blob: e16f2178122192bda177cc15c05b499269b62cc3 [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner847df252004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner847df252004-01-30 22:25:18 +000020//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnera960d952003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
Chris Lattner95b2c7d2006-12-19 22:59:26 +000026#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000027#include "X86.h"
28#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000030#include "llvm/ADT/DenseMap.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000032#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000035#include "llvm/CodeGen/EdgeBundles.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000036#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/Passes.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000040#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000045#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000046using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000047
Chris Lattner95b2c7d2006-12-19 22:59:26 +000048STATISTIC(NumFXCH, "Number of fxch instructions inserted");
49STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000050
Chris Lattner95b2c7d2006-12-19 22:59:26 +000051namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000052 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000053 static char ID;
Owen Anderson90c579d2010-08-06 18:33:48 +000054 FPS() : MachineFunctionPass(ID) {
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000055 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
Jakob Stoklund Olesenb47bb132010-07-16 22:00:33 +000056 // This is really only to keep valgrind quiet.
57 // The logic in isLive() is too much for it.
58 memset(Stack, 0, sizeof(Stack));
59 memset(RegMap, 0, sizeof(RegMap));
60 }
Devang Patel794fd752007-05-01 21:15:47 +000061
Evan Chengbbeeb2a2008-09-22 20:58:04 +000062 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000063 AU.setPreservesCFG();
Jakob Stoklund Olesen8dd070e2011-01-04 21:10:05 +000064 AU.addRequired<EdgeBundles>();
Evan Cheng8b56a902008-09-22 22:21:38 +000065 AU.addPreservedID(MachineLoopInfoID);
66 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000067 MachineFunctionPass::getAnalysisUsage(AU);
68 }
69
Chris Lattnera960d952003-01-13 01:01:59 +000070 virtual bool runOnMachineFunction(MachineFunction &MF);
71
72 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
73
Chris Lattnera960d952003-01-13 01:01:59 +000074 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000075 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000076
77 // Two CFG edges are related if they leave the same block, or enter the same
78 // block. The transitive closure of an edge under this relation is a
79 // LiveBundle. It represents a set of CFG edges where the live FP stack
80 // registers must be allocated identically in the x87 stack.
81 //
82 // A LiveBundle is usually all the edges leaving a block, or all the edges
83 // entering a block, but it can contain more edges if critical edges are
84 // present.
85 //
86 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
87 // but the exact mapping of FP registers to stack slots is fixed later.
88 struct LiveBundle {
89 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
90 unsigned Mask;
91
92 // Number of pre-assigned live registers in FixStack. This is 0 when the
93 // stack order has not yet been fixed.
94 unsigned FixCount;
95
96 // Assigned stack order for live-in registers.
97 // FixStack[i] == getStackEntry(i) for all i < FixCount.
98 unsigned char FixStack[8];
99
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000100 LiveBundle() : Mask(0), FixCount(0) {}
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000101
102 // Have the live registers been assigned a stack order yet?
103 bool isFixed() const { return !Mask || FixCount; }
104 };
105
106 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
107 // with no live FP registers.
108 SmallVector<LiveBundle, 8> LiveBundles;
109
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000110 // The edge bundle analysis provides indices into the LiveBundles vector.
111 EdgeBundles *Bundles;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000112
113 // Return a bitmask of FP registers in block's live-in list.
114 unsigned calcLiveInMask(MachineBasicBlock *MBB) {
115 unsigned Mask = 0;
116 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
117 E = MBB->livein_end(); I != E; ++I) {
118 unsigned Reg = *I - X86::FP0;
119 if (Reg < 8)
120 Mask |= 1 << Reg;
121 }
122 return Mask;
123 }
124
125 // Partition all the CFG edges into LiveBundles.
126 void bundleCFG(MachineFunction &MF);
127
Evan Cheng32644ac2006-12-01 10:11:51 +0000128 MachineBasicBlock *MBB; // Current basic block
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000129
130 // The hardware keeps track of how many FP registers are live, so we have
131 // to model that exactly. Usually, each live register corresponds to an
132 // FP<n> register, but when dealing with calls, returns, and inline
133 // assembly, it is sometimes neccesary to have live scratch registers.
Evan Cheng32644ac2006-12-01 10:11:51 +0000134 unsigned Stack[8]; // FP<n> Registers in each stack slot...
Evan Cheng32644ac2006-12-01 10:11:51 +0000135 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000136
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000137 // For each live FP<n> register, point to its Stack[] entry.
138 // The first entries correspond to FP0-FP6, the rest are scratch registers
139 // used when we need slightly different live registers than what the
140 // register allocator thinks.
141 unsigned RegMap[16];
142
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000143 // Set up our stack model to match the incoming registers to MBB.
144 void setupBlockStack();
145
146 // Shuffle live registers to match the expectations of successor blocks.
147 void finishBlockStack();
148
Chris Lattnera960d952003-01-13 01:01:59 +0000149 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +0000150 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +0000151 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +0000152 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000153 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +0000154 }
David Greenef5c95a62010-01-05 01:29:34 +0000155 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +0000156 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000157
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000158 /// getSlot - Return the stack slot number a particular register number is
159 /// in.
Chris Lattnera960d952003-01-13 01:01:59 +0000160 unsigned getSlot(unsigned RegNo) const {
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000161 assert(RegNo < array_lengthof(RegMap) && "Regno out of range!");
Chris Lattnera960d952003-01-13 01:01:59 +0000162 return RegMap[RegNo];
163 }
164
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000165 /// isLive - Is RegNo currently live in the stack?
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000166 bool isLive(unsigned RegNo) const {
167 unsigned Slot = getSlot(RegNo);
168 return Slot < StackTop && Stack[Slot] == RegNo;
169 }
170
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000171 /// getScratchReg - Return an FP register that is not currently in use.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000172 unsigned getScratchReg() {
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000173 for (int i = array_lengthof(RegMap) - 1; i >= 8; --i)
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000174 if (!isLive(i))
175 return i;
176 llvm_unreachable("Ran out of scratch FP registers");
177 }
178
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000179 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +0000180 unsigned getStackEntry(unsigned STi) const {
Evan Cheng3f490f32010-10-12 23:19:28 +0000181 if (STi >= StackTop)
182 report_fatal_error("Access past stack top!");
Chris Lattnera960d952003-01-13 01:01:59 +0000183 return Stack[StackTop-1-STi];
184 }
185
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000186 /// getSTReg - Return the X86::ST(i) register which contains the specified
187 /// FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000188 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000189 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000190 }
191
Chris Lattner447ff682008-03-11 03:23:40 +0000192 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000193 void pushReg(unsigned Reg) {
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000194 assert(Reg < array_lengthof(RegMap) && "Register number out of range!");
Evan Cheng3f490f32010-10-12 23:19:28 +0000195 if (StackTop >= 8)
196 report_fatal_error("Stack overflow!");
Chris Lattnera960d952003-01-13 01:01:59 +0000197 Stack[StackTop] = Reg;
198 RegMap[Reg] = StackTop++;
199 }
200
201 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000202 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000203 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000204 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000205
Chris Lattner447ff682008-03-11 03:23:40 +0000206 unsigned STReg = getSTReg(RegNo);
207 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000208
Chris Lattner447ff682008-03-11 03:23:40 +0000209 // Swap the slots the regs are in.
210 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000211
Chris Lattner447ff682008-03-11 03:23:40 +0000212 // Swap stack slot contents.
Evan Cheng3f490f32010-10-12 23:19:28 +0000213 if (RegMap[RegOnTop] >= StackTop)
214 report_fatal_error("Access past stack top!");
Chris Lattner447ff682008-03-11 03:23:40 +0000215 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000216
Chris Lattner447ff682008-03-11 03:23:40 +0000217 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000218 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmanfe601042010-06-22 15:08:57 +0000219 ++NumFXCH;
Chris Lattnera960d952003-01-13 01:01:59 +0000220 }
221
Chris Lattner0526f012004-04-01 04:06:09 +0000222 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000223 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000224 unsigned STReg = getSTReg(RegNo);
225 pushReg(AsReg); // New register on top of stack
226
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000227 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000228 }
229
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000230 /// popStackAfter - Pop the current value off of the top of the FP stack
231 /// after the specified instruction.
Chris Lattnera960d952003-01-13 01:01:59 +0000232 void popStackAfter(MachineBasicBlock::iterator &I);
233
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000234 /// freeStackSlotAfter - Free the specified register from the register
235 /// stack, so that it is no longer in a register. If the register is
236 /// currently at the top of the stack, we just pop the current instruction,
237 /// otherwise we store the current top-of-stack into the specified slot,
238 /// then pop the top of stack.
Chris Lattner0526f012004-04-01 04:06:09 +0000239 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
240
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000241 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
242 /// instruction.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000243 MachineBasicBlock::iterator
244 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
245
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000246 /// Adjust the live registers to be the set in Mask.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000247 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
248
Jakob Stoklund Olesen1baeb002011-06-27 04:08:36 +0000249 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000250 /// st(0), FP reg FixStack[1] is st(1) etc.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000251 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
252 MachineBasicBlock::iterator I);
253
Chris Lattnera960d952003-01-13 01:01:59 +0000254 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
255
256 void handleZeroArgFP(MachineBasicBlock::iterator &I);
257 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000258 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000259 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000260 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000261 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000262 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000263
264 bool translateCopy(MachineInstr*);
Chris Lattnera960d952003-01-13 01:01:59 +0000265 };
Devang Patel19974732007-05-03 01:11:54 +0000266 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000267}
268
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000269FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000270
Chris Lattner3cc83842008-01-14 06:41:29 +0000271/// getFPReg - Return the X86::FPx register number for the specified operand.
272/// For example, this returns 3 for X86::FP3.
273static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000274 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000275 unsigned Reg = MO.getReg();
276 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
277 return Reg - X86::FP0;
278}
279
Chris Lattnera960d952003-01-13 01:01:59 +0000280/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
281/// register references into FP stack references.
282///
283bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000284 // We only need to run this pass if there are any FP registers used in this
285 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000286 bool FPIsUsed = false;
287
288 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
289 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000290 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000291 FPIsUsed = true;
292 break;
293 }
294
295 // Early exit.
296 if (!FPIsUsed) return false;
297
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000298 Bundles = &getAnalysis<EdgeBundles>();
Evan Cheng32644ac2006-12-01 10:11:51 +0000299 TII = MF.getTarget().getInstrInfo();
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000300
301 // Prepare cross-MBB liveness.
302 bundleCFG(MF);
303
Chris Lattnera960d952003-01-13 01:01:59 +0000304 StackTop = 0;
305
Chris Lattner847df252004-01-30 22:25:18 +0000306 // Process the function in depth first order so that we process at least one
307 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000308 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000309 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000310
311 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000312 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000313 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
314 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000315 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000316
Chris Lattnerba3598c2009-09-08 04:55:44 +0000317 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000318 if (MF.size() != Processed.size())
319 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
320 if (Processed.insert(BB))
321 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerba3598c2009-09-08 04:55:44 +0000322
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000323 LiveBundles.clear();
324
Chris Lattnera960d952003-01-13 01:01:59 +0000325 return Changed;
326}
327
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000328/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
329/// live-out sets for the FP registers. Consistent means that the set of
330/// registers live-out from a block is identical to the live-in set of all
331/// successors. This is not enforced by the normal live-in lists since
332/// registers may be implicitly defined, or not used by all successors.
333void FPS::bundleCFG(MachineFunction &MF) {
334 assert(LiveBundles.empty() && "Stale data in LiveBundles");
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000335 LiveBundles.resize(Bundles->getNumBundles());
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000336
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000337 // Gather the actual live-in masks for all MBBs.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000338 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
339 MachineBasicBlock *MBB = I;
340 const unsigned Mask = calcLiveInMask(MBB);
341 if (!Mask)
342 continue;
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000343 // Update MBB ingoing bundle mask.
344 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000345 }
346}
347
Chris Lattnera960d952003-01-13 01:01:59 +0000348/// processBasicBlock - Loop over all of the instructions in the basic block,
349/// transforming FP instructions into their stack form.
350///
351bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000352 bool Changed = false;
353 MBB = &BB;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000354
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000355 setupBlockStack();
356
Chris Lattnera960d952003-01-13 01:01:59 +0000357 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000358 MachineInstr *MI = I;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000359 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000360
Chris Lattnere12ecf22008-03-11 19:50:13 +0000361 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattner518bb532010-02-09 19:54:29 +0000362 if (MI->isInlineAsm())
Chris Lattnere12ecf22008-03-11 19:50:13 +0000363 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000364
365 if (MI->isCopy() && translateCopy(MI))
366 FPInstClass = X86II::SpecialFP;
367
Chris Lattnere12ecf22008-03-11 19:50:13 +0000368 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000369 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000370
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000371 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000372 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000373 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000374
375 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000376 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000377
378 // Get dead variables list now because the MI pointer may be deleted as part
379 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000380 SmallVector<unsigned, 8> DeadRegs;
381 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
382 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000383 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000384 DeadRegs.push_back(MO.getReg());
385 }
Chris Lattnera960d952003-01-13 01:01:59 +0000386
Chris Lattnere12ecf22008-03-11 19:50:13 +0000387 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000388 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000389 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000390 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000391 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000392 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000393 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000394 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000395 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000396 }
397
398 // Check to see if any of the values defined by this instruction are dead
399 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000400 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
401 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000402 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000403 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000404 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000405 }
406 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000407
Chris Lattnera960d952003-01-13 01:01:59 +0000408 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000409 DEBUG(
410 MachineBasicBlock::iterator PrevI(PrevMI);
411 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000412 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000413 } else {
414 MachineBasicBlock::iterator Start = I;
415 // Rewind to first instruction newly inserted.
416 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000417 dbgs() << "Inserted instructions:\n\t";
418 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000419 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000420 }
421 dumpStack();
422 );
Chris Lattnera960d952003-01-13 01:01:59 +0000423
424 Changed = true;
425 }
426
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000427 finishBlockStack();
428
Chris Lattnera960d952003-01-13 01:01:59 +0000429 return Changed;
430}
431
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000432/// setupBlockStack - Use the live bundles to set up our model of the stack
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000433/// to match predecessors' live out stack.
434void FPS::setupBlockStack() {
435 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
436 << " derived from " << MBB->getName() << ".\n");
437 StackTop = 0;
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000438 // Get the live-in bundle for MBB.
439 const LiveBundle &Bundle =
440 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000441
442 if (!Bundle.Mask) {
443 DEBUG(dbgs() << "Block has no FP live-ins.\n");
444 return;
445 }
446
447 // Depth-first iteration should ensure that we always have an assigned stack.
448 assert(Bundle.isFixed() && "Reached block before any predecessors");
449
450 // Push the fixed live-in registers.
451 for (unsigned i = Bundle.FixCount; i > 0; --i) {
452 MBB->addLiveIn(X86::ST0+i-1);
453 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
454 << unsigned(Bundle.FixStack[i-1]) << '\n');
455 pushReg(Bundle.FixStack[i-1]);
456 }
457
458 // Kill off unwanted live-ins. This can happen with a critical edge.
459 // FIXME: We could keep these live registers around as zombies. They may need
460 // to be revived at the end of a short block. It might save a few instrs.
461 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
462 DEBUG(MBB->dump());
463}
464
465/// finishBlockStack - Revive live-outs that are implicitly defined out of
466/// MBB. Shuffle live registers to match the expected fixed stack of any
467/// predecessors, and ensure that all predecessors are expecting the same
468/// stack.
469void FPS::finishBlockStack() {
470 // The RET handling below takes care of return blocks for us.
471 if (MBB->succ_empty())
472 return;
473
474 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
475 << " derived from " << MBB->getName() << ".\n");
476
Jakob Stoklund Olesen631ee4b2011-01-04 21:10:11 +0000477 // Get MBB's live-out bundle.
478 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000479 LiveBundle &Bundle = LiveBundles[BundleIdx];
480
481 // We may need to kill and define some registers to match successors.
482 // FIXME: This can probably be combined with the shuffle below.
483 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
484 adjustLiveRegs(Bundle.Mask, Term);
485
486 if (!Bundle.Mask) {
487 DEBUG(dbgs() << "No live-outs.\n");
488 return;
489 }
490
491 // Has the stack order been fixed yet?
492 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
493 if (Bundle.isFixed()) {
494 DEBUG(dbgs() << "Shuffling stack to match.\n");
495 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
496 } else {
497 // Not fixed yet, we get to choose.
498 DEBUG(dbgs() << "Fixing stack order now.\n");
499 Bundle.FixCount = StackTop;
500 for (unsigned i = 0; i < StackTop; ++i)
501 Bundle.FixStack[i] = getStackEntry(i);
502 }
503}
504
505
Chris Lattnera960d952003-01-13 01:01:59 +0000506//===----------------------------------------------------------------------===//
507// Efficient Lookup Table Support
508//===----------------------------------------------------------------------===//
509
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000510namespace {
511 struct TableEntry {
512 unsigned from;
513 unsigned to;
514 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000515 friend bool operator<(const TableEntry &TE, unsigned V) {
516 return TE.from < V;
517 }
Chandler Carruth100c2672010-10-23 08:10:43 +0000518 friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
519 const TableEntry &TE) {
Jakob Stoklund Olesende78f052010-08-16 18:24:54 +0000520 return V < TE.from;
521 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000522 };
523}
Chris Lattnera960d952003-01-13 01:01:59 +0000524
Evan Chenga022bdf2008-07-21 20:02:45 +0000525#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000526static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
527 for (unsigned i = 0; i != NumEntries-1; ++i)
528 if (!(Table[i] < Table[i+1])) return false;
529 return true;
530}
Evan Chenga022bdf2008-07-21 20:02:45 +0000531#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000532
533static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
534 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
535 if (I != Table+N && I->from == Opcode)
536 return I->to;
537 return -1;
538}
539
Chris Lattnera960d952003-01-13 01:01:59 +0000540#ifdef NDEBUG
541#define ASSERT_SORTED(TABLE)
542#else
543#define ASSERT_SORTED(TABLE) \
544 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000545 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000546 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000547 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000548 TABLE##Checked = true; \
549 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000550 }
551#endif
552
Chris Lattner58fe4592005-12-21 07:47:04 +0000553//===----------------------------------------------------------------------===//
554// Register File -> Register Stack Mapping Methods
555//===----------------------------------------------------------------------===//
556
557// OpcodeTable - Sorted map of register instructions to their stack version.
558// The first element is an register file pseudo instruction, the second is the
559// concrete X86 instruction which uses the register stack.
560//
561static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000562 { X86::ABS_Fp32 , X86::ABS_F },
563 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000564 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000565 { X86::ADD_Fp32m , X86::ADD_F32m },
566 { X86::ADD_Fp64m , X86::ADD_F64m },
567 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000568 { X86::ADD_Fp80m32 , X86::ADD_F32m },
569 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000570 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
571 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000572 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000573 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
574 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000575 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000576 { X86::CHS_Fp32 , X86::CHS_F },
577 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000578 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000579 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
580 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000581 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000582 { X86::CMOVB_Fp32 , X86::CMOVB_F },
583 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000584 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000585 { X86::CMOVE_Fp32 , X86::CMOVE_F },
586 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000587 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000588 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
589 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000590 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000591 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
592 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000593 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000594 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
595 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000596 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000597 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
598 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000599 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000600 { X86::CMOVP_Fp32 , X86::CMOVP_F },
601 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000602 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000603 { X86::COS_Fp32 , X86::COS_F },
604 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000605 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000606 { X86::DIVR_Fp32m , X86::DIVR_F32m },
607 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000608 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000609 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
610 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000611 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
612 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000613 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000614 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
615 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000616 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000617 { X86::DIV_Fp32m , X86::DIV_F32m },
618 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000619 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000620 { X86::DIV_Fp80m32 , X86::DIV_F32m },
621 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000622 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
623 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000624 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000625 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
626 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000627 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000628 { X86::ILD_Fp16m32 , X86::ILD_F16m },
629 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000630 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000631 { X86::ILD_Fp32m32 , X86::ILD_F32m },
632 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000633 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000634 { X86::ILD_Fp64m32 , X86::ILD_F64m },
635 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000636 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000637 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
638 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000639 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000640 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
641 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000642 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000643 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
644 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000645 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000646 { X86::IST_Fp16m32 , X86::IST_F16m },
647 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000648 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000649 { X86::IST_Fp32m32 , X86::IST_F32m },
650 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000651 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000652 { X86::IST_Fp64m32 , X86::IST_FP64m },
653 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000654 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000655 { X86::LD_Fp032 , X86::LD_F0 },
656 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000657 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000658 { X86::LD_Fp132 , X86::LD_F1 },
659 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000660 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000661 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000662 { X86::LD_Fp32m64 , X86::LD_F32m },
663 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000664 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000665 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000666 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000667 { X86::MUL_Fp32m , X86::MUL_F32m },
668 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000669 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000670 { X86::MUL_Fp80m32 , X86::MUL_F32m },
671 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000672 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
673 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000674 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000675 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
676 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000677 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000678 { X86::SIN_Fp32 , X86::SIN_F },
679 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000680 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000681 { X86::SQRT_Fp32 , X86::SQRT_F },
682 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000683 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000684 { X86::ST_Fp32m , X86::ST_F32m },
685 { X86::ST_Fp64m , X86::ST_F64m },
686 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000687 { X86::ST_Fp80m32 , X86::ST_F32m },
688 { X86::ST_Fp80m64 , X86::ST_F64m },
689 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000690 { X86::SUBR_Fp32m , X86::SUBR_F32m },
691 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000692 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000693 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
694 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000695 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
696 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000697 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000698 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
699 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000700 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000701 { X86::SUB_Fp32m , X86::SUB_F32m },
702 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000703 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000704 { X86::SUB_Fp80m32 , X86::SUB_F32m },
705 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000706 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
707 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000708 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000709 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
710 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000711 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000712 { X86::TST_Fp32 , X86::TST_F },
713 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000714 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000715 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
716 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000717 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000718 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
719 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000720 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000721};
722
723static unsigned getConcreteOpcode(unsigned Opcode) {
724 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000725 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000726 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
727 return Opc;
728}
Chris Lattnera960d952003-01-13 01:01:59 +0000729
730//===----------------------------------------------------------------------===//
731// Helper Methods
732//===----------------------------------------------------------------------===//
733
734// PopTable - Sorted map of instructions to their popping version. The first
735// element is an instruction, the second is the version which pops.
736//
737static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000738 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000739
Dale Johannesene377d4d2007-07-04 21:07:47 +0000740 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
741 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000742
Dale Johannesene377d4d2007-07-04 21:07:47 +0000743 { X86::IST_F16m , X86::IST_FP16m },
744 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000745
Dale Johannesene377d4d2007-07-04 21:07:47 +0000746 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000747
Dale Johannesene377d4d2007-07-04 21:07:47 +0000748 { X86::ST_F32m , X86::ST_FP32m },
749 { X86::ST_F64m , X86::ST_FP64m },
750 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000751
Dale Johannesene377d4d2007-07-04 21:07:47 +0000752 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
753 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000754
Dale Johannesene377d4d2007-07-04 21:07:47 +0000755 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000756
Dale Johannesene377d4d2007-07-04 21:07:47 +0000757 { X86::UCOM_FPr , X86::UCOM_FPPr },
758 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000759};
760
761/// popStackAfter - Pop the current value off of the top of the FP stack after
762/// the specified instruction. This attempts to be sneaky and combine the pop
763/// into the instruction itself if possible. The iterator is left pointing to
764/// the last instruction, be it a new pop instruction inserted, or the old
765/// instruction if it was modified in place.
766///
767void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000768 MachineInstr* MI = I;
769 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000770 ASSERT_SORTED(PopTable);
Evan Cheng3f490f32010-10-12 23:19:28 +0000771 if (StackTop == 0)
772 report_fatal_error("Cannot pop empty stack!");
Chris Lattnera960d952003-01-13 01:01:59 +0000773 RegMap[Stack[--StackTop]] = ~0; // Update state
774
775 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000776 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000777 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000778 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000779 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000780 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000781 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000782 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000783 }
784}
785
Chris Lattner0526f012004-04-01 04:06:09 +0000786/// freeStackSlotAfter - Free the specified register from the register stack, so
787/// that it is no longer in a register. If the register is currently at the top
788/// of the stack, we just pop the current instruction, otherwise we store the
789/// current top-of-stack into the specified slot, then pop the top of stack.
790void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
791 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
792 popStackAfter(I);
793 return;
794 }
795
796 // Otherwise, store the top of stack into the dead slot, killing the operand
797 // without having to add in an explicit xchg then pop.
798 //
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000799 I = freeStackSlotBefore(++I, FPRegNo);
800}
801
802/// freeStackSlotBefore - Free the specified register without trying any
803/// folding.
804MachineBasicBlock::iterator
805FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattner0526f012004-04-01 04:06:09 +0000806 unsigned STReg = getSTReg(FPRegNo);
807 unsigned OldSlot = getSlot(FPRegNo);
808 unsigned TopReg = Stack[StackTop-1];
809 Stack[OldSlot] = TopReg;
810 RegMap[TopReg] = OldSlot;
811 RegMap[FPRegNo] = ~0;
812 Stack[--StackTop] = ~0;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000813 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
814}
815
816/// adjustLiveRegs - Kill and revive registers such that exactly the FP
817/// registers with a bit in Mask are live.
818void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
819 unsigned Defs = Mask;
820 unsigned Kills = 0;
821 for (unsigned i = 0; i < StackTop; ++i) {
822 unsigned RegNo = Stack[i];
823 if (!(Defs & (1 << RegNo)))
824 // This register is live, but we don't want it.
825 Kills |= (1 << RegNo);
826 else
827 // We don't need to imp-def this live register.
828 Defs &= ~(1 << RegNo);
829 }
830 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
831
832 // Produce implicit-defs for free by using killed registers.
833 while (Kills && Defs) {
834 unsigned KReg = CountTrailingZeros_32(Kills);
835 unsigned DReg = CountTrailingZeros_32(Defs);
836 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
837 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
838 std::swap(RegMap[KReg], RegMap[DReg]);
839 Kills &= ~(1 << KReg);
840 Defs &= ~(1 << DReg);
841 }
842
843 // Kill registers by popping.
844 if (Kills && I != MBB->begin()) {
845 MachineBasicBlock::iterator I2 = llvm::prior(I);
846 for (;;) {
847 unsigned KReg = getStackEntry(0);
848 if (!(Kills & (1 << KReg)))
849 break;
850 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
851 popStackAfter(I2);
852 Kills &= ~(1 << KReg);
853 }
854 }
855
856 // Manually kill the rest.
857 while (Kills) {
858 unsigned KReg = CountTrailingZeros_32(Kills);
859 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
860 freeStackSlotBefore(I, KReg);
861 Kills &= ~(1 << KReg);
862 }
863
864 // Load zeros for all the imp-defs.
865 while(Defs) {
866 unsigned DReg = CountTrailingZeros_32(Defs);
867 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
868 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
869 pushReg(DReg);
870 Defs &= ~(1 << DReg);
871 }
872
873 // Now we should have the correct registers live.
874 DEBUG(dumpStack());
875 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
876}
877
878/// shuffleStackTop - emit fxch instructions before I to shuffle the top
879/// FixCount entries into the order given by FixStack.
880/// FIXME: Is there a better algorithm than insertion sort?
881void FPS::shuffleStackTop(const unsigned char *FixStack,
882 unsigned FixCount,
883 MachineBasicBlock::iterator I) {
884 // Move items into place, starting from the desired stack bottom.
885 while (FixCount--) {
886 // Old register at position FixCount.
887 unsigned OldReg = getStackEntry(FixCount);
888 // Desired register at position FixCount.
889 unsigned Reg = FixStack[FixCount];
890 if (Reg == OldReg)
891 continue;
892 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
893 moveToTop(Reg, I);
894 moveToTop(OldReg, I);
895 }
896 DEBUG(dumpStack());
Chris Lattner0526f012004-04-01 04:06:09 +0000897}
898
899
Chris Lattnera960d952003-01-13 01:01:59 +0000900//===----------------------------------------------------------------------===//
901// Instruction transformation implementation
902//===----------------------------------------------------------------------===//
903
904/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000905///
Chris Lattnera960d952003-01-13 01:01:59 +0000906void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000907 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000908 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000909
Chris Lattner58fe4592005-12-21 07:47:04 +0000910 // Change from the pseudo instruction to the concrete instruction.
911 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000912 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000913
914 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000915 pushReg(DestReg);
916}
917
Chris Lattner4a06f352004-02-02 19:23:15 +0000918/// handleOneArgFP - fst <mem>, ST(0)
919///
Chris Lattnera960d952003-01-13 01:01:59 +0000920void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000921 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000922 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000923 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000924 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000925
Chris Lattner4a06f352004-02-02 19:23:15 +0000926 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000927 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000928 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000929
Evan Cheng2b152712006-02-18 02:36:28 +0000930 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000931 // If we have one _and_ we don't want to pop the operand, duplicate the value
932 // on the stack instead of moving it. This ensure that popping the value is
933 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000934 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000935 //
Evan Cheng2b152712006-02-18 02:36:28 +0000936 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000937 (MI->getOpcode() == X86::IST_Fp64m32 ||
938 MI->getOpcode() == X86::ISTT_Fp16m32 ||
939 MI->getOpcode() == X86::ISTT_Fp32m32 ||
940 MI->getOpcode() == X86::ISTT_Fp64m32 ||
941 MI->getOpcode() == X86::IST_Fp64m64 ||
942 MI->getOpcode() == X86::ISTT_Fp16m64 ||
943 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000944 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +0000945 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +0000946 MI->getOpcode() == X86::ISTT_Fp16m80 ||
947 MI->getOpcode() == X86::ISTT_Fp32m80 ||
948 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000949 MI->getOpcode() == X86::ST_FpP80m)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000950 duplicateToTop(Reg, getScratchReg(), I);
Chris Lattnera960d952003-01-13 01:01:59 +0000951 } else {
952 moveToTop(Reg, I); // Move to the top of the stack...
953 }
Chris Lattner58fe4592005-12-21 07:47:04 +0000954
955 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +0000956 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000957 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000958
Dale Johannesene377d4d2007-07-04 21:07:47 +0000959 if (MI->getOpcode() == X86::IST_FP64m ||
960 MI->getOpcode() == X86::ISTT_FP16m ||
961 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +0000962 MI->getOpcode() == X86::ISTT_FP64m ||
963 MI->getOpcode() == X86::ST_FP80m) {
Evan Cheng3f490f32010-10-12 23:19:28 +0000964 if (StackTop == 0)
965 report_fatal_error("Stack empty??");
Chris Lattnera960d952003-01-13 01:01:59 +0000966 --StackTop;
967 } else if (KillsSrc) { // Last use of operand?
968 popStackAfter(I);
969 }
970}
971
Chris Lattner4a06f352004-02-02 19:23:15 +0000972
Chris Lattner4cf15e72004-04-11 20:21:06 +0000973/// handleOneArgFPRW: Handle instructions that read from the top of stack and
974/// replace the value with a newly computed value. These instructions may have
975/// non-fp operands after their FP operands.
976///
977/// Examples:
978/// R1 = fchs R2
979/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +0000980///
981void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000982 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +0000983#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +0000984 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +0000985 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +0000986#endif
Chris Lattner4a06f352004-02-02 19:23:15 +0000987
988 // Is this the last use of the source register?
989 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +0000990 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +0000991
992 if (KillsSrc) {
993 // If this is the last use of the source register, just make sure it's on
994 // the top of the stack.
995 moveToTop(Reg, I);
Evan Cheng3f490f32010-10-12 23:19:28 +0000996 if (StackTop == 0)
997 report_fatal_error("Stack cannot be empty!");
Chris Lattner4a06f352004-02-02 19:23:15 +0000998 --StackTop;
999 pushReg(getFPReg(MI->getOperand(0)));
1000 } else {
1001 // If this is not the last use of the source register, _copy_ it to the top
1002 // of the stack.
1003 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1004 }
1005
Chris Lattner58fe4592005-12-21 07:47:04 +00001006 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +00001007 MI->RemoveOperand(1); // Drop the source operand.
1008 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001009 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +00001010}
1011
1012
Chris Lattnera960d952003-01-13 01:01:59 +00001013//===----------------------------------------------------------------------===//
1014// Define tables of various ways to map pseudo instructions
1015//
1016
1017// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1018static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001019 { X86::ADD_Fp32 , X86::ADD_FST0r },
1020 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001021 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001022 { X86::DIV_Fp32 , X86::DIV_FST0r },
1023 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001024 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001025 { X86::MUL_Fp32 , X86::MUL_FST0r },
1026 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001027 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001028 { X86::SUB_Fp32 , X86::SUB_FST0r },
1029 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001030 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001031};
1032
1033// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1034static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001035 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1036 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001037 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001038 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1039 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001040 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001041 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1042 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001043 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001044 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1045 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001046 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001047};
1048
1049// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1050static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001051 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1052 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001053 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001054 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1055 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001056 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001057 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1058 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001059 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001060 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1061 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001062 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001063};
1064
1065// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1066static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001067 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1068 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001069 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001070 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1071 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001072 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001073 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1074 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001075 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001076 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1077 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001078 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001079};
1080
1081
1082/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1083/// instructions which need to be simplified and possibly transformed.
1084///
1085/// Result: ST(0) = fsub ST(0), ST(i)
1086/// ST(i) = fsub ST(0), ST(i)
1087/// ST(0) = fsubr ST(0), ST(i)
1088/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001089///
Chris Lattnera960d952003-01-13 01:01:59 +00001090void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1091 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1092 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001093 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001094
Chris Lattner749c6f62008-01-07 07:27:27 +00001095 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001096 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +00001097 unsigned Dest = getFPReg(MI->getOperand(0));
1098 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1099 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001100 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1101 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001102 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001103
Chris Lattnera960d952003-01-13 01:01:59 +00001104 unsigned TOS = getStackEntry(0);
1105
1106 // One of our operands must be on the top of the stack. If neither is yet, we
1107 // need to move one.
1108 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1109 // We can choose to move either operand to the top of the stack. If one of
1110 // the operands is killed by this instruction, we want that one so that we
1111 // can update right on top of the old version.
1112 if (KillsOp0) {
1113 moveToTop(Op0, I); // Move dead operand to TOS.
1114 TOS = Op0;
1115 } else if (KillsOp1) {
1116 moveToTop(Op1, I);
1117 TOS = Op1;
1118 } else {
1119 // All of the operands are live after this instruction executes, so we
1120 // cannot update on top of any operand. Because of this, we must
1121 // duplicate one of the stack elements to the top. It doesn't matter
1122 // which one we pick.
1123 //
1124 duplicateToTop(Op0, Dest, I);
1125 Op0 = TOS = Dest;
1126 KillsOp0 = true;
1127 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001128 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +00001129 // If we DO have one of our operands at the top of the stack, but we don't
1130 // have a dead operand, we must duplicate one of the operands to a new slot
1131 // on the stack.
1132 duplicateToTop(Op0, Dest, I);
1133 Op0 = TOS = Dest;
1134 KillsOp0 = true;
1135 }
1136
1137 // Now we know that one of our operands is on the top of the stack, and at
1138 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001139 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1140 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +00001141
1142 // We decide which form to use based on what is on the top of the stack, and
1143 // which operand is killed by this instruction.
1144 const TableEntry *InstTable;
1145 bool isForward = TOS == Op0;
1146 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1147 if (updateST0) {
1148 if (isForward)
1149 InstTable = ForwardST0Table;
1150 else
1151 InstTable = ReverseST0Table;
1152 } else {
1153 if (isForward)
1154 InstTable = ForwardSTiTable;
1155 else
1156 InstTable = ReverseSTiTable;
1157 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001158
Owen Anderson718cb662007-09-07 04:06:50 +00001159 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1160 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +00001161 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1162
1163 // NotTOS - The register which is not on the top of stack...
1164 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1165
1166 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +00001167 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001168 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +00001169
1170 // If both operands are killed, pop one off of the stack in addition to
1171 // overwriting the other one.
1172 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1173 assert(!updateST0 && "Should have updated other operand!");
1174 popStackAfter(I); // Pop the top of stack
1175 }
1176
Chris Lattnera960d952003-01-13 01:01:59 +00001177 // Update stack information so that we know the destination register is now on
1178 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001179 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1180 assert(UpdatedSlot < StackTop && Dest < 7);
1181 Stack[UpdatedSlot] = Dest;
1182 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001183 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001184}
1185
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001186/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001187/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001188///
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001189void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1190 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1191 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1192 MachineInstr *MI = I;
1193
Chris Lattner749c6f62008-01-07 07:27:27 +00001194 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001195 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001196 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1197 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001198 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1199 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001200
1201 // Make sure the first operand is on the top of stack, the other one can be
1202 // anywhere.
1203 moveToTop(Op0, I);
1204
Chris Lattner58fe4592005-12-21 07:47:04 +00001205 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +00001206 MI->getOperand(0).setReg(getSTReg(Op1));
1207 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +00001208 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +00001209
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001210 // If any of the operands are killed by this instruction, free them.
1211 if (KillsOp0) freeStackSlotAfter(I, Op0);
1212 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +00001213}
1214
Chris Lattnerc1bab322004-03-31 22:02:36 +00001215/// handleCondMovFP - Handle two address conditional move instructions. These
1216/// instructions move a st(i) register to st(0) iff a condition is true. These
1217/// instructions require that the first operand is at the top of the stack, but
1218/// otherwise don't modify the stack at all.
1219void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1220 MachineInstr *MI = I;
1221
1222 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001223 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +00001224 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001225
1226 // The first operand *must* be on the top of the stack.
1227 moveToTop(Op0, I);
1228
1229 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +00001230 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +00001231 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001232 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001233 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +00001234 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +00001235
Chris Lattnerc1bab322004-03-31 22:02:36 +00001236 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +00001237 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +00001238 // Get this value off of the register stack.
1239 freeStackSlotAfter(I, Op1);
1240 }
Chris Lattnerc1bab322004-03-31 22:02:36 +00001241}
1242
Chris Lattnera960d952003-01-13 01:01:59 +00001243
1244/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001245/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +00001246/// instructions.
1247///
1248void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001249 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001250 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001251 default: llvm_unreachable("Unknown SpecialFP instruction!");
Chris Lattner6fa2f9c2008-03-09 07:05:32 +00001252 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1253 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1254 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Chris Lattnera960d952003-01-13 01:01:59 +00001255 assert(StackTop == 0 && "Stack should be empty after a call!");
1256 pushReg(getFPReg(MI->getOperand(0)));
1257 break;
Chris Lattner24e0a542008-03-21 06:38:26 +00001258 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1259 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1260 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1261 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1262 // The pattern we expect is:
1263 // CALL
1264 // FP1 = FpGET_ST0
1265 // FP4 = FpGET_ST1
1266 //
1267 // At this point, we've pushed FP1 on the top of stack, so it should be
1268 // present if it isn't dead. If it was dead, we already emitted a pop to
1269 // remove it from the stack and StackTop = 0.
1270
1271 // Push FP4 as top of stack next.
1272 pushReg(getFPReg(MI->getOperand(0)));
1273
1274 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1275 // dead. In this case, the ST(1) value is the only thing that is live, so
1276 // it should be on the TOS (after the pop that was emitted) and is. Just
1277 // continue in this case.
1278 if (StackTop == 1)
1279 break;
1280
1281 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1282 // elements so that our accounting is correct.
1283 unsigned RegOnTop = getStackEntry(0);
1284 unsigned RegNo = getStackEntry(1);
1285
1286 // Swap the slots the regs are in.
1287 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1288
1289 // Swap stack slot contents.
Evan Cheng3f490f32010-10-12 23:19:28 +00001290 if (RegMap[RegOnTop] >= StackTop)
1291 report_fatal_error("Access past stack top!");
Chris Lattner24e0a542008-03-21 06:38:26 +00001292 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1293 break;
1294 }
Chris Lattnerafb23f42008-03-09 07:08:44 +00001295 case X86::FpSET_ST0_32:
1296 case X86::FpSET_ST0_64:
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001297 case X86::FpSET_ST0_80: {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001298 // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1299 // arguments that use an st constraint. We expect a sequence of
1300 // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001301 unsigned Op0 = getFPReg(MI->getOperand(0));
1302
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001303 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001304 // Duplicate Op0 into a temporary on the stack top.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001305 duplicateToTop(Op0, getScratchReg(), I);
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001306 } else {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001307 // Op0 is killed, so just swap it into position.
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001308 moveToTop(Op0, I);
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001309 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001310 --StackTop; // "Forget" we have something on the top of stack!
1311 break;
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001312 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001313 case X86::FpSET_ST1_32:
1314 case X86::FpSET_ST1_64:
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001315 case X86::FpSET_ST1_80: {
1316 // Set up st(1) for inline asm. We are assuming that st(0) has already been
1317 // set up by FpSET_ST0, and our StackTop is off by one because of it.
1318 unsigned Op0 = getFPReg(MI->getOperand(0));
1319 // Restore the actual StackTop from before Fp_SET_ST0.
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001320 // Note we can't handle Fp_SET_ST1 without a preceding Fp_SET_ST0, and we
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001321 // are not enforcing the constraint.
1322 ++StackTop;
1323 unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1324 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001325 duplicateToTop(Op0, getScratchReg(), I);
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001326 moveToTop(RegOnTop, I);
1327 } else if (getSTReg(Op0) != X86::ST1) {
1328 // We have the wrong value at st(1). Shuffle! Untested!
1329 moveToTop(getStackEntry(1), I);
1330 moveToTop(Op0, I);
1331 moveToTop(RegOnTop, I);
Evan Chenga0eedac2009-02-09 23:32:07 +00001332 }
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001333 assert(StackTop >= 2 && "Too few live registers");
1334 StackTop -= 2; // "Forget" both st(0) and st(1).
Chris Lattnera960d952003-01-13 01:01:59 +00001335 break;
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001336 }
Dale Johannesene377d4d2007-07-04 21:07:47 +00001337 case X86::MOV_Fp3232:
1338 case X86::MOV_Fp3264:
1339 case X86::MOV_Fp6432:
Dale Johannesen59a58732007-08-05 18:49:15 +00001340 case X86::MOV_Fp6464:
1341 case X86::MOV_Fp3280:
1342 case X86::MOV_Fp6480:
1343 case X86::MOV_Fp8032:
1344 case X86::MOV_Fp8064:
1345 case X86::MOV_Fp8080: {
Evan Chengfb112882009-03-23 08:01:15 +00001346 const MachineOperand &MO1 = MI->getOperand(1);
1347 unsigned SrcReg = getFPReg(MO1);
Chris Lattnera960d952003-01-13 01:01:59 +00001348
Evan Chengfb112882009-03-23 08:01:15 +00001349 const MachineOperand &MO0 = MI->getOperand(0);
Evan Chengfb112882009-03-23 08:01:15 +00001350 unsigned DestReg = getFPReg(MO0);
Evan Cheng6130f662008-03-05 00:59:57 +00001351 if (MI->killsRegister(X86::FP0+SrcReg)) {
Chris Lattnera960d952003-01-13 01:01:59 +00001352 // If the input operand is killed, we can just change the owner of the
1353 // incoming stack slot into the result.
1354 unsigned Slot = getSlot(SrcReg);
1355 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1356 Stack[Slot] = DestReg;
1357 RegMap[DestReg] = Slot;
1358
1359 } else {
1360 // For FMOV we just duplicate the specified value to a new stack slot.
1361 // This could be made better, but would require substantial changes.
1362 duplicateToTop(SrcReg, DestReg, I);
1363 }
Nick Lewycky3c786972008-03-11 05:56:09 +00001364 }
Chris Lattnera960d952003-01-13 01:01:59 +00001365 break;
Chris Lattner518bb532010-02-09 19:54:29 +00001366 case TargetOpcode::INLINEASM: {
Chris Lattnere12ecf22008-03-11 19:50:13 +00001367 // The inline asm MachineInstr currently only *uses* FP registers for the
1368 // 'f' constraint. These should be turned into the current ST(x) register
1369 // in the machine instr. Also, any kills should be explicitly popped after
1370 // the inline asm.
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001371 unsigned Kills = 0;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001372 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1373 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001374 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001375 continue;
1376 assert(Op.isUse() && "Only handle inline asm uses right now");
1377
1378 unsigned FPReg = getFPReg(Op);
1379 Op.setReg(getSTReg(FPReg));
1380
1381 // If we kill this operand, make sure to pop it from the stack after the
1382 // asm. We just remember it for now, and pop them all off at the end in
1383 // a batch.
1384 if (Op.isKill())
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001385 Kills |= 1U << FPReg;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001386 }
1387
1388 // If this asm kills any FP registers (is the last use of them) we must
1389 // explicitly emit pop instructions for them. Do this now after the asm has
1390 // executed so that the ST(x) numbers are not off (which would happen if we
1391 // did this inline with operand rewriting).
1392 //
1393 // Note: this might be a non-optimal pop sequence. We might be able to do
1394 // better by trying to pop in stack order or something.
1395 MachineBasicBlock::iterator InsertPt = MI;
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001396 while (Kills) {
1397 unsigned FPReg = CountTrailingZeros_32(Kills);
1398 freeStackSlotAfter(InsertPt, FPReg);
1399 Kills &= ~(1U << FPReg);
1400 }
Chris Lattnere12ecf22008-03-11 19:50:13 +00001401 // Don't delete the inline asm!
1402 return;
1403 }
1404
Chris Lattner447ff682008-03-11 03:23:40 +00001405 case X86::RET:
1406 case X86::RETI:
1407 // If RET has an FP register use operand, pass the first one in ST(0) and
1408 // the second one in ST(1).
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001409
Chris Lattner447ff682008-03-11 03:23:40 +00001410 // Find the register operands.
1411 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001412 unsigned LiveMask = 0;
1413
Chris Lattner447ff682008-03-11 03:23:40 +00001414 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1415 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001416 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001417 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001418 // FP Register uses must be kills unless there are two uses of the same
1419 // register, in which case only one will be a kill.
1420 assert(Op.isUse() &&
1421 (Op.isKill() || // Marked kill.
1422 getFPReg(Op) == FirstFPRegOp || // Second instance.
1423 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1424 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001425
1426 if (FirstFPRegOp == ~0U)
1427 FirstFPRegOp = getFPReg(Op);
1428 else {
1429 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1430 SecondFPRegOp = getFPReg(Op);
1431 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001432 LiveMask |= (1 << getFPReg(Op));
Chris Lattner447ff682008-03-11 03:23:40 +00001433
1434 // Remove the operand so that later passes don't see it.
1435 MI->RemoveOperand(i);
1436 --i, --e;
1437 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001438
1439 // We may have been carrying spurious live-ins, so make sure only the returned
1440 // registers are left live.
1441 adjustLiveRegs(LiveMask, MI);
1442 if (!LiveMask) return; // Quick check to see if any are possible.
1443
Chris Lattner447ff682008-03-11 03:23:40 +00001444 // There are only four possibilities here:
1445 // 1) we are returning a single FP value. In this case, it has to be in
1446 // ST(0) already, so just declare success by removing the value from the
1447 // FP Stack.
1448 if (SecondFPRegOp == ~0U) {
1449 // Assert that the top of stack contains the right FP register.
1450 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1451 "Top of stack not the right register for RET!");
1452
1453 // Ok, everything is good, mark the value as not being on the stack
1454 // anymore so that our assertion about the stack being empty at end of
1455 // block doesn't fire.
1456 StackTop = 0;
1457 return;
1458 }
1459
Chris Lattner447ff682008-03-11 03:23:40 +00001460 // Otherwise, we are returning two values:
1461 // 2) If returning the same value for both, we only have one thing in the FP
1462 // stack. Consider: RET FP1, FP1
1463 if (StackTop == 1) {
1464 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1465 "Stack misconfiguration for RET!");
1466
1467 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1468 // register to hold it.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001469 unsigned NewReg = getScratchReg();
Chris Lattner447ff682008-03-11 03:23:40 +00001470 duplicateToTop(FirstFPRegOp, NewReg, MI);
1471 FirstFPRegOp = NewReg;
1472 }
1473
1474 /// Okay we know we have two different FPx operands now:
1475 assert(StackTop == 2 && "Must have two values live!");
1476
1477 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1478 /// in ST(1). In this case, emit an fxch.
1479 if (getStackEntry(0) == SecondFPRegOp) {
1480 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1481 moveToTop(FirstFPRegOp, MI);
1482 }
1483
1484 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1485 /// ST(1). Just remove both from our understanding of the stack and return.
1486 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001487 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001488 StackTop = 0;
1489 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001490 }
Chris Lattnera960d952003-01-13 01:01:59 +00001491
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001492 I = MBB->erase(I); // Remove the pseudo instruction
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001493
1494 // We want to leave I pointing to the previous instruction, but what if we
1495 // just erased the first instruction?
1496 if (I == MBB->begin()) {
1497 DEBUG(dbgs() << "Inserting dummy KILL\n");
1498 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1499 } else
1500 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001501}
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +00001502
1503// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1504bool FPS::translateCopy(MachineInstr *MI) {
1505 unsigned DstReg = MI->getOperand(0).getReg();
1506 unsigned SrcReg = MI->getOperand(1).getReg();
1507
1508 if (DstReg == X86::ST0) {
1509 MI->setDesc(TII->get(X86::FpSET_ST0_80));
1510 MI->RemoveOperand(0);
1511 return true;
1512 }
1513 if (DstReg == X86::ST1) {
1514 MI->setDesc(TII->get(X86::FpSET_ST1_80));
1515 MI->RemoveOperand(0);
1516 return true;
1517 }
1518 if (SrcReg == X86::ST0) {
1519 MI->setDesc(TII->get(X86::FpGET_ST0_80));
1520 return true;
1521 }
1522 if (SrcReg == X86::ST1) {
1523 MI->setDesc(TII->get(X86::FpGET_ST1_80));
1524 return true;
1525 }
1526 if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1527 MI->setDesc(TII->get(X86::MOV_Fp8080));
1528 return true;
1529 }
1530 return false;
1531}