blob: a12a42b39df27e3930dcfb6dc8968cdb62fdeb50 [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher455c5772009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencercb84e432004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +000015<h1>LLVM Language Reference Manual</h1>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling03bcd6e2010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling578ee402010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
Bill Wendlingb4d076e2011-10-11 06:41:28 +000038 <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000039 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Eli Friedman35b54aa2011-07-20 21:35:53 +000056 <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
Eli Friedmanc9a551e2011-07-28 21:48:00 +000057 <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000058 </ol>
59 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000060 <li><a href="#typesystem">Type System</a>
61 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000062 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher455c5772009-12-05 02:46:03 +000063 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000064 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000065 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000066 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen33e5c352010-10-01 00:48:59 +000067 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000068 <li><a href="#t_void">Void Type</a></li>
69 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000070 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000071 </ol>
72 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000073 <li><a href="#t_derived">Derived Types</a>
74 <ol>
Chris Lattner392be582010-02-12 20:49:41 +000075 <li><a href="#t_aggregate">Aggregate Types</a>
76 <ol>
77 <li><a href="#t_array">Array Type</a></li>
78 <li><a href="#t_struct">Structure Type</a></li>
Chris Lattner2a843822011-07-23 19:59:08 +000079 <li><a href="#t_opaque">Opaque Structure Types</a></li>
Chris Lattner392be582010-02-12 20:49:41 +000080 <li><a href="#t_vector">Vector Type</a></li>
81 </ol>
82 </li>
Misha Brukman76307852003-11-08 01:05:38 +000083 <li><a href="#t_function">Function Type</a></li>
84 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000085 </ol>
86 </li>
87 </ol>
88 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000090 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +000095 <li><a href="#trapvalues">Trap Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000098 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
104 <ol>
105 <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +0000106 <li><a href="#fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a></li>
Peter Collingbourneec9ff672011-10-27 19:19:07 +0000107 </ol>
108 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000109 </ol>
110 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000111 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
112 <ol>
113 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +0000114 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
115 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000116 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
117 Global Variable</a></li>
118 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
119 Global Variable</a></li>
120 </ol>
121 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000122 <li><a href="#instref">Instruction Reference</a>
123 <ol>
124 <li><a href="#terminators">Terminator Instructions</a>
125 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000126 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
127 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000128 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000129 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000130 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000131 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Bill Wendlingf891bf82011-07-31 06:30:59 +0000132 <li><a href="#i_resume">'<tt>resume</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000133 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000134 </ol>
135 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000136 <li><a href="#binaryops">Binary Operations</a>
137 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000138 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000139 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000140 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000141 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000142 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000143 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000144 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
145 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
146 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000147 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
148 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
149 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000150 </ol>
151 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000152 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
153 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000154 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
155 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
156 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000157 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000158 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000159 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000160 </ol>
161 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000162 <li><a href="#vectorops">Vector Operations</a>
163 <ol>
164 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
165 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
166 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000167 </ol>
168 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000169 <li><a href="#aggregateops">Aggregate Operations</a>
170 <ol>
171 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
172 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
173 </ol>
174 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000175 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000176 <ol>
Eli Friedmanc9a551e2011-07-28 21:48:00 +0000177 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
178 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
179 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
180 <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
181 <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
182 <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000183 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000184 </ol>
185 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000186 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000187 <ol>
188 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
189 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
190 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
191 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
192 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000193 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
194 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
195 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
196 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000197 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
198 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000199 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000200 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000201 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000202 <li><a href="#otherops">Other Operations</a>
203 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000204 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
205 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000206 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000207 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000208 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000209 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +0000210 <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000211 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000212 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000213 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000214 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000215 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000216 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000217 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
218 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000219 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
220 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
221 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000222 </ol>
223 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000224 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
225 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000226 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
227 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
228 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000229 </ol>
230 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000231 <li><a href="#int_codegen">Code Generator Intrinsics</a>
232 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000233 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
234 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
235 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
236 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
237 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
238 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohmane58f7b32010-05-26 21:56:15 +0000239 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000240 </ol>
241 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000242 <li><a href="#int_libc">Standard C Library Intrinsics</a>
243 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000244 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
245 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
246 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
247 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
248 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000249 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
250 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
251 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmane635c522011-05-27 00:36:31 +0000252 <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
253 <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
Cameron Zwarichf03fa182011-07-08 21:39:21 +0000254 <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000255 </ol>
256 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000257 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000258 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000259 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000260 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
261 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
262 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000263 </ol>
264 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000265 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
266 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000267 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
268 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
269 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
270 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
271 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000272 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000273 </ol>
274 </li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000275 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
276 <ol>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +0000277 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
278 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000279 </ol>
280 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000281 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000282 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000283 <li><a href="#int_trampoline">Trampoline Intrinsics</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000284 <ol>
285 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sandsa0984362011-09-06 13:37:06 +0000286 <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000287 </ol>
288 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000289 <li><a href="#int_memorymarkers">Memory Use Markers</a>
290 <ol>
291 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
292 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
293 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
294 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
295 </ol>
296 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000297 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000298 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000299 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000300 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000301 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000302 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000303 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000304 '<tt>llvm.trap</tt>' Intrinsic</a></li>
305 <li><a href="#int_stackprotector">
306 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher73484322009-11-30 08:03:53 +0000307 <li><a href="#int_objectsize">
308 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000309 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000310 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000311 </ol>
312 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000313</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000314
315<div class="doc_author">
316 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
317 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000318</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000319
Chris Lattner2f7c9632001-06-06 20:29:01 +0000320<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000321<h2><a name="abstract">Abstract</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000322<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000323
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000324<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000325
326<p>This document is a reference manual for the LLVM assembly language. LLVM is
327 a Static Single Assignment (SSA) based representation that provides type
328 safety, low-level operations, flexibility, and the capability of representing
329 'all' high-level languages cleanly. It is the common code representation
330 used throughout all phases of the LLVM compilation strategy.</p>
331
Misha Brukman76307852003-11-08 01:05:38 +0000332</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000333
Chris Lattner2f7c9632001-06-06 20:29:01 +0000334<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000335<h2><a name="introduction">Introduction</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000336<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000337
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000338<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000339
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000340<p>The LLVM code representation is designed to be used in three different forms:
341 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
342 for fast loading by a Just-In-Time compiler), and as a human readable
343 assembly language representation. This allows LLVM to provide a powerful
344 intermediate representation for efficient compiler transformations and
345 analysis, while providing a natural means to debug and visualize the
346 transformations. The three different forms of LLVM are all equivalent. This
347 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000348
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000349<p>The LLVM representation aims to be light-weight and low-level while being
350 expressive, typed, and extensible at the same time. It aims to be a
351 "universal IR" of sorts, by being at a low enough level that high-level ideas
352 may be cleanly mapped to it (similar to how microprocessors are "universal
353 IR's", allowing many source languages to be mapped to them). By providing
354 type information, LLVM can be used as the target of optimizations: for
355 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000356 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000357 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000358
Chris Lattner2f7c9632001-06-06 20:29:01 +0000359<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000360<h4>
361 <a name="wellformed">Well-Formedness</a>
362</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000363
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000364<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000365
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000366<p>It is important to note that this document describes 'well formed' LLVM
367 assembly language. There is a difference between what the parser accepts and
368 what is considered 'well formed'. For example, the following instruction is
369 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000370
Benjamin Kramer79698be2010-07-13 12:26:09 +0000371<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000372%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000373</pre>
374
Bill Wendling7f4a3362009-11-02 00:24:16 +0000375<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
376 LLVM infrastructure provides a verification pass that may be used to verify
377 that an LLVM module is well formed. This pass is automatically run by the
378 parser after parsing input assembly and by the optimizer before it outputs
379 bitcode. The violations pointed out by the verifier pass indicate bugs in
380 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000381
Bill Wendling3716c5d2007-05-29 09:04:49 +0000382</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000383
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000384</div>
385
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000386<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000387
Chris Lattner2f7c9632001-06-06 20:29:01 +0000388<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000389<h2><a name="identifiers">Identifiers</a></h2>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000390<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000391
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000392<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000393
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000394<p>LLVM identifiers come in two basic types: global and local. Global
395 identifiers (functions, global variables) begin with the <tt>'@'</tt>
396 character. Local identifiers (register names, types) begin with
397 the <tt>'%'</tt> character. Additionally, there are three different formats
398 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000399
Chris Lattner2f7c9632001-06-06 20:29:01 +0000400<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000401 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000402 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
403 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
404 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
405 other characters in their names can be surrounded with quotes. Special
406 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
407 ASCII code for the character in hexadecimal. In this way, any character
408 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000409
Reid Spencerb23b65f2007-08-07 14:34:28 +0000410 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000411 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000412
Reid Spencer8f08d802004-12-09 18:02:53 +0000413 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000414 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000415</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000416
Reid Spencerb23b65f2007-08-07 14:34:28 +0000417<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000418 don't need to worry about name clashes with reserved words, and the set of
419 reserved words may be expanded in the future without penalty. Additionally,
420 unnamed identifiers allow a compiler to quickly come up with a temporary
421 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000422
Chris Lattner48b383b02003-11-25 01:02:51 +0000423<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000424 languages. There are keywords for different opcodes
425 ('<tt><a href="#i_add">add</a></tt>',
426 '<tt><a href="#i_bitcast">bitcast</a></tt>',
427 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
428 ('<tt><a href="#t_void">void</a></tt>',
429 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
430 reserved words cannot conflict with variable names, because none of them
431 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000432
433<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000434 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000435
Misha Brukman76307852003-11-08 01:05:38 +0000436<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000437
Benjamin Kramer79698be2010-07-13 12:26:09 +0000438<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000439%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000440</pre>
441
Misha Brukman76307852003-11-08 01:05:38 +0000442<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000443
Benjamin Kramer79698be2010-07-13 12:26:09 +0000444<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000445%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000446</pre>
447
Misha Brukman76307852003-11-08 01:05:38 +0000448<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000449
Benjamin Kramer79698be2010-07-13 12:26:09 +0000450<pre class="doc_code">
Gabor Greifbd0328f2009-10-28 13:05:07 +0000451%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
452%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000453%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000454</pre>
455
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000456<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
457 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000458
Chris Lattner2f7c9632001-06-06 20:29:01 +0000459<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000460 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000461 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000462
463 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000464 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000465
Misha Brukman76307852003-11-08 01:05:38 +0000466 <li>Unnamed temporaries are numbered sequentially</li>
467</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000468
Bill Wendling7f4a3362009-11-02 00:24:16 +0000469<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000470 demonstrating instructions, we will follow an instruction with a comment that
471 defines the type and name of value produced. Comments are shown in italic
472 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000473
Misha Brukman76307852003-11-08 01:05:38 +0000474</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000475
476<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000477<h2><a name="highlevel">High Level Structure</a></h2>
Chris Lattner6af02f32004-12-09 16:11:40 +0000478<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000479<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000480<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000481<h3>
482 <a name="modulestructure">Module Structure</a>
483</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000484
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000485<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000486
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000487<p>LLVM programs are composed of "Module"s, each of which is a translation unit
488 of the input programs. Each module consists of functions, global variables,
489 and symbol table entries. Modules may be combined together with the LLVM
490 linker, which merges function (and global variable) definitions, resolves
491 forward declarations, and merges symbol table entries. Here is an example of
492 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000493
Benjamin Kramer79698be2010-07-13 12:26:09 +0000494<pre class="doc_code">
Chris Lattner54a7be72010-08-17 17:13:42 +0000495<i>; Declare the string constant as a global constant.</i>&nbsp;
Nick Lewyckyfea7ddc2011-01-29 01:09:53 +0000496<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000497
Chris Lattner54a7be72010-08-17 17:13:42 +0000498<i>; External declaration of the puts function</i>&nbsp;
499<a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000500
501<i>; Definition of main function</i>
Chris Lattner54a7be72010-08-17 17:13:42 +0000502define i32 @main() { <i>; i32()* </i>&nbsp;
503 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
504 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000505
Chris Lattner54a7be72010-08-17 17:13:42 +0000506 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
507 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
508 <a href="#i_ret">ret</a> i32 0&nbsp;
509}
Devang Pateld1a89692010-01-11 19:35:55 +0000510
511<i>; Named metadata</i>
512!1 = metadata !{i32 41}
513!foo = !{!1, null}
Bill Wendling3716c5d2007-05-29 09:04:49 +0000514</pre>
Chris Lattner6af02f32004-12-09 16:11:40 +0000515
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000516<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Pateld1a89692010-01-11 19:35:55 +0000517 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000518 a <a href="#functionstructure">function definition</a> for
Devang Pateld1a89692010-01-11 19:35:55 +0000519 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
520 "<tt>foo"</tt>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000521
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000522<p>In general, a module is made up of a list of global values, where both
523 functions and global variables are global values. Global values are
524 represented by a pointer to a memory location (in this case, a pointer to an
525 array of char, and a pointer to a function), and have one of the
526 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000527
Chris Lattnerd79749a2004-12-09 16:36:40 +0000528</div>
529
530<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000531<h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000532 <a name="linkage">Linkage Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000533</h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000534
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000535<div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000536
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000537<p>All Global Variables and Functions have one of the following types of
538 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000539
540<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000541 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000542 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
543 by objects in the current module. In particular, linking code into a
544 module with an private global value may cause the private to be renamed as
545 necessary to avoid collisions. Because the symbol is private to the
546 module, all references can be updated. This doesn't show up in any symbol
547 table in the object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000548
Bill Wendling7f4a3362009-11-02 00:24:16 +0000549 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000550 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
551 assembler and evaluated by the linker. Unlike normal strong symbols, they
552 are removed by the linker from the final linked image (executable or
553 dynamic library).</dd>
554
555 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
556 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
557 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
558 linker. The symbols are removed by the linker from the final linked image
559 (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000560
Bill Wendling578ee402010-08-20 22:05:50 +0000561 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
562 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
563 of the object is not taken. For instance, functions that had an inline
564 definition, but the compiler decided not to inline it. Note,
565 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
566 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
567 visibility. The symbols are removed by the linker from the final linked
568 image (executable or dynamic library).</dd>
569
Bill Wendling7f4a3362009-11-02 00:24:16 +0000570 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling36321712010-06-29 22:34:52 +0000571 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000572 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
573 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000574
Bill Wendling7f4a3362009-11-02 00:24:16 +0000575 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000576 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000577 into the object file corresponding to the LLVM module. They exist to
578 allow inlining and other optimizations to take place given knowledge of
579 the definition of the global, which is known to be somewhere outside the
580 module. Globals with <tt>available_externally</tt> linkage are allowed to
581 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
582 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000583
Bill Wendling7f4a3362009-11-02 00:24:16 +0000584 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000585 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner0de4caa2010-01-09 19:15:14 +0000586 the same name when linkage occurs. This can be used to implement
587 some forms of inline functions, templates, or other code which must be
588 generated in each translation unit that uses it, but where the body may
589 be overridden with a more definitive definition later. Unreferenced
590 <tt>linkonce</tt> globals are allowed to be discarded. Note that
591 <tt>linkonce</tt> linkage does not actually allow the optimizer to
592 inline the body of this function into callers because it doesn't know if
593 this definition of the function is the definitive definition within the
594 program or whether it will be overridden by a stronger definition.
595 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
596 linkage.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000597
Bill Wendling7f4a3362009-11-02 00:24:16 +0000598 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000599 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
600 <tt>linkonce</tt> linkage, except that unreferenced globals with
601 <tt>weak</tt> linkage may not be discarded. This is used for globals that
602 are declared "weak" in C source code.</dd>
603
Bill Wendling7f4a3362009-11-02 00:24:16 +0000604 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000605 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
606 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
607 global scope.
608 Symbols with "<tt>common</tt>" linkage are merged in the same way as
609 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000610 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher455c5772009-12-05 02:46:03 +0000611 must have a zero initializer, and may not be marked '<a
Chris Lattner0aff0b22009-08-05 05:41:44 +0000612 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
613 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000614
Chris Lattnerd79749a2004-12-09 16:36:40 +0000615
Bill Wendling7f4a3362009-11-02 00:24:16 +0000616 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000617 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000618 pointer to array type. When two global variables with appending linkage
619 are linked together, the two global arrays are appended together. This is
620 the LLVM, typesafe, equivalent of having the system linker append together
621 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000622
Bill Wendling7f4a3362009-11-02 00:24:16 +0000623 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000624 <dd>The semantics of this linkage follow the ELF object file model: the symbol
625 is weak until linked, if not linked, the symbol becomes null instead of
626 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000627
Bill Wendling7f4a3362009-11-02 00:24:16 +0000628 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
629 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000630 <dd>Some languages allow differing globals to be merged, such as two functions
631 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000632 that only equivalent globals are ever merged (the "one definition rule"
633 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000634 and <tt>weak_odr</tt> linkage types to indicate that the global will only
635 be merged with equivalent globals. These linkage types are otherwise the
636 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000637
Bill Wendlingb4d076e2011-10-11 06:41:28 +0000638 <dt><tt><b><a name="linkage_external">external</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000639 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000640 visible, meaning that it participates in linkage and can be used to
641 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000642</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000643
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000644<p>The next two types of linkage are targeted for Microsoft Windows platform
645 only. They are designed to support importing (exporting) symbols from (to)
646 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000647
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000648<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000649 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000650 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000651 or variable via a global pointer to a pointer that is set up by the DLL
652 exporting the symbol. On Microsoft Windows targets, the pointer name is
653 formed by combining <code>__imp_</code> and the function or variable
654 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000655
Bill Wendling7f4a3362009-11-02 00:24:16 +0000656 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000657 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000658 pointer to a pointer in a DLL, so that it can be referenced with the
659 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
660 name is formed by combining <code>__imp_</code> and the function or
661 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000662</dl>
663
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000664<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
665 another module defined a "<tt>.LC0</tt>" variable and was linked with this
666 one, one of the two would be renamed, preventing a collision. Since
667 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
668 declarations), they are accessible outside of the current module.</p>
669
670<p>It is illegal for a function <i>declaration</i> to have any linkage type
Bill Wendlingb4d076e2011-10-11 06:41:28 +0000671 other than <tt>external</tt>, <tt>dllimport</tt>
672 or <tt>extern_weak</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000673
Duncan Sands12da8ce2009-03-07 15:45:40 +0000674<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000675 or <tt>weak_odr</tt> linkages.</p>
676
Chris Lattner6af02f32004-12-09 16:11:40 +0000677</div>
678
679<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000680<h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000681 <a name="callingconv">Calling Conventions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000682</h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000683
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000684<div>
Chris Lattner0132aff2005-05-06 22:57:40 +0000685
686<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000687 and <a href="#i_invoke">invokes</a> can all have an optional calling
688 convention specified for the call. The calling convention of any pair of
689 dynamic caller/callee must match, or the behavior of the program is
690 undefined. The following calling conventions are supported by LLVM, and more
691 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000692
693<dl>
694 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000695 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000696 specified) matches the target C calling conventions. This calling
697 convention supports varargs function calls and tolerates some mismatch in
698 the declared prototype and implemented declaration of the function (as
699 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000700
701 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000702 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000703 (e.g. by passing things in registers). This calling convention allows the
704 target to use whatever tricks it wants to produce fast code for the
705 target, without having to conform to an externally specified ABI
Jeffrey Yasskinb8677462010-01-09 19:44:16 +0000706 (Application Binary Interface).
707 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattnera179e4d2010-03-11 00:22:57 +0000708 when this or the GHC convention is used.</a> This calling convention
709 does not support varargs and requires the prototype of all callees to
710 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000711
712 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000713 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000714 as possible under the assumption that the call is not commonly executed.
715 As such, these calls often preserve all registers so that the call does
716 not break any live ranges in the caller side. This calling convention
717 does not support varargs and requires the prototype of all callees to
718 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000719
Chris Lattnera179e4d2010-03-11 00:22:57 +0000720 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
721 <dd>This calling convention has been implemented specifically for use by the
722 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
723 It passes everything in registers, going to extremes to achieve this by
724 disabling callee save registers. This calling convention should not be
725 used lightly but only for specific situations such as an alternative to
726 the <em>register pinning</em> performance technique often used when
727 implementing functional programming languages.At the moment only X86
728 supports this convention and it has the following limitations:
729 <ul>
730 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
731 floating point types are supported.</li>
732 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
733 6 floating point parameters.</li>
734 </ul>
735 This calling convention supports
736 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
737 requires both the caller and callee are using it.
738 </dd>
739
Chris Lattner573f64e2005-05-07 01:46:40 +0000740 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000741 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000742 target-specific calling conventions to be used. Target specific calling
743 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000744</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000745
746<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000747 support Pascal conventions or any other well-known target-independent
748 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000749
750</div>
751
752<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000753<h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000754 <a name="visibility">Visibility Styles</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000755</h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000756
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000757<div>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000758
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000759<p>All Global Variables and Functions have one of the following visibility
760 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000761
762<dl>
763 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000764 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000765 that the declaration is visible to other modules and, in shared libraries,
766 means that the declared entity may be overridden. On Darwin, default
767 visibility means that the declaration is visible to other modules. Default
768 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000769
770 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000771 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000772 object if they are in the same shared object. Usually, hidden visibility
773 indicates that the symbol will not be placed into the dynamic symbol
774 table, so no other module (executable or shared library) can reference it
775 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000776
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000777 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000778 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000779 the dynamic symbol table, but that references within the defining module
780 will bind to the local symbol. That is, the symbol cannot be overridden by
781 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000782</dl>
783
784</div>
785
786<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000787<h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000788 <a name="namedtypes">Named Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000789</h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000790
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000791<div>
Chris Lattnerbc088212009-01-11 20:53:49 +0000792
793<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000794 it easier to read the IR and make the IR more condensed (particularly when
795 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000796
Benjamin Kramer79698be2010-07-13 12:26:09 +0000797<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +0000798%mytype = type { %mytype*, i32 }
799</pre>
Chris Lattnerbc088212009-01-11 20:53:49 +0000800
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000801<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattner249b9762010-08-17 23:26:04 +0000802 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000803 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000804
805<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000806 and that you can therefore specify multiple names for the same type. This
807 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
808 uses structural typing, the name is not part of the type. When printing out
809 LLVM IR, the printer will pick <em>one name</em> to render all types of a
810 particular shape. This means that if you have code where two different
811 source types end up having the same LLVM type, that the dumper will sometimes
812 print the "wrong" or unexpected type. This is an important design point and
813 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000814
815</div>
816
Chris Lattnerbc088212009-01-11 20:53:49 +0000817<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000818<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000819 <a name="globalvars">Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000820</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000821
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000822<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000823
Chris Lattner5d5aede2005-02-12 19:30:21 +0000824<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000825 instead of run-time. Global variables may optionally be initialized, may
826 have an explicit section to be placed in, and may have an optional explicit
827 alignment specified. A variable may be defined as "thread_local", which
828 means that it will not be shared by threads (each thread will have a
829 separated copy of the variable). A variable may be defined as a global
830 "constant," which indicates that the contents of the variable
831 will <b>never</b> be modified (enabling better optimization, allowing the
832 global data to be placed in the read-only section of an executable, etc).
833 Note that variables that need runtime initialization cannot be marked
834 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000835
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000836<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
837 constant, even if the final definition of the global is not. This capability
838 can be used to enable slightly better optimization of the program, but
839 requires the language definition to guarantee that optimizations based on the
840 'constantness' are valid for the translation units that do not include the
841 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000842
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000843<p>As SSA values, global variables define pointer values that are in scope
844 (i.e. they dominate) all basic blocks in the program. Global variables
845 always define a pointer to their "content" type because they describe a
846 region of memory, and all memory objects in LLVM are accessed through
847 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000848
Rafael Espindola45e6c192011-01-08 16:42:36 +0000849<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
850 that the address is not significant, only the content. Constants marked
Rafael Espindolaf1ed7812011-01-15 08:20:57 +0000851 like this can be merged with other constants if they have the same
852 initializer. Note that a constant with significant address <em>can</em>
853 be merged with a <tt>unnamed_addr</tt> constant, the result being a
854 constant whose address is significant.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000855
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000856<p>A global variable may be declared to reside in a target-specific numbered
857 address space. For targets that support them, address spaces may affect how
858 optimizations are performed and/or what target instructions are used to
859 access the variable. The default address space is zero. The address space
860 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000861
Chris Lattner662c8722005-11-12 00:45:07 +0000862<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000863 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000864
Chris Lattner78e00bc2010-04-28 00:13:42 +0000865<p>An explicit alignment may be specified for a global, which must be a power
866 of 2. If not present, or if the alignment is set to zero, the alignment of
867 the global is set by the target to whatever it feels convenient. If an
868 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner4bd85e42010-04-28 00:31:12 +0000869 alignment. Targets and optimizers are not allowed to over-align the global
870 if the global has an assigned section. In this case, the extra alignment
871 could be observable: for example, code could assume that the globals are
872 densely packed in their section and try to iterate over them as an array,
873 alignment padding would break this iteration.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000874
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000875<p>For example, the following defines a global in a numbered address space with
876 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000877
Benjamin Kramer79698be2010-07-13 12:26:09 +0000878<pre class="doc_code">
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000879@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000880</pre>
881
Chris Lattner6af02f32004-12-09 16:11:40 +0000882</div>
883
884
885<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000886<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000887 <a name="functionstructure">Functions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000888</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000889
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000890<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000891
Dan Gohmana269a0a2010-03-01 17:41:39 +0000892<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000893 optional <a href="#linkage">linkage type</a>, an optional
894 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000895 <a href="#callingconv">calling convention</a>,
896 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000897 <a href="#paramattrs">parameter attribute</a> for the return type, a function
898 name, a (possibly empty) argument list (each with optional
899 <a href="#paramattrs">parameter attributes</a>), optional
900 <a href="#fnattrs">function attributes</a>, an optional section, an optional
901 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
902 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000903
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000904<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
905 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher455c5772009-12-05 02:46:03 +0000906 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000907 <a href="#callingconv">calling convention</a>,
908 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000909 <a href="#paramattrs">parameter attribute</a> for the return type, a function
910 name, a possibly empty list of arguments, an optional alignment, and an
911 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000912
Chris Lattner67c37d12008-08-05 18:29:16 +0000913<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000914 (Control Flow Graph) for the function. Each basic block may optionally start
915 with a label (giving the basic block a symbol table entry), contains a list
916 of instructions, and ends with a <a href="#terminators">terminator</a>
917 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000918
Chris Lattnera59fb102007-06-08 16:52:14 +0000919<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000920 executed on entrance to the function, and it is not allowed to have
921 predecessor basic blocks (i.e. there can not be any branches to the entry
922 block of a function). Because the block can have no predecessors, it also
923 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000924
Chris Lattner662c8722005-11-12 00:45:07 +0000925<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000926 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000927
Chris Lattner54611b42005-11-06 08:02:57 +0000928<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000929 the alignment is set to zero, the alignment of the function is set by the
930 target to whatever it feels convenient. If an explicit alignment is
931 specified, the function is forced to have at least that much alignment. All
932 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000933
Rafael Espindola45e6c192011-01-08 16:42:36 +0000934<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
935 be significant and two identical functions can be merged</p>.
936
Bill Wendling30235112009-07-20 02:39:26 +0000937<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000938<pre class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000939define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000940 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
941 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
942 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
943 [<a href="#gc">gc</a>] { ... }
944</pre>
Devang Patel02256232008-10-07 17:48:33 +0000945
Chris Lattner6af02f32004-12-09 16:11:40 +0000946</div>
947
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000948<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000949<h3>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000950 <a name="aliasstructure">Aliases</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000951</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000952
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000953<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000954
955<p>Aliases act as "second name" for the aliasee value (which can be either
956 function, global variable, another alias or bitcast of global value). Aliases
957 may have an optional <a href="#linkage">linkage type</a>, and an
958 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000959
Bill Wendling30235112009-07-20 02:39:26 +0000960<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000961<pre class="doc_code">
Duncan Sands7e99a942008-09-12 20:48:21 +0000962@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000963</pre>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000964
965</div>
966
Chris Lattner91c15c42006-01-23 23:23:47 +0000967<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000968<h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000969 <a name="namedmetadatastructure">Named Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000970</h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000971
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000972<div>
Devang Pateld1a89692010-01-11 19:35:55 +0000973
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000974<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman093cb792010-07-21 18:54:18 +0000975 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000976 a named metadata.</p>
Devang Pateld1a89692010-01-11 19:35:55 +0000977
978<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000979<pre class="doc_code">
Dan Gohman093cb792010-07-21 18:54:18 +0000980; Some unnamed metadata nodes, which are referenced by the named metadata.
981!0 = metadata !{metadata !"zero"}
Devang Pateld1a89692010-01-11 19:35:55 +0000982!1 = metadata !{metadata !"one"}
Dan Gohman093cb792010-07-21 18:54:18 +0000983!2 = metadata !{metadata !"two"}
Dan Gohman58cd65f2010-07-13 19:48:13 +0000984; A named metadata.
Dan Gohman093cb792010-07-21 18:54:18 +0000985!name = !{!0, !1, !2}
Devang Pateld1a89692010-01-11 19:35:55 +0000986</pre>
Devang Pateld1a89692010-01-11 19:35:55 +0000987
988</div>
989
990<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000991<h3>
992 <a name="paramattrs">Parameter Attributes</a>
993</h3>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000994
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000995<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000996
997<p>The return type and each parameter of a function type may have a set of
998 <i>parameter attributes</i> associated with them. Parameter attributes are
999 used to communicate additional information about the result or parameters of
1000 a function. Parameter attributes are considered to be part of the function,
1001 not of the function type, so functions with different parameter attributes
1002 can have the same function type.</p>
1003
1004<p>Parameter attributes are simple keywords that follow the type specified. If
1005 multiple parameter attributes are needed, they are space separated. For
1006 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001007
Benjamin Kramer79698be2010-07-13 12:26:09 +00001008<pre class="doc_code">
Nick Lewyckydac78d82009-02-15 23:06:14 +00001009declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +00001010declare i32 @atoi(i8 zeroext)
1011declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +00001012</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001013
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001014<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1015 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001016
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001017<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001018
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001019<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001020 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001021 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarichac106272011-03-16 22:20:18 +00001022 should be zero-extended to the extent required by the target's ABI (which
1023 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1024 parameter) or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001025
Bill Wendling7f4a3362009-11-02 00:24:16 +00001026 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001027 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarich341c36d2011-03-17 14:21:58 +00001028 should be sign-extended to the extent required by the target's ABI (which
1029 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1030 return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001031
Bill Wendling7f4a3362009-11-02 00:24:16 +00001032 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001033 <dd>This indicates that this parameter or return value should be treated in a
1034 special target-dependent fashion during while emitting code for a function
1035 call or return (usually, by putting it in a register as opposed to memory,
1036 though some targets use it to distinguish between two different kinds of
1037 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001038
Bill Wendling7f4a3362009-11-02 00:24:16 +00001039 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001040 <dd><p>This indicates that the pointer parameter should really be passed by
1041 value to the function. The attribute implies that a hidden copy of the
1042 pointee
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001043 is made between the caller and the callee, so the callee is unable to
1044 modify the value in the callee. This attribute is only valid on LLVM
1045 pointer arguments. It is generally used to pass structs and arrays by
1046 value, but is also valid on pointers to scalars. The copy is considered
1047 to belong to the caller not the callee (for example,
1048 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1049 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001050 values.</p>
1051
1052 <p>The byval attribute also supports specifying an alignment with
1053 the align attribute. It indicates the alignment of the stack slot to
1054 form and the known alignment of the pointer specified to the call site. If
1055 the alignment is not specified, then the code generator makes a
1056 target-specific assumption.</p></dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001057
Dan Gohman3770af52010-07-02 23:18:08 +00001058 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001059 <dd>This indicates that the pointer parameter specifies the address of a
1060 structure that is the return value of the function in the source program.
1061 This pointer must be guaranteed by the caller to be valid: loads and
1062 stores to the structure may be assumed by the callee to not to trap. This
1063 may only be applied to the first parameter. This is not a valid attribute
1064 for return values. </dd>
1065
Dan Gohman3770af52010-07-02 23:18:08 +00001066 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohmandf12d082010-07-02 18:41:32 +00001067 <dd>This indicates that pointer values
1068 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmande256292010-07-02 23:46:54 +00001069 value do not alias pointer values which are not <i>based</i> on it,
1070 ignoring certain "irrelevant" dependencies.
1071 For a call to the parent function, dependencies between memory
1072 references from before or after the call and from those during the call
1073 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1074 return value used in that call.
Dan Gohmandf12d082010-07-02 18:41:32 +00001075 The caller shares the responsibility with the callee for ensuring that
1076 these requirements are met.
1077 For further details, please see the discussion of the NoAlias response in
Dan Gohman6c858db2010-07-06 15:26:33 +00001078 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1079<br>
John McCall72ed8902010-07-06 21:07:14 +00001080 Note that this definition of <tt>noalias</tt> is intentionally
1081 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner5eff9ca2010-07-06 20:51:35 +00001082 arguments, though it is slightly weaker.
Dan Gohman6c858db2010-07-06 15:26:33 +00001083<br>
1084 For function return values, C99's <tt>restrict</tt> is not meaningful,
1085 while LLVM's <tt>noalias</tt> is.
1086 </dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001087
Dan Gohman3770af52010-07-02 23:18:08 +00001088 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001089 <dd>This indicates that the callee does not make any copies of the pointer
1090 that outlive the callee itself. This is not a valid attribute for return
1091 values.</dd>
1092
Dan Gohman3770af52010-07-02 23:18:08 +00001093 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001094 <dd>This indicates that the pointer parameter can be excised using the
1095 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1096 attribute for return values.</dd>
1097</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001098
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001099</div>
1100
1101<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001102<h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001103 <a name="gc">Garbage Collector Names</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001104</h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001105
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001106<div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001107
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001108<p>Each function may specify a garbage collector name, which is simply a
1109 string:</p>
1110
Benjamin Kramer79698be2010-07-13 12:26:09 +00001111<pre class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +00001112define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001113</pre>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001114
1115<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001116 collector which will cause the compiler to alter its output in order to
1117 support the named garbage collection algorithm.</p>
1118
Gordon Henriksen71183b62007-12-10 03:18:06 +00001119</div>
1120
1121<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001122<h3>
Devang Patel9eb525d2008-09-26 23:51:19 +00001123 <a name="fnattrs">Function Attributes</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001124</h3>
Devang Patelcaacdba2008-09-04 23:05:13 +00001125
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001126<div>
Devang Patel9eb525d2008-09-26 23:51:19 +00001127
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001128<p>Function attributes are set to communicate additional information about a
1129 function. Function attributes are considered to be part of the function, not
1130 of the function type, so functions with different parameter attributes can
1131 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001132
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001133<p>Function attributes are simple keywords that follow the type specified. If
1134 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001135
Benjamin Kramer79698be2010-07-13 12:26:09 +00001136<pre class="doc_code">
Devang Patel9eb525d2008-09-26 23:51:19 +00001137define void @f() noinline { ... }
1138define void @f() alwaysinline { ... }
1139define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001140define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001141</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001142
Bill Wendlingb175fa42008-09-07 10:26:33 +00001143<dl>
Charles Davisbe5557e2010-02-12 00:31:15 +00001144 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1145 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1146 the backend should forcibly align the stack pointer. Specify the
1147 desired alignment, which must be a power of two, in parentheses.
1148
Bill Wendling7f4a3362009-11-02 00:24:16 +00001149 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001150 <dd>This attribute indicates that the inliner should attempt to inline this
1151 function into callers whenever possible, ignoring any active inlining size
1152 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001153
Dan Gohman8bd11f12011-06-16 16:03:13 +00001154 <dt><tt><b>nonlazybind</b></tt></dt>
1155 <dd>This attribute suppresses lazy symbol binding for the function. This
1156 may make calls to the function faster, at the cost of extra program
1157 startup time if the function is not called during program startup.</dd>
1158
Jakob Stoklund Olesen74bb06c2010-02-06 01:16:28 +00001159 <dt><tt><b>inlinehint</b></tt></dt>
1160 <dd>This attribute indicates that the source code contained a hint that inlining
1161 this function is desirable (such as the "inline" keyword in C/C++). It
1162 is just a hint; it imposes no requirements on the inliner.</dd>
1163
Nick Lewycky14b58da2010-07-06 18:24:09 +00001164 <dt><tt><b>naked</b></tt></dt>
1165 <dd>This attribute disables prologue / epilogue emission for the function.
1166 This can have very system-specific consequences.</dd>
1167
1168 <dt><tt><b>noimplicitfloat</b></tt></dt>
1169 <dd>This attributes disables implicit floating point instructions.</dd>
1170
Bill Wendling7f4a3362009-11-02 00:24:16 +00001171 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001172 <dd>This attribute indicates that the inliner should never inline this
1173 function in any situation. This attribute may not be used together with
1174 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001175
Nick Lewycky14b58da2010-07-06 18:24:09 +00001176 <dt><tt><b>noredzone</b></tt></dt>
1177 <dd>This attribute indicates that the code generator should not use a red
1178 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001179
Bill Wendling7f4a3362009-11-02 00:24:16 +00001180 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001181 <dd>This function attribute indicates that the function never returns
1182 normally. This produces undefined behavior at runtime if the function
1183 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001184
Bill Wendling7f4a3362009-11-02 00:24:16 +00001185 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001186 <dd>This function attribute indicates that the function never returns with an
1187 unwind or exceptional control flow. If the function does unwind, its
1188 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001189
Nick Lewycky14b58da2010-07-06 18:24:09 +00001190 <dt><tt><b>optsize</b></tt></dt>
1191 <dd>This attribute suggests that optimization passes and code generator passes
1192 make choices that keep the code size of this function low, and otherwise
1193 do optimizations specifically to reduce code size.</dd>
1194
Bill Wendling7f4a3362009-11-02 00:24:16 +00001195 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001196 <dd>This attribute indicates that the function computes its result (or decides
1197 to unwind an exception) based strictly on its arguments, without
1198 dereferencing any pointer arguments or otherwise accessing any mutable
1199 state (e.g. memory, control registers, etc) visible to caller functions.
1200 It does not write through any pointer arguments
1201 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1202 changes any state visible to callers. This means that it cannot unwind
1203 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1204 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001205
Bill Wendling7f4a3362009-11-02 00:24:16 +00001206 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001207 <dd>This attribute indicates that the function does not write through any
1208 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1209 arguments) or otherwise modify any state (e.g. memory, control registers,
1210 etc) visible to caller functions. It may dereference pointer arguments
1211 and read state that may be set in the caller. A readonly function always
1212 returns the same value (or unwinds an exception identically) when called
1213 with the same set of arguments and global state. It cannot unwind an
1214 exception by calling the <tt>C++</tt> exception throwing methods, but may
1215 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001216
Bill Wendling7f4a3362009-11-02 00:24:16 +00001217 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001218 <dd>This attribute indicates that the function should emit a stack smashing
1219 protector. It is in the form of a "canary"&mdash;a random value placed on
1220 the stack before the local variables that's checked upon return from the
1221 function to see if it has been overwritten. A heuristic is used to
1222 determine if a function needs stack protectors or not.<br>
1223<br>
1224 If a function that has an <tt>ssp</tt> attribute is inlined into a
1225 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1226 function will have an <tt>ssp</tt> attribute.</dd>
1227
Bill Wendling7f4a3362009-11-02 00:24:16 +00001228 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001229 <dd>This attribute indicates that the function should <em>always</em> emit a
1230 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001231 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1232<br>
1233 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1234 function that doesn't have an <tt>sspreq</tt> attribute or which has
1235 an <tt>ssp</tt> attribute, then the resulting function will have
1236 an <tt>sspreq</tt> attribute.</dd>
Rafael Espindola163d6752011-07-25 15:27:59 +00001237
1238 <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
1239 <dd>This attribute indicates that the ABI being targeted requires that
1240 an unwind table entry be produce for this function even if we can
1241 show that no exceptions passes by it. This is normally the case for
1242 the ELF x86-64 abi, but it can be disabled for some compilation
1243 units.</dd>
1244
Rafael Espindolacc349c82011-10-03 14:45:37 +00001245 <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
1246 <dd>This attribute indicates that this function can return
1247 twice. The C <code>setjmp</code> is an example of such a function.
1248 The compiler disables some optimizations (like tail calls) in the caller of
1249 these functions.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001250</dl>
1251
Devang Patelcaacdba2008-09-04 23:05:13 +00001252</div>
1253
1254<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001255<h3>
Chris Lattner93564892006-04-08 04:40:53 +00001256 <a name="moduleasm">Module-Level Inline Assembly</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001257</h3>
Chris Lattner91c15c42006-01-23 23:23:47 +00001258
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001259<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001260
1261<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1262 the GCC "file scope inline asm" blocks. These blocks are internally
1263 concatenated by LLVM and treated as a single unit, but may be separated in
1264 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001265
Benjamin Kramer79698be2010-07-13 12:26:09 +00001266<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00001267module asm "inline asm code goes here"
1268module asm "more can go here"
1269</pre>
Chris Lattner91c15c42006-01-23 23:23:47 +00001270
1271<p>The strings can contain any character by escaping non-printable characters.
1272 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001273 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001274
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001275<p>The inline asm code is simply printed to the machine code .s file when
1276 assembly code is generated.</p>
1277
Chris Lattner91c15c42006-01-23 23:23:47 +00001278</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001279
Reid Spencer50c723a2007-02-19 23:54:10 +00001280<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001281<h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001282 <a name="datalayout">Data Layout</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001283</h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001284
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001285<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001286
Reid Spencer50c723a2007-02-19 23:54:10 +00001287<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001288 data is to be laid out in memory. The syntax for the data layout is
1289 simply:</p>
1290
Benjamin Kramer79698be2010-07-13 12:26:09 +00001291<pre class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001292target datalayout = "<i>layout specification</i>"
1293</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001294
1295<p>The <i>layout specification</i> consists of a list of specifications
1296 separated by the minus sign character ('-'). Each specification starts with
1297 a letter and may include other information after the letter to define some
1298 aspect of the data layout. The specifications accepted are as follows:</p>
1299
Reid Spencer50c723a2007-02-19 23:54:10 +00001300<dl>
1301 <dt><tt>E</tt></dt>
1302 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001303 bits with the most significance have the lowest address location.</dd>
1304
Reid Spencer50c723a2007-02-19 23:54:10 +00001305 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001306 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001307 the bits with the least significance have the lowest address
1308 location.</dd>
1309
Lang Hamesde7ab802011-10-10 23:42:08 +00001310 <dt><tt>S<i>size</i></tt></dt>
1311 <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
1312 of stack variables is limited to the natural stack alignment to avoid
1313 dynamic stack realignment. The stack alignment must be a multiple of
Lang Hamesff2c52c2011-10-11 17:50:14 +00001314 8-bits. If omitted, the natural stack alignment defaults to "unspecified",
1315 which does not prevent any alignment promotions.</dd>
Lang Hamesde7ab802011-10-10 23:42:08 +00001316
Reid Spencer50c723a2007-02-19 23:54:10 +00001317 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001318 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001319 <i>preferred</i> alignments. All sizes are in bits. Specifying
1320 the <i>pref</i> alignment is optional. If omitted, the
1321 preceding <tt>:</tt> should be omitted too.</dd>
1322
Reid Spencer50c723a2007-02-19 23:54:10 +00001323 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1324 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001325 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1326
Reid Spencer50c723a2007-02-19 23:54:10 +00001327 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001328 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001329 <i>size</i>.</dd>
1330
Reid Spencer50c723a2007-02-19 23:54:10 +00001331 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001332 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesence522852010-05-28 18:54:47 +00001333 <i>size</i>. Only values of <i>size</i> that are supported by the target
1334 will work. 32 (float) and 64 (double) are supported on all targets;
1335 80 or 128 (different flavors of long double) are also supported on some
1336 targets.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001337
Reid Spencer50c723a2007-02-19 23:54:10 +00001338 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1339 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001340 <i>size</i>.</dd>
1341
Daniel Dunbar7921a592009-06-08 22:17:53 +00001342 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1343 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001344 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001345
1346 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1347 <dd>This specifies a set of native integer widths for the target CPU
1348 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1349 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher455c5772009-12-05 02:46:03 +00001350 this set are considered to support most general arithmetic
Chris Lattnera381eff2009-11-07 09:35:34 +00001351 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001352</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001353
Reid Spencer50c723a2007-02-19 23:54:10 +00001354<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman61110ae2010-04-28 00:36:01 +00001355 default set of specifications which are then (possibly) overridden by the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001356 specifications in the <tt>datalayout</tt> keyword. The default specifications
1357 are given in this list:</p>
1358
Reid Spencer50c723a2007-02-19 23:54:10 +00001359<ul>
1360 <li><tt>E</tt> - big endian</li>
Dan Gohman8ad777d2010-02-23 02:44:03 +00001361 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001362 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1363 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1364 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1365 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001366 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001367 alignment of 64-bits</li>
1368 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1369 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1370 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1371 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1372 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001373 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001374</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001375
1376<p>When LLVM is determining the alignment for a given type, it uses the
1377 following rules:</p>
1378
Reid Spencer50c723a2007-02-19 23:54:10 +00001379<ol>
1380 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001381 specification is used.</li>
1382
Reid Spencer50c723a2007-02-19 23:54:10 +00001383 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001384 smallest integer type that is larger than the bitwidth of the sought type
1385 is used. If none of the specifications are larger than the bitwidth then
1386 the the largest integer type is used. For example, given the default
1387 specifications above, the i7 type will use the alignment of i8 (next
1388 largest) while both i65 and i256 will use the alignment of i64 (largest
1389 specified).</li>
1390
Reid Spencer50c723a2007-02-19 23:54:10 +00001391 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001392 largest vector type that is smaller than the sought vector type will be
1393 used as a fall back. This happens because &lt;128 x double&gt; can be
1394 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001395</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001396
Chris Lattner48797402011-10-11 23:01:39 +00001397<p>The function of the data layout string may not be what you expect. Notably,
1398 this is not a specification from the frontend of what alignment the code
1399 generator should use.</p>
1400
1401<p>Instead, if specified, the target data layout is required to match what the
1402 ultimate <em>code generator</em> expects. This string is used by the
1403 mid-level optimizers to
1404 improve code, and this only works if it matches what the ultimate code
1405 generator uses. If you would like to generate IR that does not embed this
1406 target-specific detail into the IR, then you don't have to specify the
1407 string. This will disable some optimizations that require precise layout
1408 information, but this also prevents those optimizations from introducing
1409 target specificity into the IR.</p>
1410
1411
1412
Reid Spencer50c723a2007-02-19 23:54:10 +00001413</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001414
Dan Gohman6154a012009-07-27 18:07:55 +00001415<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001416<h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001417 <a name="pointeraliasing">Pointer Aliasing Rules</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001418</h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001419
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001420<div>
Dan Gohman6154a012009-07-27 18:07:55 +00001421
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001422<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001423with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001424is undefined. Pointer values are associated with address ranges
1425according to the following rules:</p>
1426
1427<ul>
Dan Gohmandf12d082010-07-02 18:41:32 +00001428 <li>A pointer value is associated with the addresses associated with
1429 any value it is <i>based</i> on.
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001430 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001431 range of the variable's storage.</li>
1432 <li>The result value of an allocation instruction is associated with
1433 the address range of the allocated storage.</li>
1434 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001435 no address.</li>
Dan Gohman6154a012009-07-27 18:07:55 +00001436 <li>An integer constant other than zero or a pointer value returned
1437 from a function not defined within LLVM may be associated with address
1438 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001439 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001440 allocated by mechanisms provided by LLVM.</li>
Dan Gohmandf12d082010-07-02 18:41:32 +00001441</ul>
1442
1443<p>A pointer value is <i>based</i> on another pointer value according
1444 to the following rules:</p>
1445
1446<ul>
1447 <li>A pointer value formed from a
1448 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1449 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1450 <li>The result value of a
1451 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1452 of the <tt>bitcast</tt>.</li>
1453 <li>A pointer value formed by an
1454 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1455 pointer values that contribute (directly or indirectly) to the
1456 computation of the pointer's value.</li>
1457 <li>The "<i>based</i> on" relationship is transitive.</li>
1458</ul>
1459
1460<p>Note that this definition of <i>"based"</i> is intentionally
1461 similar to the definition of <i>"based"</i> in C99, though it is
1462 slightly weaker.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001463
1464<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001465<tt><a href="#i_load">load</a></tt> merely indicates the size and
1466alignment of the memory from which to load, as well as the
Dan Gohman4eb47192010-06-17 19:23:50 +00001467interpretation of the value. The first operand type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001468<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1469and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001470
1471<p>Consequently, type-based alias analysis, aka TBAA, aka
1472<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1473LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1474additional information which specialized optimization passes may use
1475to implement type-based alias analysis.</p>
1476
1477</div>
1478
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001479<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001480<h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001481 <a name="volatile">Volatile Memory Accesses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001482</h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001483
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001484<div>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001485
1486<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1487href="#i_store"><tt>store</tt></a>s, and <a
1488href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1489The optimizers must not change the number of volatile operations or change their
1490order of execution relative to other volatile operations. The optimizers
1491<i>may</i> change the order of volatile operations relative to non-volatile
1492operations. This is not Java's "volatile" and has no cross-thread
1493synchronization behavior.</p>
1494
1495</div>
1496
Eli Friedman35b54aa2011-07-20 21:35:53 +00001497<!-- ======================================================================= -->
1498<h3>
1499 <a name="memmodel">Memory Model for Concurrent Operations</a>
1500</h3>
1501
1502<div>
1503
1504<p>The LLVM IR does not define any way to start parallel threads of execution
1505or to register signal handlers. Nonetheless, there are platform-specific
1506ways to create them, and we define LLVM IR's behavior in their presence. This
1507model is inspired by the C++0x memory model.</p>
1508
Eli Friedman95f69a42011-08-22 21:35:27 +00001509<p>For a more informal introduction to this model, see the
1510<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
1511
Eli Friedman35b54aa2011-07-20 21:35:53 +00001512<p>We define a <i>happens-before</i> partial order as the least partial order
1513that</p>
1514<ul>
1515 <li>Is a superset of single-thread program order, and</li>
1516 <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
1517 <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
1518 by platform-specific techniques, like pthread locks, thread
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001519 creation, thread joining, etc., and by atomic instructions.
1520 (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
1521 </li>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001522</ul>
1523
1524<p>Note that program order does not introduce <i>happens-before</i> edges
1525between a thread and signals executing inside that thread.</p>
1526
1527<p>Every (defined) read operation (load instructions, memcpy, atomic
1528loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
1529(defined) write operations (store instructions, atomic
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001530stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
1531initialized globals are considered to have a write of the initializer which is
1532atomic and happens before any other read or write of the memory in question.
1533For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
1534any write to the same byte, except:</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001535
1536<ul>
1537 <li>If <var>write<sub>1</sub></var> happens before
1538 <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
1539 before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001540 does not see <var>write<sub>1</sub></var>.
Bill Wendling537603b2011-07-31 06:45:03 +00001541 <li>If <var>R<sub>byte</sub></var> happens before
1542 <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
1543 see <var>write<sub>3</sub></var>.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001544</ul>
1545
1546<p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
1547<ul>
Eli Friedman95f69a42011-08-22 21:35:27 +00001548 <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
1549 is supposed to give guarantees which can support
1550 <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
1551 addresses which do not behave like normal memory. It does not generally
1552 provide cross-thread synchronization.)
1553 <li>Otherwise, if there is no write to the same byte that happens before
Eli Friedman35b54aa2011-07-20 21:35:53 +00001554 <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns
1555 <tt>undef</tt> for that byte.
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001556 <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
Eli Friedman35b54aa2011-07-20 21:35:53 +00001557 <var>R<sub>byte</sub></var> returns the value written by that
1558 write.</li>
Eli Friedmanf12e4e92011-07-22 03:04:45 +00001559 <li>Otherwise, if <var>R</var> is atomic, and all the writes
1560 <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001561 values written. See the <a href="#ordering">Atomic Memory Ordering
1562 Constraints</a> section for additional constraints on how the choice
1563 is made.
Eli Friedman35b54aa2011-07-20 21:35:53 +00001564 <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
1565</ul>
1566
1567<p><var>R</var> returns the value composed of the series of bytes it read.
1568This implies that some bytes within the value may be <tt>undef</tt>
1569<b>without</b> the entire value being <tt>undef</tt>. Note that this only
1570defines the semantics of the operation; it doesn't mean that targets will
1571emit more than one instruction to read the series of bytes.</p>
1572
1573<p>Note that in cases where none of the atomic intrinsics are used, this model
1574places only one restriction on IR transformations on top of what is required
1575for single-threaded execution: introducing a store to a byte which might not
Eli Friedman4bc9f3c2011-08-02 01:15:34 +00001576otherwise be stored is not allowed in general. (Specifically, in the case
1577where another thread might write to and read from an address, introducing a
1578store can change a load that may see exactly one write into a load that may
1579see multiple writes.)</p>
Eli Friedman35b54aa2011-07-20 21:35:53 +00001580
1581<!-- FIXME: This model assumes all targets where concurrency is relevant have
1582a byte-size store which doesn't affect adjacent bytes. As far as I can tell,
1583none of the backends currently in the tree fall into this category; however,
1584there might be targets which care. If there are, we want a paragraph
1585like the following:
1586
1587Targets may specify that stores narrower than a certain width are not
1588available; on such a target, for the purposes of this model, treat any
1589non-atomic write with an alignment or width less than the minimum width
1590as if it writes to the relevant surrounding bytes.
1591-->
1592
1593</div>
1594
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001595<!-- ======================================================================= -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001596<h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001597 <a name="ordering">Atomic Memory Ordering Constraints</a>
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001598</h3>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001599
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00001600<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001601
1602<p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
Eli Friedman59b66882011-08-09 23:02:53 +00001603<a href="#i_atomicrmw"><code>atomicrmw</code></a>,
1604<a href="#i_fence"><code>fence</code></a>,
1605<a href="#i_load"><code>atomic load</code></a>, and
Eli Friedman75362532011-08-09 23:26:12 +00001606<a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001607that determines which other atomic instructions on the same address they
1608<i>synchronize with</i>. These semantics are borrowed from Java and C++0x,
1609but are somewhat more colloquial. If these descriptions aren't precise enough,
Eli Friedman95f69a42011-08-22 21:35:27 +00001610check those specs (see spec references in the
1611<a href="Atomic.html#introduction">atomics guide</a>).
1612<a href="#i_fence"><code>fence</code></a> instructions
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001613treat these orderings somewhat differently since they don't take an address.
1614See that instruction's documentation for details.</p>
1615
Eli Friedman95f69a42011-08-22 21:35:27 +00001616<p>For a simpler introduction to the ordering constraints, see the
1617<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
1618
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001619<dl>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001620<dt><code>unordered</code></dt>
1621<dd>The set of values that can be read is governed by the happens-before
1622partial order. A value cannot be read unless some operation wrote it.
1623This is intended to provide a guarantee strong enough to model Java's
1624non-volatile shared variables. This ordering cannot be specified for
1625read-modify-write operations; it is not strong enough to make them atomic
1626in any interesting way.</dd>
1627<dt><code>monotonic</code></dt>
1628<dd>In addition to the guarantees of <code>unordered</code>, there is a single
1629total order for modifications by <code>monotonic</code> operations on each
1630address. All modification orders must be compatible with the happens-before
1631order. There is no guarantee that the modification orders can be combined to
1632a global total order for the whole program (and this often will not be
1633possible). The read in an atomic read-modify-write operation
1634(<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
1635<a href="#i_atomicrmw"><code>atomicrmw</code></a>)
1636reads the value in the modification order immediately before the value it
1637writes. If one atomic read happens before another atomic read of the same
1638address, the later read must see the same value or a later value in the
1639address's modification order. This disallows reordering of
1640<code>monotonic</code> (or stronger) operations on the same address. If an
1641address is written <code>monotonic</code>ally by one thread, and other threads
1642<code>monotonic</code>ally read that address repeatedly, the other threads must
Eli Friedman95f69a42011-08-22 21:35:27 +00001643eventually see the write. This corresponds to the C++0x/C1x
1644<code>memory_order_relaxed</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001645<dt><code>acquire</code></dt>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001646<dd>In addition to the guarantees of <code>monotonic</code>,
Eli Friedman0cb3b562011-08-24 20:28:39 +00001647a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
1648operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
1649<dt><code>release</code></dt>
1650<dd>In addition to the guarantees of <code>monotonic</code>, if this operation
1651writes a value which is subsequently read by an <code>acquire</code> operation,
1652it <i>synchronizes-with</i> that operation. (This isn't a complete
1653description; see the C++0x definition of a release sequence.) This corresponds
1654to the C++0x/C1x <code>memory_order_release</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001655<dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
Eli Friedman95f69a42011-08-22 21:35:27 +00001656<code>acquire</code> and <code>release</code> operation on its address.
1657This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001658<dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
1659<dd>In addition to the guarantees of <code>acq_rel</code>
1660(<code>acquire</code> for an operation which only reads, <code>release</code>
1661for an operation which only writes), there is a global total order on all
1662sequentially-consistent operations on all addresses, which is consistent with
1663the <i>happens-before</i> partial order and with the modification orders of
1664all the affected addresses. Each sequentially-consistent read sees the last
Eli Friedman95f69a42011-08-22 21:35:27 +00001665preceding write to the same address in this global order. This corresponds
1666to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00001667</dl>
1668
1669<p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
1670it only <i>synchronizes with</i> or participates in modification and seq_cst
1671total orderings with other operations running in the same thread (for example,
1672in signal handlers).</p>
1673
1674</div>
1675
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001676</div>
1677
Chris Lattner2f7c9632001-06-06 20:29:01 +00001678<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001679<h2><a name="typesystem">Type System</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00001680<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001681
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001682<div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001683
Misha Brukman76307852003-11-08 01:05:38 +00001684<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001685 intermediate representation. Being typed enables a number of optimizations
1686 to be performed on the intermediate representation directly, without having
1687 to do extra analyses on the side before the transformation. A strong type
1688 system makes it easier to read the generated code and enables novel analyses
1689 and transformations that are not feasible to perform on normal three address
1690 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001691
Chris Lattner2f7c9632001-06-06 20:29:01 +00001692<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001693<h3>
1694 <a name="t_classifications">Type Classifications</a>
1695</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001696
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001697<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001698
1699<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001700
1701<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001702 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001703 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001704 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001705 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001706 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001707 </tr>
1708 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001709 <td><a href="#t_floating">floating point</a></td>
1710 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001711 </tr>
1712 <tr>
1713 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001714 <td><a href="#t_integer">integer</a>,
1715 <a href="#t_floating">floating point</a>,
1716 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001717 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001718 <a href="#t_struct">structure</a>,
1719 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001720 <a href="#t_label">label</a>,
1721 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001722 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001723 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001724 <tr>
1725 <td><a href="#t_primitive">primitive</a></td>
1726 <td><a href="#t_label">label</a>,
1727 <a href="#t_void">void</a>,
Tobias Grosser4c8c95b2010-12-28 20:29:31 +00001728 <a href="#t_integer">integer</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001729 <a href="#t_floating">floating point</a>,
Dale Johannesen33e5c352010-10-01 00:48:59 +00001730 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001731 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001732 </tr>
1733 <tr>
1734 <td><a href="#t_derived">derived</a></td>
Chris Lattner392be582010-02-12 20:49:41 +00001735 <td><a href="#t_array">array</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001736 <a href="#t_function">function</a>,
1737 <a href="#t_pointer">pointer</a>,
1738 <a href="#t_struct">structure</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001739 <a href="#t_vector">vector</a>,
1740 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001741 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001742 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001743 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001744</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001745
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001746<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1747 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001748 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001749
Misha Brukman76307852003-11-08 01:05:38 +00001750</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001751
Chris Lattner2f7c9632001-06-06 20:29:01 +00001752<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001753<h3>
1754 <a name="t_primitive">Primitive Types</a>
1755</h3>
Chris Lattner43542b32008-01-04 04:34:14 +00001756
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001757<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001758
Chris Lattner7824d182008-01-04 04:32:38 +00001759<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001760 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001761
1762<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001763<h4>
1764 <a name="t_integer">Integer Type</a>
1765</h4>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001766
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001767<div>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001768
1769<h5>Overview:</h5>
1770<p>The integer type is a very simple type that simply specifies an arbitrary
1771 bit width for the integer type desired. Any bit width from 1 bit to
1772 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1773
1774<h5>Syntax:</h5>
1775<pre>
1776 iN
1777</pre>
1778
1779<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1780 value.</p>
1781
1782<h5>Examples:</h5>
1783<table class="layout">
1784 <tr class="layout">
1785 <td class="left"><tt>i1</tt></td>
1786 <td class="left">a single-bit integer.</td>
1787 </tr>
1788 <tr class="layout">
1789 <td class="left"><tt>i32</tt></td>
1790 <td class="left">a 32-bit integer.</td>
1791 </tr>
1792 <tr class="layout">
1793 <td class="left"><tt>i1942652</tt></td>
1794 <td class="left">a really big integer of over 1 million bits.</td>
1795 </tr>
1796</table>
1797
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001798</div>
1799
1800<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001801<h4>
1802 <a name="t_floating">Floating Point Types</a>
1803</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001804
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001805<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001806
1807<table>
1808 <tbody>
1809 <tr><th>Type</th><th>Description</th></tr>
1810 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1811 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1812 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1813 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1814 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1815 </tbody>
1816</table>
1817
Chris Lattner7824d182008-01-04 04:32:38 +00001818</div>
1819
1820<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001821<h4>
1822 <a name="t_x86mmx">X86mmx Type</a>
1823</h4>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001824
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001825<div>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001826
1827<h5>Overview:</h5>
1828<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1829
1830<h5>Syntax:</h5>
1831<pre>
Dale Johannesenb1f0ff12010-10-01 01:07:02 +00001832 x86mmx
Dale Johannesen33e5c352010-10-01 00:48:59 +00001833</pre>
1834
1835</div>
1836
1837<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001838<h4>
1839 <a name="t_void">Void Type</a>
1840</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001841
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001842<div>
Bill Wendling30235112009-07-20 02:39:26 +00001843
Chris Lattner7824d182008-01-04 04:32:38 +00001844<h5>Overview:</h5>
1845<p>The void type does not represent any value and has no size.</p>
1846
1847<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001848<pre>
1849 void
1850</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001851
Chris Lattner7824d182008-01-04 04:32:38 +00001852</div>
1853
1854<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001855<h4>
1856 <a name="t_label">Label Type</a>
1857</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001858
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001859<div>
Bill Wendling30235112009-07-20 02:39:26 +00001860
Chris Lattner7824d182008-01-04 04:32:38 +00001861<h5>Overview:</h5>
1862<p>The label type represents code labels.</p>
1863
1864<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001865<pre>
1866 label
1867</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001868
Chris Lattner7824d182008-01-04 04:32:38 +00001869</div>
1870
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001871<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001872<h4>
1873 <a name="t_metadata">Metadata Type</a>
1874</h4>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001875
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001876<div>
Bill Wendling30235112009-07-20 02:39:26 +00001877
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001878<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001879<p>The metadata type represents embedded metadata. No derived types may be
1880 created from metadata except for <a href="#t_function">function</a>
1881 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001882
1883<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001884<pre>
1885 metadata
1886</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001887
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001888</div>
1889
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001890</div>
Chris Lattner7824d182008-01-04 04:32:38 +00001891
1892<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001893<h3>
1894 <a name="t_derived">Derived Types</a>
1895</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00001896
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001897<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001898
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001899<p>The real power in LLVM comes from the derived types in the system. This is
1900 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001901 useful types. Each of these types contain one or more element types which
1902 may be a primitive type, or another derived type. For example, it is
1903 possible to have a two dimensional array, using an array as the element type
1904 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001905
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00001906</div>
1907
1908
Chris Lattner392be582010-02-12 20:49:41 +00001909<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001910<h4>
1911 <a name="t_aggregate">Aggregate Types</a>
1912</h4>
Chris Lattner392be582010-02-12 20:49:41 +00001913
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001914<div>
Chris Lattner392be582010-02-12 20:49:41 +00001915
1916<p>Aggregate Types are a subset of derived types that can contain multiple
1917 member types. <a href="#t_array">Arrays</a>,
Chris Lattner13ee7952010-08-28 04:09:24 +00001918 <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1919 aggregate types.</p>
Chris Lattner392be582010-02-12 20:49:41 +00001920
1921</div>
1922
Reid Spencer138249b2007-05-16 18:44:01 +00001923<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001924<h4>
1925 <a name="t_array">Array Type</a>
1926</h4>
Chris Lattner74d3f822004-12-09 17:30:23 +00001927
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001928<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001929
Chris Lattner2f7c9632001-06-06 20:29:01 +00001930<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001931<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001932 sequentially in memory. The array type requires a size (number of elements)
1933 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001934
Chris Lattner590645f2002-04-14 06:13:44 +00001935<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001936<pre>
1937 [&lt;# elements&gt; x &lt;elementtype&gt;]
1938</pre>
1939
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001940<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1941 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001942
Chris Lattner590645f2002-04-14 06:13:44 +00001943<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001944<table class="layout">
1945 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001946 <td class="left"><tt>[40 x i32]</tt></td>
1947 <td class="left">Array of 40 32-bit integer values.</td>
1948 </tr>
1949 <tr class="layout">
1950 <td class="left"><tt>[41 x i32]</tt></td>
1951 <td class="left">Array of 41 32-bit integer values.</td>
1952 </tr>
1953 <tr class="layout">
1954 <td class="left"><tt>[4 x i8]</tt></td>
1955 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001956 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001957</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001958<p>Here are some examples of multidimensional arrays:</p>
1959<table class="layout">
1960 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001961 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1962 <td class="left">3x4 array of 32-bit integer values.</td>
1963 </tr>
1964 <tr class="layout">
1965 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1966 <td class="left">12x10 array of single precision floating point values.</td>
1967 </tr>
1968 <tr class="layout">
1969 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1970 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001971 </tr>
1972</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001973
Dan Gohmanc74bc282009-11-09 19:01:53 +00001974<p>There is no restriction on indexing beyond the end of the array implied by
1975 a static type (though there are restrictions on indexing beyond the bounds
1976 of an allocated object in some cases). This means that single-dimension
1977 'variable sized array' addressing can be implemented in LLVM with a zero
1978 length array type. An implementation of 'pascal style arrays' in LLVM could
1979 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001980
Misha Brukman76307852003-11-08 01:05:38 +00001981</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001982
Chris Lattner2f7c9632001-06-06 20:29:01 +00001983<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001984<h4>
1985 <a name="t_function">Function Type</a>
1986</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001987
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001988<div>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001989
Chris Lattner2f7c9632001-06-06 20:29:01 +00001990<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001991<p>The function type can be thought of as a function signature. It consists of
1992 a return type and a list of formal parameter types. The return type of a
Chris Lattner13ee7952010-08-28 04:09:24 +00001993 function type is a first class type or a void type.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001994
Chris Lattner2f7c9632001-06-06 20:29:01 +00001995<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001996<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001997 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00001998</pre>
1999
John Criswell4c0cf7f2005-10-24 16:17:18 +00002000<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002001 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
2002 which indicates that the function takes a variable number of arguments.
2003 Variable argument functions can access their arguments with
2004 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner47f2a832010-03-02 06:36:51 +00002005 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00002006 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002007
Chris Lattner2f7c9632001-06-06 20:29:01 +00002008<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002009<table class="layout">
2010 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00002011 <td class="left"><tt>i32 (i32)</tt></td>
2012 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002013 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00002014 </tr><tr class="layout">
Chris Lattner47f2a832010-03-02 06:36:51 +00002015 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00002016 </tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002017 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner47f2a832010-03-02 06:36:51 +00002018 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
2019 returning <tt>float</tt>.
Reid Spencer58c08712006-12-31 07:18:34 +00002020 </td>
2021 </tr><tr class="layout">
2022 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00002023 <td class="left">A vararg function that takes at least one
2024 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
2025 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer58c08712006-12-31 07:18:34 +00002026 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002027 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00002028 </tr><tr class="layout">
2029 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00002030 <td class="left">A function taking an <tt>i32</tt>, returning a
2031 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00002032 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002033 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002034</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00002035
Misha Brukman76307852003-11-08 01:05:38 +00002036</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002037
Chris Lattner2f7c9632001-06-06 20:29:01 +00002038<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002039<h4>
2040 <a name="t_struct">Structure Type</a>
2041</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002042
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002043<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002044
Chris Lattner2f7c9632001-06-06 20:29:01 +00002045<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002046<p>The structure type is used to represent a collection of data members together
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002047 in memory. The elements of a structure may be any type that has a size.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002048
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00002049<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
2050 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
2051 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2052 Structures in registers are accessed using the
2053 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
2054 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002055
2056<p>Structures may optionally be "packed" structures, which indicate that the
2057 alignment of the struct is one byte, and that there is no padding between
Chris Lattner190552d2011-08-12 17:31:02 +00002058 the elements. In non-packed structs, padding between field types is inserted
2059 as defined by the TargetData string in the module, which is required to match
Chris Lattner7bd0ea32011-10-11 23:02:17 +00002060 what the underlying code generator expects.</p>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002061
Chris Lattner190552d2011-08-12 17:31:02 +00002062<p>Structures can either be "literal" or "identified". A literal structure is
2063 defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
2064 types are always defined at the top level with a name. Literal types are
2065 uniqued by their contents and can never be recursive or opaque since there is
Chris Lattner32531732011-08-12 18:12:40 +00002066 no way to write one. Identified types can be recursive, can be opaqued, and are
Chris Lattner190552d2011-08-12 17:31:02 +00002067 never uniqued.
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002068</p>
2069
Chris Lattner2f7c9632001-06-06 20:29:01 +00002070<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002071<pre>
Chris Lattner190552d2011-08-12 17:31:02 +00002072 %T1 = type { &lt;type list&gt; } <i>; Identified normal struct type</i>
2073 %T2 = type &lt;{ &lt;type list&gt; }&gt; <i>; Identified packed struct type</i>
Bill Wendling30235112009-07-20 02:39:26 +00002074</pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002075
Chris Lattner2f7c9632001-06-06 20:29:01 +00002076<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002077<table class="layout">
2078 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002079 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
2080 <td class="left">A triple of three <tt>i32</tt> values</td>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002081 </tr>
2082 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00002083 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
2084 <td class="left">A pair, where the first element is a <tt>float</tt> and the
2085 second element is a <a href="#t_pointer">pointer</a> to a
2086 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
2087 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002088 </tr>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002089 <tr class="layout">
2090 <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
2091 <td class="left">A packed struct known to be 5 bytes in size.</td>
2092 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002093</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002094
Misha Brukman76307852003-11-08 01:05:38 +00002095</div>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002096
Chris Lattner2f7c9632001-06-06 20:29:01 +00002097<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002098<h4>
Chris Lattner2a843822011-07-23 19:59:08 +00002099 <a name="t_opaque">Opaque Structure Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002100</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002101
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002102<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002103
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002104<h5>Overview:</h5>
Chris Lattner2a843822011-07-23 19:59:08 +00002105<p>Opaque structure types are used to represent named structure types that do
2106 not have a body specified. This corresponds (for example) to the C notion of
2107 a forward declared structure.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002108
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002109<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002110<pre>
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002111 %X = type opaque
2112 %52 = type opaque
Bill Wendling30235112009-07-20 02:39:26 +00002113</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002114
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002115<h5>Examples:</h5>
2116<table class="layout">
2117 <tr class="layout">
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002118 <td class="left"><tt>opaque</tt></td>
2119 <td class="left">An opaque type.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002120 </tr>
2121</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002122
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002123</div>
2124
Chris Lattnerb1ed91f2011-07-09 17:41:24 +00002125
2126
Andrew Lenharth8df88e22006-12-08 17:13:00 +00002127<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002128<h4>
2129 <a name="t_pointer">Pointer Type</a>
2130</h4>
Chris Lattner4a67c912009-02-08 19:53:29 +00002131
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002132<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002133
2134<h5>Overview:</h5>
Dan Gohman88481112010-02-25 16:50:07 +00002135<p>The pointer type is used to specify memory locations.
2136 Pointers are commonly used to reference objects in memory.</p>
2137
2138<p>Pointer types may have an optional address space attribute defining the
2139 numbered address space where the pointed-to object resides. The default
2140 address space is number zero. The semantics of non-zero address
2141 spaces are target-specific.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002142
2143<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
2144 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00002145
Chris Lattner590645f2002-04-14 06:13:44 +00002146<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00002147<pre>
2148 &lt;type&gt; *
2149</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002150
Chris Lattner590645f2002-04-14 06:13:44 +00002151<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002152<table class="layout">
2153 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00002154 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002155 <td class="left">A <a href="#t_pointer">pointer</a> to <a
2156 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
2157 </tr>
2158 <tr class="layout">
Dan Gohmanaabfdb32010-05-28 17:13:49 +00002159 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00002160 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00002161 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00002162 <tt>i32</tt>.</td>
2163 </tr>
2164 <tr class="layout">
2165 <td class="left"><tt>i32 addrspace(5)*</tt></td>
2166 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
2167 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002168 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00002169</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002170
Misha Brukman76307852003-11-08 01:05:38 +00002171</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002172
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002173<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002174<h4>
2175 <a name="t_vector">Vector Type</a>
2176</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002177
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002178<div>
Chris Lattner37b6b092005-04-25 17:34:15 +00002179
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002180<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002181<p>A vector type is a simple derived type that represents a vector of elements.
2182 Vector types are used when multiple primitive data are operated in parallel
2183 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00002184 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002185 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002186
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002187<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00002188<pre>
2189 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
2190</pre>
2191
Chris Lattnerf11031a2010-10-10 18:20:35 +00002192<p>The number of elements is a constant integer value larger than 0; elementtype
2193 may be any integer or floating point type. Vectors of size zero are not
2194 allowed, and pointers are not allowed as the element type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002195
Chris Lattnerc8cb6952004-08-12 19:12:28 +00002196<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002197<table class="layout">
2198 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00002199 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
2200 <td class="left">Vector of 4 32-bit integer values.</td>
2201 </tr>
2202 <tr class="layout">
2203 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
2204 <td class="left">Vector of 8 32-bit floating-point values.</td>
2205 </tr>
2206 <tr class="layout">
2207 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2208 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00002209 </tr>
2210</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00002211
Misha Brukman76307852003-11-08 01:05:38 +00002212</div>
2213
Bill Wendlingae8b5ea2011-07-31 06:47:33 +00002214</div>
2215
Chris Lattner74d3f822004-12-09 17:30:23 +00002216<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002217<h2><a name="constants">Constants</a></h2>
Chris Lattner74d3f822004-12-09 17:30:23 +00002218<!-- *********************************************************************** -->
2219
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002220<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002221
2222<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002223 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002224
Chris Lattner74d3f822004-12-09 17:30:23 +00002225<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002226<h3>
2227 <a name="simpleconstants">Simple Constants</a>
2228</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002229
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002230<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002231
2232<dl>
2233 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002234 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00002235 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002236
2237 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002238 <dd>Standard integers (such as '4') are constants of
2239 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2240 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002241
2242 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002243 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002244 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2245 notation (see below). The assembler requires the exact decimal value of a
2246 floating-point constant. For example, the assembler accepts 1.25 but
2247 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2248 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002249
2250 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00002251 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002252 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002253</dl>
2254
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002255<p>The one non-intuitive notation for constants is the hexadecimal form of
2256 floating point constants. For example, the form '<tt>double
2257 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2258 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2259 constants are required (and the only time that they are generated by the
2260 disassembler) is when a floating point constant must be emitted but it cannot
2261 be represented as a decimal floating point number in a reasonable number of
2262 digits. For example, NaN's, infinities, and other special values are
2263 represented in their IEEE hexadecimal format so that assembly and disassembly
2264 do not cause any bits to change in the constants.</p>
2265
Dale Johannesencd4a3012009-02-11 22:14:51 +00002266<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002267 represented using the 16-digit form shown above (which matches the IEEE754
2268 representation for double); float values must, however, be exactly
2269 representable as IEE754 single precision. Hexadecimal format is always used
2270 for long double, and there are three forms of long double. The 80-bit format
2271 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2272 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2273 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2274 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2275 currently supported target uses this format. Long doubles will only work if
2276 they match the long double format on your target. All hexadecimal formats
2277 are big-endian (sign bit at the left).</p>
2278
Dale Johannesen33e5c352010-10-01 00:48:59 +00002279<p>There are no constants of type x86mmx.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002280</div>
2281
2282<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002283<h3>
Bill Wendling972b7202009-07-20 02:32:41 +00002284<a name="aggregateconstants"></a> <!-- old anchor -->
2285<a name="complexconstants">Complex Constants</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002286</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002287
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002288<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002289
Chris Lattner361bfcd2009-02-28 18:32:25 +00002290<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002291 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002292
2293<dl>
2294 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002295 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002296 type definitions (a comma separated list of elements, surrounded by braces
2297 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2298 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2299 Structure constants must have <a href="#t_struct">structure type</a>, and
2300 the number and types of elements must match those specified by the
2301 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002302
2303 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002304 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002305 definitions (a comma separated list of elements, surrounded by square
2306 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2307 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2308 the number and types of elements must match those specified by the
2309 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002310
Reid Spencer404a3252007-02-15 03:07:05 +00002311 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00002312 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002313 definitions (a comma separated list of elements, surrounded by
2314 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2315 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2316 have <a href="#t_vector">vector type</a>, and the number and types of
2317 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002318
2319 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002320 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattner392be582010-02-12 20:49:41 +00002321 value to zero of <em>any</em> type, including scalar and
2322 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002323 This is often used to avoid having to print large zero initializers
2324 (e.g. for large arrays) and is always exactly equivalent to using explicit
2325 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00002326
2327 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00002328 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002329 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2330 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2331 be interpreted as part of the instruction stream, metadata is a place to
2332 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002333</dl>
2334
2335</div>
2336
2337<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002338<h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002339 <a name="globalconstants">Global Variable and Function Addresses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002340</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002341
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002342<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002343
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002344<p>The addresses of <a href="#globalvars">global variables</a>
2345 and <a href="#functionstructure">functions</a> are always implicitly valid
2346 (link-time) constants. These constants are explicitly referenced when
2347 the <a href="#identifiers">identifier for the global</a> is used and always
2348 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2349 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002350
Benjamin Kramer79698be2010-07-13 12:26:09 +00002351<pre class="doc_code">
Chris Lattner00538a12007-06-06 18:28:13 +00002352@X = global i32 17
2353@Y = global i32 42
2354@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002355</pre>
2356
2357</div>
2358
2359<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002360<h3>
2361 <a name="undefvalues">Undefined Values</a>
2362</h3>
2363
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002364<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002365
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002366<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002367 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002368 Undefined values may be of any type (other than '<tt>label</tt>'
2369 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002370
Chris Lattner92ada5d2009-09-11 01:49:31 +00002371<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002372 program is well defined no matter what value is used. This gives the
2373 compiler more freedom to optimize. Here are some examples of (potentially
2374 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002375
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002376
Benjamin Kramer79698be2010-07-13 12:26:09 +00002377<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002378 %A = add %X, undef
2379 %B = sub %X, undef
2380 %C = xor %X, undef
2381Safe:
2382 %A = undef
2383 %B = undef
2384 %C = undef
2385</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002386
2387<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002388 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002389
Benjamin Kramer79698be2010-07-13 12:26:09 +00002390<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002391 %A = or %X, undef
2392 %B = and %X, undef
2393Safe:
2394 %A = -1
2395 %B = 0
2396Unsafe:
2397 %A = undef
2398 %B = undef
2399</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002400
2401<p>These logical operations have bits that are not always affected by the input.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002402 For example, if <tt>%X</tt> has a zero bit, then the output of the
2403 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2404 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2405 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2406 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2407 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2408 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2409 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002410
Benjamin Kramer79698be2010-07-13 12:26:09 +00002411<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002412 %A = select undef, %X, %Y
2413 %B = select undef, 42, %Y
2414 %C = select %X, %Y, undef
2415Safe:
2416 %A = %X (or %Y)
2417 %B = 42 (or %Y)
2418 %C = %Y
2419Unsafe:
2420 %A = undef
2421 %B = undef
2422 %C = undef
2423</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002424
Bill Wendling6bbe0912010-10-27 01:07:41 +00002425<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2426 branch) conditions can go <em>either way</em>, but they have to come from one
2427 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2428 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2429 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2430 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2431 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2432 eliminated.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002433
Benjamin Kramer79698be2010-07-13 12:26:09 +00002434<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002435 %A = xor undef, undef
Eric Christopher455c5772009-12-05 02:46:03 +00002436
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002437 %B = undef
2438 %C = xor %B, %B
2439
2440 %D = undef
2441 %E = icmp lt %D, 4
2442 %F = icmp gte %D, 4
2443
2444Safe:
2445 %A = undef
2446 %B = undef
2447 %C = undef
2448 %D = undef
2449 %E = undef
2450 %F = undef
2451</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002452
Bill Wendling6bbe0912010-10-27 01:07:41 +00002453<p>This example points out that two '<tt>undef</tt>' operands are not
2454 necessarily the same. This can be surprising to people (and also matches C
2455 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2456 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2457 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2458 its value over its "live range". This is true because the variable doesn't
2459 actually <em>have a live range</em>. Instead, the value is logically read
2460 from arbitrary registers that happen to be around when needed, so the value
2461 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2462 need to have the same semantics or the core LLVM "replace all uses with"
2463 concept would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002464
Benjamin Kramer79698be2010-07-13 12:26:09 +00002465<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002466 %A = fdiv undef, %X
2467 %B = fdiv %X, undef
2468Safe:
2469 %A = undef
2470b: unreachable
2471</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002472
2473<p>These examples show the crucial difference between an <em>undefined
Bill Wendling6bbe0912010-10-27 01:07:41 +00002474 value</em> and <em>undefined behavior</em>. An undefined value (like
2475 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2476 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2477 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2478 defined on SNaN's. However, in the second example, we can make a more
2479 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2480 arbitrary value, we are allowed to assume that it could be zero. Since a
2481 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2482 the operation does not execute at all. This allows us to delete the divide and
2483 all code after it. Because the undefined operation "can't happen", the
2484 optimizer can assume that it occurs in dead code.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002485
Benjamin Kramer79698be2010-07-13 12:26:09 +00002486<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002487a: store undef -> %X
2488b: store %X -> undef
2489Safe:
2490a: &lt;deleted&gt;
2491b: unreachable
2492</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002493
Bill Wendling6bbe0912010-10-27 01:07:41 +00002494<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2495 undefined value can be assumed to not have any effect; we can assume that the
2496 value is overwritten with bits that happen to match what was already there.
2497 However, a store <em>to</em> an undefined location could clobber arbitrary
2498 memory, therefore, it has undefined behavior.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002499
Chris Lattner74d3f822004-12-09 17:30:23 +00002500</div>
2501
2502<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002503<h3>
2504 <a name="trapvalues">Trap Values</a>
2505</h3>
2506
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002507<div>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002508
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002509<p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002510 instead of representing an unspecified bit pattern, they represent the
2511 fact that an instruction or constant expression which cannot evoke side
2512 effects has nevertheless detected a condition which results in undefined
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002513 behavior.</p>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002514
Dan Gohman2f1ae062010-04-28 00:49:41 +00002515<p>There is currently no way of representing a trap value in the IR; they
Dan Gohmanac355aa2010-05-03 14:51:43 +00002516 only exist when produced by operations such as
Dan Gohman2f1ae062010-04-28 00:49:41 +00002517 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002518
Dan Gohman2f1ae062010-04-28 00:49:41 +00002519<p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002520
Dan Gohman2f1ae062010-04-28 00:49:41 +00002521<ul>
2522<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2523 their operands.</li>
2524
2525<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2526 to their dynamic predecessor basic block.</li>
2527
2528<li>Function arguments depend on the corresponding actual argument values in
2529 the dynamic callers of their functions.</li>
2530
2531<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2532 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2533 control back to them.</li>
2534
Dan Gohman7292a752010-05-03 14:55:22 +00002535<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2536 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2537 or exception-throwing call instructions that dynamically transfer control
2538 back to them.</li>
2539
Dan Gohman2f1ae062010-04-28 00:49:41 +00002540<li>Non-volatile loads and stores depend on the most recent stores to all of the
2541 referenced memory addresses, following the order in the IR
2542 (including loads and stores implied by intrinsics such as
2543 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2544
Dan Gohman3513ea52010-05-03 14:59:34 +00002545<!-- TODO: In the case of multiple threads, this only applies if the store
2546 "happens-before" the load or store. -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002547
Dan Gohman2f1ae062010-04-28 00:49:41 +00002548<!-- TODO: floating-point exception state -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002549
Dan Gohman2f1ae062010-04-28 00:49:41 +00002550<li>An instruction with externally visible side effects depends on the most
2551 recent preceding instruction with externally visible side effects, following
Dan Gohman6c858db2010-07-06 15:26:33 +00002552 the order in the IR. (This includes
2553 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002554
Dan Gohman7292a752010-05-03 14:55:22 +00002555<li>An instruction <i>control-depends</i> on a
2556 <a href="#terminators">terminator instruction</a>
2557 if the terminator instruction has multiple successors and the instruction
2558 is always executed when control transfers to one of the successors, and
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002559 may not be executed when control is transferred to another.</li>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002560
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002561<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2562 instruction if the set of instructions it otherwise depends on would be
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002563 different if the terminator had transferred control to a different
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002564 successor.</li>
2565
Dan Gohman2f1ae062010-04-28 00:49:41 +00002566<li>Dependence is transitive.</li>
2567
2568</ul>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002569
2570<p>Whenever a trap value is generated, all values which depend on it evaluate
Lang Hames91fc0902011-10-13 23:04:49 +00002571 to trap. If they have side effects, they evoke their side effects as if each
Dan Gohman2f1ae062010-04-28 00:49:41 +00002572 operand with a trap value were undef. If they have externally-visible side
2573 effects, the behavior is undefined.</p>
2574
2575<p>Here are some examples:</p>
Dan Gohman48a25882010-04-26 20:54:53 +00002576
Benjamin Kramer79698be2010-07-13 12:26:09 +00002577<pre class="doc_code">
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002578entry:
2579 %trap = sub nuw i32 0, 1 ; Results in a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002580 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2581 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2582 store i32 0, i32* %trap_yet_again ; undefined behavior
2583
2584 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2585 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2586
2587 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2588
2589 %narrowaddr = bitcast i32* @g to i16*
2590 %wideaddr = bitcast i32* @g to i64*
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002591 %trap3 = load i16* %narrowaddr ; Returns a trap value.
2592 %trap4 = load i64* %wideaddr ; Returns a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002593
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002594 %cmp = icmp slt i32 %trap, 0 ; Returns a trap value.
2595 br i1 %cmp, label %true, label %end ; Branch to either destination.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002596
2597true:
Dan Gohman2f1ae062010-04-28 00:49:41 +00002598 volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so
2599 ; it has undefined behavior.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002600 br label %end
2601
2602end:
2603 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2604 ; Both edges into this PHI are
2605 ; control-dependent on %cmp, so this
Dan Gohman2f1ae062010-04-28 00:49:41 +00002606 ; always results in a trap value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002607
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002608 volatile store i32 0, i32* @g ; This would depend on the store in %true
2609 ; if %cmp is true, or the store in %entry
2610 ; otherwise, so this is undefined behavior.
2611
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002612 br i1 %cmp, label %second_true, label %second_end
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002613 ; The same branch again, but this time the
2614 ; true block doesn't have side effects.
2615
2616second_true:
2617 ; No side effects!
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002618 ret void
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002619
2620second_end:
2621 volatile store i32 0, i32* @g ; This time, the instruction always depends
2622 ; on the store in %end. Also, it is
2623 ; control-equivalent to %end, so this is
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002624 ; well-defined (again, ignoring earlier
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002625 ; undefined behavior in this example).
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002626</pre>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002627
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002628</div>
2629
2630<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002631<h3>
2632 <a name="blockaddress">Addresses of Basic Blocks</a>
2633</h3>
2634
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002635<div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002636
Chris Lattneraa99c942009-11-01 01:27:45 +00002637<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002638
2639<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002640 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002641 the address of the entry block is illegal.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002642
Chris Lattnere4801f72009-10-27 21:01:34 +00002643<p>This value only has defined behavior when used as an operand to the
Bill Wendling6bbe0912010-10-27 01:07:41 +00002644 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2645 comparisons against null. Pointer equality tests between labels addresses
2646 results in undefined behavior &mdash; though, again, comparison against null
2647 is ok, and no label is equal to the null pointer. This may be passed around
2648 as an opaque pointer sized value as long as the bits are not inspected. This
2649 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2650 long as the original value is reconstituted before the <tt>indirectbr</tt>
2651 instruction.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002652
Bill Wendling6bbe0912010-10-27 01:07:41 +00002653<p>Finally, some targets may provide defined semantics when using the value as
2654 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002655
2656</div>
2657
2658
2659<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002660<h3>
2661 <a name="constantexprs">Constant Expressions</a>
2662</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002663
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002664<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002665
2666<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002667 to be used as constants. Constant expressions may be of
2668 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2669 operation that does not have side effects (e.g. load and call are not
Bill Wendling6bbe0912010-10-27 01:07:41 +00002670 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002671
2672<dl>
Dan Gohmand6a6f612010-05-28 17:07:41 +00002673 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002674 <dd>Truncate a constant to another type. The bit size of CST must be larger
2675 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002676
Dan Gohmand6a6f612010-05-28 17:07:41 +00002677 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002678 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002679 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002680
Dan Gohmand6a6f612010-05-28 17:07:41 +00002681 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002682 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002683 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002684
Dan Gohmand6a6f612010-05-28 17:07:41 +00002685 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002686 <dd>Truncate a floating point constant to another floating point type. The
2687 size of CST must be larger than the size of TYPE. Both types must be
2688 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002689
Dan Gohmand6a6f612010-05-28 17:07:41 +00002690 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002691 <dd>Floating point extend a constant to another type. The size of CST must be
2692 smaller or equal to the size of TYPE. Both types must be floating
2693 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002694
Dan Gohmand6a6f612010-05-28 17:07:41 +00002695 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002696 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002697 constant. TYPE must be a scalar or vector integer type. CST must be of
2698 scalar or vector floating point type. Both CST and TYPE must be scalars,
2699 or vectors of the same number of elements. If the value won't fit in the
2700 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002701
Dan Gohmand6a6f612010-05-28 17:07:41 +00002702 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002703 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002704 constant. TYPE must be a scalar or vector integer type. CST must be of
2705 scalar or vector floating point type. Both CST and TYPE must be scalars,
2706 or vectors of the same number of elements. If the value won't fit in the
2707 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002708
Dan Gohmand6a6f612010-05-28 17:07:41 +00002709 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002710 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002711 constant. TYPE must be a scalar or vector floating point type. CST must be
2712 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2713 vectors of the same number of elements. If the value won't fit in the
2714 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002715
Dan Gohmand6a6f612010-05-28 17:07:41 +00002716 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002717 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002718 constant. TYPE must be a scalar or vector floating point type. CST must be
2719 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2720 vectors of the same number of elements. If the value won't fit in the
2721 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002722
Dan Gohmand6a6f612010-05-28 17:07:41 +00002723 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5b950642006-11-11 23:08:07 +00002724 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002725 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2726 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2727 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002728
Dan Gohmand6a6f612010-05-28 17:07:41 +00002729 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002730 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2731 type. CST must be of integer type. The CST value is zero extended,
2732 truncated, or unchanged to make it fit in a pointer size. This one is
2733 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002734
Dan Gohmand6a6f612010-05-28 17:07:41 +00002735 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002736 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2737 are the same as those for the <a href="#i_bitcast">bitcast
2738 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002739
Dan Gohmand6a6f612010-05-28 17:07:41 +00002740 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2741 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002742 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002743 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2744 instruction, the index list may have zero or more indexes, which are
2745 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002746
Dan Gohmand6a6f612010-05-28 17:07:41 +00002747 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002748 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002749
Dan Gohmand6a6f612010-05-28 17:07:41 +00002750 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002751 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2752
Dan Gohmand6a6f612010-05-28 17:07:41 +00002753 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002754 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002755
Dan Gohmand6a6f612010-05-28 17:07:41 +00002756 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002757 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2758 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002759
Dan Gohmand6a6f612010-05-28 17:07:41 +00002760 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002761 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2762 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002763
Dan Gohmand6a6f612010-05-28 17:07:41 +00002764 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002765 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2766 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002767
Nick Lewycky9ab9a7f2010-05-29 06:44:15 +00002768 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2769 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2770 constants. The index list is interpreted in a similar manner as indices in
2771 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2772 index value must be specified.</dd>
2773
2774 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2775 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2776 constants. The index list is interpreted in a similar manner as indices in
2777 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2778 index value must be specified.</dd>
2779
Dan Gohmand6a6f612010-05-28 17:07:41 +00002780 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002781 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2782 be any of the <a href="#binaryops">binary</a>
2783 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2784 on operands are the same as those for the corresponding instruction
2785 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002786</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002787
Chris Lattner74d3f822004-12-09 17:30:23 +00002788</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002789
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002790</div>
2791
Chris Lattner2f7c9632001-06-06 20:29:01 +00002792<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002793<h2><a name="othervalues">Other Values</a></h2>
Chris Lattner98f013c2006-01-25 23:47:57 +00002794<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002795<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002796<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002797<h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002798<a name="inlineasm">Inline Assembler Expressions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002799</h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002800
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002801<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002802
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002803<p>LLVM supports inline assembler expressions (as opposed
2804 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2805 a special value. This value represents the inline assembler as a string
2806 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002807 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002808 expression has side effects, and a flag indicating whether the function
2809 containing the asm needs to align its stack conservatively. An example
2810 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002811
Benjamin Kramer79698be2010-07-13 12:26:09 +00002812<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002813i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002814</pre>
2815
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002816<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2817 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2818 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002819
Benjamin Kramer79698be2010-07-13 12:26:09 +00002820<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002821%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002822</pre>
2823
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002824<p>Inline asms with side effects not visible in the constraint list must be
2825 marked as having side effects. This is done through the use of the
2826 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002827
Benjamin Kramer79698be2010-07-13 12:26:09 +00002828<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002829call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002830</pre>
2831
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002832<p>In some cases inline asms will contain code that will not work unless the
2833 stack is aligned in some way, such as calls or SSE instructions on x86,
2834 yet will not contain code that does that alignment within the asm.
2835 The compiler should make conservative assumptions about what the asm might
2836 contain and should generate its usual stack alignment code in the prologue
2837 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002838
Benjamin Kramer79698be2010-07-13 12:26:09 +00002839<pre class="doc_code">
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002840call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002841</pre>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002842
2843<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2844 first.</p>
2845
Chris Lattner98f013c2006-01-25 23:47:57 +00002846<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002847 documented here. Constraints on what can be done (e.g. duplication, moving,
2848 etc need to be documented). This is probably best done by reference to
2849 another document that covers inline asm from a holistic perspective.</p>
Chris Lattner51065562010-04-07 05:38:05 +00002850
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002851<h4>
Chris Lattner51065562010-04-07 05:38:05 +00002852<a name="inlineasm_md">Inline Asm Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002853</h4>
Chris Lattner51065562010-04-07 05:38:05 +00002854
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002855<div>
Chris Lattner51065562010-04-07 05:38:05 +00002856
2857<p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
Chris Lattner79ffdc72010-11-17 08:20:42 +00002858 attached to it that contains a list of constant integers. If present, the
2859 code generator will use the integer as the location cookie value when report
Chris Lattner51065562010-04-07 05:38:05 +00002860 errors through the LLVMContext error reporting mechanisms. This allows a
Dan Gohman61110ae2010-04-28 00:36:01 +00002861 front-end to correlate backend errors that occur with inline asm back to the
Chris Lattner51065562010-04-07 05:38:05 +00002862 source code that produced it. For example:</p>
2863
Benjamin Kramer79698be2010-07-13 12:26:09 +00002864<pre class="doc_code">
Chris Lattner51065562010-04-07 05:38:05 +00002865call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2866...
2867!42 = !{ i32 1234567 }
2868</pre>
Chris Lattner51065562010-04-07 05:38:05 +00002869
2870<p>It is up to the front-end to make sense of the magic numbers it places in the
Chris Lattner79ffdc72010-11-17 08:20:42 +00002871 IR. If the MDNode contains multiple constants, the code generator will use
2872 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002873
2874</div>
2875
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002876</div>
2877
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002878<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002879<h3>
2880 <a name="metadata">Metadata Nodes and Metadata Strings</a>
2881</h3>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002882
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002883<div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002884
2885<p>LLVM IR allows metadata to be attached to instructions in the program that
2886 can convey extra information about the code to the optimizers and code
2887 generator. One example application of metadata is source-level debug
2888 information. There are two metadata primitives: strings and nodes. All
2889 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2890 preceding exclamation point ('<tt>!</tt>').</p>
2891
2892<p>A metadata string is a string surrounded by double quotes. It can contain
2893 any character by escaping non-printable characters with "\xx" where "xx" is
2894 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2895
2896<p>Metadata nodes are represented with notation similar to structure constants
2897 (a comma separated list of elements, surrounded by braces and preceded by an
2898 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2899 10}</tt>". Metadata nodes can have any values as their operand.</p>
2900
2901<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2902 metadata nodes, which can be looked up in the module symbol table. For
2903 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2904
Devang Patel9984bd62010-03-04 23:44:48 +00002905<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Benjamin Kramer79698be2010-07-13 12:26:09 +00002906 function is using two metadata arguments.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002907
Bill Wendlingc0e10672011-03-02 02:17:11 +00002908<div class="doc_code">
2909<pre>
2910call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2911</pre>
2912</div>
Devang Patel9984bd62010-03-04 23:44:48 +00002913
2914<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Benjamin Kramer79698be2010-07-13 12:26:09 +00002915 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002916
Bill Wendlingc0e10672011-03-02 02:17:11 +00002917<div class="doc_code">
2918<pre>
2919%indvar.next = add i64 %indvar, 1, !dbg !21
2920</pre>
2921</div>
2922
Peter Collingbourneec9ff672011-10-27 19:19:07 +00002923<p>More information about specific metadata nodes recognized by the optimizers
2924 and code generator is found below.</p>
2925
2926<h4>
2927 <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
2928</h4>
2929
2930<div>
2931
2932<p>In LLVM IR, memory does not have types, so LLVM's own type system is not
2933 suitable for doing TBAA. Instead, metadata is added to the IR to describe
2934 a type system of a higher level language. This can be used to implement
2935 typical C/C++ TBAA, but it can also be used to implement custom alias
2936 analysis behavior for other languages.</p>
2937
2938<p>The current metadata format is very simple. TBAA metadata nodes have up to
2939 three fields, e.g.:</p>
2940
2941<div class="doc_code">
2942<pre>
2943!0 = metadata !{ metadata !"an example type tree" }
2944!1 = metadata !{ metadata !"int", metadata !0 }
2945!2 = metadata !{ metadata !"float", metadata !0 }
2946!3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2947</pre>
2948</div>
2949
2950<p>The first field is an identity field. It can be any value, usually
2951 a metadata string, which uniquely identifies the type. The most important
2952 name in the tree is the name of the root node. Two trees with
2953 different root node names are entirely disjoint, even if they
2954 have leaves with common names.</p>
2955
2956<p>The second field identifies the type's parent node in the tree, or
2957 is null or omitted for a root node. A type is considered to alias
2958 all of its descendants and all of its ancestors in the tree. Also,
2959 a type is considered to alias all types in other trees, so that
2960 bitcode produced from multiple front-ends is handled conservatively.</p>
2961
2962<p>If the third field is present, it's an integer which if equal to 1
2963 indicates that the type is "constant" (meaning
2964 <tt>pointsToConstantMemory</tt> should return true; see
2965 <a href="AliasAnalysis.html#OtherItfs">other useful
2966 <tt>AliasAnalysis</tt> methods</a>).</p>
2967
2968</div>
2969
Peter Collingbournef7d1e7b2011-10-27 19:19:14 +00002970<h4>
2971 <a name="fpaccuracy">'<tt>fpaccuracy</tt>' Metadata</a>
2972</h4>
2973
2974<div>
2975
2976<p><tt>fpaccuracy</tt> metadata may be attached to any instruction of floating
2977 point type. It expresses the maximum relative error of the result of
2978 that instruction, in ULPs. ULP is defined as follows:</p>
2979
2980<blockquote><p>
2981If x is a real number that lies between two finite consecutive floating-point
2982numbers a and b, without being equal to one of them, then ulp(x) = |b - a|,
2983otherwise ulp(x) is the distance between the two non-equal finite
2984floating-point numbers nearest x. Moreover, ulp(NaN) is NaN.
2985</p></blockquote>
2986
2987<p>The maximum relative error may be any rational number. The metadata node
2988 shall consist of a pair of unsigned integers respectively representing
2989 the numerator and denominator. For example, 2.5 ULP:</p>
2990
2991<div class="doc_code">
2992<pre>
2993!0 = metadata !{ i32 5, i32 2 }
2994</pre>
2995</div>
2996
2997</div>
2998
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002999</div>
3000
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003001</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003002
3003<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003004<h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003005 <a name="intrinsic_globals">Intrinsic Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003006</h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00003007<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003008<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003009<p>LLVM has a number of "magic" global variables that contain data that affect
3010code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00003011of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
3012section and all globals that start with "<tt>llvm.</tt>" are reserved for use
3013by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003014
3015<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003016<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003017<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003018</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003019
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003020<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003021
3022<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
3023href="#linkage_appending">appending linkage</a>. This array contains a list of
3024pointers to global variables and functions which may optionally have a pointer
3025cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
3026
3027<pre>
3028 @X = global i8 4
3029 @Y = global i32 123
3030
3031 @llvm.used = appending global [2 x i8*] [
3032 i8* @X,
3033 i8* bitcast (i32* @Y to i8*)
3034 ], section "llvm.metadata"
3035</pre>
3036
3037<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
3038compiler, assembler, and linker are required to treat the symbol as if there is
3039a reference to the global that it cannot see. For example, if a variable has
3040internal linkage and no references other than that from the <tt>@llvm.used</tt>
3041list, it cannot be deleted. This is commonly used to represent references from
3042inline asms and other things the compiler cannot "see", and corresponds to
3043"attribute((used))" in GNU C.</p>
3044
3045<p>On some targets, the code generator must emit a directive to the assembler or
3046object file to prevent the assembler and linker from molesting the symbol.</p>
3047
3048</div>
3049
3050<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003051<h3>
3052 <a name="intg_compiler_used">
3053 The '<tt>llvm.compiler.used</tt>' Global Variable
3054 </a>
3055</h3>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003056
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003057<div>
Chris Lattner58f9bb22009-07-20 06:14:25 +00003058
3059<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
3060<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
3061touching the symbol. On targets that support it, this allows an intelligent
3062linker to optimize references to the symbol without being impeded as it would be
3063by <tt>@llvm.used</tt>.</p>
3064
3065<p>This is a rare construct that should only be used in rare circumstances, and
3066should not be exposed to source languages.</p>
3067
3068</div>
3069
3070<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003071<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003072<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003073</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003074
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003075<div>
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003076<pre>
3077%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003078@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003079</pre>
3080<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded. The order of functions with the same priority is not defined.
3081</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003082
3083</div>
3084
3085<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003086<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003087<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003088</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00003089
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003090<div>
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003091<pre>
3092%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00003093@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003094</pre>
Chris Lattnerae76db52009-07-20 05:55:19 +00003095
David Chisnalla9d4a6f2010-04-30 19:23:49 +00003096<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities. The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded. The order of functions with the same priority is not defined.
3097</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00003098
3099</div>
3100
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003101</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00003102
Chris Lattner98f013c2006-01-25 23:47:57 +00003103<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003104<h2><a name="instref">Instruction Reference</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00003105<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00003106
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003107<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003108
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003109<p>The LLVM instruction set consists of several different classifications of
3110 instructions: <a href="#terminators">terminator
3111 instructions</a>, <a href="#binaryops">binary instructions</a>,
3112 <a href="#bitwiseops">bitwise binary instructions</a>,
3113 <a href="#memoryops">memory instructions</a>, and
3114 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003115
Chris Lattner2f7c9632001-06-06 20:29:01 +00003116<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003117<h3>
3118 <a name="terminators">Terminator Instructions</a>
3119</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00003120
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003121<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00003122
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003123<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
3124 in a program ends with a "Terminator" instruction, which indicates which
3125 block should be executed after the current block is finished. These
3126 terminator instructions typically yield a '<tt>void</tt>' value: they produce
3127 control flow, not values (the one exception being the
3128 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
3129
Chris Lattnerd3d65ab2011-08-02 20:29:13 +00003130<p>The terminator instructions are:
3131 '<a href="#i_ret"><tt>ret</tt></a>',
3132 '<a href="#i_br"><tt>br</tt></a>',
3133 '<a href="#i_switch"><tt>switch</tt></a>',
3134 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
3135 '<a href="#i_invoke"><tt>invoke</tt></a>',
3136 '<a href="#i_unwind"><tt>unwind</tt></a>',
3137 '<a href="#i_resume"><tt>resume</tt></a>', and
3138 '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00003139
Chris Lattner2f7c9632001-06-06 20:29:01 +00003140<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003141<h4>
3142 <a name="i_ret">'<tt>ret</tt>' Instruction</a>
3143</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003144
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003145<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003146
Chris Lattner2f7c9632001-06-06 20:29:01 +00003147<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003148<pre>
3149 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003150 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003151</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003152
Chris Lattner2f7c9632001-06-06 20:29:01 +00003153<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003154<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
3155 a value) from a function back to the caller.</p>
3156
3157<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
3158 value and then causes control flow, and one that just causes control flow to
3159 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003160
Chris Lattner2f7c9632001-06-06 20:29:01 +00003161<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003162<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
3163 return value. The type of the return value must be a
3164 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00003165
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003166<p>A function is not <a href="#wellformed">well formed</a> if it it has a
3167 non-void return type and contains a '<tt>ret</tt>' instruction with no return
3168 value or a return value with a type that does not match its type, or if it
3169 has a void return type and contains a '<tt>ret</tt>' instruction with a
3170 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003171
Chris Lattner2f7c9632001-06-06 20:29:01 +00003172<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003173<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
3174 the calling function's context. If the caller is a
3175 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
3176 instruction after the call. If the caller was an
3177 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
3178 the beginning of the "normal" destination block. If the instruction returns
3179 a value, that value shall set the call or invoke instruction's return
3180 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003181
Chris Lattner2f7c9632001-06-06 20:29:01 +00003182<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00003183<pre>
3184 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00003185 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00003186 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003187</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00003188
Misha Brukman76307852003-11-08 01:05:38 +00003189</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003190<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003191<h4>
3192 <a name="i_br">'<tt>br</tt>' Instruction</a>
3193</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003194
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003195<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003196
Chris Lattner2f7c9632001-06-06 20:29:01 +00003197<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003198<pre>
Bill Wendling16b86742011-07-26 10:41:15 +00003199 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
3200 br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003201</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003202
Chris Lattner2f7c9632001-06-06 20:29:01 +00003203<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003204<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
3205 different basic block in the current function. There are two forms of this
3206 instruction, corresponding to a conditional branch and an unconditional
3207 branch.</p>
3208
Chris Lattner2f7c9632001-06-06 20:29:01 +00003209<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003210<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
3211 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
3212 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
3213 target.</p>
3214
Chris Lattner2f7c9632001-06-06 20:29:01 +00003215<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00003216<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003217 argument is evaluated. If the value is <tt>true</tt>, control flows to the
3218 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
3219 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3220
Chris Lattner2f7c9632001-06-06 20:29:01 +00003221<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00003222<pre>
3223Test:
3224 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3225 br i1 %cond, label %IfEqual, label %IfUnequal
3226IfEqual:
3227 <a href="#i_ret">ret</a> i32 1
3228IfUnequal:
3229 <a href="#i_ret">ret</a> i32 0
3230</pre>
3231
Misha Brukman76307852003-11-08 01:05:38 +00003232</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003233
Chris Lattner2f7c9632001-06-06 20:29:01 +00003234<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003235<h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003236 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003237</h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003238
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003239<div>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003240
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003241<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003242<pre>
3243 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3244</pre>
3245
Chris Lattner2f7c9632001-06-06 20:29:01 +00003246<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003247<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003248 several different places. It is a generalization of the '<tt>br</tt>'
3249 instruction, allowing a branch to occur to one of many possible
3250 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003251
Chris Lattner2f7c9632001-06-06 20:29:01 +00003252<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003253<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003254 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3255 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3256 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003257
Chris Lattner2f7c9632001-06-06 20:29:01 +00003258<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003259<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003260 destinations. When the '<tt>switch</tt>' instruction is executed, this table
3261 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00003262 transferred to the corresponding destination; otherwise, control flow is
3263 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003264
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003265<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003266<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003267 <tt>switch</tt> instruction, this instruction may be code generated in
3268 different ways. For example, it could be generated as a series of chained
3269 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003270
3271<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003272<pre>
3273 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003274 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00003275 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003276
3277 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003278 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003279
3280 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00003281 switch i32 %val, label %otherwise [ i32 0, label %onzero
3282 i32 1, label %onone
3283 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00003284</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003285
Misha Brukman76307852003-11-08 01:05:38 +00003286</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003287
Chris Lattner3ed871f2009-10-27 19:13:16 +00003288
3289<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003290<h4>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003291 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003292</h4>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003293
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003294<div>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003295
3296<h5>Syntax:</h5>
3297<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003298 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003299</pre>
3300
3301<h5>Overview:</h5>
3302
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003303<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00003304 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00003305 "<tt>address</tt>". Address must be derived from a <a
3306 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003307
3308<h5>Arguments:</h5>
3309
3310<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3311 rest of the arguments indicate the full set of possible destinations that the
3312 address may point to. Blocks are allowed to occur multiple times in the
3313 destination list, though this isn't particularly useful.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003314
Chris Lattner3ed871f2009-10-27 19:13:16 +00003315<p>This destination list is required so that dataflow analysis has an accurate
3316 understanding of the CFG.</p>
3317
3318<h5>Semantics:</h5>
3319
3320<p>Control transfers to the block specified in the address argument. All
3321 possible destination blocks must be listed in the label list, otherwise this
3322 instruction has undefined behavior. This implies that jumps to labels
3323 defined in other functions have undefined behavior as well.</p>
3324
3325<h5>Implementation:</h5>
3326
3327<p>This is typically implemented with a jump through a register.</p>
3328
3329<h5>Example:</h5>
3330<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003331 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003332</pre>
3333
3334</div>
3335
3336
Chris Lattner2f7c9632001-06-06 20:29:01 +00003337<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003338<h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003339 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003340</h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003341
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003342<div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003343
Chris Lattner2f7c9632001-06-06 20:29:01 +00003344<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003345<pre>
Devang Patel02256232008-10-07 17:48:33 +00003346 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00003347 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00003348</pre>
3349
Chris Lattnera8292f32002-05-06 22:08:29 +00003350<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003351<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003352 function, with the possibility of control flow transfer to either the
3353 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3354 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3355 control flow will return to the "normal" label. If the callee (or any
3356 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3357 instruction, control is interrupted and continued at the dynamically nearest
3358 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003359
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003360<p>The '<tt>exception</tt>' label is a
3361 <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
3362 exception. As such, '<tt>exception</tt>' label is required to have the
3363 "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
3364 the information about about the behavior of the program after unwinding
3365 happens, as its first non-PHI instruction. The restrictions on the
3366 "<tt>landingpad</tt>" instruction's tightly couples it to the
3367 "<tt>invoke</tt>" instruction, so that the important information contained
3368 within the "<tt>landingpad</tt>" instruction can't be lost through normal
3369 code motion.</p>
3370
Chris Lattner2f7c9632001-06-06 20:29:01 +00003371<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003372<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003373
Chris Lattner2f7c9632001-06-06 20:29:01 +00003374<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003375 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3376 convention</a> the call should use. If none is specified, the call
3377 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003378
3379 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003380 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3381 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003382
Chris Lattner0132aff2005-05-06 22:57:40 +00003383 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003384 function value being invoked. In most cases, this is a direct function
3385 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3386 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003387
3388 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003389 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003390
3391 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00003392 signature argument types and parameter attributes. All arguments must be
3393 of <a href="#t_firstclass">first class</a> type. If the function
3394 signature indicates the function accepts a variable number of arguments,
3395 the extra arguments can be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003396
3397 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003398 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003399
3400 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003401 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003402
Devang Patel02256232008-10-07 17:48:33 +00003403 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003404 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3405 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003406</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00003407
Chris Lattner2f7c9632001-06-06 20:29:01 +00003408<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003409<p>This instruction is designed to operate as a standard
3410 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3411 primary difference is that it establishes an association with a label, which
3412 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003413
3414<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003415 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3416 exception. Additionally, this is important for implementation of
3417 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003418
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003419<p>For the purposes of the SSA form, the definition of the value returned by the
3420 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3421 block to the "normal" label. If the callee unwinds then no return value is
3422 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00003423
Chris Lattner97257f82010-01-15 18:08:37 +00003424<p>Note that the code generator does not yet completely support unwind, and
3425that the invoke/unwind semantics are likely to change in future versions.</p>
3426
Chris Lattner2f7c9632001-06-06 20:29:01 +00003427<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003428<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00003429 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003430 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00003431 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003432 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003433</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003434
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003435</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003436
Chris Lattner5ed60612003-09-03 00:41:47 +00003437<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003438
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003439<h4>
3440 <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
3441</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003442
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003443<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003444
Chris Lattner5ed60612003-09-03 00:41:47 +00003445<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003446<pre>
3447 unwind
3448</pre>
3449
Chris Lattner5ed60612003-09-03 00:41:47 +00003450<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003451<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003452 at the first callee in the dynamic call stack which used
3453 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3454 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003455
Chris Lattner5ed60612003-09-03 00:41:47 +00003456<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003457<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003458 immediately halt. The dynamic call stack is then searched for the
3459 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3460 Once found, execution continues at the "exceptional" destination block
3461 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3462 instruction in the dynamic call chain, undefined behavior results.</p>
3463
Chris Lattner97257f82010-01-15 18:08:37 +00003464<p>Note that the code generator does not yet completely support unwind, and
3465that the invoke/unwind semantics are likely to change in future versions.</p>
3466
Misha Brukman76307852003-11-08 01:05:38 +00003467</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003468
Bill Wendlingf891bf82011-07-31 06:30:59 +00003469 <!-- _______________________________________________________________________ -->
3470
3471<h4>
3472 <a name="i_resume">'<tt>resume</tt>' Instruction</a>
3473</h4>
3474
3475<div>
3476
3477<h5>Syntax:</h5>
3478<pre>
3479 resume &lt;type&gt; &lt;value&gt;
3480</pre>
3481
3482<h5>Overview:</h5>
3483<p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
3484 successors.</p>
3485
3486<h5>Arguments:</h5>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003487<p>The '<tt>resume</tt>' instruction requires one argument, which must have the
Bill Wendlingc5a13612011-08-03 18:37:32 +00003488 same type as the result of any '<tt>landingpad</tt>' instruction in the same
3489 function.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003490
3491<h5>Semantics:</h5>
3492<p>The '<tt>resume</tt>' instruction resumes propagation of an existing
3493 (in-flight) exception whose unwinding was interrupted with
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003494 a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
Bill Wendlingf891bf82011-07-31 06:30:59 +00003495
3496<h5>Example:</h5>
3497<pre>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00003498 resume { i8*, i32 } %exn
Bill Wendlingf891bf82011-07-31 06:30:59 +00003499</pre>
3500
3501</div>
3502
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003503<!-- _______________________________________________________________________ -->
3504
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003505<h4>
3506 <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3507</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003508
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003509<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003510
3511<h5>Syntax:</h5>
3512<pre>
3513 unreachable
3514</pre>
3515
3516<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003517<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003518 instruction is used to inform the optimizer that a particular portion of the
3519 code is not reachable. This can be used to indicate that the code after a
3520 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003521
3522<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003523<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003524
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003525</div>
3526
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003527</div>
3528
Chris Lattner2f7c9632001-06-06 20:29:01 +00003529<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003530<h3>
3531 <a name="binaryops">Binary Operations</a>
3532</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003533
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003534<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003535
3536<p>Binary operators are used to do most of the computation in a program. They
3537 require two operands of the same type, execute an operation on them, and
3538 produce a single value. The operands might represent multiple data, as is
3539 the case with the <a href="#t_vector">vector</a> data type. The result value
3540 has the same type as its operands.</p>
3541
Misha Brukman76307852003-11-08 01:05:38 +00003542<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003543
Chris Lattner2f7c9632001-06-06 20:29:01 +00003544<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003545<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003546 <a name="i_add">'<tt>add</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003547</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003548
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003549<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003550
Chris Lattner2f7c9632001-06-06 20:29:01 +00003551<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003552<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003553 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003554 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3555 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3556 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003557</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003558
Chris Lattner2f7c9632001-06-06 20:29:01 +00003559<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003560<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003561
Chris Lattner2f7c9632001-06-06 20:29:01 +00003562<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003563<p>The two arguments to the '<tt>add</tt>' instruction must
3564 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3565 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003566
Chris Lattner2f7c9632001-06-06 20:29:01 +00003567<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003568<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003569
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003570<p>If the sum has unsigned overflow, the result returned is the mathematical
3571 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003572
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003573<p>Because LLVM integers use a two's complement representation, this instruction
3574 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003575
Dan Gohman902dfff2009-07-22 22:44:56 +00003576<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3577 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3578 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003579 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3580 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003581
Chris Lattner2f7c9632001-06-06 20:29:01 +00003582<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003583<pre>
3584 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003585</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003586
Misha Brukman76307852003-11-08 01:05:38 +00003587</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003588
Chris Lattner2f7c9632001-06-06 20:29:01 +00003589<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003590<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003591 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003592</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003593
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003594<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003595
3596<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003597<pre>
3598 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3599</pre>
3600
3601<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003602<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3603
3604<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003605<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003606 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3607 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003608
3609<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003610<p>The value produced is the floating point sum of the two operands.</p>
3611
3612<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003613<pre>
3614 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3615</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003616
Dan Gohmana5b96452009-06-04 22:49:04 +00003617</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003618
Dan Gohmana5b96452009-06-04 22:49:04 +00003619<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003620<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003621 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003622</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003623
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003624<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003625
Chris Lattner2f7c9632001-06-06 20:29:01 +00003626<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003627<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003628 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003629 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3630 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3631 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003632</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003633
Chris Lattner2f7c9632001-06-06 20:29:01 +00003634<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003635<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003636 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003637
3638<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003639 '<tt>neg</tt>' instruction present in most other intermediate
3640 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003641
Chris Lattner2f7c9632001-06-06 20:29:01 +00003642<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003643<p>The two arguments to the '<tt>sub</tt>' instruction must
3644 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3645 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003646
Chris Lattner2f7c9632001-06-06 20:29:01 +00003647<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003648<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003649
Dan Gohmana5b96452009-06-04 22:49:04 +00003650<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003651 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3652 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003653
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003654<p>Because LLVM integers use a two's complement representation, this instruction
3655 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003656
Dan Gohman902dfff2009-07-22 22:44:56 +00003657<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3658 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3659 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003660 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3661 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003662
Chris Lattner2f7c9632001-06-06 20:29:01 +00003663<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003664<pre>
3665 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003666 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003667</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003668
Misha Brukman76307852003-11-08 01:05:38 +00003669</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003670
Chris Lattner2f7c9632001-06-06 20:29:01 +00003671<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003672<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003673 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003674</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003675
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003676<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003677
3678<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003679<pre>
3680 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3681</pre>
3682
3683<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003684<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003685 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003686
3687<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003688 '<tt>fneg</tt>' instruction present in most other intermediate
3689 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003690
3691<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003692<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003693 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3694 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003695
3696<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003697<p>The value produced is the floating point difference of the two operands.</p>
3698
3699<h5>Example:</h5>
3700<pre>
3701 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3702 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3703</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003704
Dan Gohmana5b96452009-06-04 22:49:04 +00003705</div>
3706
3707<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003708<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003709 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003710</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003711
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003712<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003713
Chris Lattner2f7c9632001-06-06 20:29:01 +00003714<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003715<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003716 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003717 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3718 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3719 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003720</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003721
Chris Lattner2f7c9632001-06-06 20:29:01 +00003722<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003723<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003724
Chris Lattner2f7c9632001-06-06 20:29:01 +00003725<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003726<p>The two arguments to the '<tt>mul</tt>' instruction must
3727 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3728 integer values. Both arguments must have identical types.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003729
Chris Lattner2f7c9632001-06-06 20:29:01 +00003730<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003731<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003732
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003733<p>If the result of the multiplication has unsigned overflow, the result
3734 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3735 width of the result.</p>
3736
3737<p>Because LLVM integers use a two's complement representation, and the result
3738 is the same width as the operands, this instruction returns the correct
3739 result for both signed and unsigned integers. If a full product
3740 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3741 be sign-extended or zero-extended as appropriate to the width of the full
3742 product.</p>
3743
Dan Gohman902dfff2009-07-22 22:44:56 +00003744<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3745 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3746 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003747 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3748 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003749
Chris Lattner2f7c9632001-06-06 20:29:01 +00003750<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003751<pre>
3752 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003753</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003754
Misha Brukman76307852003-11-08 01:05:38 +00003755</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003756
Chris Lattner2f7c9632001-06-06 20:29:01 +00003757<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003758<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003759 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003760</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003761
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003762<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003763
3764<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003765<pre>
3766 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003767</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003768
Dan Gohmana5b96452009-06-04 22:49:04 +00003769<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003770<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003771
3772<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003773<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003774 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3775 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003776
3777<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003778<p>The value produced is the floating point product of the two operands.</p>
3779
3780<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003781<pre>
3782 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003783</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003784
Dan Gohmana5b96452009-06-04 22:49:04 +00003785</div>
3786
3787<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003788<h4>
3789 <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
3790</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003791
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003792<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003793
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003794<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003795<pre>
Chris Lattner35315d02011-02-06 21:44:57 +00003796 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3797 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003798</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003799
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003800<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003801<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003802
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003803<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003804<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003805 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3806 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003807
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003808<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00003809<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003810
Chris Lattner2f2427e2008-01-28 00:36:27 +00003811<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003812 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3813
Chris Lattner2f2427e2008-01-28 00:36:27 +00003814<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003815
Chris Lattner35315d02011-02-06 21:44:57 +00003816<p>If the <tt>exact</tt> keyword is present, the result value of the
3817 <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
3818 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3819
3820
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003821<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003822<pre>
3823 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003824</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003825
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003826</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003827
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003828<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003829<h4>
3830 <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
3831</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003832
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003833<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003834
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003835<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003836<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003837 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003838 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003839</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003840
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003841<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003842<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003843
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003844<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003845<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003846 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3847 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003848
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003849<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003850<p>The value produced is the signed integer quotient of the two operands rounded
3851 towards zero.</p>
3852
Chris Lattner2f2427e2008-01-28 00:36:27 +00003853<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003854 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3855
Chris Lattner2f2427e2008-01-28 00:36:27 +00003856<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003857 undefined behavior; this is a rare case, but can occur, for example, by doing
3858 a 32-bit division of -2147483648 by -1.</p>
3859
Dan Gohman71dfd782009-07-22 00:04:19 +00003860<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00003861 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
Dan Gohmane501ff72010-07-11 00:08:34 +00003862 be rounded.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003863
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003864<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003865<pre>
3866 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003867</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003868
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003869</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003870
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003871<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003872<h4>
3873 <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
3874</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003875
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003876<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003877
Chris Lattner2f7c9632001-06-06 20:29:01 +00003878<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003879<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003880 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003881</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003882
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003883<h5>Overview:</h5>
3884<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003885
Chris Lattner48b383b02003-11-25 01:02:51 +00003886<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003887<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003888 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3889 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003890
Chris Lattner48b383b02003-11-25 01:02:51 +00003891<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003892<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003893
Chris Lattner48b383b02003-11-25 01:02:51 +00003894<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003895<pre>
3896 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003897</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003898
Chris Lattner48b383b02003-11-25 01:02:51 +00003899</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003900
Chris Lattner48b383b02003-11-25 01:02:51 +00003901<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003902<h4>
3903 <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3904</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003905
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003906<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003907
Reid Spencer7eb55b32006-11-02 01:53:59 +00003908<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003909<pre>
3910 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003911</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003912
Reid Spencer7eb55b32006-11-02 01:53:59 +00003913<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003914<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3915 division of its two arguments.</p>
3916
Reid Spencer7eb55b32006-11-02 01:53:59 +00003917<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003918<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003919 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3920 values. Both arguments must have identical types.</p>
3921
Reid Spencer7eb55b32006-11-02 01:53:59 +00003922<h5>Semantics:</h5>
3923<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003924 This instruction always performs an unsigned division to get the
3925 remainder.</p>
3926
Chris Lattner2f2427e2008-01-28 00:36:27 +00003927<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003928 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3929
Chris Lattner2f2427e2008-01-28 00:36:27 +00003930<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003931
Reid Spencer7eb55b32006-11-02 01:53:59 +00003932<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003933<pre>
3934 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003935</pre>
3936
3937</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003938
Reid Spencer7eb55b32006-11-02 01:53:59 +00003939<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003940<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003941 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003942</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003943
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003944<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003945
Chris Lattner48b383b02003-11-25 01:02:51 +00003946<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003947<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003948 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003949</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003950
Chris Lattner48b383b02003-11-25 01:02:51 +00003951<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003952<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3953 division of its two operands. This instruction can also take
3954 <a href="#t_vector">vector</a> versions of the values in which case the
3955 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00003956
Chris Lattner48b383b02003-11-25 01:02:51 +00003957<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003958<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003959 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3960 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003961
Chris Lattner48b383b02003-11-25 01:02:51 +00003962<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003963<p>This instruction returns the <i>remainder</i> of a division (where the result
Duncan Sands2769c6e2011-03-07 09:12:24 +00003964 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
3965 <i>modulo</i> operator (where the result is either zero or has the same sign
3966 as the divisor, <tt>op2</tt>) of a value.
3967 For more information about the difference,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003968 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3969 Math Forum</a>. For a table of how this is implemented in various languages,
3970 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3971 Wikipedia: modulo operation</a>.</p>
3972
Chris Lattner2f2427e2008-01-28 00:36:27 +00003973<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003974 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3975
Chris Lattner2f2427e2008-01-28 00:36:27 +00003976<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003977 Overflow also leads to undefined behavior; this is a rare case, but can
3978 occur, for example, by taking the remainder of a 32-bit division of
3979 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3980 lets srem be implemented using instructions that return both the result of
3981 the division and the remainder.)</p>
3982
Chris Lattner48b383b02003-11-25 01:02:51 +00003983<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003984<pre>
3985 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003986</pre>
3987
3988</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003989
Reid Spencer7eb55b32006-11-02 01:53:59 +00003990<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003991<h4>
3992 <a name="i_frem">'<tt>frem</tt>' Instruction</a>
3993</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003994
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003995<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003996
Reid Spencer7eb55b32006-11-02 01:53:59 +00003997<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003998<pre>
3999 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00004000</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004001
Reid Spencer7eb55b32006-11-02 01:53:59 +00004002<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004003<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
4004 its two operands.</p>
4005
Reid Spencer7eb55b32006-11-02 01:53:59 +00004006<h5>Arguments:</h5>
4007<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004008 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4009 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004010
Reid Spencer7eb55b32006-11-02 01:53:59 +00004011<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004012<p>This instruction returns the <i>remainder</i> of a division. The remainder
4013 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004014
Reid Spencer7eb55b32006-11-02 01:53:59 +00004015<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004016<pre>
4017 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00004018</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004019
Misha Brukman76307852003-11-08 01:05:38 +00004020</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00004021
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004022</div>
4023
Reid Spencer2ab01932007-02-02 13:57:07 +00004024<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004025<h3>
4026 <a name="bitwiseops">Bitwise Binary Operations</a>
4027</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004028
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004029<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004030
4031<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
4032 program. They are generally very efficient instructions and can commonly be
4033 strength reduced from other instructions. They require two operands of the
4034 same type, execute an operation on them, and produce a single value. The
4035 resulting value is the same type as its operands.</p>
4036
Reid Spencer04e259b2007-01-31 21:39:12 +00004037<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004038<h4>
4039 <a name="i_shl">'<tt>shl</tt>' Instruction</a>
4040</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004041
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004042<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004043
Reid Spencer04e259b2007-01-31 21:39:12 +00004044<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004045<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004046 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4047 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4048 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4049 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004050</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004051
Reid Spencer04e259b2007-01-31 21:39:12 +00004052<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004053<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
4054 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004055
Reid Spencer04e259b2007-01-31 21:39:12 +00004056<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004057<p>Both arguments to the '<tt>shl</tt>' instruction must be the
4058 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
4059 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00004060
Reid Spencer04e259b2007-01-31 21:39:12 +00004061<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004062<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
4063 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
4064 is (statically or dynamically) negative or equal to or larger than the number
4065 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4066 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4067 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004068
Chris Lattnera676c0f2011-02-07 16:40:21 +00004069<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
4070 <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits. If
Chris Lattnerf10dfdc2011-02-09 16:44:44 +00004071 the <tt>nsw</tt> keyword is present, then the shift produces a
Chris Lattnera676c0f2011-02-07 16:40:21 +00004072 <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
4073 with the resultant sign bit. As such, NUW/NSW have the same semantics as
4074 they would if the shift were expressed as a mul instruction with the same
4075 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
4076
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004077<h5>Example:</h5>
4078<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00004079 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
4080 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
4081 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004082 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004083 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004084</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004085
Reid Spencer04e259b2007-01-31 21:39:12 +00004086</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004087
Reid Spencer04e259b2007-01-31 21:39:12 +00004088<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004089<h4>
4090 <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
4091</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004092
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004093<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004094
Reid Spencer04e259b2007-01-31 21:39:12 +00004095<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004096<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004097 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4098 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004099</pre>
4100
4101<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004102<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
4103 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004104
4105<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004106<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004107 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4108 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004109
4110<h5>Semantics:</h5>
4111<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004112 significant bits of the result will be filled with zero bits after the shift.
4113 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
4114 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4115 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4116 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004117
Chris Lattnera676c0f2011-02-07 16:40:21 +00004118<p>If the <tt>exact</tt> keyword is present, the result value of the
4119 <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
4120 shifted out are non-zero.</p>
4121
4122
Reid Spencer04e259b2007-01-31 21:39:12 +00004123<h5>Example:</h5>
4124<pre>
4125 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
4126 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
4127 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
4128 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004129 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004130 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004131</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004132
Reid Spencer04e259b2007-01-31 21:39:12 +00004133</div>
4134
Reid Spencer2ab01932007-02-02 13:57:07 +00004135<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004136<h4>
4137 <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
4138</h4>
4139
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004140<div>
Reid Spencer04e259b2007-01-31 21:39:12 +00004141
4142<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004143<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00004144 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4145 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004146</pre>
4147
4148<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004149<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
4150 operand shifted to the right a specified number of bits with sign
4151 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004152
4153<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004154<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004155 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4156 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004157
4158<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004159<p>This instruction always performs an arithmetic shift right operation, The
4160 most significant bits of the result will be filled with the sign bit
4161 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
4162 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
4163 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
4164 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00004165
Chris Lattnera676c0f2011-02-07 16:40:21 +00004166<p>If the <tt>exact</tt> keyword is present, the result value of the
4167 <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
4168 shifted out are non-zero.</p>
4169
Reid Spencer04e259b2007-01-31 21:39:12 +00004170<h5>Example:</h5>
4171<pre>
4172 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
4173 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
4174 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
4175 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00004176 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00004177 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00004178</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004179
Reid Spencer04e259b2007-01-31 21:39:12 +00004180</div>
4181
Chris Lattner2f7c9632001-06-06 20:29:01 +00004182<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004183<h4>
4184 <a name="i_and">'<tt>and</tt>' Instruction</a>
4185</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004186
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004187<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004188
Chris Lattner2f7c9632001-06-06 20:29:01 +00004189<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004190<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00004191 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004192</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004193
Chris Lattner2f7c9632001-06-06 20:29:01 +00004194<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004195<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
4196 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004197
Chris Lattner2f7c9632001-06-06 20:29:01 +00004198<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004199<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004200 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4201 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004202
Chris Lattner2f7c9632001-06-06 20:29:01 +00004203<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004204<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004205
Misha Brukman76307852003-11-08 01:05:38 +00004206<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00004207 <tbody>
4208 <tr>
4209 <td>In0</td>
4210 <td>In1</td>
4211 <td>Out</td>
4212 </tr>
4213 <tr>
4214 <td>0</td>
4215 <td>0</td>
4216 <td>0</td>
4217 </tr>
4218 <tr>
4219 <td>0</td>
4220 <td>1</td>
4221 <td>0</td>
4222 </tr>
4223 <tr>
4224 <td>1</td>
4225 <td>0</td>
4226 <td>0</td>
4227 </tr>
4228 <tr>
4229 <td>1</td>
4230 <td>1</td>
4231 <td>1</td>
4232 </tr>
4233 </tbody>
4234</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004235
Chris Lattner2f7c9632001-06-06 20:29:01 +00004236<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004237<pre>
4238 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004239 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
4240 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004241</pre>
Misha Brukman76307852003-11-08 01:05:38 +00004242</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004243<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004244<h4>
4245 <a name="i_or">'<tt>or</tt>' Instruction</a>
4246</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004247
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004248<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004249
4250<h5>Syntax:</h5>
4251<pre>
4252 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4253</pre>
4254
4255<h5>Overview:</h5>
4256<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
4257 two operands.</p>
4258
4259<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004260<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004261 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4262 values. Both arguments must have identical types.</p>
4263
Chris Lattner2f7c9632001-06-06 20:29:01 +00004264<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004265<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004266
Chris Lattner48b383b02003-11-25 01:02:51 +00004267<table border="1" cellspacing="0" cellpadding="4">
4268 <tbody>
4269 <tr>
4270 <td>In0</td>
4271 <td>In1</td>
4272 <td>Out</td>
4273 </tr>
4274 <tr>
4275 <td>0</td>
4276 <td>0</td>
4277 <td>0</td>
4278 </tr>
4279 <tr>
4280 <td>0</td>
4281 <td>1</td>
4282 <td>1</td>
4283 </tr>
4284 <tr>
4285 <td>1</td>
4286 <td>0</td>
4287 <td>1</td>
4288 </tr>
4289 <tr>
4290 <td>1</td>
4291 <td>1</td>
4292 <td>1</td>
4293 </tr>
4294 </tbody>
4295</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004296
Chris Lattner2f7c9632001-06-06 20:29:01 +00004297<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004298<pre>
4299 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004300 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
4301 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004302</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004303
Misha Brukman76307852003-11-08 01:05:38 +00004304</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004305
Chris Lattner2f7c9632001-06-06 20:29:01 +00004306<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004307<h4>
4308 <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4309</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004310
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004311<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004312
Chris Lattner2f7c9632001-06-06 20:29:01 +00004313<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004314<pre>
4315 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004316</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004317
Chris Lattner2f7c9632001-06-06 20:29:01 +00004318<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004319<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4320 its two operands. The <tt>xor</tt> is used to implement the "one's
4321 complement" operation, which is the "~" operator in C.</p>
4322
Chris Lattner2f7c9632001-06-06 20:29:01 +00004323<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004324<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004325 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4326 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004327
Chris Lattner2f7c9632001-06-06 20:29:01 +00004328<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004329<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004330
Chris Lattner48b383b02003-11-25 01:02:51 +00004331<table border="1" cellspacing="0" cellpadding="4">
4332 <tbody>
4333 <tr>
4334 <td>In0</td>
4335 <td>In1</td>
4336 <td>Out</td>
4337 </tr>
4338 <tr>
4339 <td>0</td>
4340 <td>0</td>
4341 <td>0</td>
4342 </tr>
4343 <tr>
4344 <td>0</td>
4345 <td>1</td>
4346 <td>1</td>
4347 </tr>
4348 <tr>
4349 <td>1</td>
4350 <td>0</td>
4351 <td>1</td>
4352 </tr>
4353 <tr>
4354 <td>1</td>
4355 <td>1</td>
4356 <td>0</td>
4357 </tr>
4358 </tbody>
4359</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004360
Chris Lattner2f7c9632001-06-06 20:29:01 +00004361<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004362<pre>
4363 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004364 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4365 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4366 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004367</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004368
Misha Brukman76307852003-11-08 01:05:38 +00004369</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004370
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004371</div>
4372
Chris Lattner2f7c9632001-06-06 20:29:01 +00004373<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004374<h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004375 <a name="vectorops">Vector Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004376</h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004377
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004378<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004379
4380<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004381 target-independent manner. These instructions cover the element-access and
4382 vector-specific operations needed to process vectors effectively. While LLVM
4383 does directly support these vector operations, many sophisticated algorithms
4384 will want to use target-specific intrinsics to take full advantage of a
4385 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004386
Chris Lattnerce83bff2006-04-08 23:07:04 +00004387<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004388<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004389 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004390</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004391
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004392<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004393
4394<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004395<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004396 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004397</pre>
4398
4399<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004400<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4401 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004402
4403
4404<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004405<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4406 of <a href="#t_vector">vector</a> type. The second operand is an index
4407 indicating the position from which to extract the element. The index may be
4408 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004409
4410<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004411<p>The result is a scalar of the same type as the element type of
4412 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4413 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4414 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004415
4416<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004417<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004418 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004419</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004420
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004421</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004422
4423<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004424<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004425 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004426</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004427
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004428<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004429
4430<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004431<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00004432 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004433</pre>
4434
4435<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004436<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4437 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004438
4439<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004440<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4441 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4442 whose type must equal the element type of the first operand. The third
4443 operand is an index indicating the position at which to insert the value.
4444 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004445
4446<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004447<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4448 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4449 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4450 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004451
4452<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004453<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004454 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004455</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004456
Chris Lattnerce83bff2006-04-08 23:07:04 +00004457</div>
4458
4459<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004460<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004461 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004462</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004463
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004464<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004465
4466<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004467<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00004468 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004469</pre>
4470
4471<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004472<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4473 from two input vectors, returning a vector with the same element type as the
4474 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004475
4476<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004477<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4478 with types that match each other. The third argument is a shuffle mask whose
4479 element type is always 'i32'. The result of the instruction is a vector
4480 whose length is the same as the shuffle mask and whose element type is the
4481 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004482
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004483<p>The shuffle mask operand is required to be a constant vector with either
4484 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004485
4486<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004487<p>The elements of the two input vectors are numbered from left to right across
4488 both of the vectors. The shuffle mask operand specifies, for each element of
4489 the result vector, which element of the two input vectors the result element
4490 gets. The element selector may be undef (meaning "don't care") and the
4491 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004492
4493<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004494<pre>
Eric Christopher455c5772009-12-05 02:46:03 +00004495 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00004496 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004497 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004498 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher455c5772009-12-05 02:46:03 +00004499 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00004500 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004501 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00004502 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004503</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004504
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004505</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00004506
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004507</div>
4508
Chris Lattnerce83bff2006-04-08 23:07:04 +00004509<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004510<h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004511 <a name="aggregateops">Aggregate Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004512</h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004513
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004514<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004515
Chris Lattner392be582010-02-12 20:49:41 +00004516<p>LLVM supports several instructions for working with
4517 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004518
Dan Gohmanb9d66602008-05-12 23:51:09 +00004519<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004520<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004521 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004522</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004523
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004524<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004525
4526<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004527<pre>
4528 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4529</pre>
4530
4531<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004532<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4533 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004534
4535<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004536<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004537 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004538 <a href="#t_array">array</a> type. The operands are constant indices to
4539 specify which value to extract in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004540 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004541 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4542 <ul>
4543 <li>Since the value being indexed is not a pointer, the first index is
4544 omitted and assumed to be zero.</li>
4545 <li>At least one index must be specified.</li>
4546 <li>Not only struct indices but also array indices must be in
4547 bounds.</li>
4548 </ul>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004549
4550<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004551<p>The result is the value at the position in the aggregate specified by the
4552 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004553
4554<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004555<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004556 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004557</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004558
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004559</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004560
4561<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004562<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004563 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004564</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004565
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004566<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004567
4568<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004569<pre>
Bill Wendlingf6a91cf2011-07-26 20:42:28 +00004570 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}* <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004571</pre>
4572
4573<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004574<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4575 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004576
4577<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004578<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004579 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004580 <a href="#t_array">array</a> type. The second operand is a first-class
4581 value to insert. The following operands are constant indices indicating
4582 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004583 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004584 value to insert must have the same type as the value identified by the
4585 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004586
4587<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004588<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4589 that of <tt>val</tt> except that the value at the position specified by the
4590 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004591
4592<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004593<pre>
Chris Lattnerc2e85402011-05-22 07:18:08 +00004594 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4595 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
4596 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 <i>; yields {i32 1, float %val}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004597</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004598
Dan Gohmanb9d66602008-05-12 23:51:09 +00004599</div>
4600
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004601</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004602
4603<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004604<h3>
Chris Lattner6ab66722006-08-15 00:45:58 +00004605 <a name="memoryops">Memory Access and Addressing Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004606</h3>
Chris Lattner54611b42005-11-06 08:02:57 +00004607
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004608<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004609
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004610<p>A key design point of an SSA-based representation is how it represents
4611 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00004612 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004613 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004614
Chris Lattner2f7c9632001-06-06 20:29:01 +00004615<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004616<h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004617 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004618</h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004619
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004620<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004621
Chris Lattner2f7c9632001-06-06 20:29:01 +00004622<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004623<pre>
Dan Gohman2140a742010-05-28 01:14:11 +00004624 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004625</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00004626
Chris Lattner2f7c9632001-06-06 20:29:01 +00004627<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004628<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004629 currently executing function, to be automatically released when this function
4630 returns to its caller. The object is always allocated in the generic address
4631 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004632
Chris Lattner2f7c9632001-06-06 20:29:01 +00004633<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004634<p>The '<tt>alloca</tt>' instruction
4635 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4636 runtime stack, returning a pointer of the appropriate type to the program.
4637 If "NumElements" is specified, it is the number of elements allocated,
4638 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4639 specified, the value result of the allocation is guaranteed to be aligned to
4640 at least that boundary. If not specified, or if zero, the target can choose
4641 to align the allocation on any convenient boundary compatible with the
4642 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004643
Misha Brukman76307852003-11-08 01:05:38 +00004644<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004645
Chris Lattner2f7c9632001-06-06 20:29:01 +00004646<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00004647<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004648 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4649 memory is automatically released when the function returns. The
4650 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4651 variables that must have an address available. When the function returns
4652 (either with the <tt><a href="#i_ret">ret</a></tt>
4653 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4654 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004655
Chris Lattner2f7c9632001-06-06 20:29:01 +00004656<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004657<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00004658 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4659 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4660 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4661 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004662</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004663
Misha Brukman76307852003-11-08 01:05:38 +00004664</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004665
Chris Lattner2f7c9632001-06-06 20:29:01 +00004666<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004667<h4>
4668 <a name="i_load">'<tt>load</tt>' Instruction</a>
4669</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004670
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004671<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004672
Chris Lattner095735d2002-05-06 03:03:22 +00004673<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004674<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004675 &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4676 &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004677 !&lt;index&gt; = !{ i32 1 }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004678</pre>
4679
Chris Lattner095735d2002-05-06 03:03:22 +00004680<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004681<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004682
Chris Lattner095735d2002-05-06 03:03:22 +00004683<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004684<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4685 from which to load. The pointer must point to
4686 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4687 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004688 number or order of execution of this <tt>load</tt> with other <a
4689 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004690
Eli Friedman59b66882011-08-09 23:02:53 +00004691<p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
4692 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4693 argument. The <code>release</code> and <code>acq_rel</code> orderings are
4694 not valid on <code>load</code> instructions. Atomic loads produce <a
4695 href="#memorymodel">defined</a> results when they may see multiple atomic
4696 stores. The type of the pointee must be an integer type whose bit width
4697 is a power of two greater than or equal to eight and less than or equal
4698 to a target-specific size limit. <code>align</code> must be explicitly
4699 specified on atomic loads, and the load has undefined behavior if the
4700 alignment is not set to a value which is at least the size in bytes of
4701 the pointee. <code>!nontemporal</code> does not have any defined semantics
4702 for atomic loads.</p>
4703
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004704<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004705 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004706 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004707 alignment for the target. It is the responsibility of the code emitter to
4708 ensure that the alignment information is correct. Overestimating the
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004709 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004710 produce less efficient code. An alignment of 1 is always safe.</p>
4711
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004712<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4713 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmana269a0a2010-03-01 17:41:39 +00004714 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004715 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4716 and code generator that this load is not expected to be reused in the cache.
4717 The code generator may select special instructions to save cache bandwidth,
Dan Gohmana269a0a2010-03-01 17:41:39 +00004718 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004719
Chris Lattner095735d2002-05-06 03:03:22 +00004720<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004721<p>The location of memory pointed to is loaded. If the value being loaded is of
4722 scalar type then the number of bytes read does not exceed the minimum number
4723 of bytes needed to hold all bits of the type. For example, loading an
4724 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4725 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4726 is undefined if the value was not originally written using a store of the
4727 same type.</p>
4728
Chris Lattner095735d2002-05-06 03:03:22 +00004729<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004730<pre>
4731 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4732 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004733 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004734</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004735
Misha Brukman76307852003-11-08 01:05:38 +00004736</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004737
Chris Lattner095735d2002-05-06 03:03:22 +00004738<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004739<h4>
4740 <a name="i_store">'<tt>store</tt>' Instruction</a>
4741</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004742
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004743<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004744
Chris Lattner095735d2002-05-06 03:03:22 +00004745<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004746<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004747 store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4748 store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt; <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004749</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004750
Chris Lattner095735d2002-05-06 03:03:22 +00004751<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004752<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004753
Chris Lattner095735d2002-05-06 03:03:22 +00004754<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004755<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4756 and an address at which to store it. The type of the
4757 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4758 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004759 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4760 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4761 order of execution of this <tt>store</tt> with other <a
4762 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004763
Eli Friedman59b66882011-08-09 23:02:53 +00004764<p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
4765 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4766 argument. The <code>acquire</code> and <code>acq_rel</code> orderings aren't
4767 valid on <code>store</code> instructions. Atomic loads produce <a
4768 href="#memorymodel">defined</a> results when they may see multiple atomic
4769 stores. The type of the pointee must be an integer type whose bit width
4770 is a power of two greater than or equal to eight and less than or equal
4771 to a target-specific size limit. <code>align</code> must be explicitly
4772 specified on atomic stores, and the store has undefined behavior if the
4773 alignment is not set to a value which is at least the size in bytes of
4774 the pointee. <code>!nontemporal</code> does not have any defined semantics
4775 for atomic stores.</p>
4776
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004777<p>The optional constant "align" argument specifies the alignment of the
4778 operation (that is, the alignment of the memory address). A value of 0 or an
4779 omitted "align" argument means that the operation has the preferential
4780 alignment for the target. It is the responsibility of the code emitter to
4781 ensure that the alignment information is correct. Overestimating the
4782 alignment results in an undefined behavior. Underestimating the alignment may
4783 produce less efficient code. An alignment of 1 is always safe.</p>
4784
David Greene9641d062010-02-16 20:50:18 +00004785<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer79698be2010-07-13 12:26:09 +00004786 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmana269a0a2010-03-01 17:41:39 +00004787 value 1. The existence of the !nontemporal metatadata on the
David Greene9641d062010-02-16 20:50:18 +00004788 instruction tells the optimizer and code generator that this load is
4789 not expected to be reused in the cache. The code generator may
4790 select special instructions to save cache bandwidth, such as the
Dan Gohmana269a0a2010-03-01 17:41:39 +00004791 MOVNT instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004792
4793
Chris Lattner48b383b02003-11-25 01:02:51 +00004794<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004795<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4796 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4797 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4798 does not exceed the minimum number of bytes needed to hold all bits of the
4799 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4800 writing a value of a type like <tt>i20</tt> with a size that is not an
4801 integral number of bytes, it is unspecified what happens to the extra bits
4802 that do not belong to the type, but they will typically be overwritten.</p>
4803
Chris Lattner095735d2002-05-06 03:03:22 +00004804<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004805<pre>
4806 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00004807 store i32 3, i32* %ptr <i>; yields {void}</i>
4808 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004809</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004810
Reid Spencer443460a2006-11-09 21:15:49 +00004811</div>
4812
Chris Lattner095735d2002-05-06 03:03:22 +00004813<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004814<h4>
4815<a name="i_fence">'<tt>fence</tt>' Instruction</a>
4816</h4>
Eli Friedmanfee02c62011-07-25 23:16:38 +00004817
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004818<div>
Eli Friedmanfee02c62011-07-25 23:16:38 +00004819
4820<h5>Syntax:</h5>
4821<pre>
4822 fence [singlethread] &lt;ordering&gt; <i>; yields {void}</i>
4823</pre>
4824
4825<h5>Overview:</h5>
4826<p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
4827between operations.</p>
4828
4829<h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
4830href="#ordering">ordering</a> argument which defines what
4831<i>synchronizes-with</i> edges they add. They can only be given
4832<code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
4833<code>seq_cst</code> orderings.</p>
4834
4835<h5>Semantics:</h5>
4836<p>A fence <var>A</var> which has (at least) <code>release</code> ordering
4837semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
4838<code>acquire</code> ordering semantics if and only if there exist atomic
4839operations <var>X</var> and <var>Y</var>, both operating on some atomic object
4840<var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
4841<var>X</var> modifies <var>M</var> (either directly or through some side effect
4842of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
4843<var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
4844<i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
4845than an explicit <code>fence</code>, one (but not both) of the atomic operations
4846<var>X</var> or <var>Y</var> might provide a <code>release</code> or
4847<code>acquire</code> (resp.) ordering constraint and still
4848<i>synchronize-with</i> the explicit <code>fence</code> and establish the
4849<i>happens-before</i> edge.</p>
4850
4851<p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
4852having both <code>acquire</code> and <code>release</code> semantics specified
4853above, participates in the global program order of other <code>seq_cst</code>
4854operations and/or fences.</p>
4855
4856<p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
4857specifies that the fence only synchronizes with other fences in the same
4858thread. (This is useful for interacting with signal handlers.)</p>
4859
Eli Friedmanfee02c62011-07-25 23:16:38 +00004860<h5>Example:</h5>
4861<pre>
4862 fence acquire <i>; yields {void}</i>
4863 fence singlethread seq_cst <i>; yields {void}</i>
4864</pre>
4865
4866</div>
4867
4868<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004869<h4>
4870<a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
4871</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004872
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004873<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004874
4875<h5>Syntax:</h5>
4876<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004877 cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004878</pre>
4879
4880<h5>Overview:</h5>
4881<p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
4882It loads a value in memory and compares it to a given value. If they are
4883equal, it stores a new value into the memory.</p>
4884
4885<h5>Arguments:</h5>
4886<p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
4887address to operate on, a value to compare to the value currently be at that
4888address, and a new value to place at that address if the compared values are
4889equal. The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
4890bit width is a power of two greater than or equal to eight and less than
4891or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
4892'<var>&lt;new&gt;</var>' must have the same type, and the type of
4893'<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
4894<code>cmpxchg</code> is marked as <code>volatile</code>, then the
4895optimizer is not allowed to modify the number or order of execution
4896of this <code>cmpxchg</code> with other <a href="#volatile">volatile
4897operations</a>.</p>
4898
4899<!-- FIXME: Extend allowed types. -->
4900
4901<p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
4902<code>cmpxchg</code> synchronizes with other atomic operations.</p>
4903
4904<p>The optional "<code>singlethread</code>" argument declares that the
4905<code>cmpxchg</code> is only atomic with respect to code (usually signal
4906handlers) running in the same thread as the <code>cmpxchg</code>. Otherwise the
4907cmpxchg is atomic with respect to all other code in the system.</p>
4908
4909<p>The pointer passed into cmpxchg must have alignment greater than or equal to
4910the size in memory of the operand.
4911
4912<h5>Semantics:</h5>
4913<p>The contents of memory at the location specified by the
4914'<tt>&lt;pointer&gt;</tt>' operand is read and compared to
4915'<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
4916'<tt>&lt;new&gt;</tt>' is written. The original value at the location
4917is returned.
4918
4919<p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
4920purpose of identifying <a href="#release_sequence">release sequences</a>. A
4921failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
4922parameter determined by dropping any <code>release</code> part of the
4923<code>cmpxchg</code>'s ordering.</p>
4924
4925<!--
4926FIXME: Is compare_exchange_weak() necessary? (Consider after we've done
4927optimization work on ARM.)
4928
4929FIXME: Is a weaker ordering constraint on failure helpful in practice?
4930-->
4931
4932<h5>Example:</h5>
4933<pre>
4934entry:
4935 %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered <i>; yields {i32}</i>
4936 <a href="#i_br">br</a> label %loop
4937
4938loop:
4939 %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
4940 %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
4941 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared <i>; yields {i32}</i>
4942 %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
4943 <a href="#i_br">br</a> i1 %success, label %done, label %loop
4944
4945done:
4946 ...
4947</pre>
4948
4949</div>
4950
4951<!-- _______________________________________________________________________ -->
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004952<h4>
4953<a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
4954</h4>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004955
NAKAMURA Takumi0300d882011-08-12 06:17:17 +00004956<div>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004957
4958<h5>Syntax:</h5>
4959<pre>
Eli Friedman02e737b2011-08-12 22:50:01 +00004960 atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanc9a551e2011-07-28 21:48:00 +00004961</pre>
4962
4963<h5>Overview:</h5>
4964<p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
4965
4966<h5>Arguments:</h5>
4967<p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
4968operation to apply, an address whose value to modify, an argument to the
4969operation. The operation must be one of the following keywords:</p>
4970<ul>
4971 <li>xchg</li>
4972 <li>add</li>
4973 <li>sub</li>
4974 <li>and</li>
4975 <li>nand</li>
4976 <li>or</li>
4977 <li>xor</li>
4978 <li>max</li>
4979 <li>min</li>
4980 <li>umax</li>
4981 <li>umin</li>
4982</ul>
4983
4984<p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
4985bit width is a power of two greater than or equal to eight and less than
4986or equal to a target-specific size limit. The type of the
4987'<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
4988If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
4989optimizer is not allowed to modify the number or order of execution of this
4990<code>atomicrmw</code> with other <a href="#volatile">volatile
4991 operations</a>.</p>
4992
4993<!-- FIXME: Extend allowed types. -->
4994
4995<h5>Semantics:</h5>
4996<p>The contents of memory at the location specified by the
4997'<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
4998back. The original value at the location is returned. The modification is
4999specified by the <var>operation</var> argument:</p>
5000
5001<ul>
5002 <li>xchg: <code>*ptr = val</code></li>
5003 <li>add: <code>*ptr = *ptr + val</code></li>
5004 <li>sub: <code>*ptr = *ptr - val</code></li>
5005 <li>and: <code>*ptr = *ptr &amp; val</code></li>
5006 <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
5007 <li>or: <code>*ptr = *ptr | val</code></li>
5008 <li>xor: <code>*ptr = *ptr ^ val</code></li>
5009 <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
5010 <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
5011 <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5012 <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5013</ul>
5014
5015<h5>Example:</h5>
5016<pre>
5017 %old = atomicrmw add i32* %ptr, i32 1 acquire <i>; yields {i32}</i>
5018</pre>
5019
5020</div>
5021
5022<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005023<h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005024 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005025</h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00005026
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005027<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005028
Chris Lattner590645f2002-04-14 06:13:44 +00005029<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005030<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005031 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00005032 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00005033</pre>
5034
Chris Lattner590645f2002-04-14 06:13:44 +00005035<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005036<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner392be582010-02-12 20:49:41 +00005037 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
5038 It performs address calculation only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005039
Chris Lattner590645f2002-04-14 06:13:44 +00005040<h5>Arguments:</h5>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005041<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00005042 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005043 elements of the aggregate object are indexed. The interpretation of each
5044 index is dependent on the type being indexed into. The first index always
5045 indexes the pointer value given as the first argument, the second index
5046 indexes a value of the type pointed to (not necessarily the value directly
5047 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattner392be582010-02-12 20:49:41 +00005048 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner13ee7952010-08-28 04:09:24 +00005049 vectors, and structs. Note that subsequent types being indexed into
Chris Lattner392be582010-02-12 20:49:41 +00005050 can never be pointers, since that would require loading the pointer before
5051 continuing calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005052
5053<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner13ee7952010-08-28 04:09:24 +00005054 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattner392be582010-02-12 20:49:41 +00005055 integer <b>constants</b> are allowed. When indexing into an array, pointer
5056 or vector, integers of any width are allowed, and they are not required to be
Eli Friedmand8874dc2011-08-12 23:37:55 +00005057 constant. These integers are treated as signed values where relevant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005058
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005059<p>For example, let's consider a C code fragment and how it gets compiled to
5060 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005061
Benjamin Kramer79698be2010-07-13 12:26:09 +00005062<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00005063struct RT {
5064 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00005065 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00005066 char C;
5067};
5068struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00005069 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00005070 double Y;
5071 struct RT Z;
5072};
Chris Lattner33fd7022004-04-05 01:30:49 +00005073
Chris Lattnera446f1b2007-05-29 15:43:56 +00005074int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005075 return &amp;s[1].Z.B[5][13];
5076}
Chris Lattner33fd7022004-04-05 01:30:49 +00005077</pre>
5078
Misha Brukman76307852003-11-08 01:05:38 +00005079<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005080
Benjamin Kramer79698be2010-07-13 12:26:09 +00005081<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +00005082%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
5083%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00005084
Dan Gohman6b867702009-07-25 02:23:48 +00005085define i32* @foo(%ST* %s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00005086entry:
5087 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
5088 ret i32* %reg
5089}
Chris Lattner33fd7022004-04-05 01:30:49 +00005090</pre>
5091
Chris Lattner590645f2002-04-14 06:13:44 +00005092<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005093<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005094 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
5095 }</tt>' type, a structure. The second index indexes into the third element
5096 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
5097 i8 }</tt>' type, another structure. The third index indexes into the second
5098 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
5099 array. The two dimensions of the array are subscripted into, yielding an
5100 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
5101 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005102
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005103<p>Note that it is perfectly legal to index partially through a structure,
5104 returning a pointer to an inner element. Because of this, the LLVM code for
5105 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00005106
5107<pre>
Dan Gohman6b867702009-07-25 02:23:48 +00005108 define i32* @foo(%ST* %s) {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005109 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00005110 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
5111 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005112 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
5113 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
5114 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00005115 }
Chris Lattnera8292f32002-05-06 22:08:29 +00005116</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00005117
Dan Gohman1639c392009-07-27 21:53:46 +00005118<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00005119 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
5120 base pointer is not an <i>in bounds</i> address of an allocated object,
5121 or if any of the addresses that would be formed by successive addition of
5122 the offsets implied by the indices to the base address with infinitely
Eli Friedmand8874dc2011-08-12 23:37:55 +00005123 precise signed arithmetic are not an <i>in bounds</i> address of that
5124 allocated object. The <i>in bounds</i> addresses for an allocated object
5125 are all the addresses that point into the object, plus the address one
5126 byte past the end.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00005127
5128<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
Eli Friedmand8874dc2011-08-12 23:37:55 +00005129 the base address with silently-wrapping two's complement arithmetic. If the
5130 offsets have a different width from the pointer, they are sign-extended or
5131 truncated to the width of the pointer. The result value of the
5132 <tt>getelementptr</tt> may be outside the object pointed to by the base
5133 pointer. The result value may not necessarily be used to access memory
5134 though, even if it happens to point into allocated storage. See the
5135 <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
5136 information.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00005137
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005138<p>The getelementptr instruction is often confusing. For some more insight into
5139 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00005140
Chris Lattner590645f2002-04-14 06:13:44 +00005141<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00005142<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005143 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005144 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5145 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005146 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00005147 <i>; yields i8*:eptr</i>
5148 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00005149 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00005150 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00005151</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005152
Chris Lattner33fd7022004-04-05 01:30:49 +00005153</div>
Reid Spencer443460a2006-11-09 21:15:49 +00005154
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005155</div>
5156
Chris Lattner2f7c9632001-06-06 20:29:01 +00005157<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005158<h3>
5159 <a name="convertops">Conversion Operations</a>
5160</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005161
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005162<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005163
Reid Spencer97c5fa42006-11-08 01:18:52 +00005164<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005165 which all take a single operand and a type. They perform various bit
5166 conversions on the operand.</p>
5167
Chris Lattnera8292f32002-05-06 22:08:29 +00005168<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005169<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005170 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005171</h4>
5172
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005173<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005174
5175<h5>Syntax:</h5>
5176<pre>
5177 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5178</pre>
5179
5180<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005181<p>The '<tt>trunc</tt>' instruction truncates its operand to the
5182 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005183
5184<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005185<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
5186 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5187 of the same number of integers.
5188 The bit size of the <tt>value</tt> must be larger than
5189 the bit size of the destination type, <tt>ty2</tt>.
5190 Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005191
5192<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005193<p>The '<tt>trunc</tt>' instruction truncates the high order bits
5194 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
5195 source size must be larger than the destination size, <tt>trunc</tt> cannot
5196 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005197
5198<h5>Example:</h5>
5199<pre>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005200 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
5201 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
5202 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
5203 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005204</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005205
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005206</div>
5207
5208<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005209<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005210 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005211</h4>
5212
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005213<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005214
5215<h5>Syntax:</h5>
5216<pre>
5217 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5218</pre>
5219
5220<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005221<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005222 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005223
5224
5225<h5>Arguments:</h5>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005226<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
5227 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5228 of the same number of integers.
5229 The bit size of the <tt>value</tt> must be smaller than
5230 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005231 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005232
5233<h5>Semantics:</h5>
5234<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005235 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005236
Reid Spencer07c9c682007-01-12 15:46:11 +00005237<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005238
5239<h5>Example:</h5>
5240<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005241 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005242 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00005243 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005244</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005245
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005246</div>
5247
5248<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005249<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005250 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005251</h4>
5252
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005253<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005254
5255<h5>Syntax:</h5>
5256<pre>
5257 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5258</pre>
5259
5260<h5>Overview:</h5>
5261<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
5262
5263<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005264<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
5265 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5266 of the same number of integers.
5267 The bit size of the <tt>value</tt> must be smaller than
5268 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005269 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005270
5271<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005272<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
5273 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
5274 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005275
Reid Spencer36a15422007-01-12 03:35:51 +00005276<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005277
5278<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005279<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005280 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00005281 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Nadav Rotem502f1b92011-02-24 21:01:34 +00005282 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005283</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005284
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005285</div>
5286
5287<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005288<h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005289 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005290</h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005291
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005292<div>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005293
5294<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005295<pre>
5296 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5297</pre>
5298
5299<h5>Overview:</h5>
5300<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005301 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005302
5303<h5>Arguments:</h5>
5304<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005305 point</a> value to cast and a <a href="#t_floating">floating point</a> type
5306 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher455c5772009-12-05 02:46:03 +00005307 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005308 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005309
5310<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005311<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher455c5772009-12-05 02:46:03 +00005312 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005313 <a href="#t_floating">floating point</a> type. If the value cannot fit
5314 within the destination type, <tt>ty2</tt>, then the results are
5315 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00005316
5317<h5>Example:</h5>
5318<pre>
5319 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
5320 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
5321</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005322
Reid Spencer2e2740d2006-11-09 21:48:10 +00005323</div>
5324
5325<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005326<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005327 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005328</h4>
5329
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005330<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005331
5332<h5>Syntax:</h5>
5333<pre>
5334 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5335</pre>
5336
5337<h5>Overview:</h5>
5338<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005339 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005340
5341<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005342<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005343 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
5344 a <a href="#t_floating">floating point</a> type to cast it to. The source
5345 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005346
5347<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005348<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005349 <a href="#t_floating">floating point</a> type to a larger
5350 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
5351 used to make a <i>no-op cast</i> because it always changes bits. Use
5352 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005353
5354<h5>Example:</h5>
5355<pre>
Nick Lewycky9feca672011-03-31 18:20:19 +00005356 %X = fpext float 3.125 to double <i>; yields double:3.125000e+00</i>
5357 %Y = fpext double %X to fp128 <i>; yields fp128:0xL00000000000000004000900000000000</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005358</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005359
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005360</div>
5361
5362<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005363<h4>
Reid Spencer2eadb532007-01-21 00:29:26 +00005364 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005365</h4>
5366
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005367<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005368
5369<h5>Syntax:</h5>
5370<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005371 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005372</pre>
5373
5374<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00005375<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005376 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005377
5378<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005379<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
5380 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5381 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5382 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5383 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005384
5385<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005386<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005387 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5388 towards zero) unsigned integer value. If the value cannot fit
5389 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005390
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005391<h5>Example:</h5>
5392<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00005393 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005394 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005395 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005396</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005397
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005398</div>
5399
5400<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005401<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005402 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005403</h4>
5404
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005405<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005406
5407<h5>Syntax:</h5>
5408<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005409 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005410</pre>
5411
5412<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005413<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005414 <a href="#t_floating">floating point</a> <tt>value</tt> to
5415 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005416
Chris Lattnera8292f32002-05-06 22:08:29 +00005417<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005418<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
5419 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5420 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5421 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5422 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005423
Chris Lattnera8292f32002-05-06 22:08:29 +00005424<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00005425<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005426 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5427 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
5428 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005429
Chris Lattner70de6632001-07-09 00:26:23 +00005430<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005431<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005432 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00005433 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005434 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005435</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005436
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005437</div>
5438
5439<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005440<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005441 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005442</h4>
5443
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005444<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005445
5446<h5>Syntax:</h5>
5447<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005448 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005449</pre>
5450
5451<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005452<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005453 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005454
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005455<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005456<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005457 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5458 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5459 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5460 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005461
5462<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00005463<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005464 integer quantity and converts it to the corresponding floating point
5465 value. If the value cannot fit in the floating point value, the results are
5466 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005467
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005468<h5>Example:</h5>
5469<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005470 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005471 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005472</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005473
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005474</div>
5475
5476<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005477<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00005478 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005479</h4>
5480
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005481<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005482
5483<h5>Syntax:</h5>
5484<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00005485 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005486</pre>
5487
5488<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005489<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
5490 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005491
5492<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00005493<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005494 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5495 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5496 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5497 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005498
5499<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005500<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
5501 quantity and converts it to the corresponding floating point value. If the
5502 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005503
5504<h5>Example:</h5>
5505<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005506 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005507 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005508</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005509
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005510</div>
5511
5512<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005513<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005514 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005515</h4>
5516
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005517<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005518
5519<h5>Syntax:</h5>
5520<pre>
5521 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5522</pre>
5523
5524<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005525<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
5526 the integer type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005527
5528<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005529<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
5530 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
5531 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005532
5533<h5>Semantics:</h5>
5534<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005535 <tt>ty2</tt> by interpreting the pointer value as an integer and either
5536 truncating or zero extending that value to the size of the integer type. If
5537 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5538 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5539 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5540 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005541
5542<h5>Example:</h5>
5543<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005544 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
5545 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005546</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005547
Reid Spencerb7344ff2006-11-11 21:00:47 +00005548</div>
5549
5550<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005551<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005552 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005553</h4>
5554
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005555<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005556
5557<h5>Syntax:</h5>
5558<pre>
5559 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5560</pre>
5561
5562<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005563<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5564 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005565
5566<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00005567<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005568 value to cast, and a type to cast it to, which must be a
5569 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005570
5571<h5>Semantics:</h5>
5572<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005573 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5574 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5575 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5576 than the size of a pointer then a zero extension is done. If they are the
5577 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005578
5579<h5>Example:</h5>
5580<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005581 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005582 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
5583 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005584</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005585
Reid Spencerb7344ff2006-11-11 21:00:47 +00005586</div>
5587
5588<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005589<h4>
Reid Spencer5b950642006-11-11 23:08:07 +00005590 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005591</h4>
5592
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005593<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005594
5595<h5>Syntax:</h5>
5596<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00005597 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005598</pre>
5599
5600<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005601<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005602 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005603
5604<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005605<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5606 non-aggregate first class value, and a type to cast it to, which must also be
5607 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5608 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5609 identical. If the source type is a pointer, the destination type must also be
5610 a pointer. This instruction supports bitwise conversion of vectors to
5611 integers and to vectors of other types (as long as they have the same
5612 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005613
5614<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005615<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005616 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5617 this conversion. The conversion is done as if the <tt>value</tt> had been
5618 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
5619 be converted to other pointer types with this instruction. To convert
5620 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5621 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005622
5623<h5>Example:</h5>
5624<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005625 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005626 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christopher455c5772009-12-05 02:46:03 +00005627 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00005628</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005629
Misha Brukman76307852003-11-08 01:05:38 +00005630</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005631
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005632</div>
5633
Reid Spencer97c5fa42006-11-08 01:18:52 +00005634<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005635<h3>
5636 <a name="otherops">Other Operations</a>
5637</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005638
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005639<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005640
5641<p>The instructions in this category are the "miscellaneous" instructions, which
5642 defy better classification.</p>
5643
Reid Spencerc828a0e2006-11-18 21:50:54 +00005644<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005645<h4>
5646 <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5647</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005648
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005649<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005650
Reid Spencerc828a0e2006-11-18 21:50:54 +00005651<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005652<pre>
5653 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005654</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005655
Reid Spencerc828a0e2006-11-18 21:50:54 +00005656<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005657<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5658 boolean values based on comparison of its two integer, integer vector, or
5659 pointer operands.</p>
5660
Reid Spencerc828a0e2006-11-18 21:50:54 +00005661<h5>Arguments:</h5>
5662<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005663 the condition code indicating the kind of comparison to perform. It is not a
5664 value, just a keyword. The possible condition code are:</p>
5665
Reid Spencerc828a0e2006-11-18 21:50:54 +00005666<ol>
5667 <li><tt>eq</tt>: equal</li>
5668 <li><tt>ne</tt>: not equal </li>
5669 <li><tt>ugt</tt>: unsigned greater than</li>
5670 <li><tt>uge</tt>: unsigned greater or equal</li>
5671 <li><tt>ult</tt>: unsigned less than</li>
5672 <li><tt>ule</tt>: unsigned less or equal</li>
5673 <li><tt>sgt</tt>: signed greater than</li>
5674 <li><tt>sge</tt>: signed greater or equal</li>
5675 <li><tt>slt</tt>: signed less than</li>
5676 <li><tt>sle</tt>: signed less or equal</li>
5677</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005678
Chris Lattnerc0f423a2007-01-15 01:54:13 +00005679<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005680 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5681 typed. They must also be identical types.</p>
5682
Reid Spencerc828a0e2006-11-18 21:50:54 +00005683<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005684<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5685 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005686 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005687 result, as follows:</p>
5688
Reid Spencerc828a0e2006-11-18 21:50:54 +00005689<ol>
Eric Christopher455c5772009-12-05 02:46:03 +00005690 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005691 <tt>false</tt> otherwise. No sign interpretation is necessary or
5692 performed.</li>
5693
Eric Christopher455c5772009-12-05 02:46:03 +00005694 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005695 <tt>false</tt> otherwise. No sign interpretation is necessary or
5696 performed.</li>
5697
Reid Spencerc828a0e2006-11-18 21:50:54 +00005698 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005699 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5700
Reid Spencerc828a0e2006-11-18 21:50:54 +00005701 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005702 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5703 to <tt>op2</tt>.</li>
5704
Reid Spencerc828a0e2006-11-18 21:50:54 +00005705 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005706 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5707
Reid Spencerc828a0e2006-11-18 21:50:54 +00005708 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005709 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5710
Reid Spencerc828a0e2006-11-18 21:50:54 +00005711 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005712 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5713
Reid Spencerc828a0e2006-11-18 21:50:54 +00005714 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005715 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5716 to <tt>op2</tt>.</li>
5717
Reid Spencerc828a0e2006-11-18 21:50:54 +00005718 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005719 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5720
Reid Spencerc828a0e2006-11-18 21:50:54 +00005721 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005722 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005723</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005724
Reid Spencerc828a0e2006-11-18 21:50:54 +00005725<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005726 values are compared as if they were integers.</p>
5727
5728<p>If the operands are integer vectors, then they are compared element by
5729 element. The result is an <tt>i1</tt> vector with the same number of elements
5730 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005731
5732<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005733<pre>
5734 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005735 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5736 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5737 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5738 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5739 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005740</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005741
5742<p>Note that the code generator does not yet support vector types with
5743 the <tt>icmp</tt> instruction.</p>
5744
Reid Spencerc828a0e2006-11-18 21:50:54 +00005745</div>
5746
5747<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005748<h4>
5749 <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5750</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005751
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005752<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005753
Reid Spencerc828a0e2006-11-18 21:50:54 +00005754<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005755<pre>
5756 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005757</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005758
Reid Spencerc828a0e2006-11-18 21:50:54 +00005759<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005760<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5761 values based on comparison of its operands.</p>
5762
5763<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005764(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005765
5766<p>If the operands are floating point vectors, then the result type is a vector
5767 of boolean with the same number of elements as the operands being
5768 compared.</p>
5769
Reid Spencerc828a0e2006-11-18 21:50:54 +00005770<h5>Arguments:</h5>
5771<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005772 the condition code indicating the kind of comparison to perform. It is not a
5773 value, just a keyword. The possible condition code are:</p>
5774
Reid Spencerc828a0e2006-11-18 21:50:54 +00005775<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00005776 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005777 <li><tt>oeq</tt>: ordered and equal</li>
5778 <li><tt>ogt</tt>: ordered and greater than </li>
5779 <li><tt>oge</tt>: ordered and greater than or equal</li>
5780 <li><tt>olt</tt>: ordered and less than </li>
5781 <li><tt>ole</tt>: ordered and less than or equal</li>
5782 <li><tt>one</tt>: ordered and not equal</li>
5783 <li><tt>ord</tt>: ordered (no nans)</li>
5784 <li><tt>ueq</tt>: unordered or equal</li>
5785 <li><tt>ugt</tt>: unordered or greater than </li>
5786 <li><tt>uge</tt>: unordered or greater than or equal</li>
5787 <li><tt>ult</tt>: unordered or less than </li>
5788 <li><tt>ule</tt>: unordered or less than or equal</li>
5789 <li><tt>une</tt>: unordered or not equal</li>
5790 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00005791 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005792</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005793
Jeff Cohen222a8a42007-04-29 01:07:00 +00005794<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005795 <i>unordered</i> means that either operand may be a QNAN.</p>
5796
5797<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5798 a <a href="#t_floating">floating point</a> type or
5799 a <a href="#t_vector">vector</a> of floating point type. They must have
5800 identical types.</p>
5801
Reid Spencerc828a0e2006-11-18 21:50:54 +00005802<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00005803<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005804 according to the condition code given as <tt>cond</tt>. If the operands are
5805 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005806 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005807 follows:</p>
5808
Reid Spencerc828a0e2006-11-18 21:50:54 +00005809<ol>
5810 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005811
Eric Christopher455c5772009-12-05 02:46:03 +00005812 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005813 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5814
Reid Spencerf69acf32006-11-19 03:00:14 +00005815 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmana269a0a2010-03-01 17:41:39 +00005816 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005817
Eric Christopher455c5772009-12-05 02:46:03 +00005818 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005819 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5820
Eric Christopher455c5772009-12-05 02:46:03 +00005821 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005822 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5823
Eric Christopher455c5772009-12-05 02:46:03 +00005824 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005825 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5826
Eric Christopher455c5772009-12-05 02:46:03 +00005827 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005828 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5829
Reid Spencerf69acf32006-11-19 03:00:14 +00005830 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005831
Eric Christopher455c5772009-12-05 02:46:03 +00005832 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005833 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5834
Eric Christopher455c5772009-12-05 02:46:03 +00005835 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005836 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5837
Eric Christopher455c5772009-12-05 02:46:03 +00005838 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005839 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5840
Eric Christopher455c5772009-12-05 02:46:03 +00005841 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005842 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5843
Eric Christopher455c5772009-12-05 02:46:03 +00005844 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005845 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5846
Eric Christopher455c5772009-12-05 02:46:03 +00005847 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005848 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5849
Reid Spencerf69acf32006-11-19 03:00:14 +00005850 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005851
Reid Spencerc828a0e2006-11-18 21:50:54 +00005852 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5853</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005854
5855<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005856<pre>
5857 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00005858 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5859 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5860 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005861</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005862
5863<p>Note that the code generator does not yet support vector types with
5864 the <tt>fcmp</tt> instruction.</p>
5865
Reid Spencerc828a0e2006-11-18 21:50:54 +00005866</div>
5867
Reid Spencer97c5fa42006-11-08 01:18:52 +00005868<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005869<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005870 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005871</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005872
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005873<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005874
Reid Spencer97c5fa42006-11-08 01:18:52 +00005875<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005876<pre>
5877 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5878</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005879
Reid Spencer97c5fa42006-11-08 01:18:52 +00005880<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005881<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5882 SSA graph representing the function.</p>
5883
Reid Spencer97c5fa42006-11-08 01:18:52 +00005884<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005885<p>The type of the incoming values is specified with the first type field. After
5886 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5887 one pair for each predecessor basic block of the current block. Only values
5888 of <a href="#t_firstclass">first class</a> type may be used as the value
5889 arguments to the PHI node. Only labels may be used as the label
5890 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005891
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005892<p>There must be no non-phi instructions between the start of a basic block and
5893 the PHI instructions: i.e. PHI instructions must be first in a basic
5894 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005895
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005896<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5897 occur on the edge from the corresponding predecessor block to the current
5898 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5899 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00005900
Reid Spencer97c5fa42006-11-08 01:18:52 +00005901<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005902<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005903 specified by the pair corresponding to the predecessor basic block that
5904 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005905
Reid Spencer97c5fa42006-11-08 01:18:52 +00005906<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005907<pre>
5908Loop: ; Infinite loop that counts from 0 on up...
5909 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5910 %nextindvar = add i32 %indvar, 1
5911 br label %Loop
5912</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005913
Reid Spencer97c5fa42006-11-08 01:18:52 +00005914</div>
5915
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005916<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005917<h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005918 <a name="i_select">'<tt>select</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005919</h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005920
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005921<div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005922
5923<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005924<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00005925 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5926
Dan Gohmanef9462f2008-10-14 16:51:45 +00005927 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005928</pre>
5929
5930<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005931<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5932 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005933
5934
5935<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005936<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5937 values indicating the condition, and two values of the
5938 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5939 vectors and the condition is a scalar, then entire vectors are selected, not
5940 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005941
5942<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005943<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5944 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005945
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005946<p>If the condition is a vector of i1, then the value arguments must be vectors
5947 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005948
5949<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005950<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005951 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005952</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005953
5954<p>Note that the code generator does not yet support conditions
5955 with vector type.</p>
5956
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005957</div>
5958
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00005959<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005960<h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00005961 <a name="i_call">'<tt>call</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005962</h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00005963
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005964<div>
Chris Lattnere23c1392005-05-06 05:47:36 +00005965
Chris Lattner2f7c9632001-06-06 20:29:01 +00005966<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005967<pre>
Devang Patel02256232008-10-07 17:48:33 +00005968 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00005969</pre>
5970
Chris Lattner2f7c9632001-06-06 20:29:01 +00005971<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005972<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005973
Chris Lattner2f7c9632001-06-06 20:29:01 +00005974<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005975<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005976
Chris Lattnera8292f32002-05-06 22:08:29 +00005977<ol>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005978 <li>The optional "tail" marker indicates that the callee function does not
5979 access any allocas or varargs in the caller. Note that calls may be
5980 marked "tail" even if they do not occur before
5981 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5982 present, the function call is eligible for tail call optimization,
5983 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Cheng59676492010-03-08 21:05:02 +00005984 optimized into a jump</a>. The code generator may optimize calls marked
5985 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5986 sibling call optimization</a> when the caller and callee have
5987 matching signatures, or 2) forced tail call optimization when the
5988 following extra requirements are met:
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005989 <ul>
5990 <li>Caller and callee both have the calling
5991 convention <tt>fastcc</tt>.</li>
5992 <li>The call is in tail position (ret immediately follows call and ret
5993 uses value of call or is void).</li>
5994 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohman6232f732010-03-02 01:08:11 +00005995 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005996 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5997 constraints are met.</a></li>
5998 </ul>
5999 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006000
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006001 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
6002 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00006003 defaults to using C calling conventions. The calling convention of the
6004 call must match the calling convention of the target function, or else the
6005 behavior is undefined.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00006006
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006007 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
6008 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
6009 '<tt>inreg</tt>' attributes are valid here.</li>
6010
6011 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
6012 type of the return value. Functions that return no value are marked
6013 <tt><a href="#t_void">void</a></tt>.</li>
6014
6015 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
6016 being invoked. The argument types must match the types implied by this
6017 signature. This type can be omitted if the function is not varargs and if
6018 the function type does not return a pointer to a function.</li>
6019
6020 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
6021 be invoked. In most cases, this is a direct function invocation, but
6022 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
6023 to function value.</li>
6024
6025 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00006026 signature argument types and parameter attributes. All arguments must be
6027 of <a href="#t_firstclass">first class</a> type. If the function
6028 signature indicates the function accepts a variable number of arguments,
6029 the extra arguments can be specified.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006030
6031 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
6032 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
6033 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00006034</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00006035
Chris Lattner2f7c9632001-06-06 20:29:01 +00006036<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006037<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
6038 a specified function, with its incoming arguments bound to the specified
6039 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
6040 function, control flow continues with the instruction after the function
6041 call, and the return value of the function is bound to the result
6042 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00006043
Chris Lattner2f7c9632001-06-06 20:29:01 +00006044<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00006045<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00006046 %retval = call i32 @test(i32 %argc)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006047 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00006048 %X = tail call i32 @foo() <i>; yields i32</i>
6049 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
6050 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00006051
6052 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00006053 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00006054 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
6055 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00006056 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00006057 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00006058</pre>
6059
Dale Johannesen68f971b2009-09-24 18:38:21 +00006060<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00006061standard C99 library as being the C99 library functions, and may perform
6062optimizations or generate code for them under that assumption. This is
6063something we'd like to change in the future to provide better support for
Dan Gohmana269a0a2010-03-01 17:41:39 +00006064freestanding environments and non-C-based languages.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00006065
Misha Brukman76307852003-11-08 01:05:38 +00006066</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006067
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006068<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006069<h4>
Chris Lattner33337472006-01-13 23:26:01 +00006070 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006071</h4>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006072
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006073<div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006074
Chris Lattner26ca62e2003-10-18 05:51:36 +00006075<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006076<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006077 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00006078</pre>
6079
Chris Lattner26ca62e2003-10-18 05:51:36 +00006080<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006081<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006082 the "variable argument" area of a function call. It is used to implement the
6083 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006084
Chris Lattner26ca62e2003-10-18 05:51:36 +00006085<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006086<p>This instruction takes a <tt>va_list*</tt> value and the type of the
6087 argument. It returns a value of the specified argument type and increments
6088 the <tt>va_list</tt> to point to the next argument. The actual type
6089 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006090
Chris Lattner26ca62e2003-10-18 05:51:36 +00006091<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006092<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
6093 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
6094 to the next argument. For more information, see the variable argument
6095 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006096
6097<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006098 take a variable number of arguments, for example, the <tt>vfprintf</tt>
6099 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006100
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006101<p><tt>va_arg</tt> is an LLVM instruction instead of
6102 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
6103 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006104
Chris Lattner26ca62e2003-10-18 05:51:36 +00006105<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00006106<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
6107
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006108<p>Note that the code generator does not yet fully support va_arg on many
6109 targets. Also, it does not currently support va_arg with aggregate types on
6110 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00006111
Misha Brukman76307852003-11-08 01:05:38 +00006112</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006113
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006114<!-- _______________________________________________________________________ -->
6115<h4>
6116 <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
6117</h4>
6118
6119<div>
6120
6121<h5>Syntax:</h5>
6122<pre>
Bill Wendling49bfb122011-08-08 08:06:05 +00006123 &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
6124 &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
6125
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006126 &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
Bill Wendlingfae14752011-08-12 20:24:12 +00006127 &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006128</pre>
6129
6130<h5>Overview:</h5>
6131<p>The '<tt>landingpad</tt>' instruction is used by
6132 <a href="ExceptionHandling.html#overview">LLVM's exception handling
6133 system</a> to specify that a basic block is a landing pad &mdash; one where
6134 the exception lands, and corresponds to the code found in the
6135 <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
6136 defines values supplied by the personality function (<tt>pers_fn</tt>) upon
6137 re-entry to the function. The <tt>resultval</tt> has the
6138 type <tt>somety</tt>.</p>
6139
6140<h5>Arguments:</h5>
6141<p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
6142 function associated with the unwinding mechanism. The optional
6143 <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
6144
6145<p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
Bill Wendlingfae14752011-08-12 20:24:12 +00006146 or <tt>filter</tt> &mdash; and contains the global variable representing the
6147 "type" that may be caught or filtered respectively. Unlike the
6148 <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
6149 its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
6150 throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006151 one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
6152
6153<h5>Semantics:</h5>
6154<p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
6155 personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
6156 therefore the "result type" of the <tt>landingpad</tt> instruction. As with
6157 calling conventions, how the personality function results are represented in
6158 LLVM IR is target specific.</p>
6159
Bill Wendling0524b8d2011-08-03 17:17:06 +00006160<p>The clauses are applied in order from top to bottom. If two
6161 <tt>landingpad</tt> instructions are merged together through inlining, the
Bill Wendlinga503fc02011-08-08 07:58:58 +00006162 clauses from the calling function are appended to the list of clauses.</p>
Bill Wendling0524b8d2011-08-03 17:17:06 +00006163
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006164<p>The <tt>landingpad</tt> instruction has several restrictions:</p>
6165
6166<ul>
6167 <li>A landing pad block is a basic block which is the unwind destination of an
6168 '<tt>invoke</tt>' instruction.</li>
6169 <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
6170 first non-PHI instruction.</li>
6171 <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
6172 pad block.</li>
6173 <li>A basic block that is not a landing pad block may not include a
6174 '<tt>landingpad</tt>' instruction.</li>
6175 <li>All '<tt>landingpad</tt>' instructions in a function must have the same
6176 personality function.</li>
6177</ul>
6178
6179<h5>Example:</h5>
6180<pre>
6181 ;; A landing pad which can catch an integer.
6182 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6183 catch i8** @_ZTIi
6184 ;; A landing pad that is a cleanup.
6185 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
Bill Wendlingfae14752011-08-12 20:24:12 +00006186 cleanup
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006187 ;; A landing pad which can catch an integer and can only throw a double.
6188 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6189 catch i8** @_ZTIi
Bill Wendlingfae14752011-08-12 20:24:12 +00006190 filter [1 x i8**] [@_ZTId]
Bill Wendlingbbcb7cd2011-08-02 21:52:38 +00006191</pre>
6192
6193</div>
6194
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006195</div>
6196
6197</div>
6198
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006199<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006200<h2><a name="intrinsics">Intrinsic Functions</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00006201<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00006202
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006203<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006204
6205<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006206 well known names and semantics and are required to follow certain
6207 restrictions. Overall, these intrinsics represent an extension mechanism for
6208 the LLVM language that does not require changing all of the transformations
6209 in LLVM when adding to the language (or the bitcode reader/writer, the
6210 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006211
John Criswell88190562005-05-16 16:17:45 +00006212<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006213 prefix is reserved in LLVM for intrinsic names; thus, function names may not
6214 begin with this prefix. Intrinsic functions must always be external
6215 functions: you cannot define the body of intrinsic functions. Intrinsic
6216 functions may only be used in call or invoke instructions: it is illegal to
6217 take the address of an intrinsic function. Additionally, because intrinsic
6218 functions are part of the LLVM language, it is required if any are added that
6219 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006220
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006221<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
6222 family of functions that perform the same operation but on different data
6223 types. Because LLVM can represent over 8 million different integer types,
6224 overloading is used commonly to allow an intrinsic function to operate on any
6225 integer type. One or more of the argument types or the result type can be
6226 overloaded to accept any integer type. Argument types may also be defined as
6227 exactly matching a previous argument's type or the result type. This allows
6228 an intrinsic function which accepts multiple arguments, but needs all of them
6229 to be of the same type, to only be overloaded with respect to a single
6230 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006231
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006232<p>Overloaded intrinsics will have the names of its overloaded argument types
6233 encoded into its function name, each preceded by a period. Only those types
6234 which are overloaded result in a name suffix. Arguments whose type is matched
6235 against another type do not. For example, the <tt>llvm.ctpop</tt> function
6236 can take an integer of any width and returns an integer of exactly the same
6237 integer width. This leads to a family of functions such as
6238 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
6239 %val)</tt>. Only one type, the return type, is overloaded, and only one type
6240 suffix is required. Because the argument's type is matched against the return
6241 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006242
Eric Christopher455c5772009-12-05 02:46:03 +00006243<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006244 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006245
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006246<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006247<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006248 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006249</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00006250
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006251<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006252
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006253<p>Variable argument support is defined in LLVM with
6254 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
6255 intrinsic functions. These functions are related to the similarly named
6256 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006257
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006258<p>All of these functions operate on arguments that use a target-specific value
6259 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
6260 not define what this type is, so all transformations should be prepared to
6261 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006262
Chris Lattner30b868d2006-05-15 17:26:46 +00006263<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006264 instruction and the variable argument handling intrinsic functions are
6265 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006266
Benjamin Kramer79698be2010-07-13 12:26:09 +00006267<pre class="doc_code">
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006268define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00006269 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00006270 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006271 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006272 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006273
6274 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00006275 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00006276
6277 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00006278 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006279 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00006280 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006281 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00006282
6283 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006284 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00006285 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00006286}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00006287
6288declare void @llvm.va_start(i8*)
6289declare void @llvm.va_copy(i8*, i8*)
6290declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00006291</pre>
Chris Lattner941515c2004-01-06 05:31:32 +00006292
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006293<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006294<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006295 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006296</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006297
6298
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006299<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006300
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006301<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006302<pre>
6303 declare void %llvm.va_start(i8* &lt;arglist&gt;)
6304</pre>
6305
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006306<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006307<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
6308 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006309
6310<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006311<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006312
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006313<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00006314<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006315 macro available in C. In a target-dependent way, it initializes
6316 the <tt>va_list</tt> element to which the argument points, so that the next
6317 call to <tt>va_arg</tt> will produce the first variable argument passed to
6318 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
6319 need to know the last argument of the function as the compiler can figure
6320 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006321
Misha Brukman76307852003-11-08 01:05:38 +00006322</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006323
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006324<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006325<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006326 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006327</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006328
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006329<div>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006330
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006331<h5>Syntax:</h5>
6332<pre>
6333 declare void @llvm.va_end(i8* &lt;arglist&gt;)
6334</pre>
6335
6336<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006337<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006338 which has been initialized previously
6339 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
6340 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006341
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006342<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006343<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006344
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006345<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00006346<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006347 macro available in C. In a target-dependent way, it destroys
6348 the <tt>va_list</tt> element to which the argument points. Calls
6349 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
6350 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
6351 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00006352
Misha Brukman76307852003-11-08 01:05:38 +00006353</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006354
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006355<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006356<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006357 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006358</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00006359
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006360<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006361
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006362<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006363<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006364 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006365</pre>
6366
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006367<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006368<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006369 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006370
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006371<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00006372<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006373 The second argument is a pointer to a <tt>va_list</tt> element to copy
6374 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006375
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00006376<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00006377<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006378 macro available in C. In a target-dependent way, it copies the
6379 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
6380 element. This intrinsic is necessary because
6381 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
6382 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006383
Misha Brukman76307852003-11-08 01:05:38 +00006384</div>
Chris Lattner941515c2004-01-06 05:31:32 +00006385
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006386</div>
6387
Bill Wendling537603b2011-07-31 06:45:03 +00006388</div>
6389
Chris Lattnerfee11462004-02-12 17:01:32 +00006390<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006391<h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006392 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006393</h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006394
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006395<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006396
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006397<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00006398Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006399intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
6400roots on the stack</a>, as well as garbage collector implementations that
6401require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
6402barriers. Front-ends for type-safe garbage collected languages should generate
6403these intrinsics to make use of the LLVM garbage collectors. For more details,
6404see <a href="GarbageCollection.html">Accurate Garbage Collection with
6405LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006406
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006407<p>The garbage collection intrinsics only operate on objects in the generic
6408 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00006409
Chris Lattner757528b0b2004-05-23 21:06:01 +00006410<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006411<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006412 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006413</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006414
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006415<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006416
6417<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006418<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006419 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006420</pre>
6421
6422<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00006423<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006424 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006425
6426<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006427<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006428 root pointer. The second pointer (which must be either a constant or a
6429 global value address) contains the meta-data to be associated with the
6430 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006431
6432<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00006433<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006434 location. At compile-time, the code generator generates information to allow
6435 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
6436 intrinsic may only be used in a function which <a href="#gc">specifies a GC
6437 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006438
6439</div>
6440
Chris Lattner757528b0b2004-05-23 21:06:01 +00006441<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006442<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006443 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006444</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006445
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006446<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006447
6448<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006449<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006450 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006451</pre>
6452
6453<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006454<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006455 locations, allowing garbage collector implementations that require read
6456 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006457
6458<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006459<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006460 allocated from the garbage collector. The first object is a pointer to the
6461 start of the referenced object, if needed by the language runtime (otherwise
6462 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006463
6464<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006465<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006466 instruction, but may be replaced with substantially more complex code by the
6467 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
6468 may only be used in a function which <a href="#gc">specifies a GC
6469 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006470
6471</div>
6472
Chris Lattner757528b0b2004-05-23 21:06:01 +00006473<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006474<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006475 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006476</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006477
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006478<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006479
6480<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006481<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006482 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00006483</pre>
6484
6485<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006486<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006487 locations, allowing garbage collector implementations that require write
6488 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006489
6490<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00006491<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006492 object to store it to, and the third is the address of the field of Obj to
6493 store to. If the runtime does not require a pointer to the object, Obj may
6494 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006495
6496<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006497<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006498 instruction, but may be replaced with substantially more complex code by the
6499 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
6500 may only be used in a function which <a href="#gc">specifies a GC
6501 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00006502
6503</div>
6504
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006505</div>
6506
Chris Lattner757528b0b2004-05-23 21:06:01 +00006507<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006508<h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006509 <a name="int_codegen">Code Generator Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006510</h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006511
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006512<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006513
6514<p>These intrinsics are provided by LLVM to expose special features that may
6515 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006516
Chris Lattner3649c3a2004-02-14 04:08:35 +00006517<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006518<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006519 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006520</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006521
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006522<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006523
6524<h5>Syntax:</h5>
6525<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006526 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006527</pre>
6528
6529<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006530<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
6531 target-specific value indicating the return address of the current function
6532 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006533
6534<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006535<p>The argument to this intrinsic indicates which function to return the address
6536 for. Zero indicates the calling function, one indicates its caller, etc.
6537 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006538
6539<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006540<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
6541 indicating the return address of the specified call frame, or zero if it
6542 cannot be identified. The value returned by this intrinsic is likely to be
6543 incorrect or 0 for arguments other than zero, so it should only be used for
6544 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006545
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006546<p>Note that calling this intrinsic does not prevent function inlining or other
6547 aggressive transformations, so the value returned may not be that of the
6548 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006549
Chris Lattner3649c3a2004-02-14 04:08:35 +00006550</div>
6551
Chris Lattner3649c3a2004-02-14 04:08:35 +00006552<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006553<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006554 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006555</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006556
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006557<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006558
6559<h5>Syntax:</h5>
6560<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006561 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006562</pre>
6563
6564<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006565<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
6566 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006567
6568<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006569<p>The argument to this intrinsic indicates which function to return the frame
6570 pointer for. Zero indicates the calling function, one indicates its caller,
6571 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006572
6573<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006574<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
6575 indicating the frame address of the specified call frame, or zero if it
6576 cannot be identified. The value returned by this intrinsic is likely to be
6577 incorrect or 0 for arguments other than zero, so it should only be used for
6578 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006579
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006580<p>Note that calling this intrinsic does not prevent function inlining or other
6581 aggressive transformations, so the value returned may not be that of the
6582 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006583
Chris Lattner3649c3a2004-02-14 04:08:35 +00006584</div>
6585
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006586<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006587<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006588 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006589</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006590
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006591<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006592
6593<h5>Syntax:</h5>
6594<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006595 declare i8* @llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00006596</pre>
6597
6598<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006599<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6600 of the function stack, for use
6601 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
6602 useful for implementing language features like scoped automatic variable
6603 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006604
6605<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006606<p>This intrinsic returns a opaque pointer value that can be passed
6607 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
6608 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6609 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6610 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6611 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6612 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006613
6614</div>
6615
6616<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006617<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006618 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006619</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006620
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006621<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006622
6623<h5>Syntax:</h5>
6624<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006625 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00006626</pre>
6627
6628<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006629<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
6630 the function stack to the state it was in when the
6631 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
6632 executed. This is useful for implementing language features like scoped
6633 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006634
6635<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006636<p>See the description
6637 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006638
6639</div>
6640
Chris Lattner2f0f0012006-01-13 02:03:13 +00006641<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006642<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006643 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006644</h4>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006645
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006646<div>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006647
6648<h5>Syntax:</h5>
6649<pre>
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006650 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006651</pre>
6652
6653<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006654<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6655 insert a prefetch instruction if supported; otherwise, it is a noop.
6656 Prefetches have no effect on the behavior of the program but can change its
6657 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006658
6659<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006660<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6661 specifier determining if the fetch should be for a read (0) or write (1),
6662 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Bruno Cardoso Lopesdc9ff3a2011-06-14 04:58:37 +00006663 locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
6664 specifies whether the prefetch is performed on the data (1) or instruction (0)
6665 cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
6666 must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006667
6668<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006669<p>This intrinsic does not modify the behavior of the program. In particular,
6670 prefetches cannot trap and do not produce a value. On targets that support
6671 this intrinsic, the prefetch can provide hints to the processor cache for
6672 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006673
6674</div>
6675
Andrew Lenharthb4427912005-03-28 20:05:49 +00006676<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006677<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006678 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006679</h4>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006680
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006681<div>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006682
6683<h5>Syntax:</h5>
6684<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006685 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00006686</pre>
6687
6688<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006689<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6690 Counter (PC) in a region of code to simulators and other tools. The method
6691 is target specific, but it is expected that the marker will use exported
6692 symbols to transmit the PC of the marker. The marker makes no guarantees
6693 that it will remain with any specific instruction after optimizations. It is
6694 possible that the presence of a marker will inhibit optimizations. The
6695 intended use is to be inserted after optimizations to allow correlations of
6696 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006697
6698<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006699<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006700
6701<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006702<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmana269a0a2010-03-01 17:41:39 +00006703 not support this intrinsic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006704
6705</div>
6706
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006707<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006708<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006709 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006710</h4>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006711
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006712<div>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006713
6714<h5>Syntax:</h5>
6715<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00006716 declare i64 @llvm.readcyclecounter()
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006717</pre>
6718
6719<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006720<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6721 counter register (or similar low latency, high accuracy clocks) on those
6722 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6723 should map to RPCC. As the backing counters overflow quickly (on the order
6724 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006725
6726<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006727<p>When directly supported, reading the cycle counter should not modify any
6728 memory. Implementations are allowed to either return a application specific
6729 value or a system wide value. On backends without support, this is lowered
6730 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006731
6732</div>
6733
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006734</div>
6735
Chris Lattner3649c3a2004-02-14 04:08:35 +00006736<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006737<h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006738 <a name="int_libc">Standard C Library Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006739</h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006740
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006741<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006742
6743<p>LLVM provides intrinsics for a few important standard C library functions.
6744 These intrinsics allow source-language front-ends to pass information about
6745 the alignment of the pointer arguments to the code generator, providing
6746 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006747
Chris Lattnerfee11462004-02-12 17:01:32 +00006748<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006749<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006750 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006751</h4>
Chris Lattnerfee11462004-02-12 17:01:32 +00006752
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006753<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006754
6755<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006756<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wang508127b2010-04-07 06:35:53 +00006757 integer bit width and for different address spaces. Not all targets support
6758 all bit widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006759
Chris Lattnerfee11462004-02-12 17:01:32 +00006760<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006761 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006762 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006763 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006764 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00006765</pre>
6766
6767<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006768<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6769 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006770
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006771<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006772 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6773 and the pointers can be in specified address spaces.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006774
6775<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006776
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006777<p>The first argument is a pointer to the destination, the second is a pointer
6778 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006779 number of bytes to copy, the fourth argument is the alignment of the
6780 source and destination locations, and the fifth is a boolean indicating a
6781 volatile access.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006782
Dan Gohmana269a0a2010-03-01 17:41:39 +00006783<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006784 then the caller guarantees that both the source and destination pointers are
6785 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006786
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006787<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6788 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6789 The detailed access behavior is not very cleanly specified and it is unwise
6790 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006791
Chris Lattnerfee11462004-02-12 17:01:32 +00006792<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006793
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006794<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6795 source location to the destination location, which are not allowed to
6796 overlap. It copies "len" bytes of memory over. If the argument is known to
6797 be aligned to some boundary, this can be specified as the fourth argument,
6798 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006799
Chris Lattnerfee11462004-02-12 17:01:32 +00006800</div>
6801
Chris Lattnerf30152e2004-02-12 18:10:10 +00006802<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006803<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006804 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006805</h4>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006806
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006807<div>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006808
6809<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006810<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wang508127b2010-04-07 06:35:53 +00006811 width and for different address space. Not all targets support all bit
6812 widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006813
Chris Lattnerf30152e2004-02-12 18:10:10 +00006814<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006815 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006816 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006817 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006818 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00006819</pre>
6820
6821<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006822<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6823 source location to the destination location. It is similar to the
6824 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6825 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006826
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006827<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006828 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6829 and the pointers can be in specified address spaces.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006830
6831<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006832
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006833<p>The first argument is a pointer to the destination, the second is a pointer
6834 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006835 number of bytes to copy, the fourth argument is the alignment of the
6836 source and destination locations, and the fifth is a boolean indicating a
6837 volatile access.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006838
Dan Gohmana269a0a2010-03-01 17:41:39 +00006839<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006840 then the caller guarantees that the source and destination pointers are
6841 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006842
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006843<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6844 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6845 The detailed access behavior is not very cleanly specified and it is unwise
6846 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006847
Chris Lattnerf30152e2004-02-12 18:10:10 +00006848<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006849
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006850<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6851 source location to the destination location, which may overlap. It copies
6852 "len" bytes of memory over. If the argument is known to be aligned to some
6853 boundary, this can be specified as the fourth argument, otherwise it should
6854 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006855
Chris Lattnerf30152e2004-02-12 18:10:10 +00006856</div>
6857
Chris Lattner3649c3a2004-02-14 04:08:35 +00006858<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006859<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006860 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006861</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006862
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006863<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006864
6865<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006866<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellad05ae42010-07-30 16:30:28 +00006867 width and for different address spaces. However, not all targets support all
6868 bit widths.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006869
Chris Lattner3649c3a2004-02-14 04:08:35 +00006870<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006871 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006872 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006873 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006874 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006875</pre>
6876
6877<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006878<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6879 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006880
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006881<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellad05ae42010-07-30 16:30:28 +00006882 intrinsic does not return a value and takes extra alignment/volatile
6883 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006884
6885<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006886<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellad05ae42010-07-30 16:30:28 +00006887 byte value with which to fill it, the third argument is an integer argument
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006888 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellad05ae42010-07-30 16:30:28 +00006889 alignment of the destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006890
Dan Gohmana269a0a2010-03-01 17:41:39 +00006891<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006892 then the caller guarantees that the destination pointer is aligned to that
6893 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006894
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006895<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6896 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6897 The detailed access behavior is not very cleanly specified and it is unwise
6898 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006899
Chris Lattner3649c3a2004-02-14 04:08:35 +00006900<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006901<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6902 at the destination location. If the argument is known to be aligned to some
6903 boundary, this can be specified as the fourth argument, otherwise it should
6904 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006905
Chris Lattner3649c3a2004-02-14 04:08:35 +00006906</div>
6907
Chris Lattner3b4f4372004-06-11 02:28:03 +00006908<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006909<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006910 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006911</h4>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006912
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006913<div>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006914
6915<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006916<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6917 floating point or vector of floating point type. Not all targets support all
6918 types however.</p>
6919
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006920<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006921 declare float @llvm.sqrt.f32(float %Val)
6922 declare double @llvm.sqrt.f64(double %Val)
6923 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6924 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6925 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006926</pre>
6927
6928<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006929<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6930 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6931 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6932 behavior for negative numbers other than -0.0 (which allows for better
6933 optimization, because there is no need to worry about errno being
6934 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006935
6936<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006937<p>The argument and return value are floating point numbers of the same
6938 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006939
6940<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006941<p>This function returns the sqrt of the specified operand if it is a
6942 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006943
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006944</div>
6945
Chris Lattner33b73f92006-09-08 06:34:02 +00006946<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006947<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006948 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006949</h4>
Chris Lattner33b73f92006-09-08 06:34:02 +00006950
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006951<div>
Chris Lattner33b73f92006-09-08 06:34:02 +00006952
6953<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006954<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6955 floating point or vector of floating point type. Not all targets support all
6956 types however.</p>
6957
Chris Lattner33b73f92006-09-08 06:34:02 +00006958<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006959 declare float @llvm.powi.f32(float %Val, i32 %power)
6960 declare double @llvm.powi.f64(double %Val, i32 %power)
6961 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6962 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6963 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00006964</pre>
6965
6966<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006967<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6968 specified (positive or negative) power. The order of evaluation of
6969 multiplications is not defined. When a vector of floating point type is
6970 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006971
6972<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006973<p>The second argument is an integer power, and the first is a value to raise to
6974 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006975
6976<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006977<p>This function returns the first value raised to the second power with an
6978 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006979
Chris Lattner33b73f92006-09-08 06:34:02 +00006980</div>
6981
Dan Gohmanb6324c12007-10-15 20:30:11 +00006982<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006983<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006984 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006985</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006986
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006987<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006988
6989<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006990<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6991 floating point or vector of floating point type. Not all targets support all
6992 types however.</p>
6993
Dan Gohmanb6324c12007-10-15 20:30:11 +00006994<pre>
6995 declare float @llvm.sin.f32(float %Val)
6996 declare double @llvm.sin.f64(double %Val)
6997 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6998 declare fp128 @llvm.sin.f128(fp128 %Val)
6999 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7000</pre>
7001
7002<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007003<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007004
7005<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007006<p>The argument and return value are floating point numbers of the same
7007 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007008
7009<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007010<p>This function returns the sine of the specified operand, returning the same
7011 values as the libm <tt>sin</tt> functions would, and handles error conditions
7012 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007013
Dan Gohmanb6324c12007-10-15 20:30:11 +00007014</div>
7015
7016<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007017<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007018 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007019</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007020
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007021<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007022
7023<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007024<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
7025 floating point or vector of floating point type. Not all targets support all
7026 types however.</p>
7027
Dan Gohmanb6324c12007-10-15 20:30:11 +00007028<pre>
7029 declare float @llvm.cos.f32(float %Val)
7030 declare double @llvm.cos.f64(double %Val)
7031 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7032 declare fp128 @llvm.cos.f128(fp128 %Val)
7033 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7034</pre>
7035
7036<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007037<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007038
7039<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007040<p>The argument and return value are floating point numbers of the same
7041 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007042
7043<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007044<p>This function returns the cosine of the specified operand, returning the same
7045 values as the libm <tt>cos</tt> functions would, and handles error conditions
7046 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007047
Dan Gohmanb6324c12007-10-15 20:30:11 +00007048</div>
7049
7050<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007051<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007052 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007053</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007054
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007055<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007056
7057<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007058<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
7059 floating point or vector of floating point type. Not all targets support all
7060 types however.</p>
7061
Dan Gohmanb6324c12007-10-15 20:30:11 +00007062<pre>
7063 declare float @llvm.pow.f32(float %Val, float %Power)
7064 declare double @llvm.pow.f64(double %Val, double %Power)
7065 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7066 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7067 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7068</pre>
7069
7070<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007071<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
7072 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007073
7074<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007075<p>The second argument is a floating point power, and the first is a value to
7076 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007077
7078<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007079<p>This function returns the first value raised to the second power, returning
7080 the same values as the libm <tt>pow</tt> functions would, and handles error
7081 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00007082
Dan Gohmanb6324c12007-10-15 20:30:11 +00007083</div>
7084
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007085</div>
7086
Dan Gohman911fa902011-05-23 21:13:03 +00007087<!-- _______________________________________________________________________ -->
7088<h4>
7089 <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
7090</h4>
7091
7092<div>
7093
7094<h5>Syntax:</h5>
7095<p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
7096 floating point or vector of floating point type. Not all targets support all
7097 types however.</p>
7098
7099<pre>
7100 declare float @llvm.exp.f32(float %Val)
7101 declare double @llvm.exp.f64(double %Val)
7102 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7103 declare fp128 @llvm.exp.f128(fp128 %Val)
7104 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7105</pre>
7106
7107<h5>Overview:</h5>
7108<p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
7109
7110<h5>Arguments:</h5>
7111<p>The argument and return value are floating point numbers of the same
7112 type.</p>
7113
7114<h5>Semantics:</h5>
7115<p>This function returns the same values as the libm <tt>exp</tt> functions
7116 would, and handles error conditions in the same way.</p>
7117
7118</div>
7119
7120<!-- _______________________________________________________________________ -->
7121<h4>
7122 <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
7123</h4>
7124
7125<div>
7126
7127<h5>Syntax:</h5>
7128<p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
7129 floating point or vector of floating point type. Not all targets support all
7130 types however.</p>
7131
7132<pre>
7133 declare float @llvm.log.f32(float %Val)
7134 declare double @llvm.log.f64(double %Val)
7135 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7136 declare fp128 @llvm.log.f128(fp128 %Val)
7137 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7138</pre>
7139
7140<h5>Overview:</h5>
7141<p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
7142
7143<h5>Arguments:</h5>
7144<p>The argument and return value are floating point numbers of the same
7145 type.</p>
7146
7147<h5>Semantics:</h5>
7148<p>This function returns the same values as the libm <tt>log</tt> functions
7149 would, and handles error conditions in the same way.</p>
7150
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007151<h4>
7152 <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
7153</h4>
7154
7155<div>
7156
7157<h5>Syntax:</h5>
7158<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
7159 floating point or vector of floating point type. Not all targets support all
7160 types however.</p>
7161
7162<pre>
7163 declare float @llvm.fma.f32(float %a, float %b, float %c)
7164 declare double @llvm.fma.f64(double %a, double %b, double %c)
7165 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7166 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7167 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7168</pre>
7169
7170<h5>Overview:</h5>
Cameron Zwaricha32fd212011-07-08 22:13:55 +00007171<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
Cameron Zwarichf03fa182011-07-08 21:39:21 +00007172 operation.</p>
7173
7174<h5>Arguments:</h5>
7175<p>The argument and return value are floating point numbers of the same
7176 type.</p>
7177
7178<h5>Semantics:</h5>
7179<p>This function returns the same values as the libm <tt>fma</tt> functions
7180 would.</p>
7181
Dan Gohman911fa902011-05-23 21:13:03 +00007182</div>
7183
Andrew Lenharth1d463522005-05-03 18:01:48 +00007184<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007185<h3>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007186 <a name="int_manip">Bit Manipulation Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007187</h3>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007188
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007189<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007190
7191<p>LLVM provides intrinsics for a few important bit manipulation operations.
7192 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007193
Andrew Lenharth1d463522005-05-03 18:01:48 +00007194<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007195<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00007196 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007197</h4>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007198
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007199<div>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007200
7201<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007202<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007203 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
7204
Nate Begeman0f223bb2006-01-13 23:26:38 +00007205<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007206 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
7207 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
7208 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00007209</pre>
7210
7211<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007212<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
7213 values with an even number of bytes (positive multiple of 16 bits). These
7214 are useful for performing operations on data that is not in the target's
7215 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007216
7217<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007218<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
7219 and low byte of the input i16 swapped. Similarly,
7220 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
7221 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
7222 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
7223 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
7224 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
7225 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00007226
7227</div>
7228
7229<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007230<h4>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00007231 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007232</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007233
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007234<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007235
7236<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00007237<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007238 width, or on any vector with integer elements. Not all targets support all
7239 bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007240
Andrew Lenharth1d463522005-05-03 18:01:48 +00007241<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007242 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007243 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007244 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007245 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
7246 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007247 declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007248</pre>
7249
7250<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007251<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
7252 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007253
7254<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007255<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007256 integer type, or a vector with integer elements.
7257 The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007258
7259<h5>Semantics:</h5>
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007260<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
7261 element of a vector.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007262
Andrew Lenharth1d463522005-05-03 18:01:48 +00007263</div>
7264
7265<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007266<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007267 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007268</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007269
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007270<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007271
7272<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007273<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007274 integer bit width, or any vector whose elements are integers. Not all
7275 targets support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007276
Andrew Lenharth1d463522005-05-03 18:01:48 +00007277<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007278 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
7279 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007280 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007281 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
7282 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007283 declare &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src;gt)
Andrew Lenharth1d463522005-05-03 18:01:48 +00007284</pre>
7285
7286<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007287<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
7288 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007289
7290<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007291<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007292 integer type, or any vector type with integer element type.
7293 The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007294
7295<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007296<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007297 zeros in a variable, or within each element of the vector if the operation
7298 is of vector type. If the src == 0 then the result is the size in bits of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007299 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00007300
Andrew Lenharth1d463522005-05-03 18:01:48 +00007301</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00007302
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007303<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007304<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00007305 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007306</h4>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007307
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007308<div>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007309
7310<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007311<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007312 integer bit width, or any vector of integer elements. Not all targets
7313 support all bit widths or vector types, however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007314
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007315<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00007316 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
7317 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00007318 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00007319 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
7320 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007321 declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007322</pre>
7323
7324<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007325<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
7326 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007327
7328<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007329<p>The only argument is the value to be counted. The argument may be of any
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007330 integer type, or a vectory with integer element type.. The return type
7331 must match the argument type.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007332
7333<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007334<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
Owen Anderson2f37bdc2011-07-01 21:52:38 +00007335 zeros in a variable, or within each element of a vector.
7336 If the src == 0 then the result is the size in bits of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007337 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007338
Chris Lattnerefa20fa2005-05-15 19:39:26 +00007339</div>
7340
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007341</div>
7342
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007343<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007344<h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007345 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007346</h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007347
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007348<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007349
7350<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00007351
Bill Wendlingf4d70622009-02-08 01:40:31 +00007352<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007353<h4>
7354 <a name="int_sadd_overflow">
7355 '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
7356 </a>
7357</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007358
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007359<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007360
7361<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007362<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007363 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007364
7365<pre>
7366 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7367 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7368 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7369</pre>
7370
7371<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007372<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007373 a signed addition of the two arguments, and indicate whether an overflow
7374 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007375
7376<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007377<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007378 be of integer types of any bit width, but they must have the same bit
7379 width. The second element of the result structure must be of
7380 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7381 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007382
7383<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007384<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007385 a signed addition of the two variables. They return a structure &mdash; the
7386 first element of which is the signed summation, and the second element of
7387 which is a bit specifying if the signed summation resulted in an
7388 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007389
7390<h5>Examples:</h5>
7391<pre>
7392 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7393 %sum = extractvalue {i32, i1} %res, 0
7394 %obit = extractvalue {i32, i1} %res, 1
7395 br i1 %obit, label %overflow, label %normal
7396</pre>
7397
7398</div>
7399
7400<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007401<h4>
7402 <a name="int_uadd_overflow">
7403 '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
7404 </a>
7405</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007406
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007407<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007408
7409<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007410<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007411 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007412
7413<pre>
7414 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7415 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7416 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7417</pre>
7418
7419<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007420<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007421 an unsigned addition of the two arguments, and indicate whether a carry
7422 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007423
7424<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007425<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007426 be of integer types of any bit width, but they must have the same bit
7427 width. The second element of the result structure must be of
7428 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7429 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007430
7431<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007432<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007433 an unsigned addition of the two arguments. They return a structure &mdash;
7434 the first element of which is the sum, and the second element of which is a
7435 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007436
7437<h5>Examples:</h5>
7438<pre>
7439 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7440 %sum = extractvalue {i32, i1} %res, 0
7441 %obit = extractvalue {i32, i1} %res, 1
7442 br i1 %obit, label %carry, label %normal
7443</pre>
7444
7445</div>
7446
7447<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007448<h4>
7449 <a name="int_ssub_overflow">
7450 '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
7451 </a>
7452</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007453
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007454<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007455
7456<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007457<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007458 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007459
7460<pre>
7461 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7462 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7463 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7464</pre>
7465
7466<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007467<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007468 a signed subtraction of the two arguments, and indicate whether an overflow
7469 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007470
7471<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007472<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007473 be of integer types of any bit width, but they must have the same bit
7474 width. The second element of the result structure must be of
7475 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7476 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007477
7478<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007479<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007480 a signed subtraction of the two arguments. They return a structure &mdash;
7481 the first element of which is the subtraction, and the second element of
7482 which is a bit specifying if the signed subtraction resulted in an
7483 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007484
7485<h5>Examples:</h5>
7486<pre>
7487 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7488 %sum = extractvalue {i32, i1} %res, 0
7489 %obit = extractvalue {i32, i1} %res, 1
7490 br i1 %obit, label %overflow, label %normal
7491</pre>
7492
7493</div>
7494
7495<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007496<h4>
7497 <a name="int_usub_overflow">
7498 '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
7499 </a>
7500</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007501
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007502<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007503
7504<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007505<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007506 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007507
7508<pre>
7509 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7510 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7511 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7512</pre>
7513
7514<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007515<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007516 an unsigned subtraction of the two arguments, and indicate whether an
7517 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007518
7519<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007520<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007521 be of integer types of any bit width, but they must have the same bit
7522 width. The second element of the result structure must be of
7523 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7524 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007525
7526<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007527<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007528 an unsigned subtraction of the two arguments. They return a structure &mdash;
7529 the first element of which is the subtraction, and the second element of
7530 which is a bit specifying if the unsigned subtraction resulted in an
7531 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007532
7533<h5>Examples:</h5>
7534<pre>
7535 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7536 %sum = extractvalue {i32, i1} %res, 0
7537 %obit = extractvalue {i32, i1} %res, 1
7538 br i1 %obit, label %overflow, label %normal
7539</pre>
7540
7541</div>
7542
7543<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007544<h4>
7545 <a name="int_smul_overflow">
7546 '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
7547 </a>
7548</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007549
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007550<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007551
7552<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007553<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007554 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007555
7556<pre>
7557 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7558 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7559 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7560</pre>
7561
7562<h5>Overview:</h5>
7563
7564<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007565 a signed multiplication of the two arguments, and indicate whether an
7566 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007567
7568<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007569<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007570 be of integer types of any bit width, but they must have the same bit
7571 width. The second element of the result structure must be of
7572 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7573 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007574
7575<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007576<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007577 a signed multiplication of the two arguments. They return a structure &mdash;
7578 the first element of which is the multiplication, and the second element of
7579 which is a bit specifying if the signed multiplication resulted in an
7580 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00007581
7582<h5>Examples:</h5>
7583<pre>
7584 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7585 %sum = extractvalue {i32, i1} %res, 0
7586 %obit = extractvalue {i32, i1} %res, 1
7587 br i1 %obit, label %overflow, label %normal
7588</pre>
7589
Reid Spencer5bf54c82007-04-11 23:23:49 +00007590</div>
7591
Bill Wendlingb9a73272009-02-08 23:00:09 +00007592<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007593<h4>
7594 <a name="int_umul_overflow">
7595 '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
7596 </a>
7597</h4>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007598
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007599<div>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007600
7601<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007602<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007603 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007604
7605<pre>
7606 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7607 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7608 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7609</pre>
7610
7611<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007612<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007613 a unsigned multiplication of the two arguments, and indicate whether an
7614 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007615
7616<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007617<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007618 be of integer types of any bit width, but they must have the same bit
7619 width. The second element of the result structure must be of
7620 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7621 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007622
7623<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007624<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007625 an unsigned multiplication of the two arguments. They return a structure
7626 &mdash; the first element of which is the multiplication, and the second
7627 element of which is a bit specifying if the unsigned multiplication resulted
7628 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00007629
7630<h5>Examples:</h5>
7631<pre>
7632 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7633 %sum = extractvalue {i32, i1} %res, 0
7634 %obit = extractvalue {i32, i1} %res, 1
7635 br i1 %obit, label %overflow, label %normal
7636</pre>
7637
7638</div>
7639
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007640</div>
7641
Chris Lattner941515c2004-01-06 05:31:32 +00007642<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007643<h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007644 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007645</h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007646
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007647<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007648
Chris Lattner022a9fb2010-03-15 04:12:21 +00007649<p>Half precision floating point is a storage-only format. This means that it is
7650 a dense encoding (in memory) but does not support computation in the
7651 format.</p>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007652
Chris Lattner022a9fb2010-03-15 04:12:21 +00007653<p>This means that code must first load the half-precision floating point
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007654 value as an i16, then convert it to float with <a
7655 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
7656 Computation can then be performed on the float value (including extending to
Chris Lattner022a9fb2010-03-15 04:12:21 +00007657 double etc). To store the value back to memory, it is first converted to
7658 float if needed, then converted to i16 with
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007659 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
7660 storing as an i16 value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007661
7662<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007663<h4>
7664 <a name="int_convert_to_fp16">
7665 '<tt>llvm.convert.to.fp16</tt>' Intrinsic
7666 </a>
7667</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007668
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007669<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007670
7671<h5>Syntax:</h5>
7672<pre>
7673 declare i16 @llvm.convert.to.fp16(f32 %a)
7674</pre>
7675
7676<h5>Overview:</h5>
7677<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7678 a conversion from single precision floating point format to half precision
7679 floating point format.</p>
7680
7681<h5>Arguments:</h5>
7682<p>The intrinsic function contains single argument - the value to be
7683 converted.</p>
7684
7685<h5>Semantics:</h5>
7686<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7687 a conversion from single precision floating point format to half precision
Chris Lattner022a9fb2010-03-15 04:12:21 +00007688 floating point format. The return value is an <tt>i16</tt> which
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007689 contains the converted number.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007690
7691<h5>Examples:</h5>
7692<pre>
7693 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7694 store i16 %res, i16* @x, align 2
7695</pre>
7696
7697</div>
7698
7699<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007700<h4>
7701 <a name="int_convert_from_fp16">
7702 '<tt>llvm.convert.from.fp16</tt>' Intrinsic
7703 </a>
7704</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007705
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007706<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007707
7708<h5>Syntax:</h5>
7709<pre>
7710 declare f32 @llvm.convert.from.fp16(i16 %a)
7711</pre>
7712
7713<h5>Overview:</h5>
7714<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
7715 a conversion from half precision floating point format to single precision
7716 floating point format.</p>
7717
7718<h5>Arguments:</h5>
7719<p>The intrinsic function contains single argument - the value to be
7720 converted.</p>
7721
7722<h5>Semantics:</h5>
7723<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner022a9fb2010-03-15 04:12:21 +00007724 conversion from half single precision floating point format to single
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007725 precision floating point format. The input half-float value is represented by
7726 an <tt>i16</tt> value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007727
7728<h5>Examples:</h5>
7729<pre>
7730 %a = load i16* @x, align 2
7731 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7732</pre>
7733
7734</div>
7735
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007736</div>
7737
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007738<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007739<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007740 <a name="int_debugger">Debugger Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007741</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007742
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007743<div>
Chris Lattner941515c2004-01-06 05:31:32 +00007744
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007745<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
7746 prefix), are described in
7747 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
7748 Level Debugging</a> document.</p>
7749
7750</div>
Chris Lattner941515c2004-01-06 05:31:32 +00007751
Jim Laskey2211f492007-03-14 19:31:19 +00007752<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007753<h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007754 <a name="int_eh">Exception Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007755</h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007756
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007757<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007758
7759<p>The LLVM exception handling intrinsics (which all start with
7760 <tt>llvm.eh.</tt> prefix), are described in
7761 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
7762 Handling</a> document.</p>
7763
Jim Laskey2211f492007-03-14 19:31:19 +00007764</div>
7765
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007766<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007767<h3>
Duncan Sandsa0984362011-09-06 13:37:06 +00007768 <a name="int_trampoline">Trampoline Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007769</h3>
Duncan Sands644f9172007-07-27 12:58:54 +00007770
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007771<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007772
Duncan Sandsa0984362011-09-06 13:37:06 +00007773<p>These intrinsics make it possible to excise one parameter, marked with
Dan Gohman3770af52010-07-02 23:18:08 +00007774 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
7775 The result is a callable
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007776 function pointer lacking the nest parameter - the caller does not need to
7777 provide a value for it. Instead, the value to use is stored in advance in a
7778 "trampoline", a block of memory usually allocated on the stack, which also
7779 contains code to splice the nest value into the argument list. This is used
7780 to implement the GCC nested function address extension.</p>
7781
7782<p>For example, if the function is
7783 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
7784 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
7785 follows:</p>
7786
Benjamin Kramer79698be2010-07-13 12:26:09 +00007787<pre class="doc_code">
Duncan Sands86e01192007-09-11 14:10:23 +00007788 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7789 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Duncan Sandsa0984362011-09-06 13:37:06 +00007790 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7791 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
Duncan Sands86e01192007-09-11 14:10:23 +00007792 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00007793</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007794
Dan Gohmand6a6f612010-05-28 17:07:41 +00007795<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
7796 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007797
Duncan Sands644f9172007-07-27 12:58:54 +00007798<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007799<h4>
7800 <a name="int_it">
7801 '<tt>llvm.init.trampoline</tt>' Intrinsic
7802 </a>
7803</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007804
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007805<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007806
Duncan Sands644f9172007-07-27 12:58:54 +00007807<h5>Syntax:</h5>
7808<pre>
Duncan Sandsa0984362011-09-06 13:37:06 +00007809 declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00007810</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007811
Duncan Sands644f9172007-07-27 12:58:54 +00007812<h5>Overview:</h5>
Duncan Sandsa0984362011-09-06 13:37:06 +00007813<p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
7814 turning it into a trampoline.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007815
Duncan Sands644f9172007-07-27 12:58:54 +00007816<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007817<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
7818 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
7819 sufficiently aligned block of memory; this memory is written to by the
7820 intrinsic. Note that the size and the alignment are target-specific - LLVM
7821 currently provides no portable way of determining them, so a front-end that
7822 generates this intrinsic needs to have some target-specific knowledge.
7823 The <tt>func</tt> argument must hold a function bitcast to
7824 an <tt>i8*</tt>.</p>
7825
Duncan Sands644f9172007-07-27 12:58:54 +00007826<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007827<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsa0984362011-09-06 13:37:06 +00007828 dependent code, turning it into a function. Then <tt>tramp</tt> needs to be
7829 passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
7830 which can be <a href="#int_trampoline">bitcast (to a new function) and
7831 called</a>. The new function's signature is the same as that of
7832 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
7833 removed. At most one such <tt>nest</tt> argument is allowed, and it must be of
7834 pointer type. Calling the new function is equivalent to calling <tt>func</tt>
7835 with the same argument list, but with <tt>nval</tt> used for the missing
7836 <tt>nest</tt> argument. If, after calling <tt>llvm.init.trampoline</tt>, the
7837 memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
7838 to the returned function pointer is undefined.</p>
7839</div>
7840
7841<!-- _______________________________________________________________________ -->
7842<h4>
7843 <a name="int_at">
7844 '<tt>llvm.adjust.trampoline</tt>' Intrinsic
7845 </a>
7846</h4>
7847
7848<div>
7849
7850<h5>Syntax:</h5>
7851<pre>
7852 declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
7853</pre>
7854
7855<h5>Overview:</h5>
7856<p>This performs any required machine-specific adjustment to the address of a
7857 trampoline (passed as <tt>tramp</tt>).</p>
7858
7859<h5>Arguments:</h5>
7860<p><tt>tramp</tt> must point to a block of memory which already has trampoline code
7861 filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
7862 </a>.</p>
7863
7864<h5>Semantics:</h5>
7865<p>On some architectures the address of the code to be executed needs to be
7866 different to the address where the trampoline is actually stored. This
7867 intrinsic returns the executable address corresponding to <tt>tramp</tt>
7868 after performing the required machine specific adjustments.
7869 The pointer returned can then be <a href="#int_trampoline"> bitcast and
7870 executed</a>.
7871</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007872
Duncan Sands644f9172007-07-27 12:58:54 +00007873</div>
7874
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007875</div>
7876
Duncan Sands644f9172007-07-27 12:58:54 +00007877<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007878<h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007879 <a name="int_memorymarkers">Memory Use Markers</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007880</h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007881
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007882<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007883
7884<p>This class of intrinsics exists to information about the lifetime of memory
7885 objects and ranges where variables are immutable.</p>
7886
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007887<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007888<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007889 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007890</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007891
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007892<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007893
7894<h5>Syntax:</h5>
7895<pre>
7896 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7897</pre>
7898
7899<h5>Overview:</h5>
7900<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7901 object's lifetime.</p>
7902
7903<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007904<p>The first argument is a constant integer representing the size of the
7905 object, or -1 if it is variable sized. The second argument is a pointer to
7906 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007907
7908<h5>Semantics:</h5>
7909<p>This intrinsic indicates that before this point in the code, the value of the
7910 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00007911 never be used and has an undefined value. A load from the pointer that
7912 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007913 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7914
7915</div>
7916
7917<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007918<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007919 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007920</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007921
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007922<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007923
7924<h5>Syntax:</h5>
7925<pre>
7926 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7927</pre>
7928
7929<h5>Overview:</h5>
7930<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7931 object's lifetime.</p>
7932
7933<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007934<p>The first argument is a constant integer representing the size of the
7935 object, or -1 if it is variable sized. The second argument is a pointer to
7936 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007937
7938<h5>Semantics:</h5>
7939<p>This intrinsic indicates that after this point in the code, the value of the
7940 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7941 never be used and has an undefined value. Any stores into the memory object
7942 following this intrinsic may be removed as dead.
7943
7944</div>
7945
7946<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007947<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007948 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007949</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007950
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007951<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007952
7953<h5>Syntax:</h5>
7954<pre>
Nick Lewycky2965d3e2010-11-30 04:13:41 +00007955 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007956</pre>
7957
7958<h5>Overview:</h5>
7959<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7960 a memory object will not change.</p>
7961
7962<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007963<p>The first argument is a constant integer representing the size of the
7964 object, or -1 if it is variable sized. The second argument is a pointer to
7965 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007966
7967<h5>Semantics:</h5>
7968<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7969 the return value, the referenced memory location is constant and
7970 unchanging.</p>
7971
7972</div>
7973
7974<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007975<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007976 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007977</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007978
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007979<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007980
7981<h5>Syntax:</h5>
7982<pre>
7983 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7984</pre>
7985
7986<h5>Overview:</h5>
7987<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7988 a memory object are mutable.</p>
7989
7990<h5>Arguments:</h5>
7991<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00007992 The second argument is a constant integer representing the size of the
7993 object, or -1 if it is variable sized and the third argument is a pointer
7994 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007995
7996<h5>Semantics:</h5>
7997<p>This intrinsic indicates that the memory is mutable again.</p>
7998
7999</div>
8000
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008001</div>
8002
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00008003<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008004<h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008005 <a name="int_general">General Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008006</h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008007
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008008<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008009
8010<p>This class of intrinsics is designed to be generic and has no specific
8011 purpose.</p>
8012
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008013<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008014<h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008015 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008016</h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008017
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008018<div>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008019
8020<h5>Syntax:</h5>
8021<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008022 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008023</pre>
8024
8025<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008026<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008027
8028<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008029<p>The first argument is a pointer to a value, the second is a pointer to a
8030 global string, the third is a pointer to a global string which is the source
8031 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008032
8033<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008034<p>This intrinsic allows annotation of local variables with arbitrary strings.
8035 This can be useful for special purpose optimizations that want to look for
John Criswellf0d536a2011-08-19 16:57:55 +00008036 these annotations. These have no other defined use; they are ignored by code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008037 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008038
Tanya Lattnercb1b9602007-06-15 20:50:54 +00008039</div>
8040
Tanya Lattner293c0372007-09-21 22:59:12 +00008041<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008042<h4>
Tanya Lattner0186a652007-09-21 23:57:59 +00008043 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008044</h4>
Tanya Lattner293c0372007-09-21 22:59:12 +00008045
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008046<div>
Tanya Lattner293c0372007-09-21 22:59:12 +00008047
8048<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008049<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
8050 any integer bit width.</p>
8051
Tanya Lattner293c0372007-09-21 22:59:12 +00008052<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008053 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8054 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8055 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8056 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8057 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner293c0372007-09-21 22:59:12 +00008058</pre>
8059
8060<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008061<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008062
8063<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008064<p>The first argument is an integer value (result of some expression), the
8065 second is a pointer to a global string, the third is a pointer to a global
8066 string which is the source file name, and the last argument is the line
8067 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008068
8069<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008070<p>This intrinsic allows annotations to be put on arbitrary expressions with
8071 arbitrary strings. This can be useful for special purpose optimizations that
John Criswellf0d536a2011-08-19 16:57:55 +00008072 want to look for these annotations. These have no other defined use; they
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008073 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00008074
Tanya Lattner293c0372007-09-21 22:59:12 +00008075</div>
Jim Laskey2211f492007-03-14 19:31:19 +00008076
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008077<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008078<h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008079 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008080</h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008081
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008082<div>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008083
8084<h5>Syntax:</h5>
8085<pre>
8086 declare void @llvm.trap()
8087</pre>
8088
8089<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008090<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008091
8092<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008093<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008094
8095<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008096<p>This intrinsics is lowered to the target dependent trap instruction. If the
8097 target does not have a trap instruction, this intrinsic will be lowered to
8098 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008099
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00008100</div>
8101
Bill Wendling14313312008-11-19 05:56:17 +00008102<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008103<h4>
Misha Brukman50de2b22008-11-22 23:55:29 +00008104 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008105</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008106
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008107<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008108
Bill Wendling14313312008-11-19 05:56:17 +00008109<h5>Syntax:</h5>
8110<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008111 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling14313312008-11-19 05:56:17 +00008112</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008113
Bill Wendling14313312008-11-19 05:56:17 +00008114<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008115<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
8116 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
8117 ensure that it is placed on the stack before local variables.</p>
8118
Bill Wendling14313312008-11-19 05:56:17 +00008119<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008120<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
8121 arguments. The first argument is the value loaded from the stack
8122 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
8123 that has enough space to hold the value of the guard.</p>
8124
Bill Wendling14313312008-11-19 05:56:17 +00008125<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008126<p>This intrinsic causes the prologue/epilogue inserter to force the position of
8127 the <tt>AllocaInst</tt> stack slot to be before local variables on the
8128 stack. This is to ensure that if a local variable on the stack is
8129 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling6bbe0912010-10-27 01:07:41 +00008130 the guard on the stack is checked against the original guard. If they are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00008131 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
8132 function.</p>
8133
Bill Wendling14313312008-11-19 05:56:17 +00008134</div>
8135
Eric Christopher73484322009-11-30 08:03:53 +00008136<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008137<h4>
Eric Christopher73484322009-11-30 08:03:53 +00008138 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00008139</h4>
Eric Christopher73484322009-11-30 08:03:53 +00008140
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008141<div>
Eric Christopher73484322009-11-30 08:03:53 +00008142
8143<h5>Syntax:</h5>
8144<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00008145 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
8146 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
Eric Christopher73484322009-11-30 08:03:53 +00008147</pre>
8148
8149<h5>Overview:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008150<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
8151 the optimizers to determine at compile time whether a) an operation (like
8152 memcpy) will overflow a buffer that corresponds to an object, or b) that a
8153 runtime check for overflow isn't necessary. An object in this context means
8154 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008155
8156<h5>Arguments:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00008157<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher31e39bd2009-12-23 00:29:49 +00008158 argument is a pointer to or into the <tt>object</tt>. The second argument
Bill Wendling6bbe0912010-10-27 01:07:41 +00008159 is a boolean 0 or 1. This argument determines whether you want the
8160 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
Eric Christopher31e39bd2009-12-23 00:29:49 +00008161 1, variables are not allowed.</p>
8162
Eric Christopher73484322009-11-30 08:03:53 +00008163<h5>Semantics:</h5>
8164<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Bill Wendling6bbe0912010-10-27 01:07:41 +00008165 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
8166 depending on the <tt>type</tt> argument, if the size cannot be determined at
8167 compile time.</p>
Eric Christopher73484322009-11-30 08:03:53 +00008168
8169</div>
8170
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00008171</div>
8172
8173</div>
8174
Chris Lattner2f7c9632001-06-06 20:29:01 +00008175<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00008176<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00008177<address>
8178 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008179 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008180 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00008181 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00008182
8183 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumica46f5a2011-04-09 02:13:37 +00008184 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00008185 Last modified: $Date$
8186</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00008187
Misha Brukman76307852003-11-08 01:05:38 +00008188</body>
8189</html>