blob: 1f32f9f24aac442a42de22855b42b28ef33d0883 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Justin Bognerc2bf63d2016-04-26 23:39:29 +000023#include "llvm/Transforms/Scalar/Reassociate.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000024#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/APInt.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000026#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/PostOrderIterator.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include "llvm/ADT/SetVector.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000029#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000031#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000032#include "llvm/Analysis/GlobalsModRef.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000033#include "llvm/Analysis/ValueTracking.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000034#include "llvm/IR/Argument.h"
35#include "llvm/IR/BasicBlock.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000036#include "llvm/IR/CFG.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000037#include "llvm/IR/Constant.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000038#include "llvm/IR/Constants.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000039#include "llvm/IR/Function.h"
40#include "llvm/IR/IRBuilder.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000041#include "llvm/IR/InstrTypes.h"
42#include "llvm/IR/Instruction.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000043#include "llvm/IR/Instructions.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000044#include "llvm/IR/Operator.h"
45#include "llvm/IR/PassManager.h"
Craig Toppercbac691c2017-06-21 16:07:09 +000046#include "llvm/IR/PatternMatch.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000047#include "llvm/IR/Type.h"
48#include "llvm/IR/User.h"
49#include "llvm/IR/Value.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000050#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000051#include "llvm/Pass.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000052#include "llvm/Support/Casting.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000053#include "llvm/Support/Debug.h"
Eugene Zelenko306d2992017-10-18 21:46:47 +000054#include "llvm/Support/ErrorHandling.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000055#include "llvm/Support/raw_ostream.h"
Justin Bognerc2bf63d2016-04-26 23:39:29 +000056#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000057#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000058#include <algorithm>
Eugene Zelenko306d2992017-10-18 21:46:47 +000059#include <cassert>
60#include <utility>
61
Chris Lattner49525f82004-01-09 06:02:20 +000062using namespace llvm;
Justin Bognerc2bf63d2016-04-26 23:39:29 +000063using namespace reassociate;
Brian Gaeke960707c2003-11-11 22:41:34 +000064
Chandler Carruth964daaa2014-04-22 02:55:47 +000065#define DEBUG_TYPE "reassociate"
66
Chris Lattner79a42ac2006-12-19 21:40:18 +000067STATISTIC(NumChanged, "Number of insts reassociated");
68STATISTIC(NumAnnihil, "Number of expr tree annihilated");
69STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000070
Devang Patel702f45d2008-11-21 21:00:20 +000071#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000072/// Print out the expression identified in the Ops list.
Chris Lattner38abecb2009-12-31 18:40:32 +000073static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000074 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000075 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000076 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000077 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000078 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000079 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000080 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000081 }
Chris Lattner4c065092006-03-04 09:31:13 +000082}
Devang Patelcb181bb2008-11-21 20:00:59 +000083#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000084
Justin Bognerc2bf63d2016-04-26 23:39:29 +000085/// Utility class representing a non-constant Xor-operand. We classify
86/// non-constant Xor-Operands into two categories:
87/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
88/// C2)
89/// C2.1) The operand is in the form of "X | C", where C is a non-zero
90/// constant.
91/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
92/// operand as "E | 0"
93class llvm::reassociate::XorOpnd {
94public:
95 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000096
Justin Bognerc2bf63d2016-04-26 23:39:29 +000097 bool isInvalid() const { return SymbolicPart == nullptr; }
98 bool isOrExpr() const { return isOr; }
99 Value *getValue() const { return OrigVal; }
100 Value *getSymbolicPart() const { return SymbolicPart; }
101 unsigned getSymbolicRank() const { return SymbolicRank; }
102 const APInt &getConstPart() const { return ConstPart; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000103
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000104 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
105 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000106
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000107private:
108 Value *OrigVal;
109 Value *SymbolicPart;
110 APInt ConstPart;
111 unsigned SymbolicRank;
112 bool isOr;
113};
Chris Lattnerc0f58002002-05-08 22:19:27 +0000114
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000115XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000116 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000117 OrigVal = V;
118 Instruction *I = dyn_cast<Instruction>(V);
119 SymbolicRank = 0;
120
121 if (I && (I->getOpcode() == Instruction::Or ||
122 I->getOpcode() == Instruction::And)) {
123 Value *V0 = I->getOperand(0);
124 Value *V1 = I->getOperand(1);
Craig Toppercbac691c2017-06-21 16:07:09 +0000125 const APInt *C;
126 if (match(V0, PatternMatch::m_APInt(C)))
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000127 std::swap(V0, V1);
128
Craig Toppercbac691c2017-06-21 16:07:09 +0000129 if (match(V1, PatternMatch::m_APInt(C))) {
130 ConstPart = *C;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000131 SymbolicPart = V0;
132 isOr = (I->getOpcode() == Instruction::Or);
133 return;
134 }
135 }
136
137 // view the operand as "V | 0"
138 SymbolicPart = V;
Craig Toppercbac691c2017-06-21 16:07:09 +0000139 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000140 isOr = true;
141}
142
Sanjay Patelc96ee082015-04-22 18:04:46 +0000143/// Return true if V is an instruction of the specified opcode and if it
144/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000145static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
146 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000147 cast<Instruction>(V)->getOpcode() == Opcode &&
Sanjay Patel629c4112017-11-06 16:27:15 +0000148 (!isa<FPMathOperator>(V) || cast<Instruction>(V)->isFast()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000149 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000150 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000151}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000152
Chad Rosier11ab9412014-08-14 15:23:01 +0000153static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
154 unsigned Opcode2) {
155 if (V->hasOneUse() && isa<Instruction>(V) &&
156 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000157 cast<Instruction>(V)->getOpcode() == Opcode2) &&
Sanjay Patel629c4112017-11-06 16:27:15 +0000158 (!isa<FPMathOperator>(V) || cast<Instruction>(V)->isFast()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000159 return cast<BinaryOperator>(V);
160 return nullptr;
161}
162
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000163void ReassociatePass::BuildRankMap(Function &F,
164 ReversePostOrderTraversal<Function*> &RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000165 unsigned Rank = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000166
Chad Rosierf59e5482014-11-14 15:01:38 +0000167 // Assign distinct ranks to function arguments.
Davide Italianob53b0752017-08-07 01:57:21 +0000168 for (auto &Arg : F.args()) {
169 ValueRankMap[&Arg] = ++Rank;
170 DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
171 << "\n");
Chad Rosierf59e5482014-11-14 15:01:38 +0000172 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000173
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000174 // Traverse basic blocks in ReversePostOrder
Benjamin Kramer135f7352016-06-26 12:28:59 +0000175 for (BasicBlock *BB : RPOT) {
Davide Italianob53b0752017-08-07 01:57:21 +0000176 unsigned BBRank = RankMap[BB] = ++Rank << 16;
Chris Lattner9f284e02005-05-08 20:57:04 +0000177
178 // Walk the basic block, adding precomputed ranks for any instructions that
179 // we cannot move. This ensures that the ranks for these instructions are
180 // all different in the block.
Benjamin Kramer135f7352016-06-26 12:28:59 +0000181 for (Instruction &I : *BB)
182 if (mayBeMemoryDependent(I))
183 ValueRankMap[&I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000184 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000185}
186
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000187unsigned ReassociatePass::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000188 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000189 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000190 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
191 return 0; // Otherwise it's a global or constant, rank 0.
192 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000193
Chris Lattner17229a72010-01-01 00:01:34 +0000194 if (unsigned Rank = ValueRankMap[I])
195 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000196
Chris Lattnerf43e9742005-05-07 04:08:02 +0000197 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
198 // we can reassociate expressions for code motion! Since we do not recurse
199 // for PHI nodes, we cannot have infinite recursion here, because there
200 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000201 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
202 for (unsigned i = 0, e = I->getNumOperands();
203 i != e && Rank != MaxRank; ++i)
204 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000205
Chris Lattner6e2086d2005-05-08 00:08:33 +0000206 // If this is a not or neg instruction, do not count it for rank. This
207 // assures us that X and ~X will have the same rank.
Robert Lougher1858ba72015-03-13 20:53:01 +0000208 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
209 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000210 ++Rank;
211
Chad Rosierf59e5482014-11-14 15:01:38 +0000212 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000213
Chris Lattner17229a72010-01-01 00:01:34 +0000214 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000215}
216
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000217// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000218void ReassociatePass::canonicalizeOperands(Instruction *I) {
Chad Rosierf8b55f12014-11-14 17:05:59 +0000219 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
220 assert(I->isCommutative() && "Expected commutative operator.");
221
222 Value *LHS = I->getOperand(0);
223 Value *RHS = I->getOperand(1);
Davide Italianoa5cdc222017-08-07 01:49:09 +0000224 if (LHS == RHS || isa<Constant>(RHS))
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000225 return;
Davide Italianoa5cdc222017-08-07 01:49:09 +0000226 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
Chad Rosierf8b55f12014-11-14 17:05:59 +0000227 cast<BinaryOperator>(I)->swapOperands();
228}
229
Chad Rosier11ab9412014-08-14 15:23:01 +0000230static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
231 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000232 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000233 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
234 else {
235 BinaryOperator *Res =
236 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
237 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
238 return Res;
239 }
240}
241
242static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
243 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000244 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000245 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
246 else {
247 BinaryOperator *Res =
248 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
249 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
250 return Res;
251 }
252}
253
254static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
255 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000256 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000257 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
258 else {
259 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
260 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
261 return Res;
262 }
263}
264
Sanjay Patelc96ee082015-04-22 18:04:46 +0000265/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000266static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000267 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000268 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
269 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000270
Chad Rosier11ab9412014-08-14 15:23:01 +0000271 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
272 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000273 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000274 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000275 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000276 return Res;
277}
278
Sanjay Patelc96ee082015-04-22 18:04:46 +0000279/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
280/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000281/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
282/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
283/// even x in Bitwidth-bit arithmetic.
284static unsigned CarmichaelShift(unsigned Bitwidth) {
285 if (Bitwidth < 3)
286 return Bitwidth - 1;
287 return Bitwidth - 2;
288}
289
Sanjay Patelc96ee082015-04-22 18:04:46 +0000290/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000291/// reducing the combined weight using any special properties of the operation.
292/// The existing weight LHS represents the computation X op X op ... op X where
293/// X occurs LHS times. The combined weight represents X op X op ... op X with
294/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
295/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
296/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
297static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
298 // If we were working with infinite precision arithmetic then the combined
299 // weight would be LHS + RHS. But we are using finite precision arithmetic,
300 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
301 // for nilpotent operations and addition, but not for idempotent operations
302 // and multiplication), so it is important to correctly reduce the combined
303 // weight back into range if wrapping would be wrong.
304
305 // If RHS is zero then the weight didn't change.
306 if (RHS.isMinValue())
307 return;
308 // If LHS is zero then the combined weight is RHS.
309 if (LHS.isMinValue()) {
310 LHS = RHS;
311 return;
312 }
313 // From this point on we know that neither LHS nor RHS is zero.
314
315 if (Instruction::isIdempotent(Opcode)) {
316 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
317 // weight of 1. Keeping weights at zero or one also means that wrapping is
318 // not a problem.
319 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
320 return; // Return a weight of 1.
321 }
322 if (Instruction::isNilpotent(Opcode)) {
323 // Nilpotent means X op X === 0, so reduce weights modulo 2.
324 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
325 LHS = 0; // 1 + 1 === 0 modulo 2.
326 return;
327 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000328 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000329 // TODO: Reduce the weight by exploiting nsw/nuw?
330 LHS += RHS;
331 return;
332 }
333
Chad Rosier11ab9412014-08-14 15:23:01 +0000334 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
335 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000336 unsigned Bitwidth = LHS.getBitWidth();
337 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
338 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
339 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
340 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
341 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
342 // which by a happy accident means that they can always be represented using
343 // Bitwidth bits.
344 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
345 // the Carmichael number).
346 if (Bitwidth > 3) {
347 /// CM - The value of Carmichael's lambda function.
348 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
349 // Any weight W >= Threshold can be replaced with W - CM.
350 APInt Threshold = CM + Bitwidth;
351 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
352 // For Bitwidth 4 or more the following sum does not overflow.
353 LHS += RHS;
354 while (LHS.uge(Threshold))
355 LHS -= CM;
356 } else {
357 // To avoid problems with overflow do everything the same as above but using
358 // a larger type.
359 unsigned CM = 1U << CarmichaelShift(Bitwidth);
360 unsigned Threshold = CM + Bitwidth;
361 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
362 "Weights not reduced!");
363 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
364 while (Total >= Threshold)
365 Total -= CM;
366 LHS = Total;
367 }
368}
369
Eugene Zelenko306d2992017-10-18 21:46:47 +0000370using RepeatedValue = std::pair<Value*, APInt>;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000371
Sanjay Patelc96ee082015-04-22 18:04:46 +0000372/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000373/// nodes in Ops along with their weights (how many times the leaf occurs). The
374/// original expression is the same as
375/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000376/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000377/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
378/// op
379/// ...
380/// op
381/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
382///
Duncan Sandsac852c72012-11-15 09:58:38 +0000383/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000384///
385/// This routine may modify the function, in which case it returns 'true'. The
386/// changes it makes may well be destructive, changing the value computed by 'I'
387/// to something completely different. Thus if the routine returns 'true' then
388/// you MUST either replace I with a new expression computed from the Ops array,
389/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000390///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000391/// A leaf node is either not a binary operation of the same kind as the root
392/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
393/// opcode), or is the same kind of binary operator but has a use which either
394/// does not belong to the expression, or does belong to the expression but is
395/// a leaf node. Every leaf node has at least one use that is a non-leaf node
396/// of the expression, while for non-leaf nodes (except for the root 'I') every
397/// use is a non-leaf node of the expression.
398///
399/// For example:
400/// expression graph node names
401///
402/// + | I
403/// / \ |
404/// + + | A, B
405/// / \ / \ |
406/// * + * | C, D, E
407/// / \ / \ / \ |
408/// + * | F, G
409///
410/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000411/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000412///
413/// The expression is maximal: if some instruction is a binary operator of the
414/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
415/// then the instruction also belongs to the expression, is not a leaf node of
416/// it, and its operands also belong to the expression (but may be leaf nodes).
417///
418/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
419/// order to ensure that every non-root node in the expression has *exactly one*
420/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000421/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000422/// RewriteExprTree to put the values back in if the routine indicates that it
423/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000424///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000425/// In the above example either the right operand of A or the left operand of B
426/// will be replaced by undef. If it is B's operand then this gives:
427///
428/// + | I
429/// / \ |
430/// + + | A, B - operand of B replaced with undef
431/// / \ \ |
432/// * + * | C, D, E
433/// / \ / \ / \ |
434/// + * | F, G
435///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000436/// Note that such undef operands can only be reached by passing through 'I'.
437/// For example, if you visit operands recursively starting from a leaf node
438/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000439/// which requires passing through a phi node.
440///
441/// Note that this routine may also mutate binary operators of the wrong type
442/// that have all uses inside the expression (i.e. only used by non-leaf nodes
443/// of the expression) if it can turn them into binary operators of the right
444/// type and thus make the expression bigger.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000445static bool LinearizeExprTree(BinaryOperator *I,
446 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000447 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000448 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
449 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000450 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000451 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000452
453 // Visit all operands of the expression, keeping track of their weight (the
454 // number of paths from the expression root to the operand, or if you like
455 // the number of times that operand occurs in the linearized expression).
456 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
457 // while A has weight two.
458
459 // Worklist of non-leaf nodes (their operands are in the expression too) along
460 // with their weights, representing a certain number of paths to the operator.
461 // If an operator occurs in the worklist multiple times then we found multiple
462 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000463 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
464 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000465 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000466
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000467 // Leaves of the expression are values that either aren't the right kind of
468 // operation (eg: a constant, or a multiply in an add tree), or are, but have
469 // some uses that are not inside the expression. For example, in I = X + X,
470 // X = A + B, the value X has two uses (by I) that are in the expression. If
471 // X has any other uses, for example in a return instruction, then we consider
472 // X to be a leaf, and won't analyze it further. When we first visit a value,
473 // if it has more than one use then at first we conservatively consider it to
474 // be a leaf. Later, as the expression is explored, we may discover some more
475 // uses of the value from inside the expression. If all uses turn out to be
476 // from within the expression (and the value is a binary operator of the right
477 // kind) then the value is no longer considered to be a leaf, and its operands
478 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000479
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000480 // Leaves - Keeps track of the set of putative leaves as well as the number of
481 // paths to each leaf seen so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000482 using LeafMap = DenseMap<Value *, APInt>;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000483 LeafMap Leaves; // Leaf -> Total weight so far.
Eugene Zelenko306d2992017-10-18 21:46:47 +0000484 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000485
486#ifndef NDEBUG
Eugene Zelenko306d2992017-10-18 21:46:47 +0000487 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000488#endif
489 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000490 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000491 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000492
493 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
494 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000495 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000496 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
497 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
498
499 // If this is a binary operation of the right kind with only one use then
500 // add its operands to the expression.
501 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000502 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000503 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
504 Worklist.push_back(std::make_pair(BO, Weight));
505 continue;
506 }
507
508 // Appears to be a leaf. Is the operand already in the set of leaves?
509 LeafMap::iterator It = Leaves.find(Op);
510 if (It == Leaves.end()) {
511 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000512 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000513 if (!Op->hasOneUse()) {
514 // This value has uses not accounted for by the expression, so it is
515 // not safe to modify. Mark it as being a leaf.
516 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
517 LeafOrder.push_back(Op);
518 Leaves[Op] = Weight;
519 continue;
520 }
521 // No uses outside the expression, try morphing it.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000522 } else {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000523 // Already in the leaf map.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000524 assert(It != Leaves.end() && Visited.count(Op) &&
525 "In leaf map but not visited!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000526
527 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000528 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000529
Duncan Sands56514522012-07-26 09:26:40 +0000530#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000531 // The leaf already has one use from inside the expression. As we want
532 // exactly one such use, drop this new use of the leaf.
533 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
534 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000535 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000536
537 // If the leaf is a binary operation of the right kind and we now see
538 // that its multiple original uses were in fact all by nodes belonging
539 // to the expression, then no longer consider it to be a leaf and add
540 // its operands to the expression.
541 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
542 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
543 Worklist.push_back(std::make_pair(BO, It->second));
544 Leaves.erase(It);
545 continue;
546 }
Duncan Sands56514522012-07-26 09:26:40 +0000547#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000548
549 // If we still have uses that are not accounted for by the expression
550 // then it is not safe to modify the value.
551 if (!Op->hasOneUse())
552 continue;
553
554 // No uses outside the expression, try morphing it.
555 Weight = It->second;
556 Leaves.erase(It); // Since the value may be morphed below.
557 }
558
559 // At this point we have a value which, first of all, is not a binary
560 // expression of the right kind, and secondly, is only used inside the
561 // expression. This means that it can safely be modified. See if we
562 // can usefully morph it into an expression of the right kind.
563 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000564 cast<Instruction>(Op)->getOpcode() != Opcode
565 || (isa<FPMathOperator>(Op) &&
Sanjay Patel629c4112017-11-06 16:27:15 +0000566 !cast<Instruction>(Op)->isFast())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000567 "Should have been handled above!");
568 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
569
570 // If this is a multiply expression, turn any internal negations into
571 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000572 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
573 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
574 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
575 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
576 BO = LowerNegateToMultiply(BO);
577 DEBUG(dbgs() << *BO << '\n');
578 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000579 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000580 continue;
581 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000582
583 // Failed to morph into an expression of the right type. This really is
584 // a leaf.
585 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
586 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
587 LeafOrder.push_back(Op);
588 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000589 }
590 }
591
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000592 // The leaves, repeated according to their weights, represent the linearized
593 // form of the expression.
594 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
595 Value *V = LeafOrder[i];
596 LeafMap::iterator It = Leaves.find(V);
597 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000598 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000599 continue;
600 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000601 APInt Weight = It->second;
602 if (Weight.isMinValue())
603 // Leaf already output or weight reduction eliminated it.
604 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000605 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000606 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000607 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000608 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000609
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000610 // For nilpotent operations or addition there may be no operands, for example
611 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
612 // in both cases the weight reduces to 0 causing the value to be skipped.
613 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000614 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000615 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000616 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000617 }
618
Chad Rosiere53e8c82014-11-18 20:21:54 +0000619 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000620}
621
Sanjay Patelc96ee082015-04-22 18:04:46 +0000622/// Now that the operands for this expression tree are
623/// linearized and optimized, emit them in-order.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000624void ReassociatePass::RewriteExprTree(BinaryOperator *I,
625 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000626 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000627
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000628 // Since our optimizations should never increase the number of operations, the
629 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000630 // from the original expression tree, without creating any new instructions,
631 // though the rewritten expression may have a completely different topology.
632 // We take care to not change anything if the new expression will be the same
633 // as the original. If more than trivial changes (like commuting operands)
634 // were made then we are obliged to clear out any optional subclass data like
635 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000636
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000637 /// NodesToRewrite - Nodes from the original expression available for writing
638 /// the new expression into.
639 SmallVector<BinaryOperator*, 8> NodesToRewrite;
640 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000641 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000642
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000643 /// NotRewritable - The operands being written will be the leaves of the new
644 /// expression and must not be used as inner nodes (via NodesToRewrite) by
645 /// mistake. Inner nodes are always reassociable, and usually leaves are not
646 /// (if they were they would have been incorporated into the expression and so
647 /// would not be leaves), so most of the time there is no danger of this. But
648 /// in rare cases a leaf may become reassociable if an optimization kills uses
649 /// of it, or it may momentarily become reassociable during rewriting (below)
650 /// due it being removed as an operand of one of its uses. Ensure that misuse
651 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
652 /// leaves and refusing to reuse any of them as inner nodes.
653 SmallPtrSet<Value*, 8> NotRewritable;
654 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
655 NotRewritable.insert(Ops[i].Op);
656
Duncan Sands3c05cd32012-05-26 16:42:52 +0000657 // ExpressionChanged - Non-null if the rewritten expression differs from the
658 // original in some non-trivial way, requiring the clearing of optional flags.
659 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000660 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000661 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000662 // The last operation (which comes earliest in the IR) is special as both
663 // operands will come from Ops, rather than just one with the other being
664 // a subexpression.
665 if (i+2 == Ops.size()) {
666 Value *NewLHS = Ops[i].Op;
667 Value *NewRHS = Ops[i+1].Op;
668 Value *OldLHS = Op->getOperand(0);
669 Value *OldRHS = Op->getOperand(1);
670
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000671 if (NewLHS == OldLHS && NewRHS == OldRHS)
672 // Nothing changed, leave it alone.
673 break;
674
675 if (NewLHS == OldRHS && NewRHS == OldLHS) {
676 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000677 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000678 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000679 DEBUG(dbgs() << "TO: " << *Op << '\n');
680 MadeChange = true;
681 ++NumChanged;
682 break;
683 }
684
685 // The new operation differs non-trivially from the original. Overwrite
686 // the old operands with the new ones.
687 DEBUG(dbgs() << "RA: " << *Op << '\n');
688 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000689 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
690 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000691 NodesToRewrite.push_back(BO);
692 Op->setOperand(0, NewLHS);
693 }
694 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000695 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
696 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000697 NodesToRewrite.push_back(BO);
698 Op->setOperand(1, NewRHS);
699 }
700 DEBUG(dbgs() << "TO: " << *Op << '\n');
701
Duncan Sands3c05cd32012-05-26 16:42:52 +0000702 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000703 MadeChange = true;
704 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000705
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000706 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000707 }
Chris Lattner1e506502005-05-07 21:59:39 +0000708
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000709 // Not the last operation. The left-hand side will be a sub-expression
710 // while the right-hand side will be the current element of Ops.
711 Value *NewRHS = Ops[i].Op;
712 if (NewRHS != Op->getOperand(1)) {
713 DEBUG(dbgs() << "RA: " << *Op << '\n');
714 if (NewRHS == Op->getOperand(0)) {
715 // The new right-hand side was already present as the left operand. If
716 // we are lucky then swapping the operands will sort out both of them.
717 Op->swapOperands();
718 } else {
719 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000720 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
721 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000722 NodesToRewrite.push_back(BO);
723 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000724 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000725 }
726 DEBUG(dbgs() << "TO: " << *Op << '\n');
727 MadeChange = true;
728 ++NumChanged;
729 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000730
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000731 // Now deal with the left-hand side. If this is already an operation node
732 // from the original expression then just rewrite the rest of the expression
733 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000734 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
735 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000736 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000737 continue;
738 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000739
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000740 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000741 // the left-hand side. If there are no nodes left then the optimizers made
742 // an expression with more nodes than the original! This usually means that
743 // they did something stupid but it might mean that the problem was just too
744 // hard (finding the mimimal number of multiplications needed to realize a
745 // multiplication expression is NP-complete). Whatever the reason, smart or
746 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000747 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000748 if (NodesToRewrite.empty()) {
749 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000750 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
751 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000752 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000753 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000754 } else {
755 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000756 }
757
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000758 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000759 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000760 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000761 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000762 MadeChange = true;
763 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000764 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000765 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000766
Duncan Sands3c05cd32012-05-26 16:42:52 +0000767 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000768 // starting from the operator specified in ExpressionChanged, and compactify
769 // the operators to just before the expression root to guarantee that the
770 // expression tree is dominated by all of Ops.
771 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000772 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000773 // Preserve FastMathFlags.
774 if (isa<FPMathOperator>(I)) {
775 FastMathFlags Flags = I->getFastMathFlags();
776 ExpressionChanged->clearSubclassOptionalData();
777 ExpressionChanged->setFastMathFlags(Flags);
778 } else
779 ExpressionChanged->clearSubclassOptionalData();
780
Duncan Sands3c05cd32012-05-26 16:42:52 +0000781 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000782 break;
Duncan Sands514db112012-06-27 14:19:00 +0000783 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000784 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Eugene Zelenko306d2992017-10-18 21:46:47 +0000785 } while (true);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000786
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000787 // Throw away any left over nodes from the original expression.
788 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000789 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000790}
791
Sanjay Patelc96ee082015-04-22 18:04:46 +0000792/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000793/// that computes the negative version of the value specified. The negative
794/// version of the value is returned, and BI is left pointing at the instruction
795/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000796/// Also add intermediate instructions to the redo list that are modified while
797/// pushing the negates through adds. These will be revisited to see if
798/// additional opportunities have been exposed.
799static Value *NegateValue(Value *V, Instruction *BI,
800 SetVector<AssertingVH<Instruction>> &ToRedo) {
Mehdi Amini590a2702015-01-16 03:00:58 +0000801 if (Constant *C = dyn_cast<Constant>(V)) {
802 if (C->getType()->isFPOrFPVectorTy()) {
803 return ConstantExpr::getFNeg(C);
804 }
Chris Lattnerfed33972009-12-31 20:34:32 +0000805 return ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000806 }
807
Chris Lattner7bc532d2002-05-16 04:37:07 +0000808 // We are trying to expose opportunity for reassociation. One of the things
809 // that we want to do to achieve this is to push a negation as deep into an
810 // expression chain as possible, to expose the add instructions. In practice,
811 // this means that we turn this:
812 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
813 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
814 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000815 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000816 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000817 if (BinaryOperator *I =
818 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000819 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000820 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
821 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000822 if (I->getOpcode() == Instruction::Add) {
823 I->setHasNoUnsignedWrap(false);
824 I->setHasNoSignedWrap(false);
825 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000826
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000827 // We must move the add instruction here, because the neg instructions do
828 // not dominate the old add instruction in general. By moving it, we are
829 // assured that the neg instructions we just inserted dominate the
830 // instruction we are about to insert after them.
831 //
832 I->moveBefore(BI);
833 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000834
835 // Add the intermediate negates to the redo list as processing them later
836 // could expose more reassociating opportunities.
837 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000838 return I;
839 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000840
Chris Lattnerfed33972009-12-31 20:34:32 +0000841 // Okay, we need to materialize a negated version of V with an instruction.
842 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000843 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000844 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
845 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000846
847 // We found one! Now we have to make sure that the definition dominates
848 // this use. We do this by moving it to the entry block (if it is a
849 // non-instruction value) or right after the definition. These negates will
850 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000851 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000852
853 // Verify that the negate is in this function, V might be a constant expr.
854 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
855 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000856
Chris Lattnerfed33972009-12-31 20:34:32 +0000857 BasicBlock::iterator InsertPt;
858 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
859 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
860 InsertPt = II->getNormalDest()->begin();
861 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000862 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000863 }
864 while (isa<PHINode>(InsertPt)) ++InsertPt;
865 } else {
866 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
867 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000868 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000869 if (TheNeg->getOpcode() == Instruction::Sub) {
870 TheNeg->setHasNoUnsignedWrap(false);
871 TheNeg->setHasNoSignedWrap(false);
872 } else {
873 TheNeg->andIRFlags(BI);
874 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000875 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000876 return TheNeg;
877 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000878
879 // Insert a 'neg' instruction that subtracts the value from zero to get the
880 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000881 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
882 ToRedo.insert(NewNeg);
883 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000884}
885
Sanjay Patelc96ee082015-04-22 18:04:46 +0000886/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000887static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000888 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000889 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000890 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000891
Chad Rosierbd64d462014-10-09 20:06:29 +0000892 // Don't breakup X - undef.
893 if (isa<UndefValue>(Sub->getOperand(1)))
894 return false;
895
Chris Lattner902537c2008-02-17 20:44:51 +0000896 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000897 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000898 Value *V0 = Sub->getOperand(0);
899 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
900 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000901 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000902 Value *V1 = Sub->getOperand(1);
903 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
904 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000905 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000906 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000907 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000908 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
909 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000910 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000911
Chris Lattner902537c2008-02-17 20:44:51 +0000912 return false;
913}
914
Sanjay Patelc96ee082015-04-22 18:04:46 +0000915/// If we have (X-Y), and if either X is an add, or if this is only used by an
916/// add, transform this into (X+(0-Y)) to promote better reassociation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000917static BinaryOperator *
918BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000919 // Convert a subtract into an add and a neg instruction. This allows sub
920 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000921 //
Chris Lattnera5526832010-01-01 00:04:26 +0000922 // Calculate the negative value of Operand 1 of the sub instruction,
923 // and set it as the RHS of the add instruction we just made.
Owen Anderson2de9f542015-11-16 18:07:30 +0000924 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +0000925 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000926 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
927 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000928 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000929
930 // Everyone now refers to the add instruction.
931 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000932 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000933
David Greened17c3912010-01-05 01:27:24 +0000934 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000935 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000936}
937
Sanjay Patelc96ee082015-04-22 18:04:46 +0000938/// If this is a shift of a reassociable multiply or is used by one, change
939/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000940static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
941 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
942 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000943
Duncan Sands3293f462012-06-08 20:15:33 +0000944 BinaryOperator *Mul =
945 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
946 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
947 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +0000948
949 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +0000950 Shl->replaceAllUsesWith(Mul);
951 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +0000952
953 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
954 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
955 // handling.
956 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
957 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
958 if (NSW && NUW)
959 Mul->setHasNoSignedWrap(true);
960 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +0000961 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000962}
963
Sanjay Patelc96ee082015-04-22 18:04:46 +0000964/// Scan backwards and forwards among values with the same rank as element i
965/// to see if X exists. If X does not exist, return i. This is useful when
966/// scanning for 'x' when we see '-x' because they both get the same rank.
Craig Topper99a2e892017-06-21 19:39:33 +0000967static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
968 unsigned i, Value *X) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000969 unsigned XRank = Ops[i].Rank;
970 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +0000971 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000972 if (Ops[j].Op == X)
973 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000974 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
975 if (Instruction *I2 = dyn_cast<Instruction>(X))
976 if (I1->isIdenticalTo(I2))
977 return j;
978 }
Chris Lattner0c59ac32010-01-01 01:13:15 +0000979 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +0000980 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000981 if (Ops[j].Op == X)
982 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000983 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
984 if (Instruction *I2 = dyn_cast<Instruction>(X))
985 if (I1->isIdenticalTo(I2))
986 return j;
987 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000988 return i;
989}
990
Sanjay Patelc96ee082015-04-22 18:04:46 +0000991/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +0000992/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +0000993static Value *EmitAddTreeOfValues(Instruction *I,
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000994 SmallVectorImpl<WeakTrackingVH> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +0000995 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000996
Chris Lattner4c065092006-03-04 09:31:13 +0000997 Value *V1 = Ops.back();
998 Ops.pop_back();
999 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +00001000 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001001}
1002
Sanjay Patelc96ee082015-04-22 18:04:46 +00001003/// If V is an expression tree that is a multiplication sequence,
1004/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +00001005/// remove Factor from the tree and return the new tree.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001006Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001007 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1008 if (!BO)
1009 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001010
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001011 SmallVector<RepeatedValue, 8> Tree;
1012 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001013 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001014 Factors.reserve(Tree.size());
1015 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1016 RepeatedValue E = Tree[i];
1017 Factors.append(E.second.getZExtValue(),
1018 ValueEntry(getRank(E.first), E.first));
1019 }
Chris Lattner4c065092006-03-04 09:31:13 +00001020
1021 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001022 bool NeedsNegate = false;
1023 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001024 if (Factors[i].Op == Factor) {
1025 FoundFactor = true;
1026 Factors.erase(Factors.begin()+i);
1027 break;
1028 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001029
Chris Lattner0c59ac32010-01-01 01:13:15 +00001030 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001031 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001032 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1033 if (FC1->getValue() == -FC2->getValue()) {
1034 FoundFactor = NeedsNegate = true;
1035 Factors.erase(Factors.begin()+i);
1036 break;
1037 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001038 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1039 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001040 const APFloat &F1 = FC1->getValueAPF();
Chad Rosier11ab9412014-08-14 15:23:01 +00001041 APFloat F2(FC2->getValueAPF());
1042 F2.changeSign();
1043 if (F1.compare(F2) == APFloat::cmpEqual) {
1044 FoundFactor = NeedsNegate = true;
1045 Factors.erase(Factors.begin() + i);
1046 break;
1047 }
1048 }
1049 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001050 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001051
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001052 if (!FoundFactor) {
1053 // Make sure to restore the operands to the expression tree.
1054 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001055 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001056 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001057
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001058 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001059
Chris Lattner1d897942009-12-31 19:34:45 +00001060 // If this was just a single multiply, remove the multiply and return the only
1061 // remaining operand.
1062 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001063 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001064 V = Factors[0].Op;
1065 } else {
1066 RewriteExprTree(BO, Factors);
1067 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001068 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001069
Chris Lattner0c59ac32010-01-01 01:13:15 +00001070 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001071 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001072
Chris Lattner0c59ac32010-01-01 01:13:15 +00001073 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001074}
1075
Sanjay Patelc96ee082015-04-22 18:04:46 +00001076/// If V is a single-use multiply, recursively add its operands as factors,
1077/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001078///
1079/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001080static void FindSingleUseMultiplyFactors(Value *V,
Chad Rosiere22c9922017-02-08 17:45:27 +00001081 SmallVectorImpl<Value*> &Factors) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001082 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001083 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001084 Factors.push_back(V);
1085 return;
1086 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001087
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001088 // Otherwise, add the LHS and RHS to the list of factors.
Chad Rosiere22c9922017-02-08 17:45:27 +00001089 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1090 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001091}
1092
Sanjay Patelc96ee082015-04-22 18:04:46 +00001093/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1094/// This optimizes based on identities. If it can be reduced to a single Value,
1095/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001096static Value *OptimizeAndOrXor(unsigned Opcode,
1097 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001098 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1099 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1100 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1101 // First, check for X and ~X in the operand list.
1102 assert(i < Ops.size());
1103 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1104 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1105 unsigned FoundX = FindInOperandList(Ops, i, X);
1106 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001107 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001108 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001109
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001110 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001111 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001112 }
1113 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001114
Chris Lattner5f8a0052009-12-31 07:59:34 +00001115 // Next, check for duplicate pairs of values, which we assume are next to
1116 // each other, due to our sorting criteria.
1117 assert(i < Ops.size());
1118 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1119 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001120 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001121 Ops.erase(Ops.begin()+i);
1122 --i; --e;
1123 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001124 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001125 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001126
Chris Lattner60c2ca72009-12-31 19:49:01 +00001127 // Drop pairs of values for Xor.
1128 assert(Opcode == Instruction::Xor);
1129 if (e == 2)
1130 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001131
Chris Lattnera5526832010-01-01 00:04:26 +00001132 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001133 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1134 i -= 1; e -= 2;
1135 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001136 }
1137 }
Craig Topperf40110f2014-04-25 05:29:35 +00001138 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001139}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001140
Eric Christopherbfba5722015-12-16 23:10:53 +00001141/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001142/// instruction with the given two operands, and return the resulting
1143/// instruction. There are two special cases: 1) if the constant operand is 0,
1144/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1145/// be returned.
Craig Topper34caf532017-06-21 19:39:35 +00001146static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001147 const APInt &ConstOpnd) {
Craig Topper34caf532017-06-21 19:39:35 +00001148 if (ConstOpnd.isNullValue())
1149 return nullptr;
1150
1151 if (ConstOpnd.isAllOnesValue())
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001152 return Opnd;
Craig Topper34caf532017-06-21 19:39:35 +00001153
1154 Instruction *I = BinaryOperator::CreateAnd(
1155 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1156 InsertBefore);
1157 I->setDebugLoc(InsertBefore->getDebugLoc());
1158 return I;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001159}
1160
1161// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1162// into "R ^ C", where C would be 0, and R is a symbolic value.
1163//
1164// If it was successful, true is returned, and the "R" and "C" is returned
1165// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1166// and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001167bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1168 APInt &ConstOpnd, Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001169 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1170 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1171 // = (x & ~c1) ^ (c1 ^ c2)
1172 // It is useful only when c1 == c2.
Craig Topper34caf532017-06-21 19:39:35 +00001173 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1174 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001175
Craig Topper34caf532017-06-21 19:39:35 +00001176 if (!Opnd1->getValue()->hasOneUse())
1177 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001178
Craig Topper34caf532017-06-21 19:39:35 +00001179 const APInt &C1 = Opnd1->getConstPart();
1180 if (C1 != ConstOpnd)
1181 return false;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001182
Craig Topper34caf532017-06-21 19:39:35 +00001183 Value *X = Opnd1->getSymbolicPart();
1184 Res = createAndInstr(I, X, ~C1);
1185 // ConstOpnd was C2, now C1 ^ C2.
1186 ConstOpnd ^= C1;
1187
1188 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1189 RedoInsts.insert(T);
1190 return true;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001191}
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001192
1193// Helper function of OptimizeXor(). It tries to simplify
1194// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1195// symbolic value.
1196//
1197// If it was successful, true is returned, and the "R" and "C" is returned
1198// via "Res" and "ConstOpnd", respectively (If the entire expression is
1199// evaluated to a constant, the Res is set to NULL); otherwise, false is
1200// returned, and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001201bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1202 XorOpnd *Opnd2, APInt &ConstOpnd,
1203 Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001204 Value *X = Opnd1->getSymbolicPart();
1205 if (X != Opnd2->getSymbolicPart())
1206 return false;
1207
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001208 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1209 int DeadInstNum = 1;
1210 if (Opnd1->getValue()->hasOneUse())
1211 DeadInstNum++;
1212 if (Opnd2->getValue()->hasOneUse())
1213 DeadInstNum++;
1214
1215 // Xor-Rule 2:
1216 // (x | c1) ^ (x & c2)
1217 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1218 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1219 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1220 //
1221 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1222 if (Opnd2->isOrExpr())
1223 std::swap(Opnd1, Opnd2);
1224
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001225 const APInt &C1 = Opnd1->getConstPart();
1226 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001227 APInt C3((~C1) ^ C2);
1228
1229 // Do not increase code size!
Craig Topperd96177c2017-06-18 18:15:38 +00001230 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1231 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001232 if (NewInstNum > DeadInstNum)
1233 return false;
1234 }
1235
1236 Res = createAndInstr(I, X, C3);
1237 ConstOpnd ^= C1;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001238 } else if (Opnd1->isOrExpr()) {
1239 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1240 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001241 const APInt &C1 = Opnd1->getConstPart();
1242 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001243 APInt C3 = C1 ^ C2;
1244
1245 // Do not increase code size
Craig Topperd96177c2017-06-18 18:15:38 +00001246 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1247 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001248 if (NewInstNum > DeadInstNum)
1249 return false;
1250 }
1251
1252 Res = createAndInstr(I, X, C3);
1253 ConstOpnd ^= C3;
1254 } else {
1255 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1256 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001257 const APInt &C1 = Opnd1->getConstPart();
1258 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001259 APInt C3 = C1 ^ C2;
1260 Res = createAndInstr(I, X, C3);
1261 }
1262
1263 // Put the original operands in the Redo list; hope they will be deleted
1264 // as dead code.
1265 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1266 RedoInsts.insert(T);
1267 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1268 RedoInsts.insert(T);
1269
1270 return true;
1271}
1272
1273/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1274/// to a single Value, it is returned, otherwise the Ops list is mutated as
1275/// necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001276Value *ReassociatePass::OptimizeXor(Instruction *I,
1277 SmallVectorImpl<ValueEntry> &Ops) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001278 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1279 return V;
1280
1281 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001282 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001283
1284 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001285 SmallVector<XorOpnd*, 8> OpndPtrs;
Craig Toppercbac691c2017-06-21 16:07:09 +00001286 Type *Ty = Ops[0].Op->getType();
1287 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001288
1289 // Step 1: Convert ValueEntry to XorOpnd
1290 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1291 Value *V = Ops[i].Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001292 const APInt *C;
1293 // TODO: Support non-splat vectors.
1294 if (match(V, PatternMatch::m_APInt(C))) {
1295 ConstOpnd ^= *C;
1296 } else {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001297 XorOpnd O(V);
1298 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1299 Opnds.push_back(O);
Craig Toppercbac691c2017-06-21 16:07:09 +00001300 }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001301 }
1302
Shuxin Yang331f01d2013-04-08 22:00:43 +00001303 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1304 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1305 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1306 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1307 // when new elements are added to the vector.
1308 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1309 OpndPtrs.push_back(&Opnds[i]);
1310
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001311 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1312 // the same symbolic value cluster together. For instance, the input operand
1313 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1314 // ("x | 123", "x & 789", "y & 456").
Justin Bognercb8a21c2016-04-26 23:32:00 +00001315 //
1316 // The purpose is twofold:
1317 // 1) Cluster together the operands sharing the same symbolic-value.
1318 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1319 // could potentially shorten crital path, and expose more loop-invariants.
1320 // Note that values' rank are basically defined in RPO order (FIXME).
1321 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1322 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1323 // "z" in the order of X-Y-Z is better than any other orders.
1324 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1325 [](XorOpnd *LHS, XorOpnd *RHS) {
1326 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1327 });
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001328
1329 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001330 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001331 bool Changed = false;
1332 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001333 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001334 // The combined value
1335 Value *CV;
1336
1337 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
Craig Topperd96177c2017-06-18 18:15:38 +00001338 if (!ConstOpnd.isNullValue() &&
1339 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001340 Changed = true;
1341 if (CV)
1342 *CurrOpnd = XorOpnd(CV);
1343 else {
1344 CurrOpnd->Invalidate();
1345 continue;
1346 }
1347 }
1348
1349 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1350 PrevOpnd = CurrOpnd;
1351 continue;
1352 }
1353
1354 // step 3.2: When previous and current operands share the same symbolic
1355 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001356 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1357 // Remove previous operand
1358 PrevOpnd->Invalidate();
1359 if (CV) {
1360 *CurrOpnd = XorOpnd(CV);
1361 PrevOpnd = CurrOpnd;
1362 } else {
1363 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001364 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001365 }
1366 Changed = true;
1367 }
1368 }
1369
1370 // Step 4: Reassemble the Ops
1371 if (Changed) {
1372 Ops.clear();
1373 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1374 XorOpnd &O = Opnds[i];
1375 if (O.isInvalid())
1376 continue;
1377 ValueEntry VE(getRank(O.getValue()), O.getValue());
1378 Ops.push_back(VE);
1379 }
Craig Topperd96177c2017-06-18 18:15:38 +00001380 if (!ConstOpnd.isNullValue()) {
Craig Toppercbac691c2017-06-21 16:07:09 +00001381 Value *C = ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001382 ValueEntry VE(getRank(C), C);
1383 Ops.push_back(VE);
1384 }
Craig Toppercbac691c2017-06-21 16:07:09 +00001385 unsigned Sz = Ops.size();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001386 if (Sz == 1)
1387 return Ops.back().Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001388 if (Sz == 0) {
1389 assert(ConstOpnd.isNullValue());
1390 return ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001391 }
1392 }
1393
Craig Topperf40110f2014-04-25 05:29:35 +00001394 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001395}
1396
Sanjay Patelc96ee082015-04-22 18:04:46 +00001397/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001398/// optimizes based on identities. If it can be reduced to a single Value, it
1399/// is returned, otherwise the Ops list is mutated as necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001400Value *ReassociatePass::OptimizeAdd(Instruction *I,
1401 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001402 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001403 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1404 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001405 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001406
Chris Lattner5f8a0052009-12-31 07:59:34 +00001407 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001408 Value *TheOp = Ops[i].Op;
1409 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001410 // instances of the operand together. Due to our sorting criteria, we know
1411 // that these need to be next to each other in the vector.
1412 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1413 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001414 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001415 do {
1416 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001417 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001418 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001419
Chad Rosier78943bc2014-12-12 14:44:12 +00001420 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001421 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001422
Chris Lattner60b71b52009-12-31 19:24:52 +00001423 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001424 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001425 Constant *C = Ty->isIntOrIntVectorTy() ?
1426 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001427 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001428
Chris Lattner60b71b52009-12-31 19:24:52 +00001429 // Now that we have inserted a multiply, optimize it. This allows us to
1430 // handle cases that require multiple factoring steps, such as this:
1431 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001432 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001433
Chris Lattner60b71b52009-12-31 19:24:52 +00001434 // If every add operand was a duplicate, return the multiply.
1435 if (Ops.empty())
1436 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001437
Chris Lattner60b71b52009-12-31 19:24:52 +00001438 // Otherwise, we had some input that didn't have the dupe, such as
1439 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1440 // things being added by this operation.
1441 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001442
Chris Lattner60c2ca72009-12-31 19:49:01 +00001443 --i;
1444 e = Ops.size();
1445 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001446 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001447
Benjamin Kramer49689442014-05-31 15:01:54 +00001448 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001449 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1450 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001451 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001452
Benjamin Kramer49689442014-05-31 15:01:54 +00001453 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001454 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001455 X = BinaryOperator::getNegArgument(TheOp);
1456 else if (BinaryOperator::isNot(TheOp))
1457 X = BinaryOperator::getNotArgument(TheOp);
1458
Chris Lattner5f8a0052009-12-31 07:59:34 +00001459 unsigned FoundX = FindInOperandList(Ops, i, X);
1460 if (FoundX == i)
1461 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001462
Chris Lattner5f8a0052009-12-31 07:59:34 +00001463 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001464 if (Ops.size() == 2 &&
1465 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001466 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001467
Benjamin Kramer49689442014-05-31 15:01:54 +00001468 // Remove X and ~X from the operand list.
1469 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1470 return Constant::getAllOnesValue(X->getType());
1471
Chris Lattner5f8a0052009-12-31 07:59:34 +00001472 Ops.erase(Ops.begin()+i);
1473 if (i < FoundX)
1474 --FoundX;
1475 else
1476 --i; // Need to back up an extra one.
1477 Ops.erase(Ops.begin()+FoundX);
1478 ++NumAnnihil;
1479 --i; // Revisit element.
1480 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001481
1482 // if X and ~X we append -1 to the operand list.
1483 if (BinaryOperator::isNot(TheOp)) {
1484 Value *V = Constant::getAllOnesValue(X->getType());
1485 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1486 e += 1;
1487 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001488 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001489
Chris Lattner177140a2009-12-31 18:17:13 +00001490 // Scan the operand list, checking to see if there are any common factors
1491 // between operands. Consider something like A*A+A*B*C+D. We would like to
1492 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1493 // To efficiently find this, we count the number of times a factor occurs
1494 // for any ADD operands that are MULs.
1495 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001496
Chris Lattner177140a2009-12-31 18:17:13 +00001497 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1498 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001499 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001500 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001501 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001502 BinaryOperator *BOp =
1503 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001504 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001505 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001506
Chris Lattner177140a2009-12-31 18:17:13 +00001507 // Compute all of the factors of this added value.
1508 SmallVector<Value*, 8> Factors;
Chad Rosiere22c9922017-02-08 17:45:27 +00001509 FindSingleUseMultiplyFactors(BOp, Factors);
Chris Lattner177140a2009-12-31 18:17:13 +00001510 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001511
Chris Lattner177140a2009-12-31 18:17:13 +00001512 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001513 SmallPtrSet<Value*, 8> Duplicates;
1514 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1515 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001516 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001517 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001518
Chris Lattner0c59ac32010-01-01 01:13:15 +00001519 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001520 if (Occ > MaxOcc) {
1521 MaxOcc = Occ;
1522 MaxOccVal = Factor;
1523 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001524
Chris Lattner0c59ac32010-01-01 01:13:15 +00001525 // If Factor is a negative constant, add the negated value as a factor
1526 // because we can percolate the negate out. Watch for minint, which
1527 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001528 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001529 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001530 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
Chad Rosier95abfa32017-02-23 18:49:03 +00001531 if (!Duplicates.insert(Factor).second)
1532 continue;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001533 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001534 if (Occ > MaxOcc) {
1535 MaxOcc = Occ;
1536 MaxOccVal = Factor;
1537 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001538 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001539 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1540 if (CF->isNegative()) {
1541 APFloat F(CF->getValueAPF());
1542 F.changeSign();
1543 Factor = ConstantFP::get(CF->getContext(), F);
Chad Rosier95abfa32017-02-23 18:49:03 +00001544 if (!Duplicates.insert(Factor).second)
1545 continue;
Chad Rosier11ab9412014-08-14 15:23:01 +00001546 unsigned Occ = ++FactorOccurrences[Factor];
1547 if (Occ > MaxOcc) {
1548 MaxOcc = Occ;
1549 MaxOccVal = Factor;
1550 }
1551 }
1552 }
Chris Lattner177140a2009-12-31 18:17:13 +00001553 }
1554 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001555
Chris Lattner177140a2009-12-31 18:17:13 +00001556 // If any factor occurred more than one time, we can pull it out.
1557 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001558 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001559 ++NumFactor;
1560
1561 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1562 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001563 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001564 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001565 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001566 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001567 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1568 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1569
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001570 SmallVector<WeakTrackingVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001571 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001572 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001573 BinaryOperator *BOp =
1574 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001575 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001576 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001577
Chris Lattner177140a2009-12-31 18:17:13 +00001578 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001579 // The factorized operand may occur several times. Convert them all in
1580 // one fell swoop.
1581 for (unsigned j = Ops.size(); j != i;) {
1582 --j;
1583 if (Ops[j].Op == Ops[i].Op) {
1584 NewMulOps.push_back(V);
1585 Ops.erase(Ops.begin()+j);
1586 }
1587 }
1588 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001589 }
1590 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001591
Chris Lattner177140a2009-12-31 18:17:13 +00001592 // No need for extra uses anymore.
Reid Kleckner96ab8722017-05-18 17:24:10 +00001593 DummyInst->deleteValue();
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001594
Chris Lattner177140a2009-12-31 18:17:13 +00001595 unsigned NumAddedValues = NewMulOps.size();
1596 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001597
Chris Lattner60b71b52009-12-31 19:24:52 +00001598 // Now that we have inserted the add tree, optimize it. This allows us to
1599 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001600 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001601 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001602 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001603 if (Instruction *VI = dyn_cast<Instruction>(V))
1604 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001605
1606 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001607 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001608
Chris Lattner60c2ca72009-12-31 19:49:01 +00001609 // Rerun associate on the multiply in case the inner expression turned into
1610 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001611 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001612
Chris Lattner177140a2009-12-31 18:17:13 +00001613 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1614 // entire result expression is just the multiply "A*(B+C)".
1615 if (Ops.empty())
1616 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001617
Chris Lattnerac615502009-12-31 18:18:46 +00001618 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001619 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001620 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001621 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1622 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001623
Craig Topperf40110f2014-04-25 05:29:35 +00001624 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001625}
Chris Lattner4c065092006-03-04 09:31:13 +00001626
Chandler Carruth739ef802012-04-26 05:30:30 +00001627/// \brief Build up a vector of value/power pairs factoring a product.
1628///
1629/// Given a series of multiplication operands, build a vector of factors and
1630/// the powers each is raised to when forming the final product. Sort them in
1631/// the order of descending power.
1632///
1633/// (x*x) -> [(x, 2)]
1634/// ((x*x)*x) -> [(x, 3)]
1635/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1636///
1637/// \returns Whether any factors have a power greater than one.
Craig Topper43507342017-06-19 16:23:43 +00001638static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1639 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001640 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1641 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001642 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001643 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1644 Value *Op = Ops[Idx-1].Op;
1645
1646 // Count the number of occurrences of this value.
1647 unsigned Count = 1;
1648 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1649 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001650 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001651 if (Count > 1)
1652 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001653 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001654
Chandler Carruth739ef802012-04-26 05:30:30 +00001655 // We can only simplify factors if the sum of the powers of our simplifiable
1656 // factors is 4 or higher. When that is the case, we will *always* have
1657 // a simplification. This is an important invariant to prevent cyclicly
1658 // trying to simplify already minimal formations.
1659 if (FactorPowerSum < 4)
1660 return false;
1661
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001662 // Now gather the simplifiable factors, removing them from Ops.
1663 FactorPowerSum = 0;
1664 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1665 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001666
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001667 // Count the number of occurrences of this value.
1668 unsigned Count = 1;
1669 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1670 ++Count;
1671 if (Count == 1)
1672 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001673 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001674 Count &= ~1U;
1675 Idx -= Count;
1676 FactorPowerSum += Count;
1677 Factors.push_back(Factor(Op, Count));
1678 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001679 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001680
Chandler Carruth739ef802012-04-26 05:30:30 +00001681 // None of the adjustments above should have reduced the sum of factor powers
1682 // below our mininum of '4'.
1683 assert(FactorPowerSum >= 4);
1684
Justin Bogner90744d22016-04-26 22:22:18 +00001685 std::stable_sort(Factors.begin(), Factors.end(),
1686 [](const Factor &LHS, const Factor &RHS) {
1687 return LHS.Power > RHS.Power;
1688 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001689 return true;
1690}
1691
1692/// \brief Build a tree of multiplies, computing the product of Ops.
1693static Value *buildMultiplyTree(IRBuilder<> &Builder,
1694 SmallVectorImpl<Value*> &Ops) {
1695 if (Ops.size() == 1)
1696 return Ops.back();
1697
1698 Value *LHS = Ops.pop_back_val();
1699 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001700 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001701 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1702 else
1703 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001704 } while (!Ops.empty());
1705
1706 return LHS;
1707}
1708
1709/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1710///
1711/// Given a vector of values raised to various powers, where no two values are
1712/// equal and the powers are sorted in decreasing order, compute the minimal
1713/// DAG of multiplies to compute the final product, and return that product
1714/// value.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001715Value *
1716ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1717 SmallVectorImpl<Factor> &Factors) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001718 assert(Factors[0].Power);
1719 SmallVector<Value *, 4> OuterProduct;
1720 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1721 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1722 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1723 LastIdx = Idx;
1724 continue;
1725 }
1726
1727 // We want to multiply across all the factors with the same power so that
1728 // we can raise them to that power as a single entity. Build a mini tree
1729 // for that.
1730 SmallVector<Value *, 4> InnerProduct;
1731 InnerProduct.push_back(Factors[LastIdx].Base);
1732 do {
1733 InnerProduct.push_back(Factors[Idx].Base);
1734 ++Idx;
1735 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1736
1737 // Reset the base value of the first factor to the new expression tree.
1738 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001739 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1740 if (Instruction *MI = dyn_cast<Instruction>(M))
1741 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001742
1743 LastIdx = Idx;
1744 }
1745 // Unique factors with equal powers -- we've folded them into the first one's
1746 // base.
1747 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001748 [](const Factor &LHS, const Factor &RHS) {
1749 return LHS.Power == RHS.Power;
1750 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001751 Factors.end());
1752
1753 // Iteratively collect the base of each factor with an add power into the
1754 // outer product, and halve each power in preparation for squaring the
1755 // expression.
1756 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1757 if (Factors[Idx].Power & 1)
1758 OuterProduct.push_back(Factors[Idx].Base);
1759 Factors[Idx].Power >>= 1;
1760 }
1761 if (Factors[0].Power) {
1762 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1763 OuterProduct.push_back(SquareRoot);
1764 OuterProduct.push_back(SquareRoot);
1765 }
1766 if (OuterProduct.size() == 1)
1767 return OuterProduct.front();
1768
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001769 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001770 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001771}
1772
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001773Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1774 SmallVectorImpl<ValueEntry> &Ops) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001775 // We can only optimize the multiplies when there is a chain of more than
1776 // three, such that a balanced tree might require fewer total multiplies.
1777 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001778 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001779
1780 // Try to turn linear trees of multiplies without other uses of the
1781 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1782 // re-use.
1783 SmallVector<Factor, 4> Factors;
1784 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001785 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001786
1787 IRBuilder<> Builder(I);
Vyacheslav Klochkov68a677a2016-11-22 20:23:04 +00001788 // The reassociate transformation for FP operations is performed only
1789 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1790 // to the newly generated operations.
1791 if (auto FPI = dyn_cast<FPMathOperator>(I))
1792 Builder.setFastMathFlags(FPI->getFastMathFlags());
1793
Chandler Carruth739ef802012-04-26 05:30:30 +00001794 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1795 if (Ops.empty())
1796 return V;
1797
1798 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1799 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001800 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001801}
1802
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001803Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1804 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001805 // Now that we have the linearized expression tree, try to optimize it.
1806 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001807 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001808 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001809 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1810 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1811 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1812 }
1813 // If there was nothing but constants then we are done.
1814 if (Ops.empty())
1815 return Cst;
1816
1817 // Put the combined constant back at the end of the operand list, except if
1818 // there is no point. For example, an add of 0 gets dropped here, while a
1819 // multiplication by zero turns the whole expression into zero.
1820 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1821 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1822 return Cst;
1823 Ops.push_back(ValueEntry(0, Cst));
1824 }
1825
1826 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001827
Chris Lattner9039ff82009-12-31 07:33:14 +00001828 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001829 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001830 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001831 switch (Opcode) {
1832 default: break;
1833 case Instruction::And:
1834 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001835 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1836 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001837 break;
1838
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001839 case Instruction::Xor:
1840 if (Value *Result = OptimizeXor(I, Ops))
1841 return Result;
1842 break;
1843
Chandler Carruth739ef802012-04-26 05:30:30 +00001844 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001845 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001846 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001847 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001848 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001849
1850 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001851 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001852 if (Value *Result = OptimizeMul(I, Ops))
1853 return Result;
1854 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001855 }
1856
Duncan Sands3293f462012-06-08 20:15:33 +00001857 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001858 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001859 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001860}
1861
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001862// Remove dead instructions and if any operands are trivially dead add them to
1863// Insts so they will be removed as well.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001864void ReassociatePass::RecursivelyEraseDeadInsts(
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001865 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1866 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1867 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1868 ValueRankMap.erase(I);
1869 Insts.remove(I);
1870 RedoInsts.remove(I);
1871 I->eraseFromParent();
1872 for (auto Op : Ops)
1873 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1874 if (OpInst->use_empty())
1875 Insts.insert(OpInst);
1876}
1877
Sanjay Patelc96ee082015-04-22 18:04:46 +00001878/// Zap the given instruction, adding interesting operands to the work list.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001879void ReassociatePass::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001880 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
Chad Rosier27ac0d82016-08-30 13:58:35 +00001881 DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1882
Duncan Sands3293f462012-06-08 20:15:33 +00001883 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1884 // Erase the dead instruction.
1885 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001886 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001887 I->eraseFromParent();
1888 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001889 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001890 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1891 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1892 // If this is a node in an expression tree, climb to the expression root
1893 // and add that since that's where optimization actually happens.
1894 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001895 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001896 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001897 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001898 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001899 }
Mikael Holmen37b51202017-06-27 05:32:13 +00001900
1901 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001902}
1903
Chad Rosier094ac772014-11-11 22:58:35 +00001904// Canonicalize expressions of the following form:
1905// x + (-Constant * y) -> x - (Constant * y)
1906// x - (-Constant * y) -> x + (Constant * y)
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001907Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
Chad Rosier094ac772014-11-11 22:58:35 +00001908 if (!I->hasOneUse() || I->getType()->isVectorTy())
1909 return nullptr;
1910
David Majnemer587336d2015-05-28 06:16:39 +00001911 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001912 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001913 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001914 return nullptr;
1915
David Majnemer587336d2015-05-28 06:16:39 +00001916 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1917 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1918
1919 // Both operands are constant, let it get constant folded away.
1920 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001921 return nullptr;
1922
David Majnemer587336d2015-05-28 06:16:39 +00001923 ConstantFP *CF = C0 ? C0 : C1;
1924
1925 // Must have one constant operand.
1926 if (!CF)
1927 return nullptr;
1928
1929 // Must be a negative ConstantFP.
1930 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001931 return nullptr;
1932
1933 // User must be a binary operator with one or more uses.
1934 Instruction *User = I->user_back();
Davide Italiano79eb3b02017-05-16 22:38:40 +00001935 if (!isa<BinaryOperator>(User) || User->use_empty())
Chad Rosier094ac772014-11-11 22:58:35 +00001936 return nullptr;
1937
1938 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001939 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001940 return nullptr;
1941
1942 // Subtraction is not commutative. Explicitly, the following transform is
1943 // not valid: (-Constant * y) - x -> x + (Constant * y)
1944 if (!User->isCommutative() && User->getOperand(1) != I)
1945 return nullptr;
1946
Chad Rosier8db41e92017-08-23 14:10:06 +00001947 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1948 // resulting subtract will be broken up later. This can get us into an
1949 // infinite loop during reassociation.
1950 if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1951 return nullptr;
1952
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001953 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001954 APFloat Val = CF->getValueAPF();
1955 Val.changeSign();
1956 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001957
Chad Rosier094ac772014-11-11 22:58:35 +00001958 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1959 // ((-Const*y) + x) -> (x + (-Const*y)).
1960 if (User->getOperand(0) == I && User->isCommutative())
1961 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001962
Chad Rosier094ac772014-11-11 22:58:35 +00001963 Value *Op0 = User->getOperand(0);
1964 Value *Op1 = User->getOperand(1);
1965 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00001966 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00001967 default:
1968 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00001969 case Instruction::FAdd:
1970 NI = BinaryOperator::CreateFSub(Op0, Op1);
1971 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1972 break;
1973 case Instruction::FSub:
1974 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1975 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1976 break;
1977 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001978
Chad Rosier094ac772014-11-11 22:58:35 +00001979 NI->insertBefore(User);
1980 NI->setName(User->getName());
1981 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001982 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00001983 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001984 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00001985 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001986}
1987
Sanjay Patelc96ee082015-04-22 18:04:46 +00001988/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00001989/// instructions is not allowed.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001990void ReassociatePass::OptimizeInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001991 // Only consider operations that we understand.
1992 if (!isa<BinaryOperator>(I))
1993 return;
1994
Chad Rosier11ab9412014-08-14 15:23:01 +00001995 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00001996 // If an operand of this shift is a reassociable multiply, or if the shift
1997 // is used by a reassociable multiply or add, turn into a multiply.
1998 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1999 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002000 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2001 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002002 Instruction *NI = ConvertShiftToMul(I);
2003 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002004 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002005 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002006 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002007
Chad Rosier094ac772014-11-11 22:58:35 +00002008 // Canonicalize negative constants out of expressions.
2009 if (Instruction *Res = canonicalizeNegConstExpr(I))
2010 I = Res;
2011
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002012 // Commute binary operators, to canonicalize the order of their operands.
2013 // This can potentially expose more CSE opportunities, and makes writing other
2014 // transformations simpler.
2015 if (I->isCommutative())
2016 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002017
Sanjay Patel629c4112017-11-06 16:27:15 +00002018 // Don't optimize floating-point instructions unless they are 'fast'.
2019 if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002020 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002021
Dan Gohman1c6c3482011-04-12 00:11:56 +00002022 // Do not reassociate boolean (i1) expressions. We want to preserve the
2023 // original order of evaluation for short-circuited comparisons that
2024 // SimplifyCFG has folded to AND/OR expressions. If the expression
2025 // is not further optimized, it is likely to be transformed back to a
2026 // short-circuited form for code gen, and the source order may have been
2027 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002028 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002029 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002030
Dan Gohman1c6c3482011-04-12 00:11:56 +00002031 // If this is a subtract instruction which is not already in negate form,
2032 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002033 if (I->getOpcode() == Instruction::Sub) {
2034 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002035 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002036 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002037 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002038 I = NI;
2039 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002040 // Otherwise, this is a negation. See if the operand is a multiply tree
2041 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002042 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2043 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002044 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002045 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002046 // If the negate was simplified, revisit the users to see if we can
2047 // reassociate further.
2048 for (User *U : NI->users()) {
2049 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2050 RedoInsts.insert(Tmp);
2051 }
Duncan Sands3293f462012-06-08 20:15:33 +00002052 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002053 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002054 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002055 }
2056 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002057 } else if (I->getOpcode() == Instruction::FSub) {
2058 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002059 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002060 RedoInsts.insert(I);
2061 MadeChange = true;
2062 I = NI;
2063 } else if (BinaryOperator::isFNeg(I)) {
2064 // Otherwise, this is a negation. See if the operand is a multiply tree
2065 // and if this is not an inner node of a multiply tree.
2066 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2067 (!I->hasOneUse() ||
2068 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002069 // If the negate was simplified, revisit the users to see if we can
2070 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002071 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002072 for (User *U : NI->users()) {
2073 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2074 RedoInsts.insert(Tmp);
2075 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002076 RedoInsts.insert(I);
2077 MadeChange = true;
2078 I = NI;
2079 }
2080 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002081 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002082
Duncan Sands3293f462012-06-08 20:15:33 +00002083 // If this instruction is an associative binary operator, process it.
2084 if (!I->isAssociative()) return;
2085 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002086
2087 // If this is an interior node of a reassociable tree, ignore it until we
2088 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002089 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002090 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2091 // During the initial run we will get to the root of the tree.
2092 // But if we get here while we are redoing instructions, there is no
2093 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002094 if (BO->user_back() != BO &&
2095 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002096 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002097 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002098 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002099
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002100 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002101 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002102 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002103 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002104 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002105 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2106 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2107 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002108
Duncan Sands3293f462012-06-08 20:15:33 +00002109 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002110}
Chris Lattner1e506502005-05-07 21:59:39 +00002111
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002112void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002113 // First, walk the expression tree, linearizing the tree, collecting the
2114 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002115 SmallVector<RepeatedValue, 8> Tree;
2116 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002117 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002118 Ops.reserve(Tree.size());
2119 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2120 RepeatedValue E = Tree[i];
2121 Ops.append(E.second.getZExtValue(),
2122 ValueEntry(getRank(E.first), E.first));
2123 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002124
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002125 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2126
Chris Lattner2fc319d2006-03-14 07:11:11 +00002127 // Now that we have linearized the tree to a list and have gathered all of
2128 // the operands and their ranks, sort the operands by their rank. Use a
2129 // stable_sort so that values with equal ranks will have their relative
2130 // positions maintained (and so the compiler is deterministic). Note that
2131 // this sorts so that the highest ranking values end up at the beginning of
2132 // the vector.
2133 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002134
Sanjay Patelc96ee082015-04-22 18:04:46 +00002135 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002136 // sorted form, optimize it globally if possible.
2137 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002138 if (V == I)
2139 // Self-referential expression in unreachable code.
2140 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002141 // This expression tree simplified to something that isn't a tree,
2142 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002143 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002144 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002145 if (Instruction *VI = dyn_cast<Instruction>(V))
Mikael Holmen7a99e332017-08-24 09:05:00 +00002146 if (I->getDebugLoc())
2147 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002148 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002149 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002150 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002151 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002152
Chris Lattner2fc319d2006-03-14 07:11:11 +00002153 // We want to sink immediates as deeply as possible except in the case where
2154 // this is a multiply tree used only by an add, and the immediate is a -1.
2155 // In this case we reassociate to put the negation on the outside so that we
2156 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002157 if (I->hasOneUse()) {
2158 if (I->getOpcode() == Instruction::Mul &&
2159 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2160 isa<ConstantInt>(Ops.back().Op) &&
Craig Topper79ab6432017-07-06 18:39:47 +00002161 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
Chad Rosier11ab9412014-08-14 15:23:01 +00002162 ValueEntry Tmp = Ops.pop_back_val();
2163 Ops.insert(Ops.begin(), Tmp);
2164 } else if (I->getOpcode() == Instruction::FMul &&
2165 cast<Instruction>(I->user_back())->getOpcode() ==
2166 Instruction::FAdd &&
2167 isa<ConstantFP>(Ops.back().Op) &&
2168 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2169 ValueEntry Tmp = Ops.pop_back_val();
2170 Ops.insert(Ops.begin(), Tmp);
2171 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002172 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002173
David Greened17c3912010-01-05 01:27:24 +00002174 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002175
Chris Lattner2fc319d2006-03-14 07:11:11 +00002176 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002177 if (Ops[0].Op == I)
2178 // Self-referential expression in unreachable code.
2179 return;
2180
Chris Lattner2fc319d2006-03-14 07:11:11 +00002181 // This expression tree simplified to something that isn't a tree,
2182 // eliminate it.
2183 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002184 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2185 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002186 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002187 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002188 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002189
Chris Lattner60b71b52009-12-31 19:24:52 +00002190 // Now that we ordered and optimized the expressions, splat them back into
2191 // the expression tree, removing any unneeded nodes.
2192 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002193}
2194
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002195PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002196 // Get the functions basic blocks in Reverse Post Order. This order is used by
2197 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2198 // blocks (it has been seen that the analysis in this pass could hang when
2199 // analysing dead basic blocks).
2200 ReversePostOrderTraversal<Function *> RPOT(&F);
2201
Chad Rosierea7e4642016-08-17 15:54:39 +00002202 // Calculate the rank map for F.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002203 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002204
Chris Lattner1e506502005-05-07 21:59:39 +00002205 MadeChange = false;
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002206 // Traverse the same blocks that was analysed by BuildRankMap.
2207 for (BasicBlock *BI : RPOT) {
2208 assert(RankMap.count(&*BI) && "BB should be ranked.");
Duncan Sands3293f462012-06-08 20:15:33 +00002209 // Optimize every instruction in the basic block.
Chad Rosierea7e4642016-08-17 15:54:39 +00002210 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002211 if (isInstructionTriviallyDead(&*II)) {
2212 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002213 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002214 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002215 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002216 ++II;
2217 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002218
Chad Rosierea7e4642016-08-17 15:54:39 +00002219 // Make a copy of all the instructions to be redone so we can remove dead
2220 // instructions.
2221 SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2222 // Iterate over all instructions to be reevaluated and remove trivially dead
2223 // instructions. If any operand of the trivially dead instruction becomes
2224 // dead mark it for deletion as well. Continue this process until all
2225 // trivially dead instructions have been removed.
2226 while (!ToRedo.empty()) {
2227 Instruction *I = ToRedo.pop_back_val();
Davide Italiano631cd272016-10-28 02:47:09 +00002228 if (isInstructionTriviallyDead(I)) {
Chad Rosierea7e4642016-08-17 15:54:39 +00002229 RecursivelyEraseDeadInsts(I, ToRedo);
Davide Italiano631cd272016-10-28 02:47:09 +00002230 MadeChange = true;
2231 }
Chad Rosierea7e4642016-08-17 15:54:39 +00002232 }
2233
2234 // Now that we have removed dead instructions, we can reoptimize the
2235 // remaining instructions.
2236 while (!RedoInsts.empty()) {
2237 Instruction *I = RedoInsts.pop_back_val();
2238 if (isInstructionTriviallyDead(I))
2239 EraseInst(I);
2240 else
2241 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002242 }
Duncan Sands3293f462012-06-08 20:15:33 +00002243 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002244
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002245 // We are done with the rank map.
2246 RankMap.clear();
2247 ValueRankMap.clear();
2248
Davide Italiano39893bd2016-05-29 00:41:17 +00002249 if (MadeChange) {
Chandler Carruthca68a3e2017-01-15 06:32:49 +00002250 PreservedAnalyses PA;
2251 PA.preserveSet<CFGAnalyses>();
Davide Italiano39893bd2016-05-29 00:41:17 +00002252 PA.preserve<GlobalsAA>();
2253 return PA;
2254 }
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002255
2256 return PreservedAnalyses::all();
2257}
2258
2259namespace {
Eugene Zelenko306d2992017-10-18 21:46:47 +00002260
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002261 class ReassociateLegacyPass : public FunctionPass {
2262 ReassociatePass Impl;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002263
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002264 public:
2265 static char ID; // Pass identification, replacement for typeid
Eugene Zelenko306d2992017-10-18 21:46:47 +00002266
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002267 ReassociateLegacyPass() : FunctionPass(ID) {
2268 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2269 }
2270
2271 bool runOnFunction(Function &F) override {
2272 if (skipFunction(F))
2273 return false;
2274
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002275 FunctionAnalysisManager DummyFAM;
2276 auto PA = Impl.run(F, DummyFAM);
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002277 return !PA.areAllPreserved();
2278 }
2279
2280 void getAnalysisUsage(AnalysisUsage &AU) const override {
2281 AU.setPreservesCFG();
2282 AU.addPreserved<GlobalsAAWrapperPass>();
2283 }
2284 };
Eugene Zelenko306d2992017-10-18 21:46:47 +00002285
2286} // end anonymous namespace
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002287
2288char ReassociateLegacyPass::ID = 0;
Eugene Zelenko306d2992017-10-18 21:46:47 +00002289
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002290INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2291 "Reassociate expressions", false, false)
2292
2293// Public interface to the Reassociate pass
2294FunctionPass *llvm::createReassociatePass() {
2295 return new ReassociateLegacyPass();
Chris Lattnerc0f58002002-05-08 22:19:27 +00002296}