags FMF;
3792 if (isa<FPMathOperator>(CmpI))
3793 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003794
3795 // Bail out early.
3796 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003797 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003798
3799 // Deal with type mismatches.
3800 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003801 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003802 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003803 cast<CastInst>(TrueVal)->getOperand(0), C,
3804 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00003805 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003806 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003807 C, cast<CastInst>(FalseVal)->getOperand(0),
3808 LHS, RHS);
3809 }
James Molloy134bec22015-08-11 09:12:57 +00003810 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00003811 LHS, RHS);
3812}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00003813
3814ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3815 const unsigned NumRanges = Ranges.getNumOperands() / 2;
3816 assert(NumRanges >= 1 && "Must have at least one range!");
3817 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3818
3819 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3820 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3821
3822 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3823
3824 for (unsigned i = 1; i < NumRanges; ++i) {
3825 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3826 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3827
3828 // Note: unionWith will potentially create a range that contains values not
3829 // contained in any of the original N ranges.
3830 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3831 }
3832
3833 return CR;
3834}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003835
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003836/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003837static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3838 const DataLayout &DL, unsigned Depth,
3839 AssumptionCache *AC, const Instruction *CxtI,
3840 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003841 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003842 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3843 return true;
3844
3845 switch (Pred) {
3846 default:
3847 return false;
3848
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003849 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003850 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003851
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003852 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003853 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003854 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003855 return false;
3856 }
3857
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003858 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003859 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003860
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003861 // LHS u<= LHS +_{nuw} C for any C
3862 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00003863 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00003864
3865 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3866 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3867 const APInt *&CA, const APInt *&CB) {
3868 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3869 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3870 return true;
3871
3872 // If X & C == 0 then (X | C) == X +_{nuw} C
3873 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3874 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3875 unsigned BitWidth = CA->getBitWidth();
3876 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3877 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3878
3879 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3880 return true;
3881 }
3882
3883 return false;
3884 };
3885
3886 Value *X;
3887 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003888 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
3889 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00003890
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003891 return false;
3892 }
3893 }
3894}
3895
3896/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00003897/// ALHS ARHS" is true. Otherwise, return None.
3898static Optional<bool>
3899isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
3900 Value *BLHS, Value *BRHS, const DataLayout &DL,
3901 unsigned Depth, AssumptionCache *AC,
3902 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003903 switch (Pred) {
3904 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003905 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003906
3907 case CmpInst::ICMP_SLT:
3908 case CmpInst::ICMP_SLE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003909 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
3910 DT) &&
3911 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3912 return true;
3913 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003914
3915 case CmpInst::ICMP_ULT:
3916 case CmpInst::ICMP_ULE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003917 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
3918 DT) &&
3919 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3920 return true;
3921 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003922 }
3923}
3924
Chad Rosier226a7342016-05-05 17:41:19 +00003925/// Return true if the operands of the two compares match. IsSwappedOps is true
3926/// when the operands match, but are swapped.
3927static bool isMatchingOps(Value *ALHS, Value *ARHS, Value *BLHS, Value *BRHS,
3928 bool &IsSwappedOps) {
3929
3930 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
3931 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
3932 return IsMatchingOps || IsSwappedOps;
3933}
3934
Chad Rosier41dd31f2016-04-20 19:15:26 +00003935/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
3936/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
3937/// BRHS" is false. Otherwise, return None if we can't infer anything.
3938static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
3939 Value *ALHS, Value *ARHS,
3940 CmpInst::Predicate BPred,
Chad Rosier226a7342016-05-05 17:41:19 +00003941 Value *BLHS, Value *BRHS,
3942 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003943 // Canonicalize the operands so they're matching.
3944 if (IsSwappedOps) {
3945 std::swap(BLHS, BRHS);
3946 BPred = ICmpInst::getSwappedPredicate(BPred);
3947 }
Chad Rosier99bc4802016-04-21 16:18:02 +00003948 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003949 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00003950 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00003951 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003952
Chad Rosier41dd31f2016-04-20 19:15:26 +00003953 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003954}
3955
Chad Rosier25cfb7d2016-05-05 15:39:18 +00003956/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
3957/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
3958/// C2" is false. Otherwise, return None if we can't infer anything.
3959static Optional<bool>
3960isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, Value *ALHS,
3961 ConstantInt *C1, CmpInst::Predicate BPred,
3962 Value *BLHS, ConstantInt *C2) {
3963 assert(ALHS == BLHS && "LHS operands must match.");
3964 ConstantRange DomCR =
3965 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
3966 ConstantRange CR =
3967 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
3968 ConstantRange Intersection = DomCR.intersectWith(CR);
3969 ConstantRange Difference = DomCR.difference(CR);
3970 if (Intersection.isEmptySet())
3971 return false;
3972 if (Difference.isEmptySet())
3973 return true;
3974 return None;
3975}
3976
Chad Rosier41dd31f2016-04-20 19:15:26 +00003977Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00003978 const DataLayout &DL, bool InvertAPred,
3979 unsigned Depth, AssumptionCache *AC,
Chad Rosier41dd31f2016-04-20 19:15:26 +00003980 const Instruction *CxtI,
3981 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00003982 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
3983 if (LHS->getType() != RHS->getType())
3984 return None;
3985
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003986 Type *OpTy = LHS->getType();
3987 assert(OpTy->getScalarType()->isIntegerTy(1));
3988
3989 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00003990 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003991 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003992
3993 if (OpTy->isVectorTy())
3994 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00003995 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003996 assert(OpTy->isIntegerTy(1) && "implied by above");
3997
3998 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003999 Value *ALHS, *ARHS;
4000 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004001
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004002 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4003 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004004 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004005
Chad Rosiere2cbd132016-04-25 17:23:36 +00004006 if (InvertAPred)
4007 APred = CmpInst::getInversePredicate(APred);
4008
Chad Rosier226a7342016-05-05 17:41:19 +00004009 // Can we infer anything when the two compares have matching operands?
4010 bool IsSwappedOps;
4011 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4012 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4013 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004014 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004015 // No amount of additional analysis will infer the second condition, so
4016 // early exit.
4017 return None;
4018 }
4019
4020 // Can we infer anything when the LHS operands match and the RHS operands are
4021 // constants (not necessarily matching)?
4022 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4023 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4024 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4025 cast<ConstantInt>(BRHS)))
4026 return Implication;
4027 // No amount of additional analysis will infer the second condition, so
4028 // early exit.
4029 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004030 }
4031
Chad Rosier41dd31f2016-04-20 19:15:26 +00004032 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004033 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4034 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004035
Chad Rosier41dd31f2016-04-20 19:15:26 +00004036 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004037}