blob: 19e3633fcc5cc9fde107506af0a6a283e6b4f520 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Owen Anderson8ac477f2010-10-12 19:48:12 +0000117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
Chandler Carruth66b31302015-01-04 12:03:27 +0000119INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000120INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Chandler Carruth73523022014-01-13 13:07:17 +0000121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chandler Carruthb98f63d2015-01-15 10:41:28 +0000122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000124 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000125char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000126
127//===----------------------------------------------------------------------===//
128// SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
Dan Gohman3423e722009-06-30 20:13:32 +0000134
Manman Ren49d684e2012-09-12 05:06:18 +0000135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000136void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000137 print(dbgs());
138 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000139}
Manman Renc3366cc2012-09-06 19:55:56 +0000140#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000141
Dan Gohman534749b2010-11-17 22:27:42 +0000142void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000143 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000144 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000177 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000190 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000201 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000202 OS << OpStr;
203 }
204 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
Dan Gohman534749b2010-11-17 22:27:42 +0000213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Chris Lattner229907c2011-07-18 04:54:35 +0000232 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000236 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000237 OS << ")";
238 return;
239 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000240
Dan Gohman534749b2010-11-17 22:27:42 +0000241 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000242 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000248 }
249 llvm_unreachable("Unknown SCEV kind!");
250}
251
Chris Lattner229907c2011-07-18 04:54:35 +0000252Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000253 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000274 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000275}
276
Dan Gohmanbe928e32008-06-18 16:23:07 +0000277bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281}
282
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000283bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287}
Chris Lattnerd934c702004-04-02 20:23:17 +0000288
Dan Gohman18a96bb2009-06-24 00:30:26 +0000289bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293}
294
Andrew Trick881a7762012-01-07 00:27:31 +0000295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307}
308
Owen Anderson04052ec2009-06-22 21:57:23 +0000309SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311
Chris Lattnerd934c702004-04-02 20:23:17 +0000312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314}
315
Dan Gohmanaf752342009-07-07 17:06:11 +0000316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000320 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000325}
Chris Lattnerd934c702004-04-02 20:23:17 +0000326
Nick Lewycky31eaca52014-01-27 10:04:03 +0000327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000328 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000329}
330
Dan Gohmanaf752342009-07-07 17:06:11 +0000331const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000334 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000335}
336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000340
Dan Gohman24ceda82010-06-18 19:54:20 +0000341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347}
Chris Lattnerd934c702004-04-02 20:23:17 +0000348
Dan Gohman24ceda82010-06-18 19:54:20 +0000349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000354 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000355}
356
Dan Gohman24ceda82010-06-18 19:54:20 +0000357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000358 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000362 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000363}
364
Dan Gohman7cac9572010-08-02 23:49:30 +0000365void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000366 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000367 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000373 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000377 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000378 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387}
388
Chris Lattner229907c2011-07-18 04:54:35 +0000389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
Dan Gohmancf913832010-01-28 02:15:55 +0000402
403 return false;
404}
405
Chris Lattner229907c2011-07-18 04:54:35 +0000406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000412 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000414 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000421 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
Dan Gohmancf913832010-01-28 02:15:55 +0000427
428 return false;
429}
430
Chris Lattner229907c2011-07-18 04:54:35 +0000431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000439 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000443 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451}
452
Chris Lattnereb3e8402004-06-20 06:23:15 +0000453//===----------------------------------------------------------------------===//
454// SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000461 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000462 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463 public:
Dan Gohman992db002010-07-23 21:18:55 +0000464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000465
Dan Gohman27065672010-08-27 15:26:01 +0000466 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
474 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000478
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000482 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000483
Dan Gohman24ceda82010-06-18 19:54:20 +0000484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000487 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000500 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000501 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000502
503 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000506 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000507 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000508
509 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000514 }
515
Dan Gohman27065672010-08-27 15:26:01 +0000516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000529 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000530
531 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000534 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000535 }
536
Dan Gohman27065672010-08-27 15:26:01 +0000537 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 }
539
Dan Gohman27065672010-08-27 15:26:01 +0000540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000543
544 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000548 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 }
552
Dan Gohman27065672010-08-27 15:26:01 +0000553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000563 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000564 }
Dan Gohman27065672010-08-27 15:26:01 +0000565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000579 }
580
Dan Gohman27065672010-08-27 15:26:01 +0000581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000587
588 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
Dan Gohman5ae31022010-07-23 21:20:52 +0000593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
Dan Gohman27065672010-08-27 15:26:01 +0000600 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 }
602
Dan Gohman27065672010-08-27 15:26:01 +0000603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000612 }
613
Dan Gohman27065672010-08-27 15:26:01 +0000614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
Benjamin Kramer987b8502014-02-11 19:02:55 +0000624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000626 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000627 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628 }
629 };
630}
631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000637/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000638/// results from this routine. In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
Dan Gohmanaf752342009-07-07 17:06:11 +0000642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000643 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000651 return;
652 }
653
Dan Gohman24ceda82010-06-18 19:54:20 +0000654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000676}
677
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000678namespace {
679struct FindSCEVSize {
680 int Size;
681 FindSCEVSize() : Size(0) {}
682
683 bool follow(const SCEV *S) {
684 ++Size;
685 // Keep looking at all operands of S.
686 return true;
687 }
688 bool isDone() const {
689 return false;
690 }
691};
692}
693
694// Returns the size of the SCEV S.
695static inline int sizeOfSCEV(const SCEV *S) {
696 FindSCEVSize F;
697 SCEVTraversal<FindSCEVSize> ST(F);
698 ST.visitAll(S);
699 return F.Size;
700}
701
702namespace {
703
David Majnemer4e879362014-12-14 09:12:33 +0000704struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705public:
706 // Computes the Quotient and Remainder of the division of Numerator by
707 // Denominator.
708 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709 const SCEV *Denominator, const SCEV **Quotient,
710 const SCEV **Remainder) {
711 assert(Numerator && Denominator && "Uninitialized SCEV");
712
David Majnemer4e879362014-12-14 09:12:33 +0000713 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000714
715 // Check for the trivial case here to avoid having to check for it in the
716 // rest of the code.
717 if (Numerator == Denominator) {
718 *Quotient = D.One;
719 *Remainder = D.Zero;
720 return;
721 }
722
723 if (Numerator->isZero()) {
724 *Quotient = D.Zero;
725 *Remainder = D.Zero;
726 return;
727 }
728
729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762 void visitUnknown(const SCEVUnknown *Numerator) {}
763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
David Majnemer4e879362014-12-14 09:12:33 +0000765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767 APInt NumeratorVal = Numerator->getValue()->getValue();
768 APInt DenominatorVal = D->getValue()->getValue();
769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
788 assert(Numerator->isAffine() && "Numerator should be affine");
789 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
790 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
791 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
792 Numerator->getNoWrapFlags());
793 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
794 Numerator->getNoWrapFlags());
795 }
796
797 void visitAddExpr(const SCEVAddExpr *Numerator) {
798 SmallVector<const SCEV *, 2> Qs, Rs;
799 Type *Ty = Denominator->getType();
800
801 for (const SCEV *Op : Numerator->operands()) {
802 const SCEV *Q, *R;
803 divide(SE, Op, Denominator, &Q, &R);
804
805 // Bail out if types do not match.
806 if (Ty != Q->getType() || Ty != R->getType()) {
807 Quotient = Zero;
808 Remainder = Numerator;
809 return;
810 }
811
812 Qs.push_back(Q);
813 Rs.push_back(R);
814 }
815
816 if (Qs.size() == 1) {
817 Quotient = Qs[0];
818 Remainder = Rs[0];
819 return;
820 }
821
822 Quotient = SE.getAddExpr(Qs);
823 Remainder = SE.getAddExpr(Rs);
824 }
825
826 void visitMulExpr(const SCEVMulExpr *Numerator) {
827 SmallVector<const SCEV *, 2> Qs;
828 Type *Ty = Denominator->getType();
829
830 bool FoundDenominatorTerm = false;
831 for (const SCEV *Op : Numerator->operands()) {
832 // Bail out if types do not match.
833 if (Ty != Op->getType()) {
834 Quotient = Zero;
835 Remainder = Numerator;
836 return;
837 }
838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
853 if (Ty != Q->getType()) {
854 Quotient = Zero;
855 Remainder = Numerator;
856 return;
857 }
858
859 FoundDenominatorTerm = true;
860 Qs.push_back(Q);
861 }
862
863 if (FoundDenominatorTerm) {
864 Remainder = Zero;
865 if (Qs.size() == 1)
866 Quotient = Qs[0];
867 else
868 Quotient = SE.getMulExpr(Qs);
869 return;
870 }
871
872 if (!isa<SCEVUnknown>(Denominator)) {
873 Quotient = Zero;
874 Remainder = Numerator;
875 return;
876 }
877
878 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
879 ValueToValueMap RewriteMap;
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(Zero)->getValue();
882 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
883
884 if (Remainder->isZero()) {
885 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
886 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
887 cast<SCEVConstant>(One)->getValue();
888 Quotient =
889 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
890 return;
891 }
892
893 // Quotient is (Numerator - Remainder) divided by Denominator.
894 const SCEV *Q, *R;
895 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
896 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
897 // This SCEV does not seem to simplify: fail the division here.
898 Quotient = Zero;
899 Remainder = Numerator;
900 return;
901 }
902 divide(SE, Diff, Denominator, &Q, &R);
903 assert(R == Zero &&
904 "(Numerator - Remainder) should evenly divide Denominator");
905 Quotient = Q;
906 }
907
908private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000909 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
910 const SCEV *Denominator)
911 : SE(S), Denominator(Denominator) {
912 Zero = SE.getConstant(Denominator->getType(), 0);
913 One = SE.getConstant(Denominator->getType(), 1);
914
915 // By default, we don't know how to divide Expr by Denominator.
916 // Providing the default here simplifies the rest of the code.
917 Quotient = Zero;
918 Remainder = Numerator;
919 }
920
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000921 ScalarEvolution &SE;
922 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000923};
924
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000925}
926
Chris Lattnerd934c702004-04-02 20:23:17 +0000927//===----------------------------------------------------------------------===//
928// Simple SCEV method implementations
929//===----------------------------------------------------------------------===//
930
Eli Friedman61f67622008-08-04 23:49:06 +0000931/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000932/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000933static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000934 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000935 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000936 // Handle the simplest case efficiently.
937 if (K == 1)
938 return SE.getTruncateOrZeroExtend(It, ResultTy);
939
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000940 // We are using the following formula for BC(It, K):
941 //
942 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
943 //
Eli Friedman61f67622008-08-04 23:49:06 +0000944 // Suppose, W is the bitwidth of the return value. We must be prepared for
945 // overflow. Hence, we must assure that the result of our computation is
946 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
947 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000948 //
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000950 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000951 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
952 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000953 //
Eli Friedman61f67622008-08-04 23:49:06 +0000954 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000955 //
Eli Friedman61f67622008-08-04 23:49:06 +0000956 // This formula is trivially equivalent to the previous formula. However,
957 // this formula can be implemented much more efficiently. The trick is that
958 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
959 // arithmetic. To do exact division in modular arithmetic, all we have
960 // to do is multiply by the inverse. Therefore, this step can be done at
961 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000962 //
Eli Friedman61f67622008-08-04 23:49:06 +0000963 // The next issue is how to safely do the division by 2^T. The way this
964 // is done is by doing the multiplication step at a width of at least W + T
965 // bits. This way, the bottom W+T bits of the product are accurate. Then,
966 // when we perform the division by 2^T (which is equivalent to a right shift
967 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
968 // truncated out after the division by 2^T.
969 //
970 // In comparison to just directly using the first formula, this technique
971 // is much more efficient; using the first formula requires W * K bits,
972 // but this formula less than W + K bits. Also, the first formula requires
973 // a division step, whereas this formula only requires multiplies and shifts.
974 //
975 // It doesn't matter whether the subtraction step is done in the calculation
976 // width or the input iteration count's width; if the subtraction overflows,
977 // the result must be zero anyway. We prefer here to do it in the width of
978 // the induction variable because it helps a lot for certain cases; CodeGen
979 // isn't smart enough to ignore the overflow, which leads to much less
980 // efficient code if the width of the subtraction is wider than the native
981 // register width.
982 //
983 // (It's possible to not widen at all by pulling out factors of 2 before
984 // the multiplication; for example, K=2 can be calculated as
985 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
986 // extra arithmetic, so it's not an obvious win, and it gets
987 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000988
Eli Friedman61f67622008-08-04 23:49:06 +0000989 // Protection from insane SCEVs; this bound is conservative,
990 // but it probably doesn't matter.
991 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000992 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000993
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000994 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000995
Eli Friedman61f67622008-08-04 23:49:06 +0000996 // Calculate K! / 2^T and T; we divide out the factors of two before
997 // multiplying for calculating K! / 2^T to avoid overflow.
998 // Other overflow doesn't matter because we only care about the bottom
999 // W bits of the result.
1000 APInt OddFactorial(W, 1);
1001 unsigned T = 1;
1002 for (unsigned i = 3; i <= K; ++i) {
1003 APInt Mult(W, i);
1004 unsigned TwoFactors = Mult.countTrailingZeros();
1005 T += TwoFactors;
1006 Mult = Mult.lshr(TwoFactors);
1007 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001008 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001009
Eli Friedman61f67622008-08-04 23:49:06 +00001010 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001011 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001012
Dan Gohman8b0a4192010-03-01 17:49:51 +00001013 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001014 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001015
1016 // Calculate the multiplicative inverse of K! / 2^T;
1017 // this multiplication factor will perform the exact division by
1018 // K! / 2^T.
1019 APInt Mod = APInt::getSignedMinValue(W+1);
1020 APInt MultiplyFactor = OddFactorial.zext(W+1);
1021 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1022 MultiplyFactor = MultiplyFactor.trunc(W);
1023
1024 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001025 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001026 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001027 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001028 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001029 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001030 Dividend = SE.getMulExpr(Dividend,
1031 SE.getTruncateOrZeroExtend(S, CalculationTy));
1032 }
1033
1034 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001035 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001036
1037 // Truncate the result, and divide by K! / 2^T.
1038
1039 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1040 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001041}
1042
Chris Lattnerd934c702004-04-02 20:23:17 +00001043/// evaluateAtIteration - Return the value of this chain of recurrences at
1044/// the specified iteration number. We can evaluate this recurrence by
1045/// multiplying each element in the chain by the binomial coefficient
1046/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1047///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001048/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001049///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001050/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001051///
Dan Gohmanaf752342009-07-07 17:06:11 +00001052const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001053 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001054 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001055 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001056 // The computation is correct in the face of overflow provided that the
1057 // multiplication is performed _after_ the evaluation of the binomial
1058 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001059 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001060 if (isa<SCEVCouldNotCompute>(Coeff))
1061 return Coeff;
1062
1063 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001064 }
1065 return Result;
1066}
1067
Chris Lattnerd934c702004-04-02 20:23:17 +00001068//===----------------------------------------------------------------------===//
1069// SCEV Expression folder implementations
1070//===----------------------------------------------------------------------===//
1071
Dan Gohmanaf752342009-07-07 17:06:11 +00001072const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001073 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001074 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001075 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001076 assert(isSCEVable(Ty) &&
1077 "This is not a conversion to a SCEVable type!");
1078 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001079
Dan Gohman3a302cb2009-07-13 20:50:19 +00001080 FoldingSetNodeID ID;
1081 ID.AddInteger(scTruncate);
1082 ID.AddPointer(Op);
1083 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001084 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1086
Dan Gohman3423e722009-06-30 20:13:32 +00001087 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001088 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001089 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001090 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001091
Dan Gohman79af8542009-04-22 16:20:48 +00001092 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001094 return getTruncateExpr(ST->getOperand(), Ty);
1095
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1099
1100 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001101 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001102 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1103
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001104 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1105 // eliminate all the truncates.
1106 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1107 SmallVector<const SCEV *, 4> Operands;
1108 bool hasTrunc = false;
1109 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1110 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1111 hasTrunc = isa<SCEVTruncateExpr>(S);
1112 Operands.push_back(S);
1113 }
1114 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001115 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001116 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001117 }
1118
Nick Lewycky5c901f32011-01-19 18:56:00 +00001119 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1120 // eliminate all the truncates.
1121 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1122 SmallVector<const SCEV *, 4> Operands;
1123 bool hasTrunc = false;
1124 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1125 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1126 hasTrunc = isa<SCEVTruncateExpr>(S);
1127 Operands.push_back(S);
1128 }
1129 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001130 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001132 }
1133
Dan Gohman5a728c92009-06-18 16:24:47 +00001134 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001136 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001137 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001138 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001140 }
1141
Dan Gohman89dd42a2010-06-25 18:47:08 +00001142 // The cast wasn't folded; create an explicit cast node. We can reuse
1143 // the existing insert position since if we get here, we won't have
1144 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001147 UniqueSCEVs.InsertNode(S, IP);
1148 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001149}
1150
Sanjoy Das4153f472015-02-18 01:47:07 +00001151// Get the limit of a recurrence such that incrementing by Step cannot cause
1152// signed overflow as long as the value of the recurrence within the
1153// loop does not exceed this limit before incrementing.
1154static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155 ICmpInst::Predicate *Pred,
1156 ScalarEvolution *SE) {
1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158 if (SE->isKnownPositive(Step)) {
1159 *Pred = ICmpInst::ICMP_SLT;
1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161 SE->getSignedRange(Step).getSignedMax());
1162 }
1163 if (SE->isKnownNegative(Step)) {
1164 *Pred = ICmpInst::ICMP_SGT;
1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166 SE->getSignedRange(Step).getSignedMin());
1167 }
1168 return nullptr;
1169}
1170
1171// Get the limit of a recurrence such that incrementing by Step cannot cause
1172// unsigned overflow as long as the value of the recurrence within the loop does
1173// not exceed this limit before incrementing.
1174static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175 ICmpInst::Predicate *Pred,
1176 ScalarEvolution *SE) {
1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178 *Pred = ICmpInst::ICMP_ULT;
1179
1180 return SE->getConstant(APInt::getMinValue(BitWidth) -
1181 SE->getUnsignedRange(Step).getUnsignedMax());
1182}
1183
1184namespace {
1185
1186struct ExtendOpTraitsBase {
1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188};
1189
1190// Used to make code generic over signed and unsigned overflow.
1191template <typename ExtendOp> struct ExtendOpTraits {
1192 // Members present:
1193 //
1194 // static const SCEV::NoWrapFlags WrapType;
1195 //
1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197 //
1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199 // ICmpInst::Predicate *Pred,
1200 // ScalarEvolution *SE);
1201};
1202
1203template <>
1204struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206
1207 static const GetExtendExprTy GetExtendExpr;
1208
1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210 ICmpInst::Predicate *Pred,
1211 ScalarEvolution *SE) {
1212 return getSignedOverflowLimitForStep(Step, Pred, SE);
1213 }
1214};
1215
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001216const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218
1219template <>
1220struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222
1223 static const GetExtendExprTy GetExtendExpr;
1224
1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226 ICmpInst::Predicate *Pred,
1227 ScalarEvolution *SE) {
1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229 }
1230};
1231
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001232const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1234}
1235
1236// The recurrence AR has been shown to have no signed/unsigned wrap or something
1237// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241// expression "Step + sext/zext(PreIncAR)" is congruent with
1242// "sext/zext(PostIncAR)"
1243template <typename ExtendOpTy>
1244static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245 ScalarEvolution *SE) {
1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248
1249 const Loop *L = AR->getLoop();
1250 const SCEV *Start = AR->getStart();
1251 const SCEV *Step = AR->getStepRecurrence(*SE);
1252
1253 // Check for a simple looking step prior to loop entry.
1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255 if (!SA)
1256 return nullptr;
1257
1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259 // subtraction is expensive. For this purpose, perform a quick and dirty
1260 // difference, by checking for Step in the operand list.
1261 SmallVector<const SCEV *, 4> DiffOps;
1262 for (const SCEV *Op : SA->operands())
1263 if (Op != Step)
1264 DiffOps.push_back(Op);
1265
1266 if (DiffOps.size() == SA->getNumOperands())
1267 return nullptr;
1268
1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270 // `Step`:
1271
1272 // 1. NSW/NUW flags on the step increment.
1273 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1274 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1275 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1276
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001277 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1278 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001279 //
1280
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001281 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1282 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1283 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001284 return PreStart;
1285
1286 // 2. Direct overflow check on the step operation's expression.
1287 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1288 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1289 const SCEV *OperandExtendedStart =
1290 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1291 (SE->*GetExtendExpr)(Step, WideTy));
1292 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1293 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1294 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1295 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1296 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1297 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1298 }
1299 return PreStart;
1300 }
1301
1302 // 3. Loop precondition.
1303 ICmpInst::Predicate Pred;
1304 const SCEV *OverflowLimit =
1305 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1306
1307 if (OverflowLimit &&
1308 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1309 return PreStart;
1310 }
1311 return nullptr;
1312}
1313
1314// Get the normalized zero or sign extended expression for this AddRec's Start.
1315template <typename ExtendOpTy>
1316static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1317 ScalarEvolution *SE) {
1318 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1319
1320 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1321 if (!PreStart)
1322 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1323
1324 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1325 (SE->*GetExtendExpr)(PreStart, Ty));
1326}
1327
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001328// Try to prove away overflow by looking at "nearby" add recurrences. A
1329// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1330// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1331//
1332// Formally:
1333//
1334// {S,+,X} == {S-T,+,X} + T
1335// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1336//
1337// If ({S-T,+,X} + T) does not overflow ... (1)
1338//
1339// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1340//
1341// If {S-T,+,X} does not overflow ... (2)
1342//
1343// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1344// == {Ext(S-T)+Ext(T),+,Ext(X)}
1345//
1346// If (S-T)+T does not overflow ... (3)
1347//
1348// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1349// == {Ext(S),+,Ext(X)} == LHS
1350//
1351// Thus, if (1), (2) and (3) are true for some T, then
1352// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1353//
1354// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1355// does not overflow" restricted to the 0th iteration. Therefore we only need
1356// to check for (1) and (2).
1357//
1358// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1359// is `Delta` (defined below).
1360//
1361template <typename ExtendOpTy>
1362bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1363 const SCEV *Step,
1364 const Loop *L) {
1365 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1366
1367 // We restrict `Start` to a constant to prevent SCEV from spending too much
1368 // time here. It is correct (but more expensive) to continue with a
1369 // non-constant `Start` and do a general SCEV subtraction to compute
1370 // `PreStart` below.
1371 //
1372 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1373 if (!StartC)
1374 return false;
1375
1376 APInt StartAI = StartC->getValue()->getValue();
1377
1378 for (unsigned Delta : {-2, -1, 1, 2}) {
1379 const SCEV *PreStart = getConstant(StartAI - Delta);
1380
1381 // Give up if we don't already have the add recurrence we need because
1382 // actually constructing an add recurrence is relatively expensive.
1383 const SCEVAddRecExpr *PreAR = [&]() {
1384 FoldingSetNodeID ID;
1385 ID.AddInteger(scAddRecExpr);
1386 ID.AddPointer(PreStart);
1387 ID.AddPointer(Step);
1388 ID.AddPointer(L);
1389 void *IP = nullptr;
1390 return static_cast<SCEVAddRecExpr *>(
NAKAMURA Takumi8f49dd32015-03-05 01:02:45 +00001391 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001392 }();
1393
1394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398 DeltaS, &Pred, this);
1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1400 return true;
1401 }
1402 }
1403
1404 return false;
1405}
1406
Dan Gohmanaf752342009-07-07 17:06:11 +00001407const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001408 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001410 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001411 assert(isSCEVable(Ty) &&
1412 "This is not a conversion to a SCEVable type!");
1413 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001414
Dan Gohman3423e722009-06-30 20:13:32 +00001415 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001419
Dan Gohman79af8542009-04-22 16:20:48 +00001420 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001422 return getZeroExtendExpr(SZ->getOperand(), Ty);
1423
Dan Gohman74a0ba12009-07-13 20:55:53 +00001424 // Before doing any expensive analysis, check to see if we've already
1425 // computed a SCEV for this Op and Ty.
1426 FoldingSetNodeID ID;
1427 ID.AddInteger(scZeroExtend);
1428 ID.AddPointer(Op);
1429 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001430 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001433 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435 // It's possible the bits taken off by the truncate were all zero bits. If
1436 // so, we should be able to simplify this further.
1437 const SCEV *X = ST->getOperand();
1438 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001439 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440 unsigned NewBits = getTypeSizeInBits(Ty);
1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001442 CR.zextOrTrunc(NewBits)))
1443 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001444 }
1445
Dan Gohman76466372009-04-27 20:16:15 +00001446 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001447 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001448 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001451 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001452 const SCEV *Start = AR->getStart();
1453 const SCEV *Step = AR->getStepRecurrence(*this);
1454 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455 const Loop *L = AR->getLoop();
1456
Dan Gohman62ef6a72009-07-25 01:22:26 +00001457 // If we have special knowledge that this addrec won't overflow,
1458 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001459 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001460 return getAddRecExpr(
1461 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1462 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001463
Dan Gohman76466372009-04-27 20:16:15 +00001464 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1465 // Note that this serves two purposes: It filters out loops that are
1466 // simply not analyzable, and it covers the case where this code is
1467 // being called from within backedge-taken count analysis, such that
1468 // attempting to ask for the backedge-taken count would likely result
1469 // in infinite recursion. In the later case, the analysis code will
1470 // cope with a conservative value, and it will take care to purge
1471 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001472 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001473 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001474 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001475 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001476
1477 // Check whether the backedge-taken count can be losslessly casted to
1478 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001479 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001480 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001481 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001482 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1483 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001484 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001485 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001486 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001487 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1488 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1489 const SCEV *WideMaxBECount =
1490 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001491 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001492 getAddExpr(WideStart,
1493 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001494 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001495 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001496 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1497 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001498 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001499 return getAddRecExpr(
1500 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1501 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001502 }
Dan Gohman76466372009-04-27 20:16:15 +00001503 // Similar to above, only this time treat the step value as signed.
1504 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001505 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001506 getAddExpr(WideStart,
1507 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001508 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001509 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001510 // Cache knowledge of AR NW, which is propagated to this AddRec.
1511 // Negative step causes unsigned wrap, but it still can't self-wrap.
1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001513 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001514 return getAddRecExpr(
1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1516 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001517 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001518 }
1519
1520 // If the backedge is guarded by a comparison with the pre-inc value
1521 // the addrec is safe. Also, if the entry is guarded by a comparison
1522 // with the start value and the backedge is guarded by a comparison
1523 // with the post-inc value, the addrec is safe.
1524 if (isKnownPositive(Step)) {
1525 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1526 getUnsignedRange(Step).getUnsignedMax());
1527 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001528 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001529 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001530 AR->getPostIncExpr(*this), N))) {
1531 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1532 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001533 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001534 return getAddRecExpr(
1535 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1536 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001537 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001538 } else if (isKnownNegative(Step)) {
1539 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1540 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001541 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1542 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001543 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001544 AR->getPostIncExpr(*this), N))) {
1545 // Cache knowledge of AR NW, which is propagated to this AddRec.
1546 // Negative step causes unsigned wrap, but it still can't self-wrap.
1547 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1548 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001549 return getAddRecExpr(
1550 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1551 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001552 }
Dan Gohman76466372009-04-27 20:16:15 +00001553 }
1554 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001555
1556 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1557 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1558 return getAddRecExpr(
1559 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1560 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1561 }
Dan Gohman76466372009-04-27 20:16:15 +00001562 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001563
Dan Gohman74a0ba12009-07-13 20:55:53 +00001564 // The cast wasn't folded; create an explicit cast node.
1565 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001566 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001567 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1568 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001569 UniqueSCEVs.InsertNode(S, IP);
1570 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001571}
1572
Dan Gohmanaf752342009-07-07 17:06:11 +00001573const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001574 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001575 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001576 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001577 assert(isSCEVable(Ty) &&
1578 "This is not a conversion to a SCEVable type!");
1579 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001580
Dan Gohman3423e722009-06-30 20:13:32 +00001581 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001582 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1583 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001584 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001585
Dan Gohman79af8542009-04-22 16:20:48 +00001586 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001587 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001588 return getSignExtendExpr(SS->getOperand(), Ty);
1589
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001590 // sext(zext(x)) --> zext(x)
1591 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1592 return getZeroExtendExpr(SZ->getOperand(), Ty);
1593
Dan Gohman74a0ba12009-07-13 20:55:53 +00001594 // Before doing any expensive analysis, check to see if we've already
1595 // computed a SCEV for this Op and Ty.
1596 FoldingSetNodeID ID;
1597 ID.AddInteger(scSignExtend);
1598 ID.AddPointer(Op);
1599 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001600 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001601 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1602
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001603 // If the input value is provably positive, build a zext instead.
1604 if (isKnownNonNegative(Op))
1605 return getZeroExtendExpr(Op, Ty);
1606
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001607 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1608 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1609 // It's possible the bits taken off by the truncate were all sign bits. If
1610 // so, we should be able to simplify this further.
1611 const SCEV *X = ST->getOperand();
1612 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001613 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1614 unsigned NewBits = getTypeSizeInBits(Ty);
1615 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001616 CR.sextOrTrunc(NewBits)))
1617 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001618 }
1619
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001620 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1621 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1622 if (SA->getNumOperands() == 2) {
1623 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1624 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1625 if (SMul && SC1) {
1626 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001627 const APInt &C1 = SC1->getValue()->getValue();
1628 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001629 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001630 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001631 return getAddExpr(getSignExtendExpr(SC1, Ty),
1632 getSignExtendExpr(SMul, Ty));
1633 }
1634 }
1635 }
1636 }
Dan Gohman76466372009-04-27 20:16:15 +00001637 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001638 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001639 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001640 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001641 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001642 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001643 const SCEV *Start = AR->getStart();
1644 const SCEV *Step = AR->getStepRecurrence(*this);
1645 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1646 const Loop *L = AR->getLoop();
1647
Dan Gohman62ef6a72009-07-25 01:22:26 +00001648 // If we have special knowledge that this addrec won't overflow,
1649 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001650 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001651 return getAddRecExpr(
1652 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1653 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001654
Dan Gohman76466372009-04-27 20:16:15 +00001655 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1656 // Note that this serves two purposes: It filters out loops that are
1657 // simply not analyzable, and it covers the case where this code is
1658 // being called from within backedge-taken count analysis, such that
1659 // attempting to ask for the backedge-taken count would likely result
1660 // in infinite recursion. In the later case, the analysis code will
1661 // cope with a conservative value, and it will take care to purge
1662 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001663 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001664 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001665 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001666 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001667
1668 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001669 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001670 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001671 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001672 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001673 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1674 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001675 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001676 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001677 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001678 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1679 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1680 const SCEV *WideMaxBECount =
1681 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001682 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001683 getAddExpr(WideStart,
1684 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001685 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001686 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001687 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1688 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001689 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001690 return getAddRecExpr(
1691 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1692 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001693 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001694 // Similar to above, only this time treat the step value as unsigned.
1695 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001696 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001697 getAddExpr(WideStart,
1698 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001699 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001700 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001701 // If AR wraps around then
1702 //
1703 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1704 // => SAdd != OperandExtendedAdd
1705 //
1706 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1707 // (SAdd == OperandExtendedAdd => AR is NW)
1708
1709 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1710
Dan Gohman8c129d72009-07-16 17:34:36 +00001711 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001712 return getAddRecExpr(
1713 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1714 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001715 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001716 }
1717
1718 // If the backedge is guarded by a comparison with the pre-inc value
1719 // the addrec is safe. Also, if the entry is guarded by a comparison
1720 // with the start value and the backedge is guarded by a comparison
1721 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001722 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001723 const SCEV *OverflowLimit =
1724 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001725 if (OverflowLimit &&
1726 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1727 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1728 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1729 OverflowLimit)))) {
1730 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1731 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001732 return getAddRecExpr(
1733 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1734 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001735 }
1736 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001737 // If Start and Step are constants, check if we can apply this
1738 // transformation:
1739 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1740 auto SC1 = dyn_cast<SCEVConstant>(Start);
1741 auto SC2 = dyn_cast<SCEVConstant>(Step);
1742 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001743 const APInt &C1 = SC1->getValue()->getValue();
1744 const APInt &C2 = SC2->getValue()->getValue();
1745 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1746 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001747 Start = getSignExtendExpr(Start, Ty);
1748 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1749 L, AR->getNoWrapFlags());
1750 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1751 }
1752 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001753
1754 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1755 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1756 return getAddRecExpr(
1757 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1758 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1759 }
Dan Gohman76466372009-04-27 20:16:15 +00001760 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001761
Dan Gohman74a0ba12009-07-13 20:55:53 +00001762 // The cast wasn't folded; create an explicit cast node.
1763 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001764 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001765 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1766 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001767 UniqueSCEVs.InsertNode(S, IP);
1768 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001769}
1770
Dan Gohman8db2edc2009-06-13 15:56:47 +00001771/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1772/// unspecified bits out to the given type.
1773///
Dan Gohmanaf752342009-07-07 17:06:11 +00001774const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001775 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001776 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1777 "This is not an extending conversion!");
1778 assert(isSCEVable(Ty) &&
1779 "This is not a conversion to a SCEVable type!");
1780 Ty = getEffectiveSCEVType(Ty);
1781
1782 // Sign-extend negative constants.
1783 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1784 if (SC->getValue()->getValue().isNegative())
1785 return getSignExtendExpr(Op, Ty);
1786
1787 // Peel off a truncate cast.
1788 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001789 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001790 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1791 return getAnyExtendExpr(NewOp, Ty);
1792 return getTruncateOrNoop(NewOp, Ty);
1793 }
1794
1795 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001796 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001797 if (!isa<SCEVZeroExtendExpr>(ZExt))
1798 return ZExt;
1799
1800 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001801 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001802 if (!isa<SCEVSignExtendExpr>(SExt))
1803 return SExt;
1804
Dan Gohman51ad99d2010-01-21 02:09:26 +00001805 // Force the cast to be folded into the operands of an addrec.
1806 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1807 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001808 for (const SCEV *Op : AR->operands())
1809 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001810 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001811 }
1812
Dan Gohman8db2edc2009-06-13 15:56:47 +00001813 // If the expression is obviously signed, use the sext cast value.
1814 if (isa<SCEVSMaxExpr>(Op))
1815 return SExt;
1816
1817 // Absent any other information, use the zext cast value.
1818 return ZExt;
1819}
1820
Dan Gohman038d02e2009-06-14 22:58:51 +00001821/// CollectAddOperandsWithScales - Process the given Ops list, which is
1822/// a list of operands to be added under the given scale, update the given
1823/// map. This is a helper function for getAddRecExpr. As an example of
1824/// what it does, given a sequence of operands that would form an add
1825/// expression like this:
1826///
Tobias Grosserba49e422014-03-05 10:37:17 +00001827/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001828///
1829/// where A and B are constants, update the map with these values:
1830///
1831/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1832///
1833/// and add 13 + A*B*29 to AccumulatedConstant.
1834/// This will allow getAddRecExpr to produce this:
1835///
1836/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1837///
1838/// This form often exposes folding opportunities that are hidden in
1839/// the original operand list.
1840///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001841/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001842/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1843/// the common case where no interesting opportunities are present, and
1844/// is also used as a check to avoid infinite recursion.
1845///
1846static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001847CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001848 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001849 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001850 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001851 const APInt &Scale,
1852 ScalarEvolution &SE) {
1853 bool Interesting = false;
1854
Dan Gohman45073042010-06-18 19:12:32 +00001855 // Iterate over the add operands. They are sorted, with constants first.
1856 unsigned i = 0;
1857 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1858 ++i;
1859 // Pull a buried constant out to the outside.
1860 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1861 Interesting = true;
1862 AccumulatedConstant += Scale * C->getValue()->getValue();
1863 }
1864
1865 // Next comes everything else. We're especially interested in multiplies
1866 // here, but they're in the middle, so just visit the rest with one loop.
1867 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001868 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1869 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1870 APInt NewScale =
1871 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1872 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1873 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001874 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001875 Interesting |=
1876 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001877 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001878 NewScale, SE);
1879 } else {
1880 // A multiplication of a constant with some other value. Update
1881 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001882 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1883 const SCEV *Key = SE.getMulExpr(MulOps);
1884 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001885 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001886 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001887 NewOps.push_back(Pair.first->first);
1888 } else {
1889 Pair.first->second += NewScale;
1890 // The map already had an entry for this value, which may indicate
1891 // a folding opportunity.
1892 Interesting = true;
1893 }
1894 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001895 } else {
1896 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001897 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001898 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001899 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001900 NewOps.push_back(Pair.first->first);
1901 } else {
1902 Pair.first->second += Scale;
1903 // The map already had an entry for this value, which may indicate
1904 // a folding opportunity.
1905 Interesting = true;
1906 }
1907 }
1908 }
1909
1910 return Interesting;
1911}
1912
1913namespace {
1914 struct APIntCompare {
1915 bool operator()(const APInt &LHS, const APInt &RHS) const {
1916 return LHS.ult(RHS);
1917 }
1918 };
1919}
1920
Sanjoy Das81401d42015-01-10 23:41:24 +00001921// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1922// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1923// can't-overflow flags for the operation if possible.
1924static SCEV::NoWrapFlags
1925StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1926 const SmallVectorImpl<const SCEV *> &Ops,
1927 SCEV::NoWrapFlags OldFlags) {
1928 using namespace std::placeholders;
1929
1930 bool CanAnalyze =
1931 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1932 (void)CanAnalyze;
1933 assert(CanAnalyze && "don't call from other places!");
1934
1935 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1936 SCEV::NoWrapFlags SignOrUnsignWrap =
1937 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1938
1939 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1940 auto IsKnownNonNegative =
1941 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1942
1943 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1944 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1945 return ScalarEvolution::setFlags(OldFlags,
1946 (SCEV::NoWrapFlags)SignOrUnsignMask);
1947
1948 return OldFlags;
1949}
1950
Dan Gohman4d5435d2009-05-24 23:45:28 +00001951/// getAddExpr - Get a canonical add expression, or something simpler if
1952/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001953const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001954 SCEV::NoWrapFlags Flags) {
1955 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1956 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001957 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001958 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001959#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001960 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001961 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001962 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001963 "SCEVAddExpr operand types don't match!");
1964#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001965
Sanjoy Das81401d42015-01-10 23:41:24 +00001966 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001967
Chris Lattnerd934c702004-04-02 20:23:17 +00001968 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001969 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001970
1971 // If there are any constants, fold them together.
1972 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001973 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001974 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001975 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001976 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001977 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001978 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1979 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001980 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001981 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001982 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001983 }
1984
1985 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001986 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001987 Ops.erase(Ops.begin());
1988 --Idx;
1989 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001990
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001991 if (Ops.size() == 1) return Ops[0];
1992 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001993
Dan Gohman15871f22010-08-27 21:39:59 +00001994 // Okay, check to see if the same value occurs in the operand list more than
1995 // once. If so, merge them together into an multiply expression. Since we
1996 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001997 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001998 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001999 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002000 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002001 // Scan ahead to count how many equal operands there are.
2002 unsigned Count = 2;
2003 while (i+Count != e && Ops[i+Count] == Ops[i])
2004 ++Count;
2005 // Merge the values into a multiply.
2006 const SCEV *Scale = getConstant(Ty, Count);
2007 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2008 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002009 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002010 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002011 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002012 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002013 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002014 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002015 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002016 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002017
Dan Gohman2e55cc52009-05-08 21:03:19 +00002018 // Check for truncates. If all the operands are truncated from the same
2019 // type, see if factoring out the truncate would permit the result to be
2020 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2021 // if the contents of the resulting outer trunc fold to something simple.
2022 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2023 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002024 Type *DstType = Trunc->getType();
2025 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002026 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002027 bool Ok = true;
2028 // Check all the operands to see if they can be represented in the
2029 // source type of the truncate.
2030 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2031 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2032 if (T->getOperand()->getType() != SrcType) {
2033 Ok = false;
2034 break;
2035 }
2036 LargeOps.push_back(T->getOperand());
2037 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002038 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002039 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002040 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002041 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2042 if (const SCEVTruncateExpr *T =
2043 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2044 if (T->getOperand()->getType() != SrcType) {
2045 Ok = false;
2046 break;
2047 }
2048 LargeMulOps.push_back(T->getOperand());
2049 } else if (const SCEVConstant *C =
2050 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002051 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002052 } else {
2053 Ok = false;
2054 break;
2055 }
2056 }
2057 if (Ok)
2058 LargeOps.push_back(getMulExpr(LargeMulOps));
2059 } else {
2060 Ok = false;
2061 break;
2062 }
2063 }
2064 if (Ok) {
2065 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002066 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002067 // If it folds to something simple, use it. Otherwise, don't.
2068 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2069 return getTruncateExpr(Fold, DstType);
2070 }
2071 }
2072
2073 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002074 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2075 ++Idx;
2076
2077 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002078 if (Idx < Ops.size()) {
2079 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002080 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002081 // If we have an add, expand the add operands onto the end of the operands
2082 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002083 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002084 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002085 DeletedAdd = true;
2086 }
2087
2088 // If we deleted at least one add, we added operands to the end of the list,
2089 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002090 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002091 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002092 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002093 }
2094
2095 // Skip over the add expression until we get to a multiply.
2096 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2097 ++Idx;
2098
Dan Gohman038d02e2009-06-14 22:58:51 +00002099 // Check to see if there are any folding opportunities present with
2100 // operands multiplied by constant values.
2101 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2102 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002103 DenseMap<const SCEV *, APInt> M;
2104 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002105 APInt AccumulatedConstant(BitWidth, 0);
2106 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002107 Ops.data(), Ops.size(),
2108 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002109 // Some interesting folding opportunity is present, so its worthwhile to
2110 // re-generate the operands list. Group the operands by constant scale,
2111 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002112 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00002113 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00002114 E = NewOps.end(); I != E; ++I)
2115 MulOpLists[M.find(*I)->second].push_back(*I);
2116 // Re-generate the operands list.
2117 Ops.clear();
2118 if (AccumulatedConstant != 0)
2119 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00002120 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2121 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00002122 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00002123 Ops.push_back(getMulExpr(getConstant(I->first),
2124 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002125 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00002126 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00002127 if (Ops.size() == 1)
2128 return Ops[0];
2129 return getAddExpr(Ops);
2130 }
2131 }
2132
Chris Lattnerd934c702004-04-02 20:23:17 +00002133 // If we are adding something to a multiply expression, make sure the
2134 // something is not already an operand of the multiply. If so, merge it into
2135 // the multiply.
2136 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002137 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002138 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002139 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002140 if (isa<SCEVConstant>(MulOpSCEV))
2141 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002142 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002143 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002144 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002145 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002146 if (Mul->getNumOperands() != 2) {
2147 // If the multiply has more than two operands, we must get the
2148 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002149 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2150 Mul->op_begin()+MulOp);
2151 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002152 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002153 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00002154 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002155 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002156 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002157 if (Ops.size() == 2) return OuterMul;
2158 if (AddOp < Idx) {
2159 Ops.erase(Ops.begin()+AddOp);
2160 Ops.erase(Ops.begin()+Idx-1);
2161 } else {
2162 Ops.erase(Ops.begin()+Idx);
2163 Ops.erase(Ops.begin()+AddOp-1);
2164 }
2165 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002166 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002167 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002168
Chris Lattnerd934c702004-04-02 20:23:17 +00002169 // Check this multiply against other multiplies being added together.
2170 for (unsigned OtherMulIdx = Idx+1;
2171 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2172 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002173 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002174 // If MulOp occurs in OtherMul, we can fold the two multiplies
2175 // together.
2176 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2177 OMulOp != e; ++OMulOp)
2178 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2179 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002180 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002181 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002182 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002183 Mul->op_begin()+MulOp);
2184 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002185 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002186 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002187 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002188 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002189 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002190 OtherMul->op_begin()+OMulOp);
2191 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002192 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002193 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002194 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2195 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002196 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002197 Ops.erase(Ops.begin()+Idx);
2198 Ops.erase(Ops.begin()+OtherMulIdx-1);
2199 Ops.push_back(OuterMul);
2200 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002201 }
2202 }
2203 }
2204 }
2205
2206 // If there are any add recurrences in the operands list, see if any other
2207 // added values are loop invariant. If so, we can fold them into the
2208 // recurrence.
2209 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2210 ++Idx;
2211
2212 // Scan over all recurrences, trying to fold loop invariants into them.
2213 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2214 // Scan all of the other operands to this add and add them to the vector if
2215 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002216 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002217 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002218 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002219 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002220 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002221 LIOps.push_back(Ops[i]);
2222 Ops.erase(Ops.begin()+i);
2223 --i; --e;
2224 }
2225
2226 // If we found some loop invariants, fold them into the recurrence.
2227 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002228 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002229 LIOps.push_back(AddRec->getStart());
2230
Dan Gohmanaf752342009-07-07 17:06:11 +00002231 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002232 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002233 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002234
Dan Gohman16206132010-06-30 07:16:37 +00002235 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002236 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002237 // Always propagate NW.
2238 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002239 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002240
Chris Lattnerd934c702004-04-02 20:23:17 +00002241 // If all of the other operands were loop invariant, we are done.
2242 if (Ops.size() == 1) return NewRec;
2243
Nick Lewyckydb66b822011-09-06 05:08:09 +00002244 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002245 for (unsigned i = 0;; ++i)
2246 if (Ops[i] == AddRec) {
2247 Ops[i] = NewRec;
2248 break;
2249 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002250 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002251 }
2252
2253 // Okay, if there weren't any loop invariants to be folded, check to see if
2254 // there are multiple AddRec's with the same loop induction variable being
2255 // added together. If so, we can fold them.
2256 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002257 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2258 ++OtherIdx)
2259 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2260 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2261 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2262 AddRec->op_end());
2263 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2264 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002265 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002266 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002267 if (OtherAddRec->getLoop() == AddRecLoop) {
2268 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2269 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002270 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002271 AddRecOps.append(OtherAddRec->op_begin()+i,
2272 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002273 break;
2274 }
Dan Gohman028c1812010-08-29 14:53:34 +00002275 AddRecOps[i] = getAddExpr(AddRecOps[i],
2276 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002277 }
2278 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002279 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002280 // Step size has changed, so we cannot guarantee no self-wraparound.
2281 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002282 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002283 }
2284
2285 // Otherwise couldn't fold anything into this recurrence. Move onto the
2286 // next one.
2287 }
2288
2289 // Okay, it looks like we really DO need an add expr. Check to see if we
2290 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002291 FoldingSetNodeID ID;
2292 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002293 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2294 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002295 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002296 SCEVAddExpr *S =
2297 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2298 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002299 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2300 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002301 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2302 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002303 UniqueSCEVs.InsertNode(S, IP);
2304 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002305 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002306 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002307}
2308
Nick Lewycky287682e2011-10-04 06:51:26 +00002309static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2310 uint64_t k = i*j;
2311 if (j > 1 && k / j != i) Overflow = true;
2312 return k;
2313}
2314
2315/// Compute the result of "n choose k", the binomial coefficient. If an
2316/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002317/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002318static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2319 // We use the multiplicative formula:
2320 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2321 // At each iteration, we take the n-th term of the numeral and divide by the
2322 // (k-n)th term of the denominator. This division will always produce an
2323 // integral result, and helps reduce the chance of overflow in the
2324 // intermediate computations. However, we can still overflow even when the
2325 // final result would fit.
2326
2327 if (n == 0 || n == k) return 1;
2328 if (k > n) return 0;
2329
2330 if (k > n/2)
2331 k = n-k;
2332
2333 uint64_t r = 1;
2334 for (uint64_t i = 1; i <= k; ++i) {
2335 r = umul_ov(r, n-(i-1), Overflow);
2336 r /= i;
2337 }
2338 return r;
2339}
2340
Nick Lewycky05044c22014-12-06 00:45:50 +00002341/// Determine if any of the operands in this SCEV are a constant or if
2342/// any of the add or multiply expressions in this SCEV contain a constant.
2343static bool containsConstantSomewhere(const SCEV *StartExpr) {
2344 SmallVector<const SCEV *, 4> Ops;
2345 Ops.push_back(StartExpr);
2346 while (!Ops.empty()) {
2347 const SCEV *CurrentExpr = Ops.pop_back_val();
2348 if (isa<SCEVConstant>(*CurrentExpr))
2349 return true;
2350
2351 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2352 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002353 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002354 }
2355 }
2356 return false;
2357}
2358
Dan Gohman4d5435d2009-05-24 23:45:28 +00002359/// getMulExpr - Get a canonical multiply expression, or something simpler if
2360/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002361const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002362 SCEV::NoWrapFlags Flags) {
2363 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2364 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002365 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002366 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002367#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002368 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002369 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002370 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002371 "SCEVMulExpr operand types don't match!");
2372#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002373
Sanjoy Das81401d42015-01-10 23:41:24 +00002374 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002375
Chris Lattnerd934c702004-04-02 20:23:17 +00002376 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002377 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002378
2379 // If there are any constants, fold them together.
2380 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002381 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002382
2383 // C1*(C2+V) -> C1*C2 + C1*V
2384 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002385 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2386 // If any of Add's ops are Adds or Muls with a constant,
2387 // apply this transformation as well.
2388 if (Add->getNumOperands() == 2)
2389 if (containsConstantSomewhere(Add))
2390 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2391 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002392
Chris Lattnerd934c702004-04-02 20:23:17 +00002393 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002394 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002395 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002396 ConstantInt *Fold = ConstantInt::get(getContext(),
2397 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002398 RHSC->getValue()->getValue());
2399 Ops[0] = getConstant(Fold);
2400 Ops.erase(Ops.begin()+1); // Erase the folded element
2401 if (Ops.size() == 1) return Ops[0];
2402 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002403 }
2404
2405 // If we are left with a constant one being multiplied, strip it off.
2406 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2407 Ops.erase(Ops.begin());
2408 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002409 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002410 // If we have a multiply of zero, it will always be zero.
2411 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002412 } else if (Ops[0]->isAllOnesValue()) {
2413 // If we have a mul by -1 of an add, try distributing the -1 among the
2414 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002415 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2417 SmallVector<const SCEV *, 4> NewOps;
2418 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002419 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2420 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002421 const SCEV *Mul = getMulExpr(Ops[0], *I);
2422 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2423 NewOps.push_back(Mul);
2424 }
2425 if (AnyFolded)
2426 return getAddExpr(NewOps);
2427 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002428 else if (const SCEVAddRecExpr *
2429 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2430 // Negation preserves a recurrence's no self-wrap property.
2431 SmallVector<const SCEV *, 4> Operands;
2432 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2433 E = AddRec->op_end(); I != E; ++I) {
2434 Operands.push_back(getMulExpr(Ops[0], *I));
2435 }
2436 return getAddRecExpr(Operands, AddRec->getLoop(),
2437 AddRec->getNoWrapFlags(SCEV::FlagNW));
2438 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002439 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002440 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002441
2442 if (Ops.size() == 1)
2443 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002444 }
2445
2446 // Skip over the add expression until we get to a multiply.
2447 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2448 ++Idx;
2449
Chris Lattnerd934c702004-04-02 20:23:17 +00002450 // If there are mul operands inline them all into this expression.
2451 if (Idx < Ops.size()) {
2452 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002453 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002454 // If we have an mul, expand the mul operands onto the end of the operands
2455 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002456 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002457 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002458 DeletedMul = true;
2459 }
2460
2461 // If we deleted at least one mul, we added operands to the end of the list,
2462 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002463 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002464 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002465 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002466 }
2467
2468 // If there are any add recurrences in the operands list, see if any other
2469 // added values are loop invariant. If so, we can fold them into the
2470 // recurrence.
2471 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2472 ++Idx;
2473
2474 // Scan over all recurrences, trying to fold loop invariants into them.
2475 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2476 // Scan all of the other operands to this mul and add them to the vector if
2477 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002478 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002479 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002480 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002481 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002482 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002483 LIOps.push_back(Ops[i]);
2484 Ops.erase(Ops.begin()+i);
2485 --i; --e;
2486 }
2487
2488 // If we found some loop invariants, fold them into the recurrence.
2489 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002490 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002491 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002492 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002493 const SCEV *Scale = getMulExpr(LIOps);
2494 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2495 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002496
Dan Gohman16206132010-06-30 07:16:37 +00002497 // Build the new addrec. Propagate the NUW and NSW flags if both the
2498 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002499 //
2500 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002501 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002502 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2503 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002504
2505 // If all of the other operands were loop invariant, we are done.
2506 if (Ops.size() == 1) return NewRec;
2507
Nick Lewyckydb66b822011-09-06 05:08:09 +00002508 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002509 for (unsigned i = 0;; ++i)
2510 if (Ops[i] == AddRec) {
2511 Ops[i] = NewRec;
2512 break;
2513 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002514 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002515 }
2516
2517 // Okay, if there weren't any loop invariants to be folded, check to see if
2518 // there are multiple AddRec's with the same loop induction variable being
2519 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002520
2521 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2522 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2523 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2524 // ]]],+,...up to x=2n}.
2525 // Note that the arguments to choose() are always integers with values
2526 // known at compile time, never SCEV objects.
2527 //
2528 // The implementation avoids pointless extra computations when the two
2529 // addrec's are of different length (mathematically, it's equivalent to
2530 // an infinite stream of zeros on the right).
2531 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002532 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002533 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002534 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002535 const SCEVAddRecExpr *OtherAddRec =
2536 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2537 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002538 continue;
2539
Nick Lewycky97756402014-09-01 05:17:15 +00002540 bool Overflow = false;
2541 Type *Ty = AddRec->getType();
2542 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2543 SmallVector<const SCEV*, 7> AddRecOps;
2544 for (int x = 0, xe = AddRec->getNumOperands() +
2545 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2546 const SCEV *Term = getConstant(Ty, 0);
2547 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2548 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2549 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2550 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2551 z < ze && !Overflow; ++z) {
2552 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2553 uint64_t Coeff;
2554 if (LargerThan64Bits)
2555 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2556 else
2557 Coeff = Coeff1*Coeff2;
2558 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2559 const SCEV *Term1 = AddRec->getOperand(y-z);
2560 const SCEV *Term2 = OtherAddRec->getOperand(z);
2561 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002562 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002563 }
Nick Lewycky97756402014-09-01 05:17:15 +00002564 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002565 }
Nick Lewycky97756402014-09-01 05:17:15 +00002566 if (!Overflow) {
2567 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2568 SCEV::FlagAnyWrap);
2569 if (Ops.size() == 2) return NewAddRec;
2570 Ops[Idx] = NewAddRec;
2571 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2572 OpsModified = true;
2573 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2574 if (!AddRec)
2575 break;
2576 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002577 }
Nick Lewycky97756402014-09-01 05:17:15 +00002578 if (OpsModified)
2579 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002580
2581 // Otherwise couldn't fold anything into this recurrence. Move onto the
2582 // next one.
2583 }
2584
2585 // Okay, it looks like we really DO need an mul expr. Check to see if we
2586 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002587 FoldingSetNodeID ID;
2588 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002589 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2590 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002591 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002592 SCEVMulExpr *S =
2593 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2594 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002595 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2596 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002597 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2598 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002599 UniqueSCEVs.InsertNode(S, IP);
2600 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002601 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002602 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002603}
2604
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002605/// getUDivExpr - Get a canonical unsigned division expression, or something
2606/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002607const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2608 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002609 assert(getEffectiveSCEVType(LHS->getType()) ==
2610 getEffectiveSCEVType(RHS->getType()) &&
2611 "SCEVUDivExpr operand types don't match!");
2612
Dan Gohmana30370b2009-05-04 22:02:23 +00002613 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002614 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002615 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002616 // If the denominator is zero, the result of the udiv is undefined. Don't
2617 // try to analyze it, because the resolution chosen here may differ from
2618 // the resolution chosen in other parts of the compiler.
2619 if (!RHSC->getValue()->isZero()) {
2620 // Determine if the division can be folded into the operands of
2621 // its operands.
2622 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002623 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002624 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002625 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002626 // For non-power-of-two values, effectively round the value up to the
2627 // nearest power of two.
2628 if (!RHSC->getValue()->getValue().isPowerOf2())
2629 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002630 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002631 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002632 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2633 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002634 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2635 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2636 const APInt &StepInt = Step->getValue()->getValue();
2637 const APInt &DivInt = RHSC->getValue()->getValue();
2638 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002639 getZeroExtendExpr(AR, ExtTy) ==
2640 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2641 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002642 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002643 SmallVector<const SCEV *, 4> Operands;
2644 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2645 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002646 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002647 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002648 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002649 /// Get a canonical UDivExpr for a recurrence.
2650 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2651 // We can currently only fold X%N if X is constant.
2652 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2653 if (StartC && !DivInt.urem(StepInt) &&
2654 getZeroExtendExpr(AR, ExtTy) ==
2655 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2656 getZeroExtendExpr(Step, ExtTy),
2657 AR->getLoop(), SCEV::FlagAnyWrap)) {
2658 const APInt &StartInt = StartC->getValue()->getValue();
2659 const APInt &StartRem = StartInt.urem(StepInt);
2660 if (StartRem != 0)
2661 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2662 AR->getLoop(), SCEV::FlagNW);
2663 }
2664 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002665 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2666 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2667 SmallVector<const SCEV *, 4> Operands;
2668 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2669 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2670 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2671 // Find an operand that's safely divisible.
2672 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2673 const SCEV *Op = M->getOperand(i);
2674 const SCEV *Div = getUDivExpr(Op, RHSC);
2675 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2676 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2677 M->op_end());
2678 Operands[i] = Div;
2679 return getMulExpr(Operands);
2680 }
2681 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002682 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002683 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002684 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002685 SmallVector<const SCEV *, 4> Operands;
2686 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2687 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2688 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2689 Operands.clear();
2690 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2691 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2692 if (isa<SCEVUDivExpr>(Op) ||
2693 getMulExpr(Op, RHS) != A->getOperand(i))
2694 break;
2695 Operands.push_back(Op);
2696 }
2697 if (Operands.size() == A->getNumOperands())
2698 return getAddExpr(Operands);
2699 }
2700 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002701
Dan Gohmanacd700a2010-04-22 01:35:11 +00002702 // Fold if both operands are constant.
2703 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2704 Constant *LHSCV = LHSC->getValue();
2705 Constant *RHSCV = RHSC->getValue();
2706 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2707 RHSCV)));
2708 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002709 }
2710 }
2711
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002712 FoldingSetNodeID ID;
2713 ID.AddInteger(scUDivExpr);
2714 ID.AddPointer(LHS);
2715 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002716 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002717 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002718 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2719 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002720 UniqueSCEVs.InsertNode(S, IP);
2721 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002722}
2723
Nick Lewycky31eaca52014-01-27 10:04:03 +00002724static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2725 APInt A = C1->getValue()->getValue().abs();
2726 APInt B = C2->getValue()->getValue().abs();
2727 uint32_t ABW = A.getBitWidth();
2728 uint32_t BBW = B.getBitWidth();
2729
2730 if (ABW > BBW)
2731 B = B.zext(ABW);
2732 else if (ABW < BBW)
2733 A = A.zext(BBW);
2734
2735 return APIntOps::GreatestCommonDivisor(A, B);
2736}
2737
2738/// getUDivExactExpr - Get a canonical unsigned division expression, or
2739/// something simpler if possible. There is no representation for an exact udiv
2740/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2741/// We can't do this when it's not exact because the udiv may be clearing bits.
2742const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2743 const SCEV *RHS) {
2744 // TODO: we could try to find factors in all sorts of things, but for now we
2745 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2746 // end of this file for inspiration.
2747
2748 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2749 if (!Mul)
2750 return getUDivExpr(LHS, RHS);
2751
2752 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2753 // If the mulexpr multiplies by a constant, then that constant must be the
2754 // first element of the mulexpr.
2755 if (const SCEVConstant *LHSCst =
2756 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2757 if (LHSCst == RHSCst) {
2758 SmallVector<const SCEV *, 2> Operands;
2759 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2760 return getMulExpr(Operands);
2761 }
2762
2763 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2764 // that there's a factor provided by one of the other terms. We need to
2765 // check.
2766 APInt Factor = gcd(LHSCst, RHSCst);
2767 if (!Factor.isIntN(1)) {
2768 LHSCst = cast<SCEVConstant>(
2769 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2770 RHSCst = cast<SCEVConstant>(
2771 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2772 SmallVector<const SCEV *, 2> Operands;
2773 Operands.push_back(LHSCst);
2774 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2775 LHS = getMulExpr(Operands);
2776 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002777 Mul = dyn_cast<SCEVMulExpr>(LHS);
2778 if (!Mul)
2779 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002780 }
2781 }
2782 }
2783
2784 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2785 if (Mul->getOperand(i) == RHS) {
2786 SmallVector<const SCEV *, 2> Operands;
2787 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2788 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2789 return getMulExpr(Operands);
2790 }
2791 }
2792
2793 return getUDivExpr(LHS, RHS);
2794}
Chris Lattnerd934c702004-04-02 20:23:17 +00002795
Dan Gohman4d5435d2009-05-24 23:45:28 +00002796/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2797/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002798const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2799 const Loop *L,
2800 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002801 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002802 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002803 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002804 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002805 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002806 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002807 }
2808
2809 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002810 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002811}
2812
Dan Gohman4d5435d2009-05-24 23:45:28 +00002813/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2814/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002815const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002816ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002817 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002818 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002819#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002820 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002821 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002822 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002823 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002824 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002825 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002826 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002827#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002828
Dan Gohmanbe928e32008-06-18 16:23:07 +00002829 if (Operands.back()->isZero()) {
2830 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002831 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002832 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002833
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002834 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2835 // use that information to infer NUW and NSW flags. However, computing a
2836 // BE count requires calling getAddRecExpr, so we may not yet have a
2837 // meaningful BE count at this point (and if we don't, we'd be stuck
2838 // with a SCEVCouldNotCompute as the cached BE count).
2839
Sanjoy Das81401d42015-01-10 23:41:24 +00002840 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002841
Dan Gohman223a5d22008-08-08 18:33:12 +00002842 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002843 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002844 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002845 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002846 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002847 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002848 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002849 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002850 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002851 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002852 // AddRecs require their operands be loop-invariant with respect to their
2853 // loops. Don't perform this transformation if it would break this
2854 // requirement.
2855 bool AllInvariant = true;
2856 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002857 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002858 AllInvariant = false;
2859 break;
2860 }
2861 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002862 // Create a recurrence for the outer loop with the same step size.
2863 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002864 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2865 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002866 SCEV::NoWrapFlags OuterFlags =
2867 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002868
2869 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002870 AllInvariant = true;
2871 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002872 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002873 AllInvariant = false;
2874 break;
2875 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002876 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002877 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002878 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002879 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2880 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002881 SCEV::NoWrapFlags InnerFlags =
2882 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002883 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2884 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002885 }
2886 // Reset Operands to its original state.
2887 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002888 }
2889 }
2890
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002891 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2892 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002893 FoldingSetNodeID ID;
2894 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002895 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2896 ID.AddPointer(Operands[i]);
2897 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002898 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002899 SCEVAddRecExpr *S =
2900 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2901 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002902 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2903 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002904 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2905 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002906 UniqueSCEVs.InsertNode(S, IP);
2907 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002908 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002909 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002910}
2911
Dan Gohmanabd17092009-06-24 14:49:00 +00002912const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2913 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002914 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002915 Ops.push_back(LHS);
2916 Ops.push_back(RHS);
2917 return getSMaxExpr(Ops);
2918}
2919
Dan Gohmanaf752342009-07-07 17:06:11 +00002920const SCEV *
2921ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002922 assert(!Ops.empty() && "Cannot get empty smax!");
2923 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002924#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002925 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002926 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002927 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002928 "SCEVSMaxExpr operand types don't match!");
2929#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002930
2931 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002932 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002933
2934 // If there are any constants, fold them together.
2935 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002936 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002937 ++Idx;
2938 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002939 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002940 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002941 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002942 APIntOps::smax(LHSC->getValue()->getValue(),
2943 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002944 Ops[0] = getConstant(Fold);
2945 Ops.erase(Ops.begin()+1); // Erase the folded element
2946 if (Ops.size() == 1) return Ops[0];
2947 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002948 }
2949
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002950 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002951 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2952 Ops.erase(Ops.begin());
2953 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002954 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2955 // If we have an smax with a constant maximum-int, it will always be
2956 // maximum-int.
2957 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002958 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002959
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002960 if (Ops.size() == 1) return Ops[0];
2961 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002962
2963 // Find the first SMax
2964 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2965 ++Idx;
2966
2967 // Check to see if one of the operands is an SMax. If so, expand its operands
2968 // onto our operand list, and recurse to simplify.
2969 if (Idx < Ops.size()) {
2970 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002971 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002972 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002973 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002974 DeletedSMax = true;
2975 }
2976
2977 if (DeletedSMax)
2978 return getSMaxExpr(Ops);
2979 }
2980
2981 // Okay, check to see if the same value occurs in the operand list twice. If
2982 // so, delete one. Since we sorted the list, these values are required to
2983 // be adjacent.
2984 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002985 // X smax Y smax Y --> X smax Y
2986 // X smax Y --> X, if X is always greater than Y
2987 if (Ops[i] == Ops[i+1] ||
2988 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2989 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2990 --i; --e;
2991 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002992 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2993 --i; --e;
2994 }
2995
2996 if (Ops.size() == 1) return Ops[0];
2997
2998 assert(!Ops.empty() && "Reduced smax down to nothing!");
2999
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003000 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003001 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003002 FoldingSetNodeID ID;
3003 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003004 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3005 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003006 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003007 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003008 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3009 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003010 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3011 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003012 UniqueSCEVs.InsertNode(S, IP);
3013 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003014}
3015
Dan Gohmanabd17092009-06-24 14:49:00 +00003016const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3017 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003018 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003019 Ops.push_back(LHS);
3020 Ops.push_back(RHS);
3021 return getUMaxExpr(Ops);
3022}
3023
Dan Gohmanaf752342009-07-07 17:06:11 +00003024const SCEV *
3025ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003026 assert(!Ops.empty() && "Cannot get empty umax!");
3027 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003028#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003029 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003030 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003031 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003032 "SCEVUMaxExpr operand types don't match!");
3033#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003034
3035 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00003036 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003037
3038 // If there are any constants, fold them together.
3039 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003040 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003041 ++Idx;
3042 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003043 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003044 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003045 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003046 APIntOps::umax(LHSC->getValue()->getValue(),
3047 RHSC->getValue()->getValue()));
3048 Ops[0] = getConstant(Fold);
3049 Ops.erase(Ops.begin()+1); // Erase the folded element
3050 if (Ops.size() == 1) return Ops[0];
3051 LHSC = cast<SCEVConstant>(Ops[0]);
3052 }
3053
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003054 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003055 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3056 Ops.erase(Ops.begin());
3057 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003058 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3059 // If we have an umax with a constant maximum-int, it will always be
3060 // maximum-int.
3061 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003062 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003063
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003064 if (Ops.size() == 1) return Ops[0];
3065 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003066
3067 // Find the first UMax
3068 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3069 ++Idx;
3070
3071 // Check to see if one of the operands is a UMax. If so, expand its operands
3072 // onto our operand list, and recurse to simplify.
3073 if (Idx < Ops.size()) {
3074 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003075 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003076 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003077 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003078 DeletedUMax = true;
3079 }
3080
3081 if (DeletedUMax)
3082 return getUMaxExpr(Ops);
3083 }
3084
3085 // Okay, check to see if the same value occurs in the operand list twice. If
3086 // so, delete one. Since we sorted the list, these values are required to
3087 // be adjacent.
3088 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003089 // X umax Y umax Y --> X umax Y
3090 // X umax Y --> X, if X is always greater than Y
3091 if (Ops[i] == Ops[i+1] ||
3092 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3093 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3094 --i; --e;
3095 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003096 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3097 --i; --e;
3098 }
3099
3100 if (Ops.size() == 1) return Ops[0];
3101
3102 assert(!Ops.empty() && "Reduced umax down to nothing!");
3103
3104 // Okay, it looks like we really DO need a umax expr. Check to see if we
3105 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003106 FoldingSetNodeID ID;
3107 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003108 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3109 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003110 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003111 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003112 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3113 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003114 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3115 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003116 UniqueSCEVs.InsertNode(S, IP);
3117 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003118}
3119
Dan Gohmanabd17092009-06-24 14:49:00 +00003120const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3121 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003122 // ~smax(~x, ~y) == smin(x, y).
3123 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3124}
3125
Dan Gohmanabd17092009-06-24 14:49:00 +00003126const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3127 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003128 // ~umax(~x, ~y) == umin(x, y)
3129 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3130}
3131
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003132const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003133 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003134 // constant expression and then folding it back into a ConstantInt.
3135 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003136 if (DL)
3137 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00003138
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003139 Constant *C = ConstantExpr::getSizeOf(AllocTy);
3140 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003141 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00003142 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00003143 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003144 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003145 return getTruncateOrZeroExtend(getSCEV(C), Ty);
3146}
3147
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003148const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3149 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003150 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003151 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003152 // constant expression and then folding it back into a ConstantInt.
3153 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003154 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003155 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003156 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003157 }
Dan Gohman11862a62010-04-12 23:03:26 +00003158
Dan Gohmancf913832010-01-28 02:15:55 +00003159 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
3160 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003161 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00003162 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003163
Matt Arsenault4ed49b52013-10-21 18:08:09 +00003164 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00003165 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003166}
3167
Dan Gohmanaf752342009-07-07 17:06:11 +00003168const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003169 // Don't attempt to do anything other than create a SCEVUnknown object
3170 // here. createSCEV only calls getUnknown after checking for all other
3171 // interesting possibilities, and any other code that calls getUnknown
3172 // is doing so in order to hide a value from SCEV canonicalization.
3173
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003174 FoldingSetNodeID ID;
3175 ID.AddInteger(scUnknown);
3176 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003177 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003178 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3179 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3180 "Stale SCEVUnknown in uniquing map!");
3181 return S;
3182 }
3183 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3184 FirstUnknown);
3185 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003186 UniqueSCEVs.InsertNode(S, IP);
3187 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003188}
3189
Chris Lattnerd934c702004-04-02 20:23:17 +00003190//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003191// Basic SCEV Analysis and PHI Idiom Recognition Code
3192//
3193
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003194/// isSCEVable - Test if values of the given type are analyzable within
3195/// the SCEV framework. This primarily includes integer types, and it
3196/// can optionally include pointer types if the ScalarEvolution class
3197/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003198bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003199 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003200 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003201}
3202
3203/// getTypeSizeInBits - Return the size in bits of the specified type,
3204/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003205uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003206 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3207
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003208 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003209 if (DL)
3210 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003211
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003212 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00003213 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003214 return Ty->getPrimitiveSizeInBits();
3215
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003216 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003217 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00003218 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003219 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003220}
3221
3222/// getEffectiveSCEVType - Return a type with the same bitwidth as
3223/// the given type and which represents how SCEV will treat the given
3224/// type, for which isSCEVable must return true. For pointer types,
3225/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003226Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003227 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3228
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003229 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003230 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003231 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003232
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003233 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003234 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003235
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003236 if (DL)
3237 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003238
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003239 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003240 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00003241}
Chris Lattnerd934c702004-04-02 20:23:17 +00003242
Dan Gohmanaf752342009-07-07 17:06:11 +00003243const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003244 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003245}
3246
Shuxin Yangefc4c012013-07-08 17:33:13 +00003247namespace {
3248 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3249 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3250 // is set iff if find such SCEVUnknown.
3251 //
3252 struct FindInvalidSCEVUnknown {
3253 bool FindOne;
3254 FindInvalidSCEVUnknown() { FindOne = false; }
3255 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003256 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003257 case scConstant:
3258 return false;
3259 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003260 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003261 FindOne = true;
3262 return false;
3263 default:
3264 return true;
3265 }
3266 }
3267 bool isDone() const { return FindOne; }
3268 };
3269}
3270
3271bool ScalarEvolution::checkValidity(const SCEV *S) const {
3272 FindInvalidSCEVUnknown F;
3273 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3274 ST.visitAll(S);
3275
3276 return !F.FindOne;
3277}
3278
Chris Lattnerd934c702004-04-02 20:23:17 +00003279/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3280/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003281const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003282 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003283
Shuxin Yangefc4c012013-07-08 17:33:13 +00003284 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3285 if (I != ValueExprMap.end()) {
3286 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003287 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003288 return S;
3289 else
3290 ValueExprMap.erase(I);
3291 }
Dan Gohmanaf752342009-07-07 17:06:11 +00003292 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00003293
3294 // The process of creating a SCEV for V may have caused other SCEVs
3295 // to have been created, so it's necessary to insert the new entry
3296 // from scratch, rather than trying to remember the insert position
3297 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003298 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00003299 return S;
3300}
3301
Dan Gohman0a40ad92009-04-16 03:18:22 +00003302/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3303///
Dan Gohmanaf752342009-07-07 17:06:11 +00003304const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003305 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003306 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003307 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003308
Chris Lattner229907c2011-07-18 04:54:35 +00003309 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003310 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003311 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003312 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003313}
3314
3315/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003316const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003317 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003318 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003319 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003320
Chris Lattner229907c2011-07-18 04:54:35 +00003321 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003322 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003323 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003324 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003325 return getMinusSCEV(AllOnes, V);
3326}
3327
Andrew Trick8b55b732011-03-14 16:50:06 +00003328/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003329const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003330 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003331 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3332
Dan Gohman46f00a22010-07-20 16:53:00 +00003333 // Fast path: X - X --> 0.
3334 if (LHS == RHS)
3335 return getConstant(LHS->getType(), 0);
3336
Sanjoy Dascb473662015-01-22 00:48:47 +00003337 // X - Y --> X + -Y.
3338 // X -(nsw || nuw) Y --> X + -Y.
3339 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003340}
3341
3342/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3343/// input value to the specified type. If the type must be extended, it is zero
3344/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003345const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003346ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3347 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003348 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3349 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003350 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003351 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003352 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003353 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003354 return getTruncateExpr(V, Ty);
3355 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003356}
3357
3358/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3359/// input value to the specified type. If the type must be extended, it is sign
3360/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003361const SCEV *
3362ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003363 Type *Ty) {
3364 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003365 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3366 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003367 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003368 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003369 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003370 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003371 return getTruncateExpr(V, Ty);
3372 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003373}
3374
Dan Gohmane712a2f2009-05-13 03:46:30 +00003375/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3376/// input value to the specified type. If the type must be extended, it is zero
3377/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003378const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003379ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3380 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003381 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3382 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003383 "Cannot noop or zero extend with non-integer arguments!");
3384 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3385 "getNoopOrZeroExtend cannot truncate!");
3386 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3387 return V; // No conversion
3388 return getZeroExtendExpr(V, Ty);
3389}
3390
3391/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3392/// input value to the specified type. If the type must be extended, it is sign
3393/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003394const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003395ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3396 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003397 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3398 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003399 "Cannot noop or sign extend with non-integer arguments!");
3400 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3401 "getNoopOrSignExtend cannot truncate!");
3402 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3403 return V; // No conversion
3404 return getSignExtendExpr(V, Ty);
3405}
3406
Dan Gohman8db2edc2009-06-13 15:56:47 +00003407/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3408/// the input value to the specified type. If the type must be extended,
3409/// it is extended with unspecified bits. The conversion must not be
3410/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003411const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003412ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3413 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003414 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3415 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003416 "Cannot noop or any extend with non-integer arguments!");
3417 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3418 "getNoopOrAnyExtend cannot truncate!");
3419 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3420 return V; // No conversion
3421 return getAnyExtendExpr(V, Ty);
3422}
3423
Dan Gohmane712a2f2009-05-13 03:46:30 +00003424/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3425/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003426const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003427ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3428 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003429 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3430 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003431 "Cannot truncate or noop with non-integer arguments!");
3432 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3433 "getTruncateOrNoop cannot extend!");
3434 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3435 return V; // No conversion
3436 return getTruncateExpr(V, Ty);
3437}
3438
Dan Gohman96212b62009-06-22 00:31:57 +00003439/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3440/// the types using zero-extension, and then perform a umax operation
3441/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003442const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3443 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003444 const SCEV *PromotedLHS = LHS;
3445 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003446
3447 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3448 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3449 else
3450 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3451
3452 return getUMaxExpr(PromotedLHS, PromotedRHS);
3453}
3454
Dan Gohman2bc22302009-06-22 15:03:27 +00003455/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3456/// the types using zero-extension, and then perform a umin operation
3457/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003458const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3459 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003460 const SCEV *PromotedLHS = LHS;
3461 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003462
3463 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3464 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3465 else
3466 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3467
3468 return getUMinExpr(PromotedLHS, PromotedRHS);
3469}
3470
Andrew Trick87716c92011-03-17 23:51:11 +00003471/// getPointerBase - Transitively follow the chain of pointer-type operands
3472/// until reaching a SCEV that does not have a single pointer operand. This
3473/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3474/// but corner cases do exist.
3475const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3476 // A pointer operand may evaluate to a nonpointer expression, such as null.
3477 if (!V->getType()->isPointerTy())
3478 return V;
3479
3480 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3481 return getPointerBase(Cast->getOperand());
3482 }
3483 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003484 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003485 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3486 I != E; ++I) {
3487 if ((*I)->getType()->isPointerTy()) {
3488 // Cannot find the base of an expression with multiple pointer operands.
3489 if (PtrOp)
3490 return V;
3491 PtrOp = *I;
3492 }
3493 }
3494 if (!PtrOp)
3495 return V;
3496 return getPointerBase(PtrOp);
3497 }
3498 return V;
3499}
3500
Dan Gohman0b89dff2009-07-25 01:13:03 +00003501/// PushDefUseChildren - Push users of the given Instruction
3502/// onto the given Worklist.
3503static void
3504PushDefUseChildren(Instruction *I,
3505 SmallVectorImpl<Instruction *> &Worklist) {
3506 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003507 for (User *U : I->users())
3508 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003509}
3510
3511/// ForgetSymbolicValue - This looks up computed SCEV values for all
3512/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003513/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003514/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003515void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003516ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003517 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003518 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003519
Dan Gohman0b89dff2009-07-25 01:13:03 +00003520 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003521 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003522 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003523 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003524 if (!Visited.insert(I).second)
3525 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003526
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003527 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003528 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003529 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003530 const SCEV *Old = It->second;
3531
Dan Gohman0b89dff2009-07-25 01:13:03 +00003532 // Short-circuit the def-use traversal if the symbolic name
3533 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003534 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003535 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003536
Dan Gohman0b89dff2009-07-25 01:13:03 +00003537 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003538 // structure, it's a PHI that's in the progress of being computed
3539 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3540 // additional loop trip count information isn't going to change anything.
3541 // In the second case, createNodeForPHI will perform the necessary
3542 // updates on its own when it gets to that point. In the third, we do
3543 // want to forget the SCEVUnknown.
3544 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003545 !isa<SCEVUnknown>(Old) ||
3546 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003547 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003548 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003549 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003550 }
3551
3552 PushDefUseChildren(I, Worklist);
3553 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003554}
Chris Lattnerd934c702004-04-02 20:23:17 +00003555
3556/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3557/// a loop header, making it a potential recurrence, or it doesn't.
3558///
Dan Gohmanaf752342009-07-07 17:06:11 +00003559const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003560 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3561 if (L->getHeader() == PN->getParent()) {
3562 // The loop may have multiple entrances or multiple exits; we can analyze
3563 // this phi as an addrec if it has a unique entry value and a unique
3564 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003565 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003566 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3567 Value *V = PN->getIncomingValue(i);
3568 if (L->contains(PN->getIncomingBlock(i))) {
3569 if (!BEValueV) {
3570 BEValueV = V;
3571 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003572 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003573 break;
3574 }
3575 } else if (!StartValueV) {
3576 StartValueV = V;
3577 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003578 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003579 break;
3580 }
3581 }
3582 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003583 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003584 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003585 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003586 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003587 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003588
3589 // Using this symbolic name for the PHI, analyze the value coming around
3590 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003591 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003592
3593 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3594 // has a special value for the first iteration of the loop.
3595
3596 // If the value coming around the backedge is an add with the symbolic
3597 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003598 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003599 // If there is a single occurrence of the symbolic value, replace it
3600 // with a recurrence.
3601 unsigned FoundIndex = Add->getNumOperands();
3602 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3603 if (Add->getOperand(i) == SymbolicName)
3604 if (FoundIndex == e) {
3605 FoundIndex = i;
3606 break;
3607 }
3608
3609 if (FoundIndex != Add->getNumOperands()) {
3610 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003611 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003612 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3613 if (i != FoundIndex)
3614 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003615 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003616
3617 // This is not a valid addrec if the step amount is varying each
3618 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003619 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003620 (isa<SCEVAddRecExpr>(Accum) &&
3621 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003622 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003623
3624 // If the increment doesn't overflow, then neither the addrec nor
3625 // the post-increment will overflow.
3626 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3627 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003628 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003629 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003630 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003631 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003632 // If the increment is an inbounds GEP, then we know the address
3633 // space cannot be wrapped around. We cannot make any guarantee
3634 // about signed or unsigned overflow because pointers are
3635 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003636 // pointer. We can guarantee that no unsigned wrap occurs if the
3637 // indices form a positive value.
3638 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003639 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003640
3641 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3642 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3643 Flags = setFlags(Flags, SCEV::FlagNUW);
3644 }
Sanjoy Dascb473662015-01-22 00:48:47 +00003645
3646 // We cannot transfer nuw and nsw flags from subtraction
3647 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3648 // for instance.
Dan Gohman51ad99d2010-01-21 02:09:26 +00003649 }
3650
Dan Gohman6635bb22010-04-12 07:49:36 +00003651 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003652 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003653
Dan Gohman51ad99d2010-01-21 02:09:26 +00003654 // Since the no-wrap flags are on the increment, they apply to the
3655 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003656 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003657 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003658 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003659
3660 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003661 // to be symbolic. We now need to go back and purge all of the
3662 // entries for the scalars that use the symbolic expression.
3663 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003664 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003665 return PHISCEV;
3666 }
3667 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003668 } else if (const SCEVAddRecExpr *AddRec =
3669 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003670 // Otherwise, this could be a loop like this:
3671 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3672 // In this case, j = {1,+,1} and BEValue is j.
3673 // Because the other in-value of i (0) fits the evolution of BEValue
3674 // i really is an addrec evolution.
3675 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003676 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003677
3678 // If StartVal = j.start - j.stride, we can use StartVal as the
3679 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003680 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003681 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003682 // FIXME: For constant StartVal, we should be able to infer
3683 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003684 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003685 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3686 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003687
3688 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003689 // to be symbolic. We now need to go back and purge all of the
3690 // entries for the scalars that use the symbolic expression.
3691 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003692 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003693 return PHISCEV;
3694 }
3695 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003696 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003697 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003698 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003699
Dan Gohmana9c205c2010-02-25 06:57:05 +00003700 // If the PHI has a single incoming value, follow that value, unless the
3701 // PHI's incoming blocks are in a different loop, in which case doing so
3702 // risks breaking LCSSA form. Instcombine would normally zap these, but
3703 // it doesn't have DominatorTree information, so it may miss cases.
Chandler Carruth66b31302015-01-04 12:03:27 +00003704 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AC))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003705 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003706 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003707
Chris Lattnerd934c702004-04-02 20:23:17 +00003708 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003709 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003710}
3711
Dan Gohmanee750d12009-05-08 20:26:55 +00003712/// createNodeForGEP - Expand GEP instructions into add and multiply
3713/// operations. This allows them to be analyzed by regular SCEV code.
3714///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003715const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003716 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003717 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003718 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003719 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003720 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003721
3722 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3723 // Add expression, because the Instruction may be guarded by control flow
3724 // and the no-overflow bits may not be valid for the expression in any
3725 // context.
3726 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3727
Dan Gohman1d2ded72010-05-03 22:09:21 +00003728 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003729 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003730 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003731 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003732 I != E; ++I) {
3733 Value *Index = *I;
3734 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003735 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003736 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003737 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003738 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003739
Dan Gohman16206132010-06-30 07:16:37 +00003740 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003741 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003742 } else {
3743 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003744 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003745 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003746 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003747 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3748
Dan Gohman16206132010-06-30 07:16:37 +00003749 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003750 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003751
3752 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003753 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003754 }
3755 }
Dan Gohman16206132010-06-30 07:16:37 +00003756
3757 // Get the SCEV for the GEP base.
3758 const SCEV *BaseS = getSCEV(Base);
3759
Dan Gohman16206132010-06-30 07:16:37 +00003760 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003761 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003762}
3763
Nick Lewycky3783b462007-11-22 07:59:40 +00003764/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3765/// guaranteed to end in (at every loop iteration). It is, at the same time,
3766/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3767/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003768uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003769ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003770 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003771 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003772
Dan Gohmana30370b2009-05-04 22:02:23 +00003773 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003774 return std::min(GetMinTrailingZeros(T->getOperand()),
3775 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003776
Dan Gohmana30370b2009-05-04 22:02:23 +00003777 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003778 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3779 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3780 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003781 }
3782
Dan Gohmana30370b2009-05-04 22:02:23 +00003783 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003784 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3785 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3786 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003787 }
3788
Dan Gohmana30370b2009-05-04 22:02:23 +00003789 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003790 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003791 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003792 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003793 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003794 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003795 }
3796
Dan Gohmana30370b2009-05-04 22:02:23 +00003797 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003798 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003799 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3800 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003801 for (unsigned i = 1, e = M->getNumOperands();
3802 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003803 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003804 BitWidth);
3805 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003806 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003807
Dan Gohmana30370b2009-05-04 22:02:23 +00003808 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003809 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003810 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003811 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003812 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003813 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003814 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003815
Dan Gohmana30370b2009-05-04 22:02:23 +00003816 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003817 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003818 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003819 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003820 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003821 return MinOpRes;
3822 }
3823
Dan Gohmana30370b2009-05-04 22:02:23 +00003824 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003825 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003826 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003827 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003828 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003829 return MinOpRes;
3830 }
3831
Dan Gohmanc702fc02009-06-19 23:29:04 +00003832 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3833 // For a SCEVUnknown, ask ValueTracking.
3834 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003835 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003836 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003837 return Zeros.countTrailingOnes();
3838 }
3839
3840 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003841 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003842}
Chris Lattnerd934c702004-04-02 20:23:17 +00003843
Sanjoy Das1f05c512014-10-10 21:22:34 +00003844/// GetRangeFromMetadata - Helper method to assign a range to V from
3845/// metadata present in the IR.
3846static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3847 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003848 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003849 ConstantRange TotalRange(
3850 cast<IntegerType>(I->getType())->getBitWidth(), false);
3851
3852 unsigned NumRanges = MD->getNumOperands() / 2;
3853 assert(NumRanges >= 1);
3854
3855 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00003856 ConstantInt *Lower =
3857 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3858 ConstantInt *Upper =
3859 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00003860 ConstantRange Range(Lower->getValue(), Upper->getValue());
3861 TotalRange = TotalRange.unionWith(Range);
3862 }
3863
3864 return TotalRange;
3865 }
3866 }
3867
3868 return None;
3869}
3870
Dan Gohmane65c9172009-07-13 21:35:55 +00003871/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3872///
3873ConstantRange
3874ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003875 // See if we've computed this range already.
3876 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3877 if (I != UnsignedRanges.end())
3878 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003879
3880 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003881 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003882
Dan Gohman85be4332010-01-26 19:19:05 +00003883 unsigned BitWidth = getTypeSizeInBits(S->getType());
3884 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3885
3886 // If the value has known zeros, the maximum unsigned value will have those
3887 // known zeros as well.
3888 uint32_t TZ = GetMinTrailingZeros(S);
3889 if (TZ != 0)
3890 ConservativeResult =
3891 ConstantRange(APInt::getMinValue(BitWidth),
3892 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3893
Dan Gohmane65c9172009-07-13 21:35:55 +00003894 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3895 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3896 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3897 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003898 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003899 }
3900
3901 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3902 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3903 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3904 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003905 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003906 }
3907
3908 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3909 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3910 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3911 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003912 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003913 }
3914
3915 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3916 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3917 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3918 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003919 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003920 }
3921
3922 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3923 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3924 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003925 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003926 }
3927
3928 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3929 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003930 return setUnsignedRange(ZExt,
3931 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003932 }
3933
3934 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3935 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003936 return setUnsignedRange(SExt,
3937 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003938 }
3939
3940 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3941 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003942 return setUnsignedRange(Trunc,
3943 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003944 }
3945
Dan Gohmane65c9172009-07-13 21:35:55 +00003946 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003947 // If there's no unsigned wrap, the value will never be less than its
3948 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003949 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003950 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003951 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003952 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003953 ConservativeResult.intersectWith(
3954 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003955
3956 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003957 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003958 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003959 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003960 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3961 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003962 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3963
3964 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003965 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003966
3967 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003968 ConstantRange StepRange = getSignedRange(Step);
3969 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3970 ConstantRange EndRange =
3971 StartRange.add(MaxBECountRange.multiply(StepRange));
3972
3973 // Check for overflow. This must be done with ConstantRange arithmetic
3974 // because we could be called from within the ScalarEvolution overflow
3975 // checking code.
3976 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3977 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3978 ConstantRange ExtMaxBECountRange =
3979 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3980 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3981 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3982 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003983 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003984
Dan Gohmane65c9172009-07-13 21:35:55 +00003985 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3986 EndRange.getUnsignedMin());
3987 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3988 EndRange.getUnsignedMax());
3989 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003990 return setUnsignedRange(AddRec, ConservativeResult);
3991 return setUnsignedRange(AddRec,
3992 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003993 }
3994 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003995
Dan Gohmaned756312010-11-17 20:23:08 +00003996 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003997 }
3998
3999 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004000 // Check if the IR explicitly contains !range metadata.
4001 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4002 if (MDRange.hasValue())
4003 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4004
Dan Gohmanc702fc02009-06-19 23:29:04 +00004005 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004006 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00004007 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
Dan Gohman1a7ab942009-07-20 22:34:18 +00004008 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00004009 return setUnsignedRange(U, ConservativeResult);
4010 return setUnsignedRange(U,
4011 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004012 }
4013
Dan Gohmaned756312010-11-17 20:23:08 +00004014 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004015}
4016
Dan Gohmane65c9172009-07-13 21:35:55 +00004017/// getSignedRange - Determine the signed range for a particular SCEV.
4018///
4019ConstantRange
4020ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00004021 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00004022 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
4023 if (I != SignedRanges.end())
4024 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004025
Dan Gohmane65c9172009-07-13 21:35:55 +00004026 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00004027 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00004028
Dan Gohman51aaf022010-01-26 04:40:18 +00004029 unsigned BitWidth = getTypeSizeInBits(S->getType());
4030 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4031
4032 // If the value has known zeros, the maximum signed value will have those
4033 // known zeros as well.
4034 uint32_t TZ = GetMinTrailingZeros(S);
4035 if (TZ != 0)
4036 ConservativeResult =
4037 ConstantRange(APInt::getSignedMinValue(BitWidth),
4038 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4039
Dan Gohmane65c9172009-07-13 21:35:55 +00004040 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4041 ConstantRange X = getSignedRange(Add->getOperand(0));
4042 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4043 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00004044 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004045 }
4046
Dan Gohmane65c9172009-07-13 21:35:55 +00004047 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4048 ConstantRange X = getSignedRange(Mul->getOperand(0));
4049 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4050 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00004051 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004052 }
4053
Dan Gohmane65c9172009-07-13 21:35:55 +00004054 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4055 ConstantRange X = getSignedRange(SMax->getOperand(0));
4056 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4057 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00004058 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004059 }
Dan Gohmand261d272009-06-24 01:05:09 +00004060
Dan Gohmane65c9172009-07-13 21:35:55 +00004061 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4062 ConstantRange X = getSignedRange(UMax->getOperand(0));
4063 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4064 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00004065 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004066 }
Dan Gohmand261d272009-06-24 01:05:09 +00004067
Dan Gohmane65c9172009-07-13 21:35:55 +00004068 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4069 ConstantRange X = getSignedRange(UDiv->getLHS());
4070 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00004071 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004072 }
Dan Gohmand261d272009-06-24 01:05:09 +00004073
Dan Gohmane65c9172009-07-13 21:35:55 +00004074 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4075 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00004076 return setSignedRange(ZExt,
4077 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004078 }
4079
4080 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4081 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00004082 return setSignedRange(SExt,
4083 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004084 }
4085
4086 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4087 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00004088 return setSignedRange(Trunc,
4089 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004090 }
4091
Dan Gohmane65c9172009-07-13 21:35:55 +00004092 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004093 // If there's no signed wrap, and all the operands have the same sign or
4094 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00004095 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004096 bool AllNonNeg = true;
4097 bool AllNonPos = true;
4098 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4099 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4100 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4101 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004102 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004103 ConservativeResult = ConservativeResult.intersectWith(
4104 ConstantRange(APInt(BitWidth, 0),
4105 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004106 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004107 ConservativeResult = ConservativeResult.intersectWith(
4108 ConstantRange(APInt::getSignedMinValue(BitWidth),
4109 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004110 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004111
4112 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004113 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004114 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004115 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004116 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4117 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00004118 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
4119
4120 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004121 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00004122
4123 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00004124 ConstantRange StepRange = getSignedRange(Step);
4125 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4126 ConstantRange EndRange =
4127 StartRange.add(MaxBECountRange.multiply(StepRange));
4128
4129 // Check for overflow. This must be done with ConstantRange arithmetic
4130 // because we could be called from within the ScalarEvolution overflow
4131 // checking code.
4132 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
4133 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
4134 ConstantRange ExtMaxBECountRange =
4135 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
4136 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
4137 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
4138 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00004139 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00004140
Dan Gohmane65c9172009-07-13 21:35:55 +00004141 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
4142 EndRange.getSignedMin());
4143 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
4144 EndRange.getSignedMax());
4145 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00004146 return setSignedRange(AddRec, ConservativeResult);
4147 return setSignedRange(AddRec,
4148 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00004149 }
Dan Gohmand261d272009-06-24 01:05:09 +00004150 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004151
Dan Gohmaned756312010-11-17 20:23:08 +00004152 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004153 }
4154
Dan Gohmanc702fc02009-06-19 23:29:04 +00004155 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004156 // Check if the IR explicitly contains !range metadata.
4157 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4158 if (MDRange.hasValue())
4159 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4160
Dan Gohmanc702fc02009-06-19 23:29:04 +00004161 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004162 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00004163 return setSignedRange(U, ConservativeResult);
Chandler Carruth66b31302015-01-04 12:03:27 +00004164 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
Hal Finkelff666bd2013-07-09 18:16:16 +00004165 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00004166 return setSignedRange(U, ConservativeResult);
4167 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00004168 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00004169 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004170 }
4171
Dan Gohmaned756312010-11-17 20:23:08 +00004172 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004173}
4174
Chris Lattnerd934c702004-04-02 20:23:17 +00004175/// createSCEV - We know that there is no SCEV for the specified value.
4176/// Analyze the expression.
4177///
Dan Gohmanaf752342009-07-07 17:06:11 +00004178const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004179 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004180 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004181
Dan Gohman05e89732008-06-22 19:56:46 +00004182 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004183 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004184 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004185
4186 // Don't attempt to analyze instructions in blocks that aren't
4187 // reachable. Such instructions don't matter, and they aren't required
4188 // to obey basic rules for definitions dominating uses which this
4189 // analysis depends on.
4190 if (!DT->isReachableFromEntry(I->getParent()))
4191 return getUnknown(V);
4192 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004193 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004194 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4195 return getConstant(CI);
4196 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004197 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004198 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4199 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004200 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004201 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004202
Dan Gohman80ca01c2009-07-17 20:47:02 +00004203 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004204 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004205 case Instruction::Add: {
4206 // The simple thing to do would be to just call getSCEV on both operands
4207 // and call getAddExpr with the result. However if we're looking at a
4208 // bunch of things all added together, this can be quite inefficient,
4209 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4210 // Instead, gather up all the operands and make a single getAddExpr call.
4211 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00004212 //
4213 // Don't apply this instruction's NSW or NUW flags to the new
4214 // expression. The instruction may be guarded by control flow that the
4215 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4216 // mapped to the same SCEV expression, and it would be incorrect to transfer
4217 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004218 SmallVector<const SCEV *, 4> AddOps;
4219 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00004220 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4221 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4222 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4223 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004224 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00004225 const SCEV *Op1 = getSCEV(U->getOperand(1));
4226 if (Opcode == Instruction::Sub)
4227 AddOps.push_back(getNegativeSCEV(Op1));
4228 else
4229 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004230 }
4231 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00004232 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004233 }
4234 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00004235 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004236 SmallVector<const SCEV *, 4> MulOps;
4237 MulOps.push_back(getSCEV(U->getOperand(1)));
4238 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004239 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004240 Op = U->getOperand(0)) {
4241 U = cast<Operator>(Op);
4242 MulOps.push_back(getSCEV(U->getOperand(1)));
4243 }
4244 MulOps.push_back(getSCEV(U->getOperand(0)));
4245 return getMulExpr(MulOps);
4246 }
Dan Gohman05e89732008-06-22 19:56:46 +00004247 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004248 return getUDivExpr(getSCEV(U->getOperand(0)),
4249 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004250 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004251 return getMinusSCEV(getSCEV(U->getOperand(0)),
4252 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004253 case Instruction::And:
4254 // For an expression like x&255 that merely masks off the high bits,
4255 // use zext(trunc(x)) as the SCEV expression.
4256 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004257 if (CI->isNullValue())
4258 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004259 if (CI->isAllOnesValue())
4260 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004261 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004262
4263 // Instcombine's ShrinkDemandedConstant may strip bits out of
4264 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004265 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004266 // knew about to reconstruct a low-bits mask value.
4267 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004268 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004269 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004270 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00004271 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 0, AC,
4272 nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004273
Nick Lewycky31eaca52014-01-27 10:04:03 +00004274 APInt EffectiveMask =
4275 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4276 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4277 const SCEV *MulCount = getConstant(
4278 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4279 return getMulExpr(
4280 getZeroExtendExpr(
4281 getTruncateExpr(
4282 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4283 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4284 U->getType()),
4285 MulCount);
4286 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004287 }
4288 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004289
Dan Gohman05e89732008-06-22 19:56:46 +00004290 case Instruction::Or:
4291 // If the RHS of the Or is a constant, we may have something like:
4292 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4293 // optimizations will transparently handle this case.
4294 //
4295 // In order for this transformation to be safe, the LHS must be of the
4296 // form X*(2^n) and the Or constant must be less than 2^n.
4297 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004298 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004299 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004300 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004301 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4302 // Build a plain add SCEV.
4303 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4304 // If the LHS of the add was an addrec and it has no-wrap flags,
4305 // transfer the no-wrap flags, since an or won't introduce a wrap.
4306 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4307 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004308 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4309 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004310 }
4311 return S;
4312 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004313 }
Dan Gohman05e89732008-06-22 19:56:46 +00004314 break;
4315 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004316 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004317 // If the RHS of the xor is a signbit, then this is just an add.
4318 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004319 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004320 return getAddExpr(getSCEV(U->getOperand(0)),
4321 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004322
4323 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004324 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004325 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004326
4327 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4328 // This is a variant of the check for xor with -1, and it handles
4329 // the case where instcombine has trimmed non-demanded bits out
4330 // of an xor with -1.
4331 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4332 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4333 if (BO->getOpcode() == Instruction::And &&
4334 LCI->getValue() == CI->getValue())
4335 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004336 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004337 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004338 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004339 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004340 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4341
Dan Gohman8b0a4192010-03-01 17:49:51 +00004342 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004343 // mask off the high bits. Complement the operand and
4344 // re-apply the zext.
4345 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4346 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4347
4348 // If C is a single bit, it may be in the sign-bit position
4349 // before the zero-extend. In this case, represent the xor
4350 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004351 APInt Trunc = CI->getValue().trunc(Z0TySize);
4352 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004353 Trunc.isSignBit())
4354 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4355 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004356 }
Dan Gohman05e89732008-06-22 19:56:46 +00004357 }
4358 break;
4359
4360 case Instruction::Shl:
4361 // Turn shift left of a constant amount into a multiply.
4362 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004363 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004364
4365 // If the shift count is not less than the bitwidth, the result of
4366 // the shift is undefined. Don't try to analyze it, because the
4367 // resolution chosen here may differ from the resolution chosen in
4368 // other parts of the compiler.
4369 if (SA->getValue().uge(BitWidth))
4370 break;
4371
Owen Andersonedb4a702009-07-24 23:12:02 +00004372 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004373 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004374 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004375 }
4376 break;
4377
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004378 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004379 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004380 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004381 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004382
4383 // If the shift count is not less than the bitwidth, the result of
4384 // the shift is undefined. Don't try to analyze it, because the
4385 // resolution chosen here may differ from the resolution chosen in
4386 // other parts of the compiler.
4387 if (SA->getValue().uge(BitWidth))
4388 break;
4389
Owen Andersonedb4a702009-07-24 23:12:02 +00004390 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004391 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004392 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004393 }
4394 break;
4395
Dan Gohman0ec05372009-04-21 02:26:00 +00004396 case Instruction::AShr:
4397 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4398 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004399 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004400 if (L->getOpcode() == Instruction::Shl &&
4401 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004402 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4403
4404 // If the shift count is not less than the bitwidth, the result of
4405 // the shift is undefined. Don't try to analyze it, because the
4406 // resolution chosen here may differ from the resolution chosen in
4407 // other parts of the compiler.
4408 if (CI->getValue().uge(BitWidth))
4409 break;
4410
Dan Gohmandf199482009-04-25 17:05:40 +00004411 uint64_t Amt = BitWidth - CI->getZExtValue();
4412 if (Amt == BitWidth)
4413 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004414 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004415 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004416 IntegerType::get(getContext(),
4417 Amt)),
4418 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004419 }
4420 break;
4421
Dan Gohman05e89732008-06-22 19:56:46 +00004422 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004423 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004424
4425 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004426 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004427
4428 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004429 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004430
4431 case Instruction::BitCast:
4432 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004433 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004434 return getSCEV(U->getOperand(0));
4435 break;
4436
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004437 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4438 // lead to pointer expressions which cannot safely be expanded to GEPs,
4439 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4440 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004441
Dan Gohmanee750d12009-05-08 20:26:55 +00004442 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004443 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004444
Dan Gohman05e89732008-06-22 19:56:46 +00004445 case Instruction::PHI:
4446 return createNodeForPHI(cast<PHINode>(U));
4447
4448 case Instruction::Select:
4449 // This could be a smax or umax that was lowered earlier.
4450 // Try to recover it.
4451 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4452 Value *LHS = ICI->getOperand(0);
4453 Value *RHS = ICI->getOperand(1);
4454 switch (ICI->getPredicate()) {
4455 case ICmpInst::ICMP_SLT:
4456 case ICmpInst::ICMP_SLE:
4457 std::swap(LHS, RHS);
4458 // fall through
4459 case ICmpInst::ICMP_SGT:
4460 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004461 // a >s b ? a+x : b+x -> smax(a, b)+x
4462 // a >s b ? b+x : a+x -> smin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004463 if (getTypeSizeInBits(LHS->getType()) <=
4464 getTypeSizeInBits(U->getType())) {
4465 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
4466 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004467 const SCEV *LA = getSCEV(U->getOperand(1));
4468 const SCEV *RA = getSCEV(U->getOperand(2));
4469 const SCEV *LDiff = getMinusSCEV(LA, LS);
4470 const SCEV *RDiff = getMinusSCEV(RA, RS);
4471 if (LDiff == RDiff)
4472 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4473 LDiff = getMinusSCEV(LA, RS);
4474 RDiff = getMinusSCEV(RA, LS);
4475 if (LDiff == RDiff)
4476 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4477 }
Dan Gohman05e89732008-06-22 19:56:46 +00004478 break;
4479 case ICmpInst::ICMP_ULT:
4480 case ICmpInst::ICMP_ULE:
4481 std::swap(LHS, RHS);
4482 // fall through
4483 case ICmpInst::ICMP_UGT:
4484 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004485 // a >u b ? a+x : b+x -> umax(a, b)+x
4486 // a >u b ? b+x : a+x -> umin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004487 if (getTypeSizeInBits(LHS->getType()) <=
4488 getTypeSizeInBits(U->getType())) {
4489 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4490 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004491 const SCEV *LA = getSCEV(U->getOperand(1));
4492 const SCEV *RA = getSCEV(U->getOperand(2));
4493 const SCEV *LDiff = getMinusSCEV(LA, LS);
4494 const SCEV *RDiff = getMinusSCEV(RA, RS);
4495 if (LDiff == RDiff)
4496 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4497 LDiff = getMinusSCEV(LA, RS);
4498 RDiff = getMinusSCEV(RA, LS);
4499 if (LDiff == RDiff)
4500 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4501 }
Dan Gohman05e89732008-06-22 19:56:46 +00004502 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004503 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004504 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004505 if (getTypeSizeInBits(LHS->getType()) <=
4506 getTypeSizeInBits(U->getType()) &&
4507 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4508 const SCEV *One = getConstant(U->getType(), 1);
4509 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004510 const SCEV *LA = getSCEV(U->getOperand(1));
4511 const SCEV *RA = getSCEV(U->getOperand(2));
4512 const SCEV *LDiff = getMinusSCEV(LA, LS);
4513 const SCEV *RDiff = getMinusSCEV(RA, One);
4514 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004515 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004516 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004517 break;
4518 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004519 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004520 if (getTypeSizeInBits(LHS->getType()) <=
4521 getTypeSizeInBits(U->getType()) &&
4522 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4523 const SCEV *One = getConstant(U->getType(), 1);
4524 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004525 const SCEV *LA = getSCEV(U->getOperand(1));
4526 const SCEV *RA = getSCEV(U->getOperand(2));
4527 const SCEV *LDiff = getMinusSCEV(LA, One);
4528 const SCEV *RDiff = getMinusSCEV(RA, LS);
4529 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004530 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004531 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004532 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004533 default:
4534 break;
4535 }
4536 }
4537
4538 default: // We cannot analyze this expression.
4539 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004540 }
4541
Dan Gohmanc8e23622009-04-21 23:15:49 +00004542 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004543}
4544
4545
4546
4547//===----------------------------------------------------------------------===//
4548// Iteration Count Computation Code
4549//
4550
Chandler Carruth6666c272014-10-11 00:12:11 +00004551unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4552 if (BasicBlock *ExitingBB = L->getExitingBlock())
4553 return getSmallConstantTripCount(L, ExitingBB);
4554
4555 // No trip count information for multiple exits.
4556 return 0;
4557}
4558
Andrew Trick2b6860f2011-08-11 23:36:16 +00004559/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004560/// normal unsigned value. Returns 0 if the trip count is unknown or not
4561/// constant. Will also return 0 if the maximum trip count is very large (>=
4562/// 2^32).
4563///
4564/// This "trip count" assumes that control exits via ExitingBlock. More
4565/// precisely, it is the number of times that control may reach ExitingBlock
4566/// before taking the branch. For loops with multiple exits, it may not be the
4567/// number times that the loop header executes because the loop may exit
4568/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004569unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4570 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004571 assert(ExitingBlock && "Must pass a non-null exiting block!");
4572 assert(L->isLoopExiting(ExitingBlock) &&
4573 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004574 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004575 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004576 if (!ExitCount)
4577 return 0;
4578
4579 ConstantInt *ExitConst = ExitCount->getValue();
4580
4581 // Guard against huge trip counts.
4582 if (ExitConst->getValue().getActiveBits() > 32)
4583 return 0;
4584
4585 // In case of integer overflow, this returns 0, which is correct.
4586 return ((unsigned)ExitConst->getZExtValue()) + 1;
4587}
4588
Chandler Carruth6666c272014-10-11 00:12:11 +00004589unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4590 if (BasicBlock *ExitingBB = L->getExitingBlock())
4591 return getSmallConstantTripMultiple(L, ExitingBB);
4592
4593 // No trip multiple information for multiple exits.
4594 return 0;
4595}
4596
Andrew Trick2b6860f2011-08-11 23:36:16 +00004597/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4598/// trip count of this loop as a normal unsigned value, if possible. This
4599/// means that the actual trip count is always a multiple of the returned
4600/// value (don't forget the trip count could very well be zero as well!).
4601///
4602/// Returns 1 if the trip count is unknown or not guaranteed to be the
4603/// multiple of a constant (which is also the case if the trip count is simply
4604/// constant, use getSmallConstantTripCount for that case), Will also return 1
4605/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004606///
4607/// As explained in the comments for getSmallConstantTripCount, this assumes
4608/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004609unsigned
4610ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4611 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004612 assert(ExitingBlock && "Must pass a non-null exiting block!");
4613 assert(L->isLoopExiting(ExitingBlock) &&
4614 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004615 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004616 if (ExitCount == getCouldNotCompute())
4617 return 1;
4618
4619 // Get the trip count from the BE count by adding 1.
4620 const SCEV *TCMul = getAddExpr(ExitCount,
4621 getConstant(ExitCount->getType(), 1));
4622 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4623 // to factor simple cases.
4624 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4625 TCMul = Mul->getOperand(0);
4626
4627 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4628 if (!MulC)
4629 return 1;
4630
4631 ConstantInt *Result = MulC->getValue();
4632
Hal Finkel30bd9342012-10-24 19:46:44 +00004633 // Guard against huge trip counts (this requires checking
4634 // for zero to handle the case where the trip count == -1 and the
4635 // addition wraps).
4636 if (!Result || Result->getValue().getActiveBits() > 32 ||
4637 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004638 return 1;
4639
4640 return (unsigned)Result->getZExtValue();
4641}
4642
Andrew Trick3ca3f982011-07-26 17:19:55 +00004643// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004644// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004645// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004646const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4647 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004648}
4649
Dan Gohman0bddac12009-02-24 18:55:53 +00004650/// getBackedgeTakenCount - If the specified loop has a predictable
4651/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4652/// object. The backedge-taken count is the number of times the loop header
4653/// will be branched to from within the loop. This is one less than the
4654/// trip count of the loop, since it doesn't count the first iteration,
4655/// when the header is branched to from outside the loop.
4656///
4657/// Note that it is not valid to call this method on a loop without a
4658/// loop-invariant backedge-taken count (see
4659/// hasLoopInvariantBackedgeTakenCount).
4660///
Dan Gohmanaf752342009-07-07 17:06:11 +00004661const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004662 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004663}
4664
4665/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4666/// return the least SCEV value that is known never to be less than the
4667/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004668const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004669 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004670}
4671
Dan Gohmandc191042009-07-08 19:23:34 +00004672/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4673/// onto the given Worklist.
4674static void
4675PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4676 BasicBlock *Header = L->getHeader();
4677
4678 // Push all Loop-header PHIs onto the Worklist stack.
4679 for (BasicBlock::iterator I = Header->begin();
4680 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4681 Worklist.push_back(PN);
4682}
4683
Dan Gohman2b8da352009-04-30 20:47:05 +00004684const ScalarEvolution::BackedgeTakenInfo &
4685ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004686 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004687 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004688 // update the value. The temporary CouldNotCompute value tells SCEV
4689 // code elsewhere that it shouldn't attempt to request a new
4690 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004691 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004692 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004693 if (!Pair.second)
4694 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004695
Andrew Trick3ca3f982011-07-26 17:19:55 +00004696 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4697 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4698 // must be cleared in this scope.
4699 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4700
4701 if (Result.getExact(this) != getCouldNotCompute()) {
4702 assert(isLoopInvariant(Result.getExact(this), L) &&
4703 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004704 "Computed backedge-taken count isn't loop invariant for loop!");
4705 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004706 }
4707 else if (Result.getMax(this) == getCouldNotCompute() &&
4708 isa<PHINode>(L->getHeader()->begin())) {
4709 // Only count loops that have phi nodes as not being computable.
4710 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004711 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004712
Chris Lattnera337f5e2011-01-09 02:16:18 +00004713 // Now that we know more about the trip count for this loop, forget any
4714 // existing SCEV values for PHI nodes in this loop since they are only
4715 // conservative estimates made without the benefit of trip count
4716 // information. This is similar to the code in forgetLoop, except that
4717 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004718 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004719 SmallVector<Instruction *, 16> Worklist;
4720 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004721
Chris Lattnera337f5e2011-01-09 02:16:18 +00004722 SmallPtrSet<Instruction *, 8> Visited;
4723 while (!Worklist.empty()) {
4724 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004725 if (!Visited.insert(I).second)
4726 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004727
Chris Lattnera337f5e2011-01-09 02:16:18 +00004728 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004729 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004730 if (It != ValueExprMap.end()) {
4731 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004732
Chris Lattnera337f5e2011-01-09 02:16:18 +00004733 // SCEVUnknown for a PHI either means that it has an unrecognized
4734 // structure, or it's a PHI that's in the progress of being computed
4735 // by createNodeForPHI. In the former case, additional loop trip
4736 // count information isn't going to change anything. In the later
4737 // case, createNodeForPHI will perform the necessary updates on its
4738 // own when it gets to that point.
4739 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4740 forgetMemoizedResults(Old);
4741 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004742 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004743 if (PHINode *PN = dyn_cast<PHINode>(I))
4744 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004745 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004746
4747 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004748 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004749 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004750
4751 // Re-lookup the insert position, since the call to
4752 // ComputeBackedgeTakenCount above could result in a
4753 // recusive call to getBackedgeTakenInfo (on a different
4754 // loop), which would invalidate the iterator computed
4755 // earlier.
4756 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004757}
4758
Dan Gohman880c92a2009-10-31 15:04:55 +00004759/// forgetLoop - This method should be called by the client when it has
4760/// changed a loop in a way that may effect ScalarEvolution's ability to
4761/// compute a trip count, or if the loop is deleted.
4762void ScalarEvolution::forgetLoop(const Loop *L) {
4763 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004764 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4765 BackedgeTakenCounts.find(L);
4766 if (BTCPos != BackedgeTakenCounts.end()) {
4767 BTCPos->second.clear();
4768 BackedgeTakenCounts.erase(BTCPos);
4769 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004770
Dan Gohman880c92a2009-10-31 15:04:55 +00004771 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004772 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004773 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004774
Dan Gohmandc191042009-07-08 19:23:34 +00004775 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004776 while (!Worklist.empty()) {
4777 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004778 if (!Visited.insert(I).second)
4779 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004780
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004781 ValueExprMapType::iterator It =
4782 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004783 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004784 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004785 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004786 if (PHINode *PN = dyn_cast<PHINode>(I))
4787 ConstantEvolutionLoopExitValue.erase(PN);
4788 }
4789
4790 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004791 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004792
4793 // Forget all contained loops too, to avoid dangling entries in the
4794 // ValuesAtScopes map.
4795 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4796 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004797}
4798
Eric Christopheref6d5932010-07-29 01:25:38 +00004799/// forgetValue - This method should be called by the client when it has
4800/// changed a value in a way that may effect its value, or which may
4801/// disconnect it from a def-use chain linking it to a loop.
4802void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004803 Instruction *I = dyn_cast<Instruction>(V);
4804 if (!I) return;
4805
4806 // Drop information about expressions based on loop-header PHIs.
4807 SmallVector<Instruction *, 16> Worklist;
4808 Worklist.push_back(I);
4809
4810 SmallPtrSet<Instruction *, 8> Visited;
4811 while (!Worklist.empty()) {
4812 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004813 if (!Visited.insert(I).second)
4814 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004815
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004816 ValueExprMapType::iterator It =
4817 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004818 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004819 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004820 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004821 if (PHINode *PN = dyn_cast<PHINode>(I))
4822 ConstantEvolutionLoopExitValue.erase(PN);
4823 }
4824
4825 PushDefUseChildren(I, Worklist);
4826 }
4827}
4828
Andrew Trick3ca3f982011-07-26 17:19:55 +00004829/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004830/// exits. A computable result can only be return for loops with a single exit.
4831/// Returning the minimum taken count among all exits is incorrect because one
4832/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4833/// the limit of each loop test is never skipped. This is a valid assumption as
4834/// long as the loop exits via that test. For precise results, it is the
4835/// caller's responsibility to specify the relevant loop exit using
4836/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004837const SCEV *
4838ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4839 // If any exits were not computable, the loop is not computable.
4840 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4841
Andrew Trick90c7a102011-11-16 00:52:40 +00004842 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004843 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004844 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4845
Craig Topper9f008862014-04-15 04:59:12 +00004846 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004847 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004848 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004849
4850 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4851
4852 if (!BECount)
4853 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004854 else if (BECount != ENT->ExactNotTaken)
4855 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004856 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004857 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004858 return BECount;
4859}
4860
4861/// getExact - Get the exact not taken count for this loop exit.
4862const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004863ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004864 ScalarEvolution *SE) const {
4865 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004866 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004867
Andrew Trick77c55422011-08-02 04:23:35 +00004868 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004869 return ENT->ExactNotTaken;
4870 }
4871 return SE->getCouldNotCompute();
4872}
4873
4874/// getMax - Get the max backedge taken count for the loop.
4875const SCEV *
4876ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4877 return Max ? Max : SE->getCouldNotCompute();
4878}
4879
Andrew Trick9093e152013-03-26 03:14:53 +00004880bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4881 ScalarEvolution *SE) const {
4882 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4883 return true;
4884
4885 if (!ExitNotTaken.ExitingBlock)
4886 return false;
4887
4888 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004889 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004890
4891 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4892 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4893 return true;
4894 }
4895 }
4896 return false;
4897}
4898
Andrew Trick3ca3f982011-07-26 17:19:55 +00004899/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4900/// computable exit into a persistent ExitNotTakenInfo array.
4901ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4902 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4903 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4904
4905 if (!Complete)
4906 ExitNotTaken.setIncomplete();
4907
4908 unsigned NumExits = ExitCounts.size();
4909 if (NumExits == 0) return;
4910
Andrew Trick77c55422011-08-02 04:23:35 +00004911 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004912 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4913 if (NumExits == 1) return;
4914
4915 // Handle the rare case of multiple computable exits.
4916 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4917
4918 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4919 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4920 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004921 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004922 ENT->ExactNotTaken = ExitCounts[i].second;
4923 }
4924}
4925
4926/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4927void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004928 ExitNotTaken.ExitingBlock = nullptr;
4929 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004930 delete[] ExitNotTaken.getNextExit();
4931}
4932
Dan Gohman0bddac12009-02-24 18:55:53 +00004933/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4934/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004935ScalarEvolution::BackedgeTakenInfo
4936ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004937 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004938 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004939
Andrew Trick839e30b2014-05-23 19:47:13 +00004940 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004941 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004942 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004943 const SCEV *MustExitMaxBECount = nullptr;
4944 const SCEV *MayExitMaxBECount = nullptr;
4945
4946 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4947 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004948 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004949 BasicBlock *ExitBB = ExitingBlocks[i];
4950 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4951
4952 // 1. For each exit that can be computed, add an entry to ExitCounts.
4953 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004954 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004955 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004956 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004957 CouldComputeBECount = false;
4958 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004959 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004960
Andrew Trick839e30b2014-05-23 19:47:13 +00004961 // 2. Derive the loop's MaxBECount from each exit's max number of
4962 // non-exiting iterations. Partition the loop exits into two kinds:
4963 // LoopMustExits and LoopMayExits.
4964 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004965 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4966 // is a LoopMayExit. If any computable LoopMustExit is found, then
4967 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4968 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4969 // considered greater than any computable EL.Max.
4970 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004971 DT->dominates(ExitBB, Latch)) {
4972 if (!MustExitMaxBECount)
4973 MustExitMaxBECount = EL.Max;
4974 else {
4975 MustExitMaxBECount =
4976 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004977 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004978 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4979 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4980 MayExitMaxBECount = EL.Max;
4981 else {
4982 MayExitMaxBECount =
4983 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4984 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004985 }
Dan Gohman96212b62009-06-22 00:31:57 +00004986 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004987 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4988 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004989 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004990}
4991
Andrew Trick3ca3f982011-07-26 17:19:55 +00004992/// ComputeExitLimit - Compute the number of times the backedge of the specified
4993/// loop will execute if it exits via the specified block.
4994ScalarEvolution::ExitLimit
4995ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004996
4997 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004998 // exit at this block and remember the exit block and whether all other targets
4999 // lead to the loop header.
5000 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005001 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005002 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5003 SI != SE; ++SI)
5004 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005005 if (Exit) // Multiple exit successors.
5006 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005007 Exit = *SI;
5008 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005009 MustExecuteLoopHeader = false;
5010 }
Dan Gohmance973df2009-06-24 04:48:43 +00005011
Chris Lattner18954852007-01-07 02:24:26 +00005012 // At this point, we know we have a conditional branch that determines whether
5013 // the loop is exited. However, we don't know if the branch is executed each
5014 // time through the loop. If not, then the execution count of the branch will
5015 // not be equal to the trip count of the loop.
5016 //
5017 // Currently we check for this by checking to see if the Exit branch goes to
5018 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005019 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005020 // loop header. This is common for un-rotated loops.
5021 //
5022 // If both of those tests fail, walk up the unique predecessor chain to the
5023 // header, stopping if there is an edge that doesn't exit the loop. If the
5024 // header is reached, the execution count of the branch will be equal to the
5025 // trip count of the loop.
5026 //
5027 // More extensive analysis could be done to handle more cases here.
5028 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005029 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005030 // The simple checks failed, try climbing the unique predecessor chain
5031 // up to the header.
5032 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005033 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005034 BasicBlock *Pred = BB->getUniquePredecessor();
5035 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005036 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005037 TerminatorInst *PredTerm = Pred->getTerminator();
5038 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
5039 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
5040 if (PredSucc == BB)
5041 continue;
5042 // If the predecessor has a successor that isn't BB and isn't
5043 // outside the loop, assume the worst.
5044 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005045 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005046 }
5047 if (Pred == L->getHeader()) {
5048 Ok = true;
5049 break;
5050 }
5051 BB = Pred;
5052 }
5053 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005054 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005055 }
5056
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005057 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005058 TerminatorInst *Term = ExitingBlock->getTerminator();
5059 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5060 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5061 // Proceed to the next level to examine the exit condition expression.
5062 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5063 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005064 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005065 }
5066
5067 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5068 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005069 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005070
5071 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005072}
5073
Andrew Trick3ca3f982011-07-26 17:19:55 +00005074/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005075/// backedge of the specified loop will execute if its exit condition
5076/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005077///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005078/// @param ControlsExit is true if ExitCond directly controls the exit
5079/// branch. In this case, we can assume that the loop exits only if the
5080/// condition is true and can infer that failing to meet the condition prior to
5081/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005082ScalarEvolution::ExitLimit
5083ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
5084 Value *ExitCond,
5085 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005086 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005087 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005088 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005089 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5090 if (BO->getOpcode() == Instruction::And) {
5091 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005092 bool EitherMayExit = L->contains(TBB);
5093 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005094 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005095 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005096 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005097 const SCEV *BECount = getCouldNotCompute();
5098 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005099 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005100 // Both conditions must be true for the loop to continue executing.
5101 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005102 if (EL0.Exact == getCouldNotCompute() ||
5103 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005104 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005105 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005106 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5107 if (EL0.Max == getCouldNotCompute())
5108 MaxBECount = EL1.Max;
5109 else if (EL1.Max == getCouldNotCompute())
5110 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005111 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005112 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005113 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005114 // Both conditions must be true at the same time for the loop to exit.
5115 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005116 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005117 if (EL0.Max == EL1.Max)
5118 MaxBECount = EL0.Max;
5119 if (EL0.Exact == EL1.Exact)
5120 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005121 }
5122
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005123 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005124 }
5125 if (BO->getOpcode() == Instruction::Or) {
5126 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005127 bool EitherMayExit = L->contains(FBB);
5128 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005129 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00005130 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005131 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005132 const SCEV *BECount = getCouldNotCompute();
5133 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005134 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005135 // Both conditions must be false for the loop to continue executing.
5136 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005137 if (EL0.Exact == getCouldNotCompute() ||
5138 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005139 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005140 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005141 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5142 if (EL0.Max == getCouldNotCompute())
5143 MaxBECount = EL1.Max;
5144 else if (EL1.Max == getCouldNotCompute())
5145 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005146 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005147 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005148 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005149 // Both conditions must be false at the same time for the loop to exit.
5150 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005151 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005152 if (EL0.Max == EL1.Max)
5153 MaxBECount = EL0.Max;
5154 if (EL0.Exact == EL1.Exact)
5155 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005156 }
5157
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005158 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005159 }
5160 }
5161
5162 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005163 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005164 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005165 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005166
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005167 // Check for a constant condition. These are normally stripped out by
5168 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5169 // preserve the CFG and is temporarily leaving constant conditions
5170 // in place.
5171 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5172 if (L->contains(FBB) == !CI->getZExtValue())
5173 // The backedge is always taken.
5174 return getCouldNotCompute();
5175 else
5176 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00005177 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005178 }
5179
Eli Friedmanebf98b02009-05-09 12:32:42 +00005180 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005181 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005182}
5183
Andrew Trick3ca3f982011-07-26 17:19:55 +00005184/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005185/// backedge of the specified loop will execute if its exit condition
5186/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005187ScalarEvolution::ExitLimit
5188ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5189 ICmpInst *ExitCond,
5190 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005191 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005192 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005193
Reid Spencer266e42b2006-12-23 06:05:41 +00005194 // If the condition was exit on true, convert the condition to exit on false
5195 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005196 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005197 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005198 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005199 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005200
5201 // Handle common loops like: for (X = "string"; *X; ++X)
5202 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5203 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005204 ExitLimit ItCnt =
5205 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005206 if (ItCnt.hasAnyInfo())
5207 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005208 }
5209
Dan Gohmanaf752342009-07-07 17:06:11 +00005210 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5211 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005212
5213 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005214 LHS = getSCEVAtScope(LHS, L);
5215 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005216
Dan Gohmance973df2009-06-24 04:48:43 +00005217 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005218 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005219 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005220 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005221 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005222 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005223 }
5224
Dan Gohman81585c12010-05-03 16:35:17 +00005225 // Simplify the operands before analyzing them.
5226 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5227
Chris Lattnerd934c702004-04-02 20:23:17 +00005228 // If we have a comparison of a chrec against a constant, try to use value
5229 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005230 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5231 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005232 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005233 // Form the constant range.
5234 ConstantRange CompRange(
5235 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005236
Dan Gohmanaf752342009-07-07 17:06:11 +00005237 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005238 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005239 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005240
Chris Lattnerd934c702004-04-02 20:23:17 +00005241 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005242 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005243 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005244 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005245 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005246 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005247 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005248 case ICmpInst::ICMP_EQ: { // while (X == Y)
5249 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005250 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5251 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005252 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005253 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005254 case ICmpInst::ICMP_SLT:
5255 case ICmpInst::ICMP_ULT: { // while (X < Y)
5256 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005257 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005258 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005259 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005260 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005261 case ICmpInst::ICMP_SGT:
5262 case ICmpInst::ICMP_UGT: { // while (X > Y)
5263 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005264 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005265 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005266 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005267 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005268 default:
Chris Lattner09169212004-04-02 20:26:46 +00005269#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005270 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005271 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005272 dbgs() << "[unsigned] ";
5273 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005274 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005275 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005276#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005277 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005278 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005279 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005280}
5281
Benjamin Kramer5a188542014-02-11 15:44:32 +00005282ScalarEvolution::ExitLimit
5283ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5284 SwitchInst *Switch,
5285 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005286 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005287 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5288
5289 // Give up if the exit is the default dest of a switch.
5290 if (Switch->getDefaultDest() == ExitingBlock)
5291 return getCouldNotCompute();
5292
5293 assert(L->contains(Switch->getDefaultDest()) &&
5294 "Default case must not exit the loop!");
5295 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5296 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5297
5298 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005299 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005300 if (EL.hasAnyInfo())
5301 return EL;
5302
5303 return getCouldNotCompute();
5304}
5305
Chris Lattnerec901cc2004-10-12 01:49:27 +00005306static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005307EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5308 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005309 const SCEV *InVal = SE.getConstant(C);
5310 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005311 assert(isa<SCEVConstant>(Val) &&
5312 "Evaluation of SCEV at constant didn't fold correctly?");
5313 return cast<SCEVConstant>(Val)->getValue();
5314}
5315
Andrew Trick3ca3f982011-07-26 17:19:55 +00005316/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005317/// 'icmp op load X, cst', try to see if we can compute the backedge
5318/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005319ScalarEvolution::ExitLimit
5320ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5321 LoadInst *LI,
5322 Constant *RHS,
5323 const Loop *L,
5324 ICmpInst::Predicate predicate) {
5325
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005326 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005327
5328 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005329 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005330 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005331 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005332
5333 // Make sure that it is really a constant global we are gepping, with an
5334 // initializer, and make sure the first IDX is really 0.
5335 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005336 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005337 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5338 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005339 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005340
5341 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005342 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005343 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005344 unsigned VarIdxNum = 0;
5345 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5346 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5347 Indexes.push_back(CI);
5348 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005349 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005350 VarIdx = GEP->getOperand(i);
5351 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005352 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005353 }
5354
Andrew Trick7004e4b2012-03-26 22:33:59 +00005355 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5356 if (!VarIdx)
5357 return getCouldNotCompute();
5358
Chris Lattnerec901cc2004-10-12 01:49:27 +00005359 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5360 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005361 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005362 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005363
5364 // We can only recognize very limited forms of loop index expressions, in
5365 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005366 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005367 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005368 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5369 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005370 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005371
5372 unsigned MaxSteps = MaxBruteForceIterations;
5373 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005374 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005375 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005376 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005377
5378 // Form the GEP offset.
5379 Indexes[VarIdxNum] = Val;
5380
Chris Lattnere166a852012-01-24 05:49:24 +00005381 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5382 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005383 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005384
5385 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005386 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005387 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005388 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005389#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005390 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005391 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5392 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005393#endif
5394 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005395 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005396 }
5397 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005398 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005399}
5400
5401
Chris Lattnerdd730472004-04-17 22:58:41 +00005402/// CanConstantFold - Return true if we can constant fold an instruction of the
5403/// specified type, assuming that all operands were constants.
5404static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005405 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005406 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5407 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005408 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005409
Chris Lattnerdd730472004-04-17 22:58:41 +00005410 if (const CallInst *CI = dyn_cast<CallInst>(I))
5411 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005412 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005413 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005414}
5415
Andrew Trick3a86ba72011-10-05 03:25:31 +00005416/// Determine whether this instruction can constant evolve within this loop
5417/// assuming its operands can all constant evolve.
5418static bool canConstantEvolve(Instruction *I, const Loop *L) {
5419 // An instruction outside of the loop can't be derived from a loop PHI.
5420 if (!L->contains(I)) return false;
5421
5422 if (isa<PHINode>(I)) {
5423 if (L->getHeader() == I->getParent())
5424 return true;
5425 else
5426 // We don't currently keep track of the control flow needed to evaluate
5427 // PHIs, so we cannot handle PHIs inside of loops.
5428 return false;
5429 }
5430
5431 // If we won't be able to constant fold this expression even if the operands
5432 // are constants, bail early.
5433 return CanConstantFold(I);
5434}
5435
5436/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5437/// recursing through each instruction operand until reaching a loop header phi.
5438static PHINode *
5439getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005440 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005441
5442 // Otherwise, we can evaluate this instruction if all of its operands are
5443 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005444 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005445 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5446 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5447
5448 if (isa<Constant>(*OpI)) continue;
5449
5450 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005451 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005452
5453 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005454 if (!P)
5455 // If this operand is already visited, reuse the prior result.
5456 // We may have P != PHI if this is the deepest point at which the
5457 // inconsistent paths meet.
5458 P = PHIMap.lookup(OpInst);
5459 if (!P) {
5460 // Recurse and memoize the results, whether a phi is found or not.
5461 // This recursive call invalidates pointers into PHIMap.
5462 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5463 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005464 }
Craig Topper9f008862014-04-15 04:59:12 +00005465 if (!P)
5466 return nullptr; // Not evolving from PHI
5467 if (PHI && PHI != P)
5468 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005469 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005470 }
5471 // This is a expression evolving from a constant PHI!
5472 return PHI;
5473}
5474
Chris Lattnerdd730472004-04-17 22:58:41 +00005475/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5476/// in the loop that V is derived from. We allow arbitrary operations along the
5477/// way, but the operands of an operation must either be constants or a value
5478/// derived from a constant PHI. If this expression does not fit with these
5479/// constraints, return null.
5480static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005481 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005482 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005483
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005484 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005485 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005486 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005487
Andrew Trick3a86ba72011-10-05 03:25:31 +00005488 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005489 DenseMap<Instruction *, PHINode *> PHIMap;
5490 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005491}
5492
5493/// EvaluateExpression - Given an expression that passes the
5494/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5495/// in the loop has the value PHIVal. If we can't fold this expression for some
5496/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005497static Constant *EvaluateExpression(Value *V, const Loop *L,
5498 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005499 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005500 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005501 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005502 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005503 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005504 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005505
Andrew Trick3a86ba72011-10-05 03:25:31 +00005506 if (Constant *C = Vals.lookup(I)) return C;
5507
Nick Lewyckya6674c72011-10-22 19:58:20 +00005508 // An instruction inside the loop depends on a value outside the loop that we
5509 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005510 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005511
5512 // An unmapped PHI can be due to a branch or another loop inside this loop,
5513 // or due to this not being the initial iteration through a loop where we
5514 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005515 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005516
Dan Gohmanf820bd32010-06-22 13:15:46 +00005517 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005518
5519 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005520 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5521 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005522 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005523 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005524 continue;
5525 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005526 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005527 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005528 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005529 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005530 }
5531
Nick Lewyckya6674c72011-10-22 19:58:20 +00005532 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005533 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005534 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005535 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5536 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005537 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005538 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005539 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005540 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005541}
5542
5543/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5544/// in the header of its containing loop, we know the loop executes a
5545/// constant number of times, and the PHI node is just a recurrence
5546/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005547Constant *
5548ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005549 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005550 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005551 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005552 ConstantEvolutionLoopExitValue.find(PN);
5553 if (I != ConstantEvolutionLoopExitValue.end())
5554 return I->second;
5555
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005556 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005557 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005558
5559 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5560
Andrew Trick3a86ba72011-10-05 03:25:31 +00005561 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005562 BasicBlock *Header = L->getHeader();
5563 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005564
Chris Lattnerdd730472004-04-17 22:58:41 +00005565 // Since the loop is canonicalized, the PHI node must have two entries. One
5566 // entry must be a constant (coming in from outside of the loop), and the
5567 // second must be derived from the same PHI.
5568 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005569 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005570 for (BasicBlock::iterator I = Header->begin();
5571 (PHI = dyn_cast<PHINode>(I)); ++I) {
5572 Constant *StartCST =
5573 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005574 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005575 CurrentIterVals[PHI] = StartCST;
5576 }
5577 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005578 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005579
5580 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005581
5582 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005583 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005584 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005585
Dan Gohman0bddac12009-02-24 18:55:53 +00005586 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005587 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005588 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005589 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005590 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005591
Nick Lewyckya6674c72011-10-22 19:58:20 +00005592 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005593 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005594 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005595 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005596 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005597 if (!NextPHI)
5598 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005599 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005600
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005601 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5602
Nick Lewyckya6674c72011-10-22 19:58:20 +00005603 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5604 // cease to be able to evaluate one of them or if they stop evolving,
5605 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005606 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005607 for (DenseMap<Instruction *, Constant *>::const_iterator
5608 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5609 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005610 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005611 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5612 }
5613 // We use two distinct loops because EvaluateExpression may invalidate any
5614 // iterators into CurrentIterVals.
5615 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5616 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5617 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005618 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005619 if (!NextPHI) { // Not already computed.
5620 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005621 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005622 }
5623 if (NextPHI != I->second)
5624 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005625 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005626
5627 // If all entries in CurrentIterVals == NextIterVals then we can stop
5628 // iterating, the loop can't continue to change.
5629 if (StoppedEvolving)
5630 return RetVal = CurrentIterVals[PN];
5631
Andrew Trick3a86ba72011-10-05 03:25:31 +00005632 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005633 }
5634}
5635
Andrew Trick3ca3f982011-07-26 17:19:55 +00005636/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005637/// constant number of times (the condition evolves only from constants),
5638/// try to evaluate a few iterations of the loop until we get the exit
5639/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005640/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005641const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5642 Value *Cond,
5643 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005644 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005645 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005646
Dan Gohman866971e2010-06-19 14:17:24 +00005647 // If the loop is canonicalized, the PHI will have exactly two entries.
5648 // That's the only form we support here.
5649 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5650
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005651 DenseMap<Instruction *, Constant *> CurrentIterVals;
5652 BasicBlock *Header = L->getHeader();
5653 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5654
Dan Gohman866971e2010-06-19 14:17:24 +00005655 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005656 // second must be derived from the same PHI.
5657 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005658 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005659 for (BasicBlock::iterator I = Header->begin();
5660 (PHI = dyn_cast<PHINode>(I)); ++I) {
5661 Constant *StartCST =
5662 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005663 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005664 CurrentIterVals[PHI] = StartCST;
5665 }
5666 if (!CurrentIterVals.count(PN))
5667 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005668
5669 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5670 // the loop symbolically to determine when the condition gets a value of
5671 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005672
Andrew Trick90c7a102011-11-16 00:52:40 +00005673 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005674 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005675 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005676 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005677 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005678
Zhou Sheng75b871f2007-01-11 12:24:14 +00005679 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005680 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005681
Reid Spencer983e3b32007-03-01 07:25:48 +00005682 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005683 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005684 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005685 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005686
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005687 // Update all the PHI nodes for the next iteration.
5688 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005689
5690 // Create a list of which PHIs we need to compute. We want to do this before
5691 // calling EvaluateExpression on them because that may invalidate iterators
5692 // into CurrentIterVals.
5693 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005694 for (DenseMap<Instruction *, Constant *>::const_iterator
5695 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5696 PHINode *PHI = dyn_cast<PHINode>(I->first);
5697 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005698 PHIsToCompute.push_back(PHI);
5699 }
5700 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5701 E = PHIsToCompute.end(); I != E; ++I) {
5702 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005703 Constant *&NextPHI = NextIterVals[PHI];
5704 if (NextPHI) continue; // Already computed!
5705
5706 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005707 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005708 }
5709 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005710 }
5711
5712 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005713 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005714}
5715
Dan Gohman237d9e52009-09-03 15:00:26 +00005716/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005717/// at the specified scope in the program. The L value specifies a loop
5718/// nest to evaluate the expression at, where null is the top-level or a
5719/// specified loop is immediately inside of the loop.
5720///
5721/// This method can be used to compute the exit value for a variable defined
5722/// in a loop by querying what the value will hold in the parent loop.
5723///
Dan Gohman8ca08852009-05-24 23:25:42 +00005724/// In the case that a relevant loop exit value cannot be computed, the
5725/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005726const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005727 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005728 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5729 for (unsigned u = 0; u < Values.size(); u++) {
5730 if (Values[u].first == L)
5731 return Values[u].second ? Values[u].second : V;
5732 }
Craig Topper9f008862014-04-15 04:59:12 +00005733 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005734 // Otherwise compute it.
5735 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005736 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5737 for (unsigned u = Values2.size(); u > 0; u--) {
5738 if (Values2[u - 1].first == L) {
5739 Values2[u - 1].second = C;
5740 break;
5741 }
5742 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005743 return C;
5744}
5745
Nick Lewyckya6674c72011-10-22 19:58:20 +00005746/// This builds up a Constant using the ConstantExpr interface. That way, we
5747/// will return Constants for objects which aren't represented by a
5748/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5749/// Returns NULL if the SCEV isn't representable as a Constant.
5750static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005751 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005752 case scCouldNotCompute:
5753 case scAddRecExpr:
5754 break;
5755 case scConstant:
5756 return cast<SCEVConstant>(V)->getValue();
5757 case scUnknown:
5758 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5759 case scSignExtend: {
5760 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5761 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5762 return ConstantExpr::getSExt(CastOp, SS->getType());
5763 break;
5764 }
5765 case scZeroExtend: {
5766 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5767 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5768 return ConstantExpr::getZExt(CastOp, SZ->getType());
5769 break;
5770 }
5771 case scTruncate: {
5772 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5773 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5774 return ConstantExpr::getTrunc(CastOp, ST->getType());
5775 break;
5776 }
5777 case scAddExpr: {
5778 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5779 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005780 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5781 unsigned AS = PTy->getAddressSpace();
5782 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5783 C = ConstantExpr::getBitCast(C, DestPtrTy);
5784 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005785 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5786 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005787 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005788
5789 // First pointer!
5790 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005791 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005792 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005793 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005794 // The offsets have been converted to bytes. We can add bytes to an
5795 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005796 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005797 }
5798
5799 // Don't bother trying to sum two pointers. We probably can't
5800 // statically compute a load that results from it anyway.
5801 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005802 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005803
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005804 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5805 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005806 C2 = ConstantExpr::getIntegerCast(
5807 C2, Type::getInt32Ty(C->getContext()), true);
5808 C = ConstantExpr::getGetElementPtr(C, C2);
5809 } else
5810 C = ConstantExpr::getAdd(C, C2);
5811 }
5812 return C;
5813 }
5814 break;
5815 }
5816 case scMulExpr: {
5817 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5818 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5819 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005820 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005821 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5822 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005823 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005824 C = ConstantExpr::getMul(C, C2);
5825 }
5826 return C;
5827 }
5828 break;
5829 }
5830 case scUDivExpr: {
5831 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5832 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5833 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5834 if (LHS->getType() == RHS->getType())
5835 return ConstantExpr::getUDiv(LHS, RHS);
5836 break;
5837 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005838 case scSMaxExpr:
5839 case scUMaxExpr:
5840 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005841 }
Craig Topper9f008862014-04-15 04:59:12 +00005842 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005843}
5844
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005845const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005846 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005847
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005848 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005849 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005850 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005851 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005852 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005853 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5854 if (PHINode *PN = dyn_cast<PHINode>(I))
5855 if (PN->getParent() == LI->getHeader()) {
5856 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005857 // to see if the loop that contains it has a known backedge-taken
5858 // count. If so, we may be able to force computation of the exit
5859 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005860 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005861 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005862 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005863 // Okay, we know how many times the containing loop executes. If
5864 // this is a constant evolving PHI node, get the final value at
5865 // the specified iteration number.
5866 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005867 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005868 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005869 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005870 }
5871 }
5872
Reid Spencere6328ca2006-12-04 21:33:23 +00005873 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005874 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005875 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005876 // result. This is particularly useful for computing loop exit values.
5877 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005878 SmallVector<Constant *, 4> Operands;
5879 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005880 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5881 Value *Op = I->getOperand(i);
5882 if (Constant *C = dyn_cast<Constant>(Op)) {
5883 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005884 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005885 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005886
5887 // If any of the operands is non-constant and if they are
5888 // non-integer and non-pointer, don't even try to analyze them
5889 // with scev techniques.
5890 if (!isSCEVable(Op->getType()))
5891 return V;
5892
5893 const SCEV *OrigV = getSCEV(Op);
5894 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5895 MadeImprovement |= OrigV != OpV;
5896
Nick Lewyckya6674c72011-10-22 19:58:20 +00005897 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005898 if (!C) return V;
5899 if (C->getType() != Op->getType())
5900 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5901 Op->getType(),
5902 false),
5903 C, Op->getType());
5904 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005905 }
Dan Gohmance973df2009-06-24 04:48:43 +00005906
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005907 // Check to see if getSCEVAtScope actually made an improvement.
5908 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005909 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005910 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5911 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005912 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005913 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005914 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5915 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005916 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005917 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005918 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005919 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005920 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005921 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005922 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005923 }
5924 }
5925
5926 // This is some other type of SCEVUnknown, just return it.
5927 return V;
5928 }
5929
Dan Gohmana30370b2009-05-04 22:02:23 +00005930 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005931 // Avoid performing the look-up in the common case where the specified
5932 // expression has no loop-variant portions.
5933 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005934 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005935 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005936 // Okay, at least one of these operands is loop variant but might be
5937 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005938 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5939 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005940 NewOps.push_back(OpAtScope);
5941
5942 for (++i; i != e; ++i) {
5943 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005944 NewOps.push_back(OpAtScope);
5945 }
5946 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005947 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005948 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005949 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005950 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005951 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005952 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005953 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005954 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005955 }
5956 }
5957 // If we got here, all operands are loop invariant.
5958 return Comm;
5959 }
5960
Dan Gohmana30370b2009-05-04 22:02:23 +00005961 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005962 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5963 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005964 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5965 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005966 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005967 }
5968
5969 // If this is a loop recurrence for a loop that does not contain L, then we
5970 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005971 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005972 // First, attempt to evaluate each operand.
5973 // Avoid performing the look-up in the common case where the specified
5974 // expression has no loop-variant portions.
5975 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5976 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5977 if (OpAtScope == AddRec->getOperand(i))
5978 continue;
5979
5980 // Okay, at least one of these operands is loop variant but might be
5981 // foldable. Build a new instance of the folded commutative expression.
5982 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5983 AddRec->op_begin()+i);
5984 NewOps.push_back(OpAtScope);
5985 for (++i; i != e; ++i)
5986 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5987
Andrew Trick759ba082011-04-27 01:21:25 +00005988 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005989 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005990 AddRec->getNoWrapFlags(SCEV::FlagNW));
5991 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005992 // The addrec may be folded to a nonrecurrence, for example, if the
5993 // induction variable is multiplied by zero after constant folding. Go
5994 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005995 if (!AddRec)
5996 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005997 break;
5998 }
5999
6000 // If the scope is outside the addrec's loop, evaluate it by using the
6001 // loop exit value of the addrec.
6002 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006003 // To evaluate this recurrence, we need to know how many times the AddRec
6004 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006005 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006006 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006007
Eli Friedman61f67622008-08-04 23:49:06 +00006008 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006009 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006010 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006011
Dan Gohman8ca08852009-05-24 23:25:42 +00006012 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006013 }
6014
Dan Gohmana30370b2009-05-04 22:02:23 +00006015 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006016 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006017 if (Op == Cast->getOperand())
6018 return Cast; // must be loop invariant
6019 return getZeroExtendExpr(Op, Cast->getType());
6020 }
6021
Dan Gohmana30370b2009-05-04 22:02:23 +00006022 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006023 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006024 if (Op == Cast->getOperand())
6025 return Cast; // must be loop invariant
6026 return getSignExtendExpr(Op, Cast->getType());
6027 }
6028
Dan Gohmana30370b2009-05-04 22:02:23 +00006029 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006030 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006031 if (Op == Cast->getOperand())
6032 return Cast; // must be loop invariant
6033 return getTruncateExpr(Op, Cast->getType());
6034 }
6035
Torok Edwinfbcc6632009-07-14 16:55:14 +00006036 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006037}
6038
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006039/// getSCEVAtScope - This is a convenience function which does
6040/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006041const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006042 return getSCEVAtScope(getSCEV(V), L);
6043}
6044
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006045/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6046/// following equation:
6047///
6048/// A * X = B (mod N)
6049///
6050/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6051/// A and B isn't important.
6052///
6053/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006054static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006055 ScalarEvolution &SE) {
6056 uint32_t BW = A.getBitWidth();
6057 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6058 assert(A != 0 && "A must be non-zero.");
6059
6060 // 1. D = gcd(A, N)
6061 //
6062 // The gcd of A and N may have only one prime factor: 2. The number of
6063 // trailing zeros in A is its multiplicity
6064 uint32_t Mult2 = A.countTrailingZeros();
6065 // D = 2^Mult2
6066
6067 // 2. Check if B is divisible by D.
6068 //
6069 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6070 // is not less than multiplicity of this prime factor for D.
6071 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006072 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006073
6074 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6075 // modulo (N / D).
6076 //
6077 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6078 // bit width during computations.
6079 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6080 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006081 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006082 APInt I = AD.multiplicativeInverse(Mod);
6083
6084 // 4. Compute the minimum unsigned root of the equation:
6085 // I * (B / D) mod (N / D)
6086 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6087
6088 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6089 // bits.
6090 return SE.getConstant(Result.trunc(BW));
6091}
Chris Lattnerd934c702004-04-02 20:23:17 +00006092
6093/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6094/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6095/// might be the same) or two SCEVCouldNotCompute objects.
6096///
Dan Gohmanaf752342009-07-07 17:06:11 +00006097static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006098SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006099 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006100 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6101 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6102 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006103
Chris Lattnerd934c702004-04-02 20:23:17 +00006104 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006105 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006106 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006107 return std::make_pair(CNC, CNC);
6108 }
6109
Reid Spencer983e3b32007-03-01 07:25:48 +00006110 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006111 const APInt &L = LC->getValue()->getValue();
6112 const APInt &M = MC->getValue()->getValue();
6113 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006114 APInt Two(BitWidth, 2);
6115 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006116
Dan Gohmance973df2009-06-24 04:48:43 +00006117 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006118 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006119 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006120 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6121 // The B coefficient is M-N/2
6122 APInt B(M);
6123 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006124
Reid Spencer983e3b32007-03-01 07:25:48 +00006125 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006126 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006127
Reid Spencer983e3b32007-03-01 07:25:48 +00006128 // Compute the B^2-4ac term.
6129 APInt SqrtTerm(B);
6130 SqrtTerm *= B;
6131 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006132
Nick Lewyckyfb780832012-08-01 09:14:36 +00006133 if (SqrtTerm.isNegative()) {
6134 // The loop is provably infinite.
6135 const SCEV *CNC = SE.getCouldNotCompute();
6136 return std::make_pair(CNC, CNC);
6137 }
6138
Reid Spencer983e3b32007-03-01 07:25:48 +00006139 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6140 // integer value or else APInt::sqrt() will assert.
6141 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006142
Dan Gohmance973df2009-06-24 04:48:43 +00006143 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006144 // The divisions must be performed as signed divisions.
6145 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006146 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006147 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006148 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006149 return std::make_pair(CNC, CNC);
6150 }
6151
Owen Anderson47db9412009-07-22 00:24:57 +00006152 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006153
6154 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006155 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006156 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006157 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006158
Dan Gohmance973df2009-06-24 04:48:43 +00006159 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006160 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006161 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006162}
6163
6164/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006165/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006166///
6167/// This is only used for loops with a "x != y" exit test. The exit condition is
6168/// now expressed as a single expression, V = x-y. So the exit test is
6169/// effectively V != 0. We know and take advantage of the fact that this
6170/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006171ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006172ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006173 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006174 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006175 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006176 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006177 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006178 }
6179
Dan Gohman48f82222009-05-04 22:30:44 +00006180 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006181 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006182 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006183
Chris Lattnerdff679f2011-01-09 22:39:48 +00006184 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6185 // the quadratic equation to solve it.
6186 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6187 std::pair<const SCEV *,const SCEV *> Roots =
6188 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006189 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6190 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006191 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006192#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006193 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006194 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006195#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006196 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006197 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006198 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6199 R1->getValue(),
6200 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006201 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006202 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006203
Chris Lattnerd934c702004-04-02 20:23:17 +00006204 // We can only use this value if the chrec ends up with an exact zero
6205 // value at this index. When solving for "X*X != 5", for example, we
6206 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006207 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006208 if (Val->isZero())
6209 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006210 }
6211 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006212 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006213 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006214
Chris Lattnerdff679f2011-01-09 22:39:48 +00006215 // Otherwise we can only handle this if it is affine.
6216 if (!AddRec->isAffine())
6217 return getCouldNotCompute();
6218
6219 // If this is an affine expression, the execution count of this branch is
6220 // the minimum unsigned root of the following equation:
6221 //
6222 // Start + Step*N = 0 (mod 2^BW)
6223 //
6224 // equivalent to:
6225 //
6226 // Step*N = -Start (mod 2^BW)
6227 //
6228 // where BW is the common bit width of Start and Step.
6229
6230 // Get the initial value for the loop.
6231 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6232 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6233
6234 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006235 //
6236 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6237 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6238 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6239 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006240 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006241 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006242 return getCouldNotCompute();
6243
Andrew Trick8b55b732011-03-14 16:50:06 +00006244 // For positive steps (counting up until unsigned overflow):
6245 // N = -Start/Step (as unsigned)
6246 // For negative steps (counting down to zero):
6247 // N = Start/-Step
6248 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006249 bool CountDown = StepC->getValue()->getValue().isNegative();
6250 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006251
6252 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006253 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6254 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006255 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6256 ConstantRange CR = getUnsignedRange(Start);
6257 const SCEV *MaxBECount;
6258 if (!CountDown && CR.getUnsignedMin().isMinValue())
6259 // When counting up, the worst starting value is 1, not 0.
6260 MaxBECount = CR.getUnsignedMax().isMinValue()
6261 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6262 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6263 else
6264 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6265 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006266 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006267 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006268
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006269 // As a special case, handle the instance where Step is a positive power of
6270 // two. In this case, determining whether Step divides Distance evenly can be
6271 // done by counting and comparing the number of trailing zeros of Step and
6272 // Distance.
6273 if (!CountDown) {
6274 const APInt &StepV = StepC->getValue()->getValue();
6275 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6276 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6277 // case is not handled as this code is guarded by !CountDown.
6278 if (StepV.isPowerOf2() &&
6279 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6280 return getUDivExactExpr(Distance, Step);
6281 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006282
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006283 // If the condition controls loop exit (the loop exits only if the expression
6284 // is true) and the addition is no-wrap we can use unsigned divide to
6285 // compute the backedge count. In this case, the step may not divide the
6286 // distance, but we don't care because if the condition is "missed" the loop
6287 // will have undefined behavior due to wrapping.
6288 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6289 const SCEV *Exact =
6290 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6291 return ExitLimit(Exact, Exact);
6292 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006293
Chris Lattnerdff679f2011-01-09 22:39:48 +00006294 // Then, try to solve the above equation provided that Start is constant.
6295 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6296 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6297 -StartC->getValue()->getValue(),
6298 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006299 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006300}
6301
6302/// HowFarToNonZero - Return the number of times a backedge checking the
6303/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006304/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006305ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006306ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006307 // Loops that look like: while (X == 0) are very strange indeed. We don't
6308 // handle them yet except for the trivial case. This could be expanded in the
6309 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006310
Chris Lattnerd934c702004-04-02 20:23:17 +00006311 // If the value is a constant, check to see if it is known to be non-zero
6312 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006313 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006314 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006315 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006316 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006317 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006318
Chris Lattnerd934c702004-04-02 20:23:17 +00006319 // We could implement others, but I really doubt anyone writes loops like
6320 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006321 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006322}
6323
Dan Gohmanf9081a22008-09-15 22:18:04 +00006324/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6325/// (which may not be an immediate predecessor) which has exactly one
6326/// successor from which BB is reachable, or null if no such block is
6327/// found.
6328///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006329std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006330ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006331 // If the block has a unique predecessor, then there is no path from the
6332 // predecessor to the block that does not go through the direct edge
6333 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006334 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006335 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006336
6337 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006338 // If the header has a unique predecessor outside the loop, it must be
6339 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006340 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006341 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006342
Dan Gohman4e3c1132010-04-15 16:19:08 +00006343 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006344}
6345
Dan Gohman450f4e02009-06-20 00:35:32 +00006346/// HasSameValue - SCEV structural equivalence is usually sufficient for
6347/// testing whether two expressions are equal, however for the purposes of
6348/// looking for a condition guarding a loop, it can be useful to be a little
6349/// more general, since a front-end may have replicated the controlling
6350/// expression.
6351///
Dan Gohmanaf752342009-07-07 17:06:11 +00006352static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006353 // Quick check to see if they are the same SCEV.
6354 if (A == B) return true;
6355
6356 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6357 // two different instructions with the same value. Check for this case.
6358 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6359 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6360 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6361 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006362 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006363 return true;
6364
6365 // Otherwise assume they may have a different value.
6366 return false;
6367}
6368
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006369/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006370/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006371///
6372bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006373 const SCEV *&LHS, const SCEV *&RHS,
6374 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006375 bool Changed = false;
6376
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006377 // If we hit the max recursion limit bail out.
6378 if (Depth >= 3)
6379 return false;
6380
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006381 // Canonicalize a constant to the right side.
6382 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6383 // Check for both operands constant.
6384 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6385 if (ConstantExpr::getICmp(Pred,
6386 LHSC->getValue(),
6387 RHSC->getValue())->isNullValue())
6388 goto trivially_false;
6389 else
6390 goto trivially_true;
6391 }
6392 // Otherwise swap the operands to put the constant on the right.
6393 std::swap(LHS, RHS);
6394 Pred = ICmpInst::getSwappedPredicate(Pred);
6395 Changed = true;
6396 }
6397
6398 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006399 // addrec's loop, put the addrec on the left. Also make a dominance check,
6400 // as both operands could be addrecs loop-invariant in each other's loop.
6401 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6402 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006403 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006404 std::swap(LHS, RHS);
6405 Pred = ICmpInst::getSwappedPredicate(Pred);
6406 Changed = true;
6407 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006408 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006409
6410 // If there's a constant operand, canonicalize comparisons with boundary
6411 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6412 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6413 const APInt &RA = RC->getValue()->getValue();
6414 switch (Pred) {
6415 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6416 case ICmpInst::ICMP_EQ:
6417 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006418 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6419 if (!RA)
6420 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6421 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006422 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6423 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006424 RHS = AE->getOperand(1);
6425 LHS = ME->getOperand(1);
6426 Changed = true;
6427 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006428 break;
6429 case ICmpInst::ICMP_UGE:
6430 if ((RA - 1).isMinValue()) {
6431 Pred = ICmpInst::ICMP_NE;
6432 RHS = getConstant(RA - 1);
6433 Changed = true;
6434 break;
6435 }
6436 if (RA.isMaxValue()) {
6437 Pred = ICmpInst::ICMP_EQ;
6438 Changed = true;
6439 break;
6440 }
6441 if (RA.isMinValue()) goto trivially_true;
6442
6443 Pred = ICmpInst::ICMP_UGT;
6444 RHS = getConstant(RA - 1);
6445 Changed = true;
6446 break;
6447 case ICmpInst::ICMP_ULE:
6448 if ((RA + 1).isMaxValue()) {
6449 Pred = ICmpInst::ICMP_NE;
6450 RHS = getConstant(RA + 1);
6451 Changed = true;
6452 break;
6453 }
6454 if (RA.isMinValue()) {
6455 Pred = ICmpInst::ICMP_EQ;
6456 Changed = true;
6457 break;
6458 }
6459 if (RA.isMaxValue()) goto trivially_true;
6460
6461 Pred = ICmpInst::ICMP_ULT;
6462 RHS = getConstant(RA + 1);
6463 Changed = true;
6464 break;
6465 case ICmpInst::ICMP_SGE:
6466 if ((RA - 1).isMinSignedValue()) {
6467 Pred = ICmpInst::ICMP_NE;
6468 RHS = getConstant(RA - 1);
6469 Changed = true;
6470 break;
6471 }
6472 if (RA.isMaxSignedValue()) {
6473 Pred = ICmpInst::ICMP_EQ;
6474 Changed = true;
6475 break;
6476 }
6477 if (RA.isMinSignedValue()) goto trivially_true;
6478
6479 Pred = ICmpInst::ICMP_SGT;
6480 RHS = getConstant(RA - 1);
6481 Changed = true;
6482 break;
6483 case ICmpInst::ICMP_SLE:
6484 if ((RA + 1).isMaxSignedValue()) {
6485 Pred = ICmpInst::ICMP_NE;
6486 RHS = getConstant(RA + 1);
6487 Changed = true;
6488 break;
6489 }
6490 if (RA.isMinSignedValue()) {
6491 Pred = ICmpInst::ICMP_EQ;
6492 Changed = true;
6493 break;
6494 }
6495 if (RA.isMaxSignedValue()) goto trivially_true;
6496
6497 Pred = ICmpInst::ICMP_SLT;
6498 RHS = getConstant(RA + 1);
6499 Changed = true;
6500 break;
6501 case ICmpInst::ICMP_UGT:
6502 if (RA.isMinValue()) {
6503 Pred = ICmpInst::ICMP_NE;
6504 Changed = true;
6505 break;
6506 }
6507 if ((RA + 1).isMaxValue()) {
6508 Pred = ICmpInst::ICMP_EQ;
6509 RHS = getConstant(RA + 1);
6510 Changed = true;
6511 break;
6512 }
6513 if (RA.isMaxValue()) goto trivially_false;
6514 break;
6515 case ICmpInst::ICMP_ULT:
6516 if (RA.isMaxValue()) {
6517 Pred = ICmpInst::ICMP_NE;
6518 Changed = true;
6519 break;
6520 }
6521 if ((RA - 1).isMinValue()) {
6522 Pred = ICmpInst::ICMP_EQ;
6523 RHS = getConstant(RA - 1);
6524 Changed = true;
6525 break;
6526 }
6527 if (RA.isMinValue()) goto trivially_false;
6528 break;
6529 case ICmpInst::ICMP_SGT:
6530 if (RA.isMinSignedValue()) {
6531 Pred = ICmpInst::ICMP_NE;
6532 Changed = true;
6533 break;
6534 }
6535 if ((RA + 1).isMaxSignedValue()) {
6536 Pred = ICmpInst::ICMP_EQ;
6537 RHS = getConstant(RA + 1);
6538 Changed = true;
6539 break;
6540 }
6541 if (RA.isMaxSignedValue()) goto trivially_false;
6542 break;
6543 case ICmpInst::ICMP_SLT:
6544 if (RA.isMaxSignedValue()) {
6545 Pred = ICmpInst::ICMP_NE;
6546 Changed = true;
6547 break;
6548 }
6549 if ((RA - 1).isMinSignedValue()) {
6550 Pred = ICmpInst::ICMP_EQ;
6551 RHS = getConstant(RA - 1);
6552 Changed = true;
6553 break;
6554 }
6555 if (RA.isMinSignedValue()) goto trivially_false;
6556 break;
6557 }
6558 }
6559
6560 // Check for obvious equality.
6561 if (HasSameValue(LHS, RHS)) {
6562 if (ICmpInst::isTrueWhenEqual(Pred))
6563 goto trivially_true;
6564 if (ICmpInst::isFalseWhenEqual(Pred))
6565 goto trivially_false;
6566 }
6567
Dan Gohman81585c12010-05-03 16:35:17 +00006568 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6569 // adding or subtracting 1 from one of the operands.
6570 switch (Pred) {
6571 case ICmpInst::ICMP_SLE:
6572 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6573 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006574 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006575 Pred = ICmpInst::ICMP_SLT;
6576 Changed = true;
6577 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006578 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006579 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006580 Pred = ICmpInst::ICMP_SLT;
6581 Changed = true;
6582 }
6583 break;
6584 case ICmpInst::ICMP_SGE:
6585 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006586 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006587 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006588 Pred = ICmpInst::ICMP_SGT;
6589 Changed = true;
6590 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6591 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006592 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006593 Pred = ICmpInst::ICMP_SGT;
6594 Changed = true;
6595 }
6596 break;
6597 case ICmpInst::ICMP_ULE:
6598 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006599 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006600 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006601 Pred = ICmpInst::ICMP_ULT;
6602 Changed = true;
6603 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006604 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006605 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006606 Pred = ICmpInst::ICMP_ULT;
6607 Changed = true;
6608 }
6609 break;
6610 case ICmpInst::ICMP_UGE:
6611 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006612 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006613 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006614 Pred = ICmpInst::ICMP_UGT;
6615 Changed = true;
6616 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006617 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006618 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006619 Pred = ICmpInst::ICMP_UGT;
6620 Changed = true;
6621 }
6622 break;
6623 default:
6624 break;
6625 }
6626
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006627 // TODO: More simplifications are possible here.
6628
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006629 // Recursively simplify until we either hit a recursion limit or nothing
6630 // changes.
6631 if (Changed)
6632 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6633
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006634 return Changed;
6635
6636trivially_true:
6637 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006638 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006639 Pred = ICmpInst::ICMP_EQ;
6640 return true;
6641
6642trivially_false:
6643 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006644 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006645 Pred = ICmpInst::ICMP_NE;
6646 return true;
6647}
6648
Dan Gohmane65c9172009-07-13 21:35:55 +00006649bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6650 return getSignedRange(S).getSignedMax().isNegative();
6651}
6652
6653bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6654 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6655}
6656
6657bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6658 return !getSignedRange(S).getSignedMin().isNegative();
6659}
6660
6661bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6662 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6663}
6664
6665bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6666 return isKnownNegative(S) || isKnownPositive(S);
6667}
6668
6669bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6670 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006671 // Canonicalize the inputs first.
6672 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6673
Dan Gohman07591692010-04-11 22:16:48 +00006674 // If LHS or RHS is an addrec, check to see if the condition is true in
6675 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006676 // If LHS and RHS are both addrec, both conditions must be true in
6677 // every iteration of the loop.
6678 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6679 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6680 bool LeftGuarded = false;
6681 bool RightGuarded = false;
6682 if (LAR) {
6683 const Loop *L = LAR->getLoop();
6684 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6685 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6686 if (!RAR) return true;
6687 LeftGuarded = true;
6688 }
6689 }
6690 if (RAR) {
6691 const Loop *L = RAR->getLoop();
6692 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6693 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6694 if (!LAR) return true;
6695 RightGuarded = true;
6696 }
6697 }
6698 if (LeftGuarded && RightGuarded)
6699 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006700
Dan Gohman07591692010-04-11 22:16:48 +00006701 // Otherwise see what can be done with known constant ranges.
6702 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6703}
6704
6705bool
6706ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6707 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006708 if (HasSameValue(LHS, RHS))
6709 return ICmpInst::isTrueWhenEqual(Pred);
6710
Dan Gohman07591692010-04-11 22:16:48 +00006711 // This code is split out from isKnownPredicate because it is called from
6712 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006713 switch (Pred) {
6714 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006715 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006716 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006717 std::swap(LHS, RHS);
6718 case ICmpInst::ICMP_SLT: {
6719 ConstantRange LHSRange = getSignedRange(LHS);
6720 ConstantRange RHSRange = getSignedRange(RHS);
6721 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6722 return true;
6723 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6724 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006725 break;
6726 }
6727 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006728 std::swap(LHS, RHS);
6729 case ICmpInst::ICMP_SLE: {
6730 ConstantRange LHSRange = getSignedRange(LHS);
6731 ConstantRange RHSRange = getSignedRange(RHS);
6732 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6733 return true;
6734 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6735 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006736 break;
6737 }
6738 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006739 std::swap(LHS, RHS);
6740 case ICmpInst::ICMP_ULT: {
6741 ConstantRange LHSRange = getUnsignedRange(LHS);
6742 ConstantRange RHSRange = getUnsignedRange(RHS);
6743 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6744 return true;
6745 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6746 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006747 break;
6748 }
6749 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006750 std::swap(LHS, RHS);
6751 case ICmpInst::ICMP_ULE: {
6752 ConstantRange LHSRange = getUnsignedRange(LHS);
6753 ConstantRange RHSRange = getUnsignedRange(RHS);
6754 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6755 return true;
6756 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6757 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006758 break;
6759 }
6760 case ICmpInst::ICMP_NE: {
6761 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6762 return true;
6763 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6764 return true;
6765
6766 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6767 if (isKnownNonZero(Diff))
6768 return true;
6769 break;
6770 }
6771 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006772 // The check at the top of the function catches the case where
6773 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006774 break;
6775 }
6776 return false;
6777}
6778
6779/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6780/// protected by a conditional between LHS and RHS. This is used to
6781/// to eliminate casts.
6782bool
6783ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6784 ICmpInst::Predicate Pred,
6785 const SCEV *LHS, const SCEV *RHS) {
6786 // Interpret a null as meaning no loop, where there is obviously no guard
6787 // (interprocedural conditions notwithstanding).
6788 if (!L) return true;
6789
Sanjoy Das1f05c512014-10-10 21:22:34 +00006790 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6791
Dan Gohmane65c9172009-07-13 21:35:55 +00006792 BasicBlock *Latch = L->getLoopLatch();
6793 if (!Latch)
6794 return false;
6795
6796 BranchInst *LoopContinuePredicate =
6797 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006798 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6799 isImpliedCond(Pred, LHS, RHS,
6800 LoopContinuePredicate->getCondition(),
6801 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6802 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006803
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006804 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006805 for (auto &AssumeVH : AC->assumptions()) {
6806 if (!AssumeVH)
6807 continue;
6808 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006809 if (!DT->dominates(CI, Latch->getTerminator()))
6810 continue;
6811
6812 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6813 return true;
6814 }
6815
6816 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006817}
6818
Dan Gohmanb50349a2010-04-11 19:27:13 +00006819/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006820/// by a conditional between LHS and RHS. This is used to help avoid max
6821/// expressions in loop trip counts, and to eliminate casts.
6822bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006823ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6824 ICmpInst::Predicate Pred,
6825 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006826 // Interpret a null as meaning no loop, where there is obviously no guard
6827 // (interprocedural conditions notwithstanding).
6828 if (!L) return false;
6829
Sanjoy Das1f05c512014-10-10 21:22:34 +00006830 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6831
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006832 // Starting at the loop predecessor, climb up the predecessor chain, as long
6833 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006834 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006835 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006836 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006837 Pair.first;
6838 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006839
6840 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006841 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006842 if (!LoopEntryPredicate ||
6843 LoopEntryPredicate->isUnconditional())
6844 continue;
6845
Dan Gohmane18c2d62010-08-10 23:46:30 +00006846 if (isImpliedCond(Pred, LHS, RHS,
6847 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006848 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006849 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006850 }
6851
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006852 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006853 for (auto &AssumeVH : AC->assumptions()) {
6854 if (!AssumeVH)
6855 continue;
6856 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006857 if (!DT->dominates(CI, L->getHeader()))
6858 continue;
6859
6860 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6861 return true;
6862 }
6863
Dan Gohman2a62fd92008-08-12 20:17:31 +00006864 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006865}
6866
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006867/// RAII wrapper to prevent recursive application of isImpliedCond.
6868/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6869/// currently evaluating isImpliedCond.
6870struct MarkPendingLoopPredicate {
6871 Value *Cond;
6872 DenseSet<Value*> &LoopPreds;
6873 bool Pending;
6874
6875 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6876 : Cond(C), LoopPreds(LP) {
6877 Pending = !LoopPreds.insert(Cond).second;
6878 }
6879 ~MarkPendingLoopPredicate() {
6880 if (!Pending)
6881 LoopPreds.erase(Cond);
6882 }
6883};
6884
Dan Gohman430f0cc2009-07-21 23:03:19 +00006885/// isImpliedCond - Test whether the condition described by Pred, LHS,
6886/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006887bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006888 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006889 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006890 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006891 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6892 if (Mark.Pending)
6893 return false;
6894
Dan Gohman8b0a4192010-03-01 17:49:51 +00006895 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006896 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006897 if (BO->getOpcode() == Instruction::And) {
6898 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006899 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6900 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006901 } else if (BO->getOpcode() == Instruction::Or) {
6902 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006903 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6904 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006905 }
6906 }
6907
Dan Gohmane18c2d62010-08-10 23:46:30 +00006908 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006909 if (!ICI) return false;
6910
Dan Gohmane65c9172009-07-13 21:35:55 +00006911 // Bail if the ICmp's operands' types are wider than the needed type
6912 // before attempting to call getSCEV on them. This avoids infinite
6913 // recursion, since the analysis of widening casts can require loop
6914 // exit condition information for overflow checking, which would
6915 // lead back here.
6916 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006917 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006918 return false;
6919
Andrew Trickfa594032012-11-29 18:35:13 +00006920 // Now that we found a conditional branch that dominates the loop or controls
6921 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006922 ICmpInst::Predicate FoundPred;
6923 if (Inverse)
6924 FoundPred = ICI->getInversePredicate();
6925 else
6926 FoundPred = ICI->getPredicate();
6927
6928 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6929 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006930
6931 // Balance the types. The case where FoundLHS' type is wider than
6932 // LHS' type is checked for above.
6933 if (getTypeSizeInBits(LHS->getType()) >
6934 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006935 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006936 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6937 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6938 } else {
6939 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6940 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6941 }
6942 }
6943
Dan Gohman430f0cc2009-07-21 23:03:19 +00006944 // Canonicalize the query to match the way instcombine will have
6945 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006946 if (SimplifyICmpOperands(Pred, LHS, RHS))
6947 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006948 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006949 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6950 if (FoundLHS == FoundRHS)
6951 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006952
6953 // Check to see if we can make the LHS or RHS match.
6954 if (LHS == FoundRHS || RHS == FoundLHS) {
6955 if (isa<SCEVConstant>(RHS)) {
6956 std::swap(FoundLHS, FoundRHS);
6957 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6958 } else {
6959 std::swap(LHS, RHS);
6960 Pred = ICmpInst::getSwappedPredicate(Pred);
6961 }
6962 }
6963
6964 // Check whether the found predicate is the same as the desired predicate.
6965 if (FoundPred == Pred)
6966 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6967
6968 // Check whether swapping the found predicate makes it the same as the
6969 // desired predicate.
6970 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6971 if (isa<SCEVConstant>(RHS))
6972 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6973 else
6974 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6975 RHS, LHS, FoundLHS, FoundRHS);
6976 }
6977
Sanjoy Dasc5676df2014-11-13 00:00:58 +00006978 // Check if we can make progress by sharpening ranges.
6979 if (FoundPred == ICmpInst::ICMP_NE &&
6980 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6981
6982 const SCEVConstant *C = nullptr;
6983 const SCEV *V = nullptr;
6984
6985 if (isa<SCEVConstant>(FoundLHS)) {
6986 C = cast<SCEVConstant>(FoundLHS);
6987 V = FoundRHS;
6988 } else {
6989 C = cast<SCEVConstant>(FoundRHS);
6990 V = FoundLHS;
6991 }
6992
6993 // The guarding predicate tells us that C != V. If the known range
6994 // of V is [C, t), we can sharpen the range to [C + 1, t). The
6995 // range we consider has to correspond to same signedness as the
6996 // predicate we're interested in folding.
6997
6998 APInt Min = ICmpInst::isSigned(Pred) ?
6999 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7000
7001 if (Min == C->getValue()->getValue()) {
7002 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7003 // This is true even if (Min + 1) wraps around -- in case of
7004 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7005
7006 APInt SharperMin = Min + 1;
7007
7008 switch (Pred) {
7009 case ICmpInst::ICMP_SGE:
7010 case ICmpInst::ICMP_UGE:
7011 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7012 // RHS, we're done.
7013 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7014 getConstant(SharperMin)))
7015 return true;
7016
7017 case ICmpInst::ICMP_SGT:
7018 case ICmpInst::ICMP_UGT:
7019 // We know from the range information that (V `Pred` Min ||
7020 // V == Min). We know from the guarding condition that !(V
7021 // == Min). This gives us
7022 //
7023 // V `Pred` Min || V == Min && !(V == Min)
7024 // => V `Pred` Min
7025 //
7026 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7027
7028 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7029 return true;
7030
7031 default:
7032 // No change
7033 break;
7034 }
7035 }
7036 }
7037
Dan Gohman430f0cc2009-07-21 23:03:19 +00007038 // Check whether the actual condition is beyond sufficient.
7039 if (FoundPred == ICmpInst::ICMP_EQ)
7040 if (ICmpInst::isTrueWhenEqual(Pred))
7041 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7042 return true;
7043 if (Pred == ICmpInst::ICMP_NE)
7044 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7045 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7046 return true;
7047
7048 // Otherwise assume the worst.
7049 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007050}
7051
Dan Gohman430f0cc2009-07-21 23:03:19 +00007052/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007053/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007054/// and FoundRHS is true.
7055bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7056 const SCEV *LHS, const SCEV *RHS,
7057 const SCEV *FoundLHS,
7058 const SCEV *FoundRHS) {
7059 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7060 FoundLHS, FoundRHS) ||
7061 // ~x < ~y --> x > y
7062 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7063 getNotSCEV(FoundRHS),
7064 getNotSCEV(FoundLHS));
7065}
7066
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007067
7068/// If Expr computes ~A, return A else return nullptr
7069static const SCEV *MatchNotExpr(const SCEV *Expr) {
7070 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
7071 if (!Add || Add->getNumOperands() != 2) return nullptr;
7072
7073 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
7074 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
7075 return nullptr;
7076
7077 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
7078 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
7079
7080 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
7081 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
7082 return nullptr;
7083
7084 return AddRHS->getOperand(1);
7085}
7086
7087
7088/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7089template<typename MaxExprType>
7090static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7091 const SCEV *Candidate) {
7092 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7093 if (!MaxExpr) return false;
7094
7095 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
7096 return It != MaxExpr->op_end();
7097}
7098
7099
7100/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7101template<typename MaxExprType>
7102static bool IsMinConsistingOf(ScalarEvolution &SE,
7103 const SCEV *MaybeMinExpr,
7104 const SCEV *Candidate) {
7105 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7106 if (!MaybeMaxExpr)
7107 return false;
7108
7109 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7110}
7111
7112
7113/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7114/// expression?
7115static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7116 ICmpInst::Predicate Pred,
7117 const SCEV *LHS, const SCEV *RHS) {
7118 switch (Pred) {
7119 default:
7120 return false;
7121
7122 case ICmpInst::ICMP_SGE:
7123 std::swap(LHS, RHS);
7124 // fall through
7125 case ICmpInst::ICMP_SLE:
7126 return
7127 // min(A, ...) <= A
7128 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7129 // A <= max(A, ...)
7130 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7131
7132 case ICmpInst::ICMP_UGE:
7133 std::swap(LHS, RHS);
7134 // fall through
7135 case ICmpInst::ICMP_ULE:
7136 return
7137 // min(A, ...) <= A
7138 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7139 // A <= max(A, ...)
7140 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7141 }
7142
7143 llvm_unreachable("covered switch fell through?!");
7144}
7145
Dan Gohman430f0cc2009-07-21 23:03:19 +00007146/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00007147/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007148/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00007149bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00007150ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7151 const SCEV *LHS, const SCEV *RHS,
7152 const SCEV *FoundLHS,
7153 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007154 auto IsKnownPredicateFull =
7155 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7156 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
7157 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
7158 };
7159
Dan Gohmane65c9172009-07-13 21:35:55 +00007160 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00007161 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7162 case ICmpInst::ICMP_EQ:
7163 case ICmpInst::ICMP_NE:
7164 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7165 return true;
7166 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007167 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007168 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007169 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7170 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007171 return true;
7172 break;
7173 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007174 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007175 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7176 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007177 return true;
7178 break;
7179 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007180 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007181 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7182 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007183 return true;
7184 break;
7185 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007186 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007187 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7188 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007189 return true;
7190 break;
7191 }
7192
7193 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007194}
7195
Johannes Doerfert2683e562015-02-09 12:34:23 +00007196// Verify if an linear IV with positive stride can overflow when in a
7197// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007198// stride and the knowledge of NSW/NUW flags on the recurrence.
7199bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7200 bool IsSigned, bool NoWrap) {
7201 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007202
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007203 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7204 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00007205
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007206 if (IsSigned) {
7207 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7208 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7209 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7210 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007211
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007212 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7213 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007214 }
Dan Gohman01048422009-06-21 23:46:38 +00007215
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007216 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7217 APInt MaxValue = APInt::getMaxValue(BitWidth);
7218 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7219 .getUnsignedMax();
7220
7221 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7222 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7223}
7224
Johannes Doerfert2683e562015-02-09 12:34:23 +00007225// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007226// greater-than comparison, knowing the invariant term of the comparison,
7227// the stride and the knowledge of NSW/NUW flags on the recurrence.
7228bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7229 bool IsSigned, bool NoWrap) {
7230 if (NoWrap) return false;
7231
7232 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7233 const SCEV *One = getConstant(Stride->getType(), 1);
7234
7235 if (IsSigned) {
7236 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7237 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7238 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7239 .getSignedMax();
7240
7241 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7242 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7243 }
7244
7245 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7246 APInt MinValue = APInt::getMinValue(BitWidth);
7247 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7248 .getUnsignedMax();
7249
7250 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7251 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7252}
7253
7254// Compute the backedge taken count knowing the interval difference, the
7255// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00007256const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007257 bool Equality) {
7258 const SCEV *One = getConstant(Step->getType(), 1);
7259 Delta = Equality ? getAddExpr(Delta, Step)
7260 : getAddExpr(Delta, getMinusSCEV(Step, One));
7261 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007262}
7263
Chris Lattner587a75b2005-08-15 23:33:51 +00007264/// HowManyLessThans - Return the number of times a backedge containing the
7265/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007266/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007267///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007268/// @param ControlsExit is true when the LHS < RHS condition directly controls
7269/// the branch (loops exits only if condition is true). In this case, we can use
7270/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007271ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007272ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007273 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007274 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007275 // We handle only IV < Invariant
7276 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007277 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007278
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007279 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007280
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007281 // Avoid weird loops
7282 if (!IV || IV->getLoop() != L || !IV->isAffine())
7283 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007284
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007285 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007286 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007287
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007288 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007289
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007290 // Avoid negative or zero stride values
7291 if (!isKnownPositive(Stride))
7292 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007293
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007294 // Avoid proven overflow cases: this will ensure that the backedge taken count
7295 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007296 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007297 // behaviors like the case of C language.
7298 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7299 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007300
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007301 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7302 : ICmpInst::ICMP_ULT;
7303 const SCEV *Start = IV->getStart();
7304 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007305 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7306 const SCEV *Diff = getMinusSCEV(RHS, Start);
7307 // If we have NoWrap set, then we can assume that the increment won't
7308 // overflow, in which case if RHS - Start is a constant, we don't need to
7309 // do a max operation since we can just figure it out statically
7310 if (NoWrap && isa<SCEVConstant>(Diff)) {
7311 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7312 if (D.isNegative())
7313 End = Start;
7314 } else
7315 End = IsSigned ? getSMaxExpr(RHS, Start)
7316 : getUMaxExpr(RHS, Start);
7317 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007318
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007319 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007320
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007321 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7322 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007323
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007324 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7325 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007326
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007327 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7328 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7329 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007330
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007331 // Although End can be a MAX expression we estimate MaxEnd considering only
7332 // the case End = RHS. This is safe because in the other case (End - Start)
7333 // is zero, leading to a zero maximum backedge taken count.
7334 APInt MaxEnd =
7335 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7336 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7337
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007338 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007339 if (isa<SCEVConstant>(BECount))
7340 MaxBECount = BECount;
7341 else
7342 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7343 getConstant(MinStride), false);
7344
7345 if (isa<SCEVCouldNotCompute>(MaxBECount))
7346 MaxBECount = BECount;
7347
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007348 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007349}
7350
7351ScalarEvolution::ExitLimit
7352ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7353 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007354 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007355 // We handle only IV > Invariant
7356 if (!isLoopInvariant(RHS, L))
7357 return getCouldNotCompute();
7358
7359 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7360
7361 // Avoid weird loops
7362 if (!IV || IV->getLoop() != L || !IV->isAffine())
7363 return getCouldNotCompute();
7364
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007365 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007366 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7367
7368 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7369
7370 // Avoid negative or zero stride values
7371 if (!isKnownPositive(Stride))
7372 return getCouldNotCompute();
7373
7374 // Avoid proven overflow cases: this will ensure that the backedge taken count
7375 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007376 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007377 // behaviors like the case of C language.
7378 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7379 return getCouldNotCompute();
7380
7381 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7382 : ICmpInst::ICMP_UGT;
7383
7384 const SCEV *Start = IV->getStart();
7385 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007386 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7387 const SCEV *Diff = getMinusSCEV(RHS, Start);
7388 // If we have NoWrap set, then we can assume that the increment won't
7389 // overflow, in which case if RHS - Start is a constant, we don't need to
7390 // do a max operation since we can just figure it out statically
7391 if (NoWrap && isa<SCEVConstant>(Diff)) {
7392 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7393 if (!D.isNegative())
7394 End = Start;
7395 } else
7396 End = IsSigned ? getSMinExpr(RHS, Start)
7397 : getUMinExpr(RHS, Start);
7398 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007399
7400 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7401
7402 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7403 : getUnsignedRange(Start).getUnsignedMax();
7404
7405 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7406 : getUnsignedRange(Stride).getUnsignedMin();
7407
7408 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7409 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7410 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7411
7412 // Although End can be a MIN expression we estimate MinEnd considering only
7413 // the case End = RHS. This is safe because in the other case (Start - End)
7414 // is zero, leading to a zero maximum backedge taken count.
7415 APInt MinEnd =
7416 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7417 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7418
7419
7420 const SCEV *MaxBECount = getCouldNotCompute();
7421 if (isa<SCEVConstant>(BECount))
7422 MaxBECount = BECount;
7423 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00007424 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007425 getConstant(MinStride), false);
7426
7427 if (isa<SCEVCouldNotCompute>(MaxBECount))
7428 MaxBECount = BECount;
7429
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007430 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007431}
7432
Chris Lattnerd934c702004-04-02 20:23:17 +00007433/// getNumIterationsInRange - Return the number of iterations of this loop that
7434/// produce values in the specified constant range. Another way of looking at
7435/// this is that it returns the first iteration number where the value is not in
7436/// the condition, thus computing the exit count. If the iteration count can't
7437/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007438const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007439 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007440 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007441 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007442
7443 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007444 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007445 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007446 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007447 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007448 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007449 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007450 if (const SCEVAddRecExpr *ShiftedAddRec =
7451 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007452 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007453 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007454 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007455 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007456 }
7457
7458 // The only time we can solve this is when we have all constant indices.
7459 // Otherwise, we cannot determine the overflow conditions.
7460 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7461 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007462 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007463
7464
7465 // Okay at this point we know that all elements of the chrec are constants and
7466 // that the start element is zero.
7467
7468 // First check to see if the range contains zero. If not, the first
7469 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007470 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007471 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007472 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007473
Chris Lattnerd934c702004-04-02 20:23:17 +00007474 if (isAffine()) {
7475 // If this is an affine expression then we have this situation:
7476 // Solve {0,+,A} in Range === Ax in Range
7477
Nick Lewycky52460262007-07-16 02:08:00 +00007478 // We know that zero is in the range. If A is positive then we know that
7479 // the upper value of the range must be the first possible exit value.
7480 // If A is negative then the lower of the range is the last possible loop
7481 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007482 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007483 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7484 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007485
Nick Lewycky52460262007-07-16 02:08:00 +00007486 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007487 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007488 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007489
7490 // Evaluate at the exit value. If we really did fall out of the valid
7491 // range, then we computed our trip count, otherwise wrap around or other
7492 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007493 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007494 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007495 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007496
7497 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007498 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007499 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007500 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007501 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007502 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007503 } else if (isQuadratic()) {
7504 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7505 // quadratic equation to solve it. To do this, we must frame our problem in
7506 // terms of figuring out when zero is crossed, instead of when
7507 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007508 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007509 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007510 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7511 // getNoWrapFlags(FlagNW)
7512 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007513
7514 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007515 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007516 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007517 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7518 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007519 if (R1) {
7520 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007521 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007522 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007523 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007524 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00007525 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007526
Chris Lattnerd934c702004-04-02 20:23:17 +00007527 // Make sure the root is not off by one. The returned iteration should
7528 // not be in the range, but the previous one should be. When solving
7529 // for "X*X < 5", for example, we should not return a root of 2.
7530 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007531 R1->getValue(),
7532 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007533 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007534 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007535 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007536 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007537
Dan Gohmana37eaf22007-10-22 18:31:58 +00007538 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007539 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007540 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007541 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007542 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007543
Chris Lattnerd934c702004-04-02 20:23:17 +00007544 // If R1 was not in the range, then it is a good return value. Make
7545 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007546 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007547 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007548 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007549 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007550 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007551 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007552 }
7553 }
7554 }
7555
Dan Gohman31efa302009-04-18 17:58:19 +00007556 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007557}
7558
Sebastian Pop448712b2014-05-07 18:01:20 +00007559namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007560struct FindUndefs {
7561 bool Found;
7562 FindUndefs() : Found(false) {}
7563
7564 bool follow(const SCEV *S) {
7565 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7566 if (isa<UndefValue>(C->getValue()))
7567 Found = true;
7568 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7569 if (isa<UndefValue>(C->getValue()))
7570 Found = true;
7571 }
7572
7573 // Keep looking if we haven't found it yet.
7574 return !Found;
7575 }
7576 bool isDone() const {
7577 // Stop recursion if we have found an undef.
7578 return Found;
7579 }
7580};
7581}
7582
7583// Return true when S contains at least an undef value.
7584static inline bool
7585containsUndefs(const SCEV *S) {
7586 FindUndefs F;
7587 SCEVTraversal<FindUndefs> ST(F);
7588 ST.visitAll(S);
7589
7590 return F.Found;
7591}
7592
7593namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007594// Collect all steps of SCEV expressions.
7595struct SCEVCollectStrides {
7596 ScalarEvolution &SE;
7597 SmallVectorImpl<const SCEV *> &Strides;
7598
7599 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7600 : SE(SE), Strides(S) {}
7601
7602 bool follow(const SCEV *S) {
7603 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7604 Strides.push_back(AR->getStepRecurrence(SE));
7605 return true;
7606 }
7607 bool isDone() const { return false; }
7608};
7609
7610// Collect all SCEVUnknown and SCEVMulExpr expressions.
7611struct SCEVCollectTerms {
7612 SmallVectorImpl<const SCEV *> &Terms;
7613
7614 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7615 : Terms(T) {}
7616
7617 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007618 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007619 if (!containsUndefs(S))
7620 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007621
7622 // Stop recursion: once we collected a term, do not walk its operands.
7623 return false;
7624 }
7625
7626 // Keep looking.
7627 return true;
7628 }
7629 bool isDone() const { return false; }
7630};
7631}
7632
7633/// Find parametric terms in this SCEVAddRecExpr.
7634void SCEVAddRecExpr::collectParametricTerms(
7635 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7636 SmallVector<const SCEV *, 4> Strides;
7637 SCEVCollectStrides StrideCollector(SE, Strides);
7638 visitAll(this, StrideCollector);
7639
7640 DEBUG({
7641 dbgs() << "Strides:\n";
7642 for (const SCEV *S : Strides)
7643 dbgs() << *S << "\n";
7644 });
7645
7646 for (const SCEV *S : Strides) {
7647 SCEVCollectTerms TermCollector(Terms);
7648 visitAll(S, TermCollector);
7649 }
7650
7651 DEBUG({
7652 dbgs() << "Terms:\n";
7653 for (const SCEV *T : Terms)
7654 dbgs() << *T << "\n";
7655 });
7656}
7657
Sebastian Popb1a548f2014-05-12 19:01:53 +00007658static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007659 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007660 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007661 int Last = Terms.size() - 1;
7662 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007663
Sebastian Pop448712b2014-05-07 18:01:20 +00007664 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007665 if (Last == 0) {
7666 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007667 SmallVector<const SCEV *, 2> Qs;
7668 for (const SCEV *Op : M->operands())
7669 if (!isa<SCEVConstant>(Op))
7670 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007671
Sebastian Pope30bd352014-05-27 22:41:56 +00007672 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007673 }
7674
Sebastian Pope30bd352014-05-27 22:41:56 +00007675 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007676 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007677 }
7678
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007679 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007680 // Normalize the terms before the next call to findArrayDimensionsRec.
7681 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007682 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007683
7684 // Bail out when GCD does not evenly divide one of the terms.
7685 if (!R->isZero())
7686 return false;
7687
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007688 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007689 }
7690
Tobias Grosser3080cf12014-05-08 07:55:34 +00007691 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007692 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7693 return isa<SCEVConstant>(E);
7694 }),
7695 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007696
Sebastian Pop448712b2014-05-07 18:01:20 +00007697 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007698 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7699 return false;
7700
Sebastian Pope30bd352014-05-27 22:41:56 +00007701 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007702 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007703}
Sebastian Popc62c6792013-11-12 22:47:20 +00007704
Sebastian Pop448712b2014-05-07 18:01:20 +00007705namespace {
7706struct FindParameter {
7707 bool FoundParameter;
7708 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007709
Sebastian Pop448712b2014-05-07 18:01:20 +00007710 bool follow(const SCEV *S) {
7711 if (isa<SCEVUnknown>(S)) {
7712 FoundParameter = true;
7713 // Stop recursion: we found a parameter.
7714 return false;
7715 }
7716 // Keep looking.
7717 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007718 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007719 bool isDone() const {
7720 // Stop recursion if we have found a parameter.
7721 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007722 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007723};
7724}
7725
Sebastian Pop448712b2014-05-07 18:01:20 +00007726// Returns true when S contains at least a SCEVUnknown parameter.
7727static inline bool
7728containsParameters(const SCEV *S) {
7729 FindParameter F;
7730 SCEVTraversal<FindParameter> ST(F);
7731 ST.visitAll(S);
7732
7733 return F.FoundParameter;
7734}
7735
7736// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7737static inline bool
7738containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7739 for (const SCEV *T : Terms)
7740 if (containsParameters(T))
7741 return true;
7742 return false;
7743}
7744
7745// Return the number of product terms in S.
7746static inline int numberOfTerms(const SCEV *S) {
7747 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7748 return Expr->getNumOperands();
7749 return 1;
7750}
7751
Sebastian Popa6e58602014-05-27 22:41:45 +00007752static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7753 if (isa<SCEVConstant>(T))
7754 return nullptr;
7755
7756 if (isa<SCEVUnknown>(T))
7757 return T;
7758
7759 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7760 SmallVector<const SCEV *, 2> Factors;
7761 for (const SCEV *Op : M->operands())
7762 if (!isa<SCEVConstant>(Op))
7763 Factors.push_back(Op);
7764
7765 return SE.getMulExpr(Factors);
7766 }
7767
7768 return T;
7769}
7770
7771/// Return the size of an element read or written by Inst.
7772const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7773 Type *Ty;
7774 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7775 Ty = Store->getValueOperand()->getType();
7776 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007777 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007778 else
7779 return nullptr;
7780
7781 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7782 return getSizeOfExpr(ETy, Ty);
7783}
7784
Sebastian Pop448712b2014-05-07 18:01:20 +00007785/// Second step of delinearization: compute the array dimensions Sizes from the
7786/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007787void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7788 SmallVectorImpl<const SCEV *> &Sizes,
7789 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007790
Sebastian Pop53524082014-05-29 19:44:05 +00007791 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007792 return;
7793
7794 // Early return when Terms do not contain parameters: we do not delinearize
7795 // non parametric SCEVs.
7796 if (!containsParameters(Terms))
7797 return;
7798
7799 DEBUG({
7800 dbgs() << "Terms:\n";
7801 for (const SCEV *T : Terms)
7802 dbgs() << *T << "\n";
7803 });
7804
7805 // Remove duplicates.
7806 std::sort(Terms.begin(), Terms.end());
7807 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7808
7809 // Put larger terms first.
7810 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7811 return numberOfTerms(LHS) > numberOfTerms(RHS);
7812 });
7813
Sebastian Popa6e58602014-05-27 22:41:45 +00007814 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7815
7816 // Divide all terms by the element size.
7817 for (const SCEV *&Term : Terms) {
7818 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007819 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00007820 Term = Q;
7821 }
7822
7823 SmallVector<const SCEV *, 4> NewTerms;
7824
7825 // Remove constant factors.
7826 for (const SCEV *T : Terms)
7827 if (const SCEV *NewT = removeConstantFactors(SE, T))
7828 NewTerms.push_back(NewT);
7829
Sebastian Pop448712b2014-05-07 18:01:20 +00007830 DEBUG({
7831 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007832 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007833 dbgs() << *T << "\n";
7834 });
7835
Sebastian Popa6e58602014-05-27 22:41:45 +00007836 if (NewTerms.empty() ||
7837 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007838 Sizes.clear();
7839 return;
7840 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007841
Sebastian Popa6e58602014-05-27 22:41:45 +00007842 // The last element to be pushed into Sizes is the size of an element.
7843 Sizes.push_back(ElementSize);
7844
Sebastian Pop448712b2014-05-07 18:01:20 +00007845 DEBUG({
7846 dbgs() << "Sizes:\n";
7847 for (const SCEV *S : Sizes)
7848 dbgs() << *S << "\n";
7849 });
7850}
7851
7852/// Third step of delinearization: compute the access functions for the
7853/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007854void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007855 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7856 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007857
Sebastian Popb1a548f2014-05-12 19:01:53 +00007858 // Early exit in case this SCEV is not an affine multivariate function.
7859 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007860 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007861
Sebastian Pop28e6b972014-05-27 22:41:51 +00007862 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007863 int Last = Sizes.size() - 1;
7864 for (int i = Last; i >= 0; i--) {
7865 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007866 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00007867
7868 DEBUG({
7869 dbgs() << "Res: " << *Res << "\n";
7870 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7871 dbgs() << "Res divided by Sizes[i]:\n";
7872 dbgs() << "Quotient: " << *Q << "\n";
7873 dbgs() << "Remainder: " << *R << "\n";
7874 });
7875
7876 Res = Q;
7877
Sebastian Popa6e58602014-05-27 22:41:45 +00007878 // Do not record the last subscript corresponding to the size of elements in
7879 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007880 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007881
7882 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007883 if (isa<SCEVAddRecExpr>(R)) {
7884 Subscripts.clear();
7885 Sizes.clear();
7886 return;
7887 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007888
Sebastian Pop448712b2014-05-07 18:01:20 +00007889 continue;
7890 }
7891
7892 // Record the access function for the current subscript.
7893 Subscripts.push_back(R);
7894 }
7895
7896 // Also push in last position the remainder of the last division: it will be
7897 // the access function of the innermost dimension.
7898 Subscripts.push_back(Res);
7899
7900 std::reverse(Subscripts.begin(), Subscripts.end());
7901
7902 DEBUG({
7903 dbgs() << "Subscripts:\n";
7904 for (const SCEV *S : Subscripts)
7905 dbgs() << *S << "\n";
7906 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007907}
7908
Sebastian Popc62c6792013-11-12 22:47:20 +00007909/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7910/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007911/// is the offset start of the array. The SCEV->delinearize algorithm computes
7912/// the multiples of SCEV coefficients: that is a pattern matching of sub
7913/// expressions in the stride and base of a SCEV corresponding to the
7914/// computation of a GCD (greatest common divisor) of base and stride. When
7915/// SCEV->delinearize fails, it returns the SCEV unchanged.
7916///
7917/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7918///
7919/// void foo(long n, long m, long o, double A[n][m][o]) {
7920///
7921/// for (long i = 0; i < n; i++)
7922/// for (long j = 0; j < m; j++)
7923/// for (long k = 0; k < o; k++)
7924/// A[i][j][k] = 1.0;
7925/// }
7926///
7927/// the delinearization input is the following AddRec SCEV:
7928///
7929/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7930///
7931/// From this SCEV, we are able to say that the base offset of the access is %A
7932/// because it appears as an offset that does not divide any of the strides in
7933/// the loops:
7934///
7935/// CHECK: Base offset: %A
7936///
7937/// and then SCEV->delinearize determines the size of some of the dimensions of
7938/// the array as these are the multiples by which the strides are happening:
7939///
7940/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7941///
7942/// Note that the outermost dimension remains of UnknownSize because there are
7943/// no strides that would help identifying the size of the last dimension: when
7944/// the array has been statically allocated, one could compute the size of that
7945/// dimension by dividing the overall size of the array by the size of the known
7946/// dimensions: %m * %o * 8.
7947///
7948/// Finally delinearize provides the access functions for the array reference
7949/// that does correspond to A[i][j][k] of the above C testcase:
7950///
7951/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7952///
7953/// The testcases are checking the output of a function pass:
7954/// DelinearizationPass that walks through all loads and stores of a function
7955/// asking for the SCEV of the memory access with respect to all enclosing
7956/// loops, calling SCEV->delinearize on that and printing the results.
7957
Sebastian Pop28e6b972014-05-27 22:41:51 +00007958void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7959 SmallVectorImpl<const SCEV *> &Subscripts,
7960 SmallVectorImpl<const SCEV *> &Sizes,
7961 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007962 // First step: collect parametric terms.
7963 SmallVector<const SCEV *, 4> Terms;
7964 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007965
Sebastian Popb1a548f2014-05-12 19:01:53 +00007966 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007967 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007968
Sebastian Pop448712b2014-05-07 18:01:20 +00007969 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007970 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007971
Sebastian Popb1a548f2014-05-12 19:01:53 +00007972 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007973 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007974
Sebastian Pop448712b2014-05-07 18:01:20 +00007975 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007976 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007977
Sebastian Pop28e6b972014-05-27 22:41:51 +00007978 if (Subscripts.empty())
7979 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007980
Sebastian Pop448712b2014-05-07 18:01:20 +00007981 DEBUG({
7982 dbgs() << "succeeded to delinearize " << *this << "\n";
7983 dbgs() << "ArrayDecl[UnknownSize]";
7984 for (const SCEV *S : Sizes)
7985 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007986
Sebastian Pop444621a2014-05-09 22:45:02 +00007987 dbgs() << "\nArrayRef";
7988 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007989 dbgs() << "[" << *S << "]";
7990 dbgs() << "\n";
7991 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007992}
Chris Lattnerd934c702004-04-02 20:23:17 +00007993
7994//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007995// SCEVCallbackVH Class Implementation
7996//===----------------------------------------------------------------------===//
7997
Dan Gohmand33a0902009-05-19 19:22:47 +00007998void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007999 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00008000 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
8001 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008002 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00008003 // this now dangles!
8004}
8005
Dan Gohman7a066722010-07-28 01:09:07 +00008006void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00008007 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00008008
Dan Gohman48f82222009-05-04 22:30:44 +00008009 // Forget all the expressions associated with users of the old value,
8010 // so that future queries will recompute the expressions using the new
8011 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00008012 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00008013 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00008014 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00008015 while (!Worklist.empty()) {
8016 User *U = Worklist.pop_back_val();
8017 // Deleting the Old value will cause this to dangle. Postpone
8018 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008019 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00008020 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00008021 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00008022 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00008023 if (PHINode *PN = dyn_cast<PHINode>(U))
8024 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008025 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00008026 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00008027 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008028 // Delete the Old value.
8029 if (PHINode *PN = dyn_cast<PHINode>(Old))
8030 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008031 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008032 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00008033}
8034
Dan Gohmand33a0902009-05-19 19:22:47 +00008035ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00008036 : CallbackVH(V), SE(se) {}
8037
8038//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00008039// ScalarEvolution Class Implementation
8040//===----------------------------------------------------------------------===//
8041
Dan Gohmanc8e23622009-04-21 23:15:49 +00008042ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00008043 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
8044 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00008045 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00008046}
8047
Chris Lattnerd934c702004-04-02 20:23:17 +00008048bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00008049 this->F = &F;
Chandler Carruth66b31302015-01-04 12:03:27 +00008050 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth4f8f3072015-01-17 14:16:18 +00008051 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Mehdi Amini46a43552015-03-04 18:43:29 +00008052 DL = &F.getParent()->getDataLayout();
Chandler Carruthb98f63d2015-01-15 10:41:28 +00008053 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
Chandler Carruth73523022014-01-13 13:07:17 +00008054 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00008055 return false;
8056}
8057
8058void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00008059 // Iterate through all the SCEVUnknown instances and call their
8060 // destructors, so that they release their references to their values.
8061 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
8062 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00008063 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00008064
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008065 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00008066
8067 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
8068 // that a loop had multiple computable exits.
8069 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8070 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
8071 I != E; ++I) {
8072 I->second.clear();
8073 }
8074
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008075 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
8076
Dan Gohmanc8e23622009-04-21 23:15:49 +00008077 BackedgeTakenCounts.clear();
8078 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00008079 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008080 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008081 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00008082 UnsignedRanges.clear();
8083 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008084 UniqueSCEVs.clear();
8085 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00008086}
8087
8088void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
8089 AU.setPreservesAll();
Chandler Carruth66b31302015-01-04 12:03:27 +00008090 AU.addRequired<AssumptionCacheTracker>();
Chandler Carruth4f8f3072015-01-17 14:16:18 +00008091 AU.addRequiredTransitive<LoopInfoWrapperPass>();
Chandler Carruth73523022014-01-13 13:07:17 +00008092 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chandler Carruthb98f63d2015-01-15 10:41:28 +00008093 AU.addRequired<TargetLibraryInfoWrapperPass>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00008094}
8095
Dan Gohmanc8e23622009-04-21 23:15:49 +00008096bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00008097 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00008098}
8099
Dan Gohmanc8e23622009-04-21 23:15:49 +00008100static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00008101 const Loop *L) {
8102 // Print all inner loops first
8103 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8104 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00008105
Dan Gohmanbc694912010-01-09 18:17:45 +00008106 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008107 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008108 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008109
Dan Gohmancb0efec2009-12-18 01:14:11 +00008110 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008111 L->getExitBlocks(ExitBlocks);
8112 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00008113 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008114
Dan Gohman0bddac12009-02-24 18:55:53 +00008115 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8116 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00008117 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00008118 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008119 }
8120
Dan Gohmanbc694912010-01-09 18:17:45 +00008121 OS << "\n"
8122 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008123 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008124 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00008125
8126 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8127 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8128 } else {
8129 OS << "Unpredictable max backedge-taken count. ";
8130 }
8131
8132 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008133}
8134
Dan Gohmancb0efec2009-12-18 01:14:11 +00008135void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00008136 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00008137 // out SCEV values of all instructions that are interesting. Doing
8138 // this potentially causes it to create new SCEV objects though,
8139 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00008140 // observable from outside the class though, so casting away the
8141 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00008142 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00008143
Dan Gohmanbc694912010-01-09 18:17:45 +00008144 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008145 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008146 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008147 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00008148 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00008149 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00008150 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008151 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008152 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00008153
Dan Gohmanb9063a82009-06-19 17:49:54 +00008154 const Loop *L = LI->getLoopFor((*I).getParent());
8155
Dan Gohmanaf752342009-07-07 17:06:11 +00008156 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00008157 if (AtUse != SV) {
8158 OS << " --> ";
8159 AtUse->print(OS);
8160 }
8161
8162 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00008163 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008164 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00008165 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008166 OS << "<<Unknown>>";
8167 } else {
8168 OS << *ExitValue;
8169 }
8170 }
8171
Chris Lattnerd934c702004-04-02 20:23:17 +00008172 OS << "\n";
8173 }
8174
Dan Gohmanbc694912010-01-09 18:17:45 +00008175 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008176 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008177 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00008178 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
8179 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008180}
Dan Gohmane20f8242009-04-21 00:47:46 +00008181
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008182ScalarEvolution::LoopDisposition
8183ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008184 auto &Values = LoopDispositions[S];
8185 for (auto &V : Values) {
8186 if (V.getPointer() == L)
8187 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008188 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008189 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008190 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008191 auto &Values2 = LoopDispositions[S];
8192 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8193 if (V.getPointer() == L) {
8194 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008195 break;
8196 }
8197 }
8198 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008199}
8200
8201ScalarEvolution::LoopDisposition
8202ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008203 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008204 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008205 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008206 case scTruncate:
8207 case scZeroExtend:
8208 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008209 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008210 case scAddRecExpr: {
8211 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8212
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008213 // If L is the addrec's loop, it's computable.
8214 if (AR->getLoop() == L)
8215 return LoopComputable;
8216
Dan Gohmanafd6db92010-11-17 21:23:15 +00008217 // Add recurrences are never invariant in the function-body (null loop).
8218 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008219 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008220
8221 // This recurrence is variant w.r.t. L if L contains AR's loop.
8222 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008223 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008224
8225 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8226 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008227 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008228
8229 // This recurrence is variant w.r.t. L if any of its operands
8230 // are variant.
8231 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8232 I != E; ++I)
8233 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008234 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008235
8236 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008237 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008238 }
8239 case scAddExpr:
8240 case scMulExpr:
8241 case scUMaxExpr:
8242 case scSMaxExpr: {
8243 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008244 bool HasVarying = false;
8245 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8246 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008247 LoopDisposition D = getLoopDisposition(*I, L);
8248 if (D == LoopVariant)
8249 return LoopVariant;
8250 if (D == LoopComputable)
8251 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008252 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008253 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008254 }
8255 case scUDivExpr: {
8256 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008257 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8258 if (LD == LoopVariant)
8259 return LoopVariant;
8260 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8261 if (RD == LoopVariant)
8262 return LoopVariant;
8263 return (LD == LoopInvariant && RD == LoopInvariant) ?
8264 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008265 }
8266 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008267 // All non-instruction values are loop invariant. All instructions are loop
8268 // invariant if they are not contained in the specified loop.
8269 // Instructions are never considered invariant in the function body
8270 // (null loop) because they are defined within the "loop".
8271 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8272 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8273 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008274 case scCouldNotCompute:
8275 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008276 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008277 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008278}
8279
8280bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8281 return getLoopDisposition(S, L) == LoopInvariant;
8282}
8283
8284bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8285 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008286}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008287
Dan Gohman8ea83d82010-11-18 00:34:22 +00008288ScalarEvolution::BlockDisposition
8289ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008290 auto &Values = BlockDispositions[S];
8291 for (auto &V : Values) {
8292 if (V.getPointer() == BB)
8293 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008294 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008295 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008296 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008297 auto &Values2 = BlockDispositions[S];
8298 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8299 if (V.getPointer() == BB) {
8300 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008301 break;
8302 }
8303 }
8304 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008305}
8306
Dan Gohman8ea83d82010-11-18 00:34:22 +00008307ScalarEvolution::BlockDisposition
8308ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008309 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008310 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008311 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008312 case scTruncate:
8313 case scZeroExtend:
8314 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008315 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008316 case scAddRecExpr: {
8317 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008318 // to test for proper dominance too, because the instruction which
8319 // produces the addrec's value is a PHI, and a PHI effectively properly
8320 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008321 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8322 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008323 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008324 }
8325 // FALL THROUGH into SCEVNAryExpr handling.
8326 case scAddExpr:
8327 case scMulExpr:
8328 case scUMaxExpr:
8329 case scSMaxExpr: {
8330 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008331 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008332 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008333 I != E; ++I) {
8334 BlockDisposition D = getBlockDisposition(*I, BB);
8335 if (D == DoesNotDominateBlock)
8336 return DoesNotDominateBlock;
8337 if (D == DominatesBlock)
8338 Proper = false;
8339 }
8340 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008341 }
8342 case scUDivExpr: {
8343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008344 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8345 BlockDisposition LD = getBlockDisposition(LHS, BB);
8346 if (LD == DoesNotDominateBlock)
8347 return DoesNotDominateBlock;
8348 BlockDisposition RD = getBlockDisposition(RHS, BB);
8349 if (RD == DoesNotDominateBlock)
8350 return DoesNotDominateBlock;
8351 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8352 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008353 }
8354 case scUnknown:
8355 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008356 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8357 if (I->getParent() == BB)
8358 return DominatesBlock;
8359 if (DT->properlyDominates(I->getParent(), BB))
8360 return ProperlyDominatesBlock;
8361 return DoesNotDominateBlock;
8362 }
8363 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008364 case scCouldNotCompute:
8365 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008366 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008367 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008368}
8369
8370bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8371 return getBlockDisposition(S, BB) >= DominatesBlock;
8372}
8373
8374bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8375 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008376}
Dan Gohman534749b2010-11-17 22:27:42 +00008377
Andrew Trick365e31c2012-07-13 23:33:03 +00008378namespace {
8379// Search for a SCEV expression node within an expression tree.
8380// Implements SCEVTraversal::Visitor.
8381struct SCEVSearch {
8382 const SCEV *Node;
8383 bool IsFound;
8384
8385 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8386
8387 bool follow(const SCEV *S) {
8388 IsFound |= (S == Node);
8389 return !IsFound;
8390 }
8391 bool isDone() const { return IsFound; }
8392};
8393}
8394
Dan Gohman534749b2010-11-17 22:27:42 +00008395bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008396 SCEVSearch Search(Op);
8397 visitAll(S, Search);
8398 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008399}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008400
8401void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8402 ValuesAtScopes.erase(S);
8403 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008404 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008405 UnsignedRanges.erase(S);
8406 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008407
8408 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8409 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8410 BackedgeTakenInfo &BEInfo = I->second;
8411 if (BEInfo.hasOperand(S, this)) {
8412 BEInfo.clear();
8413 BackedgeTakenCounts.erase(I++);
8414 }
8415 else
8416 ++I;
8417 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008418}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008419
8420typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008421
Alp Tokercb402912014-01-24 17:20:08 +00008422/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008423static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8424 size_t Pos = 0;
8425 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8426 Str.replace(Pos, From.size(), To.data(), To.size());
8427 Pos += To.size();
8428 }
8429}
8430
Benjamin Kramer214935e2012-10-26 17:31:32 +00008431/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8432static void
8433getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8434 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8435 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8436
8437 std::string &S = Map[L];
8438 if (S.empty()) {
8439 raw_string_ostream OS(S);
8440 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008441
8442 // false and 0 are semantically equivalent. This can happen in dead loops.
8443 replaceSubString(OS.str(), "false", "0");
8444 // Remove wrap flags, their use in SCEV is highly fragile.
8445 // FIXME: Remove this when SCEV gets smarter about them.
8446 replaceSubString(OS.str(), "<nw>", "");
8447 replaceSubString(OS.str(), "<nsw>", "");
8448 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008449 }
8450 }
8451}
8452
8453void ScalarEvolution::verifyAnalysis() const {
8454 if (!VerifySCEV)
8455 return;
8456
8457 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8458
8459 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8460 // FIXME: It would be much better to store actual values instead of strings,
8461 // but SCEV pointers will change if we drop the caches.
8462 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8463 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8464 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8465
8466 // Gather stringified backedge taken counts for all loops without using
8467 // SCEV's caches.
8468 SE.releaseMemory();
8469 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8470 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8471
8472 // Now compare whether they're the same with and without caches. This allows
8473 // verifying that no pass changed the cache.
8474 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8475 "New loops suddenly appeared!");
8476
8477 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8478 OldE = BackedgeDumpsOld.end(),
8479 NewI = BackedgeDumpsNew.begin();
8480 OldI != OldE; ++OldI, ++NewI) {
8481 assert(OldI->first == NewI->first && "Loop order changed!");
8482
8483 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8484 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008485 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008486 // means that a pass is buggy or SCEV has to learn a new pattern but is
8487 // usually not harmful.
8488 if (OldI->second != NewI->second &&
8489 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008490 NewI->second.find("undef") == std::string::npos &&
8491 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008492 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008493 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008494 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008495 << "' changed from '" << OldI->second
8496 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008497 std::abort();
8498 }
8499 }
8500
8501 // TODO: Verify more things.
8502}