blob: 2f44d610840913daf6880cfa51884f41ca1b23f0 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Keno Fischer1ec5dd82017-04-05 20:51:38 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000083 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000084 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000085 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000086 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000087 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000088 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Keno Fischer1ec5dd82017-04-05 20:51:38 +000098unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
99 return getRegisterBitWidth(true);
100}
101
Wei Mi062c7442015-05-06 17:12:25 +0000102unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
103 // If the loop will not be vectorized, don't interleave the loop.
104 // Let regular unroll to unroll the loop, which saves the overflow
105 // check and memory check cost.
106 if (VF == 1)
107 return 1;
108
Nadav Rotemb696c362013-01-09 01:15:42 +0000109 if (ST->isAtom())
110 return 1;
111
112 // Sandybridge and Haswell have multiple execution ports and pipelined
113 // vector units.
114 if (ST->hasAVX())
115 return 4;
116
117 return 2;
118}
119
Chandler Carruth93205eb2015-08-05 18:08:10 +0000120int X86TTIImpl::getArithmeticInstrCost(
Simon Pilgrim3e5b5252017-01-20 15:15:59 +0000121 unsigned Opcode, Type *Ty,
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000122 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
123 TTI::OperandValueProperties Opd1PropInfo,
124 TTI::OperandValueProperties Opd2PropInfo,
125 ArrayRef<const Value *> Args) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000126 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000127 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000128
129 int ISD = TLI->InstructionOpcodeToISD(Opcode);
130 assert(ISD && "Invalid opcode");
131
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000132 static const CostTblEntry SLMCostTable[] = {
133 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
134 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
135 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
136 { ISD::FMUL, MVT::f64, 2 }, // mulsd
137 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
138 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
139 { ISD::FDIV, MVT::f32, 17 }, // divss
140 { ISD::FDIV, MVT::v4f32, 39 }, // divps
141 { ISD::FDIV, MVT::f64, 32 }, // divsd
142 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
143 { ISD::FADD, MVT::v2f64, 2 }, // addpd
144 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
Mohammed Agabariaeb09a812017-07-02 12:16:15 +0000145 // v2i64/v4i64 mul is custom lowered as a series of long:
146 // multiplies(3), shifts(3) and adds(2)
Simon Pilgrim7b89ab52017-07-31 17:09:27 +0000147 // slm muldq version throughput is 2 and addq throughput 4
Mohammed Agabariaeb09a812017-07-02 12:16:15 +0000148 // thus: 3X2 (muldq throughput) + 3X1 (shift throuput) +
Simon Pilgrim7b89ab52017-07-31 17:09:27 +0000149 // 3X4 (addq throughput) = 17
Mohammed Agabariaeb09a812017-07-02 12:16:15 +0000150 { ISD::MUL, MVT::v2i64, 17 },
151 // slm addq\subq throughput is 4
152 { ISD::ADD, MVT::v2i64, 4 },
153 { ISD::SUB, MVT::v2i64, 4 },
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000154 };
155
156 if (ST->isSLM()) {
157 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
158 // Check if the operands can be shrinked into a smaller datatype.
159 bool Op1Signed = false;
160 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
161 bool Op2Signed = false;
162 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
163
164 bool signedMode = Op1Signed | Op2Signed;
165 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
166
167 if (OpMinSize <= 7)
168 return LT.first * 3; // pmullw/sext
169 if (!signedMode && OpMinSize <= 8)
170 return LT.first * 3; // pmullw/zext
171 if (OpMinSize <= 15)
172 return LT.first * 5; // pmullw/pmulhw/pshuf
173 if (!signedMode && OpMinSize <= 16)
174 return LT.first * 5; // pmullw/pmulhw/pshuf
175 }
176 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
177 LT.second)) {
178 return LT.first * Entry->Cost;
179 }
180 }
181
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000182 if (ISD == ISD::SDIV &&
183 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
184 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
185 // On X86, vector signed division by constants power-of-two are
186 // normally expanded to the sequence SRA + SRL + ADD + SRA.
187 // The OperandValue properties many not be same as that of previous
188 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000189 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
190 Op2Info, TargetTransformInfo::OP_None,
191 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000192 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
193 TargetTransformInfo::OP_None,
194 TargetTransformInfo::OP_None);
195 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
196 TargetTransformInfo::OP_None,
197 TargetTransformInfo::OP_None);
198
199 return Cost;
200 }
201
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000202 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000203 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
204 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
205 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
206
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000207 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
208 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
209 };
210
211 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
212 ST->hasBWI()) {
213 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
214 LT.second))
215 return LT.first * Entry->Cost;
216 }
217
218 static const CostTblEntry AVX512UniformConstCostTable[] = {
Simon Pilgrimd419b732017-01-14 19:24:23 +0000219 { ISD::SRA, MVT::v2i64, 1 },
220 { ISD::SRA, MVT::v4i64, 1 },
221 { ISD::SRA, MVT::v8i64, 1 },
222
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000223 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
224 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
225 };
226
227 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
228 ST->hasAVX512()) {
229 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
230 LT.second))
231 return LT.first * Entry->Cost;
232 }
233
Craig Topper4b275762015-10-28 04:02:12 +0000234 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000235 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
236 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
237 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
238
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000239 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
240
Benjamin Kramer7c372272014-04-26 14:53:05 +0000241 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
242 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
243 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
244 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
245 };
246
247 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
248 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000249 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
250 LT.second))
251 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000252 }
253
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000254 static const CostTblEntry SSE2UniformConstCostTable[] = {
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000255 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
256 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
257 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
Simon Pilgrim9c589502017-01-08 14:14:36 +0000258
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000259 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split.
260 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split.
261 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
Simon Pilgrim9c589502017-01-08 14:14:36 +0000262
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000263 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
264 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
265 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
266 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
267 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split.
268 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
269 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split.
270 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000271 };
272
273 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
274 ST->hasSSE2()) {
275 // pmuldq sequence.
276 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
Simon Pilgrimd3f0d032017-05-14 18:52:15 +0000277 return LT.first * 32;
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000278 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
279 return LT.first * 15;
280
Simon Pilgrim5bef9c62017-05-14 17:59:46 +0000281 // XOP has faster vXi8 shifts.
282 if ((ISD != ISD::SHL && ISD != ISD::SRL && ISD != ISD::SRA) ||
283 !ST->hasXOP())
284 if (const auto *Entry =
285 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
286 return LT.first * Entry->Cost;
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000287 }
288
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000289 static const CostTblEntry AVX2UniformCostTable[] = {
290 // Uniform splats are cheaper for the following instructions.
291 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
292 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
293 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
294 };
295
296 if (ST->hasAVX2() &&
297 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
298 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
299 if (const auto *Entry =
300 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
301 return LT.first * Entry->Cost;
302 }
303
304 static const CostTblEntry SSE2UniformCostTable[] = {
305 // Uniform splats are cheaper for the following instructions.
306 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
307 { ISD::SHL, MVT::v4i32, 1 }, // pslld
308 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
309
310 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
311 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
312 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
313
314 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
315 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
316 };
317
318 if (ST->hasSSE2() &&
319 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
320 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
321 if (const auto *Entry =
322 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
323 return LT.first * Entry->Cost;
324 }
325
Simon Pilgrim820e1322016-10-27 15:27:00 +0000326 static const CostTblEntry AVX512DQCostTable[] = {
327 { ISD::MUL, MVT::v2i64, 1 },
328 { ISD::MUL, MVT::v4i64, 1 },
329 { ISD::MUL, MVT::v8i64, 1 }
330 };
331
332 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000333 if (ST->hasDQI())
334 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000335 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000336
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000337 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrim6ed996c2017-01-15 20:44:00 +0000338 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw
339 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw
340 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw
341
342 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw
343 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw
344 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw
345
Simon Pilgrima4109d62017-01-07 17:54:10 +0000346 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
347 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
348 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
349
Simon Pilgrim5a81fef2017-01-11 10:36:51 +0000350 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
351 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
352 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
353
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000354 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
355 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
356 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
357
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000358 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
359 { ISD::SDIV, MVT::v64i8, 64*20 },
360 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000361 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000362 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000363 };
364
365 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000366 if (ST->hasBWI())
367 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000368 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000369
Craig Topper4b275762015-10-28 04:02:12 +0000370 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000371 { ISD::SHL, MVT::v16i32, 1 },
372 { ISD::SRL, MVT::v16i32, 1 },
373 { ISD::SRA, MVT::v16i32, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000374
Simon Pilgrimd8333372017-01-06 11:12:53 +0000375 { ISD::SHL, MVT::v8i64, 1 },
376 { ISD::SRL, MVT::v8i64, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000377
378 { ISD::SRA, MVT::v2i64, 1 },
379 { ISD::SRA, MVT::v4i64, 1 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000380 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000381
Simon Pilgrimd8333372017-01-06 11:12:53 +0000382 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
383 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
384 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
385 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
386
387 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
388 { ISD::SDIV, MVT::v16i32, 16*20 },
389 { ISD::SDIV, MVT::v8i64, 8*20 },
390 { ISD::UDIV, MVT::v16i32, 16*20 },
391 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000392 };
393
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000394 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000395 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
396 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000397
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000398 static const CostTblEntry AVX2ShiftCostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000399 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
400 // customize them to detect the cases where shift amount is a scalar one.
401 { ISD::SHL, MVT::v4i32, 1 },
402 { ISD::SRL, MVT::v4i32, 1 },
403 { ISD::SRA, MVT::v4i32, 1 },
404 { ISD::SHL, MVT::v8i32, 1 },
405 { ISD::SRL, MVT::v8i32, 1 },
406 { ISD::SRA, MVT::v8i32, 1 },
407 { ISD::SHL, MVT::v2i64, 1 },
408 { ISD::SRL, MVT::v2i64, 1 },
409 { ISD::SHL, MVT::v4i64, 1 },
410 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000411 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000412
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000413 // Look for AVX2 lowering tricks.
414 if (ST->hasAVX2()) {
415 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
416 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
417 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
418 // On AVX2, a packed v16i16 shift left by a constant build_vector
419 // is lowered into a vector multiply (vpmullw).
420 return LT.first;
421
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000422 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000423 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000424 }
425
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000426 static const CostTblEntry XOPShiftCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000427 // 128bit shifts take 1cy, but right shifts require negation beforehand.
428 { ISD::SHL, MVT::v16i8, 1 },
429 { ISD::SRL, MVT::v16i8, 2 },
430 { ISD::SRA, MVT::v16i8, 2 },
431 { ISD::SHL, MVT::v8i16, 1 },
432 { ISD::SRL, MVT::v8i16, 2 },
433 { ISD::SRA, MVT::v8i16, 2 },
434 { ISD::SHL, MVT::v4i32, 1 },
435 { ISD::SRL, MVT::v4i32, 2 },
436 { ISD::SRA, MVT::v4i32, 2 },
437 { ISD::SHL, MVT::v2i64, 1 },
438 { ISD::SRL, MVT::v2i64, 2 },
439 { ISD::SRA, MVT::v2i64, 2 },
440 // 256bit shifts require splitting if AVX2 didn't catch them above.
Simon Pilgrim4599eaa2017-05-14 13:38:53 +0000441 { ISD::SHL, MVT::v32i8, 2+2 },
442 { ISD::SRL, MVT::v32i8, 4+2 },
443 { ISD::SRA, MVT::v32i8, 4+2 },
444 { ISD::SHL, MVT::v16i16, 2+2 },
445 { ISD::SRL, MVT::v16i16, 4+2 },
446 { ISD::SRA, MVT::v16i16, 4+2 },
447 { ISD::SHL, MVT::v8i32, 2+2 },
448 { ISD::SRL, MVT::v8i32, 4+2 },
449 { ISD::SRA, MVT::v8i32, 4+2 },
450 { ISD::SHL, MVT::v4i64, 2+2 },
451 { ISD::SRL, MVT::v4i64, 4+2 },
452 { ISD::SRA, MVT::v4i64, 4+2 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000453 };
454
455 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000456 if (ST->hasXOP())
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000457 if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000458 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000459
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000460 static const CostTblEntry SSE2UniformShiftCostTable[] = {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000461 // Uniform splats are cheaper for the following instructions.
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000462 { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split.
463 { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split.
464 { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000465
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000466 { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split.
467 { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split.
468 { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000469
Simon Pilgrimde4467b2017-05-14 20:02:34 +0000470 { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split.
471 { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split.
472 { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle.
473 { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000474 };
475
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000476 if (ST->hasSSE2() &&
477 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
478 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Simon Pilgrimf96b4ab2017-05-14 20:25:42 +0000479
480 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
481 if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
482 return LT.first * 4; // 2*psrad + shuffle.
483
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000484 if (const auto *Entry =
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000485 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000486 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000487 }
488
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000489 if (ISD == ISD::SHL &&
490 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000491 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000492 // Vector shift left by non uniform constant can be lowered
Simon Pilgrime70644d2017-01-07 21:33:00 +0000493 // into vector multiply.
494 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
495 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000496 ISD = ISD::MUL;
497 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000498
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000499 static const CostTblEntry AVX2CostTable[] = {
500 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
501 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
502
503 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
504 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
505
506 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
507 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
508 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
509 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
510
511 { ISD::SUB, MVT::v32i8, 1 }, // psubb
512 { ISD::ADD, MVT::v32i8, 1 }, // paddb
513 { ISD::SUB, MVT::v16i16, 1 }, // psubw
514 { ISD::ADD, MVT::v16i16, 1 }, // paddw
515 { ISD::SUB, MVT::v8i32, 1 }, // psubd
516 { ISD::ADD, MVT::v8i32, 1 }, // paddd
517 { ISD::SUB, MVT::v4i64, 1 }, // psubq
518 { ISD::ADD, MVT::v4i64, 1 }, // paddq
519
520 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
521 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
522 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
523 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
524 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
525
526 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
527 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
528 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
529 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
530 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
531 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
532 };
533
534 // Look for AVX2 lowering tricks for custom cases.
535 if (ST->hasAVX2())
536 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
537 return LT.first * Entry->Cost;
538
Simon Pilgrim100eae12017-01-07 17:03:51 +0000539 static const CostTblEntry AVX1CostTable[] = {
540 // We don't have to scalarize unsupported ops. We can issue two half-sized
541 // operations and we only need to extract the upper YMM half.
542 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000543 { ISD::MUL, MVT::v16i16, 4 },
544 { ISD::MUL, MVT::v8i32, 4 },
545 { ISD::SUB, MVT::v32i8, 4 },
546 { ISD::ADD, MVT::v32i8, 4 },
547 { ISD::SUB, MVT::v16i16, 4 },
548 { ISD::ADD, MVT::v16i16, 4 },
549 { ISD::SUB, MVT::v8i32, 4 },
550 { ISD::ADD, MVT::v8i32, 4 },
551 { ISD::SUB, MVT::v4i64, 4 },
552 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000553
554 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
555 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
556 // Because we believe v4i64 to be a legal type, we must also include the
557 // extract+insert in the cost table. Therefore, the cost here is 18
558 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000559 { ISD::MUL, MVT::v4i64, 18 },
560
561 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
562
563 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
564 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
565 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
566 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
567 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
568 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
569
570 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
571 { ISD::SDIV, MVT::v32i8, 32*20 },
572 { ISD::SDIV, MVT::v16i16, 16*20 },
573 { ISD::SDIV, MVT::v8i32, 8*20 },
574 { ISD::SDIV, MVT::v4i64, 4*20 },
575 { ISD::UDIV, MVT::v32i8, 32*20 },
576 { ISD::UDIV, MVT::v16i16, 16*20 },
577 { ISD::UDIV, MVT::v8i32, 8*20 },
578 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000579 };
580
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000581 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000582 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
583 return LT.first * Entry->Cost;
584
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000585 static const CostTblEntry SSE42CostTable[] = {
586 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
587 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
588 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
589 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
590 };
591
592 if (ST->hasSSE42())
593 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
594 return LT.first * Entry->Cost;
595
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000596 static const CostTblEntry SSE41CostTable[] = {
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000597 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
598 { ISD::SHL, MVT::v32i8, 2*11+2 }, // pblendvb sequence + split.
599 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
600 { ISD::SHL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
601 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
602 { ISD::SHL, MVT::v8i32, 2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000603
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000604 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
605 { ISD::SRL, MVT::v32i8, 2*12+2 }, // pblendvb sequence + split.
606 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
607 { ISD::SRL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
608 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
609 { ISD::SRL, MVT::v8i32, 2*11+2 }, // Shift each lane + blend + split.
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000610
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000611 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
612 { ISD::SRA, MVT::v32i8, 2*24+2 }, // pblendvb sequence + split.
613 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
614 { ISD::SRA, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
615 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
616 { ISD::SRA, MVT::v8i32, 2*12+2 }, // Shift each lane + blend + split.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000617
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000618 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000619 };
620
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000621 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000622 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
623 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000624
Craig Topper4b275762015-10-28 04:02:12 +0000625 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000626 // We don't correctly identify costs of casts because they are marked as
627 // custom.
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000628 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
629 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
630 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
631 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
632 { ISD::SHL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000633
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000634 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
635 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
636 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
637 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
638 { ISD::SRL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000639
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000640 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
641 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
642 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
643 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
644 { ISD::SRA, MVT::v4i64, 2*12+2 }, // srl/xor/sub sequence+split.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000645
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000646 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
647 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
648 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
649 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000650
Simon Pilgrimd0ef9d82017-05-14 20:52:11 +0000651 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
652 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
653 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
654 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
Alexey Bataevd07c7312016-10-31 12:10:53 +0000655
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000656 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000657 // in the process we will often end up having to spilling regular
658 // registers. The overhead of division is going to dominate most kernels
659 // anyways so try hard to prevent vectorization of division - it is
660 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
661 // to hide "20 cycles" for each lane.
662 { ISD::SDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000663 { ISD::SDIV, MVT::v8i16, 8*20 },
664 { ISD::SDIV, MVT::v4i32, 4*20 },
665 { ISD::SDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000666 { ISD::UDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000667 { ISD::UDIV, MVT::v8i16, 8*20 },
668 { ISD::UDIV, MVT::v4i32, 4*20 },
669 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000670 };
671
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000672 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000673 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
674 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000675
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000676 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000677 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
678 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
679 };
680
681 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000682 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000683 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000684
Chandler Carruth664e3542013-01-07 01:37:14 +0000685 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000686 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000687}
688
Chandler Carruth93205eb2015-08-05 18:08:10 +0000689int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
690 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000691 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
692 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
693 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000694
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000695 // For Broadcasts we are splatting the first element from the first input
696 // register, so only need to reference that input and all the output
697 // registers are the same.
698 if (Kind == TTI::SK_Broadcast)
699 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000700
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000701 // We are going to permute multiple sources and the result will be in multiple
702 // destinations. Providing an accurate cost only for splits where the element
703 // type remains the same.
704 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
705 MVT LegalVT = LT.second;
706 if (LegalVT.getVectorElementType().getSizeInBits() ==
707 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
708 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000709
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000710 unsigned VecTySize = DL.getTypeStoreSize(Tp);
711 unsigned LegalVTSize = LegalVT.getStoreSize();
712 // Number of source vectors after legalization:
713 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
714 // Number of destination vectors after legalization:
715 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000716
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000717 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
718 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000719
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000720 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
721 return NumOfShuffles *
722 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
723 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000724
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000725 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
726 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000727
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000728 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
729 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000730 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000731 int NumOfDests = LT.first;
732 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000733 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000734 }
735
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000736 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
737 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
738 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
739
740 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
741 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
742
743 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
744 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
745 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
746 };
747
748 if (ST->hasVBMI())
749 if (const auto *Entry =
750 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
751 return LT.first * Entry->Cost;
752
753 static const CostTblEntry AVX512BWShuffleTbl[] = {
754 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
755 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
756
757 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
758 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000759 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000760
761 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
762 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
763 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
764 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
765 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
766
767 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
768 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
769 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
770 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
771 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
772 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
773 };
774
775 if (ST->hasBWI())
776 if (const auto *Entry =
777 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
778 return LT.first * Entry->Cost;
779
780 static const CostTblEntry AVX512ShuffleTbl[] = {
781 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
782 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
783 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
784 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
785
786 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
787 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
788 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
789 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
790
791 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
792 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
793 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
794 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
795 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
796 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
797 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
798 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
799 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
800 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
801 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
802 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
803 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
804
805 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
806 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
807 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
808 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
809 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
810 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
811 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
812 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
813 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
814 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
815 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
816 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
817 };
818
819 if (ST->hasAVX512())
820 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
821 return LT.first * Entry->Cost;
822
823 static const CostTblEntry AVX2ShuffleTbl[] = {
824 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
825 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
826 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
827 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
828 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
829 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
830
831 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
832 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
833 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
834 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
835 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
836 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
837
838 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000839 { TTI::SK_Alternate, MVT::v32i8, 1 }, // vpblendvb
840
Simon Pilgrim702e5fa2017-08-10 17:27:20 +0000841 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
842 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000843 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
844 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
Simon Pilgrimac2e50a2017-08-10 18:29:34 +0000845 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 4 }, // vperm2i128 + 2*vpshufb
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000846 // + vpblendvb
Simon Pilgrimac2e50a2017-08-10 18:29:34 +0000847 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 4 }, // vperm2i128 + 2*vpshufb
848 // + vpblendvb
849
850 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 3 }, // 2*vpermpd + vblendpd
851 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 3 }, // 2*vpermps + vblendps
852 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 3 }, // 2*vpermq + vpblendd
853 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 3 }, // 2*vpermd + vpblendd
854 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 7 }, // 2*vperm2i128 + 4*vpshufb
855 // + vpblendvb
856 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 7 }, // 2*vperm2i128 + 4*vpshufb
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000857 // + vpblendvb
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000858 };
859
860 if (ST->hasAVX2())
861 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
862 return LT.first * Entry->Cost;
863
Simon Pilgrimc63f93a2017-08-16 13:50:20 +0000864 static const CostTblEntry XOPShuffleTbl[] = {
865 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 2 }, // vperm2f128 + vpermil2pd
866 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 2 }, // vperm2f128 + vpermil2ps
867 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 2 }, // vperm2f128 + vpermil2pd
868 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 2 }, // vperm2f128 + vpermil2ps
869 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 4 }, // vextractf128 + 2*vpperm
870 // + vinsertf128
871 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 4 }, // vextractf128 + 2*vpperm
872 // + vinsertf128
873
874 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 9 }, // 2*vextractf128 + 6*vpperm
875 // + vinsertf128
876 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpperm
877 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 9 }, // 2*vextractf128 + 6*vpperm
878 // + vinsertf128
879 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 }, // vpperm
880 };
881
882 if (ST->hasXOP())
883 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
884 return LT.first * Entry->Cost;
885
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000886 static const CostTblEntry AVX1ShuffleTbl[] = {
887 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
888 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
889 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
890 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
891 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
892 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
893
894 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
895 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
896 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
897 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
898 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
899 // + vinsertf128
900 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
901 // + vinsertf128
902
903 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
904 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
905 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
906 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
907 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
Simon Pilgrim702e5fa2017-08-10 17:27:20 +0000908 { TTI::SK_Alternate, MVT::v32i8, 3 }, // vpand + vpandn + vpor
909
910 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 3 }, // 2*vperm2f128 + vshufpd
911 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 3 }, // 2*vperm2f128 + vshufpd
912 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 4 }, // 2*vperm2f128 + 2*vshufps
913 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 4 }, // 2*vperm2f128 + 2*vshufps
914 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 8 }, // vextractf128 + 4*pshufb
915 // + 2*por + vinsertf128
916 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 8 }, // vextractf128 + 4*pshufb
917 // + 2*por + vinsertf128
Simon Pilgrim73545312017-08-10 19:02:51 +0000918
919 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 4 }, // 2*vperm2f128 + 2*vshufpd
920 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 4 }, // 2*vperm2f128 + 2*vshufps
921 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 4 }, // 2*vperm2f128 + 2*vshufpd
922 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 4 }, // 2*vperm2f128 + 2*vshufps
923 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 15 }, // 2*vextractf128 + 8*pshufb
924 // + 4*por + vinsertf128
925 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 15 }, // 2*vextractf128 + 8*pshufb
926 // + 4*por + vinsertf128
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000927 };
928
929 if (ST->hasAVX())
930 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
931 return LT.first * Entry->Cost;
932
933 static const CostTblEntry SSE41ShuffleTbl[] = {
934 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
935 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
936 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
937 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
938 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
939 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
940 };
941
942 if (ST->hasSSE41())
943 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
944 return LT.first * Entry->Cost;
945
946 static const CostTblEntry SSSE3ShuffleTbl[] = {
947 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
948 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
949
950 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
951 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
952
Simon Pilgrim702e5fa2017-08-10 17:27:20 +0000953 { TTI::SK_Alternate, MVT::v8i16, 3 }, // 2*pshufb + por
954 { TTI::SK_Alternate, MVT::v16i8, 3 }, // 2*pshufb + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000955
956 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // pshufb
Simon Pilgrim702e5fa2017-08-10 17:27:20 +0000957 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
958
959 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 3 }, // 2*pshufb + por
960 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 }, // 2*pshufb + por
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000961 };
962
963 if (ST->hasSSSE3())
964 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
965 return LT.first * Entry->Cost;
966
967 static const CostTblEntry SSE2ShuffleTbl[] = {
968 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
969 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
970 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
Simon Pilgrim702e5fa2017-08-10 17:27:20 +0000971 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000972 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
973
974 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
975 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
976 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
Simon Pilgrim702e5fa2017-08-10 17:27:20 +0000977 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000978 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
979 // + 2*pshufd + 2*unpck + packus
980
981 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
982 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
983 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
984 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000985 { TTI::SK_Alternate, MVT::v16i8, 3 }, // pand + pandn + por
986
Simon Pilgrim702e5fa2017-08-10 17:27:20 +0000987 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // shufpd
988 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // pshufd
989 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // pshufd
990 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 5 }, // 2*pshuflw + 2*pshufhw
991 // + pshufd/unpck
992 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
993 // + 2*pshufd + 2*unpck + 2*packus
994
995 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd
996 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd
997 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd}
Simon Pilgrimb59c2d92017-08-10 19:32:35 +0000998 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute
999 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001000 };
1001
1002 if (ST->hasSSE2())
1003 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1004 return LT.first * Entry->Cost;
1005
1006 static const CostTblEntry SSE1ShuffleTbl[] = {
Simon Pilgrim702e5fa2017-08-10 17:27:20 +00001007 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
1008 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
1009 { TTI::SK_Alternate, MVT::v4f32, 2 }, // 2*shufps
1010 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1011 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps
Simon Pilgrimf74700a2017-01-05 17:56:19 +00001012 };
1013
1014 if (ST->hasSSE1())
1015 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1016 return LT.first * Entry->Cost;
1017
Chandler Carruth705b1852015-01-31 03:43:40 +00001018 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +00001019}
1020
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001021int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1022 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001023 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1024 assert(ISD && "Invalid opcode");
1025
Cong Hou59898d82015-12-11 00:31:39 +00001026 // FIXME: Need a better design of the cost table to handle non-simple types of
1027 // potential massive combinations (elem_num x src_type x dst_type).
1028
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001029 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +00001030 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
1031 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +00001032 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
1033 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +00001034 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
1035 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
1036
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001037 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001038 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001039 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001040 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001041 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001042 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001043
Simon Pilgrim841d7ca2016-11-24 14:46:55 +00001044 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +00001045 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +00001046 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +00001047 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +00001048 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +00001049 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
1050
1051 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
1052 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
1053 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
1054 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
1055 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
1056 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001057 };
1058
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001059 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1060 // 256-bit wide vectors.
1061
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001062 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001063 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
1064 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
1065 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001066
1067 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
1068 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
1069 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
1070 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001071
1072 // v16i1 -> v16i32 - load + broadcast
1073 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
1074 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001075 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1076 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1077 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1078 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001079 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1080 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001081 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1082 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001083
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001084 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001085 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001086 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001087 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001088 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001089 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
1090 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001091 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001092 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
1093 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001094
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001095 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001096 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001097 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001098 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
1099 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
1100 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
1101 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001102 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001103 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
1104 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1105 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1106 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001107 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001108 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001109 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1110 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1111 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1112 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1113 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001114 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001115 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1116 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
1117 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
1118
1119 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1120 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1121 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
1122 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001123 };
1124
Craig Topper4b275762015-10-28 04:02:12 +00001125 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001126 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1127 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001128 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1129 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001130 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
1131 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001132 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1133 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1134 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1135 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001136 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1137 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001138 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1139 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001140 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1141 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1142
1143 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
1144 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
1145 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
1146 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
1147 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1148 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001149
1150 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1151 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +00001152
1153 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001154 };
1155
Craig Topper4b275762015-10-28 04:02:12 +00001156 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001157 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1158 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001159 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1160 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001161 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
1162 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001163 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1164 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1165 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1166 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001167 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1168 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001169 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1170 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001171 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1172 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1173
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001174 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1175 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1176 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001177 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1178 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1179 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001180 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001181
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001182 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001183 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001184 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1185 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001186 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001187 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1188 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001189 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001190 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1191 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001192 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001193 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001194
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001195 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001196 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001197 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1198 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001199 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001200 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1201 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001202 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001203 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001204 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001205 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001206 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001207 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001208 // The generic code to compute the scalar overhead is currently broken.
1209 // Workaround this limitation by estimating the scalarization overhead
1210 // here. We have roughly 10 instructions per scalar element.
1211 // Multiply that by the vector width.
1212 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001213 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1214 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1215 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1216 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001217
Renato Goline1fb0592013-01-20 20:57:20 +00001218 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001219 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001220 // This node is expanded into scalarized operations but BasicTTI is overly
1221 // optimistic estimating its cost. It computes 3 per element (one
1222 // vector-extract, one scalar conversion and one vector-insert). The
1223 // problem is that the inserts form a read-modify-write chain so latency
1224 // should be factored in too. Inflating the cost per element by 1.
1225 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001226 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001227
1228 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1229 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001230 };
1231
Cong Hou59898d82015-12-11 00:31:39 +00001232 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001233 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1234 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001235 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1236 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1237 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1238 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001239
Cong Hou59898d82015-12-11 00:31:39 +00001240 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1241 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001242 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1243 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1244 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1245 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1246 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1247 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1248 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1249 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1250 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1251 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1252 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1253 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1254 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1255 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1256 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1257 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001258
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001259 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1260 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1261 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001262 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001263 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001264 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001265 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1266
Cong Hou59898d82015-12-11 00:31:39 +00001267 };
1268
1269 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001270 // These are somewhat magic numbers justified by looking at the output of
1271 // Intel's IACA, running some kernels and making sure when we take
1272 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001273 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001274 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1275 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1276 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001277 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001278 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1279 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1280 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001281
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001282 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1283 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1284 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1285 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1286 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1287 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1288 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1289 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001290
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001291 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1292
Cong Hou59898d82015-12-11 00:31:39 +00001293 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1294 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001295 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1296 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1297 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1298 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1299 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1300 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1301 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1302 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1303 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1304 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1305 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1306 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1307 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1308 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1309 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1310 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1311 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1312 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1313 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001314 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001315 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1316 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001317
Cong Hou59898d82015-12-11 00:31:39 +00001318 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001319 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1320 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1321 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1322 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1323 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1324 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1325 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1326 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001327 };
1328
Chandler Carruth93205eb2015-08-05 18:08:10 +00001329 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1330 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001331
1332 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001333 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001334 LTDest.second, LTSrc.second))
1335 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001336 }
1337
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001338 EVT SrcTy = TLI->getValueType(DL, Src);
1339 EVT DstTy = TLI->getValueType(DL, Dst);
1340
1341 // The function getSimpleVT only handles simple value types.
1342 if (!SrcTy.isSimple() || !DstTy.isSimple())
1343 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1344
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001345 if (ST->hasDQI())
1346 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1347 DstTy.getSimpleVT(),
1348 SrcTy.getSimpleVT()))
1349 return Entry->Cost;
1350
1351 if (ST->hasAVX512())
1352 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1353 DstTy.getSimpleVT(),
1354 SrcTy.getSimpleVT()))
1355 return Entry->Cost;
1356
Tim Northoverf0e21612014-02-06 18:18:36 +00001357 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001358 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1359 DstTy.getSimpleVT(),
1360 SrcTy.getSimpleVT()))
1361 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001362 }
1363
Chandler Carruth664e3542013-01-07 01:37:14 +00001364 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001365 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1366 DstTy.getSimpleVT(),
1367 SrcTy.getSimpleVT()))
1368 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001369 }
1370
Cong Hou59898d82015-12-11 00:31:39 +00001371 if (ST->hasSSE41()) {
1372 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1373 DstTy.getSimpleVT(),
1374 SrcTy.getSimpleVT()))
1375 return Entry->Cost;
1376 }
1377
1378 if (ST->hasSSE2()) {
1379 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1380 DstTy.getSimpleVT(),
1381 SrcTy.getSimpleVT()))
1382 return Entry->Cost;
1383 }
1384
Chandler Carruth705b1852015-01-31 03:43:40 +00001385 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001386}
1387
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001388int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1389 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001390 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001391 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001392
1393 MVT MTy = LT.second;
1394
1395 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1396 assert(ISD && "Invalid opcode");
1397
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001398 static const CostTblEntry SSE2CostTbl[] = {
1399 { ISD::SETCC, MVT::v2i64, 8 },
1400 { ISD::SETCC, MVT::v4i32, 1 },
1401 { ISD::SETCC, MVT::v8i16, 1 },
1402 { ISD::SETCC, MVT::v16i8, 1 },
1403 };
1404
Craig Topper4b275762015-10-28 04:02:12 +00001405 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001406 { ISD::SETCC, MVT::v2f64, 1 },
1407 { ISD::SETCC, MVT::v4f32, 1 },
1408 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001409 };
1410
Craig Topper4b275762015-10-28 04:02:12 +00001411 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001412 { ISD::SETCC, MVT::v4f64, 1 },
1413 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001414 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001415 { ISD::SETCC, MVT::v4i64, 4 },
1416 { ISD::SETCC, MVT::v8i32, 4 },
1417 { ISD::SETCC, MVT::v16i16, 4 },
1418 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001419 };
1420
Craig Topper4b275762015-10-28 04:02:12 +00001421 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001422 { ISD::SETCC, MVT::v4i64, 1 },
1423 { ISD::SETCC, MVT::v8i32, 1 },
1424 { ISD::SETCC, MVT::v16i16, 1 },
1425 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001426 };
1427
Craig Topper4b275762015-10-28 04:02:12 +00001428 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001429 { ISD::SETCC, MVT::v8i64, 1 },
1430 { ISD::SETCC, MVT::v16i32, 1 },
1431 { ISD::SETCC, MVT::v8f64, 1 },
1432 { ISD::SETCC, MVT::v16f32, 1 },
1433 };
1434
Craig Topperee0c8592015-10-27 04:14:24 +00001435 if (ST->hasAVX512())
1436 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1437 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001438
Craig Topperee0c8592015-10-27 04:14:24 +00001439 if (ST->hasAVX2())
1440 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1441 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001442
Craig Topperee0c8592015-10-27 04:14:24 +00001443 if (ST->hasAVX())
1444 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1445 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001446
Craig Topperee0c8592015-10-27 04:14:24 +00001447 if (ST->hasSSE42())
1448 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1449 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001450
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001451 if (ST->hasSSE2())
1452 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1453 return LT.first * Entry->Cost;
1454
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001455 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
Chandler Carruth664e3542013-01-07 01:37:14 +00001456}
1457
Anna Thomasb2a212c2017-06-06 16:45:25 +00001458unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
1459
Simon Pilgrim14000b32016-05-24 08:17:50 +00001460int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001461 ArrayRef<Type *> Tys, FastMathFlags FMF,
1462 unsigned ScalarizationCostPassed) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001463 // Costs should match the codegen from:
1464 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1465 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001466 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001467 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001468 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001469 static const CostTblEntry AVX512CDCostTbl[] = {
1470 { ISD::CTLZ, MVT::v8i64, 1 },
1471 { ISD::CTLZ, MVT::v16i32, 1 },
1472 { ISD::CTLZ, MVT::v32i16, 8 },
1473 { ISD::CTLZ, MVT::v64i8, 20 },
1474 { ISD::CTLZ, MVT::v4i64, 1 },
1475 { ISD::CTLZ, MVT::v8i32, 1 },
1476 { ISD::CTLZ, MVT::v16i16, 4 },
1477 { ISD::CTLZ, MVT::v32i8, 10 },
1478 { ISD::CTLZ, MVT::v2i64, 1 },
1479 { ISD::CTLZ, MVT::v4i32, 1 },
1480 { ISD::CTLZ, MVT::v8i16, 4 },
1481 { ISD::CTLZ, MVT::v16i8, 4 },
1482 };
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001483 static const CostTblEntry AVX512BWCostTbl[] = {
1484 { ISD::BITREVERSE, MVT::v8i64, 5 },
1485 { ISD::BITREVERSE, MVT::v16i32, 5 },
1486 { ISD::BITREVERSE, MVT::v32i16, 5 },
1487 { ISD::BITREVERSE, MVT::v64i8, 5 },
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001488 { ISD::CTLZ, MVT::v8i64, 23 },
1489 { ISD::CTLZ, MVT::v16i32, 22 },
1490 { ISD::CTLZ, MVT::v32i16, 18 },
1491 { ISD::CTLZ, MVT::v64i8, 17 },
Simon Pilgrim6bba6062017-05-18 10:42:34 +00001492 { ISD::CTPOP, MVT::v8i64, 7 },
1493 { ISD::CTPOP, MVT::v16i32, 11 },
1494 { ISD::CTPOP, MVT::v32i16, 9 },
1495 { ISD::CTPOP, MVT::v64i8, 6 },
Simon Pilgrimd0365962017-05-17 20:22:54 +00001496 { ISD::CTTZ, MVT::v8i64, 10 },
1497 { ISD::CTTZ, MVT::v16i32, 14 },
1498 { ISD::CTTZ, MVT::v32i16, 12 },
1499 { ISD::CTTZ, MVT::v64i8, 9 },
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001500 };
1501 static const CostTblEntry AVX512CostTbl[] = {
1502 { ISD::BITREVERSE, MVT::v8i64, 36 },
1503 { ISD::BITREVERSE, MVT::v16i32, 24 },
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001504 { ISD::CTLZ, MVT::v8i64, 29 },
1505 { ISD::CTLZ, MVT::v16i32, 35 },
Simon Pilgrim6bba6062017-05-18 10:42:34 +00001506 { ISD::CTPOP, MVT::v8i64, 16 },
1507 { ISD::CTPOP, MVT::v16i32, 24 },
Simon Pilgrimd0365962017-05-17 20:22:54 +00001508 { ISD::CTTZ, MVT::v8i64, 20 },
1509 { ISD::CTTZ, MVT::v16i32, 28 },
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001510 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001511 static const CostTblEntry XOPCostTbl[] = {
1512 { ISD::BITREVERSE, MVT::v4i64, 4 },
1513 { ISD::BITREVERSE, MVT::v8i32, 4 },
1514 { ISD::BITREVERSE, MVT::v16i16, 4 },
1515 { ISD::BITREVERSE, MVT::v32i8, 4 },
1516 { ISD::BITREVERSE, MVT::v2i64, 1 },
1517 { ISD::BITREVERSE, MVT::v4i32, 1 },
1518 { ISD::BITREVERSE, MVT::v8i16, 1 },
1519 { ISD::BITREVERSE, MVT::v16i8, 1 },
1520 { ISD::BITREVERSE, MVT::i64, 3 },
1521 { ISD::BITREVERSE, MVT::i32, 3 },
1522 { ISD::BITREVERSE, MVT::i16, 3 },
1523 { ISD::BITREVERSE, MVT::i8, 3 }
1524 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001525 static const CostTblEntry AVX2CostTbl[] = {
1526 { ISD::BITREVERSE, MVT::v4i64, 5 },
1527 { ISD::BITREVERSE, MVT::v8i32, 5 },
1528 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001529 { ISD::BITREVERSE, MVT::v32i8, 5 },
1530 { ISD::BSWAP, MVT::v4i64, 1 },
1531 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001532 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001533 { ISD::CTLZ, MVT::v4i64, 23 },
1534 { ISD::CTLZ, MVT::v8i32, 18 },
1535 { ISD::CTLZ, MVT::v16i16, 14 },
1536 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001537 { ISD::CTPOP, MVT::v4i64, 7 },
1538 { ISD::CTPOP, MVT::v8i32, 11 },
1539 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001540 { ISD::CTPOP, MVT::v32i8, 6 },
1541 { ISD::CTTZ, MVT::v4i64, 10 },
1542 { ISD::CTTZ, MVT::v8i32, 14 },
1543 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001544 { ISD::CTTZ, MVT::v32i8, 9 },
1545 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1546 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1547 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1548 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1549 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1550 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001551 };
1552 static const CostTblEntry AVX1CostTbl[] = {
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001553 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert
1554 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert
1555 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
1556 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert
Simon Pilgrim356e8232016-06-20 23:08:21 +00001557 { ISD::BSWAP, MVT::v4i64, 4 },
1558 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001559 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001560 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert
1561 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert
1562 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
1563 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
1564 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert
1565 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert
1566 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
1567 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert
1568 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert
1569 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert
1570 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
1571 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
Alexey Bataevd07c7312016-10-31 12:10:53 +00001572 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1573 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1574 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1575 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1576 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1577 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1578 };
1579 static const CostTblEntry SSE42CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001580 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1581 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001582 };
1583 static const CostTblEntry SSSE3CostTbl[] = {
1584 { ISD::BITREVERSE, MVT::v2i64, 5 },
1585 { ISD::BITREVERSE, MVT::v4i32, 5 },
1586 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001587 { ISD::BITREVERSE, MVT::v16i8, 5 },
1588 { ISD::BSWAP, MVT::v2i64, 1 },
1589 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001590 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001591 { ISD::CTLZ, MVT::v2i64, 23 },
1592 { ISD::CTLZ, MVT::v4i32, 18 },
1593 { ISD::CTLZ, MVT::v8i16, 14 },
1594 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001595 { ISD::CTPOP, MVT::v2i64, 7 },
1596 { ISD::CTPOP, MVT::v4i32, 11 },
1597 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001598 { ISD::CTPOP, MVT::v16i8, 6 },
1599 { ISD::CTTZ, MVT::v2i64, 10 },
1600 { ISD::CTTZ, MVT::v4i32, 14 },
1601 { ISD::CTTZ, MVT::v8i16, 12 },
1602 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001603 };
1604 static const CostTblEntry SSE2CostTbl[] = {
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001605 { ISD::BITREVERSE, MVT::v2i64, 29 },
1606 { ISD::BITREVERSE, MVT::v4i32, 27 },
1607 { ISD::BITREVERSE, MVT::v8i16, 27 },
1608 { ISD::BITREVERSE, MVT::v16i8, 20 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001609 { ISD::BSWAP, MVT::v2i64, 7 },
1610 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001611 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001612 { ISD::CTLZ, MVT::v2i64, 25 },
1613 { ISD::CTLZ, MVT::v4i32, 26 },
1614 { ISD::CTLZ, MVT::v8i16, 20 },
1615 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001616 { ISD::CTPOP, MVT::v2i64, 12 },
1617 { ISD::CTPOP, MVT::v4i32, 15 },
1618 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001619 { ISD::CTPOP, MVT::v16i8, 10 },
1620 { ISD::CTTZ, MVT::v2i64, 14 },
1621 { ISD::CTTZ, MVT::v4i32, 18 },
1622 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001623 { ISD::CTTZ, MVT::v16i8, 13 },
1624 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1625 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1626 };
1627 static const CostTblEntry SSE1CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001628 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1629 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001630 };
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001631 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1632 { ISD::BITREVERSE, MVT::i64, 14 }
1633 };
1634 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1635 { ISD::BITREVERSE, MVT::i32, 14 },
1636 { ISD::BITREVERSE, MVT::i16, 14 },
1637 { ISD::BITREVERSE, MVT::i8, 11 }
1638 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001639
1640 unsigned ISD = ISD::DELETED_NODE;
1641 switch (IID) {
1642 default:
1643 break;
1644 case Intrinsic::bitreverse:
1645 ISD = ISD::BITREVERSE;
1646 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001647 case Intrinsic::bswap:
1648 ISD = ISD::BSWAP;
1649 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001650 case Intrinsic::ctlz:
1651 ISD = ISD::CTLZ;
1652 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001653 case Intrinsic::ctpop:
1654 ISD = ISD::CTPOP;
1655 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001656 case Intrinsic::cttz:
1657 ISD = ISD::CTTZ;
1658 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001659 case Intrinsic::sqrt:
1660 ISD = ISD::FSQRT;
1661 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001662 }
1663
1664 // Legalize the type.
1665 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1666 MVT MTy = LT.second;
1667
1668 // Attempt to lookup cost.
Simon Pilgrim23ef2672017-05-17 21:02:18 +00001669 if (ST->hasCDI())
1670 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
1671 return LT.first * Entry->Cost;
1672
Simon Pilgrima9a92a12017-05-17 19:20:20 +00001673 if (ST->hasBWI())
1674 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1675 return LT.first * Entry->Cost;
1676
1677 if (ST->hasAVX512())
1678 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1679 return LT.first * Entry->Cost;
1680
Simon Pilgrim14000b32016-05-24 08:17:50 +00001681 if (ST->hasXOP())
1682 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1683 return LT.first * Entry->Cost;
1684
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001685 if (ST->hasAVX2())
1686 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1687 return LT.first * Entry->Cost;
1688
1689 if (ST->hasAVX())
1690 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1691 return LT.first * Entry->Cost;
1692
Alexey Bataevd07c7312016-10-31 12:10:53 +00001693 if (ST->hasSSE42())
1694 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1695 return LT.first * Entry->Cost;
1696
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001697 if (ST->hasSSSE3())
1698 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1699 return LT.first * Entry->Cost;
1700
Simon Pilgrim356e8232016-06-20 23:08:21 +00001701 if (ST->hasSSE2())
1702 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1703 return LT.first * Entry->Cost;
1704
Alexey Bataevd07c7312016-10-31 12:10:53 +00001705 if (ST->hasSSE1())
1706 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1707 return LT.first * Entry->Cost;
1708
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001709 if (ST->is64Bit())
1710 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
1711 return LT.first * Entry->Cost;
1712
1713 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
1714 return LT.first * Entry->Cost;
1715
Jonas Paulssona48ea232017-03-14 06:35:36 +00001716 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001717}
1718
1719int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001720 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
1721 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001722}
1723
Chandler Carruth93205eb2015-08-05 18:08:10 +00001724int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001725 assert(Val->isVectorTy() && "This must be a vector type");
1726
Sanjay Patelaedc3472016-05-25 17:27:54 +00001727 Type *ScalarType = Val->getScalarType();
1728
Chandler Carruth664e3542013-01-07 01:37:14 +00001729 if (Index != -1U) {
1730 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001731 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001732
1733 // This type is legalized to a scalar type.
1734 if (!LT.second.isVector())
1735 return 0;
1736
1737 // The type may be split. Normalize the index to the new type.
1738 unsigned Width = LT.second.getVectorNumElements();
1739 Index = Index % Width;
1740
1741 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001742 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001743 return 0;
1744 }
1745
Sanjay Patelaedc3472016-05-25 17:27:54 +00001746 // Add to the base cost if we know that the extracted element of a vector is
1747 // destined to be moved to and used in the integer register file.
1748 int RegisterFileMoveCost = 0;
1749 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1750 RegisterFileMoveCost = 1;
1751
1752 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001753}
1754
Chandler Carruth93205eb2015-08-05 18:08:10 +00001755int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001756 unsigned AddressSpace, const Instruction *I) {
Alp Tokerf907b892013-12-05 05:44:44 +00001757 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001758 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1759 unsigned NumElem = VTy->getVectorNumElements();
1760
1761 // Handle a few common cases:
1762 // <3 x float>
1763 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1764 // Cost = 64 bit store + extract + 32 bit store.
1765 return 3;
1766
1767 // <3 x double>
1768 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1769 // Cost = 128 bit store + unpack + 64 bit store.
1770 return 3;
1771
Alp Tokerf907b892013-12-05 05:44:44 +00001772 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001773 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001774 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1775 AddressSpace);
1776 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1777 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001778 return NumElem * Cost + SplitCost;
1779 }
1780 }
1781
Chandler Carruth664e3542013-01-07 01:37:14 +00001782 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001783 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001784 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1785 "Invalid Opcode");
1786
1787 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001788 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001789
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001790 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1791 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1792 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1793 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001794
1795 return Cost;
1796}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001797
Chandler Carruth93205eb2015-08-05 18:08:10 +00001798int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1799 unsigned Alignment,
1800 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001801 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1802 if (!SrcVTy)
1803 // To calculate scalar take the regular cost, without mask
1804 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1805
1806 unsigned NumElem = SrcVTy->getVectorNumElements();
1807 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001808 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001809 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1810 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001811 !isPowerOf2_32(NumElem)) {
1812 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001813 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1814 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001815 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001816 int BranchCost = getCFInstrCost(Instruction::Br);
1817 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001818
Chandler Carruth93205eb2015-08-05 18:08:10 +00001819 int ValueSplitCost = getScalarizationOverhead(
1820 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1821 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001822 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1823 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001824 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1825 }
1826
1827 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001828 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001829 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001830 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001831 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001832 LT.second.getVectorNumElements() == NumElem)
1833 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001834 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1835 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001836
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001837 else if (LT.second.getVectorNumElements() > NumElem) {
1838 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1839 LT.second.getVectorNumElements());
1840 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001841 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001842 }
1843 if (!ST->hasAVX512())
1844 return Cost + LT.first*4; // Each maskmov costs 4
1845
1846 // AVX-512 masked load/store is cheapper
1847 return Cost+LT.first;
1848}
1849
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001850int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1851 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001852 // Address computations in vectorized code with non-consecutive addresses will
1853 // likely result in more instructions compared to scalar code where the
1854 // computation can more often be merged into the index mode. The resulting
1855 // extra micro-ops can significantly decrease throughput.
1856 unsigned NumVectorInstToHideOverhead = 10;
1857
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001858 // Cost modeling of Strided Access Computation is hidden by the indexing
1859 // modes of X86 regardless of the stride value. We dont believe that there
1860 // is a difference between constant strided access in gerenal and constant
1861 // strided value which is less than or equal to 64.
1862 // Even in the case of (loop invariant) stride whose value is not known at
1863 // compile time, the address computation will not incur more than one extra
1864 // ADD instruction.
1865 if (Ty->isVectorTy() && SE) {
1866 if (!BaseT::isStridedAccess(Ptr))
1867 return NumVectorInstToHideOverhead;
1868 if (!BaseT::getConstantStrideStep(SE, Ptr))
1869 return 1;
1870 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001871
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001872 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001873}
Yi Jiang5c343de2013-09-19 17:48:48 +00001874
Alexey Bataev3e9b3eb2017-07-31 14:19:32 +00001875int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
1876 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001877
Chandler Carruth93205eb2015-08-05 18:08:10 +00001878 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001879
Yi Jiang5c343de2013-09-19 17:48:48 +00001880 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001881
Yi Jiang5c343de2013-09-19 17:48:48 +00001882 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1883 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001884
1885 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1886 // and make it as the cost.
1887
Craig Topper4b275762015-10-28 04:02:12 +00001888 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001889 { ISD::FADD, MVT::v2f64, 2 },
1890 { ISD::FADD, MVT::v4f32, 4 },
1891 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1892 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1893 { ISD::ADD, MVT::v8i16, 5 },
1894 };
Michael Liao5bf95782014-12-04 05:20:33 +00001895
Craig Topper4b275762015-10-28 04:02:12 +00001896 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001897 { ISD::FADD, MVT::v4f32, 4 },
1898 { ISD::FADD, MVT::v4f64, 5 },
1899 { ISD::FADD, MVT::v8f32, 7 },
1900 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1901 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1902 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1903 { ISD::ADD, MVT::v8i16, 5 },
1904 { ISD::ADD, MVT::v8i32, 5 },
1905 };
1906
Craig Topper4b275762015-10-28 04:02:12 +00001907 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001908 { ISD::FADD, MVT::v2f64, 2 },
1909 { ISD::FADD, MVT::v4f32, 4 },
1910 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1911 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1912 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1913 };
Michael Liao5bf95782014-12-04 05:20:33 +00001914
Craig Topper4b275762015-10-28 04:02:12 +00001915 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001916 { ISD::FADD, MVT::v4f32, 3 },
1917 { ISD::FADD, MVT::v4f64, 3 },
1918 { ISD::FADD, MVT::v8f32, 4 },
1919 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1920 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1921 { ISD::ADD, MVT::v4i64, 3 },
1922 { ISD::ADD, MVT::v8i16, 4 },
1923 { ISD::ADD, MVT::v8i32, 5 },
1924 };
Michael Liao5bf95782014-12-04 05:20:33 +00001925
Yi Jiang5c343de2013-09-19 17:48:48 +00001926 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001927 if (ST->hasAVX())
1928 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1929 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001930
Craig Topperee0c8592015-10-27 04:14:24 +00001931 if (ST->hasSSE42())
1932 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1933 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001934 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001935 if (ST->hasAVX())
1936 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1937 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001938
Craig Topperee0c8592015-10-27 04:14:24 +00001939 if (ST->hasSSE42())
1940 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1941 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001942 }
1943
Alexey Bataev3e9b3eb2017-07-31 14:19:32 +00001944 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001945}
1946
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001947/// \brief Calculate the cost of materializing a 64-bit value. This helper
1948/// method might only calculate a fraction of a larger immediate. Therefore it
1949/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001950int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001951 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001952 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001953
1954 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001955 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001956
Chandler Carruth705b1852015-01-31 03:43:40 +00001957 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001958}
1959
Chandler Carruth93205eb2015-08-05 18:08:10 +00001960int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001961 assert(Ty->isIntegerTy());
1962
1963 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1964 if (BitSize == 0)
1965 return ~0U;
1966
Juergen Ributzka43176172014-05-19 21:00:53 +00001967 // Never hoist constants larger than 128bit, because this might lead to
1968 // incorrect code generation or assertions in codegen.
1969 // Fixme: Create a cost model for types larger than i128 once the codegen
1970 // issues have been fixed.
1971 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001972 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001973
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001974 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001975 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001976
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001977 // Sign-extend all constants to a multiple of 64-bit.
1978 APInt ImmVal = Imm;
1979 if (BitSize & 0x3f)
1980 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1981
1982 // Split the constant into 64-bit chunks and calculate the cost for each
1983 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001984 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001985 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1986 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1987 int64_t Val = Tmp.getSExtValue();
1988 Cost += getIntImmCost(Val);
1989 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001990 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001991 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001992}
1993
Chandler Carruth93205eb2015-08-05 18:08:10 +00001994int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1995 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001996 assert(Ty->isIntegerTy());
1997
1998 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001999 // There is no cost model for constants with a bit size of 0. Return TCC_Free
2000 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002001 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002002 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002003
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002004 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002005 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00002006 default:
2007 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002008 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00002009 // Always hoist the base address of a GetElementPtr. This prevents the
2010 // creation of new constants for every base constant that gets constant
2011 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00002012 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002013 return 2 * TTI::TCC_Basic;
2014 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002015 case Instruction::Store:
2016 ImmIdx = 0;
2017 break;
Craig Topper074e8452015-12-20 18:41:54 +00002018 case Instruction::ICmp:
2019 // This is an imperfect hack to prevent constant hoisting of
2020 // compares that might be trying to check if a 64-bit value fits in
2021 // 32-bits. The backend can optimize these cases using a right shift by 32.
2022 // Ideally we would check the compare predicate here. There also other
2023 // similar immediates the backend can use shifts for.
2024 if (Idx == 1 && Imm.getBitWidth() == 64) {
2025 uint64_t ImmVal = Imm.getZExtValue();
2026 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
2027 return TTI::TCC_Free;
2028 }
2029 ImmIdx = 1;
2030 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00002031 case Instruction::And:
2032 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
2033 // by using a 32-bit operation with implicit zero extension. Detect such
2034 // immediates here as the normal path expects bit 31 to be sign extended.
2035 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
2036 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00002037 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002038 case Instruction::Add:
2039 case Instruction::Sub:
2040 case Instruction::Mul:
2041 case Instruction::UDiv:
2042 case Instruction::SDiv:
2043 case Instruction::URem:
2044 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002045 case Instruction::Or:
2046 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002047 ImmIdx = 1;
2048 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00002049 // Always return TCC_Free for the shift value of a shift instruction.
2050 case Instruction::Shl:
2051 case Instruction::LShr:
2052 case Instruction::AShr:
2053 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00002054 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00002055 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002056 case Instruction::Trunc:
2057 case Instruction::ZExt:
2058 case Instruction::SExt:
2059 case Instruction::IntToPtr:
2060 case Instruction::PtrToInt:
2061 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002062 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002063 case Instruction::Call:
2064 case Instruction::Select:
2065 case Instruction::Ret:
2066 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002067 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002068 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002069
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002070 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00002071 int NumConstants = (BitSize + 63) / 64;
2072 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00002073 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00002074 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00002075 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00002076 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002077
Chandler Carruth705b1852015-01-31 03:43:40 +00002078 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002079}
2080
Chandler Carruth93205eb2015-08-05 18:08:10 +00002081int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
2082 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002083 assert(Ty->isIntegerTy());
2084
2085 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00002086 // There is no cost model for constants with a bit size of 0. Return TCC_Free
2087 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002088 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00002089 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002090
2091 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00002092 default:
2093 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002094 case Intrinsic::sadd_with_overflow:
2095 case Intrinsic::uadd_with_overflow:
2096 case Intrinsic::ssub_with_overflow:
2097 case Intrinsic::usub_with_overflow:
2098 case Intrinsic::smul_with_overflow:
2099 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00002100 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00002101 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002102 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002103 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002104 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00002105 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002106 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002107 case Intrinsic::experimental_patchpoint_void:
2108 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002109 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00002110 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00002111 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002112 }
Chandler Carruth705b1852015-01-31 03:43:40 +00002113 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00002114}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002115
Elena Demikhovsky54946982015-12-28 20:10:59 +00002116// Return an average cost of Gather / Scatter instruction, maybe improved later
2117int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
2118 unsigned Alignment, unsigned AddressSpace) {
2119
2120 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
2121 unsigned VF = SrcVTy->getVectorNumElements();
2122
2123 // Try to reduce index size from 64 bit (default for GEP)
2124 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
2125 // operation will use 16 x 64 indices which do not fit in a zmm and needs
2126 // to split. Also check that the base pointer is the same for all lanes,
2127 // and that there's at most one variable index.
2128 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
2129 unsigned IndexSize = DL.getPointerSizeInBits();
2130 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2131 if (IndexSize < 64 || !GEP)
2132 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00002133
Elena Demikhovsky54946982015-12-28 20:10:59 +00002134 unsigned NumOfVarIndices = 0;
2135 Value *Ptrs = GEP->getPointerOperand();
2136 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
2137 return IndexSize;
2138 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
2139 if (isa<Constant>(GEP->getOperand(i)))
2140 continue;
2141 Type *IndxTy = GEP->getOperand(i)->getType();
2142 if (IndxTy->isVectorTy())
2143 IndxTy = IndxTy->getVectorElementType();
2144 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
2145 !isa<SExtInst>(GEP->getOperand(i))) ||
2146 ++NumOfVarIndices > 1)
2147 return IndexSize; // 64
2148 }
2149 return (unsigned)32;
2150 };
2151
2152
2153 // Trying to reduce IndexSize to 32 bits for vector 16.
2154 // By default the IndexSize is equal to pointer size.
2155 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
2156 DL.getPointerSizeInBits();
2157
Mehdi Amini867e9142016-04-14 04:36:40 +00002158 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002159 IndexSize), VF);
2160 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
2161 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2162 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
2163 if (SplitFactor > 1) {
2164 // Handle splitting of vector of pointers
2165 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
2166 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
2167 AddressSpace);
2168 }
2169
2170 // The gather / scatter cost is given by Intel architects. It is a rough
2171 // number since we are looking at one instruction in a time.
2172 const int GSOverhead = 2;
2173 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2174 Alignment, AddressSpace);
2175}
2176
2177/// Return the cost of full scalarization of gather / scatter operation.
2178///
2179/// Opcode - Load or Store instruction.
2180/// SrcVTy - The type of the data vector that should be gathered or scattered.
2181/// VariableMask - The mask is non-constant at compile time.
2182/// Alignment - Alignment for one element.
2183/// AddressSpace - pointer[s] address space.
2184///
2185int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
2186 bool VariableMask, unsigned Alignment,
2187 unsigned AddressSpace) {
2188 unsigned VF = SrcVTy->getVectorNumElements();
2189
2190 int MaskUnpackCost = 0;
2191 if (VariableMask) {
2192 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00002193 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002194 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
2195 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00002196 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002197 nullptr);
2198 int BranchCost = getCFInstrCost(Instruction::Br);
2199 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
2200 }
2201
2202 // The cost of the scalar loads/stores.
2203 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2204 Alignment, AddressSpace);
2205
2206 int InsertExtractCost = 0;
2207 if (Opcode == Instruction::Load)
2208 for (unsigned i = 0; i < VF; ++i)
2209 // Add the cost of inserting each scalar load into the vector
2210 InsertExtractCost +=
2211 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
2212 else
2213 for (unsigned i = 0; i < VF; ++i)
2214 // Add the cost of extracting each element out of the data vector
2215 InsertExtractCost +=
2216 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
2217
2218 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
2219}
2220
2221/// Calculate the cost of Gather / Scatter operation
2222int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2223 Value *Ptr, bool VariableMask,
2224 unsigned Alignment) {
2225 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2226 unsigned VF = SrcVTy->getVectorNumElements();
2227 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2228 if (!PtrTy && Ptr->getType()->isVectorTy())
2229 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2230 assert(PtrTy && "Unexpected type for Ptr argument");
2231 unsigned AddressSpace = PtrTy->getAddressSpace();
2232
2233 bool Scalarize = false;
2234 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2235 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2236 Scalarize = true;
2237 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2238 // Vector-4 of gather/scatter instruction does not exist on KNL.
2239 // We can extend it to 8 elements, but zeroing upper bits of
2240 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002241 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2242 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002243 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2244 Scalarize = true;
2245
2246 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002247 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2248 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002249
2250 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2251}
2252
Evgeny Stupachenkoc6752902017-08-07 19:56:34 +00002253bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
2254 TargetTransformInfo::LSRCost &C2) {
2255 // X86 specific here are "instruction number 1st priority".
2256 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
2257 C1.NumIVMuls, C1.NumBaseAdds,
2258 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
2259 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
2260 C2.NumIVMuls, C2.NumBaseAdds,
2261 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
2262}
2263
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002264bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2265 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002266 int DataWidth = isa<PointerType>(ScalarTy) ?
2267 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002268
Igor Bregerf44b79d2016-08-02 09:15:28 +00002269 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2270 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002271}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002272
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002273bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2274 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002275}
2276
Elena Demikhovsky09285852015-10-25 15:37:55 +00002277bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2278 // This function is called now in two cases: from the Loop Vectorizer
2279 // and from the Scalarizer.
2280 // When the Loop Vectorizer asks about legality of the feature,
2281 // the vectorization factor is not calculated yet. The Loop Vectorizer
2282 // sends a scalar type and the decision is based on the width of the
2283 // scalar element.
2284 // Later on, the cost model will estimate usage this intrinsic based on
2285 // the vector type.
2286 // The Scalarizer asks again about legality. It sends a vector type.
2287 // In this case we can reject non-power-of-2 vectors.
2288 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2289 return false;
2290 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002291 int DataWidth = isa<PointerType>(ScalarTy) ?
2292 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002293
2294 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002295 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002296}
2297
2298bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2299 return isLegalMaskedGather(DataType);
2300}
2301
Eric Christopherd566fb12015-07-29 22:09:48 +00002302bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2303 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002304 const TargetMachine &TM = getTLI()->getTargetMachine();
2305
2306 // Work this as a subsetting of subtarget features.
2307 const FeatureBitset &CallerBits =
2308 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2309 const FeatureBitset &CalleeBits =
2310 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2311
2312 // FIXME: This is likely too limiting as it will include subtarget features
2313 // that we might not care about for inlining, but it is conservatively
2314 // correct.
2315 return (CallerBits & CalleeBits) == CalleeBits;
2316}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002317
Sanjay Patel06566292017-06-20 15:58:30 +00002318bool X86TTIImpl::expandMemCmp(Instruction *I, unsigned &MaxLoadSize) {
2319 // TODO: We can increase these based on available vector ops.
2320 MaxLoadSize = ST->is64Bit() ? 8 : 4;
2321 return true;
2322}
2323
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002324bool X86TTIImpl::enableInterleavedAccessVectorization() {
2325 // TODO: We expect this to be beneficial regardless of arch,
2326 // but there are currently some unexplained performance artifacts on Atom.
2327 // As a temporary solution, disable on Atom.
Mohammed Agabaria20caee92017-01-25 09:14:48 +00002328 return !(ST->isAtom());
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002329}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002330
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002331// Get estimation for interleaved load/store operations for AVX2.
2332// \p Factor is the interleaved-access factor (stride) - number of
2333// (interleaved) elements in the group.
2334// \p Indices contains the indices for a strided load: when the
2335// interleaved load has gaps they indicate which elements are used.
2336// If Indices is empty (or if the number of indices is equal to the size
2337// of the interleaved-access as given in \p Factor) the access has no gaps.
2338//
2339// As opposed to AVX-512, AVX2 does not have generic shuffles that allow
2340// computing the cost using a generic formula as a function of generic
2341// shuffles. We therefore use a lookup table instead, filled according to
2342// the instruction sequences that codegen currently generates.
2343int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
2344 unsigned Factor,
2345 ArrayRef<unsigned> Indices,
2346 unsigned Alignment,
2347 unsigned AddressSpace) {
2348
2349 // We currently Support only fully-interleaved groups, with no gaps.
2350 // TODO: Support also strided loads (interleaved-groups with gaps).
2351 if (Indices.size() && Indices.size() != Factor)
2352 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2353 Alignment, AddressSpace);
2354
2355 // VecTy for interleave memop is <VF*Factor x Elt>.
2356 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2357 // VecTy = <12 x i32>.
2358 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2359
2360 // This function can be called with VecTy=<6xi128>, Factor=3, in which case
2361 // the VF=2, while v2i128 is an unsupported MVT vector type
2362 // (see MachineValueType.h::getVectorVT()).
2363 if (!LegalVT.isVector())
2364 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2365 Alignment, AddressSpace);
2366
2367 unsigned VF = VecTy->getVectorNumElements() / Factor;
2368 Type *ScalarTy = VecTy->getVectorElementType();
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002369
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002370 // Calculate the number of memory operations (NumOfMemOps), required
2371 // for load/store the VecTy.
2372 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2373 unsigned LegalVTSize = LegalVT.getStoreSize();
2374 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2375
2376 // Get the cost of one memory operation.
2377 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2378 LegalVT.getVectorNumElements());
2379 unsigned MemOpCost =
2380 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002381
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002382 VectorType *VT = VectorType::get(ScalarTy, VF);
2383 EVT ETy = TLI->getValueType(DL, VT);
2384 if (!ETy.isSimple())
2385 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2386 Alignment, AddressSpace);
2387
2388 // TODO: Complete for other data-types and strides.
2389 // Each combination of Stride, ElementTy and VF results in a different
2390 // sequence; The cost tables are therefore accessed with:
2391 // Factor (stride) and VectorType=VFxElemType.
2392 // The Cost accounts only for the shuffle sequence;
2393 // The cost of the loads/stores is accounted for separately.
2394 //
2395 static const CostTblEntry AVX2InterleavedLoadTbl[] = {
2396 { 3, MVT::v2i8, 10 }, //(load 6i8 and) deinterleave into 3 x 2i8
2397 { 3, MVT::v4i8, 4 }, //(load 12i8 and) deinterleave into 3 x 4i8
2398 { 3, MVT::v8i8, 9 }, //(load 24i8 and) deinterleave into 3 x 8i8
2399 { 3, MVT::v16i8, 18}, //(load 48i8 and) deinterleave into 3 x 16i8
2400 { 3, MVT::v32i8, 42 }, //(load 96i8 and) deinterleave into 3 x 32i8
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002401
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002402 { 4, MVT::v2i8, 12 }, //(load 8i8 and) deinterleave into 4 x 2i8
2403 { 4, MVT::v4i8, 4 }, //(load 16i8 and) deinterleave into 4 x 4i8
2404 { 4, MVT::v8i8, 20 }, //(load 32i8 and) deinterleave into 4 x 8i8
2405 { 4, MVT::v16i8, 39 }, //(load 64i8 and) deinterleave into 4 x 16i8
2406 { 4, MVT::v32i8, 80 } //(load 128i8 and) deinterleave into 4 x 32i8
2407 };
2408
2409 static const CostTblEntry AVX2InterleavedStoreTbl[] = {
2410 { 3, MVT::v2i8, 7 }, //interleave 3 x 2i8 into 6i8 (and store)
2411 { 3, MVT::v4i8, 8 }, //interleave 3 x 4i8 into 12i8 (and store)
2412 { 3, MVT::v8i8, 11 }, //interleave 3 x 8i8 into 24i8 (and store)
2413 { 3, MVT::v16i8, 17 }, //interleave 3 x 16i8 into 48i8 (and store)
2414 { 3, MVT::v32i8, 32 }, //interleave 3 x 32i8 into 96i8 (and store)
2415
2416 { 4, MVT::v2i8, 12 }, //interleave 4 x 2i8 into 8i8 (and store)
2417 { 4, MVT::v4i8, 9 }, //interleave 4 x 4i8 into 16i8 (and store)
2418 { 4, MVT::v8i8, 16 }, //interleave 4 x 8i8 into 32i8 (and store)
2419 { 4, MVT::v16i8, 20 }, //interleave 4 x 16i8 into 64i8 (and store)
2420 { 4, MVT::v32i8, 40 } //interleave 4 x 32i8 into 128i8 (and store)
2421 };
2422
2423 if (Opcode == Instruction::Load) {
2424 if (const auto *Entry =
2425 CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
2426 return NumOfMemOps * MemOpCost + Entry->Cost;
2427 } else {
2428 assert(Opcode == Instruction::Store &&
2429 "Expected Store Instruction at this point");
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002430 if (const auto *Entry =
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002431 CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
2432 return NumOfMemOps * MemOpCost + Entry->Cost;
2433 }
2434
2435 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2436 Alignment, AddressSpace);
2437}
2438
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002439// Get estimation for interleaved load/store operations and strided load.
2440// \p Indices contains indices for strided load.
2441// \p Factor - the factor of interleaving.
2442// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2443int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2444 unsigned Factor,
2445 ArrayRef<unsigned> Indices,
2446 unsigned Alignment,
2447 unsigned AddressSpace) {
2448
2449 // VecTy for interleave memop is <VF*Factor x Elt>.
2450 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2451 // VecTy = <12 x i32>.
2452
2453 // Calculate the number of memory operations (NumOfMemOps), required
2454 // for load/store the VecTy.
2455 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2456 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2457 unsigned LegalVTSize = LegalVT.getStoreSize();
2458 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2459
2460 // Get the cost of one memory operation.
2461 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2462 LegalVT.getVectorNumElements());
2463 unsigned MemOpCost =
2464 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2465
2466 if (Opcode == Instruction::Load) {
2467 // Kind of shuffle depends on number of loaded values.
2468 // If we load the entire data in one register, we can use a 1-src shuffle.
2469 // Otherwise, we'll merge 2 sources in each operation.
2470 TTI::ShuffleKind ShuffleKind =
2471 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2472
2473 unsigned ShuffleCost =
2474 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2475
2476 unsigned NumOfLoadsInInterleaveGrp =
2477 Indices.size() ? Indices.size() : Factor;
2478 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2479 VecTy->getVectorNumElements() / Factor);
2480 unsigned NumOfResults =
2481 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2482 NumOfLoadsInInterleaveGrp;
2483
2484 // About a half of the loads may be folded in shuffles when we have only
2485 // one result. If we have more than one result, we do not fold loads at all.
2486 unsigned NumOfUnfoldedLoads =
2487 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2488
2489 // Get a number of shuffle operations per result.
2490 unsigned NumOfShufflesPerResult =
2491 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2492
2493 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2494 // When we have more than one destination, we need additional instructions
2495 // to keep sources.
2496 unsigned NumOfMoves = 0;
2497 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2498 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2499
2500 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2501 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2502
2503 return Cost;
2504 }
2505
2506 // Store.
2507 assert(Opcode == Instruction::Store &&
2508 "Expected Store Instruction at this point");
2509
2510 // There is no strided stores meanwhile. And store can't be folded in
2511 // shuffle.
2512 unsigned NumOfSources = Factor; // The number of values to be merged.
2513 unsigned ShuffleCost =
2514 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2515 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2516
2517 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2518 // We need additional instructions to keep sources.
2519 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2520 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2521 NumOfMoves;
2522 return Cost;
2523}
2524
2525int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2526 unsigned Factor,
2527 ArrayRef<unsigned> Indices,
2528 unsigned Alignment,
2529 unsigned AddressSpace) {
2530 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2531 RequiresBW = false;
2532 Type *EltTy = VecTy->getVectorElementType();
2533 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2534 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2535 return true;
2536 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2537 RequiresBW = true;
2538 return true;
2539 }
2540 return false;
2541 };
2542 bool RequiresBW;
2543 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2544 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2545 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2546 Alignment, AddressSpace);
Dorit Nuzmane0e0f1d2017-06-25 08:26:25 +00002547 if (ST->hasAVX2())
2548 return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
2549 Alignment, AddressSpace);
Simon Pilgrim7b89ab52017-07-31 17:09:27 +00002550
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002551 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2552 Alignment, AddressSpace);
2553}