blob: d97eb31962a5f4aaa7bcba65e28704d700bb841c [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000013/// The algorithm of the tool is similar to Memcheck
14/// (http://goo.gl/QKbem). We associate a few shadow bits with every
15/// byte of the application memory, poison the shadow of the malloc-ed
16/// or alloca-ed memory, load the shadow bits on every memory read,
17/// propagate the shadow bits through some of the arithmetic
18/// instruction (including MOV), store the shadow bits on every memory
19/// write, report a bug on some other instructions (e.g. JMP) if the
20/// associated shadow is poisoned.
21///
22/// But there are differences too. The first and the major one:
23/// compiler instrumentation instead of binary instrumentation. This
24/// gives us much better register allocation, possible compiler
25/// optimizations and a fast start-up. But this brings the major issue
26/// as well: msan needs to see all program events, including system
27/// calls and reads/writes in system libraries, so we either need to
28/// compile *everything* with msan or use a binary translation
29/// component (e.g. DynamoRIO) to instrument pre-built libraries.
30/// Another difference from Memcheck is that we use 8 shadow bits per
31/// byte of application memory and use a direct shadow mapping. This
32/// greatly simplifies the instrumentation code and avoids races on
33/// shadow updates (Memcheck is single-threaded so races are not a
34/// concern there. Memcheck uses 2 shadow bits per byte with a slow
35/// path storage that uses 8 bits per byte).
36///
37/// The default value of shadow is 0, which means "clean" (not poisoned).
38///
39/// Every module initializer should call __msan_init to ensure that the
40/// shadow memory is ready. On error, __msan_warning is called. Since
41/// parameters and return values may be passed via registers, we have a
42/// specialized thread-local shadow for return values
43/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000044///
45/// Origin tracking.
46///
47/// MemorySanitizer can track origins (allocation points) of all uninitialized
48/// values. This behavior is controlled with a flag (msan-track-origins) and is
49/// disabled by default.
50///
51/// Origins are 4-byte values created and interpreted by the runtime library.
52/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53/// of application memory. Propagation of origins is basically a bunch of
54/// "select" instructions that pick the origin of a dirty argument, if an
55/// instruction has one.
56///
57/// Every 4 aligned, consecutive bytes of application memory have one origin
58/// value associated with them. If these bytes contain uninitialized data
59/// coming from 2 different allocations, the last store wins. Because of this,
60/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000061/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000062///
63/// Origins are meaningless for fully initialized values, so MemorySanitizer
64/// avoids storing origin to memory when a fully initialized value is stored.
65/// This way it avoids needless overwritting origin of the 4-byte region on
66/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanov5522a702013-09-24 11:20:27 +000067///
68/// Atomic handling.
69///
70/// Ideally, every atomic store of application value should update the
71/// corresponding shadow location in an atomic way. Unfortunately, atomic store
72/// of two disjoint locations can not be done without severe slowdown.
73///
74/// Therefore, we implement an approximation that may err on the safe side.
75/// In this implementation, every atomically accessed location in the program
76/// may only change from (partially) uninitialized to fully initialized, but
77/// not the other way around. We load the shadow _after_ the application load,
78/// and we store the shadow _before_ the app store. Also, we always store clean
79/// shadow (if the application store is atomic). This way, if the store-load
80/// pair constitutes a happens-before arc, shadow store and load are correctly
81/// ordered such that the load will get either the value that was stored, or
82/// some later value (which is always clean).
83///
84/// This does not work very well with Compare-And-Swap (CAS) and
85/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86/// must store the new shadow before the app operation, and load the shadow
87/// after the app operation. Computers don't work this way. Current
88/// implementation ignores the load aspect of CAS/RMW, always returning a clean
89/// value. It implements the store part as a simple atomic store by storing a
90/// clean shadow.
91
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000092//===----------------------------------------------------------------------===//
93
Chandler Carruthed0881b2012-12-03 16:50:05 +000094#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000095#include "llvm/ADT/DepthFirstIterator.h"
96#include "llvm/ADT/SmallString.h"
97#include "llvm/ADT/SmallVector.h"
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +000098#include "llvm/ADT/StringExtras.h"
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +000099#include "llvm/ADT/Triple.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000100#include "llvm/IR/DataLayout.h"
101#include "llvm/IR/Function.h"
102#include "llvm/IR/IRBuilder.h"
103#include "llvm/IR/InlineAsm.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +0000104#include "llvm/IR/InstVisitor.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000105#include "llvm/IR/IntrinsicInst.h"
106#include "llvm/IR/LLVMContext.h"
107#include "llvm/IR/MDBuilder.h"
108#include "llvm/IR/Module.h"
109#include "llvm/IR/Type.h"
Chandler Carrutha4ea2692014-03-04 11:26:31 +0000110#include "llvm/IR/ValueMap.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000111#include "llvm/Support/CommandLine.h"
112#include "llvm/Support/Compiler.h"
113#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000114#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000115#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000116#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000117#include "llvm/Transforms/Utils/ModuleUtils.h"
118
119using namespace llvm;
120
Chandler Carruth964daaa2014-04-22 02:55:47 +0000121#define DEBUG_TYPE "msan"
122
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000123static const unsigned kMinOriginAlignment = 4;
124static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000125
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000126// These constants must be kept in sync with the ones in msan.h.
127static const unsigned kParamTLSSize = 800;
128static const unsigned kRetvalTLSSize = 800;
129
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000130// Accesses sizes are powers of two: 1, 2, 4, 8.
131static const size_t kNumberOfAccessSizes = 4;
132
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000133/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000134///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000135/// Adds a section to MemorySanitizer report that points to the allocation
136/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000137static cl::opt<int> ClTrackOrigins("msan-track-origins",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000138 cl::desc("Track origins (allocation sites) of poisoned memory"),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000139 cl::Hidden, cl::init(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000140static cl::opt<bool> ClKeepGoing("msan-keep-going",
141 cl::desc("keep going after reporting a UMR"),
142 cl::Hidden, cl::init(false));
143static cl::opt<bool> ClPoisonStack("msan-poison-stack",
144 cl::desc("poison uninitialized stack variables"),
145 cl::Hidden, cl::init(true));
146static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
147 cl::desc("poison uninitialized stack variables with a call"),
148 cl::Hidden, cl::init(false));
149static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
150 cl::desc("poison uninitialized stack variables with the given patter"),
151 cl::Hidden, cl::init(0xff));
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000152static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
153 cl::desc("poison undef temps"),
154 cl::Hidden, cl::init(true));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000155
156static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
157 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
158 cl::Hidden, cl::init(true));
159
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000160static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
161 cl::desc("exact handling of relational integer ICmp"),
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +0000162 cl::Hidden, cl::init(false));
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000163
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000164// This flag controls whether we check the shadow of the address
165// operand of load or store. Such bugs are very rare, since load from
166// a garbage address typically results in SEGV, but still happen
167// (e.g. only lower bits of address are garbage, or the access happens
168// early at program startup where malloc-ed memory is more likely to
169// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
170static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
171 cl::desc("report accesses through a pointer which has poisoned shadow"),
172 cl::Hidden, cl::init(true));
173
174static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
175 cl::desc("print out instructions with default strict semantics"),
176 cl::Hidden, cl::init(false));
177
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000178static cl::opt<int> ClInstrumentationWithCallThreshold(
179 "msan-instrumentation-with-call-threshold",
180 cl::desc(
181 "If the function being instrumented requires more than "
182 "this number of checks and origin stores, use callbacks instead of "
183 "inline checks (-1 means never use callbacks)."),
Evgeniy Stepanov3939f542014-04-21 15:04:05 +0000184 cl::Hidden, cl::init(3500));
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000185
Evgeniy Stepanov7db296e2014-10-23 01:05:46 +0000186// This is an experiment to enable handling of cases where shadow is a non-zero
187// compile-time constant. For some unexplainable reason they were silently
188// ignored in the instrumentation.
189static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
190 cl::desc("Insert checks for constant shadow values"),
191 cl::Hidden, cl::init(false));
192
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000193namespace {
194
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000195// Memory map parameters used in application-to-shadow address calculation.
196// Offset = (Addr & ~AndMask) ^ XorMask
197// Shadow = ShadowBase + Offset
198// Origin = OriginBase + Offset
199struct MemoryMapParams {
200 uint64_t AndMask;
201 uint64_t XorMask;
202 uint64_t ShadowBase;
203 uint64_t OriginBase;
204};
205
206struct PlatformMemoryMapParams {
207 const MemoryMapParams *bits32;
208 const MemoryMapParams *bits64;
209};
210
211// i386 Linux
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000212static const MemoryMapParams Linux_I386_MemoryMapParams = {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000213 0x000080000000, // AndMask
214 0, // XorMask (not used)
215 0, // ShadowBase (not used)
216 0x000040000000, // OriginBase
217};
218
219// x86_64 Linux
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000220static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000221 0x400000000000, // AndMask
222 0, // XorMask (not used)
223 0, // ShadowBase (not used)
224 0x200000000000, // OriginBase
225};
226
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000227// mips64 Linux
228static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
229 0x004000000000, // AndMask
230 0, // XorMask (not used)
231 0, // ShadowBase (not used)
232 0x002000000000, // OriginBase
233};
234
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000235// i386 FreeBSD
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000236static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000237 0x000180000000, // AndMask
238 0x000040000000, // XorMask
239 0x000020000000, // ShadowBase
240 0x000700000000, // OriginBase
241};
242
243// x86_64 FreeBSD
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000244static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000245 0xc00000000000, // AndMask
246 0x200000000000, // XorMask
247 0x100000000000, // ShadowBase
248 0x380000000000, // OriginBase
249};
250
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000251static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
252 &Linux_I386_MemoryMapParams,
253 &Linux_X86_64_MemoryMapParams,
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000254};
255
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000256static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
257 NULL,
258 &Linux_MIPS64_MemoryMapParams,
259};
260
261static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
262 &FreeBSD_I386_MemoryMapParams,
263 &FreeBSD_X86_64_MemoryMapParams,
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000264};
265
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000266/// \brief An instrumentation pass implementing detection of uninitialized
267/// reads.
268///
269/// MemorySanitizer: instrument the code in module to find
270/// uninitialized reads.
271class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000272 public:
Alexey Samsonov6d8bab82014-06-02 18:08:27 +0000273 MemorySanitizer(int TrackOrigins = 0)
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000274 : FunctionPass(ID),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000275 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
Craig Topperf40110f2014-04-25 05:29:35 +0000276 DL(nullptr),
Evgeniy Stepanove402d9e2014-11-27 14:54:02 +0000277 WarningFn(nullptr) {}
Craig Topper3e4c6972014-03-05 09:10:37 +0000278 const char *getPassName() const override { return "MemorySanitizer"; }
279 bool runOnFunction(Function &F) override;
280 bool doInitialization(Module &M) override;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000281 static char ID; // Pass identification, replacement for typeid.
282
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000283 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000284 void initializeCallbacks(Module &M);
285
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000286 /// \brief Track origins (allocation points) of uninitialized values.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000287 int TrackOrigins;
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000288
Rafael Espindolaaeff8a92014-02-24 23:12:18 +0000289 const DataLayout *DL;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000290 LLVMContext *C;
291 Type *IntptrTy;
292 Type *OriginTy;
293 /// \brief Thread-local shadow storage for function parameters.
294 GlobalVariable *ParamTLS;
295 /// \brief Thread-local origin storage for function parameters.
296 GlobalVariable *ParamOriginTLS;
297 /// \brief Thread-local shadow storage for function return value.
298 GlobalVariable *RetvalTLS;
299 /// \brief Thread-local origin storage for function return value.
300 GlobalVariable *RetvalOriginTLS;
301 /// \brief Thread-local shadow storage for in-register va_arg function
302 /// parameters (x86_64-specific).
303 GlobalVariable *VAArgTLS;
304 /// \brief Thread-local shadow storage for va_arg overflow area
305 /// (x86_64-specific).
306 GlobalVariable *VAArgOverflowSizeTLS;
307 /// \brief Thread-local space used to pass origin value to the UMR reporting
308 /// function.
309 GlobalVariable *OriginTLS;
310
311 /// \brief The run-time callback to print a warning.
312 Value *WarningFn;
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000313 // These arrays are indexed by log2(AccessSize).
314 Value *MaybeWarningFn[kNumberOfAccessSizes];
315 Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
316
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000317 /// \brief Run-time helper that generates a new origin value for a stack
318 /// allocation.
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000319 Value *MsanSetAllocaOrigin4Fn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000320 /// \brief Run-time helper that poisons stack on function entry.
321 Value *MsanPoisonStackFn;
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000322 /// \brief Run-time helper that records a store (or any event) of an
323 /// uninitialized value and returns an updated origin id encoding this info.
324 Value *MsanChainOriginFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000325 /// \brief MSan runtime replacements for memmove, memcpy and memset.
326 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000327
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000328 /// \brief Memory map parameters used in application-to-shadow calculation.
329 const MemoryMapParams *MapParams;
330
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000331 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000332 /// \brief Branch weights for origin store.
333 MDNode *OriginStoreWeights;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000334 /// \brief An empty volatile inline asm that prevents callback merge.
335 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000336
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000337 friend struct MemorySanitizerVisitor;
338 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000339};
340} // namespace
341
342char MemorySanitizer::ID = 0;
343INITIALIZE_PASS(MemorySanitizer, "msan",
344 "MemorySanitizer: detects uninitialized reads.",
345 false, false)
346
Alexey Samsonov6d8bab82014-06-02 18:08:27 +0000347FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
348 return new MemorySanitizer(TrackOrigins);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000349}
350
351/// \brief Create a non-const global initialized with the given string.
352///
353/// Creates a writable global for Str so that we can pass it to the
354/// run-time lib. Runtime uses first 4 bytes of the string to store the
355/// frame ID, so the string needs to be mutable.
356static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
357 StringRef Str) {
358 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
359 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
360 GlobalValue::PrivateLinkage, StrConst, "");
361}
362
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000363
364/// \brief Insert extern declaration of runtime-provided functions and globals.
365void MemorySanitizer::initializeCallbacks(Module &M) {
366 // Only do this once.
367 if (WarningFn)
368 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000369
370 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000371 // Create the callback.
372 // FIXME: this function should have "Cold" calling conv,
373 // which is not yet implemented.
374 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
375 : "__msan_warning_noreturn";
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000376 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000377
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000378 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
379 AccessSizeIndex++) {
380 unsigned AccessSize = 1 << AccessSizeIndex;
381 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
382 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
383 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000384 IRB.getInt32Ty(), nullptr);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000385
386 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
387 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
388 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000389 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000390 }
391
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000392 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
393 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000394 IRB.getInt8PtrTy(), IntptrTy, nullptr);
David Blaikiea92765c2014-11-14 00:41:42 +0000395 MsanPoisonStackFn =
396 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
397 IRB.getInt8PtrTy(), IntptrTy, nullptr);
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000398 MsanChainOriginFn = M.getOrInsertFunction(
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000399 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000400 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000401 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000402 IRB.getInt8PtrTy(), IntptrTy, nullptr);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000403 MemcpyFn = M.getOrInsertFunction(
404 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000405 IntptrTy, nullptr);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000406 MemsetFn = M.getOrInsertFunction(
407 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000408 IntptrTy, nullptr);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000409
410 // Create globals.
411 RetvalTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000412 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000413 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000414 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000415 RetvalOriginTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000416 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
417 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000418
419 ParamTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000420 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000421 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000422 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000423 ParamOriginTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000424 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
425 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
426 nullptr, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000427
428 VAArgTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000429 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000430 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000431 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000432 VAArgOverflowSizeTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000433 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
434 "__msan_va_arg_overflow_size_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000435 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000436 OriginTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000437 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
438 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000439
440 // We insert an empty inline asm after __msan_report* to avoid callback merge.
441 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
442 StringRef(""), StringRef(""),
443 /*hasSideEffects=*/true);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000444}
445
446/// \brief Module-level initialization.
447///
448/// inserts a call to __msan_init to the module's constructor list.
449bool MemorySanitizer::doInitialization(Module &M) {
Rafael Espindola93512512014-02-25 17:30:31 +0000450 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
451 if (!DLP)
Evgeniy Stepanov119cb2e2014-04-23 12:51:32 +0000452 report_fatal_error("data layout missing");
Rafael Espindola93512512014-02-25 17:30:31 +0000453 DL = &DLP->getDataLayout();
454
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000455 Triple TargetTriple(M.getTargetTriple());
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000456 switch (TargetTriple.getOS()) {
457 case Triple::FreeBSD:
458 switch (TargetTriple.getArch()) {
459 case Triple::x86_64:
460 MapParams = FreeBSD_X86_MemoryMapParams.bits64;
461 break;
462 case Triple::x86:
463 MapParams = FreeBSD_X86_MemoryMapParams.bits32;
464 break;
465 default:
466 report_fatal_error("unsupported architecture");
467 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000468 break;
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000469 case Triple::Linux:
470 switch (TargetTriple.getArch()) {
471 case Triple::x86_64:
472 MapParams = Linux_X86_MemoryMapParams.bits64;
473 break;
474 case Triple::x86:
475 MapParams = Linux_X86_MemoryMapParams.bits32;
476 break;
477 case Triple::mips64:
478 case Triple::mips64el:
479 MapParams = Linux_MIPS_MemoryMapParams.bits64;
480 break;
481 default:
482 report_fatal_error("unsupported architecture");
483 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000484 break;
485 default:
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000486 report_fatal_error("unsupported operating system");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000487 }
488
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000489 C = &(M.getContext());
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000490 IRBuilder<> IRB(*C);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000491 IntptrTy = IRB.getIntPtrTy(DL);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000492 OriginTy = IRB.getInt32Ty();
493
494 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000495 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000496
497 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
498 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000499 "__msan_init", IRB.getVoidTy(), nullptr)), 0);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000500
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000501 if (TrackOrigins)
502 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
503 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000504
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000505 if (ClKeepGoing)
506 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
507 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
Evgeniy Stepanovdcf6bcb2013-01-22 13:26:53 +0000508
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000509 return true;
510}
511
512namespace {
513
514/// \brief A helper class that handles instrumentation of VarArg
515/// functions on a particular platform.
516///
517/// Implementations are expected to insert the instrumentation
518/// necessary to propagate argument shadow through VarArg function
519/// calls. Visit* methods are called during an InstVisitor pass over
520/// the function, and should avoid creating new basic blocks. A new
521/// instance of this class is created for each instrumented function.
522struct VarArgHelper {
523 /// \brief Visit a CallSite.
524 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
525
526 /// \brief Visit a va_start call.
527 virtual void visitVAStartInst(VAStartInst &I) = 0;
528
529 /// \brief Visit a va_copy call.
530 virtual void visitVACopyInst(VACopyInst &I) = 0;
531
532 /// \brief Finalize function instrumentation.
533 ///
534 /// This method is called after visiting all interesting (see above)
535 /// instructions in a function.
536 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000537
538 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000539};
540
541struct MemorySanitizerVisitor;
542
543VarArgHelper*
544CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
545 MemorySanitizerVisitor &Visitor);
546
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000547unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
548 if (TypeSize <= 8) return 0;
549 return Log2_32_Ceil(TypeSize / 8);
550}
551
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000552/// This class does all the work for a given function. Store and Load
553/// instructions store and load corresponding shadow and origin
554/// values. Most instructions propagate shadow from arguments to their
555/// return values. Certain instructions (most importantly, BranchInst)
556/// test their argument shadow and print reports (with a runtime call) if it's
557/// non-zero.
558struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
559 Function &F;
560 MemorySanitizer &MS;
561 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
562 ValueMap<Value*, Value*> ShadowMap, OriginMap;
Ahmed Charles56440fd2014-03-06 05:51:42 +0000563 std::unique_ptr<VarArgHelper> VAHelper;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000564
565 // The following flags disable parts of MSan instrumentation based on
566 // blacklist contents and command-line options.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000567 bool InsertChecks;
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000568 bool PropagateShadow;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000569 bool PoisonStack;
570 bool PoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000571 bool CheckReturnValue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000572
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000573 struct ShadowOriginAndInsertPoint {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000574 Value *Shadow;
575 Value *Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000576 Instruction *OrigIns;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000577 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000578 : Shadow(S), Origin(O), OrigIns(I) { }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000579 };
580 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000581 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000582
583 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000584 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
Alexey Samsonov6d8bab82014-06-02 18:08:27 +0000585 bool SanitizeFunction = F.getAttributes().hasAttribute(
586 AttributeSet::FunctionIndex, Attribute::SanitizeMemory);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000587 InsertChecks = SanitizeFunction;
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000588 PropagateShadow = SanitizeFunction;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000589 PoisonStack = SanitizeFunction && ClPoisonStack;
590 PoisonUndef = SanitizeFunction && ClPoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000591 // FIXME: Consider using SpecialCaseList to specify a list of functions that
592 // must always return fully initialized values. For now, we hardcode "main".
593 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000594
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000595 DEBUG(if (!InsertChecks)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000596 dbgs() << "MemorySanitizer is not inserting checks into '"
597 << F.getName() << "'\n");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000598 }
599
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000600 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
601 if (MS.TrackOrigins <= 1) return V;
602 return IRB.CreateCall(MS.MsanChainOriginFn, V);
603 }
604
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000605 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
606 unsigned Alignment, bool AsCall) {
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000607 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000608 if (isa<StructType>(Shadow->getType())) {
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000609 IRB.CreateAlignedStore(updateOrigin(Origin, IRB),
610 getOriginPtr(Addr, IRB, Alignment),
611 OriginAlignment);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000612 } else {
613 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
Evgeniy Stepanovc5b974e2015-01-20 15:21:35 +0000614 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
615 if (ConstantShadow) {
616 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
617 IRB.CreateAlignedStore(updateOrigin(Origin, IRB),
618 getOriginPtr(Addr, IRB, Alignment),
619 OriginAlignment);
620 return;
621 }
622
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000623 unsigned TypeSizeInBits =
624 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
625 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
626 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
627 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
628 Value *ConvertedShadow2 = IRB.CreateZExt(
629 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
630 IRB.CreateCall3(Fn, ConvertedShadow2,
631 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
Evgeniy Stepanovb163f022014-06-25 14:41:57 +0000632 Origin);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000633 } else {
634 Value *Cmp = IRB.CreateICmpNE(
635 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
636 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
637 Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
638 IRBuilder<> IRBNew(CheckTerm);
639 IRBNew.CreateAlignedStore(updateOrigin(Origin, IRBNew),
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000640 getOriginPtr(Addr, IRBNew, Alignment),
641 OriginAlignment);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000642 }
643 }
644 }
645
646 void materializeStores(bool InstrumentWithCalls) {
Alexey Samsonova02e6642014-05-29 18:40:48 +0000647 for (auto Inst : StoreList) {
648 StoreInst &SI = *dyn_cast<StoreInst>(Inst);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000649
Alexey Samsonova02e6642014-05-29 18:40:48 +0000650 IRBuilder<> IRB(&SI);
651 Value *Val = SI.getValueOperand();
652 Value *Addr = SI.getPointerOperand();
653 Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000654 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
655
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000656 StoreInst *NewSI =
Alexey Samsonova02e6642014-05-29 18:40:48 +0000657 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000658 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000659 (void)NewSI;
Evgeniy Stepanovc4415592013-01-22 12:30:52 +0000660
Alexey Samsonova02e6642014-05-29 18:40:48 +0000661 if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000662
Alexey Samsonova02e6642014-05-29 18:40:48 +0000663 if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000664
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000665 if (MS.TrackOrigins)
666 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(),
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000667 InstrumentWithCalls);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000668 }
669 }
670
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000671 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
672 bool AsCall) {
673 IRBuilder<> IRB(OrigIns);
674 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
675 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
676 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
Evgeniy Stepanovc5b974e2015-01-20 15:21:35 +0000677
678 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
679 if (ConstantShadow) {
680 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
681 if (MS.TrackOrigins) {
682 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
683 MS.OriginTLS);
684 }
685 IRB.CreateCall(MS.WarningFn);
686 IRB.CreateCall(MS.EmptyAsm);
687 // FIXME: Insert UnreachableInst if !ClKeepGoing?
688 // This may invalidate some of the following checks and needs to be done
689 // at the very end.
690 }
691 return;
692 }
693
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000694 unsigned TypeSizeInBits =
695 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
696 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
697 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
698 Value *Fn = MS.MaybeWarningFn[SizeIndex];
699 Value *ConvertedShadow2 =
700 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
701 IRB.CreateCall2(Fn, ConvertedShadow2, MS.TrackOrigins && Origin
702 ? Origin
703 : (Value *)IRB.getInt32(0));
704 } else {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000705 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
706 getCleanShadow(ConvertedShadow), "_mscmp");
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000707 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
708 Cmp, OrigIns,
709 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000710
711 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000712 if (MS.TrackOrigins) {
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000713 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000714 MS.OriginTLS);
715 }
Evgeniy Stepanov2275a012014-03-19 12:56:38 +0000716 IRB.CreateCall(MS.WarningFn);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000717 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000718 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
719 }
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000720 }
721
722 void materializeChecks(bool InstrumentWithCalls) {
Alexey Samsonova02e6642014-05-29 18:40:48 +0000723 for (const auto &ShadowData : InstrumentationList) {
724 Instruction *OrigIns = ShadowData.OrigIns;
725 Value *Shadow = ShadowData.Shadow;
726 Value *Origin = ShadowData.Origin;
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000727 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
728 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000729 DEBUG(dbgs() << "DONE:\n" << F);
730 }
731
732 /// \brief Add MemorySanitizer instrumentation to a function.
733 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000734 MS.initializeCallbacks(*F.getParent());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000735 if (!MS.DL) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000736
737 // In the presence of unreachable blocks, we may see Phi nodes with
738 // incoming nodes from such blocks. Since InstVisitor skips unreachable
739 // blocks, such nodes will not have any shadow value associated with them.
740 // It's easier to remove unreachable blocks than deal with missing shadow.
741 removeUnreachableBlocks(F);
742
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000743 // Iterate all BBs in depth-first order and create shadow instructions
744 // for all instructions (where applicable).
745 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
David Blaikieceec2bd2014-04-11 01:50:01 +0000746 for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000747 visit(*BB);
David Blaikieceec2bd2014-04-11 01:50:01 +0000748
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000749
750 // Finalize PHI nodes.
Alexey Samsonova02e6642014-05-29 18:40:48 +0000751 for (PHINode *PN : ShadowPHINodes) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000752 PHINode *PNS = cast<PHINode>(getShadow(PN));
Craig Topperf40110f2014-04-25 05:29:35 +0000753 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000754 size_t NumValues = PN->getNumIncomingValues();
755 for (size_t v = 0; v < NumValues; v++) {
756 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000757 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000758 }
759 }
760
761 VAHelper->finalizeInstrumentation();
762
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000763 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
764 InstrumentationList.size() + StoreList.size() >
765 (unsigned)ClInstrumentationWithCallThreshold;
766
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000767 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000768 // This may add new checks to be inserted later.
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000769 materializeStores(InstrumentWithCalls);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000770
771 // Insert shadow value checks.
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000772 materializeChecks(InstrumentWithCalls);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000773
774 return true;
775 }
776
777 /// \brief Compute the shadow type that corresponds to a given Value.
778 Type *getShadowTy(Value *V) {
779 return getShadowTy(V->getType());
780 }
781
782 /// \brief Compute the shadow type that corresponds to a given Type.
783 Type *getShadowTy(Type *OrigTy) {
784 if (!OrigTy->isSized()) {
Craig Topperf40110f2014-04-25 05:29:35 +0000785 return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000786 }
787 // For integer type, shadow is the same as the original type.
788 // This may return weird-sized types like i1.
789 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
790 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000791 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000792 uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000793 return VectorType::get(IntegerType::get(*MS.C, EltSize),
794 VT->getNumElements());
795 }
Evgeniy Stepanov5997feb2014-07-31 11:02:27 +0000796 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
797 return ArrayType::get(getShadowTy(AT->getElementType()),
798 AT->getNumElements());
799 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000800 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
801 SmallVector<Type*, 4> Elements;
802 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
803 Elements.push_back(getShadowTy(ST->getElementType(i)));
804 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
805 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
806 return Res;
807 }
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000808 uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000809 return IntegerType::get(*MS.C, TypeSize);
810 }
811
812 /// \brief Flatten a vector type.
813 Type *getShadowTyNoVec(Type *ty) {
814 if (VectorType *vt = dyn_cast<VectorType>(ty))
815 return IntegerType::get(*MS.C, vt->getBitWidth());
816 return ty;
817 }
818
819 /// \brief Convert a shadow value to it's flattened variant.
820 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
821 Type *Ty = V->getType();
822 Type *NoVecTy = getShadowTyNoVec(Ty);
823 if (Ty == NoVecTy) return V;
824 return IRB.CreateBitCast(V, NoVecTy);
825 }
826
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000827 /// \brief Compute the integer shadow offset that corresponds to a given
828 /// application address.
829 ///
830 /// Offset = (Addr & ~AndMask) ^ XorMask
831 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
832 uint64_t AndMask = MS.MapParams->AndMask;
833 assert(AndMask != 0 && "AndMask shall be specified");
834 Value *OffsetLong =
835 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
836 ConstantInt::get(MS.IntptrTy, ~AndMask));
837
838 uint64_t XorMask = MS.MapParams->XorMask;
839 if (XorMask != 0)
840 OffsetLong = IRB.CreateXor(OffsetLong,
841 ConstantInt::get(MS.IntptrTy, XorMask));
842 return OffsetLong;
843 }
844
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000845 /// \brief Compute the shadow address that corresponds to a given application
846 /// address.
847 ///
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000848 /// Shadow = ShadowBase + Offset
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000849 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
850 IRBuilder<> &IRB) {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000851 Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
852 uint64_t ShadowBase = MS.MapParams->ShadowBase;
853 if (ShadowBase != 0)
854 ShadowLong =
855 IRB.CreateAdd(ShadowLong,
856 ConstantInt::get(MS.IntptrTy, ShadowBase));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000857 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
858 }
859
860 /// \brief Compute the origin address that corresponds to a given application
861 /// address.
862 ///
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000863 /// OriginAddr = (OriginBase + Offset) & ~3ULL
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000864 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000865 Value *OriginLong = getShadowPtrOffset(Addr, IRB);
866 uint64_t OriginBase = MS.MapParams->OriginBase;
867 if (OriginBase != 0)
868 OriginLong =
869 IRB.CreateAdd(OriginLong,
870 ConstantInt::get(MS.IntptrTy, OriginBase));
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000871 if (Alignment < kMinOriginAlignment) {
872 uint64_t Mask = kMinOriginAlignment - 1;
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000873 OriginLong = IRB.CreateAnd(OriginLong,
874 ConstantInt::get(MS.IntptrTy, ~Mask));
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000875 }
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000876 return IRB.CreateIntToPtr(OriginLong,
877 PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000878 }
879
880 /// \brief Compute the shadow address for a given function argument.
881 ///
882 /// Shadow = ParamTLS+ArgOffset.
883 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
884 int ArgOffset) {
885 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
886 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
887 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
888 "_msarg");
889 }
890
891 /// \brief Compute the origin address for a given function argument.
892 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
893 int ArgOffset) {
Craig Topperf40110f2014-04-25 05:29:35 +0000894 if (!MS.TrackOrigins) return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000895 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
896 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
897 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
898 "_msarg_o");
899 }
900
901 /// \brief Compute the shadow address for a retval.
902 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
903 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
904 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
905 "_msret");
906 }
907
908 /// \brief Compute the origin address for a retval.
909 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
910 // We keep a single origin for the entire retval. Might be too optimistic.
911 return MS.RetvalOriginTLS;
912 }
913
914 /// \brief Set SV to be the shadow value for V.
915 void setShadow(Value *V, Value *SV) {
916 assert(!ShadowMap.count(V) && "Values may only have one shadow");
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000917 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000918 }
919
920 /// \brief Set Origin to be the origin value for V.
921 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000922 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000923 assert(!OriginMap.count(V) && "Values may only have one origin");
924 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
925 OriginMap[V] = Origin;
926 }
927
928 /// \brief Create a clean shadow value for a given value.
929 ///
930 /// Clean shadow (all zeroes) means all bits of the value are defined
931 /// (initialized).
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000932 Constant *getCleanShadow(Value *V) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000933 Type *ShadowTy = getShadowTy(V);
934 if (!ShadowTy)
Craig Topperf40110f2014-04-25 05:29:35 +0000935 return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000936 return Constant::getNullValue(ShadowTy);
937 }
938
939 /// \brief Create a dirty shadow of a given shadow type.
940 Constant *getPoisonedShadow(Type *ShadowTy) {
941 assert(ShadowTy);
942 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
943 return Constant::getAllOnesValue(ShadowTy);
Evgeniy Stepanov5997feb2014-07-31 11:02:27 +0000944 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
945 SmallVector<Constant *, 4> Vals(AT->getNumElements(),
946 getPoisonedShadow(AT->getElementType()));
947 return ConstantArray::get(AT, Vals);
948 }
949 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
950 SmallVector<Constant *, 4> Vals;
951 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
952 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
953 return ConstantStruct::get(ST, Vals);
954 }
955 llvm_unreachable("Unexpected shadow type");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000956 }
957
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000958 /// \brief Create a dirty shadow for a given value.
959 Constant *getPoisonedShadow(Value *V) {
960 Type *ShadowTy = getShadowTy(V);
961 if (!ShadowTy)
Craig Topperf40110f2014-04-25 05:29:35 +0000962 return nullptr;
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000963 return getPoisonedShadow(ShadowTy);
964 }
965
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000966 /// \brief Create a clean (zero) origin.
967 Value *getCleanOrigin() {
968 return Constant::getNullValue(MS.OriginTy);
969 }
970
971 /// \brief Get the shadow value for a given Value.
972 ///
973 /// This function either returns the value set earlier with setShadow,
974 /// or extracts if from ParamTLS (for function arguments).
975 Value *getShadow(Value *V) {
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000976 if (!PropagateShadow) return getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000977 if (Instruction *I = dyn_cast<Instruction>(V)) {
978 // For instructions the shadow is already stored in the map.
979 Value *Shadow = ShadowMap[V];
980 if (!Shadow) {
981 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000982 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000983 assert(Shadow && "No shadow for a value");
984 }
985 return Shadow;
986 }
987 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000988 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000989 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000990 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000991 return AllOnes;
992 }
993 if (Argument *A = dyn_cast<Argument>(V)) {
994 // For arguments we compute the shadow on demand and store it in the map.
995 Value **ShadowPtr = &ShadowMap[V];
996 if (*ShadowPtr)
997 return *ShadowPtr;
998 Function *F = A->getParent();
999 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
1000 unsigned ArgOffset = 0;
Alexey Samsonova02e6642014-05-29 18:40:48 +00001001 for (auto &FArg : F->args()) {
1002 if (!FArg.getType()->isSized()) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001003 DEBUG(dbgs() << "Arg is not sized\n");
1004 continue;
1005 }
Alexey Samsonova02e6642014-05-29 18:40:48 +00001006 unsigned Size = FArg.hasByValAttr()
1007 ? MS.DL->getTypeAllocSize(FArg.getType()->getPointerElementType())
1008 : MS.DL->getTypeAllocSize(FArg.getType());
1009 if (A == &FArg) {
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00001010 bool Overflow = ArgOffset + Size > kParamTLSSize;
Alexey Samsonova02e6642014-05-29 18:40:48 +00001011 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1012 if (FArg.hasByValAttr()) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001013 // ByVal pointer itself has clean shadow. We copy the actual
1014 // argument shadow to the underlying memory.
Evgeniy Stepanovfca01232013-05-28 13:07:43 +00001015 // Figure out maximal valid memcpy alignment.
Alexey Samsonova02e6642014-05-29 18:40:48 +00001016 unsigned ArgAlign = FArg.getParamAlignment();
Evgeniy Stepanovfca01232013-05-28 13:07:43 +00001017 if (ArgAlign == 0) {
1018 Type *EltType = A->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001019 ArgAlign = MS.DL->getABITypeAlignment(EltType);
Evgeniy Stepanovfca01232013-05-28 13:07:43 +00001020 }
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00001021 if (Overflow) {
1022 // ParamTLS overflow.
1023 EntryIRB.CreateMemSet(
1024 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
1025 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
1026 } else {
1027 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1028 Value *Cpy = EntryIRB.CreateMemCpy(
1029 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
1030 CopyAlign);
1031 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
1032 (void)Cpy;
1033 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001034 *ShadowPtr = getCleanShadow(V);
1035 } else {
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00001036 if (Overflow) {
1037 // ParamTLS overflow.
1038 *ShadowPtr = getCleanShadow(V);
1039 } else {
1040 *ShadowPtr =
1041 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
1042 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001043 }
Alexey Samsonova02e6642014-05-29 18:40:48 +00001044 DEBUG(dbgs() << " ARG: " << FArg << " ==> " <<
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001045 **ShadowPtr << "\n");
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00001046 if (MS.TrackOrigins && !Overflow) {
Alexey Samsonova02e6642014-05-29 18:40:48 +00001047 Value *OriginPtr =
1048 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001049 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00001050 } else {
1051 setOrigin(A, getCleanOrigin());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001052 }
1053 }
David Majnemerf3cadce2014-10-20 06:13:33 +00001054 ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001055 }
1056 assert(*ShadowPtr && "Could not find shadow for an argument");
1057 return *ShadowPtr;
1058 }
1059 // For everything else the shadow is zero.
1060 return getCleanShadow(V);
1061 }
1062
1063 /// \brief Get the shadow for i-th argument of the instruction I.
1064 Value *getShadow(Instruction *I, int i) {
1065 return getShadow(I->getOperand(i));
1066 }
1067
1068 /// \brief Get the origin for a value.
1069 Value *getOrigin(Value *V) {
Craig Topperf40110f2014-04-25 05:29:35 +00001070 if (!MS.TrackOrigins) return nullptr;
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00001071 if (!PropagateShadow) return getCleanOrigin();
1072 if (isa<Constant>(V)) return getCleanOrigin();
1073 assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1074 "Unexpected value type in getOrigin()");
1075 Value *Origin = OriginMap[V];
1076 assert(Origin && "Missing origin");
1077 return Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001078 }
1079
1080 /// \brief Get the origin for i-th argument of the instruction I.
1081 Value *getOrigin(Instruction *I, int i) {
1082 return getOrigin(I->getOperand(i));
1083 }
1084
1085 /// \brief Remember the place where a shadow check should be inserted.
1086 ///
1087 /// This location will be later instrumented with a check that will print a
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001088 /// UMR warning in runtime if the shadow value is not 0.
1089 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1090 assert(Shadow);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001091 if (!InsertChecks) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001092#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001093 Type *ShadowTy = Shadow->getType();
1094 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1095 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001096#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001097 InstrumentationList.push_back(
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001098 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1099 }
1100
1101 /// \brief Remember the place where a shadow check should be inserted.
1102 ///
1103 /// This location will be later instrumented with a check that will print a
1104 /// UMR warning in runtime if the value is not fully defined.
1105 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1106 assert(Val);
Evgeniy Stepanovd337a592014-10-24 23:34:15 +00001107 Value *Shadow, *Origin;
1108 if (ClCheckConstantShadow) {
1109 Shadow = getShadow(Val);
1110 if (!Shadow) return;
1111 Origin = getOrigin(Val);
1112 } else {
1113 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1114 if (!Shadow) return;
1115 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1116 }
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001117 insertShadowCheck(Shadow, Origin, OrigIns);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001118 }
1119
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001120 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1121 switch (a) {
1122 case NotAtomic:
1123 return NotAtomic;
1124 case Unordered:
1125 case Monotonic:
1126 case Release:
1127 return Release;
1128 case Acquire:
1129 case AcquireRelease:
1130 return AcquireRelease;
1131 case SequentiallyConsistent:
1132 return SequentiallyConsistent;
1133 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001134 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001135 }
1136
1137 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1138 switch (a) {
1139 case NotAtomic:
1140 return NotAtomic;
1141 case Unordered:
1142 case Monotonic:
1143 case Acquire:
1144 return Acquire;
1145 case Release:
1146 case AcquireRelease:
1147 return AcquireRelease;
1148 case SequentiallyConsistent:
1149 return SequentiallyConsistent;
1150 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001151 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001152 }
1153
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001154 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001155
1156 /// \brief Instrument LoadInst
1157 ///
1158 /// Loads the corresponding shadow and (optionally) origin.
1159 /// Optionally, checks that the load address is fully defined.
1160 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001161 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001162 IRBuilder<> IRB(I.getNextNode());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001163 Type *ShadowTy = getShadowTy(&I);
1164 Value *Addr = I.getPointerOperand();
Kostya Serebryany543f3db2014-12-03 23:28:26 +00001165 if (PropagateShadow && !I.getMetadata("nosanitize")) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001166 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1167 setShadow(&I,
1168 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1169 } else {
1170 setShadow(&I, getCleanShadow(&I));
1171 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001172
1173 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001174 insertShadowCheck(I.getPointerOperand(), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001175
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001176 if (I.isAtomic())
1177 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1178
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001179 if (MS.TrackOrigins) {
Evgeniy Stepanov174242c2014-07-03 11:56:30 +00001180 if (PropagateShadow) {
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +00001181 unsigned Alignment = I.getAlignment();
1182 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1183 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
1184 OriginAlignment));
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001185 } else {
1186 setOrigin(&I, getCleanOrigin());
1187 }
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001188 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001189 }
1190
1191 /// \brief Instrument StoreInst
1192 ///
1193 /// Stores the corresponding shadow and (optionally) origin.
1194 /// Optionally, checks that the store address is fully defined.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001195 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +00001196 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001197 }
1198
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001199 void handleCASOrRMW(Instruction &I) {
1200 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1201
1202 IRBuilder<> IRB(&I);
1203 Value *Addr = I.getOperand(0);
1204 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1205
1206 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001207 insertShadowCheck(Addr, &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001208
1209 // Only test the conditional argument of cmpxchg instruction.
1210 // The other argument can potentially be uninitialized, but we can not
1211 // detect this situation reliably without possible false positives.
1212 if (isa<AtomicCmpXchgInst>(I))
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001213 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001214
1215 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1216
1217 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00001218 setOrigin(&I, getCleanOrigin());
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001219 }
1220
1221 void visitAtomicRMWInst(AtomicRMWInst &I) {
1222 handleCASOrRMW(I);
1223 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1224 }
1225
1226 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1227 handleCASOrRMW(I);
Tim Northovere94a5182014-03-11 10:48:52 +00001228 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001229 }
1230
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001231 // Vector manipulation.
1232 void visitExtractElementInst(ExtractElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001233 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001234 IRBuilder<> IRB(&I);
1235 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1236 "_msprop"));
1237 setOrigin(&I, getOrigin(&I, 0));
1238 }
1239
1240 void visitInsertElementInst(InsertElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001241 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001242 IRBuilder<> IRB(&I);
1243 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1244 I.getOperand(2), "_msprop"));
1245 setOriginForNaryOp(I);
1246 }
1247
1248 void visitShuffleVectorInst(ShuffleVectorInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001249 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001250 IRBuilder<> IRB(&I);
1251 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1252 I.getOperand(2), "_msprop"));
1253 setOriginForNaryOp(I);
1254 }
1255
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001256 // Casts.
1257 void visitSExtInst(SExtInst &I) {
1258 IRBuilder<> IRB(&I);
1259 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1260 setOrigin(&I, getOrigin(&I, 0));
1261 }
1262
1263 void visitZExtInst(ZExtInst &I) {
1264 IRBuilder<> IRB(&I);
1265 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1266 setOrigin(&I, getOrigin(&I, 0));
1267 }
1268
1269 void visitTruncInst(TruncInst &I) {
1270 IRBuilder<> IRB(&I);
1271 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1272 setOrigin(&I, getOrigin(&I, 0));
1273 }
1274
1275 void visitBitCastInst(BitCastInst &I) {
1276 IRBuilder<> IRB(&I);
1277 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1278 setOrigin(&I, getOrigin(&I, 0));
1279 }
1280
1281 void visitPtrToIntInst(PtrToIntInst &I) {
1282 IRBuilder<> IRB(&I);
1283 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1284 "_msprop_ptrtoint"));
1285 setOrigin(&I, getOrigin(&I, 0));
1286 }
1287
1288 void visitIntToPtrInst(IntToPtrInst &I) {
1289 IRBuilder<> IRB(&I);
1290 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1291 "_msprop_inttoptr"));
1292 setOrigin(&I, getOrigin(&I, 0));
1293 }
1294
1295 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1296 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1297 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1298 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1299 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1300 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1301
1302 /// \brief Propagate shadow for bitwise AND.
1303 ///
1304 /// This code is exact, i.e. if, for example, a bit in the left argument
1305 /// is defined and 0, then neither the value not definedness of the
1306 /// corresponding bit in B don't affect the resulting shadow.
1307 void visitAnd(BinaryOperator &I) {
1308 IRBuilder<> IRB(&I);
1309 // "And" of 0 and a poisoned value results in unpoisoned value.
1310 // 1&1 => 1; 0&1 => 0; p&1 => p;
1311 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1312 // 1&p => p; 0&p => 0; p&p => p;
1313 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1314 Value *S1 = getShadow(&I, 0);
1315 Value *S2 = getShadow(&I, 1);
1316 Value *V1 = I.getOperand(0);
1317 Value *V2 = I.getOperand(1);
1318 if (V1->getType() != S1->getType()) {
1319 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1320 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1321 }
1322 Value *S1S2 = IRB.CreateAnd(S1, S2);
1323 Value *V1S2 = IRB.CreateAnd(V1, S2);
1324 Value *S1V2 = IRB.CreateAnd(S1, V2);
1325 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1326 setOriginForNaryOp(I);
1327 }
1328
1329 void visitOr(BinaryOperator &I) {
1330 IRBuilder<> IRB(&I);
1331 // "Or" of 1 and a poisoned value results in unpoisoned value.
1332 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1333 // 1|0 => 1; 0|0 => 0; p|0 => p;
1334 // 1|p => 1; 0|p => p; p|p => p;
1335 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1336 Value *S1 = getShadow(&I, 0);
1337 Value *S2 = getShadow(&I, 1);
1338 Value *V1 = IRB.CreateNot(I.getOperand(0));
1339 Value *V2 = IRB.CreateNot(I.getOperand(1));
1340 if (V1->getType() != S1->getType()) {
1341 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1342 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1343 }
1344 Value *S1S2 = IRB.CreateAnd(S1, S2);
1345 Value *V1S2 = IRB.CreateAnd(V1, S2);
1346 Value *S1V2 = IRB.CreateAnd(S1, V2);
1347 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1348 setOriginForNaryOp(I);
1349 }
1350
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001351 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001352 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001353 /// This class implements the general case of shadow propagation, used in all
1354 /// cases where we don't know and/or don't care about what the operation
1355 /// actually does. It converts all input shadow values to a common type
1356 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001357 ///
1358 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1359 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001360 ///
1361 /// This class also implements the general case of origin propagation. For a
1362 /// Nary operation, result origin is set to the origin of an argument that is
1363 /// not entirely initialized. If there is more than one such arguments, the
1364 /// rightmost of them is picked. It does not matter which one is picked if all
1365 /// arguments are initialized.
1366 template <bool CombineShadow>
1367 class Combiner {
1368 Value *Shadow;
1369 Value *Origin;
1370 IRBuilder<> &IRB;
1371 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001372
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001373 public:
1374 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
Craig Topperf40110f2014-04-25 05:29:35 +00001375 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001376
1377 /// \brief Add a pair of shadow and origin values to the mix.
1378 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1379 if (CombineShadow) {
1380 assert(OpShadow);
1381 if (!Shadow)
1382 Shadow = OpShadow;
1383 else {
1384 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1385 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1386 }
1387 }
1388
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001389 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001390 assert(OpOrigin);
1391 if (!Origin) {
1392 Origin = OpOrigin;
1393 } else {
Evgeniy Stepanov70d1b0a2014-06-09 14:29:34 +00001394 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
1395 // No point in adding something that might result in 0 origin value.
1396 if (!ConstOrigin || !ConstOrigin->isNullValue()) {
1397 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1398 Value *Cond =
1399 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
1400 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1401 }
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001402 }
1403 }
1404 return *this;
1405 }
1406
1407 /// \brief Add an application value to the mix.
1408 Combiner &Add(Value *V) {
1409 Value *OpShadow = MSV->getShadow(V);
Craig Topperf40110f2014-04-25 05:29:35 +00001410 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001411 return Add(OpShadow, OpOrigin);
1412 }
1413
1414 /// \brief Set the current combined values as the given instruction's shadow
1415 /// and origin.
1416 void Done(Instruction *I) {
1417 if (CombineShadow) {
1418 assert(Shadow);
1419 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1420 MSV->setShadow(I, Shadow);
1421 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001422 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001423 assert(Origin);
1424 MSV->setOrigin(I, Origin);
1425 }
1426 }
1427 };
1428
1429 typedef Combiner<true> ShadowAndOriginCombiner;
1430 typedef Combiner<false> OriginCombiner;
1431
1432 /// \brief Propagate origin for arbitrary operation.
1433 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001434 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001435 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001436 OriginCombiner OC(this, IRB);
1437 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1438 OC.Add(OI->get());
1439 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001440 }
1441
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001442 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001443 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1444 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001445 return Ty->isVectorTy() ?
1446 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1447 Ty->getPrimitiveSizeInBits();
1448 }
1449
1450 /// \brief Cast between two shadow types, extending or truncating as
1451 /// necessary.
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001452 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1453 bool Signed = false) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001454 Type *srcTy = V->getType();
1455 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001456 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001457 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1458 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001459 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001460 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1461 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1462 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1463 Value *V2 =
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001464 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001465 return IRB.CreateBitCast(V2, dstTy);
1466 // TODO: handle struct types.
1467 }
1468
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00001469 /// \brief Cast an application value to the type of its own shadow.
1470 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1471 Type *ShadowTy = getShadowTy(V);
1472 if (V->getType() == ShadowTy)
1473 return V;
1474 if (V->getType()->isPtrOrPtrVectorTy())
1475 return IRB.CreatePtrToInt(V, ShadowTy);
1476 else
1477 return IRB.CreateBitCast(V, ShadowTy);
1478 }
1479
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001480 /// \brief Propagate shadow for arbitrary operation.
1481 void handleShadowOr(Instruction &I) {
1482 IRBuilder<> IRB(&I);
1483 ShadowAndOriginCombiner SC(this, IRB);
1484 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1485 SC.Add(OI->get());
1486 SC.Done(&I);
1487 }
1488
Evgeniy Stepanovdf187fe2014-06-17 09:23:12 +00001489 // \brief Handle multiplication by constant.
1490 //
1491 // Handle a special case of multiplication by constant that may have one or
1492 // more zeros in the lower bits. This makes corresponding number of lower bits
1493 // of the result zero as well. We model it by shifting the other operand
1494 // shadow left by the required number of bits. Effectively, we transform
1495 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
1496 // We use multiplication by 2**N instead of shift to cover the case of
1497 // multiplication by 0, which may occur in some elements of a vector operand.
1498 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
1499 Value *OtherArg) {
1500 Constant *ShadowMul;
1501 Type *Ty = ConstArg->getType();
1502 if (Ty->isVectorTy()) {
1503 unsigned NumElements = Ty->getVectorNumElements();
1504 Type *EltTy = Ty->getSequentialElementType();
1505 SmallVector<Constant *, 16> Elements;
1506 for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
1507 ConstantInt *Elt =
1508 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx));
1509 APInt V = Elt->getValue();
1510 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1511 Elements.push_back(ConstantInt::get(EltTy, V2));
1512 }
1513 ShadowMul = ConstantVector::get(Elements);
1514 } else {
1515 ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg);
1516 APInt V = Elt->getValue();
1517 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1518 ShadowMul = ConstantInt::get(Elt->getType(), V2);
1519 }
1520
1521 IRBuilder<> IRB(&I);
1522 setShadow(&I,
1523 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
1524 setOrigin(&I, getOrigin(OtherArg));
1525 }
1526
1527 void visitMul(BinaryOperator &I) {
1528 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1529 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1530 if (constOp0 && !constOp1)
1531 handleMulByConstant(I, constOp0, I.getOperand(1));
1532 else if (constOp1 && !constOp0)
1533 handleMulByConstant(I, constOp1, I.getOperand(0));
1534 else
1535 handleShadowOr(I);
1536 }
1537
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001538 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1539 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1540 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1541 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1542 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1543 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001544
1545 void handleDiv(Instruction &I) {
1546 IRBuilder<> IRB(&I);
1547 // Strict on the second argument.
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001548 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001549 setShadow(&I, getShadow(&I, 0));
1550 setOrigin(&I, getOrigin(&I, 0));
1551 }
1552
1553 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1554 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1555 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1556 void visitURem(BinaryOperator &I) { handleDiv(I); }
1557 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1558 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1559
1560 /// \brief Instrument == and != comparisons.
1561 ///
1562 /// Sometimes the comparison result is known even if some of the bits of the
1563 /// arguments are not.
1564 void handleEqualityComparison(ICmpInst &I) {
1565 IRBuilder<> IRB(&I);
1566 Value *A = I.getOperand(0);
1567 Value *B = I.getOperand(1);
1568 Value *Sa = getShadow(A);
1569 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001570
1571 // Get rid of pointers and vectors of pointers.
1572 // For ints (and vectors of ints), types of A and Sa match,
1573 // and this is a no-op.
1574 A = IRB.CreatePointerCast(A, Sa->getType());
1575 B = IRB.CreatePointerCast(B, Sb->getType());
1576
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001577 // A == B <==> (C = A^B) == 0
1578 // A != B <==> (C = A^B) != 0
1579 // Sc = Sa | Sb
1580 Value *C = IRB.CreateXor(A, B);
1581 Value *Sc = IRB.CreateOr(Sa, Sb);
1582 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1583 // Result is defined if one of the following is true
1584 // * there is a defined 1 bit in C
1585 // * C is fully defined
1586 // Si = !(C & ~Sc) && Sc
1587 Value *Zero = Constant::getNullValue(Sc->getType());
1588 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1589 Value *Si =
1590 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1591 IRB.CreateICmpEQ(
1592 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1593 Si->setName("_msprop_icmp");
1594 setShadow(&I, Si);
1595 setOriginForNaryOp(I);
1596 }
1597
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001598 /// \brief Build the lowest possible value of V, taking into account V's
1599 /// uninitialized bits.
1600 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1601 bool isSigned) {
1602 if (isSigned) {
1603 // Split shadow into sign bit and other bits.
1604 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1605 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1606 // Maximise the undefined shadow bit, minimize other undefined bits.
1607 return
1608 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1609 } else {
1610 // Minimize undefined bits.
1611 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1612 }
1613 }
1614
1615 /// \brief Build the highest possible value of V, taking into account V's
1616 /// uninitialized bits.
1617 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1618 bool isSigned) {
1619 if (isSigned) {
1620 // Split shadow into sign bit and other bits.
1621 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1622 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1623 // Minimise the undefined shadow bit, maximise other undefined bits.
1624 return
1625 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1626 } else {
1627 // Maximize undefined bits.
1628 return IRB.CreateOr(A, Sa);
1629 }
1630 }
1631
1632 /// \brief Instrument relational comparisons.
1633 ///
1634 /// This function does exact shadow propagation for all relational
1635 /// comparisons of integers, pointers and vectors of those.
1636 /// FIXME: output seems suboptimal when one of the operands is a constant
1637 void handleRelationalComparisonExact(ICmpInst &I) {
1638 IRBuilder<> IRB(&I);
1639 Value *A = I.getOperand(0);
1640 Value *B = I.getOperand(1);
1641 Value *Sa = getShadow(A);
1642 Value *Sb = getShadow(B);
1643
1644 // Get rid of pointers and vectors of pointers.
1645 // For ints (and vectors of ints), types of A and Sa match,
1646 // and this is a no-op.
1647 A = IRB.CreatePointerCast(A, Sa->getType());
1648 B = IRB.CreatePointerCast(B, Sb->getType());
1649
Evgeniy Stepanov2cb0fa12013-01-25 15:35:29 +00001650 // Let [a0, a1] be the interval of possible values of A, taking into account
1651 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1652 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001653 bool IsSigned = I.isSigned();
1654 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1655 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1656 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1657 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1658 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1659 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1660 Value *Si = IRB.CreateXor(S1, S2);
1661 setShadow(&I, Si);
1662 setOriginForNaryOp(I);
1663 }
1664
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001665 /// \brief Instrument signed relational comparisons.
1666 ///
1667 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1668 /// propagating the highest bit of the shadow. Everything else is delegated
1669 /// to handleShadowOr().
1670 void handleSignedRelationalComparison(ICmpInst &I) {
1671 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1672 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
Craig Topperf40110f2014-04-25 05:29:35 +00001673 Value* op = nullptr;
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001674 CmpInst::Predicate pre = I.getPredicate();
1675 if (constOp0 && constOp0->isNullValue() &&
1676 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1677 op = I.getOperand(1);
1678 } else if (constOp1 && constOp1->isNullValue() &&
1679 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1680 op = I.getOperand(0);
1681 }
1682 if (op) {
1683 IRBuilder<> IRB(&I);
1684 Value* Shadow =
1685 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1686 setShadow(&I, Shadow);
1687 setOrigin(&I, getOrigin(op));
1688 } else {
1689 handleShadowOr(I);
1690 }
1691 }
1692
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001693 void visitICmpInst(ICmpInst &I) {
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001694 if (!ClHandleICmp) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001695 handleShadowOr(I);
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001696 return;
1697 }
1698 if (I.isEquality()) {
1699 handleEqualityComparison(I);
1700 return;
1701 }
1702
1703 assert(I.isRelational());
1704 if (ClHandleICmpExact) {
1705 handleRelationalComparisonExact(I);
1706 return;
1707 }
1708 if (I.isSigned()) {
1709 handleSignedRelationalComparison(I);
1710 return;
1711 }
1712
1713 assert(I.isUnsigned());
1714 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1715 handleRelationalComparisonExact(I);
1716 return;
1717 }
1718
1719 handleShadowOr(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001720 }
1721
1722 void visitFCmpInst(FCmpInst &I) {
1723 handleShadowOr(I);
1724 }
1725
1726 void handleShift(BinaryOperator &I) {
1727 IRBuilder<> IRB(&I);
1728 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1729 // Otherwise perform the same shift on S1.
1730 Value *S1 = getShadow(&I, 0);
1731 Value *S2 = getShadow(&I, 1);
1732 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1733 S2->getType());
1734 Value *V2 = I.getOperand(1);
1735 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1736 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1737 setOriginForNaryOp(I);
1738 }
1739
1740 void visitShl(BinaryOperator &I) { handleShift(I); }
1741 void visitAShr(BinaryOperator &I) { handleShift(I); }
1742 void visitLShr(BinaryOperator &I) { handleShift(I); }
1743
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001744 /// \brief Instrument llvm.memmove
1745 ///
1746 /// At this point we don't know if llvm.memmove will be inlined or not.
1747 /// If we don't instrument it and it gets inlined,
1748 /// our interceptor will not kick in and we will lose the memmove.
1749 /// If we instrument the call here, but it does not get inlined,
1750 /// we will memove the shadow twice: which is bad in case
1751 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1752 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001753 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001754 void visitMemMoveInst(MemMoveInst &I) {
1755 IRBuilder<> IRB(&I);
1756 IRB.CreateCall3(
1757 MS.MemmoveFn,
1758 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1759 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1760 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1761 I.eraseFromParent();
1762 }
1763
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001764 // Similar to memmove: avoid copying shadow twice.
1765 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1766 // FIXME: consider doing manual inline for small constant sizes and proper
1767 // alignment.
1768 void visitMemCpyInst(MemCpyInst &I) {
1769 IRBuilder<> IRB(&I);
1770 IRB.CreateCall3(
1771 MS.MemcpyFn,
1772 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1773 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1774 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1775 I.eraseFromParent();
1776 }
1777
1778 // Same as memcpy.
1779 void visitMemSetInst(MemSetInst &I) {
1780 IRBuilder<> IRB(&I);
1781 IRB.CreateCall3(
1782 MS.MemsetFn,
1783 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1784 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1785 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1786 I.eraseFromParent();
1787 }
1788
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001789 void visitVAStartInst(VAStartInst &I) {
1790 VAHelper->visitVAStartInst(I);
1791 }
1792
1793 void visitVACopyInst(VACopyInst &I) {
1794 VAHelper->visitVACopyInst(I);
1795 }
1796
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001797 enum IntrinsicKind {
1798 IK_DoesNotAccessMemory,
1799 IK_OnlyReadsMemory,
1800 IK_WritesMemory
1801 };
1802
1803 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1804 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1805 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1806 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1807 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1808 const int UnknownModRefBehavior = IK_WritesMemory;
1809#define GET_INTRINSIC_MODREF_BEHAVIOR
1810#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001811#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001812#undef ModRefBehavior
1813#undef GET_INTRINSIC_MODREF_BEHAVIOR
1814 }
1815
1816 /// \brief Handle vector store-like intrinsics.
1817 ///
1818 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1819 /// has 1 pointer argument and 1 vector argument, returns void.
1820 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1821 IRBuilder<> IRB(&I);
1822 Value* Addr = I.getArgOperand(0);
1823 Value *Shadow = getShadow(&I, 1);
1824 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1825
1826 // We don't know the pointer alignment (could be unaligned SSE store!).
1827 // Have to assume to worst case.
1828 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1829
1830 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001831 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001832
1833 // FIXME: use ClStoreCleanOrigin
1834 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001835 if (MS.TrackOrigins)
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +00001836 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001837 return true;
1838 }
1839
1840 /// \brief Handle vector load-like intrinsics.
1841 ///
1842 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1843 /// has 1 pointer argument, returns a vector.
1844 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1845 IRBuilder<> IRB(&I);
1846 Value *Addr = I.getArgOperand(0);
1847
1848 Type *ShadowTy = getShadowTy(&I);
Evgeniy Stepanov174242c2014-07-03 11:56:30 +00001849 if (PropagateShadow) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001850 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1851 // We don't know the pointer alignment (could be unaligned SSE load!).
1852 // Have to assume to worst case.
1853 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1854 } else {
1855 setShadow(&I, getCleanShadow(&I));
1856 }
1857
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001858 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001859 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001860
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001861 if (MS.TrackOrigins) {
Evgeniy Stepanov174242c2014-07-03 11:56:30 +00001862 if (PropagateShadow)
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +00001863 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001864 else
1865 setOrigin(&I, getCleanOrigin());
1866 }
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001867 return true;
1868 }
1869
1870 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1871 ///
1872 /// Instrument intrinsics with any number of arguments of the same type,
1873 /// equal to the return type. The type should be simple (no aggregates or
1874 /// pointers; vectors are fine).
1875 /// Caller guarantees that this intrinsic does not access memory.
1876 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1877 Type *RetTy = I.getType();
1878 if (!(RetTy->isIntOrIntVectorTy() ||
1879 RetTy->isFPOrFPVectorTy() ||
1880 RetTy->isX86_MMXTy()))
1881 return false;
1882
1883 unsigned NumArgOperands = I.getNumArgOperands();
1884
1885 for (unsigned i = 0; i < NumArgOperands; ++i) {
1886 Type *Ty = I.getArgOperand(i)->getType();
1887 if (Ty != RetTy)
1888 return false;
1889 }
1890
1891 IRBuilder<> IRB(&I);
1892 ShadowAndOriginCombiner SC(this, IRB);
1893 for (unsigned i = 0; i < NumArgOperands; ++i)
1894 SC.Add(I.getArgOperand(i));
1895 SC.Done(&I);
1896
1897 return true;
1898 }
1899
1900 /// \brief Heuristically instrument unknown intrinsics.
1901 ///
1902 /// The main purpose of this code is to do something reasonable with all
1903 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1904 /// We recognize several classes of intrinsics by their argument types and
1905 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1906 /// sure that we know what the intrinsic does.
1907 ///
1908 /// We special-case intrinsics where this approach fails. See llvm.bswap
1909 /// handling as an example of that.
1910 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1911 unsigned NumArgOperands = I.getNumArgOperands();
1912 if (NumArgOperands == 0)
1913 return false;
1914
1915 Intrinsic::ID iid = I.getIntrinsicID();
1916 IntrinsicKind IK = getIntrinsicKind(iid);
1917 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1918 bool WritesMemory = IK == IK_WritesMemory;
1919 assert(!(OnlyReadsMemory && WritesMemory));
1920
1921 if (NumArgOperands == 2 &&
1922 I.getArgOperand(0)->getType()->isPointerTy() &&
1923 I.getArgOperand(1)->getType()->isVectorTy() &&
1924 I.getType()->isVoidTy() &&
1925 WritesMemory) {
1926 // This looks like a vector store.
1927 return handleVectorStoreIntrinsic(I);
1928 }
1929
1930 if (NumArgOperands == 1 &&
1931 I.getArgOperand(0)->getType()->isPointerTy() &&
1932 I.getType()->isVectorTy() &&
1933 OnlyReadsMemory) {
1934 // This looks like a vector load.
1935 return handleVectorLoadIntrinsic(I);
1936 }
1937
1938 if (!OnlyReadsMemory && !WritesMemory)
1939 if (maybeHandleSimpleNomemIntrinsic(I))
1940 return true;
1941
1942 // FIXME: detect and handle SSE maskstore/maskload
1943 return false;
1944 }
1945
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001946 void handleBswap(IntrinsicInst &I) {
1947 IRBuilder<> IRB(&I);
1948 Value *Op = I.getArgOperand(0);
1949 Type *OpType = Op->getType();
1950 Function *BswapFunc = Intrinsic::getDeclaration(
Craig Toppere1d12942014-08-27 05:25:25 +00001951 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001952 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1953 setOrigin(&I, getOrigin(Op));
1954 }
1955
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001956 // \brief Instrument vector convert instrinsic.
1957 //
1958 // This function instruments intrinsics like cvtsi2ss:
1959 // %Out = int_xxx_cvtyyy(%ConvertOp)
1960 // or
1961 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1962 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1963 // number \p Out elements, and (if has 2 arguments) copies the rest of the
1964 // elements from \p CopyOp.
1965 // In most cases conversion involves floating-point value which may trigger a
1966 // hardware exception when not fully initialized. For this reason we require
1967 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1968 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1969 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1970 // return a fully initialized value.
1971 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1972 IRBuilder<> IRB(&I);
1973 Value *CopyOp, *ConvertOp;
1974
1975 switch (I.getNumArgOperands()) {
1976 case 2:
1977 CopyOp = I.getArgOperand(0);
1978 ConvertOp = I.getArgOperand(1);
1979 break;
1980 case 1:
1981 ConvertOp = I.getArgOperand(0);
Craig Topperf40110f2014-04-25 05:29:35 +00001982 CopyOp = nullptr;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001983 break;
1984 default:
1985 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1986 }
1987
1988 // The first *NumUsedElements* elements of ConvertOp are converted to the
1989 // same number of output elements. The rest of the output is copied from
1990 // CopyOp, or (if not available) filled with zeroes.
1991 // Combine shadow for elements of ConvertOp that are used in this operation,
1992 // and insert a check.
1993 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1994 // int->any conversion.
1995 Value *ConvertShadow = getShadow(ConvertOp);
Craig Topperf40110f2014-04-25 05:29:35 +00001996 Value *AggShadow = nullptr;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001997 if (ConvertOp->getType()->isVectorTy()) {
1998 AggShadow = IRB.CreateExtractElement(
1999 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2000 for (int i = 1; i < NumUsedElements; ++i) {
2001 Value *MoreShadow = IRB.CreateExtractElement(
2002 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2003 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2004 }
2005 } else {
2006 AggShadow = ConvertShadow;
2007 }
2008 assert(AggShadow->getType()->isIntegerTy());
2009 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2010
2011 // Build result shadow by zero-filling parts of CopyOp shadow that come from
2012 // ConvertOp.
2013 if (CopyOp) {
2014 assert(CopyOp->getType() == I.getType());
2015 assert(CopyOp->getType()->isVectorTy());
2016 Value *ResultShadow = getShadow(CopyOp);
2017 Type *EltTy = ResultShadow->getType()->getVectorElementType();
2018 for (int i = 0; i < NumUsedElements; ++i) {
2019 ResultShadow = IRB.CreateInsertElement(
2020 ResultShadow, ConstantInt::getNullValue(EltTy),
2021 ConstantInt::get(IRB.getInt32Ty(), i));
2022 }
2023 setShadow(&I, ResultShadow);
2024 setOrigin(&I, getOrigin(CopyOp));
2025 } else {
2026 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00002027 setOrigin(&I, getCleanOrigin());
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002028 }
2029 }
2030
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00002031 // Given a scalar or vector, extract lower 64 bits (or less), and return all
2032 // zeroes if it is zero, and all ones otherwise.
2033 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2034 if (S->getType()->isVectorTy())
2035 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2036 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2037 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2038 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2039 }
2040
2041 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2042 Type *T = S->getType();
2043 assert(T->isVectorTy());
2044 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2045 return IRB.CreateSExt(S2, T);
2046 }
2047
2048 // \brief Instrument vector shift instrinsic.
2049 //
2050 // This function instruments intrinsics like int_x86_avx2_psll_w.
2051 // Intrinsic shifts %In by %ShiftSize bits.
2052 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2053 // size, and the rest is ignored. Behavior is defined even if shift size is
2054 // greater than register (or field) width.
2055 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2056 assert(I.getNumArgOperands() == 2);
2057 IRBuilder<> IRB(&I);
2058 // If any of the S2 bits are poisoned, the whole thing is poisoned.
2059 // Otherwise perform the same shift on S1.
2060 Value *S1 = getShadow(&I, 0);
2061 Value *S2 = getShadow(&I, 1);
2062 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2063 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2064 Value *V1 = I.getOperand(0);
2065 Value *V2 = I.getOperand(1);
2066 Value *Shift = IRB.CreateCall2(I.getCalledValue(),
2067 IRB.CreateBitCast(S1, V1->getType()), V2);
2068 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2069 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2070 setOriginForNaryOp(I);
2071 }
2072
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002073 // \brief Get an X86_MMX-sized vector type.
2074 Type *getMMXVectorTy(unsigned EltSizeInBits) {
2075 const unsigned X86_MMXSizeInBits = 64;
2076 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2077 X86_MMXSizeInBits / EltSizeInBits);
2078 }
2079
2080 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
2081 // intrinsic.
2082 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2083 switch (id) {
2084 case llvm::Intrinsic::x86_sse2_packsswb_128:
2085 case llvm::Intrinsic::x86_sse2_packuswb_128:
2086 return llvm::Intrinsic::x86_sse2_packsswb_128;
2087
2088 case llvm::Intrinsic::x86_sse2_packssdw_128:
2089 case llvm::Intrinsic::x86_sse41_packusdw:
2090 return llvm::Intrinsic::x86_sse2_packssdw_128;
2091
2092 case llvm::Intrinsic::x86_avx2_packsswb:
2093 case llvm::Intrinsic::x86_avx2_packuswb:
2094 return llvm::Intrinsic::x86_avx2_packsswb;
2095
2096 case llvm::Intrinsic::x86_avx2_packssdw:
2097 case llvm::Intrinsic::x86_avx2_packusdw:
2098 return llvm::Intrinsic::x86_avx2_packssdw;
2099
2100 case llvm::Intrinsic::x86_mmx_packsswb:
2101 case llvm::Intrinsic::x86_mmx_packuswb:
2102 return llvm::Intrinsic::x86_mmx_packsswb;
2103
2104 case llvm::Intrinsic::x86_mmx_packssdw:
2105 return llvm::Intrinsic::x86_mmx_packssdw;
2106 default:
2107 llvm_unreachable("unexpected intrinsic id");
2108 }
2109 }
2110
Evgeniy Stepanov5d972932014-06-17 11:26:00 +00002111 // \brief Instrument vector pack instrinsic.
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002112 //
2113 // This function instruments intrinsics like x86_mmx_packsswb, that
Evgeniy Stepanov5d972932014-06-17 11:26:00 +00002114 // packs elements of 2 input vectors into half as many bits with saturation.
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002115 // Shadow is propagated with the signed variant of the same intrinsic applied
2116 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2117 // EltSizeInBits is used only for x86mmx arguments.
2118 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002119 assert(I.getNumArgOperands() == 2);
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002120 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002121 IRBuilder<> IRB(&I);
2122 Value *S1 = getShadow(&I, 0);
2123 Value *S2 = getShadow(&I, 1);
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002124 assert(isX86_MMX || S1->getType()->isVectorTy());
2125
2126 // SExt and ICmpNE below must apply to individual elements of input vectors.
2127 // In case of x86mmx arguments, cast them to appropriate vector types and
2128 // back.
2129 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2130 if (isX86_MMX) {
2131 S1 = IRB.CreateBitCast(S1, T);
2132 S2 = IRB.CreateBitCast(S2, T);
2133 }
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002134 Value *S1_ext = IRB.CreateSExt(
2135 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
2136 Value *S2_ext = IRB.CreateSExt(
2137 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002138 if (isX86_MMX) {
2139 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2140 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2141 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2142 }
2143
2144 Function *ShadowFn = Intrinsic::getDeclaration(
2145 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2146
2147 Value *S = IRB.CreateCall2(ShadowFn, S1_ext, S2_ext, "_msprop_vector_pack");
2148 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002149 setShadow(&I, S);
2150 setOriginForNaryOp(I);
2151 }
2152
Evgeniy Stepanov4ea16472014-06-18 12:02:29 +00002153 // \brief Instrument sum-of-absolute-differencies intrinsic.
2154 void handleVectorSadIntrinsic(IntrinsicInst &I) {
2155 const unsigned SignificantBitsPerResultElement = 16;
2156 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2157 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2158 unsigned ZeroBitsPerResultElement =
2159 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2160
2161 IRBuilder<> IRB(&I);
2162 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2163 S = IRB.CreateBitCast(S, ResTy);
2164 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2165 ResTy);
2166 S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2167 S = IRB.CreateBitCast(S, getShadowTy(&I));
2168 setShadow(&I, S);
2169 setOriginForNaryOp(I);
2170 }
2171
2172 // \brief Instrument multiply-add intrinsic.
2173 void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2174 unsigned EltSizeInBits = 0) {
2175 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2176 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2177 IRBuilder<> IRB(&I);
2178 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2179 S = IRB.CreateBitCast(S, ResTy);
2180 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2181 ResTy);
2182 S = IRB.CreateBitCast(S, getShadowTy(&I));
2183 setShadow(&I, S);
2184 setOriginForNaryOp(I);
2185 }
2186
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002187 void visitIntrinsicInst(IntrinsicInst &I) {
2188 switch (I.getIntrinsicID()) {
2189 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002190 handleBswap(I);
2191 break;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002192 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
2193 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
2194 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
2195 case llvm::Intrinsic::x86_avx512_cvtss2usi:
2196 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
2197 case llvm::Intrinsic::x86_avx512_cvttss2usi:
2198 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
2199 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
2200 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
2201 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
2202 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
2203 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
2204 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
2205 case llvm::Intrinsic::x86_sse2_cvtsd2si:
2206 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
2207 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
2208 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
2209 case llvm::Intrinsic::x86_sse2_cvtss2sd:
2210 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
2211 case llvm::Intrinsic::x86_sse2_cvttsd2si:
2212 case llvm::Intrinsic::x86_sse_cvtsi2ss:
2213 case llvm::Intrinsic::x86_sse_cvtsi642ss:
2214 case llvm::Intrinsic::x86_sse_cvtss2si64:
2215 case llvm::Intrinsic::x86_sse_cvtss2si:
2216 case llvm::Intrinsic::x86_sse_cvttss2si64:
2217 case llvm::Intrinsic::x86_sse_cvttss2si:
2218 handleVectorConvertIntrinsic(I, 1);
2219 break;
2220 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
2221 case llvm::Intrinsic::x86_sse2_cvtps2pd:
2222 case llvm::Intrinsic::x86_sse_cvtps2pi:
2223 case llvm::Intrinsic::x86_sse_cvttps2pi:
2224 handleVectorConvertIntrinsic(I, 2);
2225 break;
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00002226 case llvm::Intrinsic::x86_avx512_psll_dq:
2227 case llvm::Intrinsic::x86_avx512_psrl_dq:
2228 case llvm::Intrinsic::x86_avx2_psll_w:
2229 case llvm::Intrinsic::x86_avx2_psll_d:
2230 case llvm::Intrinsic::x86_avx2_psll_q:
2231 case llvm::Intrinsic::x86_avx2_pslli_w:
2232 case llvm::Intrinsic::x86_avx2_pslli_d:
2233 case llvm::Intrinsic::x86_avx2_pslli_q:
2234 case llvm::Intrinsic::x86_avx2_psll_dq:
2235 case llvm::Intrinsic::x86_avx2_psrl_w:
2236 case llvm::Intrinsic::x86_avx2_psrl_d:
2237 case llvm::Intrinsic::x86_avx2_psrl_q:
2238 case llvm::Intrinsic::x86_avx2_psra_w:
2239 case llvm::Intrinsic::x86_avx2_psra_d:
2240 case llvm::Intrinsic::x86_avx2_psrli_w:
2241 case llvm::Intrinsic::x86_avx2_psrli_d:
2242 case llvm::Intrinsic::x86_avx2_psrli_q:
2243 case llvm::Intrinsic::x86_avx2_psrai_w:
2244 case llvm::Intrinsic::x86_avx2_psrai_d:
2245 case llvm::Intrinsic::x86_avx2_psrl_dq:
2246 case llvm::Intrinsic::x86_sse2_psll_w:
2247 case llvm::Intrinsic::x86_sse2_psll_d:
2248 case llvm::Intrinsic::x86_sse2_psll_q:
2249 case llvm::Intrinsic::x86_sse2_pslli_w:
2250 case llvm::Intrinsic::x86_sse2_pslli_d:
2251 case llvm::Intrinsic::x86_sse2_pslli_q:
2252 case llvm::Intrinsic::x86_sse2_psll_dq:
2253 case llvm::Intrinsic::x86_sse2_psrl_w:
2254 case llvm::Intrinsic::x86_sse2_psrl_d:
2255 case llvm::Intrinsic::x86_sse2_psrl_q:
2256 case llvm::Intrinsic::x86_sse2_psra_w:
2257 case llvm::Intrinsic::x86_sse2_psra_d:
2258 case llvm::Intrinsic::x86_sse2_psrli_w:
2259 case llvm::Intrinsic::x86_sse2_psrli_d:
2260 case llvm::Intrinsic::x86_sse2_psrli_q:
2261 case llvm::Intrinsic::x86_sse2_psrai_w:
2262 case llvm::Intrinsic::x86_sse2_psrai_d:
2263 case llvm::Intrinsic::x86_sse2_psrl_dq:
2264 case llvm::Intrinsic::x86_mmx_psll_w:
2265 case llvm::Intrinsic::x86_mmx_psll_d:
2266 case llvm::Intrinsic::x86_mmx_psll_q:
2267 case llvm::Intrinsic::x86_mmx_pslli_w:
2268 case llvm::Intrinsic::x86_mmx_pslli_d:
2269 case llvm::Intrinsic::x86_mmx_pslli_q:
2270 case llvm::Intrinsic::x86_mmx_psrl_w:
2271 case llvm::Intrinsic::x86_mmx_psrl_d:
2272 case llvm::Intrinsic::x86_mmx_psrl_q:
2273 case llvm::Intrinsic::x86_mmx_psra_w:
2274 case llvm::Intrinsic::x86_mmx_psra_d:
2275 case llvm::Intrinsic::x86_mmx_psrli_w:
2276 case llvm::Intrinsic::x86_mmx_psrli_d:
2277 case llvm::Intrinsic::x86_mmx_psrli_q:
2278 case llvm::Intrinsic::x86_mmx_psrai_w:
2279 case llvm::Intrinsic::x86_mmx_psrai_d:
2280 handleVectorShiftIntrinsic(I, /* Variable */ false);
2281 break;
2282 case llvm::Intrinsic::x86_avx2_psllv_d:
2283 case llvm::Intrinsic::x86_avx2_psllv_d_256:
2284 case llvm::Intrinsic::x86_avx2_psllv_q:
2285 case llvm::Intrinsic::x86_avx2_psllv_q_256:
2286 case llvm::Intrinsic::x86_avx2_psrlv_d:
2287 case llvm::Intrinsic::x86_avx2_psrlv_d_256:
2288 case llvm::Intrinsic::x86_avx2_psrlv_q:
2289 case llvm::Intrinsic::x86_avx2_psrlv_q_256:
2290 case llvm::Intrinsic::x86_avx2_psrav_d:
2291 case llvm::Intrinsic::x86_avx2_psrav_d_256:
2292 handleVectorShiftIntrinsic(I, /* Variable */ true);
2293 break;
2294
2295 // Byte shifts are not implemented.
2296 // case llvm::Intrinsic::x86_avx512_psll_dq_bs:
2297 // case llvm::Intrinsic::x86_avx512_psrl_dq_bs:
2298 // case llvm::Intrinsic::x86_avx2_psll_dq_bs:
2299 // case llvm::Intrinsic::x86_avx2_psrl_dq_bs:
2300 // case llvm::Intrinsic::x86_sse2_psll_dq_bs:
2301 // case llvm::Intrinsic::x86_sse2_psrl_dq_bs:
2302
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002303 case llvm::Intrinsic::x86_sse2_packsswb_128:
2304 case llvm::Intrinsic::x86_sse2_packssdw_128:
2305 case llvm::Intrinsic::x86_sse2_packuswb_128:
2306 case llvm::Intrinsic::x86_sse41_packusdw:
2307 case llvm::Intrinsic::x86_avx2_packsswb:
2308 case llvm::Intrinsic::x86_avx2_packssdw:
2309 case llvm::Intrinsic::x86_avx2_packuswb:
2310 case llvm::Intrinsic::x86_avx2_packusdw:
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002311 handleVectorPackIntrinsic(I);
2312 break;
2313
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002314 case llvm::Intrinsic::x86_mmx_packsswb:
2315 case llvm::Intrinsic::x86_mmx_packuswb:
2316 handleVectorPackIntrinsic(I, 16);
2317 break;
2318
2319 case llvm::Intrinsic::x86_mmx_packssdw:
2320 handleVectorPackIntrinsic(I, 32);
2321 break;
2322
Evgeniy Stepanov4ea16472014-06-18 12:02:29 +00002323 case llvm::Intrinsic::x86_mmx_psad_bw:
2324 case llvm::Intrinsic::x86_sse2_psad_bw:
2325 case llvm::Intrinsic::x86_avx2_psad_bw:
2326 handleVectorSadIntrinsic(I);
2327 break;
2328
2329 case llvm::Intrinsic::x86_sse2_pmadd_wd:
2330 case llvm::Intrinsic::x86_avx2_pmadd_wd:
2331 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
2332 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
2333 handleVectorPmaddIntrinsic(I);
2334 break;
2335
2336 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
2337 handleVectorPmaddIntrinsic(I, 8);
2338 break;
2339
2340 case llvm::Intrinsic::x86_mmx_pmadd_wd:
2341 handleVectorPmaddIntrinsic(I, 16);
2342 break;
2343
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002344 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00002345 if (!handleUnknownIntrinsic(I))
2346 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00002347 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002348 }
2349 }
2350
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002351 void visitCallSite(CallSite CS) {
2352 Instruction &I = *CS.getInstruction();
2353 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2354 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00002355 CallInst *Call = cast<CallInst>(&I);
2356
2357 // For inline asm, do the usual thing: check argument shadow and mark all
2358 // outputs as clean. Note that any side effects of the inline asm that are
2359 // not immediately visible in its constraints are not handled.
2360 if (Call->isInlineAsm()) {
2361 visitInstruction(I);
2362 return;
2363 }
2364
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002365 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002366
2367 // We are going to insert code that relies on the fact that the callee
2368 // will become a non-readonly function after it is instrumented by us. To
2369 // prevent this code from being optimized out, mark that function
2370 // non-readonly in advance.
2371 if (Function *Func = Call->getCalledFunction()) {
2372 // Clear out readonly/readnone attributes.
2373 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002374 B.addAttribute(Attribute::ReadOnly)
2375 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002376 Func->removeAttributes(AttributeSet::FunctionIndex,
2377 AttributeSet::get(Func->getContext(),
2378 AttributeSet::FunctionIndex,
2379 B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002380 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002381 }
2382 IRBuilder<> IRB(&I);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002383
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002384 unsigned ArgOffset = 0;
2385 DEBUG(dbgs() << " CallSite: " << I << "\n");
2386 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2387 ArgIt != End; ++ArgIt) {
2388 Value *A = *ArgIt;
2389 unsigned i = ArgIt - CS.arg_begin();
2390 if (!A->getType()->isSized()) {
2391 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2392 continue;
2393 }
2394 unsigned Size = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00002395 Value *Store = nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002396 // Compute the Shadow for arg even if it is ByVal, because
2397 // in that case getShadow() will copy the actual arg shadow to
2398 // __msan_param_tls.
2399 Value *ArgShadow = getShadow(A);
2400 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2401 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
2402 " Shadow: " << *ArgShadow << "\n");
Evgeniy Stepanovc8227aa2014-07-17 09:10:37 +00002403 bool ArgIsInitialized = false;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002404 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002405 assert(A->getType()->isPointerTy() &&
2406 "ByVal argument is not a pointer!");
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002407 Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00002408 if (ArgOffset + Size > kParamTLSSize) break;
Evgeniy Stepanove08633e2014-10-17 23:29:44 +00002409 unsigned ParamAlignment = CS.getParamAlignment(i + 1);
2410 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002411 Store = IRB.CreateMemCpy(ArgShadowBase,
2412 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2413 Size, Alignment);
2414 } else {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002415 Size = MS.DL->getTypeAllocSize(A->getType());
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00002416 if (ArgOffset + Size > kParamTLSSize) break;
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002417 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2418 kShadowTLSAlignment);
Evgeniy Stepanovc8227aa2014-07-17 09:10:37 +00002419 Constant *Cst = dyn_cast<Constant>(ArgShadow);
2420 if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002421 }
Evgeniy Stepanovc8227aa2014-07-17 09:10:37 +00002422 if (MS.TrackOrigins && !ArgIsInitialized)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00002423 IRB.CreateStore(getOrigin(A),
2424 getOriginPtrForArgument(A, IRB, ArgOffset));
Edwin Vane82f80d42013-01-29 17:42:24 +00002425 (void)Store;
Craig Toppere73658d2014-04-28 04:05:08 +00002426 assert(Size != 0 && Store != nullptr);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002427 DEBUG(dbgs() << " Param:" << *Store << "\n");
David Majnemerf3cadce2014-10-20 06:13:33 +00002428 ArgOffset += RoundUpToAlignment(Size, 8);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002429 }
2430 DEBUG(dbgs() << " done with call args\n");
2431
2432 FunctionType *FT =
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002433 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002434 if (FT->isVarArg()) {
2435 VAHelper->visitCallSite(CS, IRB);
2436 }
2437
2438 // Now, get the shadow for the RetVal.
2439 if (!I.getType()->isSized()) return;
2440 IRBuilder<> IRBBefore(&I);
Alp Tokercb402912014-01-24 17:20:08 +00002441 // Until we have full dynamic coverage, make sure the retval shadow is 0.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002442 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002443 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Craig Topperf40110f2014-04-25 05:29:35 +00002444 Instruction *NextInsn = nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002445 if (CS.isCall()) {
2446 NextInsn = I.getNextNode();
2447 } else {
2448 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2449 if (!NormalDest->getSinglePredecessor()) {
2450 // FIXME: this case is tricky, so we are just conservative here.
2451 // Perhaps we need to split the edge between this BB and NormalDest,
2452 // but a naive attempt to use SplitEdge leads to a crash.
2453 setShadow(&I, getCleanShadow(&I));
2454 setOrigin(&I, getCleanOrigin());
2455 return;
2456 }
2457 NextInsn = NormalDest->getFirstInsertionPt();
2458 assert(NextInsn &&
2459 "Could not find insertion point for retval shadow load");
2460 }
2461 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002462 Value *RetvalShadow =
2463 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2464 kShadowTLSAlignment, "_msret");
2465 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002466 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002467 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2468 }
2469
2470 void visitReturnInst(ReturnInst &I) {
2471 IRBuilder<> IRB(&I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002472 Value *RetVal = I.getReturnValue();
2473 if (!RetVal) return;
2474 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2475 if (CheckReturnValue) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002476 insertShadowCheck(RetVal, &I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002477 Value *Shadow = getCleanShadow(RetVal);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002478 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002479 } else {
2480 Value *Shadow = getShadow(RetVal);
2481 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2482 // FIXME: make it conditional if ClStoreCleanOrigin==0
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002483 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002484 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2485 }
2486 }
2487
2488 void visitPHINode(PHINode &I) {
2489 IRBuilder<> IRB(&I);
Evgeniy Stepanovd948a5f2014-07-07 13:28:31 +00002490 if (!PropagateShadow) {
2491 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00002492 setOrigin(&I, getCleanOrigin());
Evgeniy Stepanovd948a5f2014-07-07 13:28:31 +00002493 return;
2494 }
2495
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002496 ShadowPHINodes.push_back(&I);
2497 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2498 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002499 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002500 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2501 "_msphi_o"));
2502 }
2503
2504 void visitAllocaInst(AllocaInst &I) {
2505 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00002506 setOrigin(&I, getCleanOrigin());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002507 IRBuilder<> IRB(I.getNextNode());
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002508 uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002509 if (PoisonStack && ClPoisonStackWithCall) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002510 IRB.CreateCall2(MS.MsanPoisonStackFn,
2511 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2512 ConstantInt::get(MS.IntptrTy, Size));
2513 } else {
2514 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002515 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2516 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002517 }
2518
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002519 if (PoisonStack && MS.TrackOrigins) {
Alp Tokere69170a2014-06-26 22:52:05 +00002520 SmallString<2048> StackDescriptionStorage;
2521 raw_svector_ostream StackDescription(StackDescriptionStorage);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002522 // We create a string with a description of the stack allocation and
2523 // pass it into __msan_set_alloca_origin.
2524 // It will be printed by the run-time if stack-originated UMR is found.
2525 // The first 4 bytes of the string are set to '----' and will be replaced
2526 // by __msan_va_arg_overflow_size_tls at the first call.
2527 StackDescription << "----" << I.getName() << "@" << F.getName();
2528 Value *Descr =
2529 createPrivateNonConstGlobalForString(*F.getParent(),
2530 StackDescription.str());
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002531
2532 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002533 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2534 ConstantInt::get(MS.IntptrTy, Size),
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002535 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2536 IRB.CreatePointerCast(&F, MS.IntptrTy));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002537 }
2538 }
2539
2540 void visitSelectInst(SelectInst& I) {
2541 IRBuilder<> IRB(&I);
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002542 // a = select b, c, d
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002543 Value *B = I.getCondition();
2544 Value *C = I.getTrueValue();
2545 Value *D = I.getFalseValue();
2546 Value *Sb = getShadow(B);
2547 Value *Sc = getShadow(C);
2548 Value *Sd = getShadow(D);
2549
2550 // Result shadow if condition shadow is 0.
2551 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2552 Value *Sa1;
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002553 if (I.getType()->isAggregateType()) {
2554 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2555 // an extra "select". This results in much more compact IR.
2556 // Sa = select Sb, poisoned, (select b, Sc, Sd)
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002557 Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002558 } else {
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002559 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2560 // If Sb (condition is poisoned), look for bits in c and d that are equal
2561 // and both unpoisoned.
2562 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2563
2564 // Cast arguments to shadow-compatible type.
2565 C = CreateAppToShadowCast(IRB, C);
2566 D = CreateAppToShadowCast(IRB, D);
2567
2568 // Result shadow if condition shadow is 1.
2569 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002570 }
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002571 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2572 setShadow(&I, Sa);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002573 if (MS.TrackOrigins) {
2574 // Origins are always i32, so any vector conditions must be flattened.
2575 // FIXME: consider tracking vector origins for app vectors?
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002576 if (B->getType()->isVectorTy()) {
2577 Type *FlatTy = getShadowTyNoVec(B->getType());
2578 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002579 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002580 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002581 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002582 }
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002583 // a = select b, c, d
2584 // Oa = Sb ? Ob : (b ? Oc : Od)
Evgeniy Stepanova0b68992014-11-28 11:17:58 +00002585 setOrigin(
2586 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
2587 IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
2588 getOrigin(I.getFalseValue()))));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002589 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002590 }
2591
2592 void visitLandingPadInst(LandingPadInst &I) {
2593 // Do nothing.
2594 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2595 setShadow(&I, getCleanShadow(&I));
2596 setOrigin(&I, getCleanOrigin());
2597 }
2598
2599 void visitGetElementPtrInst(GetElementPtrInst &I) {
2600 handleShadowOr(I);
2601 }
2602
2603 void visitExtractValueInst(ExtractValueInst &I) {
2604 IRBuilder<> IRB(&I);
2605 Value *Agg = I.getAggregateOperand();
2606 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2607 Value *AggShadow = getShadow(Agg);
2608 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2609 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2610 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2611 setShadow(&I, ResShadow);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002612 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002613 }
2614
2615 void visitInsertValueInst(InsertValueInst &I) {
2616 IRBuilder<> IRB(&I);
2617 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2618 Value *AggShadow = getShadow(I.getAggregateOperand());
2619 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2620 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2621 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2622 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2623 DEBUG(dbgs() << " Res: " << *Res << "\n");
2624 setShadow(&I, Res);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002625 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002626 }
2627
2628 void dumpInst(Instruction &I) {
2629 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2630 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2631 } else {
2632 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2633 }
2634 errs() << "QQQ " << I << "\n";
2635 }
2636
2637 void visitResumeInst(ResumeInst &I) {
2638 DEBUG(dbgs() << "Resume: " << I << "\n");
2639 // Nothing to do here.
2640 }
2641
2642 void visitInstruction(Instruction &I) {
2643 // Everything else: stop propagating and check for poisoned shadow.
2644 if (ClDumpStrictInstructions)
2645 dumpInst(I);
2646 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2647 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002648 insertShadowCheck(I.getOperand(i), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002649 setShadow(&I, getCleanShadow(&I));
2650 setOrigin(&I, getCleanOrigin());
2651 }
2652};
2653
2654/// \brief AMD64-specific implementation of VarArgHelper.
2655struct VarArgAMD64Helper : public VarArgHelper {
2656 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2657 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002658 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002659 static const unsigned AMD64FpEndOffset = 176;
2660
2661 Function &F;
2662 MemorySanitizer &MS;
2663 MemorySanitizerVisitor &MSV;
2664 Value *VAArgTLSCopy;
2665 Value *VAArgOverflowSize;
2666
2667 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2668
2669 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2670 MemorySanitizerVisitor &MSV)
Craig Topperf40110f2014-04-25 05:29:35 +00002671 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2672 VAArgOverflowSize(nullptr) {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002673
2674 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2675
2676 ArgKind classifyArgument(Value* arg) {
2677 // A very rough approximation of X86_64 argument classification rules.
2678 Type *T = arg->getType();
2679 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2680 return AK_FloatingPoint;
2681 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2682 return AK_GeneralPurpose;
2683 if (T->isPointerTy())
2684 return AK_GeneralPurpose;
2685 return AK_Memory;
2686 }
2687
2688 // For VarArg functions, store the argument shadow in an ABI-specific format
2689 // that corresponds to va_list layout.
2690 // We do this because Clang lowers va_arg in the frontend, and this pass
2691 // only sees the low level code that deals with va_list internals.
2692 // A much easier alternative (provided that Clang emits va_arg instructions)
2693 // would have been to associate each live instance of va_list with a copy of
2694 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2695 // order.
Craig Topper3e4c6972014-03-05 09:10:37 +00002696 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002697 unsigned GpOffset = 0;
2698 unsigned FpOffset = AMD64GpEndOffset;
2699 unsigned OverflowOffset = AMD64FpEndOffset;
2700 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2701 ArgIt != End; ++ArgIt) {
2702 Value *A = *ArgIt;
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002703 unsigned ArgNo = CS.getArgumentNo(ArgIt);
2704 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2705 if (IsByVal) {
2706 // ByVal arguments always go to the overflow area.
2707 assert(A->getType()->isPointerTy());
2708 Type *RealTy = A->getType()->getPointerElementType();
2709 uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
2710 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
David Majnemerf3cadce2014-10-20 06:13:33 +00002711 OverflowOffset += RoundUpToAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002712 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2713 ArgSize, kShadowTLSAlignment);
2714 } else {
2715 ArgKind AK = classifyArgument(A);
2716 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2717 AK = AK_Memory;
2718 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2719 AK = AK_Memory;
2720 Value *Base;
2721 switch (AK) {
2722 case AK_GeneralPurpose:
2723 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2724 GpOffset += 8;
2725 break;
2726 case AK_FloatingPoint:
2727 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2728 FpOffset += 16;
2729 break;
2730 case AK_Memory:
2731 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
2732 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
David Majnemerf3cadce2014-10-20 06:13:33 +00002733 OverflowOffset += RoundUpToAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002734 }
2735 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002736 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002737 }
2738 Constant *OverflowSize =
2739 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2740 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2741 }
2742
2743 /// \brief Compute the shadow address for a given va_arg.
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002744 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002745 int ArgOffset) {
2746 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2747 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002748 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002749 "_msarg");
2750 }
2751
Craig Topper3e4c6972014-03-05 09:10:37 +00002752 void visitVAStartInst(VAStartInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002753 IRBuilder<> IRB(&I);
2754 VAStartInstrumentationList.push_back(&I);
2755 Value *VAListTag = I.getArgOperand(0);
2756 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2757
2758 // Unpoison the whole __va_list_tag.
2759 // FIXME: magic ABI constants.
2760 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002761 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002762 }
2763
Craig Topper3e4c6972014-03-05 09:10:37 +00002764 void visitVACopyInst(VACopyInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002765 IRBuilder<> IRB(&I);
2766 Value *VAListTag = I.getArgOperand(0);
2767 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2768
2769 // Unpoison the whole __va_list_tag.
2770 // FIXME: magic ABI constants.
2771 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002772 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002773 }
2774
Craig Topper3e4c6972014-03-05 09:10:37 +00002775 void finalizeInstrumentation() override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002776 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2777 "finalizeInstrumentation called twice");
2778 if (!VAStartInstrumentationList.empty()) {
2779 // If there is a va_start in this function, make a backup copy of
2780 // va_arg_tls somewhere in the function entry block.
2781 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2782 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2783 Value *CopySize =
2784 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2785 VAArgOverflowSize);
2786 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2787 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2788 }
2789
2790 // Instrument va_start.
2791 // Copy va_list shadow from the backup copy of the TLS contents.
2792 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2793 CallInst *OrigInst = VAStartInstrumentationList[i];
2794 IRBuilder<> IRB(OrigInst->getNextNode());
2795 Value *VAListTag = OrigInst->getArgOperand(0);
2796
2797 Value *RegSaveAreaPtrPtr =
2798 IRB.CreateIntToPtr(
2799 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2800 ConstantInt::get(MS.IntptrTy, 16)),
2801 Type::getInt64PtrTy(*MS.C));
2802 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2803 Value *RegSaveAreaShadowPtr =
2804 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2805 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2806 AMD64FpEndOffset, 16);
2807
2808 Value *OverflowArgAreaPtrPtr =
2809 IRB.CreateIntToPtr(
2810 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2811 ConstantInt::get(MS.IntptrTy, 8)),
2812 Type::getInt64PtrTy(*MS.C));
2813 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2814 Value *OverflowArgAreaShadowPtr =
2815 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
Evgeniy Stepanovd42863c2013-08-23 12:11:00 +00002816 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002817 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2818 }
2819 }
2820};
2821
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002822/// \brief A no-op implementation of VarArgHelper.
2823struct VarArgNoOpHelper : public VarArgHelper {
2824 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2825 MemorySanitizerVisitor &MSV) {}
2826
Craig Topper3e4c6972014-03-05 09:10:37 +00002827 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002828
Craig Topper3e4c6972014-03-05 09:10:37 +00002829 void visitVAStartInst(VAStartInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002830
Craig Topper3e4c6972014-03-05 09:10:37 +00002831 void visitVACopyInst(VACopyInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002832
Craig Topper3e4c6972014-03-05 09:10:37 +00002833 void finalizeInstrumentation() override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002834};
2835
2836VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002837 MemorySanitizerVisitor &Visitor) {
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002838 // VarArg handling is only implemented on AMD64. False positives are possible
2839 // on other platforms.
2840 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2841 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2842 return new VarArgAMD64Helper(Func, Msan, Visitor);
2843 else
2844 return new VarArgNoOpHelper(Func, Msan, Visitor);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002845}
2846
2847} // namespace
2848
2849bool MemorySanitizer::runOnFunction(Function &F) {
2850 MemorySanitizerVisitor Visitor(F, *this);
2851
2852 // Clear out readonly/readnone attributes.
2853 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002854 B.addAttribute(Attribute::ReadOnly)
2855 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002856 F.removeAttributes(AttributeSet::FunctionIndex,
2857 AttributeSet::get(F.getContext(),
2858 AttributeSet::FunctionIndex, B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002859
2860 return Visitor.runOnFunction();
2861}