blob: dc76f3ec1f9cafa20e2666d3b326dda598132f59 [file] [log] [blame]
Chris Lattner1e60a912003-12-20 01:22:19 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswell856ba762003-10-21 15:17:13 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswell856ba762003-10-21 15:17:13 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
Chris Lattner3501fea2003-01-14 22:00:31 +000017#include "llvm/Target/TargetInstrInfo.h"
Nicolas Geoffray52e724a2008-04-16 20:10:13 +000018#include "X86.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "X86RegisterInfo.h"
Bill Wendling6259d512007-12-30 03:18:58 +000020#include "llvm/ADT/IndexedMap.h"
Dan Gohman6f0d0242008-02-10 18:45:23 +000021#include "llvm/Target/TargetRegisterInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +000022
Brian Gaeked0fde302003-11-11 22:41:34 +000023namespace llvm {
Evan Cheng25ab6902006-09-08 06:48:29 +000024 class X86RegisterInfo;
Evan Chengaa3c1412006-05-30 21:45:53 +000025 class X86TargetMachine;
Brian Gaeked0fde302003-11-11 22:41:34 +000026
Chris Lattner7fbe9722006-10-20 17:42:20 +000027namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
44 COND_O = 13,
45 COND_P = 14,
46 COND_S = 15,
Dan Gohman279c22e2008-10-21 03:29:32 +000047
48 // Artificial condition codes. These are used by AnalyzeBranch
49 // to indicate a block terminated with two conditional branches to
50 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51 // which can't be represented on x86 with a single condition. These
52 // are never used in MachineInstrs.
53 COND_NE_OR_P,
54 COND_NP_OR_E,
55
Chris Lattner7fbe9722006-10-20 17:42:20 +000056 COND_INVALID
57 };
Christopher Lamb6634e262008-03-13 05:47:01 +000058
Chris Lattner7fbe9722006-10-20 17:42:20 +000059 // Turn condition code into conditional branch opcode.
60 unsigned GetCondBranchFromCond(CondCode CC);
Chris Lattner9cd68752006-10-21 05:52:40 +000061
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
Chris Lattner7fbe9722006-10-20 17:42:20 +000066}
67
Chris Lattner9d177402002-10-30 01:09:34 +000068/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
72 enum {
Chris Lattner6aab9cf2002-11-18 05:37:11 +000073 //===------------------------------------------------------------------===//
74 // Instruction types. These are the standard/most common forms for X86
75 // instructions.
76 //
77
Chris Lattner4c299f52002-12-25 05:09:59 +000078 // PseudoFrm - This represents an instruction that is a pseudo instruction
79 // or one that has not been implemented yet. It is illegal to code generate
80 // it, but tolerated for intermediate implementation stages.
81 Pseudo = 0,
82
Chris Lattner6aab9cf2002-11-18 05:37:11 +000083 /// Raw - This form is for instructions that don't have any operands, so
84 /// they are just a fixed opcode value, like 'leave'.
Chris Lattner4c299f52002-12-25 05:09:59 +000085 RawFrm = 1,
Misha Brukman0e0a7a452005-04-21 23:38:14 +000086
Chris Lattner6aab9cf2002-11-18 05:37:11 +000087 /// AddRegFrm - This form is used for instructions like 'push r32' that have
88 /// their one register operand added to their opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +000089 AddRegFrm = 2,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000090
91 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
92 /// to specify a destination, which in this case is a register.
93 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000094 MRMDestReg = 3,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000095
96 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
97 /// to specify a destination, which in this case is memory.
98 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000099 MRMDestMem = 4,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000100
101 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
102 /// to specify a source, which in this case is a register.
103 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000104 MRMSrcReg = 5,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000105
106 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
107 /// to specify a source, which in this case is memory.
108 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000109 MRMSrcMem = 6,
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000110
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000111 /// MRM[0-7][rm] - These forms are used to represent instructions that use
Chris Lattner85b39f22002-11-21 17:08:49 +0000112 /// a Mod/RM byte, and use the middle field to hold extended opcode
113 /// information. In the intel manual these are represented as /0, /1, ...
114 ///
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000115
Chris Lattner85b39f22002-11-21 17:08:49 +0000116 // First, instructions that operate on a register r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000117 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
118 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000119
120 // Next, instructions that operate on a memory r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000121 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
122 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000123
Evan Cheng3c55c542006-02-01 06:13:50 +0000124 // MRMInitReg - This form is used for instructions whose source and
125 // destinations are the same register.
126 MRMInitReg = 32,
127
128 FormMask = 63,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000129
130 //===------------------------------------------------------------------===//
131 // Actual flags...
132
Chris Lattner11e53e32002-11-21 01:32:55 +0000133 // OpSize - Set if this instruction requires an operand size prefix (0x66),
134 // which most often indicates that the instruction operates on 16 bit data
135 // instead of 32 bit data.
Evan Cheng3c55c542006-02-01 06:13:50 +0000136 OpSize = 1 << 6,
Brian Gaeke86764d72002-12-05 08:30:40 +0000137
Evan Cheng25ab6902006-09-08 06:48:29 +0000138 // AsSize - Set if this instruction requires an operand size prefix (0x67),
139 // which most often indicates that the instruction address 16 bit address
140 // instead of 32 bit address (or 32 bit address in 64 bit mode).
141 AdSize = 1 << 7,
142
143 //===------------------------------------------------------------------===//
Chris Lattner4c299f52002-12-25 05:09:59 +0000144 // Op0Mask - There are several prefix bytes that are used to form two byte
Chris Lattner915e5e52004-02-12 17:53:22 +0000145 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
146 // used to obtain the setting of this field. If no bits in this field is
147 // set, there is no prefix byte for obtaining a multibyte opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000148 //
Evan Cheng25ab6902006-09-08 06:48:29 +0000149 Op0Shift = 8,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000150 Op0Mask = 0xF << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000151
152 // TB - TwoByte - Set if this instruction has a two byte opcode, which
153 // starts with a 0x0F byte before the real opcode.
Chris Lattner2959b6e2003-08-06 15:32:20 +0000154 TB = 1 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000155
Chris Lattner915e5e52004-02-12 17:53:22 +0000156 // REP - The 0xF3 prefix byte indicating repetition of the following
157 // instruction.
158 REP = 2 << Op0Shift,
159
Chris Lattner4c299f52002-12-25 05:09:59 +0000160 // D8-DF - These escape opcodes are used by the floating point unit. These
161 // values must remain sequential.
Chris Lattner915e5e52004-02-12 17:53:22 +0000162 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
163 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
164 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
165 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
Jeff Cohen9eb59ec2005-07-27 05:53:44 +0000166
Nate Begemanf63be7d2005-07-06 18:59:04 +0000167 // XS, XD - These prefix codes are for single and double precision scalar
168 // floating point operations performed in the SSE registers.
Bill Wendlingbb1ee052007-04-10 22:10:25 +0000169 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
170
171 // T8, TA - Prefix after the 0x0F prefix.
172 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000173
Chris Lattner0c514f42003-01-13 00:49:24 +0000174 //===------------------------------------------------------------------===//
Evan Cheng25ab6902006-09-08 06:48:29 +0000175 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
176 // They are used to specify GPRs and SSE registers, 64-bit operand size,
177 // etc. We only cares about REX.W and REX.R bits and only the former is
178 // statically determined.
179 //
180 REXShift = 12,
181 REX_W = 1 << REXShift,
182
183 //===------------------------------------------------------------------===//
184 // This three-bit field describes the size of an immediate operand. Zero is
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000185 // unused so that we can tell if we forgot to set a value.
Evan Cheng25ab6902006-09-08 06:48:29 +0000186 ImmShift = 13,
187 ImmMask = 7 << ImmShift,
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000188 Imm8 = 1 << ImmShift,
189 Imm16 = 2 << ImmShift,
190 Imm32 = 3 << ImmShift,
Evan Cheng25ab6902006-09-08 06:48:29 +0000191 Imm64 = 4 << ImmShift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000192
Chris Lattner0c514f42003-01-13 00:49:24 +0000193 //===------------------------------------------------------------------===//
194 // FP Instruction Classification... Zero is non-fp instruction.
195
Chris Lattner2959b6e2003-08-06 15:32:20 +0000196 // FPTypeMask - Mask for all of the FP types...
Evan Cheng25ab6902006-09-08 06:48:29 +0000197 FPTypeShift = 16,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000198 FPTypeMask = 7 << FPTypeShift,
199
Chris Lattner79b13732004-01-30 22:24:18 +0000200 // NotFP - The default, set for instructions that do not use FP registers.
201 NotFP = 0 << FPTypeShift,
202
Chris Lattner0c514f42003-01-13 00:49:24 +0000203 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
Chris Lattner2959b6e2003-08-06 15:32:20 +0000204 ZeroArgFP = 1 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000205
206 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
Chris Lattner2959b6e2003-08-06 15:32:20 +0000207 OneArgFP = 2 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000208
209 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
210 // result back to ST(0). For example, fcos, fsqrt, etc.
211 //
Chris Lattner2959b6e2003-08-06 15:32:20 +0000212 OneArgFPRW = 3 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000213
214 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
215 // explicit argument, storing the result to either ST(0) or the implicit
216 // argument. For example: fadd, fsub, fmul, etc...
Chris Lattner2959b6e2003-08-06 15:32:20 +0000217 TwoArgFP = 4 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000218
Chris Lattnerab8decc2004-06-11 04:41:24 +0000219 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
220 // explicit argument, but have no destination. Example: fucom, fucomi, ...
221 CompareFP = 5 << FPTypeShift,
222
Chris Lattner1c54a852004-03-31 22:02:13 +0000223 // CondMovFP - "2 operand" floating point conditional move instructions.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000224 CondMovFP = 6 << FPTypeShift,
Chris Lattner1c54a852004-03-31 22:02:13 +0000225
Chris Lattner0c514f42003-01-13 00:49:24 +0000226 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000227 SpecialFP = 7 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000228
Andrew Lenharthea7da502008-03-01 13:37:02 +0000229 // Lock prefix
230 LOCKShift = 19,
231 LOCK = 1 << LOCKShift,
232
Anton Korobeynikovef93cec2008-10-11 19:09:15 +0000233 // Segment override prefixes. Currently we just need ability to address
234 // stuff in gs and fs segments.
235 SegOvrShift = 20,
236 SegOvrMask = 3 << SegOvrShift,
237 FS = 1 << SegOvrShift,
238 GS = 2 << SegOvrShift,
239
240 // Bits 22 -> 23 are unused
Evan Cheng25ab6902006-09-08 06:48:29 +0000241 OpcodeShift = 24,
Chris Lattnerd74ea2b2006-05-24 17:04:05 +0000242 OpcodeMask = 0xFF << OpcodeShift
Chris Lattner9d177402002-10-30 01:09:34 +0000243 };
244}
245
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000246inline static bool isScale(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000247 return MO.isImm() &&
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000248 (MO.getImm() == 1 || MO.getImm() == 2 ||
249 MO.getImm() == 4 || MO.getImm() == 8);
250}
251
252inline static bool isMem(const MachineInstr *MI, unsigned Op) {
Dan Gohmand735b802008-10-03 15:45:36 +0000253 if (MI->getOperand(Op).isFI()) return true;
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000254 return Op+4 <= MI->getNumOperands() &&
Dan Gohmand735b802008-10-03 15:45:36 +0000255 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
256 MI->getOperand(Op+2).isReg() &&
257 (MI->getOperand(Op+3).isImm() ||
258 MI->getOperand(Op+3).isGlobal() ||
259 MI->getOperand(Op+3).isCPI() ||
260 MI->getOperand(Op+3).isJTI());
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000261}
262
Chris Lattner64105522008-01-01 01:03:04 +0000263class X86InstrInfo : public TargetInstrInfoImpl {
Evan Chengaa3c1412006-05-30 21:45:53 +0000264 X86TargetMachine &TM;
Chris Lattner72614082002-10-25 22:55:53 +0000265 const X86RegisterInfo RI;
Owen Anderson43dbe052008-01-07 01:35:02 +0000266
267 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
268 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
269 ///
270 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
271 DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
272 DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
273 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
274
275 /// MemOp2RegOpTable - Load / store unfolding opcode map.
276 ///
277 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
278
Chris Lattner72614082002-10-25 22:55:53 +0000279public:
Dan Gohman950a4c42008-03-25 22:06:05 +0000280 explicit X86InstrInfo(X86TargetMachine &tm);
Chris Lattner72614082002-10-25 22:55:53 +0000281
Chris Lattner3501fea2003-01-14 22:00:31 +0000282 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
Chris Lattner72614082002-10-25 22:55:53 +0000283 /// such, whenever a client has an instance of instruction info, it should
284 /// always be able to get register info as well (through this method).
285 ///
Dan Gohmanc9f5f3f2008-05-14 01:58:56 +0000286 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
Chris Lattner72614082002-10-25 22:55:53 +0000287
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000288 // Return true if the instruction is a register to register move and
289 // leave the source and dest operands in the passed parameters.
290 //
Chris Lattner40839602006-02-02 20:12:32 +0000291 bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
292 unsigned& destReg) const;
293 unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
294 unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000295
Bill Wendling9f8fea32008-05-12 20:54:26 +0000296 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000297 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
298 unsigned DestReg, const MachineInstr *Orig) const;
299
Chris Lattnera22edc82008-01-10 23:08:24 +0000300 bool isInvariantLoad(MachineInstr *MI) const;
Bill Wendling627c00b2007-12-17 23:07:56 +0000301
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000302 /// convertToThreeAddress - This method must be implemented by targets that
303 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
304 /// may be able to convert a two-address instruction into a true
305 /// three-address instruction on demand. This allows the X86 target (for
306 /// example) to convert ADD and SHL instructions into LEA instructions if they
307 /// would require register copies due to two-addressness.
308 ///
309 /// This method returns a null pointer if the transformation cannot be
310 /// performed, otherwise it returns the new instruction.
311 ///
Evan Chengba59a1e2006-12-01 21:52:58 +0000312 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
313 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +0000314 LiveVariables *LV) const;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000315
Chris Lattner41e431b2005-01-19 07:11:01 +0000316 /// commuteInstruction - We have a few instructions that must be hacked on to
317 /// commute them.
318 ///
Evan Cheng58dcb0e2008-06-16 07:33:11 +0000319 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000320
Chris Lattner7fbe9722006-10-20 17:42:20 +0000321 // Branch analysis.
Dale Johannesen318093b2007-06-14 22:03:45 +0000322 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
Chris Lattner7fbe9722006-10-20 17:42:20 +0000323 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
324 MachineBasicBlock *&FBB,
Owen Anderson44eb65c2008-08-14 22:49:33 +0000325 SmallVectorImpl<MachineOperand> &Cond) const;
Evan Cheng6ae36262007-05-18 00:18:17 +0000326 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
327 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
328 MachineBasicBlock *FBB,
Owen Anderson44eb65c2008-08-14 22:49:33 +0000329 const SmallVectorImpl<MachineOperand> &Cond) const;
Owen Anderson940f83e2008-08-26 18:03:31 +0000330 virtual bool copyRegToReg(MachineBasicBlock &MBB,
Owen Andersond10fd972007-12-31 06:32:00 +0000331 MachineBasicBlock::iterator MI,
332 unsigned DestReg, unsigned SrcReg,
333 const TargetRegisterClass *DestRC,
334 const TargetRegisterClass *SrcRC) const;
Owen Andersonf6372aa2008-01-01 21:11:32 +0000335 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
336 MachineBasicBlock::iterator MI,
337 unsigned SrcReg, bool isKill, int FrameIndex,
338 const TargetRegisterClass *RC) const;
339
340 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
341 SmallVectorImpl<MachineOperand> &Addr,
342 const TargetRegisterClass *RC,
343 SmallVectorImpl<MachineInstr*> &NewMIs) const;
344
345 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
346 MachineBasicBlock::iterator MI,
347 unsigned DestReg, int FrameIndex,
348 const TargetRegisterClass *RC) const;
349
350 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
351 SmallVectorImpl<MachineOperand> &Addr,
352 const TargetRegisterClass *RC,
353 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Andersond94b6a12008-01-04 23:57:37 +0000354
355 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
356 MachineBasicBlock::iterator MI,
357 const std::vector<CalleeSavedInfo> &CSI) const;
358
359 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
360 MachineBasicBlock::iterator MI,
361 const std::vector<CalleeSavedInfo> &CSI) const;
362
Owen Anderson43dbe052008-01-07 01:35:02 +0000363 /// foldMemoryOperand - If this target supports it, fold a load or store of
364 /// the specified stack slot into the specified machine instruction for the
365 /// specified operand(s). If this is possible, the target should perform the
366 /// folding and return true, otherwise it should return false. If it folds
367 /// the instruction, it is likely that the MachineInstruction the iterator
368 /// references has been changed.
Evan Cheng5fd79d02008-02-08 21:20:40 +0000369 virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
370 MachineInstr* MI,
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000371 const SmallVectorImpl<unsigned> &Ops,
Owen Anderson43dbe052008-01-07 01:35:02 +0000372 int FrameIndex) const;
373
374 /// foldMemoryOperand - Same as the previous version except it allows folding
375 /// of any load and store from / to any address, not just from a specific
376 /// stack slot.
Evan Cheng5fd79d02008-02-08 21:20:40 +0000377 virtual MachineInstr* foldMemoryOperand(MachineFunction &MF,
378 MachineInstr* MI,
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000379 const SmallVectorImpl<unsigned> &Ops,
Owen Anderson43dbe052008-01-07 01:35:02 +0000380 MachineInstr* LoadMI) const;
381
382 /// canFoldMemoryOperand - Returns true if the specified load / store is
383 /// folding is possible.
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000384 virtual bool canFoldMemoryOperand(const MachineInstr*,
385 const SmallVectorImpl<unsigned> &) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000386
387 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
388 /// a store or a load and a store into two or more instruction. If this is
389 /// possible, returns true as well as the new instructions by reference.
390 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
391 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
392 SmallVectorImpl<MachineInstr*> &NewMIs) const;
393
394 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
395 SmallVectorImpl<SDNode*> &NewNodes) const;
396
397 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
398 /// instruction after load / store are unfolded from an instruction of the
399 /// specified opcode. It returns zero if the specified unfolding is not
400 /// possible.
401 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
402 bool UnfoldLoad, bool UnfoldStore) const;
403
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000404 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
Owen Anderson44eb65c2008-08-14 22:49:33 +0000405 virtual
406 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000407
Evan Cheng23066282008-10-27 07:14:50 +0000408 /// IgnoreRegisterClassBarriers - Returns true if pre-register allocation
409 /// live interval splitting pass should ignore barriers of the specified
410 /// register class.
411 bool IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const;
412
Evan Cheng25ab6902006-09-08 06:48:29 +0000413 const TargetRegisterClass *getPointerRegClass() const;
414
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000415 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
Duncan Sandsee465742007-08-29 19:01:20 +0000416 // specified machine instruction.
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000417 //
Chris Lattner749c6f62008-01-07 07:27:27 +0000418 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
Evan Cheng19f2ffc2006-12-05 04:01:03 +0000419 return TID->TSFlags >> X86II::OpcodeShift;
Chris Lattner4d18d5c2003-08-03 21:56:22 +0000420 }
Chris Lattnercc8cd0c2008-01-07 02:48:55 +0000421 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
Duncan Sandsee465742007-08-29 19:01:20 +0000422 return getBaseOpcodeFor(&get(Opcode));
423 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000424
425 static bool isX86_64NonExtLowByteReg(unsigned reg) {
426 return (reg == X86::SPL || reg == X86::BPL ||
427 reg == X86::SIL || reg == X86::DIL);
428 }
429
430 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000431 static bool isX86_64ExtendedReg(const MachineOperand &MO);
432 static unsigned determineREX(const MachineInstr &MI);
433
434 /// GetInstSize - Returns the size of the specified MachineInstr.
435 ///
436 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000437
Dan Gohman57c3dac2008-09-30 00:58:23 +0000438 /// getGlobalBaseReg - Return a virtual register initialized with the
439 /// the global base register value. Output instructions required to
440 /// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +0000441 ///
Dan Gohman57c3dac2008-09-30 00:58:23 +0000442 unsigned getGlobalBaseReg(MachineFunction *MF) const;
Dan Gohman8b746962008-09-23 18:22:58 +0000443
Owen Anderson43dbe052008-01-07 01:35:02 +0000444private:
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000445 MachineInstr* foldMemoryOperand(MachineFunction &MF,
446 MachineInstr* MI,
447 unsigned OpNum,
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000448 const SmallVector<MachineOperand,4> &MOs) const;
Chris Lattner72614082002-10-25 22:55:53 +0000449};
450
Brian Gaeked0fde302003-11-11 22:41:34 +0000451} // End llvm namespace
452
Chris Lattner72614082002-10-25 22:55:53 +0000453#endif